target: remove SCF_EMULATE_CDB_ASYNC
[pandora-kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
71
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77                 struct se_device *dev);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static int transport_generic_get_mem(struct se_cmd *cmd);
80 static void transport_put_cmd(struct se_cmd *cmd);
81 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
82 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
83 static void transport_generic_request_failure(struct se_cmd *, int, int);
84 static void target_complete_ok_work(struct work_struct *work);
85
86 int init_se_kmem_caches(void)
87 {
88         se_cmd_cache = kmem_cache_create("se_cmd_cache",
89                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
90         if (!se_cmd_cache) {
91                 pr_err("kmem_cache_create for struct se_cmd failed\n");
92                 goto out;
93         }
94         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
95                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
96                         0, NULL);
97         if (!se_tmr_req_cache) {
98                 pr_err("kmem_cache_create() for struct se_tmr_req"
99                                 " failed\n");
100                 goto out_free_cmd_cache;
101         }
102         se_sess_cache = kmem_cache_create("se_sess_cache",
103                         sizeof(struct se_session), __alignof__(struct se_session),
104                         0, NULL);
105         if (!se_sess_cache) {
106                 pr_err("kmem_cache_create() for struct se_session"
107                                 " failed\n");
108                 goto out_free_tmr_req_cache;
109         }
110         se_ua_cache = kmem_cache_create("se_ua_cache",
111                         sizeof(struct se_ua), __alignof__(struct se_ua),
112                         0, NULL);
113         if (!se_ua_cache) {
114                 pr_err("kmem_cache_create() for struct se_ua failed\n");
115                 goto out_free_sess_cache;
116         }
117         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
118                         sizeof(struct t10_pr_registration),
119                         __alignof__(struct t10_pr_registration), 0, NULL);
120         if (!t10_pr_reg_cache) {
121                 pr_err("kmem_cache_create() for struct t10_pr_registration"
122                                 " failed\n");
123                 goto out_free_ua_cache;
124         }
125         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
126                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
127                         0, NULL);
128         if (!t10_alua_lu_gp_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
130                                 " failed\n");
131                 goto out_free_pr_reg_cache;
132         }
133         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
134                         sizeof(struct t10_alua_lu_gp_member),
135                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
136         if (!t10_alua_lu_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
138                                 "cache failed\n");
139                 goto out_free_lu_gp_cache;
140         }
141         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
142                         sizeof(struct t10_alua_tg_pt_gp),
143                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
144         if (!t10_alua_tg_pt_gp_cache) {
145                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
146                                 "cache failed\n");
147                 goto out_free_lu_gp_mem_cache;
148         }
149         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
150                         "t10_alua_tg_pt_gp_mem_cache",
151                         sizeof(struct t10_alua_tg_pt_gp_member),
152                         __alignof__(struct t10_alua_tg_pt_gp_member),
153                         0, NULL);
154         if (!t10_alua_tg_pt_gp_mem_cache) {
155                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
156                                 "mem_t failed\n");
157                 goto out_free_tg_pt_gp_cache;
158         }
159
160         target_completion_wq = alloc_workqueue("target_completion",
161                                                WQ_MEM_RECLAIM, 0);
162         if (!target_completion_wq)
163                 goto out_free_tg_pt_gp_mem_cache;
164
165         return 0;
166
167 out_free_tg_pt_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 out_free_tg_pt_gp_cache:
170         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
171 out_free_lu_gp_mem_cache:
172         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
173 out_free_lu_gp_cache:
174         kmem_cache_destroy(t10_alua_lu_gp_cache);
175 out_free_pr_reg_cache:
176         kmem_cache_destroy(t10_pr_reg_cache);
177 out_free_ua_cache:
178         kmem_cache_destroy(se_ua_cache);
179 out_free_sess_cache:
180         kmem_cache_destroy(se_sess_cache);
181 out_free_tmr_req_cache:
182         kmem_cache_destroy(se_tmr_req_cache);
183 out_free_cmd_cache:
184         kmem_cache_destroy(se_cmd_cache);
185 out:
186         return -ENOMEM;
187 }
188
189 void release_se_kmem_caches(void)
190 {
191         destroy_workqueue(target_completion_wq);
192         kmem_cache_destroy(se_cmd_cache);
193         kmem_cache_destroy(se_tmr_req_cache);
194         kmem_cache_destroy(se_sess_cache);
195         kmem_cache_destroy(se_ua_cache);
196         kmem_cache_destroy(t10_pr_reg_cache);
197         kmem_cache_destroy(t10_alua_lu_gp_cache);
198         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
199         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
200         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
201 }
202
203 /* This code ensures unique mib indexes are handed out. */
204 static DEFINE_SPINLOCK(scsi_mib_index_lock);
205 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
206
207 /*
208  * Allocate a new row index for the entry type specified
209  */
210 u32 scsi_get_new_index(scsi_index_t type)
211 {
212         u32 new_index;
213
214         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
215
216         spin_lock(&scsi_mib_index_lock);
217         new_index = ++scsi_mib_index[type];
218         spin_unlock(&scsi_mib_index_lock);
219
220         return new_index;
221 }
222
223 void transport_init_queue_obj(struct se_queue_obj *qobj)
224 {
225         atomic_set(&qobj->queue_cnt, 0);
226         INIT_LIST_HEAD(&qobj->qobj_list);
227         init_waitqueue_head(&qobj->thread_wq);
228         spin_lock_init(&qobj->cmd_queue_lock);
229 }
230 EXPORT_SYMBOL(transport_init_queue_obj);
231
232 void transport_subsystem_check_init(void)
233 {
234         int ret;
235
236         if (sub_api_initialized)
237                 return;
238
239         ret = request_module("target_core_iblock");
240         if (ret != 0)
241                 pr_err("Unable to load target_core_iblock\n");
242
243         ret = request_module("target_core_file");
244         if (ret != 0)
245                 pr_err("Unable to load target_core_file\n");
246
247         ret = request_module("target_core_pscsi");
248         if (ret != 0)
249                 pr_err("Unable to load target_core_pscsi\n");
250
251         ret = request_module("target_core_stgt");
252         if (ret != 0)
253                 pr_err("Unable to load target_core_stgt\n");
254
255         sub_api_initialized = 1;
256         return;
257 }
258
259 struct se_session *transport_init_session(void)
260 {
261         struct se_session *se_sess;
262
263         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
264         if (!se_sess) {
265                 pr_err("Unable to allocate struct se_session from"
266                                 " se_sess_cache\n");
267                 return ERR_PTR(-ENOMEM);
268         }
269         INIT_LIST_HEAD(&se_sess->sess_list);
270         INIT_LIST_HEAD(&se_sess->sess_acl_list);
271         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
272         INIT_LIST_HEAD(&se_sess->sess_wait_list);
273         spin_lock_init(&se_sess->sess_cmd_lock);
274
275         return se_sess;
276 }
277 EXPORT_SYMBOL(transport_init_session);
278
279 /*
280  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
281  */
282 void __transport_register_session(
283         struct se_portal_group *se_tpg,
284         struct se_node_acl *se_nacl,
285         struct se_session *se_sess,
286         void *fabric_sess_ptr)
287 {
288         unsigned char buf[PR_REG_ISID_LEN];
289
290         se_sess->se_tpg = se_tpg;
291         se_sess->fabric_sess_ptr = fabric_sess_ptr;
292         /*
293          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
294          *
295          * Only set for struct se_session's that will actually be moving I/O.
296          * eg: *NOT* discovery sessions.
297          */
298         if (se_nacl) {
299                 /*
300                  * If the fabric module supports an ISID based TransportID,
301                  * save this value in binary from the fabric I_T Nexus now.
302                  */
303                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
304                         memset(&buf[0], 0, PR_REG_ISID_LEN);
305                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
306                                         &buf[0], PR_REG_ISID_LEN);
307                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
308                 }
309                 spin_lock_irq(&se_nacl->nacl_sess_lock);
310                 /*
311                  * The se_nacl->nacl_sess pointer will be set to the
312                  * last active I_T Nexus for each struct se_node_acl.
313                  */
314                 se_nacl->nacl_sess = se_sess;
315
316                 list_add_tail(&se_sess->sess_acl_list,
317                               &se_nacl->acl_sess_list);
318                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
319         }
320         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
321
322         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
323                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
324 }
325 EXPORT_SYMBOL(__transport_register_session);
326
327 void transport_register_session(
328         struct se_portal_group *se_tpg,
329         struct se_node_acl *se_nacl,
330         struct se_session *se_sess,
331         void *fabric_sess_ptr)
332 {
333         spin_lock_bh(&se_tpg->session_lock);
334         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
335         spin_unlock_bh(&se_tpg->session_lock);
336 }
337 EXPORT_SYMBOL(transport_register_session);
338
339 void transport_deregister_session_configfs(struct se_session *se_sess)
340 {
341         struct se_node_acl *se_nacl;
342         unsigned long flags;
343         /*
344          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
345          */
346         se_nacl = se_sess->se_node_acl;
347         if (se_nacl) {
348                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
349                 list_del(&se_sess->sess_acl_list);
350                 /*
351                  * If the session list is empty, then clear the pointer.
352                  * Otherwise, set the struct se_session pointer from the tail
353                  * element of the per struct se_node_acl active session list.
354                  */
355                 if (list_empty(&se_nacl->acl_sess_list))
356                         se_nacl->nacl_sess = NULL;
357                 else {
358                         se_nacl->nacl_sess = container_of(
359                                         se_nacl->acl_sess_list.prev,
360                                         struct se_session, sess_acl_list);
361                 }
362                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
363         }
364 }
365 EXPORT_SYMBOL(transport_deregister_session_configfs);
366
367 void transport_free_session(struct se_session *se_sess)
368 {
369         kmem_cache_free(se_sess_cache, se_sess);
370 }
371 EXPORT_SYMBOL(transport_free_session);
372
373 void transport_deregister_session(struct se_session *se_sess)
374 {
375         struct se_portal_group *se_tpg = se_sess->se_tpg;
376         struct se_node_acl *se_nacl;
377         unsigned long flags;
378
379         if (!se_tpg) {
380                 transport_free_session(se_sess);
381                 return;
382         }
383
384         spin_lock_irqsave(&se_tpg->session_lock, flags);
385         list_del(&se_sess->sess_list);
386         se_sess->se_tpg = NULL;
387         se_sess->fabric_sess_ptr = NULL;
388         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
389
390         /*
391          * Determine if we need to do extra work for this initiator node's
392          * struct se_node_acl if it had been previously dynamically generated.
393          */
394         se_nacl = se_sess->se_node_acl;
395         if (se_nacl) {
396                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
397                 if (se_nacl->dynamic_node_acl) {
398                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
399                                         se_tpg)) {
400                                 list_del(&se_nacl->acl_list);
401                                 se_tpg->num_node_acls--;
402                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
403
404                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
405                                 core_free_device_list_for_node(se_nacl, se_tpg);
406                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
407                                                 se_nacl);
408                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
409                         }
410                 }
411                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
412         }
413
414         transport_free_session(se_sess);
415
416         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
417                 se_tpg->se_tpg_tfo->get_fabric_name());
418 }
419 EXPORT_SYMBOL(transport_deregister_session);
420
421 /*
422  * Called with cmd->t_state_lock held.
423  */
424 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
425 {
426         struct se_device *dev = cmd->se_dev;
427         struct se_task *task;
428         unsigned long flags;
429
430         if (!dev)
431                 return;
432
433         list_for_each_entry(task, &cmd->t_task_list, t_list) {
434                 if (task->task_flags & TF_ACTIVE)
435                         continue;
436
437                 if (!atomic_read(&task->task_state_active))
438                         continue;
439
440                 spin_lock_irqsave(&dev->execute_task_lock, flags);
441                 list_del(&task->t_state_list);
442                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
443                         cmd->se_tfo->get_task_tag(cmd), dev, task);
444                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
445
446                 atomic_set(&task->task_state_active, 0);
447                 atomic_dec(&cmd->t_task_cdbs_ex_left);
448         }
449 }
450
451 /*      transport_cmd_check_stop():
452  *
453  *      'transport_off = 1' determines if t_transport_active should be cleared.
454  *      'transport_off = 2' determines if task_dev_state should be removed.
455  *
456  *      A non-zero u8 t_state sets cmd->t_state.
457  *      Returns 1 when command is stopped, else 0.
458  */
459 static int transport_cmd_check_stop(
460         struct se_cmd *cmd,
461         int transport_off,
462         u8 t_state)
463 {
464         unsigned long flags;
465
466         spin_lock_irqsave(&cmd->t_state_lock, flags);
467         /*
468          * Determine if IOCTL context caller in requesting the stopping of this
469          * command for LUN shutdown purposes.
470          */
471         if (atomic_read(&cmd->transport_lun_stop)) {
472                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
473                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
474                         cmd->se_tfo->get_task_tag(cmd));
475
476                 atomic_set(&cmd->t_transport_active, 0);
477                 if (transport_off == 2)
478                         transport_all_task_dev_remove_state(cmd);
479                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
480
481                 complete(&cmd->transport_lun_stop_comp);
482                 return 1;
483         }
484         /*
485          * Determine if frontend context caller is requesting the stopping of
486          * this command for frontend exceptions.
487          */
488         if (atomic_read(&cmd->t_transport_stop)) {
489                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
490                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
491                         cmd->se_tfo->get_task_tag(cmd));
492
493                 if (transport_off == 2)
494                         transport_all_task_dev_remove_state(cmd);
495
496                 /*
497                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
498                  * to FE.
499                  */
500                 if (transport_off == 2)
501                         cmd->se_lun = NULL;
502                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
503
504                 complete(&cmd->t_transport_stop_comp);
505                 return 1;
506         }
507         if (transport_off) {
508                 atomic_set(&cmd->t_transport_active, 0);
509                 if (transport_off == 2) {
510                         transport_all_task_dev_remove_state(cmd);
511                         /*
512                          * Clear struct se_cmd->se_lun before the transport_off == 2
513                          * handoff to fabric module.
514                          */
515                         cmd->se_lun = NULL;
516                         /*
517                          * Some fabric modules like tcm_loop can release
518                          * their internally allocated I/O reference now and
519                          * struct se_cmd now.
520                          *
521                          * Fabric modules are expected to return '1' here if the
522                          * se_cmd being passed is released at this point,
523                          * or zero if not being released.
524                          */
525                         if (cmd->se_tfo->check_stop_free != NULL) {
526                                 spin_unlock_irqrestore(
527                                         &cmd->t_state_lock, flags);
528
529                                 return cmd->se_tfo->check_stop_free(cmd);
530                         }
531                 }
532                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
533
534                 return 0;
535         } else if (t_state)
536                 cmd->t_state = t_state;
537         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
538
539         return 0;
540 }
541
542 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
543 {
544         return transport_cmd_check_stop(cmd, 2, 0);
545 }
546
547 static void transport_lun_remove_cmd(struct se_cmd *cmd)
548 {
549         struct se_lun *lun = cmd->se_lun;
550         unsigned long flags;
551
552         if (!lun)
553                 return;
554
555         spin_lock_irqsave(&cmd->t_state_lock, flags);
556         if (!atomic_read(&cmd->transport_dev_active)) {
557                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
558                 goto check_lun;
559         }
560         atomic_set(&cmd->transport_dev_active, 0);
561         transport_all_task_dev_remove_state(cmd);
562         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
563
564
565 check_lun:
566         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
567         if (atomic_read(&cmd->transport_lun_active)) {
568                 list_del(&cmd->se_lun_node);
569                 atomic_set(&cmd->transport_lun_active, 0);
570 #if 0
571                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
572                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
573 #endif
574         }
575         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
576 }
577
578 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
579 {
580         if (!cmd->se_tmr_req)
581                 transport_lun_remove_cmd(cmd);
582
583         if (transport_cmd_check_stop_to_fabric(cmd))
584                 return;
585         if (remove) {
586                 transport_remove_cmd_from_queue(cmd);
587                 transport_put_cmd(cmd);
588         }
589 }
590
591 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
592                 bool at_head)
593 {
594         struct se_device *dev = cmd->se_dev;
595         struct se_queue_obj *qobj = &dev->dev_queue_obj;
596         unsigned long flags;
597
598         if (t_state) {
599                 spin_lock_irqsave(&cmd->t_state_lock, flags);
600                 cmd->t_state = t_state;
601                 atomic_set(&cmd->t_transport_active, 1);
602                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
603         }
604
605         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
606
607         /* If the cmd is already on the list, remove it before we add it */
608         if (!list_empty(&cmd->se_queue_node))
609                 list_del(&cmd->se_queue_node);
610         else
611                 atomic_inc(&qobj->queue_cnt);
612
613         if (at_head)
614                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
615         else
616                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
617         atomic_set(&cmd->t_transport_queue_active, 1);
618         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619
620         wake_up_interruptible(&qobj->thread_wq);
621 }
622
623 static struct se_cmd *
624 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
625 {
626         struct se_cmd *cmd;
627         unsigned long flags;
628
629         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
630         if (list_empty(&qobj->qobj_list)) {
631                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
632                 return NULL;
633         }
634         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
635
636         atomic_set(&cmd->t_transport_queue_active, 0);
637
638         list_del_init(&cmd->se_queue_node);
639         atomic_dec(&qobj->queue_cnt);
640         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
641
642         return cmd;
643 }
644
645 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
646 {
647         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
648         unsigned long flags;
649
650         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
651         if (!atomic_read(&cmd->t_transport_queue_active)) {
652                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
653                 return;
654         }
655         atomic_set(&cmd->t_transport_queue_active, 0);
656         atomic_dec(&qobj->queue_cnt);
657         list_del_init(&cmd->se_queue_node);
658         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
659
660         if (atomic_read(&cmd->t_transport_queue_active)) {
661                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
662                         cmd->se_tfo->get_task_tag(cmd),
663                         atomic_read(&cmd->t_transport_queue_active));
664         }
665 }
666
667 /*
668  * Completion function used by TCM subsystem plugins (such as FILEIO)
669  * for queueing up response from struct se_subsystem_api->do_task()
670  */
671 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
672 {
673         struct se_task *task = list_entry(cmd->t_task_list.next,
674                                 struct se_task, t_list);
675
676         if (good) {
677                 cmd->scsi_status = SAM_STAT_GOOD;
678                 task->task_scsi_status = GOOD;
679         } else {
680                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
681                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
682                 task->task_se_cmd->transport_error_status =
683                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
684         }
685
686         transport_complete_task(task, good);
687 }
688 EXPORT_SYMBOL(transport_complete_sync_cache);
689
690 static void target_complete_failure_work(struct work_struct *work)
691 {
692         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
693
694         transport_generic_request_failure(cmd, 1, 1);
695 }
696
697 /*      transport_complete_task():
698  *
699  *      Called from interrupt and non interrupt context depending
700  *      on the transport plugin.
