md: use kzalloc() when bitmap is disabled
[pandora-kernel.git] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156
157 /**
158  *      free_tty_struct         -       free a disused tty
159  *      @tty: tty struct to free
160  *
161  *      Free the write buffers, tty queue and tty memory itself.
162  *
163  *      Locking: none. Must be called after tty is definitely unused
164  */
165
166 void free_tty_struct(struct tty_struct *tty)
167 {
168         if (!tty)
169                 return;
170         put_device(tty->dev);
171         kfree(tty->write_buf);
172         tty->magic = 0xDEADDEAD;
173         kfree(tty);
174 }
175
176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178         return ((struct tty_file_private *)file->private_data)->tty;
179 }
180
181 int tty_alloc_file(struct file *file)
182 {
183         struct tty_file_private *priv;
184
185         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186         if (!priv)
187                 return -ENOMEM;
188
189         file->private_data = priv;
190
191         return 0;
192 }
193
194 /* Associate a new file with the tty structure */
195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197         struct tty_file_private *priv = file->private_data;
198
199         priv->tty = tty;
200         priv->file = file;
201
202         spin_lock(&tty_files_lock);
203         list_add(&priv->list, &tty->tty_files);
204         spin_unlock(&tty_files_lock);
205 }
206
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
213 void tty_free_file(struct file *file)
214 {
215         struct tty_file_private *priv = file->private_data;
216
217         file->private_data = NULL;
218         kfree(priv);
219 }
220
221 /* Delete file from its tty */
222 static void tty_del_file(struct file *file)
223 {
224         struct tty_file_private *priv = file->private_data;
225
226         spin_lock(&tty_files_lock);
227         list_del(&priv->list);
228         spin_unlock(&tty_files_lock);
229         tty_free_file(file);
230 }
231
232
233 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
234
235 /**
236  *      tty_name        -       return tty naming
237  *      @tty: tty structure
238  *
239  *      Convert a tty structure into a name. The name reflects the kernel
240  *      naming policy and if udev is in use may not reflect user space
241  *
242  *      Locking: none
243  */
244
245 const char *tty_name(const struct tty_struct *tty)
246 {
247         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
248                 return "NULL tty";
249         return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
254 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
255                               const char *routine)
256 {
257 #ifdef TTY_PARANOIA_CHECK
258         if (!tty) {
259                 printk(KERN_WARNING
260                         "null TTY for (%d:%d) in %s\n",
261                         imajor(inode), iminor(inode), routine);
262                 return 1;
263         }
264         if (tty->magic != TTY_MAGIC) {
265                 printk(KERN_WARNING
266                         "bad magic number for tty struct (%d:%d) in %s\n",
267                         imajor(inode), iminor(inode), routine);
268                 return 1;
269         }
270 #endif
271         return 0;
272 }
273
274 /* Caller must hold tty_lock */
275 static int check_tty_count(struct tty_struct *tty, const char *routine)
276 {
277 #ifdef CHECK_TTY_COUNT
278         struct list_head *p;
279         int count = 0;
280
281         spin_lock(&tty_files_lock);
282         list_for_each(p, &tty->tty_files) {
283                 count++;
284         }
285         spin_unlock(&tty_files_lock);
286         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
287             tty->driver->subtype == PTY_TYPE_SLAVE &&
288             tty->link && tty->link->count)
289                 count++;
290         if (tty->count != count) {
291                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
292                                     "!= #fd's(%d) in %s\n",
293                        tty->name, tty->count, count, routine);
294                 return count;
295         }
296 #endif
297         return 0;
298 }
299
300 /**
301  *      get_tty_driver          -       find device of a tty
302  *      @dev_t: device identifier
303  *      @index: returns the index of the tty
304  *
305  *      This routine returns a tty driver structure, given a device number
306  *      and also passes back the index number.
307  *
308  *      Locking: caller must hold tty_mutex
309  */
310
311 static struct tty_driver *get_tty_driver(dev_t device, int *index)
312 {
313         struct tty_driver *p;
314
315         list_for_each_entry(p, &tty_drivers, tty_drivers) {
316                 dev_t base = MKDEV(p->major, p->minor_start);
317                 if (device < base || device >= base + p->num)
318                         continue;
319                 *index = device - base;
320                 return tty_driver_kref_get(p);
321         }
322         return NULL;
323 }
324
325 #ifdef CONFIG_CONSOLE_POLL
326
327 /**
328  *      tty_find_polling_driver -       find device of a polled tty
329  *      @name: name string to match
330  *      @line: pointer to resulting tty line nr
331  *
332  *      This routine returns a tty driver structure, given a name
333  *      and the condition that the tty driver is capable of polled
334  *      operation.
335  */
336 struct tty_driver *tty_find_polling_driver(char *name, int *line)
337 {
338         struct tty_driver *p, *res = NULL;
339         int tty_line = 0;
340         int len;
341         char *str, *stp;
342
343         for (str = name; *str; str++)
344                 if ((*str >= '0' && *str <= '9') || *str == ',')
345                         break;
346         if (!*str)
347                 return NULL;
348
349         len = str - name;
350         tty_line = simple_strtoul(str, &str, 10);
351
352         mutex_lock(&tty_mutex);
353         /* Search through the tty devices to look for a match */
354         list_for_each_entry(p, &tty_drivers, tty_drivers) {
355                 if (strncmp(name, p->name, len) != 0)
356                         continue;
357                 stp = str;
358                 if (*stp == ',')
359                         stp++;
360                 if (*stp == '\0')
361                         stp = NULL;
362
363                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
364                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
365                         res = tty_driver_kref_get(p);
366                         *line = tty_line;
367                         break;
368                 }
369         }
370         mutex_unlock(&tty_mutex);
371
372         return res;
373 }
374 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
375 #endif
376
377 /**
378  *      tty_check_change        -       check for POSIX terminal changes
379  *      @tty: tty to check
380  *
381  *      If we try to write to, or set the state of, a terminal and we're
382  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
383  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
384  *
385  *      Locking: ctrl_lock
386  */
387
388 int tty_check_change(struct tty_struct *tty)
389 {
390         unsigned long flags;
391         int ret = 0;
392
393         if (current->signal->tty != tty)
394                 return 0;
395
396         spin_lock_irqsave(&tty->ctrl_lock, flags);
397
398         if (!tty->pgrp) {
399                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
400                 goto out_unlock;
401         }
402         if (task_pgrp(current) == tty->pgrp)
403                 goto out_unlock;
404         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
405         if (is_ignored(SIGTTOU))
406                 goto out;
407         if (is_current_pgrp_orphaned()) {
408                 ret = -EIO;
409                 goto out;
410         }
411         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
412         set_thread_flag(TIF_SIGPENDING);
413         ret = -ERESTARTSYS;
414 out:
415         return ret;
416 out_unlock:
417         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
418         return ret;
419 }
420
421 EXPORT_SYMBOL(tty_check_change);
422
423 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
424                                 size_t count, loff_t *ppos)
425 {
426         return 0;
427 }
428
429 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
430                                  size_t count, loff_t *ppos)
431 {
432         return -EIO;
433 }
434
435 /* No kernel lock held - none needed ;) */
436 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
437 {
438         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
439 }
440
441 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
442                 unsigned long arg)
443 {
444         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
445 }
446
447 static long hung_up_tty_compat_ioctl(struct file *file,
448                                      unsigned int cmd, unsigned long arg)
449 {
450         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
451 }
452
453 static const struct file_operations tty_fops = {
454         .llseek         = no_llseek,
455         .read           = tty_read,
456         .write          = tty_write,
457         .poll           = tty_poll,
458         .unlocked_ioctl = tty_ioctl,
459         .compat_ioctl   = tty_compat_ioctl,
460         .open           = tty_open,
461         .release        = tty_release,
462         .fasync         = tty_fasync,
463 };
464
465 static const struct file_operations console_fops = {
466         .llseek         = no_llseek,
467         .read           = tty_read,
468         .write          = redirected_tty_write,
469         .poll           = tty_poll,
470         .unlocked_ioctl = tty_ioctl,
471         .compat_ioctl   = tty_compat_ioctl,
472         .open           = tty_open,
473         .release        = tty_release,
474         .fasync         = tty_fasync,
475 };
476
477 static const struct file_operations hung_up_tty_fops = {
478         .llseek         = no_llseek,
479         .read           = hung_up_tty_read,
480         .write          = hung_up_tty_write,
481         .poll           = hung_up_tty_poll,
482         .unlocked_ioctl = hung_up_tty_ioctl,
483         .compat_ioctl   = hung_up_tty_compat_ioctl,
484         .release        = tty_release,
485 };
486
487 static DEFINE_SPINLOCK(redirect_lock);
488 static struct file *redirect;
489
490
491 void proc_clear_tty(struct task_struct *p)
492 {
493         unsigned long flags;
494         struct tty_struct *tty;
495         spin_lock_irqsave(&p->sighand->siglock, flags);
496         tty = p->signal->tty;
497         p->signal->tty = NULL;
498         spin_unlock_irqrestore(&p->sighand->siglock, flags);
499         tty_kref_put(tty);
500 }
501
502 /**
503  * proc_set_tty -  set the controlling terminal
504  *
505  * Only callable by the session leader and only if it does not already have
506  * a controlling terminal.
507  *
508  * Caller must hold:  tty_lock()
509  *                    a readlock on tasklist_lock
510  *                    sighand lock
511  */
512 static void __proc_set_tty(struct tty_struct *tty)
513 {
514         unsigned long flags;
515
516         spin_lock_irqsave(&tty->ctrl_lock, flags);
517         /*
518          * The session and fg pgrp references will be non-NULL if
519          * tiocsctty() is stealing the controlling tty
520          */
521         put_pid(tty->session);
522         put_pid(tty->pgrp);
523         tty->pgrp = get_pid(task_pgrp(current));
524         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
525         tty->session = get_pid(task_session(current));
526         if (current->signal->tty) {
527                 printk(KERN_DEBUG "tty not NULL!!\n");
528                 tty_kref_put(current->signal->tty);
529         }
530         put_pid(current->signal->tty_old_pgrp);
531         current->signal->tty = tty_kref_get(tty);
532         current->signal->tty_old_pgrp = NULL;
533 }
534
535 static void proc_set_tty(struct tty_struct *tty)
536 {
537         spin_lock_irq(&current->sighand->siglock);
538         __proc_set_tty(tty);
539         spin_unlock_irq(&current->sighand->siglock);
540 }
541
542 struct tty_struct *get_current_tty(void)
543 {
544         struct tty_struct *tty;
545         unsigned long flags;
546
547         spin_lock_irqsave(&current->sighand->siglock, flags);
548         tty = tty_kref_get(current->signal->tty);
549         spin_unlock_irqrestore(&current->sighand->siglock, flags);
550         return tty;
551 }
552 EXPORT_SYMBOL_GPL(get_current_tty);
553
554 static void session_clear_tty(struct pid *session)
555 {
556         struct task_struct *p;
557         do_each_pid_task(session, PIDTYPE_SID, p) {
558                 proc_clear_tty(p);
559         } while_each_pid_task(session, PIDTYPE_SID, p);
560 }
561
562 /**
563  *      tty_wakeup      -       request more data
564  *      @tty: terminal
565  *
566  *      Internal and external helper for wakeups of tty. This function
567  *      informs the line discipline if present that the driver is ready
568  *      to receive more output data.
569  */
570
571 void tty_wakeup(struct tty_struct *tty)
572 {
573         struct tty_ldisc *ld;
574
575         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
576                 ld = tty_ldisc_ref(tty);
577                 if (ld) {
578                         if (ld->ops->write_wakeup)
579                                 ld->ops->write_wakeup(tty);
580                         tty_ldisc_deref(ld);
581                 }
582         }
583         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
584 }
585
586 EXPORT_SYMBOL_GPL(tty_wakeup);
587
588 /**
589  *      tty_signal_session_leader       - sends SIGHUP to session leader
590  *      @tty            controlling tty
591  *      @exit_session   if non-zero, signal all foreground group processes
592  *
593  *      Send SIGHUP and SIGCONT to the session leader and its process group.
594  *      Optionally, signal all processes in the foreground process group.
595  *
596  *      Returns the number of processes in the session with this tty
597  *      as their controlling terminal. This value is used to drop
598  *      tty references for those processes.
599  */
600 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
601 {
602         struct task_struct *p;
603         int refs = 0;
604         struct pid *tty_pgrp = NULL;
605
606         read_lock(&tasklist_lock);
607         if (tty->session) {
608                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609                         spin_lock_irq(&p->sighand->siglock);
610                         if (p->signal->tty == tty) {
611                                 p->signal->tty = NULL;
612                                 /* We defer the dereferences outside fo
613                                    the tasklist lock */
614                                 refs++;
615                         }
616                         if (!p->signal->leader) {
617                                 spin_unlock_irq(&p->sighand->siglock);
618                                 continue;
619                         }
620                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
623                         spin_lock(&tty->ctrl_lock);
624                         tty_pgrp = get_pid(tty->pgrp);
625                         if (tty->pgrp)
626                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
627                         spin_unlock(&tty->ctrl_lock);
628                         spin_unlock_irq(&p->sighand->siglock);
629                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
630         }
631         read_unlock(&tasklist_lock);
632
633         if (tty_pgrp) {
634                 if (exit_session)
635                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
636                 put_pid(tty_pgrp);
637         }
638
639         return refs;
640 }
641
642 /**
643  *      __tty_hangup            -       actual handler for hangup events
644  *      @work: tty device
645  *
646  *      This can be called by a "kworker" kernel thread.  That is process
647  *      synchronous but doesn't hold any locks, so we need to make sure we
648  *      have the appropriate locks for what we're doing.
