target: Remove legacy + unused device active I/O shutdown code
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_scdb.h"
58 #include "target_core_ua.h"
59
60 static int sub_api_initialized;
61
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 /* Used for transport_dev_get_map_*() */
73 typedef int (*map_func_t)(struct se_task *, u32);
74
75 static int transport_generic_write_pending(struct se_cmd *);
76 static int transport_processing_thread(void *param);
77 static int __transport_execute_tasks(struct se_device *dev);
78 static void transport_complete_task_attr(struct se_cmd *cmd);
79 static int transport_complete_qf(struct se_cmd *cmd);
80 static void transport_handle_queue_full(struct se_cmd *cmd,
81                 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
82 static void transport_direct_request_timeout(struct se_cmd *cmd);
83 static void transport_free_dev_tasks(struct se_cmd *cmd);
84 static u32 transport_allocate_tasks(struct se_cmd *cmd,
85                 unsigned long long starting_lba,
86                 enum dma_data_direction data_direction,
87                 struct scatterlist *sgl, unsigned int nents);
88 static int transport_generic_get_mem(struct se_cmd *cmd);
89 static void transport_put_cmd(struct se_cmd *cmd);
90 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
91                 struct se_queue_obj *qobj);
92 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
93 static void transport_stop_all_task_timers(struct se_cmd *cmd);
94
95 int init_se_kmem_caches(void)
96 {
97         se_cmd_cache = kmem_cache_create("se_cmd_cache",
98                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
99         if (!se_cmd_cache) {
100                 pr_err("kmem_cache_create for struct se_cmd failed\n");
101                 goto out;
102         }
103         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
104                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
105                         0, NULL);
106         if (!se_tmr_req_cache) {
107                 pr_err("kmem_cache_create() for struct se_tmr_req"
108                                 " failed\n");
109                 goto out;
110         }
111         se_sess_cache = kmem_cache_create("se_sess_cache",
112                         sizeof(struct se_session), __alignof__(struct se_session),
113                         0, NULL);
114         if (!se_sess_cache) {
115                 pr_err("kmem_cache_create() for struct se_session"
116                                 " failed\n");
117                 goto out;
118         }
119         se_ua_cache = kmem_cache_create("se_ua_cache",
120                         sizeof(struct se_ua), __alignof__(struct se_ua),
121                         0, NULL);
122         if (!se_ua_cache) {
123                 pr_err("kmem_cache_create() for struct se_ua failed\n");
124                 goto out;
125         }
126         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
127                         sizeof(struct t10_pr_registration),
128                         __alignof__(struct t10_pr_registration), 0, NULL);
129         if (!t10_pr_reg_cache) {
130                 pr_err("kmem_cache_create() for struct t10_pr_registration"
131                                 " failed\n");
132                 goto out;
133         }
134         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
135                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
136                         0, NULL);
137         if (!t10_alua_lu_gp_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
139                                 " failed\n");
140                 goto out;
141         }
142         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
143                         sizeof(struct t10_alua_lu_gp_member),
144                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
145         if (!t10_alua_lu_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
147                                 "cache failed\n");
148                 goto out;
149         }
150         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
151                         sizeof(struct t10_alua_tg_pt_gp),
152                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
153         if (!t10_alua_tg_pt_gp_cache) {
154                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
155                                 "cache failed\n");
156                 goto out;
157         }
158         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
159                         "t10_alua_tg_pt_gp_mem_cache",
160                         sizeof(struct t10_alua_tg_pt_gp_member),
161                         __alignof__(struct t10_alua_tg_pt_gp_member),
162                         0, NULL);
163         if (!t10_alua_tg_pt_gp_mem_cache) {
164                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
165                                 "mem_t failed\n");
166                 goto out;
167         }
168
169         return 0;
170 out:
171         if (se_cmd_cache)
172                 kmem_cache_destroy(se_cmd_cache);
173         if (se_tmr_req_cache)
174                 kmem_cache_destroy(se_tmr_req_cache);
175         if (se_sess_cache)
176                 kmem_cache_destroy(se_sess_cache);
177         if (se_ua_cache)
178                 kmem_cache_destroy(se_ua_cache);
179         if (t10_pr_reg_cache)
180                 kmem_cache_destroy(t10_pr_reg_cache);
181         if (t10_alua_lu_gp_cache)
182                 kmem_cache_destroy(t10_alua_lu_gp_cache);
183         if (t10_alua_lu_gp_mem_cache)
184                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
185         if (t10_alua_tg_pt_gp_cache)
186                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
187         if (t10_alua_tg_pt_gp_mem_cache)
188                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189         return -ENOMEM;
190 }
191
192 void release_se_kmem_caches(void)
193 {
194         kmem_cache_destroy(se_cmd_cache);
195         kmem_cache_destroy(se_tmr_req_cache);
196         kmem_cache_destroy(se_sess_cache);
197         kmem_cache_destroy(se_ua_cache);
198         kmem_cache_destroy(t10_pr_reg_cache);
199         kmem_cache_destroy(t10_alua_lu_gp_cache);
200         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
201         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
202         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
203 }
204
205 /* This code ensures unique mib indexes are handed out. */
206 static DEFINE_SPINLOCK(scsi_mib_index_lock);
207 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
208
209 /*
210  * Allocate a new row index for the entry type specified
211  */
212 u32 scsi_get_new_index(scsi_index_t type)
213 {
214         u32 new_index;
215
216         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
217
218         spin_lock(&scsi_mib_index_lock);
219         new_index = ++scsi_mib_index[type];
220         spin_unlock(&scsi_mib_index_lock);
221
222         return new_index;
223 }
224
225 void transport_init_queue_obj(struct se_queue_obj *qobj)
226 {
227         atomic_set(&qobj->queue_cnt, 0);
228         INIT_LIST_HEAD(&qobj->qobj_list);
229         init_waitqueue_head(&qobj->thread_wq);
230         spin_lock_init(&qobj->cmd_queue_lock);
231 }
232 EXPORT_SYMBOL(transport_init_queue_obj);
233
234 static int transport_subsystem_reqmods(void)
235 {
236         int ret;
237
238         ret = request_module("target_core_iblock");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_iblock\n");
241
242         ret = request_module("target_core_file");
243         if (ret != 0)
244                 pr_err("Unable to load target_core_file\n");
245
246         ret = request_module("target_core_pscsi");
247         if (ret != 0)
248                 pr_err("Unable to load target_core_pscsi\n");
249
250         ret = request_module("target_core_stgt");
251         if (ret != 0)
252                 pr_err("Unable to load target_core_stgt\n");
253
254         return 0;
255 }
256
257 int transport_subsystem_check_init(void)
258 {
259         int ret;
260
261         if (sub_api_initialized)
262                 return 0;
263         /*
264          * Request the loading of known TCM subsystem plugins..
265          */
266         ret = transport_subsystem_reqmods();
267         if (ret < 0)
268                 return ret;
269
270         sub_api_initialized = 1;
271         return 0;
272 }
273
274 struct se_session *transport_init_session(void)
275 {
276         struct se_session *se_sess;
277
278         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
279         if (!se_sess) {
280                 pr_err("Unable to allocate struct se_session from"
281                                 " se_sess_cache\n");
282                 return ERR_PTR(-ENOMEM);
283         }
284         INIT_LIST_HEAD(&se_sess->sess_list);
285         INIT_LIST_HEAD(&se_sess->sess_acl_list);
286
287         return se_sess;
288 }
289 EXPORT_SYMBOL(transport_init_session);
290
291 /*
292  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
293  */
294 void __transport_register_session(
295         struct se_portal_group *se_tpg,
296         struct se_node_acl *se_nacl,
297         struct se_session *se_sess,
298         void *fabric_sess_ptr)
299 {
300         unsigned char buf[PR_REG_ISID_LEN];
301
302         se_sess->se_tpg = se_tpg;
303         se_sess->fabric_sess_ptr = fabric_sess_ptr;
304         /*
305          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
306          *
307          * Only set for struct se_session's that will actually be moving I/O.
308          * eg: *NOT* discovery sessions.
309          */
310         if (se_nacl) {
311                 /*
312                  * If the fabric module supports an ISID based TransportID,
313                  * save this value in binary from the fabric I_T Nexus now.
314                  */
315                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
316                         memset(&buf[0], 0, PR_REG_ISID_LEN);
317                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
318                                         &buf[0], PR_REG_ISID_LEN);
319                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
320                 }
321                 spin_lock_irq(&se_nacl->nacl_sess_lock);
322                 /*
323                  * The se_nacl->nacl_sess pointer will be set to the
324                  * last active I_T Nexus for each struct se_node_acl.
325                  */
326                 se_nacl->nacl_sess = se_sess;
327
328                 list_add_tail(&se_sess->sess_acl_list,
329                               &se_nacl->acl_sess_list);
330                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
331         }
332         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
333
334         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
335                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
336 }
337 EXPORT_SYMBOL(__transport_register_session);
338
339 void transport_register_session(
340         struct se_portal_group *se_tpg,
341         struct se_node_acl *se_nacl,
342         struct se_session *se_sess,
343         void *fabric_sess_ptr)
344 {
345         spin_lock_bh(&se_tpg->session_lock);
346         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
347         spin_unlock_bh(&se_tpg->session_lock);
348 }
349 EXPORT_SYMBOL(transport_register_session);
350
351 void transport_deregister_session_configfs(struct se_session *se_sess)
352 {
353         struct se_node_acl *se_nacl;
354         unsigned long flags;
355         /*
356          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
357          */
358         se_nacl = se_sess->se_node_acl;
359         if (se_nacl) {
360                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
361                 list_del(&se_sess->sess_acl_list);
362                 /*
363                  * If the session list is empty, then clear the pointer.
364                  * Otherwise, set the struct se_session pointer from the tail
365                  * element of the per struct se_node_acl active session list.
366                  */
367                 if (list_empty(&se_nacl->acl_sess_list))
368                         se_nacl->nacl_sess = NULL;
369                 else {
370                         se_nacl->nacl_sess = container_of(
371                                         se_nacl->acl_sess_list.prev,
372                                         struct se_session, sess_acl_list);
373                 }
374                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
375         }
376 }
377 EXPORT_SYMBOL(transport_deregister_session_configfs);
378
379 void transport_free_session(struct se_session *se_sess)
380 {
381         kmem_cache_free(se_sess_cache, se_sess);
382 }
383 EXPORT_SYMBOL(transport_free_session);
384
385 void transport_deregister_session(struct se_session *se_sess)
386 {
387         struct se_portal_group *se_tpg = se_sess->se_tpg;
388         struct se_node_acl *se_nacl;
389         unsigned long flags;
390
391         if (!se_tpg) {
392                 transport_free_session(se_sess);
393                 return;
394         }
395
396         spin_lock_irqsave(&se_tpg->session_lock, flags);
397         list_del(&se_sess->sess_list);
398         se_sess->se_tpg = NULL;
399         se_sess->fabric_sess_ptr = NULL;
400         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
401
402         /*
403          * Determine if we need to do extra work for this initiator node's
404          * struct se_node_acl if it had been previously dynamically generated.
405          */
406         se_nacl = se_sess->se_node_acl;
407         if (se_nacl) {
408                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409                 if (se_nacl->dynamic_node_acl) {
410                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
411                                         se_tpg)) {
412                                 list_del(&se_nacl->acl_list);
413                                 se_tpg->num_node_acls--;
414                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
415
416                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
417                                 core_free_device_list_for_node(se_nacl, se_tpg);
418                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
419                                                 se_nacl);
420                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
421                         }
422                 }
423                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
424         }
425
426         transport_free_session(se_sess);
427
428         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
429                 se_tpg->se_tpg_tfo->get_fabric_name());
430 }
431 EXPORT_SYMBOL(transport_deregister_session);
432
433 /*
434  * Called with cmd->t_state_lock held.
435  */
436 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
437 {
438         struct se_device *dev;
439         struct se_task *task;
440         unsigned long flags;
441
442         list_for_each_entry(task, &cmd->t_task_list, t_list) {
443                 dev = task->se_dev;
444                 if (!dev)
445                         continue;
446
447                 if (atomic_read(&task->task_active))
448                         continue;
449
450                 if (!atomic_read(&task->task_state_active))
451                         continue;
452
453                 spin_lock_irqsave(&dev->execute_task_lock, flags);
454                 list_del(&task->t_state_list);
455                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
456                         cmd->se_tfo->get_task_tag(cmd), dev, task);
457                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
458
459                 atomic_set(&task->task_state_active, 0);
460                 atomic_dec(&cmd->t_task_cdbs_ex_left);
461         }
462 }
463
464 /*      transport_cmd_check_stop():
465  *
466  *      'transport_off = 1' determines if t_transport_active should be cleared.
467  *      'transport_off = 2' determines if task_dev_state should be removed.
468  *
469  *      A non-zero u8 t_state sets cmd->t_state.
470  *      Returns 1 when command is stopped, else 0.
471  */
472 static int transport_cmd_check_stop(
473         struct se_cmd *cmd,
474         int transport_off,
475         u8 t_state)
476 {
477         unsigned long flags;
478
479         spin_lock_irqsave(&cmd->t_state_lock, flags);
480         /*
481          * Determine if IOCTL context caller in requesting the stopping of this
482          * command for LUN shutdown purposes.
483          */
484         if (atomic_read(&cmd->transport_lun_stop)) {
485                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
486                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
487                         cmd->se_tfo->get_task_tag(cmd));
488
489                 cmd->deferred_t_state = cmd->t_state;
490                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
491                 atomic_set(&cmd->t_transport_active, 0);
492                 if (transport_off == 2)
493                         transport_all_task_dev_remove_state(cmd);
494                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
495
496                 complete(&cmd->transport_lun_stop_comp);
497                 return 1;
498         }
499         /*
500          * Determine if frontend context caller is requesting the stopping of
501          * this command for frontend exceptions.
502          */
503         if (atomic_read(&cmd->t_transport_stop)) {
504                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
505                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
506                         cmd->se_tfo->get_task_tag(cmd));
507
508                 cmd->deferred_t_state = cmd->t_state;
509                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
510                 if (transport_off == 2)
511                         transport_all_task_dev_remove_state(cmd);
512
513                 /*
514                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
515                  * to FE.
516                  */
517                 if (transport_off == 2)
518                         cmd->se_lun = NULL;
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 complete(&cmd->t_transport_stop_comp);
522                 return 1;
523         }
524         if (transport_off) {
525                 atomic_set(&cmd->t_transport_active, 0);
526                 if (transport_off == 2) {
527                         transport_all_task_dev_remove_state(cmd);
528                         /*
529                          * Clear struct se_cmd->se_lun before the transport_off == 2
530                          * handoff to fabric module.
531                          */
532                         cmd->se_lun = NULL;
533                         /*
534                          * Some fabric modules like tcm_loop can release
535                          * their internally allocated I/O reference now and
536                          * struct se_cmd now.
537                          */
538                         if (cmd->se_tfo->check_stop_free != NULL) {
539                                 spin_unlock_irqrestore(
540                                         &cmd->t_state_lock, flags);
541
542                                 cmd->se_tfo->check_stop_free(cmd);
543                                 return 1;
544                         }
545                 }
546                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
547
548                 return 0;
549         } else if (t_state)
550                 cmd->t_state = t_state;
551         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552
553         return 0;
554 }
555
556 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
557 {
558         return transport_cmd_check_stop(cmd, 2, 0);
559 }
560
561 static void transport_lun_remove_cmd(struct se_cmd *cmd)
562 {
563         struct se_lun *lun = cmd->se_lun;
564         unsigned long flags;
565
566         if (!lun)
567                 return;
568
569         spin_lock_irqsave(&cmd->t_state_lock, flags);
570         if (!atomic_read(&cmd->transport_dev_active)) {
571                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572                 goto check_lun;
573         }
574         atomic_set(&cmd->transport_dev_active, 0);
575         transport_all_task_dev_remove_state(cmd);
576         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577
578
579 check_lun:
580         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
581         if (atomic_read(&cmd->transport_lun_active)) {
582                 list_del(&cmd->se_lun_node);
583                 atomic_set(&cmd->transport_lun_active, 0);
584 #if 0
585                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
586                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
587 #endif
588         }
589         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
590 }
591
592 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
593 {
594         if (!cmd->se_tmr_req)
595                 transport_lun_remove_cmd(cmd);
596
597         if (transport_cmd_check_stop_to_fabric(cmd))
598                 return;
599         if (remove) {
600                 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
601                 transport_put_cmd(cmd);
602         }
603 }
604
605 static void transport_add_cmd_to_queue(
606         struct se_cmd *cmd,
607         int t_state)
608 {
609         struct se_device *dev = cmd->se_dev;
610         struct se_queue_obj *qobj = &dev->dev_queue_obj;
611         unsigned long flags;
612
613         if (t_state) {
614                 spin_lock_irqsave(&cmd->t_state_lock, flags);
615                 cmd->t_state = t_state;
616                 atomic_set(&cmd->t_transport_active, 1);
617                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
618         }
619
620         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
621
622         /* If the cmd is already on the list, remove it before we add it */
623         if (!list_empty(&cmd->se_queue_node))
624                 list_del(&cmd->se_queue_node);
625         else
626                 atomic_inc(&qobj->queue_cnt);
627
628         if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
629                 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
630                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
631         } else
632                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
633         atomic_set(&cmd->t_transport_queue_active, 1);
634         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
635
636         wake_up_interruptible(&qobj->thread_wq);
637 }
638
639 static struct se_cmd *
640 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
641 {
642         struct se_cmd *cmd;
643         unsigned long flags;
644
645         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
646         if (list_empty(&qobj->qobj_list)) {
647                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
648                 return NULL;
649         }
650         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
651
652         atomic_set(&cmd->t_transport_queue_active, 0);
653
654         list_del_init(&cmd->se_queue_node);
655         atomic_dec(&qobj->queue_cnt);
656         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
657
658         return cmd;
659 }
660
661 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
662                 struct se_queue_obj *qobj)
663 {
664         unsigned long flags;
665
666         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
667         if (!atomic_read(&cmd->t_transport_queue_active)) {
668                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
669                 return;
670         }
671         atomic_set(&cmd->t_transport_queue_active, 0);
672         atomic_dec(&qobj->queue_cnt);
673         list_del_init(&cmd->se_queue_node);
674         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
675
676         if (atomic_read(&cmd->t_transport_queue_active)) {
677                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
678                         cmd->se_tfo->get_task_tag(cmd),
679                         atomic_read(&cmd->t_transport_queue_active));
680         }
681 }
682
683 /*
684  * Completion function used by TCM subsystem plugins (such as FILEIO)
685  * for queueing up response from struct se_subsystem_api->do_task()
686  */
687 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
688 {
689         struct se_task *task = list_entry(cmd->t_task_list.next,
690                                 struct se_task, t_list);
691
692         if (good) {
693                 cmd->scsi_status = SAM_STAT_GOOD;
694                 task->task_scsi_status = GOOD;
695         } else {
696                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
697                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
698                 task->task_se_cmd->transport_error_status =
699                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
700         }
701
702         transport_complete_task(task, good);
703 }
704 EXPORT_SYMBOL(transport_complete_sync_cache);
705
706 /*      transport_complete_task():
707  *
708  *      Called from interrupt and non interrupt context depending
709  *      on the transport plugin.