701  */
702 void transport_complete_task(struct se_task *task, int success)
703 {
704         struct se_cmd *cmd = task->task_se_cmd;
705         struct se_device *dev = cmd->se_dev;
706         unsigned long flags;
707 #if 0
708         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
709                         cmd->t_task_cdb[0], dev);
710 #endif
711         if (dev)
712                 atomic_inc(&dev->depth_left);
713
714         spin_lock_irqsave(&cmd->t_state_lock, flags);
715         task->task_flags &= ~TF_ACTIVE;
716
717         /*
718          * See if any sense data exists, if so set the TASK_SENSE flag.
719          * Also check for any other post completion work that needs to be
720          * done by the plugins.
721          */
722         if (dev && dev->transport->transport_complete) {
723                 if (dev->transport->transport_complete(task) != 0) {
724                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
725                         task->task_sense = 1;
726                         success = 1;
727                 }
728         }
729
730         /*
731          * See if we are waiting for outstanding struct se_task
732          * to complete for an exception condition
733          */
734         if (task->task_flags & TF_REQUEST_STOP) {
735                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736                 complete(&task->task_stop_comp);
737                 return;
738         }
739
740         if (!success)
741                 cmd->t_tasks_failed = 1;
742
743         /*
744          * Decrement the outstanding t_task_cdbs_left count.  The last
745          * struct se_task from struct se_cmd will complete itself into the
746          * device queue depending upon int success.
747          */
748         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
749                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
750                 return;
751         }
752
753         if (cmd->t_tasks_failed) {
754                 if (!task->task_error_status) {
755                         task->task_error_status =
756                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
757                         cmd->transport_error_status =
758                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
759                 }
760                 INIT_WORK(&cmd->work, target_complete_failure_work);
761         } else {
762                 atomic_set(&cmd->t_transport_complete, 1);
763                 INIT_WORK(&cmd->work, target_complete_ok_work);
764         }
765
766         cmd->t_state = TRANSPORT_COMPLETE;
767         atomic_set(&cmd->t_transport_active, 1);
768         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
769
770         queue_work(target_completion_wq, &cmd->work);
771 }
772 EXPORT_SYMBOL(transport_complete_task);
773
774 /*
775  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
776  * struct se_task list are ready to be added to the active execution list
777  * struct se_device
778
779  * Called with se_dev_t->execute_task_lock called.
780  */
781 static inline int transport_add_task_check_sam_attr(
782         struct se_task *task,
783         struct se_task *task_prev,
784         struct se_device *dev)
785 {
786         /*
787          * No SAM Task attribute emulation enabled, add to tail of
788          * execution queue
789          */
790         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
791                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
792                 return 0;
793         }
794         /*
795          * HEAD_OF_QUEUE attribute for received CDB, which means
796          * the first task that is associated with a struct se_cmd goes to
797          * head of the struct se_device->execute_task_list, and task_prev
798          * after that for each subsequent task
799          */
800         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
801                 list_add(&task->t_execute_list,
802                                 (task_prev != NULL) ?
803                                 &task_prev->t_execute_list :
804                                 &dev->execute_task_list);
805
806                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
807                                 " in execution queue\n",
808                                 task->task_se_cmd->t_task_cdb[0]);
809                 return 1;
810         }
811         /*
812          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
813          * transitioned from Dermant -> Active state, and are added to the end
814          * of the struct se_device->execute_task_list
815          */
816         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
817         return 0;
818 }
819
820 /*      __transport_add_task_to_execute_queue():
821  *
822  *      Called with se_dev_t->execute_task_lock called.
823  */
824 static void __transport_add_task_to_execute_queue(
825         struct se_task *task,
826         struct se_task *task_prev,
827         struct se_device *dev)
828 {
829         int head_of_queue;
830
831         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
832         atomic_inc(&dev->execute_tasks);
833
834         if (atomic_read(&task->task_state_active))
835                 return;
836         /*
837          * Determine if this task needs to go to HEAD_OF_QUEUE for the
838          * state list as well.  Running with SAM Task Attribute emulation
839          * will always return head_of_queue == 0 here
840          */
841         if (head_of_queue)
842                 list_add(&task->t_state_list, (task_prev) ?
843                                 &task_prev->t_state_list :
844                                 &dev->state_task_list);
845         else
846                 list_add_tail(&task->t_state_list, &dev->state_task_list);
847
848         atomic_set(&task->task_state_active, 1);
849
850         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
851                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
852                 task, dev);
853 }
854
855 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
856 {
857         struct se_device *dev = cmd->se_dev;
858         struct se_task *task;
859         unsigned long flags;
860
861         spin_lock_irqsave(&cmd->t_state_lock, flags);
862         list_for_each_entry(task, &cmd->t_task_list, t_list) {
863                 if (atomic_read(&task->task_state_active))
864                         continue;
865
866                 spin_lock(&dev->execute_task_lock);
867                 list_add_tail(&task->t_state_list, &dev->state_task_list);
868                 atomic_set(&task->task_state_active, 1);
869
870                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
871                         task->task_se_cmd->se_tfo->get_task_tag(
872                         task->task_se_cmd), task, dev);
873
874                 spin_unlock(&dev->execute_task_lock);
875         }
876         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
877 }
878
879 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
880 {
881         struct se_device *dev = cmd->se_dev;
882         struct se_task *task, *task_prev = NULL;
883         unsigned long flags;
884
885         spin_lock_irqsave(&dev->execute_task_lock, flags);
886         list_for_each_entry(task, &cmd->t_task_list, t_list) {
887                 if (!list_empty(&task->t_execute_list))
888                         continue;
889                 /*
890                  * __transport_add_task_to_execute_queue() handles the
891                  * SAM Task Attribute emulation if enabled
892                  */
893                 __transport_add_task_to_execute_queue(task, task_prev, dev);
894                 task_prev = task;
895         }
896         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
897 }
898
899 void __transport_remove_task_from_execute_queue(struct se_task *task,
900                 struct se_device *dev)
901 {
902         list_del_init(&task->t_execute_list);
903         atomic_dec(&dev->execute_tasks);
904 }
905
906 void transport_remove_task_from_execute_queue(
907         struct se_task *task,
908         struct se_device *dev)
909 {
910         unsigned long flags;
911
912         if (WARN_ON(list_empty(&task->t_execute_list)))
913                 return;
914
915         spin_lock_irqsave(&dev->execute_task_lock, flags);
916         __transport_remove_task_from_execute_queue(task, dev);
917         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
918 }
919
920 /*
921  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
922  */
923
924 static void target_qf_do_work(struct work_struct *work)
925 {
926         struct se_device *dev = container_of(work, struct se_device,
927                                         qf_work_queue);
928         LIST_HEAD(qf_cmd_list);
929         struct se_cmd *cmd, *cmd_tmp;
930
931         spin_lock_irq(&dev->qf_cmd_lock);
932         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
933         spin_unlock_irq(&dev->qf_cmd_lock);
934
935         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
936                 list_del(&cmd->se_qf_node);
937                 atomic_dec(&dev->dev_qf_count);
938                 smp_mb__after_atomic_dec();
939
940                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
941                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
942                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
943                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
944                         : "UNKNOWN");
945
946                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
947         }
948 }
949
950 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
951 {
952         switch (cmd->data_direction) {
953         case DMA_NONE:
954                 return "NONE";
955         case DMA_FROM_DEVICE:
956                 return "READ";
957         case DMA_TO_DEVICE:
958                 return "WRITE";
959         case DMA_BIDIRECTIONAL:
960                 return "BIDI";
961         default:
962                 break;
963         }
964
965         return "UNKNOWN";
966 }
967
968 void transport_dump_dev_state(
969         struct se_device *dev,
970         char *b,
971         int *bl)
972 {
973         *bl += sprintf(b + *bl, "Status: ");
974         switch (dev->dev_status) {
975         case TRANSPORT_DEVICE_ACTIVATED:
976                 *bl += sprintf(b + *bl, "ACTIVATED");
977                 break;
978         case TRANSPORT_DEVICE_DEACTIVATED:
979                 *bl += sprintf(b + *bl, "DEACTIVATED");
980                 break;
981         case TRANSPORT_DEVICE_SHUTDOWN:
982                 *bl += sprintf(b + *bl, "SHUTDOWN");
983                 break;
984         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
985         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
986                 *bl += sprintf(b + *bl, "OFFLINE");
987                 break;
988         default:
989                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
990                 break;
991         }
992
993         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
994                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
995                 dev->queue_depth);
996         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
997                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
998         *bl += sprintf(b + *bl, "        ");
999 }
1000
1001 void transport_dump_vpd_proto_id(
1002         struct t10_vpd *vpd,
1003         unsigned char *p_buf,
1004         int p_buf_len)
1005 {
1006         unsigned char buf[VPD_TMP_BUF_SIZE];
1007         int len;
1008
1009         memset(buf, 0, VPD_TMP_BUF_SIZE);
1010         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1011
1012         switch (vpd->protocol_identifier) {
1013         case 0x00:
1014                 sprintf(buf+len, "Fibre Channel\n");
1015                 break;
1016         case 0x10:
1017                 sprintf(buf+len, "Parallel SCSI\n");
1018                 break;
1019         case 0x20:
1020                 sprintf(buf+len, "SSA\n");
1021                 break;
1022         case 0x30:
1023                 sprintf(buf+len, "IEEE 1394\n");
1024                 break;
1025         case 0x40:
1026                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1027                                 " Protocol\n");
1028                 break;
1029         case 0x50:
1030                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1031                 break;
1032         case 0x60:
1033                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1034                 break;
1035         case 0x70:
1036                 sprintf(buf+len, "Automation/Drive Interface Transport"
1037                                 " Protocol\n");
1038                 break;
1039         case 0x80:
1040                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1041                 break;
1042         default:
1043                 sprintf(buf+len, "Unknown 0x%02x\n",
1044                                 vpd->protocol_identifier);
1045                 break;
1046         }
1047
1048         if (p_buf)
1049                 strncpy(p_buf, buf, p_buf_len);
1050         else
1051                 pr_debug("%s", buf);
1052 }
1053
1054 void
1055 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1056 {
1057         /*
1058          * Check if the Protocol Identifier Valid (PIV) bit is set..
1059          *
1060          * from spc3r23.pdf section 7.5.1
1061          */
1062          if (page_83[1] & 0x80) {
1063                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1064                 vpd->protocol_identifier_set = 1;
1065                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1066         }
1067 }
1068 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1069
1070 int transport_dump_vpd_assoc(
1071         struct t10_vpd *vpd,
1072         unsigned char *p_buf,
1073         int p_buf_len)
1074 {
1075         unsigned char buf[VPD_TMP_BUF_SIZE];
1076         int ret = 0;
1077         int len;
1078
1079         memset(buf, 0, VPD_TMP_BUF_SIZE);
1080         len = sprintf(buf, "T10 VPD Identifier Association: ");
1081
1082         switch (vpd->association) {
1083         case 0x00:
1084                 sprintf(buf+len, "addressed logical unit\n");
1085                 break;
1086         case 0x10:
1087                 sprintf(buf+len, "target port\n");
1088                 break;
1089         case 0x20:
1090                 sprintf(buf+len, "SCSI target device\n");
1091                 break;
1092         default:
1093                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1094                 ret = -EINVAL;
1095                 break;
1096         }
1097
1098         if (p_buf)
1099                 strncpy(p_buf, buf, p_buf_len);
1100         else
1101                 pr_debug("%s", buf);
1102
1103         return ret;
1104 }
1105
1106 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1107 {
1108         /*
1109          * The VPD identification association..
1110          *
1111          * from spc3r23.pdf Section 7.6.3.1 Table 297
1112          */
1113         vpd->association = (page_83[1] & 0x30);
1114         return transport_dump_vpd_assoc(vpd, NULL, 0);
1115 }
1116 EXPORT_SYMBOL(transport_set_vpd_assoc);
1117
1118 int transport_dump_vpd_ident_type(
1119         struct t10_vpd *vpd,
1120         unsigned char *p_buf,
1121         int p_buf_len)
1122 {
1123         unsigned char buf[VPD_TMP_BUF_SIZE];
1124         int ret = 0;
1125         int len;
1126
1127         memset(buf, 0, VPD_TMP_BUF_SIZE);
1128         len = sprintf(buf, "T10 VPD Identifier Type: ");
1129
1130         switch (vpd->device_identifier_type) {
1131         case 0x00:
1132                 sprintf(buf+len, "Vendor specific\n");
1133                 break;
1134         case 0x01:
1135                 sprintf(buf+len, "T10 Vendor ID based\n");
1136                 break;
1137         case 0x02:
1138                 sprintf(buf+len, "EUI-64 based\n");
1139                 break;
1140         case 0x03:
1141                 sprintf(buf+len, "NAA\n");
1142                 break;
1143         case 0x04:
1144                 sprintf(buf+len, "Relative target port identifier\n");
1145                 break;
1146         case 0x08:
1147                 sprintf(buf+len, "SCSI name string\n");
1148                 break;
1149         default:
1150                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1151                                 vpd->device_identifier_type);
1152                 ret = -EINVAL;
1153                 break;
1154         }
1155
1156         if (p_buf) {
1157                 if (p_buf_len < strlen(buf)+1)
1158                         return -EINVAL;
1159                 strncpy(p_buf, buf, p_buf_len);
1160         } else {
1161                 pr_debug("%s", buf);
1162         }
1163
1164         return ret;
1165 }
1166
1167 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1168 {
1169         /*
1170          * The VPD identifier type..