649  *
650  *      The hangup event clears any pending redirections onto the hung up
651  *      device. It ensures future writes will error and it does the needed
652  *      line discipline hangup and signal delivery. The tty object itself
653  *      remains intact.
654  *
655  *      Locking:
656  *              BTM
657  *                redirect lock for undoing redirection
658  *                file list lock for manipulating list of ttys
659  *                tty_ldiscs_lock from called functions
660  *                termios_rwsem resetting termios data
661  *                tasklist_lock to walk task list for hangup event
662  *                  ->siglock to protect ->signal/->sighand
663  */
664 static void __tty_hangup(struct tty_struct *tty, int exit_session)
665 {
666         struct file *cons_filp = NULL;
667         struct file *filp, *f = NULL;
668         struct tty_file_private *priv;
669         int    closecount = 0, n;
670         int refs;
671
672         if (!tty)
673                 return;
674
675
676         spin_lock(&redirect_lock);
677         if (redirect && file_tty(redirect) == tty) {
678                 f = redirect;
679                 redirect = NULL;
680         }
681         spin_unlock(&redirect_lock);
682
683         tty_lock(tty);
684
685         if (test_bit(TTY_HUPPED, &tty->flags)) {
686                 tty_unlock(tty);
687                 return;
688         }
689
690         /* inuse_filps is protected by the single tty lock,
691            this really needs to change if we want to flush the
692            workqueue with the lock held */
693         check_tty_count(tty, "tty_hangup");
694
695         spin_lock(&tty_files_lock);
696         /* This breaks for file handles being sent over AF_UNIX sockets ? */
697         list_for_each_entry(priv, &tty->tty_files, list) {
698                 filp = priv->file;
699                 if (filp->f_op->write == redirected_tty_write)
700                         cons_filp = filp;
701                 if (filp->f_op->write != tty_write)
702                         continue;
703                 closecount++;
704                 __tty_fasync(-1, filp, 0);      /* can't block */
705                 filp->f_op = &hung_up_tty_fops;
706         }
707         spin_unlock(&tty_files_lock);
708
709         refs = tty_signal_session_leader(tty, exit_session);
710         /* Account for the p->signal references we killed */
711         while (refs--)
712                 tty_kref_put(tty);
713
714         tty_ldisc_hangup(tty);
715
716         spin_lock_irq(&tty->ctrl_lock);
717         clear_bit(TTY_THROTTLED, &tty->flags);
718         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
719         put_pid(tty->session);
720         put_pid(tty->pgrp);
721         tty->session = NULL;
722         tty->pgrp = NULL;
723         tty->ctrl_status = 0;
724         spin_unlock_irq(&tty->ctrl_lock);
725
726         /*
727          * If one of the devices matches a console pointer, we
728          * cannot just call hangup() because that will cause
729          * tty->count and state->count to go out of sync.
730          * So we just call close() the right number of times.
731          */
732         if (cons_filp) {
733                 if (tty->ops->close)
734                         for (n = 0; n < closecount; n++)
735                                 tty->ops->close(tty, cons_filp);
736         } else if (tty->ops->hangup)
737                 tty->ops->hangup(tty);
738         /*
739          * We don't want to have driver/ldisc interactions beyond
740          * the ones we did here. The driver layer expects no
741          * calls after ->hangup() from the ldisc side. However we
742          * can't yet guarantee all that.
743          */
744         set_bit(TTY_HUPPED, &tty->flags);
745         tty_unlock(tty);
746
747         if (f)
748                 fput(f);
749 }
750
751 static void do_tty_hangup(struct work_struct *work)
752 {
753         struct tty_struct *tty =
754                 container_of(work, struct tty_struct, hangup_work);
755
756         __tty_hangup(tty, 0);
757 }
758
759 /**
760  *      tty_hangup              -       trigger a hangup event
761  *      @tty: tty to hangup
762  *
763  *      A carrier loss (virtual or otherwise) has occurred on this like
764  *      schedule a hangup sequence to run after this event.
765  */
766
767 void tty_hangup(struct tty_struct *tty)
768 {
769 #ifdef TTY_DEBUG_HANGUP
770         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty));
771 #endif
772         schedule_work(&tty->hangup_work);
773 }
774
775 EXPORT_SYMBOL(tty_hangup);
776
777 /**
778  *      tty_vhangup             -       process vhangup
779  *      @tty: tty to hangup
780  *
781  *      The user has asked via system call for the terminal to be hung up.
782  *      We do this synchronously so that when the syscall returns the process
783  *      is complete. That guarantee is necessary for security reasons.
784  */
785
786 void tty_vhangup(struct tty_struct *tty)
787 {
788 #ifdef TTY_DEBUG_HANGUP
789         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty));
790 #endif
791         __tty_hangup(tty, 0);
792 }
793
794 EXPORT_SYMBOL(tty_vhangup);
795
796
797 /**
798  *      tty_vhangup_self        -       process vhangup for own ctty
799  *
800  *      Perform a vhangup on the current controlling tty
801  */
802
803 void tty_vhangup_self(void)
804 {
805         struct tty_struct *tty;
806
807         tty = get_current_tty();
808         if (tty) {
809                 tty_vhangup(tty);
810                 tty_kref_put(tty);
811         }
812 }
813
814 /**
815  *      tty_vhangup_session             -       hangup session leader exit
816  *      @tty: tty to hangup
817  *
818  *      The session leader is exiting and hanging up its controlling terminal.
819  *      Every process in the foreground process group is signalled SIGHUP.
820  *
821  *      We do this synchronously so that when the syscall returns the process
822  *      is complete. That guarantee is necessary for security reasons.
823  */
824
825 static void tty_vhangup_session(struct tty_struct *tty)
826 {
827 #ifdef TTY_DEBUG_HANGUP
828         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty));
829 #endif
830         __tty_hangup(tty, 1);
831 }
832
833 /**
834  *      tty_hung_up_p           -       was tty hung up
835  *      @filp: file pointer of tty
836  *
837  *      Return true if the tty has been subject to a vhangup or a carrier
838  *      loss
839  */
840
841 int tty_hung_up_p(struct file *filp)
842 {
843         return (filp->f_op == &hung_up_tty_fops);
844 }
845
846 EXPORT_SYMBOL(tty_hung_up_p);
847
848 /**
849  *      disassociate_ctty       -       disconnect controlling tty
850  *      @on_exit: true if exiting so need to "hang up" the session
851  *
852  *      This function is typically called only by the session leader, when
853  *      it wants to disassociate itself from its controlling tty.
854  *
855  *      It performs the following functions:
856  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
857  *      (2)  Clears the tty from being controlling the session
858  *      (3)  Clears the controlling tty for all processes in the
859  *              session group.
860  *
861  *      The argument on_exit is set to 1 if called when a process is
862  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
863  *
864  *      Locking:
865  *              BTM is taken for hysterical raisins, and held when
866  *                called from no_tty().
867  *                tty_mutex is taken to protect tty
868  *                ->siglock is taken to protect ->signal/->sighand
869  *                tasklist_lock is taken to walk process list for sessions
870  *                  ->siglock is taken to protect ->signal/->sighand
871  */
872
873 void disassociate_ctty(int on_exit)
874 {
875         struct tty_struct *tty;
876
877         if (!current->signal->leader)
878                 return;
879
880         tty = get_current_tty();
881         if (tty) {
882                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
883                         tty_vhangup_session(tty);
884                 } else {
885                         struct pid *tty_pgrp = tty_get_pgrp(tty);
886                         if (tty_pgrp) {
887                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
888                                 if (!on_exit)
889                                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
890                                 put_pid(tty_pgrp);
891                         }
892                 }
893                 tty_kref_put(tty);
894
895         } else if (on_exit) {
896                 struct pid *old_pgrp;
897                 spin_lock_irq(&current->sighand->siglock);
898                 old_pgrp = current->signal->tty_old_pgrp;
899                 current->signal->tty_old_pgrp = NULL;
900                 spin_unlock_irq(&current->sighand->siglock);
901                 if (old_pgrp) {
902                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
903                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
904                         put_pid(old_pgrp);
905                 }
906                 return;
907         }
908
909         spin_lock_irq(&current->sighand->siglock);
910         put_pid(current->signal->tty_old_pgrp);
911         current->signal->tty_old_pgrp = NULL;
912
913         tty = tty_kref_get(current->signal->tty);
914         if (tty) {
915                 unsigned long flags;
916                 spin_lock_irqsave(&tty->ctrl_lock, flags);
917                 put_pid(tty->session);
918                 put_pid(tty->pgrp);
919                 tty->session = NULL;
920                 tty->pgrp = NULL;
921                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
922                 tty_kref_put(tty);
923         } else {
924 #ifdef TTY_DEBUG_HANGUP
925                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
926                        " = NULL", tty);
927 #endif
928         }
929
930         spin_unlock_irq(&current->sighand->siglock);
931         /* Now clear signal->tty under the lock */
932         read_lock(&tasklist_lock);
933         session_clear_tty(task_session(current));
934         read_unlock(&tasklist_lock);
935 }
936
937 /**
938  *
939  *      no_tty  - Ensure the current process does not have a controlling tty
940  */
941 void no_tty(void)
942 {
943         /* FIXME: Review locking here. The tty_lock never covered any race
944            between a new association and proc_clear_tty but possible we need
945            to protect against this anyway */
946         struct task_struct *tsk = current;
947         disassociate_ctty(0);
948         proc_clear_tty(tsk);
949 }
950
951
952 /**
953  *      stop_tty        -       propagate flow control
954  *      @tty: tty to stop
955  *
956  *      Perform flow control to the driver. May be called
957  *      on an already stopped device and will not re-call the driver
958  *      method.
959  *
960  *      This functionality is used by both the line disciplines for
961  *      halting incoming flow and by the driver. It may therefore be
962  *      called from any context, may be under the tty atomic_write_lock
963  *      but not always.
964  *
965  *      Locking:
966  *              flow_lock
967  */
968
969 void __stop_tty(struct tty_struct *tty)
970 {
971         if (tty->stopped)
972                 return;
973         tty->stopped = 1;
974         if (tty->ops->stop)
975                 tty->ops->stop(tty);
976 }
977
978 void stop_tty(struct tty_struct *tty)
979 {
980         unsigned long flags;
981
982         spin_lock_irqsave(&tty->flow_lock, flags);
983         __stop_tty(tty);
984         spin_unlock_irqrestore(&tty->flow_lock, flags);
985 }
986 EXPORT_SYMBOL(stop_tty);
987
988 /**
989  *      start_tty       -       propagate flow control
990  *      @tty: tty to start
991  *
992  *      Start a tty that has been stopped if at all possible. If this
993  *      tty was previous stopped and is now being started, the driver
994  *      start method is invoked and the line discipline woken.
995  *
996  *      Locking:
997  *              flow_lock
998  */
999
1000 void __start_tty(struct tty_struct *tty)
1001 {
1002         if (!tty->stopped || tty->flow_stopped)
1003                 return;
1004         tty->stopped = 0;
1005         if (tty->ops->start)
1006                 tty->ops->start(tty);
1007         tty_wakeup(tty);
1008 }
1009
1010 void start_tty(struct tty_struct *tty)
1011 {
1012         unsigned long flags;
1013
1014         spin_lock_irqsave(&tty->flow_lock, flags);
1015         __start_tty(tty);
1016         spin_unlock_irqrestore(&tty->flow_lock, flags);
1017 }
1018 EXPORT_SYMBOL(start_tty);
1019
1020 static void tty_update_time(struct timespec *time)
1021 {
1022         unsigned long sec = get_seconds();
1023
1024         /*
1025          * We only care if the two values differ in anything other than the
1026          * lower three bits (i.e every 8 seconds).  If so, then we can update
1027          * the time of the tty device, otherwise it could be construded as a
1028          * security leak to let userspace know the exact timing of the tty.
1029          */
1030         if ((sec ^ time->tv_sec) & ~7)
1031                 time->tv_sec = sec;
1032 }
1033
1034 /**
1035  *      tty_read        -       read method for tty device files
1036  *      @file: pointer to tty file
1037  *      @buf: user buffer
1038  *      @count: size of user buffer
1039  *      @ppos: unused
1040  *
1041  *      Perform the read system call function on this terminal device. Checks
1042  *      for hung up devices before calling the line discipline method.
1043  *
1044  *      Locking:
1045  *              Locks the line discipline internally while needed. Multiple
1046  *      read calls may be outstanding in parallel.