710  */
711 void transport_complete_task(struct se_task *task, int success)
712 {
713         struct se_cmd *cmd = task->task_se_cmd;
714         struct se_device *dev = task->se_dev;
715         int t_state;
716         unsigned long flags;
717 #if 0
718         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
719                         cmd->t_task_cdb[0], dev);
720 #endif
721         if (dev)
722                 atomic_inc(&dev->depth_left);
723
724         spin_lock_irqsave(&cmd->t_state_lock, flags);
725         atomic_set(&task->task_active, 0);
726
727         /*
728          * See if any sense data exists, if so set the TASK_SENSE flag.
729          * Also check for any other post completion work that needs to be
730          * done by the plugins.
731          */
732         if (dev && dev->transport->transport_complete) {
733                 if (dev->transport->transport_complete(task) != 0) {
734                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
735                         task->task_sense = 1;
736                         success = 1;
737                 }
738         }
739
740         /*
741          * See if we are waiting for outstanding struct se_task
742          * to complete for an exception condition
743          */
744         if (atomic_read(&task->task_stop)) {
745                 /*
746                  * Decrement cmd->t_se_count if this task had
747                  * previously thrown its timeout exception handler.
748                  */
749                 if (atomic_read(&task->task_timeout)) {
750                         atomic_dec(&cmd->t_se_count);
751                         atomic_set(&task->task_timeout, 0);
752                 }
753                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754
755                 complete(&task->task_stop_comp);
756                 return;
757         }
758         /*
759          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
760          * left counter to determine when the struct se_cmd is ready to be queued to
761          * the processing thread.
762          */
763         if (atomic_read(&task->task_timeout)) {
764                 if (!atomic_dec_and_test(
765                                 &cmd->t_task_cdbs_timeout_left)) {
766                         spin_unlock_irqrestore(&cmd->t_state_lock,
767                                 flags);
768                         return;
769                 }
770                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
771                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
772
773                 transport_add_cmd_to_queue(cmd, t_state);
774                 return;
775         }
776         atomic_dec(&cmd->t_task_cdbs_timeout_left);
777
778         /*
779          * Decrement the outstanding t_task_cdbs_left count.  The last
780          * struct se_task from struct se_cmd will complete itself into the
781          * device queue depending upon int success.
782          */
783         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
784                 if (!success)
785                         cmd->t_tasks_failed = 1;
786
787                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
788                 return;
789         }
790
791         if (!success || cmd->t_tasks_failed) {
792                 t_state = TRANSPORT_COMPLETE_FAILURE;
793                 if (!task->task_error_status) {
794                         task->task_error_status =
795                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
796                         cmd->transport_error_status =
797                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
798                 }
799         } else {
800                 atomic_set(&cmd->t_transport_complete, 1);
801                 t_state = TRANSPORT_COMPLETE_OK;
802         }
803         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
804
805         transport_add_cmd_to_queue(cmd, t_state);
806 }
807 EXPORT_SYMBOL(transport_complete_task);
808
809 /*
810  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
811  * struct se_task list are ready to be added to the active execution list
812  * struct se_device
813
814  * Called with se_dev_t->execute_task_lock called.
815  */
816 static inline int transport_add_task_check_sam_attr(
817         struct se_task *task,
818         struct se_task *task_prev,
819         struct se_device *dev)
820 {
821         /*
822          * No SAM Task attribute emulation enabled, add to tail of
823          * execution queue
824          */
825         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
826                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
827                 return 0;
828         }
829         /*
830          * HEAD_OF_QUEUE attribute for received CDB, which means
831          * the first task that is associated with a struct se_cmd goes to
832          * head of the struct se_device->execute_task_list, and task_prev
833          * after that for each subsequent task
834          */
835         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
836                 list_add(&task->t_execute_list,
837                                 (task_prev != NULL) ?
838                                 &task_prev->t_execute_list :
839                                 &dev->execute_task_list);
840
841                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
842                                 " in execution queue\n",
843                                 task->task_se_cmd->t_task_cdb[0]);
844                 return 1;
845         }
846         /*
847          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
848          * transitioned from Dermant -> Active state, and are added to the end
849          * of the struct se_device->execute_task_list
850          */
851         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
852         return 0;
853 }
854
855 /*      __transport_add_task_to_execute_queue():
856  *
857  *      Called with se_dev_t->execute_task_lock called.
858  */
859 static void __transport_add_task_to_execute_queue(
860         struct se_task *task,
861         struct se_task *task_prev,
862         struct se_device *dev)
863 {
864         int head_of_queue;
865
866         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
867         atomic_inc(&dev->execute_tasks);
868
869         if (atomic_read(&task->task_state_active))
870                 return;
871         /*
872          * Determine if this task needs to go to HEAD_OF_QUEUE for the
873          * state list as well.  Running with SAM Task Attribute emulation
874          * will always return head_of_queue == 0 here
875          */
876         if (head_of_queue)
877                 list_add(&task->t_state_list, (task_prev) ?
878                                 &task_prev->t_state_list :
879                                 &dev->state_task_list);
880         else
881                 list_add_tail(&task->t_state_list, &dev->state_task_list);
882
883         atomic_set(&task->task_state_active, 1);
884
885         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
886                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
887                 task, dev);
888 }
889
890 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
891 {
892         struct se_device *dev;
893         struct se_task *task;
894         unsigned long flags;
895
896         spin_lock_irqsave(&cmd->t_state_lock, flags);
897         list_for_each_entry(task, &cmd->t_task_list, t_list) {
898                 dev = task->se_dev;
899
900                 if (atomic_read(&task->task_state_active))
901                         continue;
902
903                 spin_lock(&dev->execute_task_lock);
904                 list_add_tail(&task->t_state_list, &dev->state_task_list);
905                 atomic_set(&task->task_state_active, 1);
906
907                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
908                         task->task_se_cmd->se_tfo->get_task_tag(
909                         task->task_se_cmd), task, dev);
910
911                 spin_unlock(&dev->execute_task_lock);
912         }
913         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
914 }
915
916 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
917 {
918         struct se_device *dev = cmd->se_dev;
919         struct se_task *task, *task_prev = NULL;
920         unsigned long flags;
921
922         spin_lock_irqsave(&dev->execute_task_lock, flags);
923         list_for_each_entry(task, &cmd->t_task_list, t_list) {
924                 if (atomic_read(&task->task_execute_queue))
925                         continue;
926                 /*
927                  * __transport_add_task_to_execute_queue() handles the
928                  * SAM Task Attribute emulation if enabled
929                  */
930                 __transport_add_task_to_execute_queue(task, task_prev, dev);
931                 atomic_set(&task->task_execute_queue, 1);
932                 task_prev = task;
933         }
934         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
935 }
936
937 /*      transport_remove_task_from_execute_queue():
938  *
939  *
940  */
941 void transport_remove_task_from_execute_queue(
942         struct se_task *task,
943         struct se_device *dev)
944 {
945         unsigned long flags;
946
947         if (atomic_read(&task->task_execute_queue) == 0) {
948                 dump_stack();
949                 return;
950         }
951
952         spin_lock_irqsave(&dev->execute_task_lock, flags);
953         list_del(&task->t_execute_list);
954         atomic_set(&task->task_execute_queue, 0);
955         atomic_dec(&dev->execute_tasks);
956         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
957 }
958
959 /*
960  * Handle QUEUE_FULL / -EAGAIN status
961  */
962
963 static void target_qf_do_work(struct work_struct *work)
964 {
965         struct se_device *dev = container_of(work, struct se_device,
966                                         qf_work_queue);
967         LIST_HEAD(qf_cmd_list);
968         struct se_cmd *cmd, *cmd_tmp;
969
970         spin_lock_irq(&dev->qf_cmd_lock);
971         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
972         spin_unlock_irq(&dev->qf_cmd_lock);
973
974         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
975                 list_del(&cmd->se_qf_node);
976                 atomic_dec(&dev->dev_qf_count);
977                 smp_mb__after_atomic_dec();
978
979                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
980                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
981                         (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
982                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
983                         : "UNKNOWN");
984                 /*
985                  * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
986                  * has been added to head of queue
987                  */
988                 transport_add_cmd_to_queue(cmd, cmd->t_state);
989         }
990 }
991
992 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
993 {
994         switch (cmd->data_direction) {
995         case DMA_NONE:
996                 return "NONE";
997         case DMA_FROM_DEVICE:
998                 return "READ";
999         case DMA_TO_DEVICE:
1000                 return "WRITE";
1001         case DMA_BIDIRECTIONAL:
1002                 return "BIDI";
1003         default:
1004                 break;
1005         }
1006
1007         return "UNKNOWN";
1008 }
1009
1010 void transport_dump_dev_state(
1011         struct se_device *dev,
1012         char *b,
1013         int *bl)
1014 {
1015         *bl += sprintf(b + *bl, "Status: ");
1016         switch (dev->dev_status) {
1017         case TRANSPORT_DEVICE_ACTIVATED:
1018                 *bl += sprintf(b + *bl, "ACTIVATED");
1019                 break;
1020         case TRANSPORT_DEVICE_DEACTIVATED:
1021                 *bl += sprintf(b + *bl, "DEACTIVATED");
1022                 break;
1023         case TRANSPORT_DEVICE_SHUTDOWN:
1024                 *bl += sprintf(b + *bl, "SHUTDOWN");
1025                 break;
1026         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1027         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1028                 *bl += sprintf(b + *bl, "OFFLINE");
1029                 break;
1030         default:
1031                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1032                 break;
1033         }
1034
1035         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1036                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1037                 dev->queue_depth);
1038         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1039                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1040         *bl += sprintf(b + *bl, "        ");
1041 }
1042
1043 void transport_dump_vpd_proto_id(
1044         struct t10_vpd *vpd,
1045         unsigned char *p_buf,
1046         int p_buf_len)
1047 {
1048         unsigned char buf[VPD_TMP_BUF_SIZE];
1049         int len;
1050
1051         memset(buf, 0, VPD_TMP_BUF_SIZE);
1052         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1053
1054         switch (vpd->protocol_identifier) {
1055         case 0x00:
1056                 sprintf(buf+len, "Fibre Channel\n");
1057                 break;
1058         case 0x10:
1059                 sprintf(buf+len, "Parallel SCSI\n");
1060                 break;
1061         case 0x20:
1062                 sprintf(buf+len, "SSA\n");
1063                 break;
1064         case 0x30:
1065                 sprintf(buf+len, "IEEE 1394\n");
1066                 break;
1067         case 0x40:
1068                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1069                                 " Protocol\n");
1070                 break;
1071         case 0x50:
1072                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1073                 break;
1074         case 0x60:
1075                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1076                 break;
1077         case 0x70:
1078                 sprintf(buf+len, "Automation/Drive Interface Transport"
1079                                 " Protocol\n");
1080                 break;
1081         case 0x80:
1082                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1083                 break;
1084         default:
1085                 sprintf(buf+len, "Unknown 0x%02x\n",
1086                                 vpd->protocol_identifier);
1087                 break;
1088         }
1089
1090         if (p_buf)
1091                 strncpy(p_buf, buf, p_buf_len);
1092         else
1093                 pr_debug("%s", buf);
1094 }
1095
1096 void
1097 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1098 {
1099         /*
1100          * Check if the Protocol Identifier Valid (PIV) bit is set..
1101          *
1102          * from spc3r23.pdf section 7.5.1
1103          */
1104          if (page_83[1] & 0x80) {
1105                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1106                 vpd->protocol_identifier_set = 1;
1107                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1108         }
1109 }
1110 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1111
1112 int transport_dump_vpd_assoc(
1113         struct t10_vpd *vpd,
1114         unsigned char *p_buf,
1115         int p_buf_len)
1116 {
1117         unsigned char buf[VPD_TMP_BUF_SIZE];
1118         int ret = 0;
1119         int len;
1120
1121         memset(buf, 0, VPD_TMP_BUF_SIZE);
1122         len = sprintf(buf, "T10 VPD Identifier Association: ");
1123
1124         switch (vpd->association) {
1125         case 0x00:
1126                 sprintf(buf+len, "addressed logical unit\n");
1127                 break;
1128         case 0x10:
1129                 sprintf(buf+len, "target port\n");
1130                 break;
1131         case 0x20:
1132                 sprintf(buf+len, "SCSI target device\n");
1133                 break;
1134         default:
1135                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1136                 ret = -EINVAL;
1137                 break;
1138         }
1139
1140         if (p_buf)
1141                 strncpy(p_buf, buf, p_buf_len);
1142         else
1143                 pr_debug("%s", buf);
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identification association..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 297
1154          */
1155         vpd->association = (page_83[1] & 0x30);
1156         return transport_dump_vpd_assoc(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_assoc);
1159
1160 int transport_dump_vpd_ident_type(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167         int len;
1168
1169         memset(buf, 0, VPD_TMP_BUF_SIZE);
1170         len = sprintf(buf, "T10 VPD Identifier Type: ");
1171
1172         switch (vpd->device_identifier_type) {
1173         case 0x00:
1174                 sprintf(buf+len, "Vendor specific\n");
1175                 break;
1176         case 0x01:
1177                 sprintf(buf+len, "T10 Vendor ID based\n");
1178                 break;
1179         case 0x02:
1180                 sprintf(buf+len, "EUI-64 based\n");
1181                 break;
1182         case 0x03:
1183                 sprintf(buf+len, "NAA\n");
1184                 break;
1185         case 0x04:
1186                 sprintf(buf+len, "Relative target port identifier\n");
1187                 break;
1188         case 0x08:
1189                 sprintf(buf+len, "SCSI name string\n");
1190                 break;
1191         default:
1192                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1193                                 vpd->device_identifier_type);
1194                 ret = -EINVAL;
1195                 break;
1196         }
1197
1198         if (p_buf) {
1199                 if (p_buf_len < strlen(buf)+1)
1200                         return -EINVAL;
1201                 strncpy(p_buf, buf, p_buf_len);
1202         } else {
1203                 pr_debug("%s", buf);
1204         }
1205
1206         return ret;
1207 }
1208
1209 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1210 {
1211         /*
1212          * The VPD identifier type..
1213          *
1214          * from spc3r23.pdf Section 7.6.3.1 Table 298
1215          */
1216         vpd->device_identifier_type = (page_83[1] & 0x0f);
1217         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1218 }
1219 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1220
1221 int transport_dump_vpd_ident(
1222         struct t10_vpd *vpd,
1223         unsigned char *p_buf,
1224         int p_buf_len)
1225 {
1226         unsigned char buf[VPD_TMP_BUF_SIZE];
1227         int ret = 0;
1228
1229         memset(buf, 0, VPD_TMP_BUF_SIZE);
1230
1231         switch (vpd->device_identifier_code_set) {
1232         case 0x01: /* Binary */
1233                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1234                         &vpd->device_identifier[0]);
1235                 break;
1236         case 0x02: /* ASCII */
1237                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1238                         &vpd->device_identifier[0]);
1239                 break;
1240         case 0x03: /* UTF-8 */
1241                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1242                         &vpd->device_identifier[0]);
1243                 break;
1244         default:
1245                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1246                         " 0x%02x", vpd->device_identifier_code_set);
1247                 ret = -EINVAL;
1248                 break;
1249         }
1250
1251         if (p_buf)
1252                 strncpy(p_buf, buf, p_buf_len);
1253         else
1254                 pr_debug("%s", buf);
1255
1256         return ret;
1257 }
1258
1259 int
1260 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1261 {
1262         static const char hex_str[] = "0123456789abcdef";
1263         int j = 0, i = 4; /* offset to start of the identifer */
1264
1265         /*
1266          * The VPD Code Set (encoding)
1267          *
1268          * from spc3r23.pdf Section 7.6.3.1 Table 296
1269          */
1270         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1271         switch (vpd->device_identifier_code_set) {
1272         case 0x01: /* Binary */
1273                 vpd->device_identifier[j++] =
1274                                 hex_str[vpd->device_identifier_type];
1275                 while (i < (4 + page_83[3])) {
1276                         vpd->device_identifier[j++] =
1277                                 hex_str[(page_83[i] & 0xf0) >> 4];
1278                         vpd->device_identifier[j++] =
1279                                 hex_str[page_83[i] & 0x0f];
1280                         i++;
1281                 }
1282                 break;
1283         case 0x02: /* ASCII */
1284         case 0x03: /* UTF-8 */
1285                 while (i < (4 + page_83[3]))
1286                         vpd->device_identifier[j++] = page_83[i++];
1287                 break;
1288         default:
1289                 break;
1290         }
1291
1292         return transport_dump_vpd_ident(vpd, NULL, 0);
1293 }
1294 EXPORT_SYMBOL(transport_set_vpd_ident);
1295
1296 static void core_setup_task_attr_emulation(struct se_device *dev)
1297 {
1298         /*
1299          * If this device is from Target_Core_Mod/pSCSI, disable the
1300          * SAM Task Attribute emulation.