1171          *
1172          * from spc3r23.pdf Section 7.6.3.1 Table 298
1173          */
1174         vpd->device_identifier_type = (page_83[1] & 0x0f);
1175         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1176 }
1177 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1178
1179 int transport_dump_vpd_ident(
1180         struct t10_vpd *vpd,
1181         unsigned char *p_buf,
1182         int p_buf_len)
1183 {
1184         unsigned char buf[VPD_TMP_BUF_SIZE];
1185         int ret = 0;
1186
1187         memset(buf, 0, VPD_TMP_BUF_SIZE);
1188
1189         switch (vpd->device_identifier_code_set) {
1190         case 0x01: /* Binary */
1191                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1192                         &vpd->device_identifier[0]);
1193                 break;
1194         case 0x02: /* ASCII */
1195                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1196                         &vpd->device_identifier[0]);
1197                 break;
1198         case 0x03: /* UTF-8 */
1199                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1200                         &vpd->device_identifier[0]);
1201                 break;
1202         default:
1203                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1204                         " 0x%02x", vpd->device_identifier_code_set);
1205                 ret = -EINVAL;
1206                 break;
1207         }
1208
1209         if (p_buf)
1210                 strncpy(p_buf, buf, p_buf_len);
1211         else
1212                 pr_debug("%s", buf);
1213
1214         return ret;
1215 }
1216
1217 int
1218 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1219 {
1220         static const char hex_str[] = "0123456789abcdef";
1221         int j = 0, i = 4; /* offset to start of the identifer */
1222
1223         /*
1224          * The VPD Code Set (encoding)
1225          *
1226          * from spc3r23.pdf Section 7.6.3.1 Table 296
1227          */
1228         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1229         switch (vpd->device_identifier_code_set) {
1230         case 0x01: /* Binary */
1231                 vpd->device_identifier[j++] =
1232                                 hex_str[vpd->device_identifier_type];
1233                 while (i < (4 + page_83[3])) {
1234                         vpd->device_identifier[j++] =
1235                                 hex_str[(page_83[i] & 0xf0) >> 4];
1236                         vpd->device_identifier[j++] =
1237                                 hex_str[page_83[i] & 0x0f];
1238                         i++;
1239                 }
1240                 break;
1241         case 0x02: /* ASCII */
1242         case 0x03: /* UTF-8 */
1243                 while (i < (4 + page_83[3]))
1244                         vpd->device_identifier[j++] = page_83[i++];
1245                 break;
1246         default:
1247                 break;
1248         }
1249
1250         return transport_dump_vpd_ident(vpd, NULL, 0);
1251 }
1252 EXPORT_SYMBOL(transport_set_vpd_ident);
1253
1254 static void core_setup_task_attr_emulation(struct se_device *dev)
1255 {
1256         /*
1257          * If this device is from Target_Core_Mod/pSCSI, disable the
1258          * SAM Task Attribute emulation.
1259          *
1260          * This is currently not available in upsream Linux/SCSI Target
1261          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1262          */
1263         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1264                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1265                 return;
1266         }
1267
1268         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1269         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1270                 " device\n", dev->transport->name,
1271                 dev->transport->get_device_rev(dev));
1272 }
1273
1274 static void scsi_dump_inquiry(struct se_device *dev)
1275 {
1276         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1277         int i, device_type;
1278         /*
1279          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1280          */
1281         pr_debug("  Vendor: ");
1282         for (i = 0; i < 8; i++)
1283                 if (wwn->vendor[i] >= 0x20)
1284                         pr_debug("%c", wwn->vendor[i]);
1285                 else
1286                         pr_debug(" ");
1287
1288         pr_debug("  Model: ");
1289         for (i = 0; i < 16; i++)
1290                 if (wwn->model[i] >= 0x20)
1291                         pr_debug("%c", wwn->model[i]);
1292                 else
1293                         pr_debug(" ");
1294
1295         pr_debug("  Revision: ");
1296         for (i = 0; i < 4; i++)
1297                 if (wwn->revision[i] >= 0x20)
1298                         pr_debug("%c", wwn->revision[i]);
1299                 else
1300                         pr_debug(" ");
1301
1302         pr_debug("\n");
1303
1304         device_type = dev->transport->get_device_type(dev);
1305         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1306         pr_debug("                 ANSI SCSI revision: %02x\n",
1307                                 dev->transport->get_device_rev(dev));
1308 }
1309
1310 struct se_device *transport_add_device_to_core_hba(
1311         struct se_hba *hba,
1312         struct se_subsystem_api *transport,
1313         struct se_subsystem_dev *se_dev,
1314         u32 device_flags,
1315         void *transport_dev,
1316         struct se_dev_limits *dev_limits,
1317         const char *inquiry_prod,
1318         const char *inquiry_rev)
1319 {
1320         int force_pt;
1321         struct se_device  *dev;
1322
1323         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1324         if (!dev) {
1325                 pr_err("Unable to allocate memory for se_dev_t\n");
1326                 return NULL;
1327         }
1328
1329         transport_init_queue_obj(&dev->dev_queue_obj);
1330         dev->dev_flags          = device_flags;
1331         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1332         dev->dev_ptr            = transport_dev;
1333         dev->se_hba             = hba;
1334         dev->se_sub_dev         = se_dev;
1335         dev->transport          = transport;
1336         atomic_set(&dev->active_cmds, 0);
1337         INIT_LIST_HEAD(&dev->dev_list);
1338         INIT_LIST_HEAD(&dev->dev_sep_list);
1339         INIT_LIST_HEAD(&dev->dev_tmr_list);
1340         INIT_LIST_HEAD(&dev->execute_task_list);
1341         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1342         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1343         INIT_LIST_HEAD(&dev->state_task_list);
1344         INIT_LIST_HEAD(&dev->qf_cmd_list);
1345         spin_lock_init(&dev->execute_task_lock);
1346         spin_lock_init(&dev->delayed_cmd_lock);
1347         spin_lock_init(&dev->ordered_cmd_lock);
1348         spin_lock_init(&dev->state_task_lock);
1349         spin_lock_init(&dev->dev_alua_lock);
1350         spin_lock_init(&dev->dev_reservation_lock);
1351         spin_lock_init(&dev->dev_status_lock);
1352         spin_lock_init(&dev->dev_status_thr_lock);
1353         spin_lock_init(&dev->se_port_lock);
1354         spin_lock_init(&dev->se_tmr_lock);
1355         spin_lock_init(&dev->qf_cmd_lock);
1356
1357         dev->queue_depth        = dev_limits->queue_depth;
1358         atomic_set(&dev->depth_left, dev->queue_depth);
1359         atomic_set(&dev->dev_ordered_id, 0);
1360
1361         se_dev_set_default_attribs(dev, dev_limits);
1362
1363         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1364         dev->creation_time = get_jiffies_64();
1365         spin_lock_init(&dev->stats_lock);
1366
1367         spin_lock(&hba->device_lock);
1368         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1369         hba->dev_count++;
1370         spin_unlock(&hba->device_lock);
1371         /*
1372          * Setup the SAM Task Attribute emulation for struct se_device
1373          */
1374         core_setup_task_attr_emulation(dev);
1375         /*
1376          * Force PR and ALUA passthrough emulation with internal object use.
1377          */
1378         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1379         /*
1380          * Setup the Reservations infrastructure for struct se_device
1381          */
1382         core_setup_reservations(dev, force_pt);
1383         /*
1384          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1385          */
1386         if (core_setup_alua(dev, force_pt) < 0)
1387                 goto out;
1388
1389         /*
1390          * Startup the struct se_device processing thread
1391          */
1392         dev->process_thread = kthread_run(transport_processing_thread, dev,
1393                                           "LIO_%s", dev->transport->name);
1394         if (IS_ERR(dev->process_thread)) {
1395                 pr_err("Unable to create kthread: LIO_%s\n",
1396                         dev->transport->name);
1397                 goto out;
1398         }
1399         /*
1400          * Setup work_queue for QUEUE_FULL
1401          */
1402         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1403         /*
1404          * Preload the initial INQUIRY const values if we are doing
1405          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1406          * passthrough because this is being provided by the backend LLD.
1407          * This is required so that transport_get_inquiry() copies these
1408          * originals once back into DEV_T10_WWN(dev) for the virtual device
1409          * setup.
1410          */
1411         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1412                 if (!inquiry_prod || !inquiry_rev) {
1413                         pr_err("All non TCM/pSCSI plugins require"
1414                                 " INQUIRY consts\n");
1415                         goto out;
1416                 }
1417
1418                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1419                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1420                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1421         }
1422         scsi_dump_inquiry(dev);
1423
1424         return dev;
1425 out:
1426         kthread_stop(dev->process_thread);
1427
1428         spin_lock(&hba->device_lock);
1429         list_del(&dev->dev_list);
1430         hba->dev_count--;
1431         spin_unlock(&hba->device_lock);
1432
1433         se_release_vpd_for_dev(dev);
1434
1435         kfree(dev);
1436
1437         return NULL;
1438 }
1439 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1440
1441 /*      transport_generic_prepare_cdb():
1442  *
1443  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1444  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1445  *      The point of this is since we are mapping iSCSI LUNs to
1446  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1447  *      devices and HBAs for a loop.
1448  */
1449 static inline void transport_generic_prepare_cdb(
1450         unsigned char *cdb)
1451 {
1452         switch (cdb[0]) {
1453         case READ_10: /* SBC - RDProtect */
1454         case READ_12: /* SBC - RDProtect */
1455         case READ_16: /* SBC - RDProtect */
1456         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1457         case VERIFY: /* SBC - VRProtect */
1458         case VERIFY_16: /* SBC - VRProtect */
1459         case WRITE_VERIFY: /* SBC - VRProtect */
1460         case WRITE_VERIFY_12: /* SBC - VRProtect */
1461                 break;
1462         default:
1463                 cdb[1] &= 0x1f; /* clear logical unit number */
1464                 break;
1465         }
1466 }
1467
1468 static struct se_task *
1469 transport_generic_get_task(struct se_cmd *cmd,
1470                 enum dma_data_direction data_direction)
1471 {
1472         struct se_task *task;
1473         struct se_device *dev = cmd->se_dev;
1474
1475         task = dev->transport->alloc_task(cmd->t_task_cdb);
1476         if (!task) {
1477                 pr_err("Unable to allocate struct se_task\n");
1478                 return NULL;
1479         }
1480
1481         INIT_LIST_HEAD(&task->t_list);
1482         INIT_LIST_HEAD(&task->t_execute_list);
1483         INIT_LIST_HEAD(&task->t_state_list);
1484         init_completion(&task->task_stop_comp);
1485         task->task_se_cmd = cmd;
1486         task->task_data_direction = data_direction;
1487
1488         return task;
1489 }
1490
1491 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1492
1493 /*
1494  * Used by fabric modules containing a local struct se_cmd within their
1495  * fabric dependent per I/O descriptor.
1496  */
1497 void transport_init_se_cmd(
1498         struct se_cmd *cmd,
1499         struct target_core_fabric_ops *tfo,
1500         struct se_session *se_sess,
1501         u32 data_length,
1502         int data_direction,
1503         int task_attr,
1504         unsigned char *sense_buffer)
1505 {
1506         INIT_LIST_HEAD(&cmd->se_lun_node);
1507         INIT_LIST_HEAD(&cmd->se_delayed_node);
1508         INIT_LIST_HEAD(&cmd->se_ordered_node);
1509         INIT_LIST_HEAD(&cmd->se_qf_node);
1510         INIT_LIST_HEAD(&cmd->se_queue_node);
1511         INIT_LIST_HEAD(&cmd->se_cmd_list);
1512         INIT_LIST_HEAD(&cmd->t_task_list);
1513         init_completion(&cmd->transport_lun_fe_stop_comp);
1514         init_completion(&cmd->transport_lun_stop_comp);
1515         init_completion(&cmd->t_transport_stop_comp);
1516         init_completion(&cmd->cmd_wait_comp);
1517         spin_lock_init(&cmd->t_state_lock);
1518         atomic_set(&cmd->transport_dev_active, 1);
1519
1520         cmd->se_tfo = tfo;
1521         cmd->se_sess = se_sess;
1522         cmd->data_length = data_length;
1523         cmd->data_direction = data_direction;
1524         cmd->sam_task_attr = task_attr;
1525         cmd->sense_buffer = sense_buffer;
1526 }
1527 EXPORT_SYMBOL(transport_init_se_cmd);
1528
1529 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1530 {
1531         /*
1532          * Check if SAM Task Attribute emulation is enabled for this
1533          * struct se_device storage object
1534          */
1535         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1536                 return 0;
1537
1538         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1539                 pr_debug("SAM Task Attribute ACA"
1540                         " emulation is not supported\n");
1541                 return -EINVAL;
1542         }
1543         /*
1544          * Used to determine when ORDERED commands should go from
1545          * Dormant to Active status.
1546          */
1547         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1548         smp_mb__after_atomic_inc();
1549         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1550                         cmd->se_ordered_id, cmd->sam_task_attr,
1551                         cmd->se_dev->transport->name);
1552         return 0;
1553 }
1554
1555 /*      transport_generic_allocate_tasks():
1556  *
1557  *      Called from fabric RX Thread.
1558  */
1559 int transport_generic_allocate_tasks(
1560         struct se_cmd *cmd,
1561         unsigned char *cdb)
1562 {
1563         int ret;
1564
1565         transport_generic_prepare_cdb(cdb);
1566         /*
1567          * Ensure that the received CDB is less than the max (252 + 8) bytes
1568          * for VARIABLE_LENGTH_CMD
1569          */
1570         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1571                 pr_err("Received SCSI CDB with command_size: %d that"
1572                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1573                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1574                 return -EINVAL;
1575         }
1576         /*
1577          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1578          * allocate the additional extended CDB buffer now..  Otherwise
1579          * setup the pointer from __t_task_cdb to t_task_cdb.
1580          */
1581         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1582                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1583                                                 GFP_KERNEL);
1584                 if (!cmd->t_task_cdb) {
1585                         pr_err("Unable to allocate cmd->t_task_cdb"
1586                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1587                                 scsi_command_size(cdb),
1588                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1589                         return -ENOMEM;
1590                 }
1591         } else
1592                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1593         /*
1594          * Copy the original CDB into cmd->
1595          */
1596         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1597         /*
1598          * Setup the received CDB based on SCSI defined opcodes and
1599          * perform unit attention, persistent reservations and ALUA
1600          * checks for virtual device backends.  The cmd->t_task_cdb
1601          * pointer is expected to be setup before we reach this point.
1602          */
1603         ret = transport_generic_cmd_sequencer(cmd, cdb);
1604         if (ret < 0)
1605                 return ret;
1606         /*
1607          * Check for SAM Task Attribute Emulation
1608          */
1609         if (transport_check_alloc_task_attr(cmd) < 0) {
1610                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1611                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1612                 return -EINVAL;
1613         }
1614         spin_lock(&cmd->se_lun->lun_sep_lock);
1615         if (cmd->se_lun->lun_sep)
1616                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1617         spin_unlock(&cmd->se_lun->lun_sep_lock);
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1621
1622 /*
1623  * Used by fabric module frontends to queue tasks directly.
1624  * Many only be used from process context only
1625  */
1626 int transport_handle_cdb_direct(
1627         struct se_cmd *cmd)
1628 {
1629         int ret;
1630
1631         if (!cmd->se_lun) {
1632                 dump_stack();
1633                 pr_err("cmd->se_lun is NULL\n");
1634                 return -EINVAL;
1635         }
1636         if (in_interrupt()) {
1637                 dump_stack();
1638                 pr_err("transport_generic_handle_cdb cannot be called"
1639                                 " from interrupt context\n");
1640                 return -EINVAL;
1641         }
1642         /*
1643          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1644          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1645          * in existing usage to ensure that outstanding descriptors are handled
1646          * correctly during shutdown via transport_wait_for_tasks()
1647          *
1648          * Also, we don't take cmd->t_state_lock here as we only expect
1649          * this to be called for initial descriptor submission.
1650          */
1651         cmd->t_state = TRANSPORT_NEW_CMD;
1652         atomic_set(&cmd->t_transport_active, 1);
1653         /*
1654          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1655          * so follow TRANSPORT_NEW_CMD processing thread context usage
1656          * and call transport_generic_request_failure() if necessary..
1657          */
1658         ret = transport_generic_new_cmd(cmd);
1659         if (ret < 0) {
1660                 cmd->transport_error_status = ret;
1661                 transport_generic_request_failure(cmd, 0,
1662                                 (cmd->data_direction != DMA_TO_DEVICE));
1663         }
1664         return 0;
1665 }
1666 EXPORT_SYMBOL(transport_handle_cdb_direct);
1667
1668 /*
1669  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1670  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1671  * complete setup in TCM process context w/ TFO->new_cmd_map().
1672  */
1673 int transport_generic_handle_cdb_map(
1674         struct se_cmd *cmd)
1675 {
1676         if (!cmd->se_lun) {
1677                 dump_stack();
1678                 pr_err("cmd->se_lun is NULL\n");
1679                 return -EINVAL;
1680         }
1681
1682         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1683         return 0;
1684 }
1685 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1686
1687 /*      transport_generic_handle_data():
1688  *
1689  *
1690  */
1691 int transport_generic_handle_data(
1692         struct se_cmd *cmd)
1693 {
1694         /*
1695          * For the software fabric case, then we assume the nexus is being
1696          * failed/shutdown when signals are pending from the kthread context
1697          * caller, so we return a failure.  For the HW target mode case running
1698          * in interrupt code, the signal_pending() check is skipped.
1699          */
1700         if (!in_interrupt() && signal_pending(current))
1701                 return -EPERM;
1702         /*
1703          * If the received CDB has aleady been ABORTED by the generic
1704          * target engine, we now call transport_check_aborted_status()
1705          * to queue any delated TASK_ABORTED status for the received CDB to the
1706          * fabric module as we are expecting no further incoming DATA OUT
1707          * sequences at this point.