1047  */
1048
1049 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1050                         loff_t *ppos)
1051 {
1052         int i;
1053         struct inode *inode = file_inode(file);
1054         struct tty_struct *tty = file_tty(file);
1055         struct tty_ldisc *ld;
1056
1057         if (tty_paranoia_check(tty, inode, "tty_read"))
1058                 return -EIO;
1059         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1060                 return -EIO;
1061
1062         /* We want to wait for the line discipline to sort out in this
1063            situation */
1064         ld = tty_ldisc_ref_wait(tty);
1065         if (ld->ops->read)
1066                 i = ld->ops->read(tty, file, buf, count);
1067         else
1068                 i = -EIO;
1069         tty_ldisc_deref(ld);
1070
1071         if (i > 0)
1072                 tty_update_time(&inode->i_atime);
1073
1074         return i;
1075 }
1076
1077 static void tty_write_unlock(struct tty_struct *tty)
1078 {
1079         mutex_unlock(&tty->atomic_write_lock);
1080         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1081 }
1082
1083 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1084 {
1085         if (!mutex_trylock(&tty->atomic_write_lock)) {
1086                 if (ndelay)
1087                         return -EAGAIN;
1088                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1089                         return -ERESTARTSYS;
1090         }
1091         return 0;
1092 }
1093
1094 /*
1095  * Split writes up in sane blocksizes to avoid
1096  * denial-of-service type attacks
1097  */
1098 static inline ssize_t do_tty_write(
1099         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1100         struct tty_struct *tty,
1101         struct file *file,
1102         const char __user *buf,
1103         size_t count)
1104 {
1105         ssize_t ret, written = 0;
1106         unsigned int chunk;
1107
1108         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1109         if (ret < 0)
1110                 return ret;
1111
1112         /*
1113          * We chunk up writes into a temporary buffer. This
1114          * simplifies low-level drivers immensely, since they
1115          * don't have locking issues and user mode accesses.
1116          *
1117          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1118          * big chunk-size..
1119          *
1120          * The default chunk-size is 2kB, because the NTTY
1121          * layer has problems with bigger chunks. It will
1122          * claim to be able to handle more characters than
1123          * it actually does.
1124          *
1125          * FIXME: This can probably go away now except that 64K chunks
1126          * are too likely to fail unless switched to vmalloc...
1127          */
1128         chunk = 2048;
1129         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1130                 chunk = 65536;
1131         if (count < chunk)
1132                 chunk = count;
1133
1134         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1135         if (tty->write_cnt < chunk) {
1136                 unsigned char *buf_chunk;
1137
1138                 if (chunk < 1024)
1139                         chunk = 1024;
1140
1141                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1142                 if (!buf_chunk) {
1143                         ret = -ENOMEM;
1144                         goto out;
1145                 }
1146                 kfree(tty->write_buf);
1147                 tty->write_cnt = chunk;
1148                 tty->write_buf = buf_chunk;
1149         }
1150
1151         /* Do the write .. */
1152         for (;;) {
1153                 size_t size = count;
1154                 if (size > chunk)
1155                         size = chunk;
1156                 ret = -EFAULT;
1157                 if (copy_from_user(tty->write_buf, buf, size))
1158                         break;
1159                 ret = write(tty, file, tty->write_buf, size);
1160                 if (ret <= 0)
1161                         break;
1162                 written += ret;
1163                 buf += ret;
1164                 count -= ret;
1165                 if (!count)
1166                         break;
1167                 ret = -ERESTARTSYS;
1168                 if (signal_pending(current))
1169                         break;
1170                 cond_resched();
1171         }
1172         if (written) {
1173                 tty_update_time(&file_inode(file)->i_mtime);
1174                 ret = written;
1175         }
1176 out:
1177         tty_write_unlock(tty);
1178         return ret;
1179 }
1180
1181 /**
1182  * tty_write_message - write a message to a certain tty, not just the console.
1183  * @tty: the destination tty_struct
1184  * @msg: the message to write
1185  *
1186  * This is used for messages that need to be redirected to a specific tty.
1187  * We don't put it into the syslog queue right now maybe in the future if
1188  * really needed.
1189  *
1190  * We must still hold the BTM and test the CLOSING flag for the moment.
1191  */
1192
1193 void tty_write_message(struct tty_struct *tty, char *msg)
1194 {
1195         if (tty) {
1196                 mutex_lock(&tty->atomic_write_lock);
1197                 tty_lock(tty);
1198                 if (tty->ops->write && tty->count > 0) {
1199                         tty_unlock(tty);
1200                         tty->ops->write(tty, msg, strlen(msg));
1201                 } else
1202                         tty_unlock(tty);
1203                 tty_write_unlock(tty);
1204         }
1205         return;
1206 }
1207
1208
1209 /**
1210  *      tty_write               -       write method for tty device file
1211  *      @file: tty file pointer
1212  *      @buf: user data to write
1213  *      @count: bytes to write
1214  *      @ppos: unused
1215  *
1216  *      Write data to a tty device via the line discipline.
1217  *
1218  *      Locking:
1219  *              Locks the line discipline as required
1220  *              Writes to the tty driver are serialized by the atomic_write_lock
1221  *      and are then processed in chunks to the device. The line discipline
1222  *      write method will not be invoked in parallel for each device.
1223  */
1224
1225 static ssize_t tty_write(struct file *file, const char __user *buf,
1226                                                 size_t count, loff_t *ppos)
1227 {
1228         struct tty_struct *tty = file_tty(file);
1229         struct tty_ldisc *ld;
1230         ssize_t ret;
1231
1232         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1233                 return -EIO;
1234         if (!tty || !tty->ops->write ||
1235                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1236                         return -EIO;
1237         /* Short term debug to catch buggy drivers */
1238         if (tty->ops->write_room == NULL)
1239                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1240                         tty->driver->name);
1241         ld = tty_ldisc_ref_wait(tty);
1242         if (!ld->ops->write)
1243                 ret = -EIO;
1244         else
1245                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1246         tty_ldisc_deref(ld);
1247         return ret;
1248 }
1249
1250 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1251                                                 size_t count, loff_t *ppos)
1252 {
1253         struct file *p = NULL;
1254
1255         spin_lock(&redirect_lock);
1256         if (redirect)
1257                 p = get_file(redirect);
1258         spin_unlock(&redirect_lock);
1259
1260         if (p) {
1261                 ssize_t res;
1262                 res = vfs_write(p, buf, count, &p->f_pos);
1263                 fput(p);
1264                 return res;
1265         }
1266         return tty_write(file, buf, count, ppos);
1267 }
1268
1269 /**
1270  *      tty_send_xchar  -       send priority character
1271  *
1272  *      Send a high priority character to the tty even if stopped
1273  *
1274  *      Locking: none for xchar method, write ordering for write method.
1275  */
1276
1277 int tty_send_xchar(struct tty_struct *tty, char ch)
1278 {
1279         int     was_stopped = tty->stopped;
1280
1281         if (tty->ops->send_xchar) {
1282                 tty->ops->send_xchar(tty, ch);
1283                 return 0;
1284         }
1285
1286         if (tty_write_lock(tty, 0) < 0)
1287                 return -ERESTARTSYS;
1288
1289         if (was_stopped)
1290                 start_tty(tty);
1291         tty->ops->write(tty, &ch, 1);
1292         if (was_stopped)
1293                 stop_tty(tty);
1294         tty_write_unlock(tty);
1295         return 0;
1296 }
1297
1298 static char ptychar[] = "pqrstuvwxyzabcde";
1299
1300 /**
1301  *      pty_line_name   -       generate name for a pty
1302  *      @driver: the tty driver in use
1303  *      @index: the minor number
1304  *      @p: output buffer of at least 6 bytes
1305  *
1306  *      Generate a name from a driver reference and write it to the output
1307  *      buffer.
1308  *
1309  *      Locking: None
1310  */
1311 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1312 {
1313         int i = index + driver->name_base;
1314         /* ->name is initialized to "ttyp", but "tty" is expected */
1315         sprintf(p, "%s%c%x",
1316                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1317                 ptychar[i >> 4 & 0xf], i & 0xf);
1318 }
1319
1320 /**
1321  *      tty_line_name   -       generate name for a tty
1322  *      @driver: the tty driver in use
1323  *      @index: the minor number
1324  *      @p: output buffer of at least 7 bytes
1325  *
1326  *      Generate a name from a driver reference and write it to the output
1327  *      buffer.
1328  *
1329  *      Locking: None
1330  */
1331 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1332 {
1333         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1334                 return sprintf(p, "%s", driver->name);
1335         else
1336                 return sprintf(p, "%s%d", driver->name,
1337                                index + driver->name_base);
1338 }
1339
1340 /**
1341  *      tty_driver_lookup_tty() - find an existing tty, if any
1342  *      @driver: the driver for the tty
1343  *      @idx:    the minor number
1344  *
1345  *      Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1346  *      driver lookup() method returns an error.
1347  *
1348  *      Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1349  */
1350 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1351                 struct inode *inode, int idx)
1352 {
1353         struct tty_struct *tty;
1354
1355         if (driver->ops->lookup)
1356                 tty = driver->ops->lookup(driver, inode, idx);
1357         else
1358                 tty = driver->ttys[idx];
1359
1360         if (!IS_ERR(tty))
1361                 tty_kref_get(tty);
1362         return tty;
1363 }
1364
1365 /**
1366  *      tty_init_termios        -  helper for termios setup
1367  *      @tty: the tty to set up
1368  *
1369  *      Initialise the termios structures for this tty. Thus runs under
1370  *      the tty_mutex currently so we can be relaxed about ordering.
1371  */
1372
1373 int tty_init_termios(struct tty_struct *tty)
1374 {
1375         struct ktermios *tp;
1376         int idx = tty->index;
1377
1378         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1379                 tty->termios = tty->driver->init_termios;
1380         else {
1381                 /* Check for lazy saved data */
1382                 tp = tty->driver->termios[idx];
1383                 if (tp != NULL)
1384                         tty->termios = *tp;
1385                 else
1386                         tty->termios = tty->driver->init_termios;
1387         }
1388         /* Compatibility until drivers always set this */
1389         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1390         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(tty_init_termios);
1394
1395 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1396 {
1397         int ret = tty_init_termios(tty);
1398         if (ret)
1399                 return ret;
1400
1401         tty_driver_kref_get(driver);
1402         tty->count++;
1403         driver->ttys[tty->index] = tty;
1404         return 0;
1405 }
1406 EXPORT_SYMBOL_GPL(tty_standard_install);
1407
1408 /**
1409  *      tty_driver_install_tty() - install a tty entry in the driver
1410  *      @driver: the driver for the tty
1411  *      @tty: the tty
1412  *
1413  *      Install a tty object into the driver tables. The tty->index field
1414  *      will be set by the time this is called. This method is responsible
1415  *      for ensuring any need additional structures are allocated and
1416  *      configured.
1417  *
1418  *      Locking: tty_mutex for now
1419  */
1420 static int tty_driver_install_tty(struct tty_driver *driver,
1421                                                 struct tty_struct *tty)
1422 {
1423         return driver->ops->install ? driver->ops->install(driver, tty) :
1424                 tty_standard_install(driver, tty);
1425 }
1426
1427 /**
1428  *      tty_driver_remove_tty() - remove a tty from the driver tables
1429  *      @driver: the driver for the tty
1430  *      @idx:    the minor number
1431  *
1432  *      Remvoe a tty object from the driver tables. The tty->index field
1433  *      will be set by the time this is called.
1434  *
1435  *      Locking: tty_mutex for now
1436  */
1437 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1438 {
1439         if (driver->ops->remove)
1440                 driver->ops->remove(driver, tty);
1441         else
1442                 driver->ttys[tty->index] = NULL;
1443 }
1444
1445 /*
1446  *      tty_reopen()    - fast re-open of an open tty
1447  *      @tty    - the tty to open
1448  *
1449  *      Return 0 on success, -errno on error.
1450  *      Re-opens on master ptys are not allowed and return -EIO.
1451  *
1452  *      Locking: Caller must hold tty_lock
1453  */
1454 static int tty_reopen(struct tty_struct *tty)
1455 {
1456         struct tty_driver *driver = tty->driver;
1457
1458         if (!tty->count)
1459                 return -EIO;
1460
1461         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1462             driver->subtype == PTY_TYPE_MASTER)
1463                 return -EIO;
1464
1465         if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1466                 return -EBUSY;
1467
1468         tty->count++;
1469
1470         WARN_ON(!tty->ldisc);
1471
1472         return 0;
1473 }
1474
1475 /**
1476  *      tty_init_dev            -       initialise a tty device
1477  *      @driver: tty driver we are opening a device on
1478  *      @idx: device index
1479  *      @ret_tty: returned tty structure
1480  *
1481  *      Prepare a tty device. This may not be a "new" clean device but
1482  *      could also be an active device. The pty drivers require special
1483  *      handling because of this.
1484  *
1485  *      Locking:
1486  *              The function is called under the tty_mutex, which
1487  *      protects us from the tty struct or driver itself going away.
1488  *
1489  *      On exit the tty device has the line discipline attached and
1490  *      a reference count of 1. If a pair was created for pty/tty use
1491  *      and the other was a pty master then it too has a reference count of 1.
1492  *
1493  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1494  * failed open.  The new code protects the open with a mutex, so it's
1495  * really quite straightforward.  The mutex locking can probably be
1496  * relaxed for the (most common) case of reopening a tty.
1497  */
1498
1499 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1500 {
1501         struct tty_struct *tty;
1502         int retval;
1503
1504         /*
1505          * First time open is complex, especially for PTY devices.
1506          * This code guarantees that either everything succeeds and the
1507          * TTY is ready for operation, or else the table slots are vacated
1508          * and the allocated memory released.  (Except that the termios
1509          * and locked termios may be retained.)