1301          *
1302          * This is currently not available in upsream Linux/SCSI Target
1303          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1304          */
1305         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1306                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1307                 return;
1308         }
1309
1310         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1311         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1312                 " device\n", dev->transport->name,
1313                 dev->transport->get_device_rev(dev));
1314 }
1315
1316 static void scsi_dump_inquiry(struct se_device *dev)
1317 {
1318         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1319         int i, device_type;
1320         /*
1321          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1322          */
1323         pr_debug("  Vendor: ");
1324         for (i = 0; i < 8; i++)
1325                 if (wwn->vendor[i] >= 0x20)
1326                         pr_debug("%c", wwn->vendor[i]);
1327                 else
1328                         pr_debug(" ");
1329
1330         pr_debug("  Model: ");
1331         for (i = 0; i < 16; i++)
1332                 if (wwn->model[i] >= 0x20)
1333                         pr_debug("%c", wwn->model[i]);
1334                 else
1335                         pr_debug(" ");
1336
1337         pr_debug("  Revision: ");
1338         for (i = 0; i < 4; i++)
1339                 if (wwn->revision[i] >= 0x20)
1340                         pr_debug("%c", wwn->revision[i]);
1341                 else
1342                         pr_debug(" ");
1343
1344         pr_debug("\n");
1345
1346         device_type = dev->transport->get_device_type(dev);
1347         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1348         pr_debug("                 ANSI SCSI revision: %02x\n",
1349                                 dev->transport->get_device_rev(dev));
1350 }
1351
1352 struct se_device *transport_add_device_to_core_hba(
1353         struct se_hba *hba,
1354         struct se_subsystem_api *transport,
1355         struct se_subsystem_dev *se_dev,
1356         u32 device_flags,
1357         void *transport_dev,
1358         struct se_dev_limits *dev_limits,
1359         const char *inquiry_prod,
1360         const char *inquiry_rev)
1361 {
1362         int force_pt;
1363         struct se_device  *dev;
1364
1365         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1366         if (!dev) {
1367                 pr_err("Unable to allocate memory for se_dev_t\n");
1368                 return NULL;
1369         }
1370
1371         transport_init_queue_obj(&dev->dev_queue_obj);
1372         dev->dev_flags          = device_flags;
1373         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1374         dev->dev_ptr            = transport_dev;
1375         dev->se_hba             = hba;
1376         dev->se_sub_dev         = se_dev;
1377         dev->transport          = transport;
1378         atomic_set(&dev->active_cmds, 0);
1379         INIT_LIST_HEAD(&dev->dev_list);
1380         INIT_LIST_HEAD(&dev->dev_sep_list);
1381         INIT_LIST_HEAD(&dev->dev_tmr_list);
1382         INIT_LIST_HEAD(&dev->execute_task_list);
1383         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1384         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1385         INIT_LIST_HEAD(&dev->state_task_list);
1386         INIT_LIST_HEAD(&dev->qf_cmd_list);
1387         spin_lock_init(&dev->execute_task_lock);
1388         spin_lock_init(&dev->delayed_cmd_lock);
1389         spin_lock_init(&dev->ordered_cmd_lock);
1390         spin_lock_init(&dev->state_task_lock);
1391         spin_lock_init(&dev->dev_alua_lock);
1392         spin_lock_init(&dev->dev_reservation_lock);
1393         spin_lock_init(&dev->dev_status_lock);
1394         spin_lock_init(&dev->dev_status_thr_lock);
1395         spin_lock_init(&dev->se_port_lock);
1396         spin_lock_init(&dev->se_tmr_lock);
1397         spin_lock_init(&dev->qf_cmd_lock);
1398
1399         dev->queue_depth        = dev_limits->queue_depth;
1400         atomic_set(&dev->depth_left, dev->queue_depth);
1401         atomic_set(&dev->dev_ordered_id, 0);
1402
1403         se_dev_set_default_attribs(dev, dev_limits);
1404
1405         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1406         dev->creation_time = get_jiffies_64();
1407         spin_lock_init(&dev->stats_lock);
1408
1409         spin_lock(&hba->device_lock);
1410         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1411         hba->dev_count++;
1412         spin_unlock(&hba->device_lock);
1413         /*
1414          * Setup the SAM Task Attribute emulation for struct se_device
1415          */
1416         core_setup_task_attr_emulation(dev);
1417         /*
1418          * Force PR and ALUA passthrough emulation with internal object use.
1419          */
1420         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1421         /*
1422          * Setup the Reservations infrastructure for struct se_device
1423          */
1424         core_setup_reservations(dev, force_pt);
1425         /*
1426          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1427          */
1428         if (core_setup_alua(dev, force_pt) < 0)
1429                 goto out;
1430
1431         /*
1432          * Startup the struct se_device processing thread
1433          */
1434         dev->process_thread = kthread_run(transport_processing_thread, dev,
1435                                           "LIO_%s", dev->transport->name);
1436         if (IS_ERR(dev->process_thread)) {
1437                 pr_err("Unable to create kthread: LIO_%s\n",
1438                         dev->transport->name);
1439                 goto out;
1440         }
1441         /*
1442          * Setup work_queue for QUEUE_FULL
1443          */
1444         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1445         /*
1446          * Preload the initial INQUIRY const values if we are doing
1447          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1448          * passthrough because this is being provided by the backend LLD.
1449          * This is required so that transport_get_inquiry() copies these
1450          * originals once back into DEV_T10_WWN(dev) for the virtual device
1451          * setup.
1452          */
1453         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1454                 if (!inquiry_prod || !inquiry_rev) {
1455                         pr_err("All non TCM/pSCSI plugins require"
1456                                 " INQUIRY consts\n");
1457                         goto out;
1458                 }
1459
1460                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1461                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1462                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1463         }
1464         scsi_dump_inquiry(dev);
1465
1466         return dev;
1467 out:
1468         kthread_stop(dev->process_thread);
1469
1470         spin_lock(&hba->device_lock);
1471         list_del(&dev->dev_list);
1472         hba->dev_count--;
1473         spin_unlock(&hba->device_lock);
1474
1475         se_release_vpd_for_dev(dev);
1476
1477         kfree(dev);
1478
1479         return NULL;
1480 }
1481 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1482
1483 /*      transport_generic_prepare_cdb():
1484  *
1485  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1486  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1487  *      The point of this is since we are mapping iSCSI LUNs to
1488  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1489  *      devices and HBAs for a loop.
1490  */
1491 static inline void transport_generic_prepare_cdb(
1492         unsigned char *cdb)
1493 {
1494         switch (cdb[0]) {
1495         case READ_10: /* SBC - RDProtect */
1496         case READ_12: /* SBC - RDProtect */
1497         case READ_16: /* SBC - RDProtect */
1498         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1499         case VERIFY: /* SBC - VRProtect */
1500         case VERIFY_16: /* SBC - VRProtect */
1501         case WRITE_VERIFY: /* SBC - VRProtect */
1502         case WRITE_VERIFY_12: /* SBC - VRProtect */
1503                 break;
1504         default:
1505                 cdb[1] &= 0x1f; /* clear logical unit number */
1506                 break;
1507         }
1508 }
1509
1510 static struct se_task *
1511 transport_generic_get_task(struct se_cmd *cmd,
1512                 enum dma_data_direction data_direction)
1513 {
1514         struct se_task *task;
1515         struct se_device *dev = cmd->se_dev;
1516
1517         task = dev->transport->alloc_task(cmd->t_task_cdb);
1518         if (!task) {
1519                 pr_err("Unable to allocate struct se_task\n");
1520                 return NULL;
1521         }
1522
1523         INIT_LIST_HEAD(&task->t_list);
1524         INIT_LIST_HEAD(&task->t_execute_list);
1525         INIT_LIST_HEAD(&task->t_state_list);
1526         init_completion(&task->task_stop_comp);
1527         task->task_se_cmd = cmd;
1528         task->se_dev = dev;
1529         task->task_data_direction = data_direction;
1530
1531         return task;
1532 }
1533
1534 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1535
1536 /*
1537  * Used by fabric modules containing a local struct se_cmd within their
1538  * fabric dependent per I/O descriptor.
1539  */
1540 void transport_init_se_cmd(
1541         struct se_cmd *cmd,
1542         struct target_core_fabric_ops *tfo,
1543         struct se_session *se_sess,
1544         u32 data_length,
1545         int data_direction,
1546         int task_attr,
1547         unsigned char *sense_buffer)
1548 {
1549         INIT_LIST_HEAD(&cmd->se_lun_node);
1550         INIT_LIST_HEAD(&cmd->se_delayed_node);
1551         INIT_LIST_HEAD(&cmd->se_ordered_node);
1552         INIT_LIST_HEAD(&cmd->se_qf_node);
1553         INIT_LIST_HEAD(&cmd->se_queue_node);
1554
1555         INIT_LIST_HEAD(&cmd->t_task_list);
1556         init_completion(&cmd->transport_lun_fe_stop_comp);
1557         init_completion(&cmd->transport_lun_stop_comp);
1558         init_completion(&cmd->t_transport_stop_comp);
1559         spin_lock_init(&cmd->t_state_lock);
1560         atomic_set(&cmd->transport_dev_active, 1);
1561
1562         cmd->se_tfo = tfo;
1563         cmd->se_sess = se_sess;
1564         cmd->data_length = data_length;
1565         cmd->data_direction = data_direction;
1566         cmd->sam_task_attr = task_attr;
1567         cmd->sense_buffer = sense_buffer;
1568 }
1569 EXPORT_SYMBOL(transport_init_se_cmd);
1570
1571 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1572 {
1573         /*
1574          * Check if SAM Task Attribute emulation is enabled for this
1575          * struct se_device storage object
1576          */
1577         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1578                 return 0;
1579
1580         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1581                 pr_debug("SAM Task Attribute ACA"
1582                         " emulation is not supported\n");
1583                 return -EINVAL;
1584         }
1585         /*
1586          * Used to determine when ORDERED commands should go from
1587          * Dormant to Active status.
1588          */
1589         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1590         smp_mb__after_atomic_inc();
1591         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1592                         cmd->se_ordered_id, cmd->sam_task_attr,
1593                         cmd->se_dev->transport->name);
1594         return 0;
1595 }
1596
1597 /*      transport_generic_allocate_tasks():
1598  *
1599  *      Called from fabric RX Thread.
1600  */
1601 int transport_generic_allocate_tasks(
1602         struct se_cmd *cmd,
1603         unsigned char *cdb)
1604 {
1605         int ret;
1606
1607         transport_generic_prepare_cdb(cdb);
1608         /*
1609          * Ensure that the received CDB is less than the max (252 + 8) bytes
1610          * for VARIABLE_LENGTH_CMD
1611          */
1612         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1613                 pr_err("Received SCSI CDB with command_size: %d that"
1614                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1615                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1616                 return -EINVAL;
1617         }
1618         /*
1619          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1620          * allocate the additional extended CDB buffer now..  Otherwise
1621          * setup the pointer from __t_task_cdb to t_task_cdb.
1622          */
1623         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1624                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1625                                                 GFP_KERNEL);
1626                 if (!cmd->t_task_cdb) {
1627                         pr_err("Unable to allocate cmd->t_task_cdb"
1628                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1629                                 scsi_command_size(cdb),
1630                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1631                         return -ENOMEM;
1632                 }
1633         } else
1634                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1635         /*
1636          * Copy the original CDB into cmd->
1637          */
1638         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1639         /*
1640          * Setup the received CDB based on SCSI defined opcodes and
1641          * perform unit attention, persistent reservations and ALUA
1642          * checks for virtual device backends.  The cmd->t_task_cdb
1643          * pointer is expected to be setup before we reach this point.
1644          */
1645         ret = transport_generic_cmd_sequencer(cmd, cdb);
1646         if (ret < 0)
1647                 return ret;
1648         /*
1649          * Check for SAM Task Attribute Emulation
1650          */
1651         if (transport_check_alloc_task_attr(cmd) < 0) {
1652                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1653                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1654                 return -EINVAL;
1655         }
1656         spin_lock(&cmd->se_lun->lun_sep_lock);
1657         if (cmd->se_lun->lun_sep)
1658                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1659         spin_unlock(&cmd->se_lun->lun_sep_lock);
1660         return 0;
1661 }
1662 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1663
1664 static void transport_generic_request_failure(struct se_cmd *,
1665                         struct se_device *, int, int);
1666 /*
1667  * Used by fabric module frontends to queue tasks directly.
1668  * Many only be used from process context only
1669  */
1670 int transport_handle_cdb_direct(
1671         struct se_cmd *cmd)
1672 {
1673         int ret;
1674
1675         if (!cmd->se_lun) {
1676                 dump_stack();
1677                 pr_err("cmd->se_lun is NULL\n");
1678                 return -EINVAL;
1679         }
1680         if (in_interrupt()) {
1681                 dump_stack();
1682                 pr_err("transport_generic_handle_cdb cannot be called"
1683                                 " from interrupt context\n");
1684                 return -EINVAL;
1685         }
1686         /*
1687          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1688          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1689          * in existing usage to ensure that outstanding descriptors are handled
1690          * correctly during shutdown via transport_wait_for_tasks()
1691          *
1692          * Also, we don't take cmd->t_state_lock here as we only expect
1693          * this to be called for initial descriptor submission.
1694          */
1695         cmd->t_state = TRANSPORT_NEW_CMD;
1696         atomic_set(&cmd->t_transport_active, 1);
1697         /*
1698          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1699          * so follow TRANSPORT_NEW_CMD processing thread context usage
1700          * and call transport_generic_request_failure() if necessary..
1701          */
1702         ret = transport_generic_new_cmd(cmd);
1703         if (ret == -EAGAIN)
1704                 return 0;
1705         else if (ret < 0) {
1706                 cmd->transport_error_status = ret;
1707                 transport_generic_request_failure(cmd, NULL, 0,
1708                                 (cmd->data_direction != DMA_TO_DEVICE));
1709         }
1710         return 0;
1711 }
1712 EXPORT_SYMBOL(transport_handle_cdb_direct);
1713
1714 /*
1715  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1716  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1717  * complete setup in TCM process context w/ TFO->new_cmd_map().
1718  */
1719 int transport_generic_handle_cdb_map(
1720         struct se_cmd *cmd)
1721 {
1722         if (!cmd->se_lun) {
1723                 dump_stack();
1724                 pr_err("cmd->se_lun is NULL\n");
1725                 return -EINVAL;
1726         }
1727
1728         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1729         return 0;
1730 }
1731 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1732
1733 /*      transport_generic_handle_data():
1734  *
1735  *
1736  */
1737 int transport_generic_handle_data(
1738         struct se_cmd *cmd)
1739 {
1740         /*
1741          * For the software fabric case, then we assume the nexus is being
1742          * failed/shutdown when signals are pending from the kthread context
1743          * caller, so we return a failure.  For the HW target mode case running
1744          * in interrupt code, the signal_pending() check is skipped.
1745          */
1746         if (!in_interrupt() && signal_pending(current))
1747                 return -EPERM;
1748         /*
1749          * If the received CDB has aleady been ABORTED by the generic
1750          * target engine, we now call transport_check_aborted_status()
1751          * to queue any delated TASK_ABORTED status for the received CDB to the
1752          * fabric module as we are expecting no further incoming DATA OUT
1753          * sequences at this point.
1754          */
1755         if (transport_check_aborted_status(cmd, 1) != 0)
1756                 return 0;
1757
1758         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1759         return 0;
1760 }
1761 EXPORT_SYMBOL(transport_generic_handle_data);
1762
1763 /*      transport_generic_handle_tmr():
1764  *
1765  *
1766  */
1767 int transport_generic_handle_tmr(
1768         struct se_cmd *cmd)
1769 {
1770         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1771         return 0;
1772 }
1773 EXPORT_SYMBOL(transport_generic_handle_tmr);
1774
1775 void transport_generic_free_cmd_intr(
1776         struct se_cmd *cmd)
1777 {
1778         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1779 }
1780 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1781
1782 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1783 {
1784         struct se_task *task, *task_tmp;
1785         unsigned long flags;
1786         int ret = 0;
1787
1788         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1789                 cmd->se_tfo->get_task_tag(cmd));
1790
1791         /*
1792          * No tasks remain in the execution queue
1793          */
1794         spin_lock_irqsave(&cmd->t_state_lock, flags);
1795         list_for_each_entry_safe(task, task_tmp,
1796                                 &cmd->t_task_list, t_list) {
1797                 pr_debug("task_no[%d] - Processing task %p\n",
1798                                 task->task_no, task);
1799                 /*
1800                  * If the struct se_task has not been sent and is not active,
1801                  * remove the struct se_task from the execution queue.
1802                  */
1803                 if (!atomic_read(&task->task_sent) &&
1804                     !atomic_read(&task->task_active)) {
1805                         spin_unlock_irqrestore(&cmd->t_state_lock,
1806                                         flags);
1807                         transport_remove_task_from_execute_queue(task,
1808                                         task->se_dev);
1809
1810                         pr_debug("task_no[%d] - Removed from execute queue\n",
1811                                 task->task_no);
1812                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1813                         continue;
1814                 }
1815
1816                 /*
1817                  * If the struct se_task is active, sleep until it is returned
1818                  * from the plugin.
1819                  */
1820                 if (atomic_read(&task->task_active)) {
1821                         atomic_set(&task->task_stop, 1);
1822                         spin_unlock_irqrestore(&cmd->t_state_lock,
1823                                         flags);
1824
1825                         pr_debug("task_no[%d] - Waiting to complete\n",
1826                                 task->task_no);
1827                         wait_for_completion(&task->task_stop_comp);
1828                         pr_debug("task_no[%d] - Stopped successfully\n",
1829                                 task->task_no);
1830
1831                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1832                         atomic_dec(&cmd->t_task_cdbs_left);
1833
1834                         atomic_set(&task->task_active, 0);
1835                         atomic_set(&task->task_stop, 0);
1836                 } else {
1837                         pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1838                         ret++;
1839                 }
1840
1841                 __transport_stop_task_timer(task, &flags);
1842         }
1843         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1844
1845         return ret;
1846 }
1847
1848 /*
1849  * Handle SAM-esque emulation for generic transport request failures.