1708          */
1709         if (transport_check_aborted_status(cmd, 1) != 0)
1710                 return 0;
1711
1712         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1713         return 0;
1714 }
1715 EXPORT_SYMBOL(transport_generic_handle_data);
1716
1717 /*      transport_generic_handle_tmr():
1718  *
1719  *
1720  */
1721 int transport_generic_handle_tmr(
1722         struct se_cmd *cmd)
1723 {
1724         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1725         return 0;
1726 }
1727 EXPORT_SYMBOL(transport_generic_handle_tmr);
1728
1729 /*
1730  * If the task is active, request it to be stopped and sleep until it
1731  * has completed.
1732  */
1733 bool target_stop_task(struct se_task *task, unsigned long *flags)
1734 {
1735         struct se_cmd *cmd = task->task_se_cmd;
1736         bool was_active = false;
1737
1738         if (task->task_flags & TF_ACTIVE) {
1739                 task->task_flags |= TF_REQUEST_STOP;
1740                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1741
1742                 pr_debug("Task %p waiting to complete\n", task);
1743                 wait_for_completion(&task->task_stop_comp);
1744                 pr_debug("Task %p stopped successfully\n", task);
1745
1746                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1747                 atomic_dec(&cmd->t_task_cdbs_left);
1748                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1749                 was_active = true;
1750         }
1751
1752         return was_active;
1753 }
1754
1755 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1756 {
1757         struct se_task *task, *task_tmp;
1758         unsigned long flags;
1759         int ret = 0;
1760
1761         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1762                 cmd->se_tfo->get_task_tag(cmd));
1763
1764         /*
1765          * No tasks remain in the execution queue
1766          */
1767         spin_lock_irqsave(&cmd->t_state_lock, flags);
1768         list_for_each_entry_safe(task, task_tmp,
1769                                 &cmd->t_task_list, t_list) {
1770                 pr_debug("Processing task %p\n", task);
1771                 /*
1772                  * If the struct se_task has not been sent and is not active,
1773                  * remove the struct se_task from the execution queue.
1774                  */
1775                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1776                         spin_unlock_irqrestore(&cmd->t_state_lock,
1777                                         flags);
1778                         transport_remove_task_from_execute_queue(task,
1779                                         cmd->se_dev);
1780
1781                         pr_debug("Task %p removed from execute queue\n", task);
1782                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1783                         continue;
1784                 }
1785
1786                 if (!target_stop_task(task, &flags)) {
1787                         pr_debug("Task %p - did nothing\n", task);
1788                         ret++;
1789                 }
1790         }
1791         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1792
1793         return ret;
1794 }
1795
1796 /*
1797  * Handle SAM-esque emulation for generic transport request failures.
1798  */
1799 static void transport_generic_request_failure(
1800         struct se_cmd *cmd,
1801         int complete,
1802         int sc)
1803 {
1804         int ret = 0;
1805
1806         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1807                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1808                 cmd->t_task_cdb[0]);
1809         pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1810                 cmd->se_tfo->get_cmd_state(cmd),
1811                 cmd->t_state,
1812                 cmd->transport_error_status);
1813         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1814                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1815                 " t_transport_active: %d t_transport_stop: %d"
1816                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1817                 atomic_read(&cmd->t_task_cdbs_left),
1818                 atomic_read(&cmd->t_task_cdbs_sent),
1819                 atomic_read(&cmd->t_task_cdbs_ex_left),
1820                 atomic_read(&cmd->t_transport_active),
1821                 atomic_read(&cmd->t_transport_stop),
1822                 atomic_read(&cmd->t_transport_sent));
1823
1824         /*
1825          * For SAM Task Attribute emulation for failed struct se_cmd
1826          */
1827         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1828                 transport_complete_task_attr(cmd);
1829
1830         if (complete) {
1831                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1832         }
1833
1834         switch (cmd->transport_error_status) {
1835         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1836                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1837                 break;
1838         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1839                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1840                 break;
1841         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1842                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1843                 break;
1844         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1845                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1846                 break;
1847         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1848                 if (!sc)
1849                         transport_new_cmd_failure(cmd);
1850                 /*
1851                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1852                  * we force this session to fall back to session
1853                  * recovery.
1854                  */
1855                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1856                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1857
1858                 goto check_stop;
1859         case PYX_TRANSPORT_LU_COMM_FAILURE:
1860         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1861                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1862                 break;
1863         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1864                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1865                 break;
1866         case PYX_TRANSPORT_WRITE_PROTECTED:
1867                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1868                 break;
1869         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1870                 /*
1871                  * No SENSE Data payload for this case, set SCSI Status
1872                  * and queue the response to $FABRIC_MOD.
1873                  *
1874                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1875                  */
1876                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1877                 /*
1878                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1879                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1880                  * CONFLICT STATUS.
1881                  *
1882                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1883                  */
1884                 if (cmd->se_sess &&
1885                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1886                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1887                                 cmd->orig_fe_lun, 0x2C,
1888                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1889
1890                 ret = cmd->se_tfo->queue_status(cmd);
1891                 if (ret == -EAGAIN || ret == -ENOMEM)
1892                         goto queue_full;
1893                 goto check_stop;
1894         case PYX_TRANSPORT_USE_SENSE_REASON:
1895                 /*
1896                  * struct se_cmd->scsi_sense_reason already set
1897                  */
1898                 break;
1899         default:
1900                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1901                         cmd->t_task_cdb[0],
1902                         cmd->transport_error_status);
1903                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1904                 break;
1905         }
1906         /*
1907          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1908          * make the call to transport_send_check_condition_and_sense()
1909          * directly.  Otherwise expect the fabric to make the call to
1910          * transport_send_check_condition_and_sense() after handling
1911          * possible unsoliticied write data payloads.
1912          */
1913         if (!sc && !cmd->se_tfo->new_cmd_map)
1914                 transport_new_cmd_failure(cmd);
1915         else {
1916                 ret = transport_send_check_condition_and_sense(cmd,
1917                                 cmd->scsi_sense_reason, 0);
1918                 if (ret == -EAGAIN || ret == -ENOMEM)
1919                         goto queue_full;
1920         }
1921
1922 check_stop:
1923         transport_lun_remove_cmd(cmd);
1924         if (!transport_cmd_check_stop_to_fabric(cmd))
1925                 ;
1926         return;
1927
1928 queue_full:
1929         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1930         transport_handle_queue_full(cmd, cmd->se_dev);
1931 }
1932
1933 static inline u32 transport_lba_21(unsigned char *cdb)
1934 {
1935         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1936 }
1937
1938 static inline u32 transport_lba_32(unsigned char *cdb)
1939 {
1940         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 }
1942
1943 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1944 {
1945         unsigned int __v1, __v2;
1946
1947         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1948         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1949
1950         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1951 }
1952
1953 /*
1954  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1955  */
1956 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1957 {
1958         unsigned int __v1, __v2;
1959
1960         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1961         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1962
1963         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 }
1965
1966 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1967 {
1968         unsigned long flags;
1969
1970         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1971         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1972         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1973 }
1974
1975 static inline int transport_tcq_window_closed(struct se_device *dev)
1976 {
1977         if (dev->dev_tcq_window_closed++ <
1978                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1979                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1980         } else
1981                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1982
1983         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1984         return 0;
1985 }
1986
1987 /*
1988  * Called from Fabric Module context from transport_execute_tasks()
1989  *
1990  * The return of this function determins if the tasks from struct se_cmd
1991  * get added to the execution queue in transport_execute_tasks(),
1992  * or are added to the delayed or ordered lists here.
1993  */
1994 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1995 {
1996         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1997                 return 1;
1998         /*
1999          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2000          * to allow the passed struct se_cmd list of tasks to the front of the list.
2001          */
2002          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2003                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2004                 smp_mb__after_atomic_inc();
2005                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2006                         " 0x%02x, se_ordered_id: %u\n",
2007                         cmd->t_task_cdb[0],
2008                         cmd->se_ordered_id);
2009                 return 1;
2010         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2011                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2012                 list_add_tail(&cmd->se_ordered_node,
2013                                 &cmd->se_dev->ordered_cmd_list);
2014                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2015
2016                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2017                 smp_mb__after_atomic_inc();
2018
2019                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2020                                 " list, se_ordered_id: %u\n",
2021                                 cmd->t_task_cdb[0],
2022                                 cmd->se_ordered_id);
2023                 /*
2024                  * Add ORDERED command to tail of execution queue if
2025                  * no other older commands exist that need to be
2026                  * completed first.
2027                  */
2028                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2029                         return 1;
2030         } else {
2031                 /*
2032                  * For SIMPLE and UNTAGGED Task Attribute commands
2033                  */
2034                 atomic_inc(&cmd->se_dev->simple_cmds);
2035                 smp_mb__after_atomic_inc();
2036         }
2037         /*
2038          * Otherwise if one or more outstanding ORDERED task attribute exist,
2039          * add the dormant task(s) built for the passed struct se_cmd to the
2040          * execution queue and become in Active state for this struct se_device.
2041          */
2042         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2043                 /*
2044                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2045                  * will be drained upon completion of HEAD_OF_QUEUE task.
2046                  */
2047                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2048                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2049                 list_add_tail(&cmd->se_delayed_node,
2050                                 &cmd->se_dev->delayed_cmd_list);
2051                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2052
2053                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2054                         " delayed CMD list, se_ordered_id: %u\n",
2055                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2056                         cmd->se_ordered_id);
2057                 /*
2058                  * Return zero to let transport_execute_tasks() know
2059                  * not to add the delayed tasks to the execution list.
2060                  */
2061                 return 0;
2062         }
2063         /*
2064          * Otherwise, no ORDERED task attributes exist..
2065          */
2066         return 1;
2067 }
2068
2069 /*
2070  * Called from fabric module context in transport_generic_new_cmd() and
2071  * transport_generic_process_write()
2072  */
2073 static int transport_execute_tasks(struct se_cmd *cmd)
2074 {
2075         int add_tasks;
2076
2077         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2078                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2079                 transport_generic_request_failure(cmd, 0, 1);
2080                 return 0;
2081         }
2082
2083         /*
2084          * Call transport_cmd_check_stop() to see if a fabric exception
2085          * has occurred that prevents execution.
2086          */
2087         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2088                 /*
2089                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2090                  * attribute for the tasks of the received struct se_cmd CDB
2091                  */
2092                 add_tasks = transport_execute_task_attr(cmd);
2093                 if (!add_tasks)
2094                         goto execute_tasks;
2095                 /*
2096                  * This calls transport_add_tasks_from_cmd() to handle
2097                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2098                  * (if enabled) in __transport_add_task_to_execute_queue() and
2099                  * transport_add_task_check_sam_attr().
2100                  */
2101                 transport_add_tasks_from_cmd(cmd);
2102         }
2103         /*
2104          * Kick the execution queue for the cmd associated struct se_device
2105          * storage object.
2106          */
2107 execute_tasks:
2108         __transport_execute_tasks(cmd->se_dev);
2109         return 0;
2110 }
2111
2112 /*
2113  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2114  * from struct se_device->execute_task_list and
2115  *
2116  * Called from transport_processing_thread()
2117  */
2118 static int __transport_execute_tasks(struct se_device *dev)
2119 {
2120         int error;
2121         struct se_cmd *cmd = NULL;
2122         struct se_task *task = NULL;
2123         unsigned long flags;
2124
2125         /*
2126          * Check if there is enough room in the device and HBA queue to send
2127          * struct se_tasks to the selected transport.
2128          */
2129 check_depth:
2130         if (!atomic_read(&dev->depth_left))
2131                 return transport_tcq_window_closed(dev);
2132
2133         dev->dev_tcq_window_closed = 0;
2134
2135         spin_lock_irq(&dev->execute_task_lock);
2136         if (list_empty(&dev->execute_task_list)) {
2137                 spin_unlock_irq(&dev->execute_task_lock);
2138                 return 0;
2139         }
2140         task = list_first_entry(&dev->execute_task_list,
2141                                 struct se_task, t_execute_list);
2142         __transport_remove_task_from_execute_queue(task, dev);
2143         spin_unlock_irq(&dev->execute_task_lock);
2144
2145         atomic_dec(&dev->depth_left);
2146
2147         cmd = task->task_se_cmd;
2148
2149         spin_lock_irqsave(&cmd->t_state_lock, flags);
2150         task->task_flags |= (TF_ACTIVE | TF_SENT);
2151         atomic_inc(&cmd->t_task_cdbs_sent);
2152
2153         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2154             cmd->t_task_list_num)
2155                 atomic_set(&cmd->t_transport_sent, 1);
2156
2157         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2158         /*
2159          * The struct se_cmd->execute_task() function pointer is used
2160          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2161          * struct se_subsystem_api->do_task() caller below.
2162          */
2163         if (cmd->execute_task) {
2164                 error = cmd->execute_task(task);
2165         } else {
2166                 /*
2167                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2168                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2169                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2170                  * LUN emulation code.
2171                  *
2172                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2173                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2174                  * code handle the CDB emulation.
2175                  */
2176                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2177                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2178                         error = transport_emulate_control_cdb(task);
2179                 else
2180                         error = dev->transport->do_task(task);
2181         }
2182
2183         if (error != 0) {
2184                 cmd->transport_error_status = error;
2185                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2186                 task->task_flags &= ~TF_ACTIVE;
2187                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188                 atomic_set(&cmd->t_transport_sent, 0);
2189                 transport_stop_tasks_for_cmd(cmd);
2190                 atomic_inc(&dev->depth_left);
2191                 transport_generic_request_failure(cmd, 0, 1);
2192         }
2193
2194         goto check_depth;
2195
2196         return 0;
2197 }
2198
2199 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2200 {
2201         unsigned long flags;
2202         /*
2203          * Any unsolicited data will get dumped for failed command inside of
2204          * the fabric plugin
2205          */
2206         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2207         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2208         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2209         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2210 }
2211
2212 static inline u32 transport_get_sectors_6(
2213         unsigned char *cdb,
2214         struct se_cmd *cmd,
2215         int *ret)
2216 {
2217         struct se_device *dev = cmd->se_dev;
2218
2219         /*
2220          * Assume TYPE_DISK for non struct se_device objects.
2221          * Use 8-bit sector value.
2222          */
2223         if (!dev)
2224                 goto type_disk;
2225
2226         /*
2227          * Use 24-bit allocation length for TYPE_TAPE.
2228          */
2229         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2230                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2231
2232         /*
2233          * Everything else assume TYPE_DISK Sector CDB location.
2234          * Use 8-bit sector value.
2235          */
2236 type_disk:
2237         return (u32)cdb[4];
2238 }
2239
2240 static inline u32 transport_get_sectors_10(
2241         unsigned char *cdb,
2242         struct se_cmd *cmd,
2243         int *ret)
2244 {
2245         struct se_device *dev = cmd->se_dev;
2246
2247         /*
2248          * Assume TYPE_DISK for non struct se_device objects.
2249          * Use 16-bit sector value.
2250          */
2251         if (!dev)
2252                 goto type_disk;
2253
2254         /*
2255          * XXX_10 is not defined in SSC, throw an exception
2256          */
2257         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2258                 *ret = -EINVAL;
2259                 return 0;
2260         }
2261
2262         /*
2263          * Everything else assume TYPE_DISK Sector CDB location.
2264          * Use 16-bit sector value.
2265          */
2266 type_disk:
2267         return (u32)(cdb[7] << 8) + cdb[8];
2268 }
2269
2270 static inline u32 transport_get_sectors_12(
2271         unsigned char *cdb,
2272         struct se_cmd *cmd,
2273         int *ret)
2274 {
2275         struct se_device *dev = cmd->se_dev;
2276
2277         /*
2278          * Assume TYPE_DISK for non struct se_device objects.
2279          * Use 32-bit sector value.
2280          */
2281         if (!dev)
2282                 goto type_disk;
2283
2284         /*
2285          * XXX_12 is not defined in SSC, throw an exception
2286          */
2287         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2288                 *ret = -EINVAL;
2289                 return 0;
2290         }
2291
2292         /*
2293          * Everything else assume TYPE_DISK Sector CDB location.
2294          * Use 32-bit sector value.
2295          */
2296 type_disk:
2297         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2298 }
2299
2300 static inline u32 transport_get_sectors_16(
2301         unsigned char *cdb,
2302         struct se_cmd *cmd,
2303         int *ret)
2304 {
2305         struct se_device *dev = cmd->se_dev;
2306
2307         /*
2308          * Assume TYPE_DISK for non struct se_device objects.
2309          * Use 32-bit sector value.