1510          */
1511
1512         if (!try_module_get(driver->owner))
1513                 return ERR_PTR(-ENODEV);
1514
1515         tty = alloc_tty_struct(driver, idx);
1516         if (!tty) {
1517                 retval = -ENOMEM;
1518                 goto err_module_put;
1519         }
1520
1521         tty_lock(tty);
1522         retval = tty_driver_install_tty(driver, tty);
1523         if (retval < 0)
1524                 goto err_deinit_tty;
1525
1526         if (!tty->port)
1527                 tty->port = driver->ports[idx];
1528
1529         WARN_RATELIMIT(!tty->port,
1530                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1531                         __func__, tty->driver->name);
1532
1533         tty->port->itty = tty;
1534
1535         /*
1536          * Structures all installed ... call the ldisc open routines.
1537          * If we fail here just call release_tty to clean up.  No need
1538          * to decrement the use counts, as release_tty doesn't care.
1539          */
1540         retval = tty_ldisc_setup(tty, tty->link);
1541         if (retval)
1542                 goto err_release_tty;
1543         /* Return the tty locked so that it cannot vanish under the caller */
1544         return tty;
1545
1546 err_deinit_tty:
1547         tty_unlock(tty);
1548         deinitialize_tty_struct(tty);
1549         free_tty_struct(tty);
1550 err_module_put:
1551         module_put(driver->owner);
1552         return ERR_PTR(retval);
1553
1554         /* call the tty release_tty routine to clean out this slot */
1555 err_release_tty:
1556         tty_unlock(tty);
1557         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1558                                  "clearing slot %d\n", idx);
1559         release_tty(tty, idx);
1560         return ERR_PTR(retval);
1561 }
1562
1563 void tty_free_termios(struct tty_struct *tty)
1564 {
1565         struct ktermios *tp;
1566         int idx = tty->index;
1567
1568         /* If the port is going to reset then it has no termios to save */
1569         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1570                 return;
1571
1572         /* Stash the termios data */
1573         tp = tty->driver->termios[idx];
1574         if (tp == NULL) {
1575                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1576                 if (tp == NULL) {
1577                         pr_warn("tty: no memory to save termios state.\n");
1578                         return;
1579                 }
1580                 tty->driver->termios[idx] = tp;
1581         }
1582         *tp = tty->termios;
1583 }
1584 EXPORT_SYMBOL(tty_free_termios);
1585
1586 /**
1587  *      tty_flush_works         -       flush all works of a tty/pty pair
1588  *      @tty: tty device to flush works for (or either end of a pty pair)
1589  *
1590  *      Sync flush all works belonging to @tty (and the 'other' tty).
1591  */
1592 static void tty_flush_works(struct tty_struct *tty)
1593 {
1594         flush_work(&tty->SAK_work);
1595         flush_work(&tty->hangup_work);
1596         if (tty->link) {
1597                 flush_work(&tty->link->SAK_work);
1598                 flush_work(&tty->link->hangup_work);
1599         }
1600 }
1601
1602 /**
1603  *      release_one_tty         -       release tty structure memory
1604  *      @kref: kref of tty we are obliterating
1605  *
1606  *      Releases memory associated with a tty structure, and clears out the
1607  *      driver table slots. This function is called when a device is no longer
1608  *      in use. It also gets called when setup of a device fails.
1609  *
1610  *      Locking:
1611  *              takes the file list lock internally when working on the list
1612  *      of ttys that the driver keeps.
1613  *
1614  *      This method gets called from a work queue so that the driver private
1615  *      cleanup ops can sleep (needed for USB at least)
1616  */
1617 static void release_one_tty(struct work_struct *work)
1618 {
1619         struct tty_struct *tty =
1620                 container_of(work, struct tty_struct, hangup_work);
1621         struct tty_driver *driver = tty->driver;
1622         struct module *owner = driver->owner;
1623
1624         if (tty->ops->cleanup)
1625                 tty->ops->cleanup(tty);
1626
1627         tty->magic = 0;
1628         tty_driver_kref_put(driver);
1629         module_put(owner);
1630
1631         spin_lock(&tty_files_lock);
1632         list_del_init(&tty->tty_files);
1633         spin_unlock(&tty_files_lock);
1634
1635         put_pid(tty->pgrp);
1636         put_pid(tty->session);
1637         free_tty_struct(tty);
1638 }
1639
1640 static void queue_release_one_tty(struct kref *kref)
1641 {
1642         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1643
1644         /* The hangup queue is now free so we can reuse it rather than
1645            waste a chunk of memory for each port */
1646         INIT_WORK(&tty->hangup_work, release_one_tty);
1647         schedule_work(&tty->hangup_work);
1648 }
1649
1650 /**
1651  *      tty_kref_put            -       release a tty kref
1652  *      @tty: tty device
1653  *
1654  *      Release a reference to a tty device and if need be let the kref
1655  *      layer destruct the object for us
1656  */
1657
1658 void tty_kref_put(struct tty_struct *tty)
1659 {
1660         if (tty)
1661                 kref_put(&tty->kref, queue_release_one_tty);
1662 }
1663 EXPORT_SYMBOL(tty_kref_put);
1664
1665 /**
1666  *      release_tty             -       release tty structure memory
1667  *
1668  *      Release both @tty and a possible linked partner (think pty pair),
1669  *      and decrement the refcount of the backing module.
1670  *
1671  *      Locking:
1672  *              tty_mutex
1673  *              takes the file list lock internally when working on the list
1674  *      of ttys that the driver keeps.
1675  *
1676  */
1677 static void release_tty(struct tty_struct *tty, int idx)
1678 {
1679         /* This should always be true but check for the moment */
1680         WARN_ON(tty->index != idx);
1681         WARN_ON(!mutex_is_locked(&tty_mutex));
1682         if (tty->ops->shutdown)
1683                 tty->ops->shutdown(tty);
1684         tty_free_termios(tty);
1685         tty_driver_remove_tty(tty->driver, tty);
1686         tty->port->itty = NULL;
1687         if (tty->link)
1688                 tty->link->port->itty = NULL;
1689         cancel_work_sync(&tty->port->buf.work);
1690
1691         tty_kref_put(tty->link);
1692         tty_kref_put(tty);
1693 }
1694
1695 /**
1696  *      tty_release_checks - check a tty before real release
1697  *      @tty: tty to check
1698  *      @o_tty: link of @tty (if any)
1699  *      @idx: index of the tty
1700  *
1701  *      Performs some paranoid checking before true release of the @tty.
1702  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1703  */
1704 static int tty_release_checks(struct tty_struct *tty, int idx)
1705 {
1706 #ifdef TTY_PARANOIA_CHECK
1707         if (idx < 0 || idx >= tty->driver->num) {
1708                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1709                                 __func__, tty->name);
1710                 return -1;
1711         }
1712
1713         /* not much to check for devpts */
1714         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1715                 return 0;
1716
1717         if (tty != tty->driver->ttys[idx]) {
1718                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1719                                 __func__, idx, tty->name);
1720                 return -1;
1721         }
1722         if (tty->driver->other) {
1723                 struct tty_struct *o_tty = tty->link;
1724
1725                 if (o_tty != tty->driver->other->ttys[idx]) {
1726                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1727                                         __func__, idx, tty->name);
1728                         return -1;
1729                 }
1730                 if (o_tty->link != tty) {
1731                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1732                         return -1;
1733                 }
1734         }
1735 #endif
1736         return 0;
1737 }
1738
1739 /**
1740  *      tty_release             -       vfs callback for close
1741  *      @inode: inode of tty
1742  *      @filp: file pointer for handle to tty
1743  *
1744  *      Called the last time each file handle is closed that references
1745  *      this tty. There may however be several such references.
1746  *
1747  *      Locking:
1748  *              Takes bkl. See tty_release_dev
1749  *
1750  * Even releasing the tty structures is a tricky business.. We have
1751  * to be very careful that the structures are all released at the
1752  * same time, as interrupts might otherwise get the wrong pointers.
1753  *
1754  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1755  * lead to double frees or releasing memory still in use.
1756  */
1757
1758 int tty_release(struct inode *inode, struct file *filp)
1759 {
1760         struct tty_struct *tty = file_tty(filp);
1761         struct tty_struct *o_tty = NULL;
1762         int     do_sleep, final;
1763         int     idx;
1764         long    timeout = 0;
1765         int     once = 1;
1766
1767         if (tty_paranoia_check(tty, inode, __func__))
1768                 return 0;
1769
1770         tty_lock(tty);
1771         check_tty_count(tty, __func__);
1772
1773         __tty_fasync(-1, filp, 0);
1774
1775         idx = tty->index;
1776         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1777             tty->driver->subtype == PTY_TYPE_MASTER)
1778                 o_tty = tty->link;
1779
1780         if (tty_release_checks(tty, idx)) {
1781                 tty_unlock(tty);
1782                 return 0;
1783         }
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1787                         tty_name(tty), tty->count);
1788 #endif
1789
1790         if (tty->ops->close)
1791                 tty->ops->close(tty, filp);
1792
1793         /* If tty is pty master, lock the slave pty (stable lock order) */
1794         tty_lock_slave(o_tty);
1795
1796         /*
1797          * Sanity check: if tty->count is going to zero, there shouldn't be
1798          * any waiters on tty->read_wait or tty->write_wait.  We test the
1799          * wait queues and kick everyone out _before_ actually starting to
1800          * close.  This ensures that we won't block while releasing the tty
1801          * structure.
1802          *
1803          * The test for the o_tty closing is necessary, since the master and
1804          * slave sides may close in any order.  If the slave side closes out
1805          * first, its count will be one, since the master side holds an open.
1806          * Thus this test wouldn't be triggered at the time the slave closed,
1807          * so we do it now.
1808          */
1809         while (1) {
1810                 do_sleep = 0;
1811
1812                 if (tty->count <= 1) {
1813                         if (waitqueue_active(&tty->read_wait)) {
1814                                 wake_up_poll(&tty->read_wait, POLLIN);
1815                                 do_sleep++;
1816                         }
1817                         if (waitqueue_active(&tty->write_wait)) {
1818                                 wake_up_poll(&tty->write_wait, POLLOUT);
1819                                 do_sleep++;
1820                         }
1821                 }
1822                 if (o_tty && o_tty->count <= 1) {
1823                         if (waitqueue_active(&o_tty->read_wait)) {
1824                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1825                                 do_sleep++;
1826                         }
1827                         if (waitqueue_active(&o_tty->write_wait)) {
1828                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1829                                 do_sleep++;
1830                         }
1831                 }
1832                 if (!do_sleep)
1833                         break;
1834
1835                 if (once) {
1836                         once = 0;
1837                         printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1838                                __func__, tty_name(tty));
1839                 }
1840                 schedule_timeout_killable(timeout);
1841                 if (timeout < 120 * HZ)
1842                         timeout = 2 * timeout + 1;
1843                 else
1844                         timeout = MAX_SCHEDULE_TIMEOUT;
1845         }
1846
1847         if (o_tty) {
1848                 if (--o_tty->count < 0) {
1849                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1850                                 __func__, o_tty->count, tty_name(o_tty));
1851                         o_tty->count = 0;
1852                 }
1853         }
1854         if (--tty->count < 0) {
1855                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1856                                 __func__, tty->count, tty_name(tty));
1857                 tty->count = 0;
1858         }
1859
1860         /*
1861          * We've decremented tty->count, so we need to remove this file
1862          * descriptor off the tty->tty_files list; this serves two
1863          * purposes:
1864          *  - check_tty_count sees the correct number of file descriptors
1865          *    associated with this tty.
1866          *  - do_tty_hangup no longer sees this file descriptor as
1867          *    something that needs to be handled for hangups.
1868          */
1869         tty_del_file(filp);
1870
1871         /*
1872          * Perform some housekeeping before deciding whether to return.
1873          *
1874          * If _either_ side is closing, make sure there aren't any
1875          * processes that still think tty or o_tty is their controlling
1876          * tty.
1877          */
1878         if (!tty->count) {
1879                 read_lock(&tasklist_lock);
1880                 session_clear_tty(tty->session);
1881                 if (o_tty)
1882                         session_clear_tty(o_tty->session);
1883                 read_unlock(&tasklist_lock);
1884         }
1885
1886         /* check whether both sides are closing ... */
1887         final = !tty->count && !(o_tty && o_tty->count);
1888
1889         tty_unlock_slave(o_tty);
1890         tty_unlock(tty);
1891
1892         /* At this point, the tty->count == 0 should ensure a dead tty
1893            cannot be re-opened by a racing opener */
1894
1895         if (!final)
1896                 return 0;
1897
1898 #ifdef TTY_DEBUG_HANGUP
1899         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty));
1900 #endif
1901         /*
1902          * Ask the line discipline code to release its structures
1903          */
1904         tty_ldisc_release(tty);
1905
1906         /* Wait for pending work before tty destruction commmences */
1907         tty_flush_works(tty);
1908
1909 #ifdef TTY_DEBUG_HANGUP
1910         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__,
1911                tty_name(tty));
1912 #endif
1913         /*
1914          * The release_tty function takes care of the details of clearing
1915          * the slots and preserving the termios structure. The tty_unlock_pair
1916          * should be safe as we keep a kref while the tty is locked (so the
1917          * unlock never unlocks a freed tty).