1850  */
1851 static void transport_generic_request_failure(
1852         struct se_cmd *cmd,
1853         struct se_device *dev,
1854         int complete,
1855         int sc)
1856 {
1857         int ret = 0;
1858
1859         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1860                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1861                 cmd->t_task_cdb[0]);
1862         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1863                 " %d/%d transport_error_status: %d\n",
1864                 cmd->se_tfo->get_cmd_state(cmd),
1865                 cmd->t_state, cmd->deferred_t_state,
1866                 cmd->transport_error_status);
1867         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1868                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1869                 " t_transport_active: %d t_transport_stop: %d"
1870                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1871                 atomic_read(&cmd->t_task_cdbs_left),
1872                 atomic_read(&cmd->t_task_cdbs_sent),
1873                 atomic_read(&cmd->t_task_cdbs_ex_left),
1874                 atomic_read(&cmd->t_transport_active),
1875                 atomic_read(&cmd->t_transport_stop),
1876                 atomic_read(&cmd->t_transport_sent));
1877
1878         transport_stop_all_task_timers(cmd);
1879
1880         if (dev)
1881                 atomic_inc(&dev->depth_left);
1882         /*
1883          * For SAM Task Attribute emulation for failed struct se_cmd
1884          */
1885         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1886                 transport_complete_task_attr(cmd);
1887
1888         if (complete) {
1889                 transport_direct_request_timeout(cmd);
1890                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1891         }
1892
1893         switch (cmd->transport_error_status) {
1894         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1895                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1896                 break;
1897         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1898                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1899                 break;
1900         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1901                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1902                 break;
1903         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1904                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1905                 break;
1906         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1907                 if (!sc)
1908                         transport_new_cmd_failure(cmd);
1909                 /*
1910                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1911                  * we force this session to fall back to session
1912                  * recovery.
1913                  */
1914                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1915                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1916
1917                 goto check_stop;
1918         case PYX_TRANSPORT_LU_COMM_FAILURE:
1919         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1920                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1921                 break;
1922         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1923                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1924                 break;
1925         case PYX_TRANSPORT_WRITE_PROTECTED:
1926                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1927                 break;
1928         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1929                 /*
1930                  * No SENSE Data payload for this case, set SCSI Status
1931                  * and queue the response to $FABRIC_MOD.
1932                  *
1933                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1934                  */
1935                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1936                 /*
1937                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1938                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1939                  * CONFLICT STATUS.
1940                  *
1941                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1942                  */
1943                 if (cmd->se_sess &&
1944                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1945                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1946                                 cmd->orig_fe_lun, 0x2C,
1947                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1948
1949                 ret = cmd->se_tfo->queue_status(cmd);
1950                 if (ret == -EAGAIN)
1951                         goto queue_full;
1952                 goto check_stop;
1953         case PYX_TRANSPORT_USE_SENSE_REASON:
1954                 /*
1955                  * struct se_cmd->scsi_sense_reason already set
1956                  */
1957                 break;
1958         default:
1959                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1960                         cmd->t_task_cdb[0],
1961                         cmd->transport_error_status);
1962                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1963                 break;
1964         }
1965         /*
1966          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1967          * make the call to transport_send_check_condition_and_sense()
1968          * directly.  Otherwise expect the fabric to make the call to
1969          * transport_send_check_condition_and_sense() after handling
1970          * possible unsoliticied write data payloads.
1971          */
1972         if (!sc && !cmd->se_tfo->new_cmd_map)
1973                 transport_new_cmd_failure(cmd);
1974         else {
1975                 ret = transport_send_check_condition_and_sense(cmd,
1976                                 cmd->scsi_sense_reason, 0);
1977                 if (ret == -EAGAIN)
1978                         goto queue_full;
1979         }
1980
1981 check_stop:
1982         transport_lun_remove_cmd(cmd);
1983         if (!transport_cmd_check_stop_to_fabric(cmd))
1984                 ;
1985         return;
1986
1987 queue_full:
1988         cmd->t_state = TRANSPORT_COMPLETE_OK;
1989         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
1990 }
1991
1992 static void transport_direct_request_timeout(struct se_cmd *cmd)
1993 {
1994         unsigned long flags;
1995
1996         spin_lock_irqsave(&cmd->t_state_lock, flags);
1997         if (!atomic_read(&cmd->t_transport_timeout)) {
1998                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1999                 return;
2000         }
2001         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2002                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2003                 return;
2004         }
2005
2006         atomic_sub(atomic_read(&cmd->t_transport_timeout),
2007                    &cmd->t_se_count);
2008         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2009 }
2010
2011 static void transport_generic_request_timeout(struct se_cmd *cmd)
2012 {
2013         unsigned long flags;
2014
2015         /*
2016          * Reset cmd->t_se_count to allow transport_put_cmd()
2017          * to allow last call to free memory resources.
2018          */
2019         spin_lock_irqsave(&cmd->t_state_lock, flags);
2020         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2021                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2022
2023                 atomic_sub(tmp, &cmd->t_se_count);
2024         }
2025         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2026
2027         transport_put_cmd(cmd);
2028 }
2029
2030 static inline u32 transport_lba_21(unsigned char *cdb)
2031 {
2032         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2033 }
2034
2035 static inline u32 transport_lba_32(unsigned char *cdb)
2036 {
2037         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2038 }
2039
2040 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2041 {
2042         unsigned int __v1, __v2;
2043
2044         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2045         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2046
2047         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2048 }
2049
2050 /*
2051  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2052  */
2053 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2054 {
2055         unsigned int __v1, __v2;
2056
2057         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2058         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2059
2060         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2061 }
2062
2063 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2064 {
2065         unsigned long flags;
2066
2067         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2068         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2069         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2070 }
2071
2072 /*
2073  * Called from interrupt context.
2074  */
2075 static void transport_task_timeout_handler(unsigned long data)
2076 {
2077         struct se_task *task = (struct se_task *)data;
2078         struct se_cmd *cmd = task->task_se_cmd;
2079         unsigned long flags;
2080
2081         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2082
2083         spin_lock_irqsave(&cmd->t_state_lock, flags);
2084         if (task->task_flags & TF_STOP) {
2085                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2086                 return;
2087         }
2088         task->task_flags &= ~TF_RUNNING;
2089
2090         /*
2091          * Determine if transport_complete_task() has already been called.
2092          */
2093         if (!atomic_read(&task->task_active)) {
2094                 pr_debug("transport task: %p cmd: %p timeout task_active"
2095                                 " == 0\n", task, cmd);
2096                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2097                 return;
2098         }
2099
2100         atomic_inc(&cmd->t_se_count);
2101         atomic_inc(&cmd->t_transport_timeout);
2102         cmd->t_tasks_failed = 1;
2103
2104         atomic_set(&task->task_timeout, 1);
2105         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2106         task->task_scsi_status = 1;
2107
2108         if (atomic_read(&task->task_stop)) {
2109                 pr_debug("transport task: %p cmd: %p timeout task_stop"
2110                                 " == 1\n", task, cmd);
2111                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2112                 complete(&task->task_stop_comp);
2113                 return;
2114         }
2115
2116         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2117                 pr_debug("transport task: %p cmd: %p timeout non zero"
2118                                 " t_task_cdbs_left\n", task, cmd);
2119                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2120                 return;
2121         }
2122         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2123                         task, cmd);
2124
2125         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2126         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2127
2128         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2129 }
2130
2131 /*
2132  * Called with cmd->t_state_lock held.
2133  */
2134 static void transport_start_task_timer(struct se_task *task)
2135 {
2136         struct se_device *dev = task->se_dev;
2137         int timeout;
2138
2139         if (task->task_flags & TF_RUNNING)
2140                 return;
2141         /*
2142          * If the task_timeout is disabled, exit now.
2143          */
2144         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2145         if (!timeout)
2146                 return;
2147
2148         init_timer(&task->task_timer);
2149         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2150         task->task_timer.data = (unsigned long) task;
2151         task->task_timer.function = transport_task_timeout_handler;
2152
2153         task->task_flags |= TF_RUNNING;
2154         add_timer(&task->task_timer);
2155 #if 0
2156         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2157                 " %d\n", task->task_se_cmd, task, timeout);
2158 #endif
2159 }
2160
2161 /*
2162  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2163  */
2164 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2165 {
2166         struct se_cmd *cmd = task->task_se_cmd;
2167
2168         if (!task->task_flags & TF_RUNNING)
2169                 return;
2170
2171         task->task_flags |= TF_STOP;
2172         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2173
2174         del_timer_sync(&task->task_timer);
2175
2176         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2177         task->task_flags &= ~TF_RUNNING;
2178         task->task_flags &= ~TF_STOP;
2179 }
2180
2181 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2182 {
2183         struct se_task *task = NULL, *task_tmp;
2184         unsigned long flags;
2185
2186         spin_lock_irqsave(&cmd->t_state_lock, flags);
2187         list_for_each_entry_safe(task, task_tmp,
2188                                 &cmd->t_task_list, t_list)
2189                 __transport_stop_task_timer(task, &flags);
2190         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2191 }
2192
2193 static inline int transport_tcq_window_closed(struct se_device *dev)
2194 {
2195         if (dev->dev_tcq_window_closed++ <
2196                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2197                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2198         } else
2199                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2200
2201         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2202         return 0;
2203 }
2204
2205 /*
2206  * Called from Fabric Module context from transport_execute_tasks()
2207  *
2208  * The return of this function determins if the tasks from struct se_cmd
2209  * get added to the execution queue in transport_execute_tasks(),
2210  * or are added to the delayed or ordered lists here.
2211  */
2212 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2213 {
2214         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2215                 return 1;
2216         /*
2217          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2218          * to allow the passed struct se_cmd list of tasks to the front of the list.
2219          */
2220          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2221                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2222                 smp_mb__after_atomic_inc();
2223                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2224                         " 0x%02x, se_ordered_id: %u\n",
2225                         cmd->t_task_cdb[0],
2226                         cmd->se_ordered_id);
2227                 return 1;
2228         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2229                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2230                 list_add_tail(&cmd->se_ordered_node,
2231                                 &cmd->se_dev->ordered_cmd_list);
2232                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2233
2234                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2235                 smp_mb__after_atomic_inc();
2236
2237                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2238                                 " list, se_ordered_id: %u\n",
2239                                 cmd->t_task_cdb[0],
2240                                 cmd->se_ordered_id);
2241                 /*
2242                  * Add ORDERED command to tail of execution queue if
2243                  * no other older commands exist that need to be
2244                  * completed first.
2245                  */
2246                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2247                         return 1;
2248         } else {
2249                 /*
2250                  * For SIMPLE and UNTAGGED Task Attribute commands
2251                  */
2252                 atomic_inc(&cmd->se_dev->simple_cmds);
2253                 smp_mb__after_atomic_inc();
2254         }
2255         /*
2256          * Otherwise if one or more outstanding ORDERED task attribute exist,
2257          * add the dormant task(s) built for the passed struct se_cmd to the
2258          * execution queue and become in Active state for this struct se_device.
2259          */
2260         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2261                 /*
2262                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2263                  * will be drained upon completion of HEAD_OF_QUEUE task.
2264                  */
2265                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2266                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2267                 list_add_tail(&cmd->se_delayed_node,
2268                                 &cmd->se_dev->delayed_cmd_list);
2269                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2270
2271                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2272                         " delayed CMD list, se_ordered_id: %u\n",
2273                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2274                         cmd->se_ordered_id);
2275                 /*
2276                  * Return zero to let transport_execute_tasks() know
2277                  * not to add the delayed tasks to the execution list.
2278                  */
2279                 return 0;
2280         }
2281         /*
2282          * Otherwise, no ORDERED task attributes exist..
2283          */
2284         return 1;
2285 }
2286
2287 /*
2288  * Called from fabric module context in transport_generic_new_cmd() and
2289  * transport_generic_process_write()
2290  */
2291 static int transport_execute_tasks(struct se_cmd *cmd)
2292 {
2293         int add_tasks;
2294
2295         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2296                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2297                 transport_generic_request_failure(cmd, NULL, 0, 1);
2298                 return 0;
2299         }
2300
2301         /*
2302          * Call transport_cmd_check_stop() to see if a fabric exception
2303          * has occurred that prevents execution.
2304          */
2305         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2306                 /*
2307                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2308                  * attribute for the tasks of the received struct se_cmd CDB
2309                  */
2310                 add_tasks = transport_execute_task_attr(cmd);
2311                 if (!add_tasks)
2312                         goto execute_tasks;
2313                 /*
2314                  * This calls transport_add_tasks_from_cmd() to handle
2315                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2316                  * (if enabled) in __transport_add_task_to_execute_queue() and
2317                  * transport_add_task_check_sam_attr().
2318                  */
2319                 transport_add_tasks_from_cmd(cmd);
2320         }
2321         /*
2322          * Kick the execution queue for the cmd associated struct se_device
2323          * storage object.
2324          */
2325 execute_tasks:
2326         __transport_execute_tasks(cmd->se_dev);
2327         return 0;
2328 }
2329
2330 /*
2331  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2332  * from struct se_device->execute_task_list and
2333  *
2334  * Called from transport_processing_thread()
2335  */
2336 static int __transport_execute_tasks(struct se_device *dev)
2337 {
2338         int error;
2339         struct se_cmd *cmd = NULL;
2340         struct se_task *task = NULL;
2341         unsigned long flags;
2342
2343         /*
2344          * Check if there is enough room in the device and HBA queue to send
2345          * struct se_tasks to the selected transport.
2346          */
2347 check_depth:
2348         if (!atomic_read(&dev->depth_left))
2349                 return transport_tcq_window_closed(dev);
2350
2351         dev->dev_tcq_window_closed = 0;
2352
2353         spin_lock_irq(&dev->execute_task_lock);
2354         if (list_empty(&dev->execute_task_list)) {
2355                 spin_unlock_irq(&dev->execute_task_lock);
2356                 return 0;
2357         }
2358         task = list_first_entry(&dev->execute_task_list,
2359                                 struct se_task, t_execute_list);
2360         list_del(&task->t_execute_list);
2361         atomic_set(&task->task_execute_queue, 0);
2362         atomic_dec(&dev->execute_tasks);
2363         spin_unlock_irq(&dev->execute_task_lock);
2364
2365         atomic_dec(&dev->depth_left);
2366
2367         cmd = task->task_se_cmd;
2368
2369         spin_lock_irqsave(&cmd->t_state_lock, flags);
2370         atomic_set(&task->task_active, 1);
2371         atomic_set(&task->task_sent, 1);
2372         atomic_inc(&cmd->t_task_cdbs_sent);
2373
2374         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2375             cmd->t_task_list_num)
2376                 atomic_set(&cmd->transport_sent, 1);
2377
2378         transport_start_task_timer(task);
2379         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2380         /*
2381          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2382          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2383          * struct se_subsystem_api->do_task() caller below.
2384          */
2385         if (cmd->transport_emulate_cdb) {
2386                 error = cmd->transport_emulate_cdb(cmd);
2387                 if (error != 0) {
2388                         cmd->transport_error_status = error;
2389                         atomic_set(&task->task_active, 0);
2390                         atomic_set(&cmd->transport_sent, 0);
2391                         transport_stop_tasks_for_cmd(cmd);
2392                         transport_generic_request_failure(cmd, dev, 0, 1);
2393                         goto check_depth;
2394                 }
2395                 /*
2396                  * Handle the successful completion for transport_emulate_cdb()
2397                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2398                  * Otherwise the caller is expected to complete the task with
2399                  * proper status.
2400                  */
2401                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2402                         cmd->scsi_status = SAM_STAT_GOOD;
2403                         task->task_scsi_status = GOOD;
2404                         transport_complete_task(task, 1);
2405                 }
2406         } else {
2407                 /*
2408                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2409                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2410                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2411                  * LUN emulation code.
2412                  *
2413                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2414                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2415                  * code handle the CDB emulation.
2416                  */
2417                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2418                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2419                         error = transport_emulate_control_cdb(task);
2420                 else
2421                         error = dev->transport->do_task(task);
2422
2423                 if (error != 0) {
2424                         cmd->transport_error_status = error;
2425                         atomic_set(&task->task_active, 0);
2426                         atomic_set(&cmd->transport_sent, 0);
2427                         transport_stop_tasks_for_cmd(cmd);
2428                         transport_generic_request_failure(cmd, dev, 0, 1);
2429                 }
2430         }
2431
2432         goto check_depth;
2433
2434         return 0;
2435 }
2436
2437 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2438 {
2439         unsigned long flags;
2440         /*
2441          * Any unsolicited data will get dumped for failed command inside of
2442          * the fabric plugin
2443          */
2444         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2445         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2446         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2447         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2448 }
2449
2450 static inline u32 transport_get_sectors_6(
2451         unsigned char *cdb,
2452         struct se_cmd *cmd,
2453         int *ret)
2454 {
2455         struct se_device *dev = cmd->se_dev;
2456
2457         /*
2458          * Assume TYPE_DISK for non struct se_device objects.
2459          * Use 8-bit sector value.
2460          */
2461         if (!dev)
2462                 goto type_disk;
2463
2464         /*
2465          * Use 24-bit allocation length for TYPE_TAPE.
2466          */
2467         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2468                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2469
2470         /*
2471          * Everything else assume TYPE_DISK Sector CDB location.
2472          * Use 8-bit sector value.
2473          */
2474 type_disk:
2475         return (u32)cdb[4];
2476 }
2477
2478 static inline u32 transport_get_sectors_10(
2479         unsigned char *cdb,
2480         struct se_cmd *cmd,
2481         int *ret)
2482 {
2483         struct se_device *dev = cmd->se_dev;
2484
2485         /*
2486          * Assume TYPE_DISK for non struct se_device objects.
2487          * Use 16-bit sector value.
2488          */
2489         if (!dev)
2490                 goto type_disk;
2491
2492         /*
2493          * XXX_10 is not defined in SSC, throw an exception
2494          */
2495         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2496                 *ret = -EINVAL;
2497                 return 0;
2498         }
2499
2500         /*
2501          * Everything else assume TYPE_DISK Sector CDB location.
2502          * Use 16-bit sector value.
2503          */
2504 type_disk:
2505         return (u32)(cdb[7] << 8) + cdb[8];
2506 }
2507
2508 static inline u32 transport_get_sectors_12(
2509         unsigned char *cdb,
2510         struct se_cmd *cmd,
2511         int *ret)
2512 {
2513         struct se_device *dev = cmd->se_dev;
2514
2515         /*
2516          * Assume TYPE_DISK for non struct se_device objects.
2517          * Use 32-bit sector value.
2518          */
2519         if (!dev)
2520                 goto type_disk;
2521
2522         /*
2523          * XXX_12 is not defined in SSC, throw an exception
2524          */
2525         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2526                 *ret = -EINVAL;
2527                 return 0;
2528         }
2529
2530         /*
2531          * Everything else assume TYPE_DISK Sector CDB location.
2532          * Use 32-bit sector value.