2310          */
2311         if (!dev)
2312                 goto type_disk;
2313
2314         /*
2315          * Use 24-bit allocation length for TYPE_TAPE.
2316          */
2317         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2318                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2319
2320 type_disk:
2321         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2322                     (cdb[12] << 8) + cdb[13];
2323 }
2324
2325 /*
2326  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2327  */
2328 static inline u32 transport_get_sectors_32(
2329         unsigned char *cdb,
2330         struct se_cmd *cmd,
2331         int *ret)
2332 {
2333         /*
2334          * Assume TYPE_DISK for non struct se_device objects.
2335          * Use 32-bit sector value.
2336          */
2337         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2338                     (cdb[30] << 8) + cdb[31];
2339
2340 }
2341
2342 static inline u32 transport_get_size(
2343         u32 sectors,
2344         unsigned char *cdb,
2345         struct se_cmd *cmd)
2346 {
2347         struct se_device *dev = cmd->se_dev;
2348
2349         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2350                 if (cdb[1] & 1) { /* sectors */
2351                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2352                 } else /* bytes */
2353                         return sectors;
2354         }
2355 #if 0
2356         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2357                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2358                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2359                         dev->transport->name);
2360 #endif
2361         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2362 }
2363
2364 static void transport_xor_callback(struct se_cmd *cmd)
2365 {
2366         unsigned char *buf, *addr;
2367         struct scatterlist *sg;
2368         unsigned int offset;
2369         int i;
2370         int count;
2371         /*
2372          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2373          *
2374          * 1) read the specified logical block(s);
2375          * 2) transfer logical blocks from the data-out buffer;
2376          * 3) XOR the logical blocks transferred from the data-out buffer with
2377          *    the logical blocks read, storing the resulting XOR data in a buffer;
2378          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2379          *    blocks transferred from the data-out buffer; and
2380          * 5) transfer the resulting XOR data to the data-in buffer.
2381          */
2382         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2383         if (!buf) {
2384                 pr_err("Unable to allocate xor_callback buf\n");
2385                 return;
2386         }
2387         /*
2388          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2389          * into the locally allocated *buf
2390          */
2391         sg_copy_to_buffer(cmd->t_data_sg,
2392                           cmd->t_data_nents,
2393                           buf,
2394                           cmd->data_length);
2395
2396         /*
2397          * Now perform the XOR against the BIDI read memory located at
2398          * cmd->t_mem_bidi_list
2399          */
2400
2401         offset = 0;
2402         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2403                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2404                 if (!addr)
2405                         goto out;
2406
2407                 for (i = 0; i < sg->length; i++)
2408                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2409
2410                 offset += sg->length;
2411                 kunmap_atomic(addr, KM_USER0);
2412         }
2413
2414 out:
2415         kfree(buf);
2416 }
2417
2418 /*
2419  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2420  */
2421 static int transport_get_sense_data(struct se_cmd *cmd)
2422 {
2423         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2424         struct se_device *dev = cmd->se_dev;
2425         struct se_task *task = NULL, *task_tmp;
2426         unsigned long flags;
2427         u32 offset = 0;
2428
2429         WARN_ON(!cmd->se_lun);
2430
2431         if (!dev)
2432                 return 0;
2433
2434         spin_lock_irqsave(&cmd->t_state_lock, flags);
2435         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2436                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2437                 return 0;
2438         }
2439
2440         list_for_each_entry_safe(task, task_tmp,
2441                                 &cmd->t_task_list, t_list) {
2442                 if (!task->task_sense)
2443                         continue;
2444
2445                 if (!dev->transport->get_sense_buffer) {
2446                         pr_err("dev->transport->get_sense_buffer"
2447                                         " is NULL\n");
2448                         continue;
2449                 }
2450
2451                 sense_buffer = dev->transport->get_sense_buffer(task);
2452                 if (!sense_buffer) {
2453                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2454                                 " sense buffer for task with sense\n",
2455                                 cmd->se_tfo->get_task_tag(cmd), task);
2456                         continue;
2457                 }
2458                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2459
2460                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2461                                 TRANSPORT_SENSE_BUFFER);
2462
2463                 memcpy(&buffer[offset], sense_buffer,
2464                                 TRANSPORT_SENSE_BUFFER);
2465                 cmd->scsi_status = task->task_scsi_status;
2466                 /* Automatically padded */
2467                 cmd->scsi_sense_length =
2468                                 (TRANSPORT_SENSE_BUFFER + offset);
2469
2470                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2471                                 " and sense\n",
2472                         dev->se_hba->hba_id, dev->transport->name,
2473                                 cmd->scsi_status);
2474                 return 0;
2475         }
2476         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2477
2478         return -1;
2479 }
2480
2481 static int
2482 transport_handle_reservation_conflict(struct se_cmd *cmd)
2483 {
2484         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2485         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2486         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2487         /*
2488          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2489          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2490          * CONFLICT STATUS.
2491          *
2492          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2493          */
2494         if (cmd->se_sess &&
2495             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2496                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2497                         cmd->orig_fe_lun, 0x2C,
2498                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2499         return -EINVAL;
2500 }
2501
2502 static inline long long transport_dev_end_lba(struct se_device *dev)
2503 {
2504         return dev->transport->get_blocks(dev) + 1;
2505 }
2506
2507 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2508 {
2509         struct se_device *dev = cmd->se_dev;
2510         u32 sectors;
2511
2512         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2513                 return 0;
2514
2515         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2516
2517         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2518                 pr_err("LBA: %llu Sectors: %u exceeds"
2519                         " transport_dev_end_lba(): %llu\n",
2520                         cmd->t_task_lba, sectors,
2521                         transport_dev_end_lba(dev));
2522                 return -EINVAL;
2523         }
2524
2525         return 0;
2526 }
2527
2528 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2529 {
2530         /*
2531          * Determine if the received WRITE_SAME is used to for direct
2532          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2533          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2534          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2535          */
2536         int passthrough = (dev->transport->transport_type ==
2537                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2538
2539         if (!passthrough) {
2540                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2541                         pr_err("WRITE_SAME PBDATA and LBDATA"
2542                                 " bits not supported for Block Discard"
2543                                 " Emulation\n");
2544                         return -ENOSYS;
2545                 }
2546                 /*
2547                  * Currently for the emulated case we only accept
2548                  * tpws with the UNMAP=1 bit set.
2549                  */
2550                 if (!(flags[0] & 0x08)) {
2551                         pr_err("WRITE_SAME w/o UNMAP bit not"
2552                                 " supported for Block Discard Emulation\n");
2553                         return -ENOSYS;
2554                 }
2555         }
2556
2557         return 0;
2558 }
2559
2560 /*      transport_generic_cmd_sequencer():
2561  *
2562  *      Generic Command Sequencer that should work for most DAS transport
2563  *      drivers.
2564  *
2565  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2566  *      RX Thread.
2567  *
2568  *      FIXME: Need to support other SCSI OPCODES where as well.
2569  */
2570 static int transport_generic_cmd_sequencer(
2571         struct se_cmd *cmd,
2572         unsigned char *cdb)
2573 {
2574         struct se_device *dev = cmd->se_dev;
2575         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2576         int ret = 0, sector_ret = 0, passthrough;
2577         u32 sectors = 0, size = 0, pr_reg_type = 0;
2578         u16 service_action;
2579         u8 alua_ascq = 0;
2580         /*
2581          * Check for an existing UNIT ATTENTION condition
2582          */
2583         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2584                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2585                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2586                 return -EINVAL;
2587         }
2588         /*
2589          * Check status of Asymmetric Logical Unit Assignment port
2590          */
2591         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2592         if (ret != 0) {
2593                 /*
2594                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2595                  * The ALUA additional sense code qualifier (ASCQ) is determined
2596                  * by the ALUA primary or secondary access state..
2597                  */
2598                 if (ret > 0) {
2599 #if 0
2600                         pr_debug("[%s]: ALUA TG Port not available,"
2601                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2602                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2603 #endif
2604                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2605                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2606                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2607                         return -EINVAL;
2608                 }
2609                 goto out_invalid_cdb_field;
2610         }
2611         /*
2612          * Check status for SPC-3 Persistent Reservations
2613          */
2614         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2615                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2616                                         cmd, cdb, pr_reg_type) != 0)
2617                         return transport_handle_reservation_conflict(cmd);
2618                 /*
2619                  * This means the CDB is allowed for the SCSI Initiator port
2620                  * when said port is *NOT* holding the legacy SPC-2 or
2621                  * SPC-3 Persistent Reservation.
2622                  */
2623         }
2624
2625         switch (cdb[0]) {
2626         case READ_6:
2627                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2628                 if (sector_ret)
2629                         goto out_unsupported_cdb;
2630                 size = transport_get_size(sectors, cdb, cmd);
2631                 cmd->t_task_lba = transport_lba_21(cdb);
2632                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2633                 break;
2634         case READ_10:
2635                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2636                 if (sector_ret)
2637                         goto out_unsupported_cdb;
2638                 size = transport_get_size(sectors, cdb, cmd);
2639                 cmd->t_task_lba = transport_lba_32(cdb);
2640                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2641                 break;
2642         case READ_12:
2643                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2644                 if (sector_ret)
2645                         goto out_unsupported_cdb;
2646                 size = transport_get_size(sectors, cdb, cmd);
2647                 cmd->t_task_lba = transport_lba_32(cdb);
2648                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2649                 break;
2650         case READ_16:
2651                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2652                 if (sector_ret)
2653                         goto out_unsupported_cdb;
2654                 size = transport_get_size(sectors, cdb, cmd);
2655                 cmd->t_task_lba = transport_lba_64(cdb);
2656                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2657                 break;
2658         case WRITE_6:
2659                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2660                 if (sector_ret)
2661                         goto out_unsupported_cdb;
2662                 size = transport_get_size(sectors, cdb, cmd);
2663                 cmd->t_task_lba = transport_lba_21(cdb);
2664                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2665                 break;
2666         case WRITE_10:
2667                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2668                 if (sector_ret)
2669                         goto out_unsupported_cdb;
2670                 size = transport_get_size(sectors, cdb, cmd);
2671                 cmd->t_task_lba = transport_lba_32(cdb);
2672                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2673                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2674                 break;
2675         case WRITE_12:
2676                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2677                 if (sector_ret)
2678                         goto out_unsupported_cdb;
2679                 size = transport_get_size(sectors, cdb, cmd);
2680                 cmd->t_task_lba = transport_lba_32(cdb);
2681                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2682                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2683                 break;
2684         case WRITE_16:
2685                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2686                 if (sector_ret)
2687                         goto out_unsupported_cdb;
2688                 size = transport_get_size(sectors, cdb, cmd);
2689                 cmd->t_task_lba = transport_lba_64(cdb);
2690                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2691                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2692                 break;
2693         case XDWRITEREAD_10:
2694                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2695                     !(cmd->t_tasks_bidi))
2696                         goto out_invalid_cdb_field;
2697                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2698                 if (sector_ret)
2699                         goto out_unsupported_cdb;
2700                 size = transport_get_size(sectors, cdb, cmd);
2701                 cmd->t_task_lba = transport_lba_32(cdb);
2702                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2703
2704                 if (dev->transport->transport_type ==
2705                                 TRANSPORT_PLUGIN_PHBA_PDEV)
2706                         goto out_unsupported_cdb;
2707                 /*
2708                  * Setup BIDI XOR callback to be run after I/O completion.
2709                  */
2710                 cmd->transport_complete_callback = &transport_xor_callback;
2711                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2712                 break;
2713         case VARIABLE_LENGTH_CMD:
2714                 service_action = get_unaligned_be16(&cdb[8]);
2715                 /*
2716                  * Determine if this is TCM/PSCSI device and we should disable
2717                  * internal emulation for this CDB.
2718                  */
2719                 passthrough = (dev->transport->transport_type ==
2720                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2721
2722                 switch (service_action) {
2723                 case XDWRITEREAD_32:
2724                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2725                         if (sector_ret)
2726                                 goto out_unsupported_cdb;
2727                         size = transport_get_size(sectors, cdb, cmd);
2728                         /*
2729                          * Use WRITE_32 and READ_32 opcodes for the emulated
2730                          * XDWRITE_READ_32 logic.
2731                          */
2732                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2733                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2734
2735                         if (passthrough)
2736                                 goto out_unsupported_cdb;
2737                         /*
2738                          * Setup BIDI XOR callback to be run during after I/O
2739                          * completion.
2740                          */
2741                         cmd->transport_complete_callback = &transport_xor_callback;
2742                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2743                         break;
2744                 case WRITE_SAME_32:
2745                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2746                         if (sector_ret)
2747                                 goto out_unsupported_cdb;
2748
2749                         if (sectors)
2750                                 size = transport_get_size(1, cdb, cmd);
2751                         else {
2752                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2753                                        " supported\n");
2754                                 goto out_invalid_cdb_field;
2755                         }
2756
2757                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2758                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2759
2760                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2761                                 goto out_invalid_cdb_field;
2762
2763                         break;
2764                 default:
2765                         pr_err("VARIABLE_LENGTH_CMD service action"
2766                                 " 0x%04x not supported\n", service_action);
2767                         goto out_unsupported_cdb;
2768                 }
2769                 break;
2770         case MAINTENANCE_IN:
2771                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2772                         /* MAINTENANCE_IN from SCC-2 */
2773                         /*
2774                          * Check for emulated MI_REPORT_TARGET_PGS.
2775                          */
2776                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2777                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2778                                 cmd->execute_task =
2779                                         target_emulate_report_target_port_groups;
2780                         }
2781                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2782                                (cdb[8] << 8) | cdb[9];
2783                 } else {
2784                         /* GPCMD_SEND_KEY from multi media commands */
2785                         size = (cdb[8] << 8) + cdb[9];
2786                 }
2787                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788                 break;
2789         case MODE_SELECT:
2790                 size = cdb[4];
2791                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2792                 break;
2793         case MODE_SELECT_10:
2794                 size = (cdb[7] << 8) + cdb[8];
2795                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2796                 break;
2797         case MODE_SENSE:
2798                 size = cdb[4];
2799                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2800                 break;
2801         case MODE_SENSE_10:
2802         case GPCMD_READ_BUFFER_CAPACITY:
2803         case GPCMD_SEND_OPC:
2804         case LOG_SELECT:
2805         case LOG_SENSE:
2806                 size = (cdb[7] << 8) + cdb[8];
2807                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808                 break;
2809         case READ_BLOCK_LIMITS:
2810                 size = READ_BLOCK_LEN;
2811                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2812                 break;
2813         case GPCMD_GET_CONFIGURATION:
2814         case GPCMD_READ_FORMAT_CAPACITIES:
2815         case GPCMD_READ_DISC_INFO:
2816         case GPCMD_READ_TRACK_RZONE_INFO:
2817                 size = (cdb[7] << 8) + cdb[8];
2818                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2819                 break;
2820         case PERSISTENT_RESERVE_IN:
2821                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2822                         cmd->execute_task = target_scsi3_emulate_pr_in;
2823                 size = (cdb[7] << 8) + cdb[8];
2824                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2825                 break;
2826         case PERSISTENT_RESERVE_OUT:
2827                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2828                         cmd->execute_task = target_scsi3_emulate_pr_out;
2829                 size = (cdb[7] << 8) + cdb[8];
2830                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2831                 break;
2832         case GPCMD_MECHANISM_STATUS:
2833         case GPCMD_READ_DVD_STRUCTURE:
2834                 size = (cdb[8] << 8) + cdb[9];
2835                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836                 break;
2837         case READ_POSITION:
2838                 size = READ_POSITION_LEN;
2839                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2840                 break;
2841         case MAINTENANCE_OUT:
2842                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2843                         /* MAINTENANCE_OUT from SCC-2
2844                          *
2845                          * Check for emulated MO_SET_TARGET_PGS.