1918          */
1919         mutex_lock(&tty_mutex);
1920         release_tty(tty, idx);
1921         mutex_unlock(&tty_mutex);
1922
1923         return 0;
1924 }
1925
1926 /**
1927  *      tty_open_current_tty - get locked tty of current task
1928  *      @device: device number
1929  *      @filp: file pointer to tty
1930  *      @return: locked tty of the current task iff @device is /dev/tty
1931  *
1932  *      Performs a re-open of the current task's controlling tty.
1933  *
1934  *      We cannot return driver and index like for the other nodes because
1935  *      devpts will not work then. It expects inodes to be from devpts FS.
1936  */
1937 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1938 {
1939         struct tty_struct *tty;
1940         int retval;
1941
1942         if (device != MKDEV(TTYAUX_MAJOR, 0))
1943                 return NULL;
1944
1945         tty = get_current_tty();
1946         if (!tty)
1947                 return ERR_PTR(-ENXIO);
1948
1949         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1950         /* noctty = 1; */
1951         tty_lock(tty);
1952         tty_kref_put(tty);      /* safe to drop the kref now */
1953
1954         retval = tty_reopen(tty);
1955         if (retval < 0) {
1956                 tty_unlock(tty);
1957                 tty = ERR_PTR(retval);
1958         }
1959         return tty;
1960 }
1961
1962 /**
1963  *      tty_lookup_driver - lookup a tty driver for a given device file
1964  *      @device: device number
1965  *      @filp: file pointer to tty
1966  *      @noctty: set if the device should not become a controlling tty
1967  *      @index: index for the device in the @return driver
1968  *      @return: driver for this inode (with increased refcount)
1969  *
1970  *      If @return is not erroneous, the caller is responsible to decrement the
1971  *      refcount by tty_driver_kref_put.
1972  *
1973  *      Locking: tty_mutex protects get_tty_driver
1974  */
1975 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1976                 int *noctty, int *index)
1977 {
1978         struct tty_driver *driver;
1979
1980         switch (device) {
1981 #ifdef CONFIG_VT
1982         case MKDEV(TTY_MAJOR, 0): {
1983                 extern struct tty_driver *console_driver;
1984                 driver = tty_driver_kref_get(console_driver);
1985                 *index = fg_console;
1986                 *noctty = 1;
1987                 break;
1988         }
1989 #endif
1990         case MKDEV(TTYAUX_MAJOR, 1): {
1991                 struct tty_driver *console_driver = console_device(index);
1992                 if (console_driver) {
1993                         driver = tty_driver_kref_get(console_driver);
1994                         if (driver) {
1995                                 /* Don't let /dev/console block */
1996                                 filp->f_flags |= O_NONBLOCK;
1997                                 *noctty = 1;
1998                                 break;
1999                         }
2000                 }
2001                 return ERR_PTR(-ENODEV);
2002         }
2003         default:
2004                 driver = get_tty_driver(device, index);
2005                 if (!driver)
2006                         return ERR_PTR(-ENODEV);
2007                 break;
2008         }
2009         return driver;
2010 }
2011
2012 /**
2013  *      tty_open                -       open a tty device
2014  *      @inode: inode of device file
2015  *      @filp: file pointer to tty
2016  *
2017  *      tty_open and tty_release keep up the tty count that contains the
2018  *      number of opens done on a tty. We cannot use the inode-count, as
2019  *      different inodes might point to the same tty.
2020  *
2021  *      Open-counting is needed for pty masters, as well as for keeping
2022  *      track of serial lines: DTR is dropped when the last close happens.
2023  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
2024  *
2025  *      The termios state of a pty is reset on first open so that
2026  *      settings don't persist across reuse.
2027  *
2028  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2029  *               tty->count should protect the rest.
2030  *               ->siglock protects ->signal/->sighand
2031  *
2032  *      Note: the tty_unlock/lock cases without a ref are only safe due to
2033  *      tty_mutex
2034  */
2035
2036 static int tty_open(struct inode *inode, struct file *filp)
2037 {
2038         struct tty_struct *tty;
2039         int noctty, retval;
2040         struct tty_driver *driver = NULL;
2041         int index;
2042         dev_t device = inode->i_rdev;
2043         unsigned saved_flags = filp->f_flags;
2044
2045         nonseekable_open(inode, filp);
2046
2047 retry_open:
2048         retval = tty_alloc_file(filp);
2049         if (retval)
2050                 return -ENOMEM;
2051
2052         noctty = filp->f_flags & O_NOCTTY;
2053         index  = -1;
2054         retval = 0;
2055
2056         tty = tty_open_current_tty(device, filp);
2057         if (!tty) {
2058                 mutex_lock(&tty_mutex);
2059                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2060                 if (IS_ERR(driver)) {
2061                         retval = PTR_ERR(driver);
2062                         goto err_unlock;
2063                 }
2064
2065                 /* check whether we're reopening an existing tty */
2066                 tty = tty_driver_lookup_tty(driver, inode, index);
2067                 if (IS_ERR(tty)) {
2068                         retval = PTR_ERR(tty);
2069                         goto err_unlock;
2070                 }
2071
2072                 if (tty) {
2073                         mutex_unlock(&tty_mutex);
2074                         tty_lock(tty);
2075                         /* safe to drop the kref from tty_driver_lookup_tty() */
2076                         tty_kref_put(tty);
2077                         retval = tty_reopen(tty);
2078                         if (retval < 0) {
2079                                 tty_unlock(tty);
2080                                 tty = ERR_PTR(retval);
2081                         }
2082                 } else { /* Returns with the tty_lock held for now */
2083                         tty = tty_init_dev(driver, index);
2084                         mutex_unlock(&tty_mutex);
2085                 }
2086
2087                 tty_driver_kref_put(driver);
2088         }
2089
2090         if (IS_ERR(tty)) {
2091                 retval = PTR_ERR(tty);
2092                 goto err_file;
2093         }
2094
2095         tty_add_file(tty, filp);
2096
2097         check_tty_count(tty, __func__);
2098         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2099             tty->driver->subtype == PTY_TYPE_MASTER)
2100                 noctty = 1;
2101 #ifdef TTY_DEBUG_HANGUP
2102         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2103 #endif
2104         if (tty->ops->open)
2105                 retval = tty->ops->open(tty, filp);
2106         else
2107                 retval = -ENODEV;
2108         filp->f_flags = saved_flags;
2109
2110         if (retval) {
2111 #ifdef TTY_DEBUG_HANGUP
2112                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2113                                 retval, tty->name);
2114 #endif
2115                 tty_unlock(tty); /* need to call tty_release without BTM */
2116                 tty_release(inode, filp);
2117                 if (retval != -ERESTARTSYS)
2118                         return retval;
2119
2120                 if (signal_pending(current))
2121                         return retval;
2122
2123                 schedule();
2124                 /*
2125                  * Need to reset f_op in case a hangup happened.
2126                  */
2127                 if (tty_hung_up_p(filp))
2128                         filp->f_op = &tty_fops;
2129                 goto retry_open;
2130         }
2131         clear_bit(TTY_HUPPED, &tty->flags);
2132
2133
2134         read_lock(&tasklist_lock);
2135         spin_lock_irq(&current->sighand->siglock);
2136         if (!noctty &&
2137             current->signal->leader &&
2138             !current->signal->tty &&
2139             tty->session == NULL)
2140                 __proc_set_tty(tty);
2141         spin_unlock_irq(&current->sighand->siglock);
2142         read_unlock(&tasklist_lock);
2143         tty_unlock(tty);
2144         return 0;
2145 err_unlock:
2146         mutex_unlock(&tty_mutex);
2147         /* after locks to avoid deadlock */
2148         if (!IS_ERR_OR_NULL(driver))
2149                 tty_driver_kref_put(driver);
2150 err_file:
2151         tty_free_file(filp);
2152         return retval;
2153 }
2154
2155
2156
2157 /**
2158  *      tty_poll        -       check tty status
2159  *      @filp: file being polled
2160  *      @wait: poll wait structures to update
2161  *
2162  *      Call the line discipline polling method to obtain the poll
2163  *      status of the device.
2164  *
2165  *      Locking: locks called line discipline but ldisc poll method
2166  *      may be re-entered freely by other callers.
2167  */
2168
2169 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2170 {
2171         struct tty_struct *tty = file_tty(filp);
2172         struct tty_ldisc *ld;
2173         int ret = 0;
2174
2175         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2176                 return 0;
2177
2178         ld = tty_ldisc_ref_wait(tty);
2179         if (ld->ops->poll)
2180                 ret = ld->ops->poll(tty, filp, wait);
2181         tty_ldisc_deref(ld);
2182         return ret;
2183 }
2184
2185 static int __tty_fasync(int fd, struct file *filp, int on)
2186 {
2187         struct tty_struct *tty = file_tty(filp);
2188         struct tty_ldisc *ldisc;
2189         unsigned long flags;
2190         int retval = 0;
2191
2192         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2193                 goto out;
2194
2195         retval = fasync_helper(fd, filp, on, &tty->fasync);
2196         if (retval <= 0)
2197                 goto out;
2198
2199         ldisc = tty_ldisc_ref(tty);
2200         if (ldisc) {
2201                 if (ldisc->ops->fasync)
2202                         ldisc->ops->fasync(tty, on);
2203                 tty_ldisc_deref(ldisc);
2204         }
2205
2206         if (on) {
2207                 enum pid_type type;
2208                 struct pid *pid;
2209
2210                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2211                 if (tty->pgrp) {
2212                         pid = tty->pgrp;
2213                         type = PIDTYPE_PGID;
2214                 } else {
2215                         pid = task_pid(current);
2216                         type = PIDTYPE_PID;
2217                 }
2218                 get_pid(pid);
2219                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2220                 __f_setown(filp, pid, type, 0);
2221                 put_pid(pid);
2222                 retval = 0;
2223         }
2224 out:
2225         return retval;
2226 }
2227
2228 static int tty_fasync(int fd, struct file *filp, int on)
2229 {
2230         struct tty_struct *tty = file_tty(filp);
2231         int retval;
2232
2233         tty_lock(tty);
2234         retval = __tty_fasync(fd, filp, on);
2235         tty_unlock(tty);
2236
2237         return retval;
2238 }
2239
2240 /**
2241  *      tiocsti                 -       fake input character
2242  *      @tty: tty to fake input into
2243  *      @p: pointer to character
2244  *
2245  *      Fake input to a tty device. Does the necessary locking and
2246  *      input management.
2247  *
2248  *      FIXME: does not honour flow control ??
2249  *
2250  *      Locking:
2251  *              Called functions take tty_ldiscs_lock
2252  *              current->signal->tty check is safe without locks
2253  *
2254  *      FIXME: may race normal receive processing
2255  */
2256
2257 static int tiocsti(struct tty_struct *tty, char __user *p)
2258 {
2259         char ch, mbz = 0;
2260         struct tty_ldisc *ld;
2261
2262         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2263                 return -EPERM;
2264         if (get_user(ch, p))
2265                 return -EFAULT;
2266         tty_audit_tiocsti(tty, ch);
2267         ld = tty_ldisc_ref_wait(tty);
2268         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2269         tty_ldisc_deref(ld);
2270         return 0;
2271 }
2272
2273 /**
2274  *      tiocgwinsz              -       implement window query ioctl
2275  *      @tty; tty
2276  *      @arg: user buffer for result
2277  *
2278  *      Copies the kernel idea of the window size into the user buffer.
2279  *
2280  *      Locking: tty->winsize_mutex is taken to ensure the winsize data
2281  *              is consistent.
2282  */
2283
2284 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2285 {
2286         int err;
2287
2288         mutex_lock(&tty->winsize_mutex);
2289         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2290         mutex_unlock(&tty->winsize_mutex);
2291
2292         return err ? -EFAULT: 0;
2293 }
2294
2295 /**
2296  *      tty_do_resize           -       resize event
2297  *      @tty: tty being resized
2298  *      @rows: rows (character)
2299  *      @cols: cols (character)
2300  *
2301  *      Update the termios variables and send the necessary signals to
2302  *      peform a terminal resize correctly
2303  */
2304
2305 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2306 {
2307         struct pid *pgrp;
2308
2309         /* Lock the tty */
2310         mutex_lock(&tty->winsize_mutex);
2311         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2312                 goto done;
2313
2314         /* Signal the foreground process group */
2315         pgrp = tty_get_pgrp(tty);
2316         if (pgrp)
2317                 kill_pgrp(pgrp, SIGWINCH, 1);
2318         put_pid(pgrp);
2319
2320         tty->winsize = *ws;
2321 done:
2322         mutex_unlock(&tty->winsize_mutex);
2323         return 0;
2324 }
2325 EXPORT_SYMBOL(tty_do_resize);
2326
2327 /**
2328  *      tiocswinsz              -       implement window size set ioctl
2329  *      @tty; tty side of tty
2330  *      @arg: user buffer for result
2331  *
2332  *      Copies the user idea of the window size to the kernel. Traditionally
2333  *      this is just advisory information but for the Linux console it
2334  *      actually has driver level meaning and triggers a VC resize.
2335  *
2336  *      Locking:
2337  *              Driver dependent. The default do_resize method takes the
2338  *      tty termios mutex and ctrl_lock. The console takes its own lock
2339  *      then calls into the default method.