2533          */
2534 type_disk:
2535         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2536 }
2537
2538 static inline u32 transport_get_sectors_16(
2539         unsigned char *cdb,
2540         struct se_cmd *cmd,
2541         int *ret)
2542 {
2543         struct se_device *dev = cmd->se_dev;
2544
2545         /*
2546          * Assume TYPE_DISK for non struct se_device objects.
2547          * Use 32-bit sector value.
2548          */
2549         if (!dev)
2550                 goto type_disk;
2551
2552         /*
2553          * Use 24-bit allocation length for TYPE_TAPE.
2554          */
2555         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2556                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2557
2558 type_disk:
2559         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2560                     (cdb[12] << 8) + cdb[13];
2561 }
2562
2563 /*
2564  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2565  */
2566 static inline u32 transport_get_sectors_32(
2567         unsigned char *cdb,
2568         struct se_cmd *cmd,
2569         int *ret)
2570 {
2571         /*
2572          * Assume TYPE_DISK for non struct se_device objects.
2573          * Use 32-bit sector value.
2574          */
2575         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2576                     (cdb[30] << 8) + cdb[31];
2577
2578 }
2579
2580 static inline u32 transport_get_size(
2581         u32 sectors,
2582         unsigned char *cdb,
2583         struct se_cmd *cmd)
2584 {
2585         struct se_device *dev = cmd->se_dev;
2586
2587         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2588                 if (cdb[1] & 1) { /* sectors */
2589                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2590                 } else /* bytes */
2591                         return sectors;
2592         }
2593 #if 0
2594         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2595                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2596                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2597                         dev->transport->name);
2598 #endif
2599         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2600 }
2601
2602 static void transport_xor_callback(struct se_cmd *cmd)
2603 {
2604         unsigned char *buf, *addr;
2605         struct scatterlist *sg;
2606         unsigned int offset;
2607         int i;
2608         int count;
2609         /*
2610          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2611          *
2612          * 1) read the specified logical block(s);
2613          * 2) transfer logical blocks from the data-out buffer;
2614          * 3) XOR the logical blocks transferred from the data-out buffer with
2615          *    the logical blocks read, storing the resulting XOR data in a buffer;
2616          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2617          *    blocks transferred from the data-out buffer; and
2618          * 5) transfer the resulting XOR data to the data-in buffer.
2619          */
2620         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2621         if (!buf) {
2622                 pr_err("Unable to allocate xor_callback buf\n");
2623                 return;
2624         }
2625         /*
2626          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2627          * into the locally allocated *buf
2628          */
2629         sg_copy_to_buffer(cmd->t_data_sg,
2630                           cmd->t_data_nents,
2631                           buf,
2632                           cmd->data_length);
2633
2634         /*
2635          * Now perform the XOR against the BIDI read memory located at
2636          * cmd->t_mem_bidi_list
2637          */
2638
2639         offset = 0;
2640         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2641                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2642                 if (!addr)
2643                         goto out;
2644
2645                 for (i = 0; i < sg->length; i++)
2646                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2647
2648                 offset += sg->length;
2649                 kunmap_atomic(addr, KM_USER0);
2650         }
2651
2652 out:
2653         kfree(buf);
2654 }
2655
2656 /*
2657  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2658  */
2659 static int transport_get_sense_data(struct se_cmd *cmd)
2660 {
2661         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2662         struct se_device *dev;
2663         struct se_task *task = NULL, *task_tmp;
2664         unsigned long flags;
2665         u32 offset = 0;
2666
2667         WARN_ON(!cmd->se_lun);
2668
2669         spin_lock_irqsave(&cmd->t_state_lock, flags);
2670         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2671                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2672                 return 0;
2673         }
2674
2675         list_for_each_entry_safe(task, task_tmp,
2676                                 &cmd->t_task_list, t_list) {
2677
2678                 if (!task->task_sense)
2679                         continue;
2680
2681                 dev = task->se_dev;
2682                 if (!dev)
2683                         continue;
2684
2685                 if (!dev->transport->get_sense_buffer) {
2686                         pr_err("dev->transport->get_sense_buffer"
2687                                         " is NULL\n");
2688                         continue;
2689                 }
2690
2691                 sense_buffer = dev->transport->get_sense_buffer(task);
2692                 if (!sense_buffer) {
2693                         pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2694                                 " sense buffer for task with sense\n",
2695                                 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2696                         continue;
2697                 }
2698                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2699
2700                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2701                                 TRANSPORT_SENSE_BUFFER);
2702
2703                 memcpy(&buffer[offset], sense_buffer,
2704                                 TRANSPORT_SENSE_BUFFER);
2705                 cmd->scsi_status = task->task_scsi_status;
2706                 /* Automatically padded */
2707                 cmd->scsi_sense_length =
2708                                 (TRANSPORT_SENSE_BUFFER + offset);
2709
2710                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2711                                 " and sense\n",
2712                         dev->se_hba->hba_id, dev->transport->name,
2713                                 cmd->scsi_status);
2714                 return 0;
2715         }
2716         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2717
2718         return -1;
2719 }
2720
2721 static int
2722 transport_handle_reservation_conflict(struct se_cmd *cmd)
2723 {
2724         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2725         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2726         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2727         /*
2728          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2729          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2730          * CONFLICT STATUS.
2731          *
2732          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2733          */
2734         if (cmd->se_sess &&
2735             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2736                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2737                         cmd->orig_fe_lun, 0x2C,
2738                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2739         return -EINVAL;
2740 }
2741
2742 static inline long long transport_dev_end_lba(struct se_device *dev)
2743 {
2744         return dev->transport->get_blocks(dev) + 1;
2745 }
2746
2747 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2748 {
2749         struct se_device *dev = cmd->se_dev;
2750         u32 sectors;
2751
2752         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2753                 return 0;
2754
2755         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2756
2757         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2758                 pr_err("LBA: %llu Sectors: %u exceeds"
2759                         " transport_dev_end_lba(): %llu\n",
2760                         cmd->t_task_lba, sectors,
2761                         transport_dev_end_lba(dev));
2762                 return -EINVAL;
2763         }
2764
2765         return 0;
2766 }
2767
2768 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2769 {
2770         /*
2771          * Determine if the received WRITE_SAME is used to for direct
2772          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2773          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2774          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2775          */
2776         int passthrough = (dev->transport->transport_type ==
2777                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2778
2779         if (!passthrough) {
2780                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2781                         pr_err("WRITE_SAME PBDATA and LBDATA"
2782                                 " bits not supported for Block Discard"
2783                                 " Emulation\n");
2784                         return -ENOSYS;
2785                 }
2786                 /*
2787                  * Currently for the emulated case we only accept
2788                  * tpws with the UNMAP=1 bit set.
2789                  */
2790                 if (!(flags[0] & 0x08)) {
2791                         pr_err("WRITE_SAME w/o UNMAP bit not"
2792                                 " supported for Block Discard Emulation\n");
2793                         return -ENOSYS;
2794                 }
2795         }
2796
2797         return 0;
2798 }
2799
2800 /*      transport_generic_cmd_sequencer():
2801  *
2802  *      Generic Command Sequencer that should work for most DAS transport
2803  *      drivers.
2804  *
2805  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2806  *      RX Thread.
2807  *
2808  *      FIXME: Need to support other SCSI OPCODES where as well.
2809  */
2810 static int transport_generic_cmd_sequencer(
2811         struct se_cmd *cmd,
2812         unsigned char *cdb)
2813 {
2814         struct se_device *dev = cmd->se_dev;
2815         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2816         int ret = 0, sector_ret = 0, passthrough;
2817         u32 sectors = 0, size = 0, pr_reg_type = 0;
2818         u16 service_action;
2819         u8 alua_ascq = 0;
2820         /*
2821          * Check for an existing UNIT ATTENTION condition
2822          */
2823         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2824                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2825                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2826                 return -EINVAL;
2827         }
2828         /*
2829          * Check status of Asymmetric Logical Unit Assignment port
2830          */
2831         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2832         if (ret != 0) {
2833                 /*
2834                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2835                  * The ALUA additional sense code qualifier (ASCQ) is determined
2836                  * by the ALUA primary or secondary access state..
2837                  */
2838                 if (ret > 0) {
2839 #if 0
2840                         pr_debug("[%s]: ALUA TG Port not available,"
2841                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2842                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2843 #endif
2844                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2845                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2846                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2847                         return -EINVAL;
2848                 }
2849                 goto out_invalid_cdb_field;
2850         }
2851         /*
2852          * Check status for SPC-3 Persistent Reservations
2853          */
2854         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2855                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2856                                         cmd, cdb, pr_reg_type) != 0)
2857                         return transport_handle_reservation_conflict(cmd);
2858                 /*
2859                  * This means the CDB is allowed for the SCSI Initiator port
2860                  * when said port is *NOT* holding the legacy SPC-2 or
2861                  * SPC-3 Persistent Reservation.
2862                  */
2863         }
2864
2865         switch (cdb[0]) {
2866         case READ_6:
2867                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2868                 if (sector_ret)
2869                         goto out_unsupported_cdb;
2870                 size = transport_get_size(sectors, cdb, cmd);
2871                 cmd->transport_split_cdb = &split_cdb_XX_6;
2872                 cmd->t_task_lba = transport_lba_21(cdb);
2873                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2874                 break;
2875         case READ_10:
2876                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2877                 if (sector_ret)
2878                         goto out_unsupported_cdb;
2879                 size = transport_get_size(sectors, cdb, cmd);
2880                 cmd->transport_split_cdb = &split_cdb_XX_10;
2881                 cmd->t_task_lba = transport_lba_32(cdb);
2882                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2883                 break;
2884         case READ_12:
2885                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2886                 if (sector_ret)
2887                         goto out_unsupported_cdb;
2888                 size = transport_get_size(sectors, cdb, cmd);
2889                 cmd->transport_split_cdb = &split_cdb_XX_12;
2890                 cmd->t_task_lba = transport_lba_32(cdb);
2891                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2892                 break;
2893         case READ_16:
2894                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2895                 if (sector_ret)
2896                         goto out_unsupported_cdb;
2897                 size = transport_get_size(sectors, cdb, cmd);
2898                 cmd->transport_split_cdb = &split_cdb_XX_16;
2899                 cmd->t_task_lba = transport_lba_64(cdb);
2900                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2901                 break;
2902         case WRITE_6:
2903                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2904                 if (sector_ret)
2905                         goto out_unsupported_cdb;
2906                 size = transport_get_size(sectors, cdb, cmd);
2907                 cmd->transport_split_cdb = &split_cdb_XX_6;
2908                 cmd->t_task_lba = transport_lba_21(cdb);
2909                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2910                 break;
2911         case WRITE_10:
2912                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2913                 if (sector_ret)
2914                         goto out_unsupported_cdb;
2915                 size = transport_get_size(sectors, cdb, cmd);
2916                 cmd->transport_split_cdb = &split_cdb_XX_10;
2917                 cmd->t_task_lba = transport_lba_32(cdb);
2918                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2919                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2920                 break;
2921         case WRITE_12:
2922                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2923                 if (sector_ret)
2924                         goto out_unsupported_cdb;
2925                 size = transport_get_size(sectors, cdb, cmd);
2926                 cmd->transport_split_cdb = &split_cdb_XX_12;
2927                 cmd->t_task_lba = transport_lba_32(cdb);
2928                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2929                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2930                 break;
2931         case WRITE_16:
2932                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2933                 if (sector_ret)
2934                         goto out_unsupported_cdb;
2935                 size = transport_get_size(sectors, cdb, cmd);
2936                 cmd->transport_split_cdb = &split_cdb_XX_16;
2937                 cmd->t_task_lba = transport_lba_64(cdb);
2938                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2939                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2940                 break;
2941         case XDWRITEREAD_10:
2942                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2943                     !(cmd->t_tasks_bidi))
2944                         goto out_invalid_cdb_field;
2945                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2946                 if (sector_ret)
2947                         goto out_unsupported_cdb;
2948                 size = transport_get_size(sectors, cdb, cmd);
2949                 cmd->transport_split_cdb = &split_cdb_XX_10;
2950                 cmd->t_task_lba = transport_lba_32(cdb);
2951                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2952                 passthrough = (dev->transport->transport_type ==
2953                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2954                 /*
2955                  * Skip the remaining assignments for TCM/PSCSI passthrough
2956                  */
2957                 if (passthrough)
2958                         break;
2959                 /*
2960                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2961                  */
2962                 cmd->transport_complete_callback = &transport_xor_callback;
2963                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2964                 break;
2965         case VARIABLE_LENGTH_CMD:
2966                 service_action = get_unaligned_be16(&cdb[8]);
2967                 /*
2968                  * Determine if this is TCM/PSCSI device and we should disable
2969                  * internal emulation for this CDB.
2970                  */
2971                 passthrough = (dev->transport->transport_type ==
2972                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2973
2974                 switch (service_action) {
2975                 case XDWRITEREAD_32:
2976                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2977                         if (sector_ret)
2978                                 goto out_unsupported_cdb;
2979                         size = transport_get_size(sectors, cdb, cmd);
2980                         /*
2981                          * Use WRITE_32 and READ_32 opcodes for the emulated
2982                          * XDWRITE_READ_32 logic.
2983                          */
2984                         cmd->transport_split_cdb = &split_cdb_XX_32;
2985                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2986                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2987
2988                         /*
2989                          * Skip the remaining assignments for TCM/PSCSI passthrough
2990                          */
2991                         if (passthrough)
2992                                 break;
2993
2994                         /*
2995                          * Setup BIDI XOR callback to be run during
2996                          * transport_generic_complete_ok()
2997                          */
2998                         cmd->transport_complete_callback = &transport_xor_callback;
2999                         cmd->t_tasks_fua = (cdb[10] & 0x8);
3000                         break;
3001                 case WRITE_SAME_32:
3002                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3003                         if (sector_ret)
3004                                 goto out_unsupported_cdb;
3005
3006                         if (sectors)
3007                                 size = transport_get_size(1, cdb, cmd);
3008                         else {
3009                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3010                                        " supported\n");
3011                                 goto out_invalid_cdb_field;
3012                         }
3013
3014                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3015                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3016
3017                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
3018                                 goto out_invalid_cdb_field;
3019
3020                         break;
3021                 default:
3022                         pr_err("VARIABLE_LENGTH_CMD service action"
3023                                 " 0x%04x not supported\n", service_action);
3024                         goto out_unsupported_cdb;
3025                 }
3026                 break;
3027         case MAINTENANCE_IN:
3028                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3029                         /* MAINTENANCE_IN from SCC-2 */
3030                         /*
3031                          * Check for emulated MI_REPORT_TARGET_PGS.
3032                          */
3033                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3034                                 cmd->transport_emulate_cdb =
3035                                 (su_dev->t10_alua.alua_type ==
3036                                  SPC3_ALUA_EMULATED) ?
3037                                 core_emulate_report_target_port_groups :
3038                                 NULL;
3039                         }
3040                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3041                                (cdb[8] << 8) | cdb[9];
3042                 } else {
3043                         /* GPCMD_SEND_KEY from multi media commands */
3044                         size = (cdb[8] << 8) + cdb[9];
3045                 }
3046                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3047                 break;
3048         case MODE_SELECT:
3049                 size = cdb[4];
3050                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3051                 break;
3052         case MODE_SELECT_10:
3053                 size = (cdb[7] << 8) + cdb[8];
3054                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3055                 break;
3056         case MODE_SENSE:
3057                 size = cdb[4];
3058                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3059                 break;
3060         case MODE_SENSE_10:
3061         case GPCMD_READ_BUFFER_CAPACITY:
3062         case GPCMD_SEND_OPC:
3063         case LOG_SELECT:
3064         case LOG_SENSE:
3065                 size = (cdb[7] << 8) + cdb[8];
3066                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3067                 break;
3068         case READ_BLOCK_LIMITS:
3069                 size = READ_BLOCK_LEN;
3070                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3071                 break;
3072         case GPCMD_GET_CONFIGURATION:
3073         case GPCMD_READ_FORMAT_CAPACITIES:
3074         case GPCMD_READ_DISC_INFO:
3075         case GPCMD_READ_TRACK_RZONE_INFO:
3076                 size = (cdb[7] << 8) + cdb[8];
3077                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3078                 break;
3079         case PERSISTENT_RESERVE_IN:
3080         case PERSISTENT_RESERVE_OUT:
3081                 cmd->transport_emulate_cdb =
3082                         (su_dev->t10_pr.res_type ==
3083                          SPC3_PERSISTENT_RESERVATIONS) ?
3084                         core_scsi3_emulate_pr : NULL;
3085                 size = (cdb[7] << 8) + cdb[8];
3086                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3087                 break;
3088         case GPCMD_MECHANISM_STATUS:
3089         case GPCMD_READ_DVD_STRUCTURE:
3090                 size = (cdb[8] << 8) + cdb[9];
3091                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3092                 break;
3093         case READ_POSITION:
3094                 size = READ_POSITION_LEN;
3095                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3096                 break;
3097         case MAINTENANCE_OUT:
3098                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3099                         /* MAINTENANCE_OUT from SCC-2
3100                          *
3101                          * Check for emulated MO_SET_TARGET_PGS.