2846                          */
2847                         if (cdb[1] == MO_SET_TARGET_PGS &&
2848                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2849                                 cmd->execute_task =
2850                                         target_emulate_set_target_port_groups;
2851                         }
2852
2853                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2854                                (cdb[8] << 8) | cdb[9];
2855                 } else  {
2856                         /* GPCMD_REPORT_KEY from multi media commands */
2857                         size = (cdb[8] << 8) + cdb[9];
2858                 }
2859                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2860                 break;
2861         case INQUIRY:
2862                 size = (cdb[3] << 8) + cdb[4];
2863                 /*
2864                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2865                  * See spc4r17 section 5.3
2866                  */
2867                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2868                         cmd->sam_task_attr = MSG_HEAD_TAG;
2869                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2870                 break;
2871         case READ_BUFFER:
2872                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2873                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2874                 break;
2875         case READ_CAPACITY:
2876                 size = READ_CAP_LEN;
2877                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2878                 break;
2879         case READ_MEDIA_SERIAL_NUMBER:
2880         case SECURITY_PROTOCOL_IN:
2881         case SECURITY_PROTOCOL_OUT:
2882                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2883                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2884                 break;
2885         case SERVICE_ACTION_IN:
2886         case ACCESS_CONTROL_IN:
2887         case ACCESS_CONTROL_OUT:
2888         case EXTENDED_COPY:
2889         case READ_ATTRIBUTE:
2890         case RECEIVE_COPY_RESULTS:
2891         case WRITE_ATTRIBUTE:
2892                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2893                        (cdb[12] << 8) | cdb[13];
2894                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2895                 break;
2896         case RECEIVE_DIAGNOSTIC:
2897         case SEND_DIAGNOSTIC:
2898                 size = (cdb[3] << 8) | cdb[4];
2899                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2900                 break;
2901 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2902 #if 0
2903         case GPCMD_READ_CD:
2904                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2905                 size = (2336 * sectors);
2906                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2907                 break;
2908 #endif
2909         case READ_TOC:
2910                 size = cdb[8];
2911                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2912                 break;
2913         case REQUEST_SENSE:
2914                 size = cdb[4];
2915                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916                 break;
2917         case READ_ELEMENT_STATUS:
2918                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2919                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920                 break;
2921         case WRITE_BUFFER:
2922                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2923                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2924                 break;
2925         case RESERVE:
2926         case RESERVE_10:
2927                 /*
2928                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2929                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2930                  */
2931                 if (cdb[0] == RESERVE_10)
2932                         size = (cdb[7] << 8) | cdb[8];
2933                 else
2934                         size = cmd->data_length;
2935
2936                 /*
2937                  * Setup the legacy emulated handler for SPC-2 and
2938                  * >= SPC-3 compatible reservation handling (CRH=1)
2939                  * Otherwise, we assume the underlying SCSI logic is
2940                  * is running in SPC_PASSTHROUGH, and wants reservations
2941                  * emulation disabled.
2942                  */
2943                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2944                         cmd->execute_task = target_scsi2_reservation_reserve;
2945                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2946                 break;
2947         case RELEASE:
2948         case RELEASE_10:
2949                 /*
2950                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2951                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2952                 */
2953                 if (cdb[0] == RELEASE_10)
2954                         size = (cdb[7] << 8) | cdb[8];
2955                 else
2956                         size = cmd->data_length;
2957
2958                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2959                         cmd->execute_task = target_scsi2_reservation_release;
2960                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2961                 break;
2962         case SYNCHRONIZE_CACHE:
2963         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2964                 /*
2965                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2966                  */
2967                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2968                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2969                         cmd->t_task_lba = transport_lba_32(cdb);
2970                 } else {
2971                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2972                         cmd->t_task_lba = transport_lba_64(cdb);
2973                 }
2974                 if (sector_ret)
2975                         goto out_unsupported_cdb;
2976
2977                 size = transport_get_size(sectors, cdb, cmd);
2978                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2979
2980                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
2981                         break;
2982                 /*
2983                  * Check to ensure that LBA + Range does not exceed past end of
2984                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2985                  */
2986                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2987                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2988                                 goto out_invalid_cdb_field;
2989                 }
2990                 break;
2991         case UNMAP:
2992                 size = get_unaligned_be16(&cdb[7]);
2993                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2994                 break;
2995         case WRITE_SAME_16:
2996                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2997                 if (sector_ret)
2998                         goto out_unsupported_cdb;
2999
3000                 if (sectors)
3001                         size = transport_get_size(1, cdb, cmd);
3002                 else {
3003                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3004                         goto out_invalid_cdb_field;
3005                 }
3006
3007                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3008                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3009
3010                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3011                         goto out_invalid_cdb_field;
3012                 break;
3013         case WRITE_SAME:
3014                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3015                 if (sector_ret)
3016                         goto out_unsupported_cdb;
3017
3018                 if (sectors)
3019                         size = transport_get_size(1, cdb, cmd);
3020                 else {
3021                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3022                         goto out_invalid_cdb_field;
3023                 }
3024
3025                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3026                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3027                 /*
3028                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3029                  * of byte 1 bit 3 UNMAP instead of original reserved field
3030                  */
3031                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3032                         goto out_invalid_cdb_field;
3033                 break;
3034         case ALLOW_MEDIUM_REMOVAL:
3035         case GPCMD_CLOSE_TRACK:
3036         case ERASE:
3037         case INITIALIZE_ELEMENT_STATUS:
3038         case GPCMD_LOAD_UNLOAD:
3039         case REZERO_UNIT:
3040         case SEEK_10:
3041         case GPCMD_SET_SPEED:
3042         case SPACE:
3043         case START_STOP:
3044         case TEST_UNIT_READY:
3045         case VERIFY:
3046         case WRITE_FILEMARKS:
3047         case MOVE_MEDIUM:
3048                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3049                 break;
3050         case REPORT_LUNS:
3051                 cmd->execute_task = target_report_luns;
3052                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3053                 /*
3054                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3055                  * See spc4r17 section 5.3
3056                  */
3057                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3058                         cmd->sam_task_attr = MSG_HEAD_TAG;
3059                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3060                 break;
3061         default:
3062                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3063                         " 0x%02x, sending CHECK_CONDITION.\n",
3064                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3065                 goto out_unsupported_cdb;
3066         }
3067
3068         if (size != cmd->data_length) {
3069                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3070                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3071                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3072                                 cmd->data_length, size, cdb[0]);
3073
3074                 cmd->cmd_spdtl = size;
3075
3076                 if (cmd->data_direction == DMA_TO_DEVICE) {
3077                         pr_err("Rejecting underflow/overflow"
3078                                         " WRITE data\n");
3079                         goto out_invalid_cdb_field;
3080                 }
3081                 /*
3082                  * Reject READ_* or WRITE_* with overflow/underflow for
3083                  * type SCF_SCSI_DATA_SG_IO_CDB.
3084                  */
3085                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3086                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3087                                 " CDB on non 512-byte sector setup subsystem"
3088                                 " plugin: %s\n", dev->transport->name);
3089                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3090                         goto out_invalid_cdb_field;
3091                 }
3092
3093                 if (size > cmd->data_length) {
3094                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3095                         cmd->residual_count = (size - cmd->data_length);
3096                 } else {
3097                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3098                         cmd->residual_count = (cmd->data_length - size);
3099                 }
3100                 cmd->data_length = size;
3101         }
3102
3103         /* Let's limit control cdbs to a page, for simplicity's sake. */
3104         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3105             size > PAGE_SIZE)
3106                 goto out_invalid_cdb_field;
3107
3108         transport_set_supported_SAM_opcode(cmd);
3109         return ret;
3110
3111 out_unsupported_cdb:
3112         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3113         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3114         return -EINVAL;
3115 out_invalid_cdb_field:
3116         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3117         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3118         return -EINVAL;
3119 }
3120
3121 /*
3122  * Called from I/O completion to determine which dormant/delayed
3123  * and ordered cmds need to have their tasks added to the execution queue.
3124  */
3125 static void transport_complete_task_attr(struct se_cmd *cmd)
3126 {
3127         struct se_device *dev = cmd->se_dev;
3128         struct se_cmd *cmd_p, *cmd_tmp;
3129         int new_active_tasks = 0;
3130
3131         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3132                 atomic_dec(&dev->simple_cmds);
3133                 smp_mb__after_atomic_dec();
3134                 dev->dev_cur_ordered_id++;
3135                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3136                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3137                         cmd->se_ordered_id);
3138         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3139                 atomic_dec(&dev->dev_hoq_count);
3140                 smp_mb__after_atomic_dec();
3141                 dev->dev_cur_ordered_id++;
3142                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3143                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3144                         cmd->se_ordered_id);
3145         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3146                 spin_lock(&dev->ordered_cmd_lock);
3147                 list_del(&cmd->se_ordered_node);
3148                 atomic_dec(&dev->dev_ordered_sync);
3149                 smp_mb__after_atomic_dec();
3150                 spin_unlock(&dev->ordered_cmd_lock);
3151
3152                 dev->dev_cur_ordered_id++;
3153                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3154                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3155         }
3156         /*
3157          * Process all commands up to the last received
3158          * ORDERED task attribute which requires another blocking
3159          * boundary
3160          */
3161         spin_lock(&dev->delayed_cmd_lock);
3162         list_for_each_entry_safe(cmd_p, cmd_tmp,
3163                         &dev->delayed_cmd_list, se_delayed_node) {
3164
3165                 list_del(&cmd_p->se_delayed_node);
3166                 spin_unlock(&dev->delayed_cmd_lock);
3167
3168                 pr_debug("Calling add_tasks() for"
3169                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3170                         " Dormant -> Active, se_ordered_id: %u\n",
3171                         cmd_p->t_task_cdb[0],
3172                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3173
3174                 transport_add_tasks_from_cmd(cmd_p);
3175                 new_active_tasks++;
3176
3177                 spin_lock(&dev->delayed_cmd_lock);
3178                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3179                         break;
3180         }
3181         spin_unlock(&dev->delayed_cmd_lock);
3182         /*
3183          * If new tasks have become active, wake up the transport thread
3184          * to do the processing of the Active tasks.
3185          */
3186         if (new_active_tasks != 0)
3187                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3188 }
3189
3190 static void transport_complete_qf(struct se_cmd *cmd)
3191 {
3192         int ret = 0;
3193
3194         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3195                 transport_complete_task_attr(cmd);
3196
3197         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3198                 ret = cmd->se_tfo->queue_status(cmd);
3199                 if (ret)
3200                         goto out;
3201         }
3202
3203         switch (cmd->data_direction) {
3204         case DMA_FROM_DEVICE:
3205                 ret = cmd->se_tfo->queue_data_in(cmd);
3206                 break;
3207         case DMA_TO_DEVICE:
3208                 if (cmd->t_bidi_data_sg) {
3209                         ret = cmd->se_tfo->queue_data_in(cmd);
3210                         if (ret < 0)
3211                                 break;
3212                 }
3213                 /* Fall through for DMA_TO_DEVICE */
3214         case DMA_NONE:
3215                 ret = cmd->se_tfo->queue_status(cmd);
3216                 break;
3217         default:
3218                 break;
3219         }
3220
3221 out:
3222         if (ret < 0) {
3223                 transport_handle_queue_full(cmd, cmd->se_dev);
3224                 return;
3225         }
3226         transport_lun_remove_cmd(cmd);
3227         transport_cmd_check_stop_to_fabric(cmd);
3228 }
3229
3230 static void transport_handle_queue_full(
3231         struct se_cmd *cmd,
3232         struct se_device *dev)
3233 {
3234         spin_lock_irq(&dev->qf_cmd_lock);
3235         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3236         atomic_inc(&dev->dev_qf_count);
3237         smp_mb__after_atomic_inc();
3238         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3239
3240         schedule_work(&cmd->se_dev->qf_work_queue);
3241 }
3242
3243 static void target_complete_ok_work(struct work_struct *work)
3244 {
3245         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3246         int reason = 0, ret;
3247
3248         /*
3249          * Check if we need to move delayed/dormant tasks from cmds on the
3250          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3251          * Attribute.
3252          */
3253         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3254                 transport_complete_task_attr(cmd);
3255         /*
3256          * Check to schedule QUEUE_FULL work, or execute an existing
3257          * cmd->transport_qf_callback()
3258          */
3259         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3260                 schedule_work(&cmd->se_dev->qf_work_queue);
3261
3262         /*
3263          * Check if we need to retrieve a sense buffer from
3264          * the struct se_cmd in question.
3265          */
3266         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3267                 if (transport_get_sense_data(cmd) < 0)
3268                         reason = TCM_NON_EXISTENT_LUN;
3269
3270                 /*
3271                  * Only set when an struct se_task->task_scsi_status returned
3272                  * a non GOOD status.
3273                  */
3274                 if (cmd->scsi_status) {
3275                         ret = transport_send_check_condition_and_sense(
3276                                         cmd, reason, 1);
3277                         if (ret == -EAGAIN || ret == -ENOMEM)
3278                                 goto queue_full;
3279
3280                         transport_lun_remove_cmd(cmd);
3281                         transport_cmd_check_stop_to_fabric(cmd);
3282                         return;
3283                 }
3284         }
3285         /*
3286          * Check for a callback, used by amongst other things
3287          * XDWRITE_READ_10 emulation.
3288          */
3289         if (cmd->transport_complete_callback)
3290                 cmd->transport_complete_callback(cmd);
3291
3292         switch (cmd->data_direction) {
3293         case DMA_FROM_DEVICE:
3294                 spin_lock(&cmd->se_lun->lun_sep_lock);
3295                 if (cmd->se_lun->lun_sep) {
3296                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3297                                         cmd->data_length;
3298                 }
3299                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3300
3301                 ret = cmd->se_tfo->queue_data_in(cmd);
3302                 if (ret == -EAGAIN || ret == -ENOMEM)
3303                         goto queue_full;
3304                 break;
3305         case DMA_TO_DEVICE:
3306                 spin_lock(&cmd->se_lun->lun_sep_lock);
3307                 if (cmd->se_lun->lun_sep) {
3308                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3309                                 cmd->data_length;
3310                 }
3311                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3312                 /*
3313                  * Check if we need to send READ payload for BIDI-COMMAND
3314                  */
3315                 if (cmd->t_bidi_data_sg) {
3316                         spin_lock(&cmd->se_lun->lun_sep_lock);
3317                         if (cmd->se_lun->lun_sep) {
3318                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3319                                         cmd->data_length;
3320                         }
3321                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3322                         ret = cmd->se_tfo->queue_data_in(cmd);
3323                         if (ret == -EAGAIN || ret == -ENOMEM)
3324                                 goto queue_full;
3325                         break;
3326                 }
3327                 /* Fall through for DMA_TO_DEVICE */
3328         case DMA_NONE:
3329                 ret = cmd->se_tfo->queue_status(cmd);
3330                 if (ret == -EAGAIN || ret == -ENOMEM)
3331                         goto queue_full;
3332                 break;
3333         default:
3334                 break;
3335         }
3336
3337         transport_lun_remove_cmd(cmd);
3338         transport_cmd_check_stop_to_fabric(cmd);
3339         return;
3340
3341 queue_full:
3342         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3343                 " data_direction: %d\n", cmd, cmd->data_direction);
3344         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3345         transport_handle_queue_full(cmd, cmd->se_dev);
3346 }
3347
3348 static void transport_free_dev_tasks(struct se_cmd *cmd)
3349 {
3350         struct se_task *task, *task_tmp;
3351         unsigned long flags;
3352         LIST_HEAD(dispose_list);
3353
3354         spin_lock_irqsave(&cmd->t_state_lock, flags);
3355         list_for_each_entry_safe(task, task_tmp,
3356                                 &cmd->t_task_list, t_list) {
3357                 if (!(task->task_flags & TF_ACTIVE))
3358                         list_move_tail(&task->t_list, &dispose_list);
3359         }
3360         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3361
3362         while (!list_empty(&dispose_list)) {
3363                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3364
3365                 if (task->task_sg != cmd->t_data_sg &&
3366                     task->task_sg != cmd->t_bidi_data_sg)
3367                         kfree(task->task_sg);
3368
3369                 list_del(&task->t_list);
3370
3371                 cmd->se_dev->transport->free_task(task);
3372         }
3373 }
3374
3375 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3376 {
3377         struct scatterlist *sg;
3378         int count;
3379
3380         for_each_sg(sgl, sg, nents, count)
3381                 __free_page(sg_page(sg));
3382
3383         kfree(sgl);
3384 }
3385
3386 static inline void transport_free_pages(struct se_cmd *cmd)
3387 {
3388         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3389                 return;
3390
3391         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3392         cmd->t_data_sg = NULL;
3393         cmd->t_data_nents = 0;
3394
3395         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3396         cmd->t_bidi_data_sg = NULL;
3397         cmd->t_bidi_data_nents = 0;
3398 }
3399
3400 /**
3401  * transport_put_cmd - release a reference to a command
3402  * @cmd:       command to release
3403  *
3404  * This routine releases our reference to the command and frees it if possible.
3405  */
3406 static void transport_put_cmd(struct se_cmd *cmd)
3407 {
3408         unsigned long flags;
3409         int free_tasks = 0;
3410
3411         spin_lock_irqsave(&cmd->t_state_lock, flags);
3412         if (atomic_read(&cmd->t_fe_count)) {
3413                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3414                         goto out_busy;
3415         }
3416
3417         if (atomic_read(&cmd->t_se_count)) {
3418                 if (!atomic_dec_and_test(&cmd->t_se_count))
3419                         goto out_busy;
3420         }
3421
3422         if (atomic_read(&cmd->transport_dev_active)) {
3423                 atomic_set(&cmd->transport_dev_active, 0);
3424                 transport_all_task_dev_remove_state(cmd);
3425                 free_tasks = 1;
3426         }
3427         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3428
3429         if (free_tasks != 0)
3430                 transport_free_dev_tasks(cmd);
3431
3432         transport_free_pages(cmd);
3433         transport_release_cmd(cmd);
3434         return;
3435 out_busy:
3436         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437 }
3438
3439 /*
3440  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3441  * allocating in the core.