2340  */
2341
2342 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2343 {
2344         struct winsize tmp_ws;
2345         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2346                 return -EFAULT;
2347
2348         if (tty->ops->resize)
2349                 return tty->ops->resize(tty, &tmp_ws);
2350         else
2351                 return tty_do_resize(tty, &tmp_ws);
2352 }
2353
2354 /**
2355  *      tioccons        -       allow admin to move logical console
2356  *      @file: the file to become console
2357  *
2358  *      Allow the administrator to move the redirected console device
2359  *
2360  *      Locking: uses redirect_lock to guard the redirect information
2361  */
2362
2363 static int tioccons(struct file *file)
2364 {
2365         if (!capable(CAP_SYS_ADMIN))
2366                 return -EPERM;
2367         if (file->f_op->write == redirected_tty_write) {
2368                 struct file *f;
2369                 spin_lock(&redirect_lock);
2370                 f = redirect;
2371                 redirect = NULL;
2372                 spin_unlock(&redirect_lock);
2373                 if (f)
2374                         fput(f);
2375                 return 0;
2376         }
2377         spin_lock(&redirect_lock);
2378         if (redirect) {
2379                 spin_unlock(&redirect_lock);
2380                 return -EBUSY;
2381         }
2382         redirect = get_file(file);
2383         spin_unlock(&redirect_lock);
2384         return 0;
2385 }
2386
2387 /**
2388  *      fionbio         -       non blocking ioctl
2389  *      @file: file to set blocking value
2390  *      @p: user parameter
2391  *
2392  *      Historical tty interfaces had a blocking control ioctl before
2393  *      the generic functionality existed. This piece of history is preserved
2394  *      in the expected tty API of posix OS's.
2395  *
2396  *      Locking: none, the open file handle ensures it won't go away.
2397  */
2398
2399 static int fionbio(struct file *file, int __user *p)
2400 {
2401         int nonblock;
2402
2403         if (get_user(nonblock, p))
2404                 return -EFAULT;
2405
2406         spin_lock(&file->f_lock);
2407         if (nonblock)
2408                 file->f_flags |= O_NONBLOCK;
2409         else
2410                 file->f_flags &= ~O_NONBLOCK;
2411         spin_unlock(&file->f_lock);
2412         return 0;
2413 }
2414
2415 /**
2416  *      tiocsctty       -       set controlling tty
2417  *      @tty: tty structure
2418  *      @arg: user argument
2419  *
2420  *      This ioctl is used to manage job control. It permits a session
2421  *      leader to set this tty as the controlling tty for the session.
2422  *
2423  *      Locking:
2424  *              Takes tty_lock() to serialize proc_set_tty() for this tty
2425  *              Takes tasklist_lock internally to walk sessions
2426  *              Takes ->siglock() when updating signal->tty
2427  */
2428
2429 static int tiocsctty(struct tty_struct *tty, int arg)
2430 {
2431         int ret = 0;
2432
2433         tty_lock(tty);
2434         read_lock(&tasklist_lock);
2435
2436         if (current->signal->leader && (task_session(current) == tty->session))
2437                 goto unlock;
2438
2439         /*
2440          * The process must be a session leader and
2441          * not have a controlling tty already.
2442          */
2443         if (!current->signal->leader || current->signal->tty) {
2444                 ret = -EPERM;
2445                 goto unlock;
2446         }
2447
2448         if (tty->session) {
2449                 /*
2450                  * This tty is already the controlling
2451                  * tty for another session group!
2452                  */
2453                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2454                         /*
2455                          * Steal it away
2456                          */
2457                         session_clear_tty(tty->session);
2458                 } else {
2459                         ret = -EPERM;
2460                         goto unlock;
2461                 }
2462         }
2463         proc_set_tty(tty);
2464 unlock:
2465         read_unlock(&tasklist_lock);
2466         tty_unlock(tty);
2467         return ret;
2468 }
2469
2470 /**
2471  *      tty_get_pgrp    -       return a ref counted pgrp pid
2472  *      @tty: tty to read
2473  *
2474  *      Returns a refcounted instance of the pid struct for the process
2475  *      group controlling the tty.
2476  */
2477
2478 struct pid *tty_get_pgrp(struct tty_struct *tty)
2479 {
2480         unsigned long flags;
2481         struct pid *pgrp;
2482
2483         spin_lock_irqsave(&tty->ctrl_lock, flags);
2484         pgrp = get_pid(tty->pgrp);
2485         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2486
2487         return pgrp;
2488 }
2489 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2490
2491 /*
2492  * This checks not only the pgrp, but falls back on the pid if no
2493  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2494  * without this...
2495  *
2496  * The caller must hold rcu lock or the tasklist lock.
2497  */
2498 static struct pid *session_of_pgrp(struct pid *pgrp)
2499 {
2500         struct task_struct *p;
2501         struct pid *sid = NULL;
2502
2503         p = pid_task(pgrp, PIDTYPE_PGID);
2504         if (p == NULL)
2505                 p = pid_task(pgrp, PIDTYPE_PID);
2506         if (p != NULL)
2507                 sid = task_session(p);
2508
2509         return sid;
2510 }
2511
2512 /**
2513  *      tiocgpgrp               -       get process group
2514  *      @tty: tty passed by user
2515  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2516  *      @p: returned pid
2517  *
2518  *      Obtain the process group of the tty. If there is no process group
2519  *      return an error.
2520  *
2521  *      Locking: none. Reference to current->signal->tty is safe.
2522  */
2523
2524 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2525 {
2526         struct pid *pid;
2527         int ret;
2528         /*
2529          * (tty == real_tty) is a cheap way of
2530          * testing if the tty is NOT a master pty.
2531          */
2532         if (tty == real_tty && current->signal->tty != real_tty)
2533                 return -ENOTTY;
2534         pid = tty_get_pgrp(real_tty);
2535         ret =  put_user(pid_vnr(pid), p);
2536         put_pid(pid);
2537         return ret;
2538 }
2539
2540 /**
2541  *      tiocspgrp               -       attempt to set process group
2542  *      @tty: tty passed by user
2543  *      @real_tty: tty side device matching tty passed by user
2544  *      @p: pid pointer
2545  *
2546  *      Set the process group of the tty to the session passed. Only
2547  *      permitted where the tty session is our session.
2548  *
2549  *      Locking: RCU, ctrl lock
2550  */
2551
2552 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2553 {
2554         struct pid *pgrp;
2555         pid_t pgrp_nr;
2556         int retval = tty_check_change(real_tty);
2557         unsigned long flags;
2558
2559         if (retval == -EIO)
2560                 return -ENOTTY;
2561         if (retval)
2562                 return retval;
2563         if (!current->signal->tty ||
2564             (current->signal->tty != real_tty) ||
2565             (real_tty->session != task_session(current)))
2566                 return -ENOTTY;
2567         if (get_user(pgrp_nr, p))
2568                 return -EFAULT;
2569         if (pgrp_nr < 0)
2570                 return -EINVAL;
2571         rcu_read_lock();
2572         pgrp = find_vpid(pgrp_nr);
2573         retval = -ESRCH;
2574         if (!pgrp)
2575                 goto out_unlock;
2576         retval = -EPERM;
2577         if (session_of_pgrp(pgrp) != task_session(current))
2578                 goto out_unlock;
2579         retval = 0;
2580         spin_lock_irqsave(&tty->ctrl_lock, flags);
2581         put_pid(real_tty->pgrp);
2582         real_tty->pgrp = get_pid(pgrp);
2583         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2584 out_unlock:
2585         rcu_read_unlock();
2586         return retval;
2587 }
2588
2589 /**
2590  *      tiocgsid                -       get session id
2591  *      @tty: tty passed by user
2592  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2593  *      @p: pointer to returned session id
2594  *
2595  *      Obtain the session id of the tty. If there is no session
2596  *      return an error.
2597  *
2598  *      Locking: none. Reference to current->signal->tty is safe.
2599  */
2600
2601 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2602 {
2603         /*
2604          * (tty == real_tty) is a cheap way of
2605          * testing if the tty is NOT a master pty.
2606         */
2607         if (tty == real_tty && current->signal->tty != real_tty)
2608                 return -ENOTTY;
2609         if (!real_tty->session)
2610                 return -ENOTTY;
2611         return put_user(pid_vnr(real_tty->session), p);
2612 }
2613
2614 /**
2615  *      tiocsetd        -       set line discipline
2616  *      @tty: tty device
2617  *      @p: pointer to user data
2618  *
2619  *      Set the line discipline according to user request.
2620  *
2621  *      Locking: see tty_set_ldisc, this function is just a helper
2622  */
2623
2624 static int tiocsetd(struct tty_struct *tty, int __user *p)
2625 {
2626         int ldisc;
2627         int ret;
2628
2629         if (get_user(ldisc, p))
2630                 return -EFAULT;
2631
2632         ret = tty_set_ldisc(tty, ldisc);
2633
2634         return ret;
2635 }
2636
2637 /**
2638  *      send_break      -       performed time break
2639  *      @tty: device to break on
2640  *      @duration: timeout in mS
2641  *
2642  *      Perform a timed break on hardware that lacks its own driver level
2643  *      timed break functionality.
2644  *
2645  *      Locking:
2646  *              atomic_write_lock serializes
2647  *
2648  */
2649
2650 static int send_break(struct tty_struct *tty, unsigned int duration)
2651 {
2652         int retval;
2653
2654         if (tty->ops->break_ctl == NULL)
2655                 return 0;
2656
2657         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2658                 retval = tty->ops->break_ctl(tty, duration);
2659         else {
2660                 /* Do the work ourselves */
2661                 if (tty_write_lock(tty, 0) < 0)
2662                         return -EINTR;
2663                 retval = tty->ops->break_ctl(tty, -1);
2664                 if (retval)
2665                         goto out;
2666                 if (!signal_pending(current))
2667                         msleep_interruptible(duration);
2668                 retval = tty->ops->break_ctl(tty, 0);
2669 out:
2670                 tty_write_unlock(tty);
2671                 if (signal_pending(current))
2672                         retval = -EINTR;
2673         }
2674         return retval;
2675 }
2676
2677 /**
2678  *      tty_tiocmget            -       get modem status
2679  *      @tty: tty device
2680  *      @file: user file pointer
2681  *      @p: pointer to result
2682  *
2683  *      Obtain the modem status bits from the tty driver if the feature
2684  *      is supported. Return -EINVAL if it is not available.
2685  *
2686  *      Locking: none (up to the driver)
2687  */
2688
2689 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2690 {
2691         int retval = -EINVAL;
2692
2693         if (tty->ops->tiocmget) {
2694                 retval = tty->ops->tiocmget(tty);
2695
2696                 if (retval >= 0)
2697                         retval = put_user(retval, p);
2698         }
2699         return retval;
2700 }
2701
2702 /**
2703  *      tty_tiocmset            -       set modem status
2704  *      @tty: tty device
2705  *      @cmd: command - clear bits, set bits or set all
2706  *      @p: pointer to desired bits
2707  *
2708  *      Set the modem status bits from the tty driver if the feature
2709  *      is supported. Return -EINVAL if it is not available.
2710  *
2711  *      Locking: none (up to the driver)
2712  */
2713
2714 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2715              unsigned __user *p)
2716 {
2717         int retval;
2718         unsigned int set, clear, val;
2719
2720         if (tty->ops->tiocmset == NULL)
2721                 return -EINVAL;
2722
2723         retval = get_user(val, p);
2724         if (retval)
2725                 return retval;
2726         set = clear = 0;
2727         switch (cmd) {
2728         case TIOCMBIS:
2729                 set = val;
2730                 break;
2731         case TIOCMBIC:
2732                 clear = val;
2733                 break;
2734         case TIOCMSET:
2735                 set = val;
2736                 clear = ~val;
2737                 break;
2738         }
2739         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2740         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2741         return tty->ops->tiocmset(tty, set, clear);
2742 }
2743
2744 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2745 {
2746         int retval = -EINVAL;
2747         struct serial_icounter_struct icount;
2748         memset(&icount, 0, sizeof(icount));
2749         if (tty->ops->get_icount)
2750                 retval = tty->ops->get_icount(tty, &icount);
2751         if (retval != 0)
2752                 return retval;
2753         if (copy_to_user(arg, &icount, sizeof(icount)))
2754                 return -EFAULT;
2755         return 0;
2756 }
2757
2758 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2759 {
2760         static DEFINE_RATELIMIT_STATE(depr_flags,
2761                         DEFAULT_RATELIMIT_INTERVAL,
2762                         DEFAULT_RATELIMIT_BURST);
2763         char comm[TASK_COMM_LEN];
2764         int flags;
2765
2766         if (get_user(flags, &ss->flags))
2767                 return;
2768
2769         flags &= ASYNC_DEPRECATED;
2770
2771         if (flags && __ratelimit(&depr_flags))
2772                 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2773                                 __func__, get_task_comm(comm, current), flags);
2774 }
2775
2776 /*
2777  * if pty, return the slave side (real_tty)
2778  * otherwise, return self
2779  */
2780 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2781 {
2782         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2783             tty->driver->subtype == PTY_TYPE_MASTER)
2784                 tty = tty->link;
2785         return tty;
2786 }
2787
2788 /*
2789  * Split this up, as gcc can choke on it otherwise..