3102                          */
3103                         if (cdb[1] == MO_SET_TARGET_PGS) {
3104                                 cmd->transport_emulate_cdb =
3105                                 (su_dev->t10_alua.alua_type ==
3106                                         SPC3_ALUA_EMULATED) ?
3107                                 core_emulate_set_target_port_groups :
3108                                 NULL;
3109                         }
3110
3111                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3112                                (cdb[8] << 8) | cdb[9];
3113                 } else  {
3114                         /* GPCMD_REPORT_KEY from multi media commands */
3115                         size = (cdb[8] << 8) + cdb[9];
3116                 }
3117                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3118                 break;
3119         case INQUIRY:
3120                 size = (cdb[3] << 8) + cdb[4];
3121                 /*
3122                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3123                  * See spc4r17 section 5.3
3124                  */
3125                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3126                         cmd->sam_task_attr = MSG_HEAD_TAG;
3127                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3128                 break;
3129         case READ_BUFFER:
3130                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3131                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3132                 break;
3133         case READ_CAPACITY:
3134                 size = READ_CAP_LEN;
3135                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136                 break;
3137         case READ_MEDIA_SERIAL_NUMBER:
3138         case SECURITY_PROTOCOL_IN:
3139         case SECURITY_PROTOCOL_OUT:
3140                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3141                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3142                 break;
3143         case SERVICE_ACTION_IN:
3144         case ACCESS_CONTROL_IN:
3145         case ACCESS_CONTROL_OUT:
3146         case EXTENDED_COPY:
3147         case READ_ATTRIBUTE:
3148         case RECEIVE_COPY_RESULTS:
3149         case WRITE_ATTRIBUTE:
3150                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3151                        (cdb[12] << 8) | cdb[13];
3152                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153                 break;
3154         case RECEIVE_DIAGNOSTIC:
3155         case SEND_DIAGNOSTIC:
3156                 size = (cdb[3] << 8) | cdb[4];
3157                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3158                 break;
3159 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3160 #if 0
3161         case GPCMD_READ_CD:
3162                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3163                 size = (2336 * sectors);
3164                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3165                 break;
3166 #endif
3167         case READ_TOC:
3168                 size = cdb[8];
3169                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3170                 break;
3171         case REQUEST_SENSE:
3172                 size = cdb[4];
3173                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3174                 break;
3175         case READ_ELEMENT_STATUS:
3176                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3177                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3178                 break;
3179         case WRITE_BUFFER:
3180                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3181                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3182                 break;
3183         case RESERVE:
3184         case RESERVE_10:
3185                 /*
3186                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3187                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3188                  */
3189                 if (cdb[0] == RESERVE_10)
3190                         size = (cdb[7] << 8) | cdb[8];
3191                 else
3192                         size = cmd->data_length;
3193
3194                 /*
3195                  * Setup the legacy emulated handler for SPC-2 and
3196                  * >= SPC-3 compatible reservation handling (CRH=1)
3197                  * Otherwise, we assume the underlying SCSI logic is
3198                  * is running in SPC_PASSTHROUGH, and wants reservations
3199                  * emulation disabled.
3200                  */
3201                 cmd->transport_emulate_cdb =
3202                                 (su_dev->t10_pr.res_type !=
3203                                  SPC_PASSTHROUGH) ?
3204                                 core_scsi2_emulate_crh : NULL;
3205                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3206                 break;
3207         case RELEASE:
3208         case RELEASE_10:
3209                 /*
3210                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3211                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3212                 */
3213                 if (cdb[0] == RELEASE_10)
3214                         size = (cdb[7] << 8) | cdb[8];
3215                 else
3216                         size = cmd->data_length;
3217
3218                 cmd->transport_emulate_cdb =
3219                                 (su_dev->t10_pr.res_type !=
3220                                  SPC_PASSTHROUGH) ?
3221                                 core_scsi2_emulate_crh : NULL;
3222                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3223                 break;
3224         case SYNCHRONIZE_CACHE:
3225         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3226                 /*
3227                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3228                  */
3229                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3230                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3231                         cmd->t_task_lba = transport_lba_32(cdb);
3232                 } else {
3233                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3234                         cmd->t_task_lba = transport_lba_64(cdb);
3235                 }
3236                 if (sector_ret)
3237                         goto out_unsupported_cdb;
3238
3239                 size = transport_get_size(sectors, cdb, cmd);
3240                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3241
3242                 /*
3243                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3244                  */
3245                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3246                         break;
3247                 /*
3248                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3249                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3250                  */
3251                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3252                 /*
3253                  * Check to ensure that LBA + Range does not exceed past end of
3254                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3255                  */
3256                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3257                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3258                                 goto out_invalid_cdb_field;
3259                 }
3260                 break;
3261         case UNMAP:
3262                 size = get_unaligned_be16(&cdb[7]);
3263                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3264                 break;
3265         case WRITE_SAME_16:
3266                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3267                 if (sector_ret)
3268                         goto out_unsupported_cdb;
3269
3270                 if (sectors)
3271                         size = transport_get_size(1, cdb, cmd);
3272                 else {
3273                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3274                         goto out_invalid_cdb_field;
3275                 }
3276
3277                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3278                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3279
3280                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3281                         goto out_invalid_cdb_field;
3282                 break;
3283         case WRITE_SAME:
3284                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3285                 if (sector_ret)
3286                         goto out_unsupported_cdb;
3287
3288                 if (sectors)
3289                         size = transport_get_size(1, cdb, cmd);
3290                 else {
3291                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3292                         goto out_invalid_cdb_field;
3293                 }
3294
3295                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3296                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3297                 /*
3298                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3299                  * of byte 1 bit 3 UNMAP instead of original reserved field
3300                  */
3301                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3302                         goto out_invalid_cdb_field;
3303                 break;
3304         case ALLOW_MEDIUM_REMOVAL:
3305         case GPCMD_CLOSE_TRACK:
3306         case ERASE:
3307         case INITIALIZE_ELEMENT_STATUS:
3308         case GPCMD_LOAD_UNLOAD:
3309         case REZERO_UNIT:
3310         case SEEK_10:
3311         case GPCMD_SET_SPEED:
3312         case SPACE:
3313         case START_STOP:
3314         case TEST_UNIT_READY:
3315         case VERIFY:
3316         case WRITE_FILEMARKS:
3317         case MOVE_MEDIUM:
3318                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3319                 break;
3320         case REPORT_LUNS:
3321                 cmd->transport_emulate_cdb =
3322                                 transport_core_report_lun_response;
3323                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3324                 /*
3325                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3326                  * See spc4r17 section 5.3
3327                  */
3328                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3329                         cmd->sam_task_attr = MSG_HEAD_TAG;
3330                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3331                 break;
3332         default:
3333                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3334                         " 0x%02x, sending CHECK_CONDITION.\n",
3335                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3336                 goto out_unsupported_cdb;
3337         }
3338
3339         if (size != cmd->data_length) {
3340                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3341                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3342                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3343                                 cmd->data_length, size, cdb[0]);
3344
3345                 cmd->cmd_spdtl = size;
3346
3347                 if (cmd->data_direction == DMA_TO_DEVICE) {
3348                         pr_err("Rejecting underflow/overflow"
3349                                         " WRITE data\n");
3350                         goto out_invalid_cdb_field;
3351                 }
3352                 /*
3353                  * Reject READ_* or WRITE_* with overflow/underflow for
3354                  * type SCF_SCSI_DATA_SG_IO_CDB.
3355                  */
3356                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3357                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3358                                 " CDB on non 512-byte sector setup subsystem"
3359                                 " plugin: %s\n", dev->transport->name);
3360                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3361                         goto out_invalid_cdb_field;
3362                 }
3363
3364                 if (size > cmd->data_length) {
3365                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3366                         cmd->residual_count = (size - cmd->data_length);
3367                 } else {
3368                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3369                         cmd->residual_count = (cmd->data_length - size);
3370                 }
3371                 cmd->data_length = size;
3372         }
3373
3374         /* Let's limit control cdbs to a page, for simplicity's sake. */
3375         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3376             size > PAGE_SIZE)
3377                 goto out_invalid_cdb_field;
3378
3379         transport_set_supported_SAM_opcode(cmd);
3380         return ret;
3381
3382 out_unsupported_cdb:
3383         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3384         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3385         return -EINVAL;
3386 out_invalid_cdb_field:
3387         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3388         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3389         return -EINVAL;
3390 }
3391
3392 /*
3393  * Called from transport_generic_complete_ok() and
3394  * transport_generic_request_failure() to determine which dormant/delayed
3395  * and ordered cmds need to have their tasks added to the execution queue.
3396  */
3397 static void transport_complete_task_attr(struct se_cmd *cmd)
3398 {
3399         struct se_device *dev = cmd->se_dev;
3400         struct se_cmd *cmd_p, *cmd_tmp;
3401         int new_active_tasks = 0;
3402
3403         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3404                 atomic_dec(&dev->simple_cmds);
3405                 smp_mb__after_atomic_dec();
3406                 dev->dev_cur_ordered_id++;
3407                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3408                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3409                         cmd->se_ordered_id);
3410         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3411                 atomic_dec(&dev->dev_hoq_count);
3412                 smp_mb__after_atomic_dec();
3413                 dev->dev_cur_ordered_id++;
3414                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3415                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3416                         cmd->se_ordered_id);
3417         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3418                 spin_lock(&dev->ordered_cmd_lock);
3419                 list_del(&cmd->se_ordered_node);
3420                 atomic_dec(&dev->dev_ordered_sync);
3421                 smp_mb__after_atomic_dec();
3422                 spin_unlock(&dev->ordered_cmd_lock);
3423
3424                 dev->dev_cur_ordered_id++;
3425                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3426                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3427         }
3428         /*
3429          * Process all commands up to the last received
3430          * ORDERED task attribute which requires another blocking
3431          * boundary
3432          */
3433         spin_lock(&dev->delayed_cmd_lock);
3434         list_for_each_entry_safe(cmd_p, cmd_tmp,
3435                         &dev->delayed_cmd_list, se_delayed_node) {
3436
3437                 list_del(&cmd_p->se_delayed_node);
3438                 spin_unlock(&dev->delayed_cmd_lock);
3439
3440                 pr_debug("Calling add_tasks() for"
3441                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3442                         " Dormant -> Active, se_ordered_id: %u\n",
3443                         cmd_p->t_task_cdb[0],
3444                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3445
3446                 transport_add_tasks_from_cmd(cmd_p);
3447                 new_active_tasks++;
3448
3449                 spin_lock(&dev->delayed_cmd_lock);
3450                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3451                         break;
3452         }
3453         spin_unlock(&dev->delayed_cmd_lock);
3454         /*
3455          * If new tasks have become active, wake up the transport thread
3456          * to do the processing of the Active tasks.
3457          */
3458         if (new_active_tasks != 0)
3459                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3460 }
3461
3462 static int transport_complete_qf(struct se_cmd *cmd)
3463 {
3464         int ret = 0;
3465
3466         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3467                 return cmd->se_tfo->queue_status(cmd);
3468
3469         switch (cmd->data_direction) {
3470         case DMA_FROM_DEVICE:
3471                 ret = cmd->se_tfo->queue_data_in(cmd);
3472                 break;
3473         case DMA_TO_DEVICE:
3474                 if (cmd->t_bidi_data_sg) {
3475                         ret = cmd->se_tfo->queue_data_in(cmd);
3476                         if (ret < 0)
3477                                 return ret;
3478                 }
3479                 /* Fall through for DMA_TO_DEVICE */
3480         case DMA_NONE:
3481                 ret = cmd->se_tfo->queue_status(cmd);
3482                 break;
3483         default:
3484                 break;
3485         }
3486
3487         return ret;
3488 }
3489
3490 static void transport_handle_queue_full(
3491         struct se_cmd *cmd,
3492         struct se_device *dev,
3493         int (*qf_callback)(struct se_cmd *))
3494 {
3495         spin_lock_irq(&dev->qf_cmd_lock);
3496         cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3497         cmd->transport_qf_callback = qf_callback;
3498         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3499         atomic_inc(&dev->dev_qf_count);
3500         smp_mb__after_atomic_inc();
3501         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3502
3503         schedule_work(&cmd->se_dev->qf_work_queue);
3504 }
3505
3506 static void transport_generic_complete_ok(struct se_cmd *cmd)
3507 {
3508         int reason = 0, ret;
3509         /*
3510          * Check if we need to move delayed/dormant tasks from cmds on the
3511          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3512          * Attribute.
3513          */
3514         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3515                 transport_complete_task_attr(cmd);
3516         /*
3517          * Check to schedule QUEUE_FULL work, or execute an existing
3518          * cmd->transport_qf_callback()
3519          */
3520         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3521                 schedule_work(&cmd->se_dev->qf_work_queue);
3522
3523         if (cmd->transport_qf_callback) {
3524                 ret = cmd->transport_qf_callback(cmd);
3525                 if (ret < 0)
3526                         goto queue_full;
3527
3528                 cmd->transport_qf_callback = NULL;
3529                 goto done;
3530         }
3531         /*
3532          * Check if we need to retrieve a sense buffer from
3533          * the struct se_cmd in question.
3534          */
3535         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3536                 if (transport_get_sense_data(cmd) < 0)
3537                         reason = TCM_NON_EXISTENT_LUN;
3538
3539                 /*
3540                  * Only set when an struct se_task->task_scsi_status returned
3541                  * a non GOOD status.
3542                  */
3543                 if (cmd->scsi_status) {
3544                         ret = transport_send_check_condition_and_sense(
3545                                         cmd, reason, 1);
3546                         if (ret == -EAGAIN)
3547                                 goto queue_full;
3548
3549                         transport_lun_remove_cmd(cmd);
3550                         transport_cmd_check_stop_to_fabric(cmd);
3551                         return;
3552                 }
3553         }
3554         /*
3555          * Check for a callback, used by amongst other things
3556          * XDWRITE_READ_10 emulation.
3557          */
3558         if (cmd->transport_complete_callback)
3559                 cmd->transport_complete_callback(cmd);
3560
3561         switch (cmd->data_direction) {
3562         case DMA_FROM_DEVICE:
3563                 spin_lock(&cmd->se_lun->lun_sep_lock);
3564                 if (cmd->se_lun->lun_sep) {
3565                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3566                                         cmd->data_length;
3567                 }
3568                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3569
3570                 ret = cmd->se_tfo->queue_data_in(cmd);
3571                 if (ret == -EAGAIN)
3572                         goto queue_full;
3573                 break;
3574         case DMA_TO_DEVICE:
3575                 spin_lock(&cmd->se_lun->lun_sep_lock);
3576                 if (cmd->se_lun->lun_sep) {
3577                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3578                                 cmd->data_length;
3579                 }
3580                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3581                 /*
3582                  * Check if we need to send READ payload for BIDI-COMMAND
3583                  */
3584                 if (cmd->t_bidi_data_sg) {
3585                         spin_lock(&cmd->se_lun->lun_sep_lock);
3586                         if (cmd->se_lun->lun_sep) {
3587                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3588                                         cmd->data_length;
3589                         }
3590                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3591                         ret = cmd->se_tfo->queue_data_in(cmd);
3592                         if (ret == -EAGAIN)
3593                                 goto queue_full;
3594                         break;
3595                 }
3596                 /* Fall through for DMA_TO_DEVICE */
3597         case DMA_NONE:
3598                 ret = cmd->se_tfo->queue_status(cmd);
3599                 if (ret == -EAGAIN)
3600                         goto queue_full;
3601                 break;
3602         default:
3603                 break;
3604         }
3605
3606 done:
3607         transport_lun_remove_cmd(cmd);
3608         transport_cmd_check_stop_to_fabric(cmd);
3609         return;
3610
3611 queue_full:
3612         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3613                 " data_direction: %d\n", cmd, cmd->data_direction);
3614         transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3615 }
3616
3617 static void transport_free_dev_tasks(struct se_cmd *cmd)
3618 {
3619         struct se_task *task, *task_tmp;
3620         unsigned long flags;
3621
3622         spin_lock_irqsave(&cmd->t_state_lock, flags);
3623         list_for_each_entry_safe(task, task_tmp,
3624                                 &cmd->t_task_list, t_list) {
3625                 if (atomic_read(&task->task_active))
3626                         continue;
3627
3628                 kfree(task->task_sg_bidi);
3629                 kfree(task->task_sg);
3630
3631                 list_del(&task->t_list);
3632
3633                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3634                 if (task->se_dev)
3635                         task->se_dev->transport->free_task(task);
3636                 else
3637                         pr_err("task[%u] - task->se_dev is NULL\n",
3638                                 task->task_no);
3639                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3640         }
3641         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3642 }
3643
3644 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3645 {
3646         struct scatterlist *sg;
3647         int count;
3648
3649         for_each_sg(sgl, sg, nents, count)
3650                 __free_page(sg_page(sg));
3651
3652         kfree(sgl);
3653 }
3654
3655 static inline void transport_free_pages(struct se_cmd *cmd)
3656 {
3657         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3658                 return;
3659
3660         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3661         cmd->t_data_sg = NULL;
3662         cmd->t_data_nents = 0;
3663
3664         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3665         cmd->t_bidi_data_sg = NULL;
3666         cmd->t_bidi_data_nents = 0;
3667 }
3668
3669 /**
3670  * transport_put_cmd - release a reference to a command
3671  * @cmd:       command to release
3672  *
3673  * This routine releases our reference to the command and frees it if possible.
3674  */
3675 static void transport_put_cmd(struct se_cmd *cmd)
3676 {
3677         unsigned long flags;
3678         int free_tasks = 0;
3679
3680         spin_lock_irqsave(&cmd->t_state_lock, flags);
3681         if (atomic_read(&cmd->t_fe_count)) {
3682                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3683                         goto out_busy;
3684         }
3685
3686         if (atomic_read(&cmd->t_se_count)) {
3687                 if (!atomic_dec_and_test(&cmd->t_se_count))
3688                         goto out_busy;
3689         }
3690
3691         if (atomic_read(&cmd->transport_dev_active)) {
3692                 atomic_set(&cmd->transport_dev_active, 0);
3693                 transport_all_task_dev_remove_state(cmd);
3694                 free_tasks = 1;
3695         }
3696         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3697
3698         if (free_tasks != 0)
3699                 transport_free_dev_tasks(cmd);
3700
3701         transport_free_pages(cmd);
3702         transport_release_cmd(cmd);
3703         return;
3704 out_busy:
3705         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3706 }
3707
3708 /*
3709  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3710  * allocating in the core.
3711  * @cmd:  Associated se_cmd descriptor
3712  * @mem:  SGL style memory for TCM WRITE / READ
3713  * @sg_mem_num: Number of SGL elements
3714  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3715  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3716  *
3717  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3718  * of parameters.
3719  */
3720 int transport_generic_map_mem_to_cmd(
3721         struct se_cmd *cmd,
3722         struct scatterlist *sgl,
3723         u32 sgl_count,
3724         struct scatterlist *sgl_bidi,
3725         u32 sgl_bidi_count)
3726 {
3727         if (!sgl || !sgl_count)
3728                 return 0;
3729
3730         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3731             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3732
3733                 cmd->t_data_sg = sgl;
3734                 cmd->t_data_nents = sgl_count;
3735
3736                 if (sgl_bidi && sgl_bidi_count) {
3737                         cmd->t_bidi_data_sg = sgl_bidi;
3738                         cmd->t_bidi_data_nents = sgl_bidi_count;
3739                 }
3740                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3741         }
3742
3743         return 0;
3744 }
3745 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3746
3747 static int transport_new_cmd_obj(struct se_cmd *cmd)
3748 {
3749         struct se_device *dev = cmd->se_dev;
3750         int set_counts = 1, rc, task_cdbs;
3751
3752         /*
3753          * Setup any BIDI READ tasks and memory from
3754          * cmd->t_mem_bidi_list so the READ struct se_tasks
3755          * are queued first for the non pSCSI passthrough case.