3442  * @cmd:  Associated se_cmd descriptor
3443  * @mem:  SGL style memory for TCM WRITE / READ
3444  * @sg_mem_num: Number of SGL elements
3445  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3446  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3447  *
3448  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3449  * of parameters.
3450  */
3451 int transport_generic_map_mem_to_cmd(
3452         struct se_cmd *cmd,
3453         struct scatterlist *sgl,
3454         u32 sgl_count,
3455         struct scatterlist *sgl_bidi,
3456         u32 sgl_bidi_count)
3457 {
3458         if (!sgl || !sgl_count)
3459                 return 0;
3460
3461         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3462             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3463
3464                 cmd->t_data_sg = sgl;
3465                 cmd->t_data_nents = sgl_count;
3466
3467                 if (sgl_bidi && sgl_bidi_count) {
3468                         cmd->t_bidi_data_sg = sgl_bidi;
3469                         cmd->t_bidi_data_nents = sgl_bidi_count;
3470                 }
3471                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3472         }
3473
3474         return 0;
3475 }
3476 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3477
3478 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3479 {
3480         struct scatterlist *sg = cmd->t_data_sg;
3481
3482         BUG_ON(!sg);
3483         /*
3484          * We need to take into account a possible offset here for fabrics like
3485          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3486          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3487          */
3488         return kmap(sg_page(sg)) + sg->offset;
3489 }
3490 EXPORT_SYMBOL(transport_kmap_first_data_page);
3491
3492 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3493 {
3494         kunmap(sg_page(cmd->t_data_sg));
3495 }
3496 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3497
3498 static int
3499 transport_generic_get_mem(struct se_cmd *cmd)
3500 {
3501         u32 length = cmd->data_length;
3502         unsigned int nents;
3503         struct page *page;
3504         int i = 0;
3505
3506         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3507         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3508         if (!cmd->t_data_sg)
3509                 return -ENOMEM;
3510
3511         cmd->t_data_nents = nents;
3512         sg_init_table(cmd->t_data_sg, nents);
3513
3514         while (length) {
3515                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3516                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3517                 if (!page)
3518                         goto out;
3519
3520                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3521                 length -= page_len;
3522                 i++;
3523         }
3524         return 0;
3525
3526 out:
3527         while (i >= 0) {
3528                 __free_page(sg_page(&cmd->t_data_sg[i]));
3529                 i--;
3530         }
3531         kfree(cmd->t_data_sg);
3532         cmd->t_data_sg = NULL;
3533         return -ENOMEM;
3534 }
3535
3536 /* Reduce sectors if they are too long for the device */
3537 static inline sector_t transport_limit_task_sectors(
3538         struct se_device *dev,
3539         unsigned long long lba,
3540         sector_t sectors)
3541 {
3542         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3543
3544         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3545                 if ((lba + sectors) > transport_dev_end_lba(dev))
3546                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3547
3548         return sectors;
3549 }
3550
3551
3552 /*
3553  * This function can be used by HW target mode drivers to create a linked
3554  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3555  * This is intended to be called during the completion path by TCM Core
3556  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3557  */
3558 void transport_do_task_sg_chain(struct se_cmd *cmd)
3559 {
3560         struct scatterlist *sg_first = NULL;
3561         struct scatterlist *sg_prev = NULL;
3562         int sg_prev_nents = 0;
3563         struct scatterlist *sg;
3564         struct se_task *task;
3565         u32 chained_nents = 0;
3566         int i;
3567
3568         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3569
3570         /*
3571          * Walk the struct se_task list and setup scatterlist chains
3572          * for each contiguously allocated struct se_task->task_sg[].
3573          */
3574         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3575                 if (!task->task_sg)
3576                         continue;
3577
3578                 if (!sg_first) {
3579                         sg_first = task->task_sg;
3580                         chained_nents = task->task_sg_nents;
3581                 } else {
3582                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3583                         chained_nents += task->task_sg_nents;
3584                 }
3585                 /*
3586                  * For the padded tasks, use the extra SGL vector allocated
3587                  * in transport_allocate_data_tasks() for the sg_prev_nents
3588                  * offset into sg_chain() above.
3589                  *
3590                  * We do not need the padding for the last task (or a single
3591                  * task), but in that case we will never use the sg_prev_nents
3592                  * value below which would be incorrect.
3593                  */
3594                 sg_prev_nents = (task->task_sg_nents + 1);
3595                 sg_prev = task->task_sg;
3596         }
3597         /*
3598          * Setup the starting pointer and total t_tasks_sg_linked_no including
3599          * padding SGs for linking and to mark the end.
3600          */
3601         cmd->t_tasks_sg_chained = sg_first;
3602         cmd->t_tasks_sg_chained_no = chained_nents;
3603
3604         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3605                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3606                 cmd->t_tasks_sg_chained_no);
3607
3608         for_each_sg(cmd->t_tasks_sg_chained, sg,
3609                         cmd->t_tasks_sg_chained_no, i) {
3610
3611                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3612                         i, sg, sg_page(sg), sg->length, sg->offset);
3613                 if (sg_is_chain(sg))
3614                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3615                 if (sg_is_last(sg))
3616                         pr_debug("SG: %p sg_is_last=1\n", sg);
3617         }
3618 }
3619 EXPORT_SYMBOL(transport_do_task_sg_chain);
3620
3621 /*
3622  * Break up cmd into chunks transport can handle
3623  */
3624 static int
3625 transport_allocate_data_tasks(struct se_cmd *cmd,
3626         enum dma_data_direction data_direction,
3627         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3628 {
3629         struct se_device *dev = cmd->se_dev;
3630         int task_count, i;
3631         unsigned long long lba;
3632         sector_t sectors, dev_max_sectors;
3633         u32 sector_size;
3634
3635         if (transport_cmd_get_valid_sectors(cmd) < 0)
3636                 return -EINVAL;
3637
3638         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3639         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3640
3641         WARN_ON(cmd->data_length % sector_size);
3642
3643         lba = cmd->t_task_lba;
3644         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3645         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3646
3647         /*
3648          * If we need just a single task reuse the SG list in the command
3649          * and avoid a lot of work.
3650          */
3651         if (task_count == 1) {
3652                 struct se_task *task;
3653                 unsigned long flags;
3654
3655                 task = transport_generic_get_task(cmd, data_direction);
3656                 if (!task)
3657                         return -ENOMEM;
3658
3659                 task->task_sg = cmd_sg;
3660                 task->task_sg_nents = sgl_nents;
3661
3662                 task->task_lba = lba;
3663                 task->task_sectors = sectors;
3664                 task->task_size = task->task_sectors * sector_size;
3665
3666                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3667                 list_add_tail(&task->t_list, &cmd->t_task_list);
3668                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3669
3670                 return task_count;
3671         }
3672
3673         for (i = 0; i < task_count; i++) {
3674                 struct se_task *task;
3675                 unsigned int task_size, task_sg_nents_padded;
3676                 struct scatterlist *sg;
3677                 unsigned long flags;
3678                 int count;
3679
3680                 task = transport_generic_get_task(cmd, data_direction);
3681                 if (!task)
3682                         return -ENOMEM;
3683
3684                 task->task_lba = lba;
3685                 task->task_sectors = min(sectors, dev_max_sectors);
3686                 task->task_size = task->task_sectors * sector_size;
3687
3688                 /*
3689                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3690                  * in order to calculate the number per task SGL entries
3691                  */
3692                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3693                 /*
3694                  * Check if the fabric module driver is requesting that all
3695                  * struct se_task->task_sg[] be chained together..  If so,
3696                  * then allocate an extra padding SG entry for linking and
3697                  * marking the end of the chained SGL for every task except
3698                  * the last one for (task_count > 1) operation, or skipping
3699                  * the extra padding for the (task_count == 1) case.
3700                  */
3701                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3702                         task_sg_nents_padded = (task->task_sg_nents + 1);
3703                 } else
3704                         task_sg_nents_padded = task->task_sg_nents;
3705
3706                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3707                                         task_sg_nents_padded, GFP_KERNEL);
3708                 if (!task->task_sg) {
3709                         cmd->se_dev->transport->free_task(task);
3710                         return -ENOMEM;
3711                 }
3712
3713                 sg_init_table(task->task_sg, task_sg_nents_padded);
3714
3715                 task_size = task->task_size;
3716
3717                 /* Build new sgl, only up to task_size */
3718                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3719                         if (cmd_sg->length > task_size)
3720                                 break;
3721
3722                         *sg = *cmd_sg;
3723                         task_size -= cmd_sg->length;
3724                         cmd_sg = sg_next(cmd_sg);
3725                 }
3726
3727                 lba += task->task_sectors;
3728                 sectors -= task->task_sectors;
3729
3730                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3731                 list_add_tail(&task->t_list, &cmd->t_task_list);
3732                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3733         }
3734
3735         return task_count;
3736 }
3737
3738 static int
3739 transport_allocate_control_task(struct se_cmd *cmd)
3740 {
3741         struct se_task *task;
3742         unsigned long flags;
3743
3744         task = transport_generic_get_task(cmd, cmd->data_direction);
3745         if (!task)
3746                 return -ENOMEM;
3747
3748         task->task_sg = cmd->t_data_sg;
3749         task->task_size = cmd->data_length;
3750         task->task_sg_nents = cmd->t_data_nents;
3751
3752         spin_lock_irqsave(&cmd->t_state_lock, flags);
3753         list_add_tail(&task->t_list, &cmd->t_task_list);
3754         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3755
3756         /* Success! Return number of tasks allocated */
3757         return 1;
3758 }
3759
3760 /*
3761  * Allocate any required ressources to execute the command, and either place
3762  * it on the execution queue if possible.  For writes we might not have the
3763  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3764  */
3765 int transport_generic_new_cmd(struct se_cmd *cmd)
3766 {
3767         struct se_device *dev = cmd->se_dev;
3768         int task_cdbs, task_cdbs_bidi = 0;
3769         int set_counts = 1;
3770         int ret = 0;
3771
3772         /*
3773          * Determine is the TCM fabric module has already allocated physical
3774          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3775          * beforehand.
3776          */
3777         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3778             cmd->data_length) {
3779                 ret = transport_generic_get_mem(cmd);
3780                 if (ret < 0)
3781                         return ret;
3782         }
3783
3784         /*
3785          * For BIDI command set up the read tasks first.
3786          */
3787         if (cmd->t_bidi_data_sg &&
3788             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3789                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3790
3791                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3792                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3793                                 cmd->t_bidi_data_nents);
3794                 if (task_cdbs_bidi <= 0)
3795                         goto out_fail;
3796
3797                 atomic_inc(&cmd->t_fe_count);
3798                 atomic_inc(&cmd->t_se_count);
3799                 set_counts = 0;
3800         }
3801
3802         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3803                 task_cdbs = transport_allocate_data_tasks(cmd,
3804                                         cmd->data_direction, cmd->t_data_sg,
3805                                         cmd->t_data_nents);
3806         } else {
3807                 task_cdbs = transport_allocate_control_task(cmd);
3808         }
3809
3810         if (task_cdbs <= 0)
3811                 goto out_fail;
3812
3813         if (set_counts) {
3814                 atomic_inc(&cmd->t_fe_count);
3815                 atomic_inc(&cmd->t_se_count);
3816         }
3817
3818         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3819         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3820         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3821
3822         /*
3823          * For WRITEs, let the fabric know its buffer is ready..
3824          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3825          * will be added to the struct se_device execution queue after its WRITE
3826          * data has arrived. (ie: It gets handled by the transport processing
3827          * thread a second time)
3828          */
3829         if (cmd->data_direction == DMA_TO_DEVICE) {
3830                 transport_add_tasks_to_state_queue(cmd);
3831                 return transport_generic_write_pending(cmd);
3832         }
3833         /*
3834          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3835          * to the execution queue.
3836          */
3837         transport_execute_tasks(cmd);
3838         return 0;
3839
3840 out_fail:
3841         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3842         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3843         return -EINVAL;
3844 }
3845 EXPORT_SYMBOL(transport_generic_new_cmd);
3846
3847 /*      transport_generic_process_write():
3848  *
3849  *
3850  */
3851 void transport_generic_process_write(struct se_cmd *cmd)
3852 {
3853         transport_execute_tasks(cmd);
3854 }
3855 EXPORT_SYMBOL(transport_generic_process_write);
3856
3857 static void transport_write_pending_qf(struct se_cmd *cmd)
3858 {
3859         int ret;
3860
3861         ret = cmd->se_tfo->write_pending(cmd);
3862         if (ret == -EAGAIN || ret == -ENOMEM) {
3863                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3864                          cmd);
3865                 transport_handle_queue_full(cmd, cmd->se_dev);
3866         }
3867 }
3868
3869 static int transport_generic_write_pending(struct se_cmd *cmd)
3870 {
3871         unsigned long flags;
3872         int ret;
3873
3874         spin_lock_irqsave(&cmd->t_state_lock, flags);
3875         cmd->t_state = TRANSPORT_WRITE_PENDING;
3876         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3877
3878         /*
3879          * Clear the se_cmd for WRITE_PENDING status in order to set
3880          * cmd->t_transport_active=0 so that transport_generic_handle_data
3881          * can be called from HW target mode interrupt code.  This is safe
3882          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3883          * because the se_cmd->se_lun pointer is not being cleared.
3884          */
3885         transport_cmd_check_stop(cmd, 1, 0);
3886
3887         /*
3888          * Call the fabric write_pending function here to let the
3889          * frontend know that WRITE buffers are ready.
3890          */
3891         ret = cmd->se_tfo->write_pending(cmd);
3892         if (ret == -EAGAIN || ret == -ENOMEM)
3893                 goto queue_full;
3894         else if (ret < 0)
3895                 return ret;
3896
3897         return PYX_TRANSPORT_WRITE_PENDING;
3898
3899 queue_full:
3900         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3901         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3902         transport_handle_queue_full(cmd, cmd->se_dev);
3903         return 0;
3904 }
3905
3906 /**
3907  * transport_release_cmd - free a command
3908  * @cmd:       command to free
3909  *
3910  * This routine unconditionally frees a command, and reference counting
3911  * or list removal must be done in the caller.
3912  */
3913 void transport_release_cmd(struct se_cmd *cmd)
3914 {
3915         BUG_ON(!cmd->se_tfo);
3916
3917         if (cmd->se_tmr_req)
3918                 core_tmr_release_req(cmd->se_tmr_req);
3919         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3920                 kfree(cmd->t_task_cdb);
3921         /*
3922          * Check if target_wait_for_sess_cmds() is expecting to
3923          * release se_cmd directly here..