2790  */
2791 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2792 {
2793         struct tty_struct *tty = file_tty(file);
2794         struct tty_struct *real_tty;
2795         void __user *p = (void __user *)arg;
2796         int retval;
2797         struct tty_ldisc *ld;
2798
2799         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2800                 return -EINVAL;
2801
2802         real_tty = tty_pair_get_tty(tty);
2803
2804         /*
2805          * Factor out some common prep work
2806          */
2807         switch (cmd) {
2808         case TIOCSETD:
2809         case TIOCSBRK:
2810         case TIOCCBRK:
2811         case TCSBRK:
2812         case TCSBRKP:
2813                 retval = tty_check_change(tty);
2814                 if (retval)
2815                         return retval;
2816                 if (cmd != TIOCCBRK) {
2817                         tty_wait_until_sent(tty, 0);
2818                         if (signal_pending(current))
2819                                 return -EINTR;
2820                 }
2821                 break;
2822         }
2823
2824         /*
2825          *      Now do the stuff.
2826          */
2827         switch (cmd) {
2828         case TIOCSTI:
2829                 return tiocsti(tty, p);
2830         case TIOCGWINSZ:
2831                 return tiocgwinsz(real_tty, p);
2832         case TIOCSWINSZ:
2833                 return tiocswinsz(real_tty, p);
2834         case TIOCCONS:
2835                 return real_tty != tty ? -EINVAL : tioccons(file);
2836         case FIONBIO:
2837                 return fionbio(file, p);
2838         case TIOCEXCL:
2839                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2840                 return 0;
2841         case TIOCNXCL:
2842                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2843                 return 0;
2844         case TIOCGEXCL:
2845         {
2846                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2847                 return put_user(excl, (int __user *)p);
2848         }
2849         case TIOCNOTTY:
2850                 if (current->signal->tty != tty)
2851                         return -ENOTTY;
2852                 no_tty();
2853                 return 0;
2854         case TIOCSCTTY:
2855                 return tiocsctty(tty, arg);
2856         case TIOCGPGRP:
2857                 return tiocgpgrp(tty, real_tty, p);
2858         case TIOCSPGRP:
2859                 return tiocspgrp(tty, real_tty, p);
2860         case TIOCGSID:
2861                 return tiocgsid(tty, real_tty, p);
2862         case TIOCGETD:
2863                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2864         case TIOCSETD:
2865                 return tiocsetd(tty, p);
2866         case TIOCVHANGUP:
2867                 if (!capable(CAP_SYS_ADMIN))
2868                         return -EPERM;
2869                 tty_vhangup(tty);
2870                 return 0;
2871         case TIOCGDEV:
2872         {
2873                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2874                 return put_user(ret, (unsigned int __user *)p);
2875         }
2876         /*
2877          * Break handling
2878          */
2879         case TIOCSBRK:  /* Turn break on, unconditionally */
2880                 if (tty->ops->break_ctl)
2881                         return tty->ops->break_ctl(tty, -1);
2882                 return 0;
2883         case TIOCCBRK:  /* Turn break off, unconditionally */
2884                 if (tty->ops->break_ctl)
2885                         return tty->ops->break_ctl(tty, 0);
2886                 return 0;
2887         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2888                 /* non-zero arg means wait for all output data
2889                  * to be sent (performed above) but don't send break.
2890                  * This is used by the tcdrain() termios function.
2891                  */
2892                 if (!arg)
2893                         return send_break(tty, 250);
2894                 return 0;
2895         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2896                 return send_break(tty, arg ? arg*100 : 250);
2897
2898         case TIOCMGET:
2899                 return tty_tiocmget(tty, p);
2900         case TIOCMSET:
2901         case TIOCMBIC:
2902         case TIOCMBIS:
2903                 return tty_tiocmset(tty, cmd, p);
2904         case TIOCGICOUNT:
2905                 retval = tty_tiocgicount(tty, p);
2906                 /* For the moment allow fall through to the old method */
2907                 if (retval != -EINVAL)
2908                         return retval;
2909                 break;
2910         case TCFLSH:
2911                 switch (arg) {
2912                 case TCIFLUSH:
2913                 case TCIOFLUSH:
2914                 /* flush tty buffer and allow ldisc to process ioctl */
2915                         tty_buffer_flush(tty, NULL);
2916                         break;
2917                 }
2918                 break;
2919         case TIOCSSERIAL:
2920                 tty_warn_deprecated_flags(p);
2921                 break;
2922         }
2923         if (tty->ops->ioctl) {
2924                 retval = tty->ops->ioctl(tty, cmd, arg);
2925                 if (retval != -ENOIOCTLCMD)
2926                         return retval;
2927         }
2928         ld = tty_ldisc_ref_wait(tty);
2929         retval = -EINVAL;
2930         if (ld->ops->ioctl) {
2931                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2932                 if (retval == -ENOIOCTLCMD)
2933                         retval = -ENOTTY;
2934         }
2935         tty_ldisc_deref(ld);
2936         return retval;
2937 }
2938
2939 #ifdef CONFIG_COMPAT
2940 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2941                                 unsigned long arg)
2942 {
2943         struct tty_struct *tty = file_tty(file);
2944         struct tty_ldisc *ld;
2945         int retval = -ENOIOCTLCMD;
2946
2947         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2948                 return -EINVAL;
2949
2950         if (tty->ops->compat_ioctl) {
2951                 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2952                 if (retval != -ENOIOCTLCMD)
2953                         return retval;
2954         }
2955
2956         ld = tty_ldisc_ref_wait(tty);
2957         if (ld->ops->compat_ioctl)
2958                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2959         else
2960                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2961         tty_ldisc_deref(ld);
2962
2963         return retval;
2964 }
2965 #endif
2966
2967 static int this_tty(const void *t, struct file *file, unsigned fd)
2968 {
2969         if (likely(file->f_op->read != tty_read))
2970                 return 0;
2971         return file_tty(file) != t ? 0 : fd + 1;
2972 }
2973         
2974 /*
2975  * This implements the "Secure Attention Key" ---  the idea is to
2976  * prevent trojan horses by killing all processes associated with this
2977  * tty when the user hits the "Secure Attention Key".  Required for
2978  * super-paranoid applications --- see the Orange Book for more details.
2979  *
2980  * This code could be nicer; ideally it should send a HUP, wait a few
2981  * seconds, then send a INT, and then a KILL signal.  But you then
2982  * have to coordinate with the init process, since all processes associated
2983  * with the current tty must be dead before the new getty is allowed
2984  * to spawn.
2985  *
2986  * Now, if it would be correct ;-/ The current code has a nasty hole -
2987  * it doesn't catch files in flight. We may send the descriptor to ourselves
2988  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2989  *
2990  * Nasty bug: do_SAK is being called in interrupt context.  This can
2991  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2992  */
2993 void __do_SAK(struct tty_struct *tty)
2994 {
2995 #ifdef TTY_SOFT_SAK
2996         tty_hangup(tty);
2997 #else
2998         struct task_struct *g, *p;
2999         struct pid *session;
3000         int             i;
3001
3002         if (!tty)
3003                 return;
3004         session = tty->session;
3005
3006         tty_ldisc_flush(tty);
3007
3008         tty_driver_flush_buffer(tty);
3009
3010         read_lock(&tasklist_lock);
3011         /* Kill the entire session */
3012         do_each_pid_task(session, PIDTYPE_SID, p) {
3013                 printk(KERN_NOTICE "SAK: killed process %d"
3014                         " (%s): task_session(p)==tty->session\n",
3015                         task_pid_nr(p), p->comm);
3016                 send_sig(SIGKILL, p, 1);
3017         } while_each_pid_task(session, PIDTYPE_SID, p);
3018         /* Now kill any processes that happen to have the
3019          * tty open.
3020          */
3021         do_each_thread(g, p) {
3022                 if (p->signal->tty == tty) {
3023                         printk(KERN_NOTICE "SAK: killed process %d"
3024                             " (%s): task_session(p)==tty->session\n",
3025                             task_pid_nr(p), p->comm);
3026                         send_sig(SIGKILL, p, 1);
3027                         continue;
3028                 }
3029                 task_lock(p);
3030                 i = iterate_fd(p->files, 0, this_tty, tty);
3031                 if (i != 0) {
3032                         printk(KERN_NOTICE "SAK: killed process %d"
3033                             " (%s): fd#%d opened to the tty\n",
3034                                     task_pid_nr(p), p->comm, i - 1);
3035                         force_sig(SIGKILL, p);
3036                 }
3037                 task_unlock(p);
3038         } while_each_thread(g, p);
3039         read_unlock(&tasklist_lock);
3040 #endif
3041 }
3042
3043 static void do_SAK_work(struct work_struct *work)
3044 {
3045         struct tty_struct *tty =
3046                 container_of(work, struct tty_struct, SAK_work);
3047         __do_SAK(tty);
3048 }
3049
3050 /*
3051  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3052  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3053  * the values which we write to it will be identical to the values which it
3054  * already has. --akpm
3055  */
3056 void do_SAK(struct tty_struct *tty)
3057 {
3058         if (!tty)
3059                 return;
3060         schedule_work(&tty->SAK_work);
3061 }
3062
3063 EXPORT_SYMBOL(do_SAK);
3064
3065 static int dev_match_devt(struct device *dev, const void *data)
3066 {
3067         const dev_t *devt = data;
3068         return dev->devt == *devt;
3069 }
3070
3071 /* Must put_device() after it's unused! */
3072 static struct device *tty_get_device(struct tty_struct *tty)
3073 {
3074         dev_t devt = tty_devnum(tty);
3075         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3076 }
3077
3078
3079 /**
3080  *      alloc_tty_struct
3081  *
3082  *      This subroutine allocates and initializes a tty structure.
3083  *
3084  *      Locking: none - tty in question is not exposed at this point
3085  */
3086
3087 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3088 {
3089         struct tty_struct *tty;
3090
3091         tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3092         if (!tty)
3093                 return NULL;
3094
3095         kref_init(&tty->kref);
3096         tty->magic = TTY_MAGIC;
3097         tty_ldisc_init(tty);
3098         tty->session = NULL;
3099         tty->pgrp = NULL;
3100         mutex_init(&tty->legacy_mutex);
3101         mutex_init(&tty->throttle_mutex);
3102         init_rwsem(&tty->termios_rwsem);
3103         mutex_init(&tty->winsize_mutex);
3104         init_ldsem(&tty->ldisc_sem);
3105         init_waitqueue_head(&tty->write_wait);
3106         init_waitqueue_head(&tty->read_wait);
3107         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3108         mutex_init(&tty->atomic_write_lock);
3109         spin_lock_init(&tty->ctrl_lock);
3110         spin_lock_init(&tty->flow_lock);
3111         INIT_LIST_HEAD(&tty->tty_files);
3112         INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114         tty->driver = driver;
3115         tty->ops = driver->ops;
3116         tty->index = idx;
3117         tty_line_name(driver, idx, tty->name);
3118         tty->dev = tty_get_device(tty);
3119
3120         return tty;
3121 }
3122
3123 /**
3124  *      deinitialize_tty_struct
3125  *      @tty: tty to deinitialize
3126  *
3127  *      This subroutine deinitializes a tty structure that has been newly
3128  *      allocated but tty_release cannot be called on that yet.
3129  *
3130  *      Locking: none - tty in question must not be exposed at this point
3131  */
3132 void deinitialize_tty_struct(struct tty_struct *tty)
3133 {
3134         tty_ldisc_deinit(tty);
3135 }
3136
3137 /**
3138  *      tty_put_char    -       write one character to a tty
3139  *      @tty: tty
3140  *      @ch: character
3141  *
3142  *      Write one byte to the tty using the provided put_char method
3143  *      if present. Returns the number of characters successfully output.
3144  *
3145  *      Note: the specific put_char operation in the driver layer may go
3146  *      away soon. Don't call it directly, use this method
3147  */
3148
3149 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3150 {
3151         if (tty->ops->put_char)
3152                 return tty->ops->put_char(tty, ch);
3153         return tty->ops->write(tty, &ch, 1);
3154 }
3155 EXPORT_SYMBOL_GPL(tty_put_char);
3156
3157 struct class *tty_class;
3158
3159 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3160                 unsigned int index, unsigned int count)
3161 {
3162         /* init here, since reused cdevs cause crashes */
3163         cdev_init(&driver->cdevs[index], &tty_fops);
3164         driver->cdevs[index].owner = driver->owner;
3165         return cdev_add(&driver->cdevs[index], dev, count);
3166 }
3167
3168 /**
3169  *      tty_register_device - register a tty device
3170  *      @driver: the tty driver that describes the tty device
3171  *      @index: the index in the tty driver for this tty device
3172  *      @device: a struct device that is associated with this tty device.
3173  *              This field is optional, if there is no known struct device
3174  *              for this tty device it can be set to NULL safely.
3175  *
3176  *      Returns a pointer to the struct device for this tty device
3177  *      (or ERR_PTR(-EFOO) on error).
3178  *
3179  *      This call is required to be made to register an individual tty device
3180  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3181  *      that bit is not set, this function should not be called by a tty
3182  *      driver.
3183  *
3184  *      Locking: ??