3756          */
3757         if (cmd->t_bidi_data_sg &&
3758             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3759                 rc = transport_allocate_tasks(cmd,
3760                                               cmd->t_task_lba,
3761                                               DMA_FROM_DEVICE,
3762                                               cmd->t_bidi_data_sg,
3763                                               cmd->t_bidi_data_nents);
3764                 if (rc <= 0) {
3765                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3766                         cmd->scsi_sense_reason =
3767                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3768                         return -EINVAL;
3769                 }
3770                 atomic_inc(&cmd->t_fe_count);
3771                 atomic_inc(&cmd->t_se_count);
3772                 set_counts = 0;
3773         }
3774         /*
3775          * Setup the tasks and memory from cmd->t_mem_list
3776          * Note for BIDI transfers this will contain the WRITE payload
3777          */
3778         task_cdbs = transport_allocate_tasks(cmd,
3779                                              cmd->t_task_lba,
3780                                              cmd->data_direction,
3781                                              cmd->t_data_sg,
3782                                              cmd->t_data_nents);
3783         if (task_cdbs <= 0) {
3784                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3785                 cmd->scsi_sense_reason =
3786                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3787                 return -EINVAL;
3788         }
3789
3790         if (set_counts) {
3791                 atomic_inc(&cmd->t_fe_count);
3792                 atomic_inc(&cmd->t_se_count);
3793         }
3794
3795         cmd->t_task_list_num = task_cdbs;
3796
3797         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3798         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3799         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3800         return 0;
3801 }
3802
3803 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3804 {
3805         struct scatterlist *sg = cmd->t_data_sg;
3806
3807         BUG_ON(!sg);
3808         /*
3809          * We need to take into account a possible offset here for fabrics like
3810          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3811          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3812          */
3813         return kmap(sg_page(sg)) + sg->offset;
3814 }
3815 EXPORT_SYMBOL(transport_kmap_first_data_page);
3816
3817 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3818 {
3819         kunmap(sg_page(cmd->t_data_sg));
3820 }
3821 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3822
3823 static int
3824 transport_generic_get_mem(struct se_cmd *cmd)
3825 {
3826         u32 length = cmd->data_length;
3827         unsigned int nents;
3828         struct page *page;
3829         int i = 0;
3830
3831         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3832         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3833         if (!cmd->t_data_sg)
3834                 return -ENOMEM;
3835
3836         cmd->t_data_nents = nents;
3837         sg_init_table(cmd->t_data_sg, nents);
3838
3839         while (length) {
3840                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3841                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3842                 if (!page)
3843                         goto out;
3844
3845                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3846                 length -= page_len;
3847                 i++;
3848         }
3849         return 0;
3850
3851 out:
3852         while (i >= 0) {
3853                 __free_page(sg_page(&cmd->t_data_sg[i]));
3854                 i--;
3855         }
3856         kfree(cmd->t_data_sg);
3857         cmd->t_data_sg = NULL;
3858         return -ENOMEM;
3859 }
3860
3861 /* Reduce sectors if they are too long for the device */
3862 static inline sector_t transport_limit_task_sectors(
3863         struct se_device *dev,
3864         unsigned long long lba,
3865         sector_t sectors)
3866 {
3867         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3868
3869         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3870                 if ((lba + sectors) > transport_dev_end_lba(dev))
3871                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3872
3873         return sectors;
3874 }
3875
3876
3877 /*
3878  * This function can be used by HW target mode drivers to create a linked
3879  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3880  * This is intended to be called during the completion path by TCM Core
3881  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3882  */
3883 void transport_do_task_sg_chain(struct se_cmd *cmd)
3884 {
3885         struct scatterlist *sg_first = NULL;
3886         struct scatterlist *sg_prev = NULL;
3887         int sg_prev_nents = 0;
3888         struct scatterlist *sg;
3889         struct se_task *task;
3890         u32 chained_nents = 0;
3891         int i;
3892
3893         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3894
3895         /*
3896          * Walk the struct se_task list and setup scatterlist chains
3897          * for each contiguously allocated struct se_task->task_sg[].
3898          */
3899         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3900                 if (!task->task_sg)
3901                         continue;
3902
3903                 if (!sg_first) {
3904                         sg_first = task->task_sg;
3905                         chained_nents = task->task_sg_nents;
3906                 } else {
3907                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3908                         chained_nents += task->task_sg_nents;
3909                 }
3910                 /*
3911                  * For the padded tasks, use the extra SGL vector allocated
3912                  * in transport_allocate_data_tasks() for the sg_prev_nents
3913                  * offset into sg_chain() above..  The last task of a
3914                  * multi-task list, or a single task will not have
3915                  * task->task_sg_padded set..
3916                  */
3917                 if (task->task_padded_sg)
3918                         sg_prev_nents = (task->task_sg_nents + 1);
3919                 else
3920                         sg_prev_nents = task->task_sg_nents;
3921
3922                 sg_prev = task->task_sg;
3923         }
3924         /*
3925          * Setup the starting pointer and total t_tasks_sg_linked_no including
3926          * padding SGs for linking and to mark the end.
3927          */
3928         cmd->t_tasks_sg_chained = sg_first;
3929         cmd->t_tasks_sg_chained_no = chained_nents;
3930
3931         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3932                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3933                 cmd->t_tasks_sg_chained_no);
3934
3935         for_each_sg(cmd->t_tasks_sg_chained, sg,
3936                         cmd->t_tasks_sg_chained_no, i) {
3937
3938                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3939                         i, sg, sg_page(sg), sg->length, sg->offset);
3940                 if (sg_is_chain(sg))
3941                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3942                 if (sg_is_last(sg))
3943                         pr_debug("SG: %p sg_is_last=1\n", sg);
3944         }
3945 }
3946 EXPORT_SYMBOL(transport_do_task_sg_chain);
3947
3948 /*
3949  * Break up cmd into chunks transport can handle
3950  */
3951 static int transport_allocate_data_tasks(
3952         struct se_cmd *cmd,
3953         unsigned long long lba,
3954         enum dma_data_direction data_direction,
3955         struct scatterlist *sgl,
3956         unsigned int sgl_nents)
3957 {
3958         unsigned char *cdb = NULL;
3959         struct se_task *task;
3960         struct se_device *dev = cmd->se_dev;
3961         unsigned long flags;
3962         int task_count, i;
3963         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3964         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3965         struct scatterlist *sg;
3966         struct scatterlist *cmd_sg;
3967
3968         WARN_ON(cmd->data_length % sector_size);
3969         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3970         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3971         
3972         cmd_sg = sgl;
3973         for (i = 0; i < task_count; i++) {
3974                 unsigned int task_size, task_sg_nents_padded;
3975                 int count;
3976
3977                 task = transport_generic_get_task(cmd, data_direction);
3978                 if (!task)
3979                         return -ENOMEM;
3980
3981                 task->task_lba = lba;
3982                 task->task_sectors = min(sectors, dev_max_sectors);
3983                 task->task_size = task->task_sectors * sector_size;
3984
3985                 cdb = dev->transport->get_cdb(task);
3986                 BUG_ON(!cdb);
3987
3988                 memcpy(cdb, cmd->t_task_cdb,
3989                        scsi_command_size(cmd->t_task_cdb));
3990
3991                 /* Update new cdb with updated lba/sectors */
3992                 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
3993                 /*
3994                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3995                  * in order to calculate the number per task SGL entries
3996                  */
3997                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3998                 /*
3999                  * Check if the fabric module driver is requesting that all
4000                  * struct se_task->task_sg[] be chained together..  If so,
4001                  * then allocate an extra padding SG entry for linking and
4002                  * marking the end of the chained SGL for every task except
4003                  * the last one for (task_count > 1) operation, or skipping
4004                  * the extra padding for the (task_count == 1) case.
4005                  */
4006                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4007                         task_sg_nents_padded = (task->task_sg_nents + 1);
4008                         task->task_padded_sg = 1;
4009                 } else
4010                         task_sg_nents_padded = task->task_sg_nents;
4011
4012                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4013                                         task_sg_nents_padded, GFP_KERNEL);
4014                 if (!task->task_sg) {
4015                         cmd->se_dev->transport->free_task(task);
4016                         return -ENOMEM;
4017                 }
4018
4019                 sg_init_table(task->task_sg, task_sg_nents_padded);
4020
4021                 task_size = task->task_size;
4022
4023                 /* Build new sgl, only up to task_size */
4024                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4025                         if (cmd_sg->length > task_size)
4026                                 break;
4027
4028                         *sg = *cmd_sg;
4029                         task_size -= cmd_sg->length;
4030                         cmd_sg = sg_next(cmd_sg);
4031                 }
4032
4033                 lba += task->task_sectors;
4034                 sectors -= task->task_sectors;
4035
4036                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4037                 list_add_tail(&task->t_list, &cmd->t_task_list);
4038                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4039         }
4040
4041         return task_count;
4042 }
4043
4044 static int
4045 transport_allocate_control_task(struct se_cmd *cmd)
4046 {
4047         struct se_device *dev = cmd->se_dev;
4048         unsigned char *cdb;
4049         struct se_task *task;
4050         unsigned long flags;
4051
4052         task = transport_generic_get_task(cmd, cmd->data_direction);
4053         if (!task)
4054                 return -ENOMEM;
4055
4056         cdb = dev->transport->get_cdb(task);
4057         BUG_ON(!cdb);
4058         memcpy(cdb, cmd->t_task_cdb,
4059                scsi_command_size(cmd->t_task_cdb));
4060
4061         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4062                                 GFP_KERNEL);
4063         if (!task->task_sg) {
4064                 cmd->se_dev->transport->free_task(task);
4065                 return -ENOMEM;
4066         }
4067
4068         memcpy(task->task_sg, cmd->t_data_sg,
4069                sizeof(struct scatterlist) * cmd->t_data_nents);
4070         task->task_size = cmd->data_length;
4071         task->task_sg_nents = cmd->t_data_nents;
4072
4073         spin_lock_irqsave(&cmd->t_state_lock, flags);
4074         list_add_tail(&task->t_list, &cmd->t_task_list);
4075         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4076
4077         /* Success! Return number of tasks allocated */
4078         return 1;
4079 }
4080
4081 static u32 transport_allocate_tasks(
4082         struct se_cmd *cmd,
4083         unsigned long long lba,
4084         enum dma_data_direction data_direction,
4085         struct scatterlist *sgl,
4086         unsigned int sgl_nents)
4087 {
4088         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4089                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4090                         return -EINVAL;
4091
4092                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4093                                                      sgl, sgl_nents);
4094         } else
4095                 return transport_allocate_control_task(cmd);
4096
4097 }
4098
4099
4100 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4101  *
4102  *       Allocate storage transport resources from a set of values predefined
4103  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4104  *       Any non zero return here is treated as an "out of resource' op here.
4105  */
4106         /*
4107          * Generate struct se_task(s) and/or their payloads for this CDB.
4108          */
4109 int transport_generic_new_cmd(struct se_cmd *cmd)
4110 {
4111         int ret = 0;
4112
4113         /*
4114          * Determine is the TCM fabric module has already allocated physical
4115          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4116          * beforehand.
4117          */
4118         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4119             cmd->data_length) {
4120                 ret = transport_generic_get_mem(cmd);
4121                 if (ret < 0)
4122                         return ret;
4123         }
4124         /*
4125          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4126          * control or data CDB types, and perform the map to backend subsystem
4127          * code from SGL memory allocated here by transport_generic_get_mem(), or
4128          * via pre-existing SGL memory setup explictly by fabric module code with
4129          * transport_generic_map_mem_to_cmd().
4130          */
4131         ret = transport_new_cmd_obj(cmd);
4132         if (ret < 0)
4133                 return ret;
4134         /*
4135          * For WRITEs, let the fabric know its buffer is ready..
4136          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4137          * will be added to the struct se_device execution queue after its WRITE
4138          * data has arrived. (ie: It gets handled by the transport processing
4139          * thread a second time)
4140          */
4141         if (cmd->data_direction == DMA_TO_DEVICE) {
4142                 transport_add_tasks_to_state_queue(cmd);
4143                 return transport_generic_write_pending(cmd);
4144         }
4145         /*
4146          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4147          * to the execution queue.
4148          */
4149         transport_execute_tasks(cmd);
4150         return 0;
4151 }
4152 EXPORT_SYMBOL(transport_generic_new_cmd);
4153
4154 /*      transport_generic_process_write():
4155  *
4156  *
4157  */
4158 void transport_generic_process_write(struct se_cmd *cmd)
4159 {
4160         transport_execute_tasks(cmd);
4161 }
4162 EXPORT_SYMBOL(transport_generic_process_write);
4163
4164 static int transport_write_pending_qf(struct se_cmd *cmd)
4165 {
4166         return cmd->se_tfo->write_pending(cmd);
4167 }
4168
4169 /*      transport_generic_write_pending():
4170  *
4171  *
4172  */
4173 static int transport_generic_write_pending(struct se_cmd *cmd)
4174 {
4175         unsigned long flags;
4176         int ret;
4177
4178         spin_lock_irqsave(&cmd->t_state_lock, flags);
4179         cmd->t_state = TRANSPORT_WRITE_PENDING;
4180         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4181
4182         if (cmd->transport_qf_callback) {
4183                 ret = cmd->transport_qf_callback(cmd);
4184                 if (ret == -EAGAIN)
4185                         goto queue_full;
4186                 else if (ret < 0)
4187                         return ret;
4188
4189                 cmd->transport_qf_callback = NULL;
4190                 return 0;
4191         }
4192
4193         /*
4194          * Clear the se_cmd for WRITE_PENDING status in order to set
4195          * cmd->t_transport_active=0 so that transport_generic_handle_data
4196          * can be called from HW target mode interrupt code.  This is safe
4197          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4198          * because the se_cmd->se_lun pointer is not being cleared.
4199          */
4200         transport_cmd_check_stop(cmd, 1, 0);
4201
4202         /*
4203          * Call the fabric write_pending function here to let the
4204          * frontend know that WRITE buffers are ready.
4205          */
4206         ret = cmd->se_tfo->write_pending(cmd);
4207         if (ret == -EAGAIN)
4208                 goto queue_full;
4209         else if (ret < 0)
4210                 return ret;
4211
4212         return PYX_TRANSPORT_WRITE_PENDING;
4213
4214 queue_full:
4215         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4216         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4217         transport_handle_queue_full(cmd, cmd->se_dev,
4218                         transport_write_pending_qf);
4219         return ret;
4220 }
4221
4222 /**
4223  * transport_release_cmd - free a command
4224  * @cmd:       command to free
4225  *
4226  * This routine unconditionally frees a command, and reference counting
4227  * or list removal must be done in the caller.
4228  */
4229 void transport_release_cmd(struct se_cmd *cmd)
4230 {
4231         BUG_ON(!cmd->se_tfo);
4232
4233         if (cmd->se_tmr_req)
4234                 core_tmr_release_req(cmd->se_tmr_req);
4235         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4236                 kfree(cmd->t_task_cdb);
4237         cmd->se_tfo->release_cmd(cmd);
4238 }
4239 EXPORT_SYMBOL(transport_release_cmd);
4240
4241 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4242 {
4243         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4244                 if (wait_for_tasks && cmd->se_tmr_req)
4245                          transport_wait_for_tasks(cmd);
4246
4247                 transport_release_cmd(cmd);
4248         } else {
4249                 if (wait_for_tasks)
4250                         transport_wait_for_tasks(cmd);
4251
4252                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4253
4254                 if (cmd->se_lun)
4255                         transport_lun_remove_cmd(cmd);
4256
4257                 transport_free_dev_tasks(cmd);
4258
4259                 transport_put_cmd(cmd);
4260         }
4261 }
4262 EXPORT_SYMBOL(transport_generic_free_cmd);
4263
4264 /*      transport_lun_wait_for_tasks():
4265  *
4266  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4267  *      an struct se_lun to be successfully shutdown.
4268  */
4269 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4270 {
4271         unsigned long flags;
4272         int ret;
4273         /*
4274          * If the frontend has already requested this struct se_cmd to
4275          * be stopped, we can safely ignore this struct se_cmd.
4276          */
4277         spin_lock_irqsave(&cmd->t_state_lock, flags);
4278         if (atomic_read(&cmd->t_transport_stop)) {
4279                 atomic_set(&cmd->transport_lun_stop, 0);
4280                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4281                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4282                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4283                 transport_cmd_check_stop(cmd, 1, 0);
4284                 return -EPERM;
4285         }
4286         atomic_set(&cmd->transport_lun_fe_stop, 1);
4287         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4288
4289         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4290
4291         ret = transport_stop_tasks_for_cmd(cmd);
4292
4293         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4294                         " %d\n", cmd, cmd->t_task_list_num, ret);
4295         if (!ret) {
4296                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4297                                 cmd->se_tfo->get_task_tag(cmd));
4298                 wait_for_completion(&cmd->transport_lun_stop_comp);
4299                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4300                                 cmd->se_tfo->get_task_tag(cmd));
4301         }
4302         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4303
4304         return 0;
4305 }
4306
4307 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4308 {
4309         struct se_cmd *cmd = NULL;
4310         unsigned long lun_flags, cmd_flags;
4311         /*
4312          * Do exception processing and return CHECK_CONDITION status to the
4313          * Initiator Port.
4314          */
4315         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4316         while (!list_empty(&lun->lun_cmd_list)) {
4317                 cmd = list_first_entry(&lun->lun_cmd_list,
4318                        struct se_cmd, se_lun_node);
4319                 list_del(&cmd->se_lun_node);
4320
4321                 atomic_set(&cmd->transport_lun_active, 0);
4322                 /*
4323                  * This will notify iscsi_target_transport.c:
4324                  * transport_cmd_check_stop() that a LUN shutdown is in
4325                  * progress for the iscsi_cmd_t.
4326                  */
4327                 spin_lock(&cmd->t_state_lock);
4328                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4329                         "_lun_stop for  ITT: 0x%08x\n",
4330                         cmd->se_lun->unpacked_lun,
4331                         cmd->se_tfo->get_task_tag(cmd));
4332                 atomic_set(&cmd->transport_lun_stop, 1);
4333                 spin_unlock(&cmd->t_state_lock);
4334
4335                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4336
4337                 if (!cmd->se_lun) {
4338                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4339                                 cmd->se_tfo->get_task_tag(cmd),
4340                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4341                         BUG();
4342                 }
4343                 /*
4344                  * If the Storage engine still owns the iscsi_cmd_t, determine
4345                  * and/or stop its context.
4346                  */
4347                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4348                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4349                         cmd->se_tfo->get_task_tag(cmd));
4350
4351                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4352                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4353                         continue;
4354                 }
4355
4356                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4357                         "_wait_for_tasks(): SUCCESS\n",
4358                         cmd->se_lun->unpacked_lun,
4359                         cmd->se_tfo->get_task_tag(cmd));
4360
4361                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4362                 if (!atomic_read(&cmd->transport_dev_active)) {
4363                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4364                         goto check_cond;
4365                 }
4366                 atomic_set(&cmd->transport_dev_active, 0);
4367                 transport_all_task_dev_remove_state(cmd);
4368                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4369
4370                 transport_free_dev_tasks(cmd);
4371                 /*
4372                  * The Storage engine stopped this struct se_cmd before it was
4373                  * send to the fabric frontend for delivery back to the
4374                  * Initiator Node.  Return this SCSI CDB back with an
4375                  * CHECK_CONDITION status.
4376                  */
4377 check_cond:
4378                 transport_send_check_condition_and_sense(cmd,
4379                                 TCM_NON_EXISTENT_LUN, 0);
4380                 /*
4381                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4382                  * be released, notify the waiting thread now that LU has
4383                  * finished accessing it.
4384                  */
4385                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4386                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4387                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4388                                 " struct se_cmd: %p ITT: 0x%08x\n",
4389                                 lun->unpacked_lun,
4390                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4391
4392                         spin_unlock_irqrestore(&cmd->t_state_lock,
4393                                         cmd_flags);
4394                         transport_cmd_check_stop(cmd, 1, 0);
4395                         complete(&cmd->transport_lun_fe_stop_comp);
4396                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4397                         continue;
4398                 }
4399                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4400                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4401
4402                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4403                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4404         }
4405         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4406 }
4407
4408 static int transport_clear_lun_thread(void *p)
4409 {
4410         struct se_lun *lun = (struct se_lun *)p;
4411
4412         __transport_clear_lun_from_sessions(lun);
4413         complete(&lun->lun_shutdown_comp);
4414
4415         return 0;
4416 }
4417
4418 int transport_clear_lun_from_sessions(struct se_lun *lun)
4419 {
4420         struct task_struct *kt;
4421
4422         kt = kthread_run(transport_clear_lun_thread, lun,
4423                         "tcm_cl_%u", lun->unpacked_lun);
4424         if (IS_ERR(kt)) {
4425                 pr_err("Unable to start clear_lun thread\n");
4426                 return PTR_ERR(kt);
4427         }
4428         wait_for_completion(&lun->lun_shutdown_comp);
4429
4430         return 0;
4431 }
4432
4433 /**
4434  * transport_wait_for_tasks - wait for completion to occur
4435  * @cmd:        command to wait
4436  *
4437  * Called from frontend fabric context to wait for storage engine
4438  * to pause and/or release frontend generated struct se_cmd.
4439  */
4440 void transport_wait_for_tasks(struct se_cmd *cmd)
4441 {
4442         unsigned long flags;
4443
4444         spin_lock_irqsave(&cmd->t_state_lock, flags);
4445         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4446                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4447                 return;
4448         }
4449         /*
4450          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4451          * has been set in transport_set_supported_SAM_opcode().
4452          */
4453         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4454                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4455                 return;
4456         }
4457         /*
4458          * If we are already stopped due to an external event (ie: LUN shutdown)
4459          * sleep until the connection can have the passed struct se_cmd back.
4460          * The cmd->transport_lun_stopped_sem will be upped by
4461          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4462          * has completed its operation on the struct se_cmd.
4463          */
4464         if (atomic_read(&cmd->transport_lun_stop)) {
4465
4466                 pr_debug("wait_for_tasks: Stopping"
4467                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4468                         "_stop_comp); for ITT: 0x%08x\n",
4469                         cmd->se_tfo->get_task_tag(cmd));
4470                 /*
4471                  * There is a special case for WRITES where a FE exception +
4472                  * LUN shutdown means ConfigFS context is still sleeping on
4473                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4474                  * We go ahead and up transport_lun_stop_comp just to be sure
4475                  * here.
4476                  */
4477                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4478                 complete(&cmd->transport_lun_stop_comp);
4479                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4480                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4481
4482                 transport_all_task_dev_remove_state(cmd);
4483                 /*
4484                  * At this point, the frontend who was the originator of this
4485                  * struct se_cmd, now owns the structure and can be released through
4486                  * normal means below.
4487                  */
4488                 pr_debug("wait_for_tasks: Stopped"
4489                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4490                         "stop_comp); for ITT: 0x%08x\n",
4491                         cmd->se_tfo->get_task_tag(cmd));
4492
4493                 atomic_set(&cmd->transport_lun_stop, 0);
4494         }
4495         if (!atomic_read(&cmd->t_transport_active) ||
4496              atomic_read(&cmd->t_transport_aborted)) {
4497                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4498                 return;
4499         }
4500
4501         atomic_set(&cmd->t_transport_stop, 1);
4502
4503         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4504                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4505                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4506                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4507                 cmd->deferred_t_state);
4508
4509         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510
4511         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4512
4513         wait_for_completion(&cmd->t_transport_stop_comp);
4514
4515         spin_lock_irqsave(&cmd->t_state_lock, flags);
4516         atomic_set(&cmd->t_transport_active, 0);
4517         atomic_set(&cmd->t_transport_stop, 0);
4518
4519         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4520                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4521                 cmd->se_tfo->get_task_tag(cmd));
4522
4523         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4524 }
4525 EXPORT_SYMBOL(transport_wait_for_tasks);
4526
4527 static int transport_get_sense_codes(
4528         struct se_cmd *cmd,
4529         u8 *asc,
4530         u8 *ascq)
4531 {
4532         *asc = cmd->scsi_asc;
4533         *ascq = cmd->scsi_ascq;
4534
4535         return 0;
4536 }
4537
4538 static int transport_set_sense_codes(
4539         struct se_cmd *cmd,
4540         u8 asc,
4541         u8 ascq)
4542 {
4543         cmd->scsi_asc = asc;
4544         cmd->scsi_ascq = ascq;
4545
4546         return 0;
4547 }
4548
4549 int transport_send_check_condition_and_sense(
4550         struct se_cmd *cmd,
4551         u8 reason,
4552         int from_transport)
4553 {
4554         unsigned char *buffer = cmd->sense_buffer;
4555         unsigned long flags;
4556         int offset;
4557         u8 asc = 0, ascq = 0;
4558
4559         spin_lock_irqsave(&cmd->t_state_lock, flags);
4560         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4561                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4562                 return 0;
4563         }
4564         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4565         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4566
4567         if (!reason && from_transport)
4568                 goto after_reason;
4569
4570         if (!from_transport)
4571                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4572         /*
4573          * Data Segment and SenseLength of the fabric response PDU.
4574          *
4575          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4576          * from include/scsi/scsi_cmnd.h
4577          */
4578         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4579                                 TRANSPORT_SENSE_BUFFER);
4580         /*
4581          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4582          * SENSE KEY values from include/scsi/scsi.h
4583          */
4584         switch (reason) {
4585         case TCM_NON_EXISTENT_LUN:
4586                 /* CURRENT ERROR */
4587                 buffer[offset] = 0x70;
4588                 /* ILLEGAL REQUEST */
4589                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4590                 /* LOGICAL UNIT NOT SUPPORTED */
4591                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4592                 break;
4593         case TCM_UNSUPPORTED_SCSI_OPCODE:
4594         case TCM_SECTOR_COUNT_TOO_MANY:
4595                 /* CURRENT ERROR */
4596                 buffer[offset] = 0x70;
4597                 /* ILLEGAL REQUEST */
4598                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4599                 /* INVALID COMMAND OPERATION CODE */
4600                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4601                 break;
4602         case TCM_UNKNOWN_MODE_PAGE:
4603                 /* CURRENT ERROR */
4604                 buffer[offset] = 0x70;
4605                 /* ILLEGAL REQUEST */
4606                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4607                 /* INVALID FIELD IN CDB */
4608                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4609                 break;
4610         case TCM_CHECK_CONDITION_ABORT_CMD:
4611                 /* CURRENT ERROR */
4612                 buffer[offset] = 0x70;
4613                 /* ABORTED COMMAND */
4614                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4615                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4616                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4617                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4618                 break;
4619         case TCM_INCORRECT_AMOUNT_OF_DATA:
4620                 /* CURRENT ERROR */
4621                 buffer[offset] = 0x70;
4622                 /* ABORTED COMMAND */
4623                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4624                 /* WRITE ERROR */
4625                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4626                 /* NOT ENOUGH UNSOLICITED DATA */
4627                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4628                 break;
4629         case TCM_INVALID_CDB_FIELD:
4630                 /* CURRENT ERROR */
4631                 buffer[offset] = 0x70;
4632                 /* ABORTED COMMAND */
4633                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4634                 /* INVALID FIELD IN CDB */
4635                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4636                 break;
4637         case TCM_INVALID_PARAMETER_LIST:
4638                 /* CURRENT ERROR */
4639                 buffer[offset] = 0x70;
4640                 /* ABORTED COMMAND */
4641                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4642                 /* INVALID FIELD IN PARAMETER LIST */
4643                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4644                 break;
4645         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4646                 /* CURRENT ERROR */
4647                 buffer[offset] = 0x70;
4648                 /* ABORTED COMMAND */
4649                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4650                 /* WRITE ERROR */
4651                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4652                 /* UNEXPECTED_UNSOLICITED_DATA */
4653                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4654                 break;
4655         case TCM_SERVICE_CRC_ERROR:
4656                 /* CURRENT ERROR */
4657                 buffer[offset] = 0x70;
4658                 /* ABORTED COMMAND */
4659                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4660                 /* PROTOCOL SERVICE CRC ERROR */
4661                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4662                 /* N/A */
4663                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4664                 break;
4665         case TCM_SNACK_REJECTED:
4666                 /* CURRENT ERROR */
4667                 buffer[offset] = 0x70;
4668                 /* ABORTED COMMAND */
4669                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4670                 /* READ ERROR */
4671                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4672                 /* FAILED RETRANSMISSION REQUEST */
4673                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4674                 break;
4675         case TCM_WRITE_PROTECTED:
4676                 /* CURRENT ERROR */
4677                 buffer[offset] = 0x70;
4678                 /* DATA PROTECT */
4679                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4680                 /* WRITE PROTECTED */
4681                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4682                 break;
4683         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4684                 /* CURRENT ERROR */
4685                 buffer[offset] = 0x70;
4686                 /* UNIT ATTENTION */
4687                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4688                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4689                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4690                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4691                 break;
4692         case TCM_CHECK_CONDITION_NOT_READY:
4693                 /* CURRENT ERROR */
4694                 buffer[offset] = 0x70;
4695                 /* Not Ready */
4696                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4697                 transport_get_sense_codes(cmd, &asc, &ascq);
4698                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4699                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4700                 break;
4701         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4702         default:
4703                 /* CURRENT ERROR */
4704                 buffer[offset] = 0x70;
4705                 /* ILLEGAL REQUEST */
4706                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4707                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4708                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4709                 break;
4710         }
4711         /*
4712          * This code uses linux/include/scsi/scsi.h SAM status codes!
4713          */
4714         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4715         /*
4716          * Automatically padded, this value is encoded in the fabric's
4717          * data_length response PDU containing the SCSI defined sense data.
4718          */
4719         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4720
4721 after_reason:
4722         return cmd->se_tfo->queue_status(cmd);
4723 }
4724 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4725
4726 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4727 {
4728         int ret = 0;
4729
4730         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4731                 if (!send_status ||
4732                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4733                         return 1;
4734 #if 0
4735                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4736                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4737                         cmd->t_task_cdb[0],
4738                         cmd->se_tfo->get_task_tag(cmd));
4739 #endif
4740                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4741                 cmd->se_tfo->queue_status(cmd);
4742                 ret = 1;
4743         }
4744         return ret;
4745 }
4746 EXPORT_SYMBOL(transport_check_aborted_status);
4747
4748 void transport_send_task_abort(struct se_cmd *cmd)
4749 {
4750         unsigned long flags;
4751
4752         spin_lock_irqsave(&cmd->t_state_lock, flags);
4753         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4754                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4755                 return;
4756         }
4757         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4758
4759         /*
4760          * If there are still expected incoming fabric WRITEs, we wait
4761          * until until they have completed before sending a TASK_ABORTED
4762          * response.  This response with TASK_ABORTED status will be
4763          * queued back to fabric module by transport_check_aborted_status().
4764          */
4765         if (cmd->data_direction == DMA_TO_DEVICE) {
4766                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4767                         atomic_inc(&cmd->t_transport_aborted);
4768                         smp_mb__after_atomic_inc();
4769                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4770                         transport_new_cmd_failure(cmd);
4771                         return;
4772                 }
4773         }
4774         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4775 #if 0
4776         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4777                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4778                 cmd->se_tfo->get_task_tag(cmd));
4779 #endif
4780         cmd->se_tfo->queue_status(cmd);
4781 }
4782
4783 /*      transport_generic_do_tmr():
4784  *
4785  *
4786  */
4787 int transport_generic_do_tmr(struct se_cmd *cmd)
4788 {
4789         struct se_device *dev = cmd->se_dev;
4790         struct se_tmr_req *tmr = cmd->se_tmr_req;
4791         int ret;
4792
4793         switch (tmr->function) {
4794         case TMR_ABORT_TASK:
4795                 tmr->response = TMR_FUNCTION_REJECTED;
4796                 break;
4797         case TMR_ABORT_TASK_SET:
4798         case TMR_CLEAR_ACA:
4799         case TMR_CLEAR_TASK_SET:
4800                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4801                 break;
4802         case TMR_LUN_RESET:
4803                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4804                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4805                                          TMR_FUNCTION_REJECTED;
4806                 break;
4807         case TMR_TARGET_WARM_RESET:
4808                 tmr->response = TMR_FUNCTION_REJECTED;
4809                 break;
4810         case TMR_TARGET_COLD_RESET:
4811                 tmr->response = TMR_FUNCTION_REJECTED;
4812                 break;
4813         default:
4814                 pr_err("Uknown TMR function: 0x%02x.\n",
4815                                 tmr->function);
4816                 tmr->response = TMR_FUNCTION_REJECTED;
4817                 break;
4818         }
4819
4820         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4821         cmd->se_tfo->queue_tm_rsp(cmd);
4822
4823         transport_cmd_check_stop(cmd, 2, 0);
4824         return 0;
4825 }
4826
4827 /*      transport_processing_thread():
4828  *
4829  *
4830  */
4831 static int transport_processing_thread(void *param)
4832 {
4833         int ret;
4834         struct se_cmd *cmd;
4835         struct se_device *dev = (struct se_device *) param;
4836
4837         set_user_nice(current, -20);
4838
4839         while (!kthread_should_stop()) {
4840                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4841                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4842                                 kthread_should_stop());
4843                 if (ret < 0)
4844                         goto out;
4845
4846 get_cmd:
4847                 __transport_execute_tasks(dev);
4848
4849                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4850                 if (!cmd)
4851                         continue;
4852
4853                 switch (cmd->t_state) {
4854                 case TRANSPORT_NEW_CMD:
4855                         BUG();
4856                         break;
4857                 case TRANSPORT_NEW_CMD_MAP:
4858                         if (!cmd->se_tfo->new_cmd_map) {
4859                                 pr_err("cmd->se_tfo->new_cmd_map is"
4860                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4861                                 BUG();
4862                         }
4863                         ret = cmd->se_tfo->new_cmd_map(cmd);
4864                         if (ret < 0) {
4865                                 cmd->transport_error_status = ret;
4866                                 transport_generic_request_failure(cmd, NULL,
4867                                                 0, (cmd->data_direction !=
4868                                                     DMA_TO_DEVICE));
4869                                 break;
4870                         }
4871                         ret = transport_generic_new_cmd(cmd);
4872                         if (ret == -EAGAIN)
4873                                 break;
4874                         else if (ret < 0) {
4875                                 cmd->transport_error_status = ret;
4876                                 transport_generic_request_failure(cmd, NULL,
4877                                         0, (cmd->data_direction !=
4878                                          DMA_TO_DEVICE));
4879                         }
4880                         break;
4881                 case TRANSPORT_PROCESS_WRITE:
4882                         transport_generic_process_write(cmd);
4883                         break;
4884                 case TRANSPORT_COMPLETE_OK:
4885                         transport_stop_all_task_timers(cmd);
4886                         transport_generic_complete_ok(cmd);
4887                         break;
4888                 case TRANSPORT_REMOVE:
4889                         transport_put_cmd(cmd);
4890                         break;
4891                 case TRANSPORT_FREE_CMD_INTR:
4892                         transport_generic_free_cmd(cmd, 0);
4893                         break;
4894                 case TRANSPORT_PROCESS_TMR:
4895                         transport_generic_do_tmr(cmd);
4896                         break;
4897                 case TRANSPORT_COMPLETE_FAILURE:
4898                         transport_generic_request_failure(cmd, NULL, 1, 1);
4899                         break;
4900                 case TRANSPORT_COMPLETE_TIMEOUT:
4901                         transport_stop_all_task_timers(cmd);
4902                         transport_generic_request_timeout(cmd);
4903                         break;
4904                 case TRANSPORT_COMPLETE_QF_WP:
4905                         transport_generic_write_pending(cmd);
4906                         break;
4907                 default:
4908                         pr_err("Unknown t_state: %d deferred_t_state:"
4909                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4910                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4911                                 cmd->se_tfo->get_task_tag(cmd),
4912                                 cmd->se_tfo->get_cmd_state(cmd),
4913                                 cmd->se_lun->unpacked_lun);
4914                         BUG();
4915                 }
4916
4917                 goto get_cmd;
4918         }
4919
4920 out:
4921         WARN_ON(!list_empty(&dev->state_task_list));
4922         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4923         dev->process_thread = NULL;
4924         return 0;
4925 }