3185  */
3186
3187 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3188                                    struct device *device)
3189 {
3190         return tty_register_device_attr(driver, index, device, NULL, NULL);
3191 }
3192 EXPORT_SYMBOL(tty_register_device);
3193
3194 static void tty_device_create_release(struct device *dev)
3195 {
3196         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3197         kfree(dev);
3198 }
3199
3200 /**
3201  *      tty_register_device_attr - register a tty device
3202  *      @driver: the tty driver that describes the tty device
3203  *      @index: the index in the tty driver for this tty device
3204  *      @device: a struct device that is associated with this tty device.
3205  *              This field is optional, if there is no known struct device
3206  *              for this tty device it can be set to NULL safely.
3207  *      @drvdata: Driver data to be set to device.
3208  *      @attr_grp: Attribute group to be set on device.
3209  *
3210  *      Returns a pointer to the struct device for this tty device
3211  *      (or ERR_PTR(-EFOO) on error).
3212  *
3213  *      This call is required to be made to register an individual tty device
3214  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3215  *      that bit is not set, this function should not be called by a tty
3216  *      driver.
3217  *
3218  *      Locking: ??
3219  */
3220 struct device *tty_register_device_attr(struct tty_driver *driver,
3221                                    unsigned index, struct device *device,
3222                                    void *drvdata,
3223                                    const struct attribute_group **attr_grp)
3224 {
3225         char name[64];
3226         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3227         struct device *dev = NULL;
3228         int retval = -ENODEV;
3229         bool cdev = false;
3230
3231         if (index >= driver->num) {
3232                 printk(KERN_ERR "Attempt to register invalid tty line number "
3233                        " (%d).\n", index);
3234                 return ERR_PTR(-EINVAL);
3235         }
3236
3237         if (driver->type == TTY_DRIVER_TYPE_PTY)
3238                 pty_line_name(driver, index, name);
3239         else
3240                 tty_line_name(driver, index, name);
3241
3242         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3243                 retval = tty_cdev_add(driver, devt, index, 1);
3244                 if (retval)
3245                         goto error;
3246                 cdev = true;
3247         }
3248
3249         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3250         if (!dev) {
3251                 retval = -ENOMEM;
3252                 goto error;
3253         }
3254
3255         dev->devt = devt;
3256         dev->class = tty_class;
3257         dev->parent = device;
3258         dev->release = tty_device_create_release;
3259         dev_set_name(dev, "%s", name);
3260         dev->groups = attr_grp;
3261         dev_set_drvdata(dev, drvdata);
3262
3263         retval = device_register(dev);
3264         if (retval)
3265                 goto error;
3266
3267         return dev;
3268
3269 error:
3270         put_device(dev);
3271         if (cdev)
3272                 cdev_del(&driver->cdevs[index]);
3273         return ERR_PTR(retval);
3274 }
3275 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3276
3277 /**
3278  *      tty_unregister_device - unregister a tty device
3279  *      @driver: the tty driver that describes the tty device
3280  *      @index: the index in the tty driver for this tty device
3281  *
3282  *      If a tty device is registered with a call to tty_register_device() then
3283  *      this function must be called when the tty device is gone.
3284  *
3285  *      Locking: ??
3286  */
3287
3288 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3289 {
3290         device_destroy(tty_class,
3291                 MKDEV(driver->major, driver->minor_start) + index);
3292         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3293                 cdev_del(&driver->cdevs[index]);
3294 }
3295 EXPORT_SYMBOL(tty_unregister_device);
3296
3297 /**
3298  * __tty_alloc_driver -- allocate tty driver
3299  * @lines: count of lines this driver can handle at most
3300  * @owner: module which is repsonsible for this driver
3301  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3302  *
3303  * This should not be called directly, some of the provided macros should be
3304  * used instead. Use IS_ERR and friends on @retval.
3305  */
3306 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3307                 unsigned long flags)
3308 {
3309         struct tty_driver *driver;
3310         unsigned int cdevs = 1;
3311         int err;
3312
3313         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3314                 return ERR_PTR(-EINVAL);
3315
3316         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3317         if (!driver)
3318                 return ERR_PTR(-ENOMEM);
3319
3320         kref_init(&driver->kref);
3321         driver->magic = TTY_DRIVER_MAGIC;
3322         driver->num = lines;
3323         driver->owner = owner;
3324         driver->flags = flags;
3325
3326         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3327                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3328                                 GFP_KERNEL);
3329                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3330                                 GFP_KERNEL);
3331                 if (!driver->ttys || !driver->termios) {
3332                         err = -ENOMEM;
3333                         goto err_free_all;
3334                 }
3335         }
3336
3337         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3338                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3339                                 GFP_KERNEL);
3340                 if (!driver->ports) {
3341                         err = -ENOMEM;
3342                         goto err_free_all;
3343                 }
3344                 cdevs = lines;
3345         }
3346
3347         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3348         if (!driver->cdevs) {
3349                 err = -ENOMEM;
3350                 goto err_free_all;
3351         }
3352
3353         return driver;
3354 err_free_all:
3355         kfree(driver->ports);
3356         kfree(driver->ttys);
3357         kfree(driver->termios);
3358         kfree(driver);
3359         return ERR_PTR(err);
3360 }
3361 EXPORT_SYMBOL(__tty_alloc_driver);
3362
3363 static void destruct_tty_driver(struct kref *kref)
3364 {
3365         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3366         int i;
3367         struct ktermios *tp;
3368
3369         if (driver->flags & TTY_DRIVER_INSTALLED) {
3370                 /*
3371                  * Free the termios and termios_locked structures because
3372                  * we don't want to get memory leaks when modular tty
3373                  * drivers are removed from the kernel.
3374                  */
3375                 for (i = 0; i < driver->num; i++) {
3376                         tp = driver->termios[i];
3377                         if (tp) {
3378                                 driver->termios[i] = NULL;
3379                                 kfree(tp);
3380                         }
3381                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3382                                 tty_unregister_device(driver, i);
3383                 }
3384                 proc_tty_unregister_driver(driver);
3385                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3386                         cdev_del(&driver->cdevs[0]);
3387         }
3388         kfree(driver->cdevs);
3389         kfree(driver->ports);
3390         kfree(driver->termios);
3391         kfree(driver->ttys);
3392         kfree(driver);
3393 }
3394
3395 void tty_driver_kref_put(struct tty_driver *driver)
3396 {
3397         kref_put(&driver->kref, destruct_tty_driver);
3398 }
3399 EXPORT_SYMBOL(tty_driver_kref_put);
3400
3401 void tty_set_operations(struct tty_driver *driver,
3402                         const struct tty_operations *op)
3403 {
3404         driver->ops = op;
3405 };
3406 EXPORT_SYMBOL(tty_set_operations);
3407
3408 void put_tty_driver(struct tty_driver *d)
3409 {
3410         tty_driver_kref_put(d);
3411 }
3412 EXPORT_SYMBOL(put_tty_driver);
3413
3414 /*
3415  * Called by a tty driver to register itself.
3416  */
3417 int tty_register_driver(struct tty_driver *driver)
3418 {
3419         int error;
3420         int i;
3421         dev_t dev;
3422         struct device *d;
3423
3424         if (!driver->major) {
3425                 error = alloc_chrdev_region(&dev, driver->minor_start,
3426                                                 driver->num, driver->name);
3427                 if (!error) {
3428                         driver->major = MAJOR(dev);
3429                         driver->minor_start = MINOR(dev);
3430                 }
3431         } else {
3432                 dev = MKDEV(driver->major, driver->minor_start);
3433                 error = register_chrdev_region(dev, driver->num, driver->name);
3434         }
3435         if (error < 0)
3436                 goto err;
3437
3438         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3439                 error = tty_cdev_add(driver, dev, 0, driver->num);
3440                 if (error)
3441                         goto err_unreg_char;
3442         }
3443
3444         mutex_lock(&tty_mutex);
3445         list_add(&driver->tty_drivers, &tty_drivers);
3446         mutex_unlock(&tty_mutex);
3447
3448         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3449                 for (i = 0; i < driver->num; i++) {
3450                         d = tty_register_device(driver, i, NULL);
3451                         if (IS_ERR(d)) {
3452                                 error = PTR_ERR(d);
3453                                 goto err_unreg_devs;
3454                         }
3455                 }
3456         }
3457         proc_tty_register_driver(driver);
3458         driver->flags |= TTY_DRIVER_INSTALLED;
3459         return 0;
3460
3461 err_unreg_devs:
3462         for (i--; i >= 0; i--)
3463                 tty_unregister_device(driver, i);
3464
3465         mutex_lock(&tty_mutex);
3466         list_del(&driver->tty_drivers);
3467         mutex_unlock(&tty_mutex);
3468
3469 err_unreg_char:
3470         unregister_chrdev_region(dev, driver->num);
3471 err:
3472         return error;
3473 }
3474 EXPORT_SYMBOL(tty_register_driver);
3475
3476 /*
3477  * Called by a tty driver to unregister itself.
3478  */
3479 int tty_unregister_driver(struct tty_driver *driver)
3480 {
3481 #if 0
3482         /* FIXME */
3483         if (driver->refcount)
3484                 return -EBUSY;
3485 #endif
3486         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3487                                 driver->num);
3488         mutex_lock(&tty_mutex);
3489         list_del(&driver->tty_drivers);
3490         mutex_unlock(&tty_mutex);
3491         return 0;
3492 }
3493
3494 EXPORT_SYMBOL(tty_unregister_driver);
3495
3496 dev_t tty_devnum(struct tty_struct *tty)
3497 {
3498         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3499 }
3500 EXPORT_SYMBOL(tty_devnum);
3501
3502 void tty_default_fops(struct file_operations *fops)
3503 {
3504         *fops = tty_fops;
3505 }
3506
3507 /*
3508  * Initialize the console device. This is called *early*, so
3509  * we can't necessarily depend on lots of kernel help here.
3510  * Just do some early initializations, and do the complex setup
3511  * later.
3512  */
3513 void __init console_init(void)
3514 {
3515         initcall_t *call;
3516
3517         /* Setup the default TTY line discipline. */
3518         tty_ldisc_begin();
3519
3520         /*
3521          * set up the console device so that later boot sequences can
3522          * inform about problems etc..
3523          */
3524         call = __con_initcall_start;
3525         while (call < __con_initcall_end) {
3526                 (*call)();
3527                 call++;
3528         }
3529 }
3530
3531 static char *tty_devnode(struct device *dev, umode_t *mode)
3532 {
3533         if (!mode)
3534                 return NULL;
3535         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3536             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3537                 *mode = 0666;
3538         return NULL;
3539 }
3540
3541 static int __init tty_class_init(void)
3542 {
3543         tty_class = class_create(THIS_MODULE, "tty");
3544         if (IS_ERR(tty_class))
3545                 return PTR_ERR(tty_class);
3546         tty_class->devnode = tty_devnode;
3547         return 0;
3548 }
3549
3550 postcore_initcall(tty_class_init);
3551
3552 /* 3/2004 jmc: why do these devices exist? */
3553 static struct cdev tty_cdev, console_cdev;
3554
3555 static ssize_t show_cons_active(struct device *dev,
3556                                 struct device_attribute *attr, char *buf)
3557 {
3558         struct console *cs[16];
3559         int i = 0;
3560         struct console *c;
3561         ssize_t count = 0;
3562
3563         console_lock();
3564         for_each_console(c) {
3565                 if (!c->device)
3566                         continue;
3567                 if (!c->write)
3568                         continue;
3569                 if ((c->flags & CON_ENABLED) == 0)
3570                         continue;
3571                 cs[i++] = c;
3572                 if (i >= ARRAY_SIZE(cs))
3573                         break;
3574         }
3575         while (i--) {
3576                 int index = cs[i]->index;
3577                 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3578
3579                 /* don't resolve tty0 as some programs depend on it */
3580                 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3581                         count += tty_line_name(drv, index, buf + count);
3582                 else
3583                         count += sprintf(buf + count, "%s%d",
3584                                          cs[i]->name, cs[i]->index);
3585
3586                 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3587         }
3588         console_unlock();
3589
3590         return count;
3591 }
3592 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3593
3594 static struct attribute *cons_dev_attrs[] = {
3595         &dev_attr_active.attr,
3596         NULL
3597 };
3598
3599 ATTRIBUTE_GROUPS(cons_dev);
3600
3601 static struct device *consdev;
3602
3603 void console_sysfs_notify(void)
3604 {
3605         if (consdev)
3606                 sysfs_notify(&consdev->kobj, NULL, "active");
3607 }
3608
3609 /*
3610  * Ok, now we can initialize the rest of the tty devices and can count
3611  * on memory allocations, interrupts etc..
3612  */
3613 int __init tty_init(void)
3614 {
3615         cdev_init(&tty_cdev, &tty_fops);
3616         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3617             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3618                 panic("Couldn't register /dev/tty driver\n");
3619         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3620
3621         cdev_init(&console_cdev, &console_fops);
3622         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3623             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3624                 panic("Couldn't register /dev/console driver\n");
3625         consdev = device_create_with_groups(tty_class, NULL,
3626                                             MKDEV(TTYAUX_MAJOR, 1), NULL,
3627                                             cons_dev_groups, "console");
3628         if (IS_ERR(consdev))
3629                 consdev = NULL;
3630
3631 #ifdef CONFIG_VT
3632         vty_init(&console_fops);
3633 #endif
3634         return 0;
3635 }
3636