3924          */
3925         if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3926                 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3927                         return;
3928
3929         cmd->se_tfo->release_cmd(cmd);
3930 }
3931 EXPORT_SYMBOL(transport_release_cmd);
3932
3933 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3934 {
3935         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3936                 if (wait_for_tasks && cmd->se_tmr_req)
3937                          transport_wait_for_tasks(cmd);
3938
3939                 transport_release_cmd(cmd);
3940         } else {
3941                 if (wait_for_tasks)
3942                         transport_wait_for_tasks(cmd);
3943
3944                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3945
3946                 if (cmd->se_lun)
3947                         transport_lun_remove_cmd(cmd);
3948
3949                 transport_free_dev_tasks(cmd);
3950
3951                 transport_put_cmd(cmd);
3952         }
3953 }
3954 EXPORT_SYMBOL(transport_generic_free_cmd);
3955
3956 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3957  * @se_sess:    session to reference
3958  * @se_cmd:     command descriptor to add
3959  */
3960 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3961 {
3962         unsigned long flags;
3963
3964         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3965         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3966         se_cmd->check_release = 1;
3967         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3968 }
3969 EXPORT_SYMBOL(target_get_sess_cmd);
3970
3971 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3972  * @se_sess:    session to reference
3973  * @se_cmd:     command descriptor to drop
3974  */
3975 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3976 {
3977         unsigned long flags;
3978
3979         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3980         if (list_empty(&se_cmd->se_cmd_list)) {
3981                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3982                 WARN_ON(1);
3983                 return 0;
3984         }
3985
3986         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3987                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3988                 complete(&se_cmd->cmd_wait_comp);
3989                 return 1;
3990         }
3991         list_del(&se_cmd->se_cmd_list);
3992         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3993
3994         return 0;
3995 }
3996 EXPORT_SYMBOL(target_put_sess_cmd);
3997
3998 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3999  * @se_sess:    session to split
4000  */
4001 void target_splice_sess_cmd_list(struct se_session *se_sess)
4002 {
4003         struct se_cmd *se_cmd;
4004         unsigned long flags;
4005
4006         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4007         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4008
4009         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4010         se_sess->sess_tearing_down = 1;
4011
4012         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4013
4014         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4015                 se_cmd->cmd_wait_set = 1;
4016
4017         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4018 }
4019 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4020
4021 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4022  * @se_sess:    session to wait for active I/O
4023  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4024  */
4025 void target_wait_for_sess_cmds(
4026         struct se_session *se_sess,
4027         int wait_for_tasks)
4028 {
4029         struct se_cmd *se_cmd, *tmp_cmd;
4030         bool rc = false;
4031
4032         list_for_each_entry_safe(se_cmd, tmp_cmd,
4033                                 &se_sess->sess_wait_list, se_cmd_list) {
4034                 list_del(&se_cmd->se_cmd_list);
4035
4036                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4037                         " %d\n", se_cmd, se_cmd->t_state,
4038                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4039
4040                 if (wait_for_tasks) {
4041                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4042                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4043                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4044
4045                         rc = transport_wait_for_tasks(se_cmd);
4046
4047                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4048                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4049                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4050                 }
4051
4052                 if (!rc) {
4053                         wait_for_completion(&se_cmd->cmd_wait_comp);
4054                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4055                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4056                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4057                 }
4058
4059                 se_cmd->se_tfo->release_cmd(se_cmd);
4060         }
4061 }
4062 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4063
4064 /*      transport_lun_wait_for_tasks():
4065  *
4066  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4067  *      an struct se_lun to be successfully shutdown.
4068  */
4069 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4070 {
4071         unsigned long flags;
4072         int ret;
4073         /*
4074          * If the frontend has already requested this struct se_cmd to
4075          * be stopped, we can safely ignore this struct se_cmd.
4076          */
4077         spin_lock_irqsave(&cmd->t_state_lock, flags);
4078         if (atomic_read(&cmd->t_transport_stop)) {
4079                 atomic_set(&cmd->transport_lun_stop, 0);
4080                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4081                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4082                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4083                 transport_cmd_check_stop(cmd, 1, 0);
4084                 return -EPERM;
4085         }
4086         atomic_set(&cmd->transport_lun_fe_stop, 1);
4087         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4088
4089         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4090
4091         ret = transport_stop_tasks_for_cmd(cmd);
4092
4093         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4094                         " %d\n", cmd, cmd->t_task_list_num, ret);
4095         if (!ret) {
4096                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4097                                 cmd->se_tfo->get_task_tag(cmd));
4098                 wait_for_completion(&cmd->transport_lun_stop_comp);
4099                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4100                                 cmd->se_tfo->get_task_tag(cmd));
4101         }
4102         transport_remove_cmd_from_queue(cmd);
4103
4104         return 0;
4105 }
4106
4107 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4108 {
4109         struct se_cmd *cmd = NULL;
4110         unsigned long lun_flags, cmd_flags;
4111         /*
4112          * Do exception processing and return CHECK_CONDITION status to the
4113          * Initiator Port.
4114          */
4115         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4116         while (!list_empty(&lun->lun_cmd_list)) {
4117                 cmd = list_first_entry(&lun->lun_cmd_list,
4118                        struct se_cmd, se_lun_node);
4119                 list_del(&cmd->se_lun_node);
4120
4121                 atomic_set(&cmd->transport_lun_active, 0);
4122                 /*
4123                  * This will notify iscsi_target_transport.c:
4124                  * transport_cmd_check_stop() that a LUN shutdown is in
4125                  * progress for the iscsi_cmd_t.
4126                  */
4127                 spin_lock(&cmd->t_state_lock);
4128                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4129                         "_lun_stop for  ITT: 0x%08x\n",
4130                         cmd->se_lun->unpacked_lun,
4131                         cmd->se_tfo->get_task_tag(cmd));
4132                 atomic_set(&cmd->transport_lun_stop, 1);
4133                 spin_unlock(&cmd->t_state_lock);
4134
4135                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4136
4137                 if (!cmd->se_lun) {
4138                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4139                                 cmd->se_tfo->get_task_tag(cmd),
4140                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4141                         BUG();
4142                 }
4143                 /*
4144                  * If the Storage engine still owns the iscsi_cmd_t, determine
4145                  * and/or stop its context.
4146                  */
4147                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4148                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4149                         cmd->se_tfo->get_task_tag(cmd));
4150
4151                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4152                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4153                         continue;
4154                 }
4155
4156                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4157                         "_wait_for_tasks(): SUCCESS\n",
4158                         cmd->se_lun->unpacked_lun,
4159                         cmd->se_tfo->get_task_tag(cmd));
4160
4161                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4162                 if (!atomic_read(&cmd->transport_dev_active)) {
4163                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4164                         goto check_cond;
4165                 }
4166                 atomic_set(&cmd->transport_dev_active, 0);
4167                 transport_all_task_dev_remove_state(cmd);
4168                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4169
4170                 transport_free_dev_tasks(cmd);
4171                 /*
4172                  * The Storage engine stopped this struct se_cmd before it was
4173                  * send to the fabric frontend for delivery back to the
4174                  * Initiator Node.  Return this SCSI CDB back with an
4175                  * CHECK_CONDITION status.
4176                  */
4177 check_cond:
4178                 transport_send_check_condition_and_sense(cmd,
4179                                 TCM_NON_EXISTENT_LUN, 0);
4180                 /*
4181                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4182                  * be released, notify the waiting thread now that LU has
4183                  * finished accessing it.
4184                  */
4185                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4186                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4187                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4188                                 " struct se_cmd: %p ITT: 0x%08x\n",
4189                                 lun->unpacked_lun,
4190                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4191
4192                         spin_unlock_irqrestore(&cmd->t_state_lock,
4193                                         cmd_flags);
4194                         transport_cmd_check_stop(cmd, 1, 0);
4195                         complete(&cmd->transport_lun_fe_stop_comp);
4196                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4197                         continue;
4198                 }
4199                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4200                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4201
4202                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4203                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4204         }
4205         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4206 }
4207
4208 static int transport_clear_lun_thread(void *p)
4209 {
4210         struct se_lun *lun = (struct se_lun *)p;
4211
4212         __transport_clear_lun_from_sessions(lun);
4213         complete(&lun->lun_shutdown_comp);
4214
4215         return 0;
4216 }
4217
4218 int transport_clear_lun_from_sessions(struct se_lun *lun)
4219 {
4220         struct task_struct *kt;
4221
4222         kt = kthread_run(transport_clear_lun_thread, lun,
4223                         "tcm_cl_%u", lun->unpacked_lun);
4224         if (IS_ERR(kt)) {
4225                 pr_err("Unable to start clear_lun thread\n");
4226                 return PTR_ERR(kt);
4227         }
4228         wait_for_completion(&lun->lun_shutdown_comp);
4229
4230         return 0;
4231 }
4232
4233 /**
4234  * transport_wait_for_tasks - wait for completion to occur
4235  * @cmd:        command to wait
4236  *
4237  * Called from frontend fabric context to wait for storage engine
4238  * to pause and/or release frontend generated struct se_cmd.
4239  */
4240 bool transport_wait_for_tasks(struct se_cmd *cmd)
4241 {
4242         unsigned long flags;
4243
4244         spin_lock_irqsave(&cmd->t_state_lock, flags);
4245         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4246                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4247                 return false;
4248         }
4249         /*
4250          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4251          * has been set in transport_set_supported_SAM_opcode().
4252          */
4253         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4254                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4255                 return false;
4256         }
4257         /*
4258          * If we are already stopped due to an external event (ie: LUN shutdown)
4259          * sleep until the connection can have the passed struct se_cmd back.
4260          * The cmd->transport_lun_stopped_sem will be upped by
4261          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4262          * has completed its operation on the struct se_cmd.
4263          */
4264         if (atomic_read(&cmd->transport_lun_stop)) {
4265
4266                 pr_debug("wait_for_tasks: Stopping"
4267                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4268                         "_stop_comp); for ITT: 0x%08x\n",
4269                         cmd->se_tfo->get_task_tag(cmd));
4270                 /*
4271                  * There is a special case for WRITES where a FE exception +
4272                  * LUN shutdown means ConfigFS context is still sleeping on
4273                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4274                  * We go ahead and up transport_lun_stop_comp just to be sure
4275                  * here.
4276                  */
4277                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4278                 complete(&cmd->transport_lun_stop_comp);
4279                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4280                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4281
4282                 transport_all_task_dev_remove_state(cmd);
4283                 /*
4284                  * At this point, the frontend who was the originator of this
4285                  * struct se_cmd, now owns the structure and can be released through
4286                  * normal means below.
4287                  */
4288                 pr_debug("wait_for_tasks: Stopped"
4289                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4290                         "stop_comp); for ITT: 0x%08x\n",
4291                         cmd->se_tfo->get_task_tag(cmd));
4292
4293                 atomic_set(&cmd->transport_lun_stop, 0);
4294         }
4295         if (!atomic_read(&cmd->t_transport_active) ||
4296              atomic_read(&cmd->t_transport_aborted)) {
4297                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4298                 return false;
4299         }
4300
4301         atomic_set(&cmd->t_transport_stop, 1);
4302
4303         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4304                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4305                 cmd, cmd->se_tfo->get_task_tag(cmd),
4306                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4307
4308         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4309
4310         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4311
4312         wait_for_completion(&cmd->t_transport_stop_comp);
4313
4314         spin_lock_irqsave(&cmd->t_state_lock, flags);
4315         atomic_set(&cmd->t_transport_active, 0);
4316         atomic_set(&cmd->t_transport_stop, 0);
4317
4318         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4319                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4320                 cmd->se_tfo->get_task_tag(cmd));
4321
4322         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4323
4324         return true;
4325 }
4326 EXPORT_SYMBOL(transport_wait_for_tasks);
4327
4328 static int transport_get_sense_codes(
4329         struct se_cmd *cmd,
4330         u8 *asc,
4331         u8 *ascq)
4332 {
4333         *asc = cmd->scsi_asc;
4334         *ascq = cmd->scsi_ascq;
4335
4336         return 0;
4337 }
4338
4339 static int transport_set_sense_codes(
4340         struct se_cmd *cmd,
4341         u8 asc,
4342         u8 ascq)
4343 {
4344         cmd->scsi_asc = asc;
4345         cmd->scsi_ascq = ascq;
4346
4347         return 0;
4348 }
4349
4350 int transport_send_check_condition_and_sense(
4351         struct se_cmd *cmd,
4352         u8 reason,
4353         int from_transport)
4354 {
4355         unsigned char *buffer = cmd->sense_buffer;
4356         unsigned long flags;
4357         int offset;
4358         u8 asc = 0, ascq = 0;
4359
4360         spin_lock_irqsave(&cmd->t_state_lock, flags);
4361         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4362                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4363                 return 0;
4364         }
4365         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4366         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4367
4368         if (!reason && from_transport)
4369                 goto after_reason;
4370
4371         if (!from_transport)
4372                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4373         /*
4374          * Data Segment and SenseLength of the fabric response PDU.
4375          *
4376          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4377          * from include/scsi/scsi_cmnd.h
4378          */
4379         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4380                                 TRANSPORT_SENSE_BUFFER);
4381         /*
4382          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4383          * SENSE KEY values from include/scsi/scsi.h
4384          */
4385         switch (reason) {
4386         case TCM_NON_EXISTENT_LUN:
4387                 /* CURRENT ERROR */
4388                 buffer[offset] = 0x70;
4389                 /* ILLEGAL REQUEST */
4390                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4391                 /* LOGICAL UNIT NOT SUPPORTED */
4392                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4393                 break;
4394         case TCM_UNSUPPORTED_SCSI_OPCODE:
4395         case TCM_SECTOR_COUNT_TOO_MANY:
4396                 /* CURRENT ERROR */
4397                 buffer[offset] = 0x70;
4398                 /* ILLEGAL REQUEST */
4399                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4400                 /* INVALID COMMAND OPERATION CODE */
4401                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4402                 break;
4403         case TCM_UNKNOWN_MODE_PAGE:
4404                 /* CURRENT ERROR */
4405                 buffer[offset] = 0x70;
4406                 /* ILLEGAL REQUEST */
4407                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4408                 /* INVALID FIELD IN CDB */
4409                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4410                 break;
4411         case TCM_CHECK_CONDITION_ABORT_CMD:
4412                 /* CURRENT ERROR */
4413                 buffer[offset] = 0x70;
4414                 /* ABORTED COMMAND */
4415                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4416                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4417                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4418                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4419                 break;
4420         case TCM_INCORRECT_AMOUNT_OF_DATA:
4421                 /* CURRENT ERROR */
4422                 buffer[offset] = 0x70;
4423                 /* ABORTED COMMAND */
4424                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4425                 /* WRITE ERROR */
4426                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4427                 /* NOT ENOUGH UNSOLICITED DATA */
4428                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4429                 break;
4430         case TCM_INVALID_CDB_FIELD:
4431                 /* CURRENT ERROR */
4432                 buffer[offset] = 0x70;
4433                 /* ABORTED COMMAND */
4434                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4435                 /* INVALID FIELD IN CDB */
4436                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4437                 break;
4438         case TCM_INVALID_PARAMETER_LIST:
4439                 /* CURRENT ERROR */
4440                 buffer[offset] = 0x70;
4441                 /* ABORTED COMMAND */
4442                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4443                 /* INVALID FIELD IN PARAMETER LIST */
4444                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4445                 break;
4446         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4447                 /* CURRENT ERROR */
4448                 buffer[offset] = 0x70;
4449                 /* ABORTED COMMAND */
4450                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4451                 /* WRITE ERROR */
4452                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4453                 /* UNEXPECTED_UNSOLICITED_DATA */
4454                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4455                 break;
4456         case TCM_SERVICE_CRC_ERROR:
4457                 /* CURRENT ERROR */
4458                 buffer[offset] = 0x70;
4459                 /* ABORTED COMMAND */
4460                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4461                 /* PROTOCOL SERVICE CRC ERROR */
4462                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4463                 /* N/A */
4464                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4465                 break;
4466         case TCM_SNACK_REJECTED:
4467                 /* CURRENT ERROR */
4468                 buffer[offset] = 0x70;
4469                 /* ABORTED COMMAND */
4470                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4471                 /* READ ERROR */
4472                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4473                 /* FAILED RETRANSMISSION REQUEST */
4474                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4475                 break;
4476         case TCM_WRITE_PROTECTED:
4477                 /* CURRENT ERROR */
4478                 buffer[offset] = 0x70;
4479                 /* DATA PROTECT */
4480                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4481                 /* WRITE PROTECTED */
4482                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4483                 break;
4484         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4485                 /* CURRENT ERROR */
4486                 buffer[offset] = 0x70;
4487                 /* UNIT ATTENTION */
4488                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4489                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4490                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4491                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4492                 break;
4493         case TCM_CHECK_CONDITION_NOT_READY:
4494                 /* CURRENT ERROR */
4495                 buffer[offset] = 0x70;
4496                 /* Not Ready */
4497                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4498                 transport_get_sense_codes(cmd, &asc, &ascq);
4499                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4500                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4501                 break;
4502         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4503         default:
4504                 /* CURRENT ERROR */
4505                 buffer[offset] = 0x70;
4506                 /* ILLEGAL REQUEST */
4507                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4508                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4509                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4510                 break;
4511         }
4512         /*
4513          * This code uses linux/include/scsi/scsi.h SAM status codes!
4514          */
4515         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4516         /*
4517          * Automatically padded, this value is encoded in the fabric's
4518          * data_length response PDU containing the SCSI defined sense data.
4519          */
4520         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4521
4522 after_reason:
4523         return cmd->se_tfo->queue_status(cmd);
4524 }
4525 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4526
4527 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4528 {
4529         int ret = 0;
4530
4531         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4532                 if (!send_status ||
4533                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4534                         return 1;
4535 #if 0
4536                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4537                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4538                         cmd->t_task_cdb[0],
4539                         cmd->se_tfo->get_task_tag(cmd));
4540 #endif
4541                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4542                 cmd->se_tfo->queue_status(cmd);
4543                 ret = 1;
4544         }
4545         return ret;
4546 }
4547 EXPORT_SYMBOL(transport_check_aborted_status);
4548
4549 void transport_send_task_abort(struct se_cmd *cmd)
4550 {
4551         unsigned long flags;
4552
4553         spin_lock_irqsave(&cmd->t_state_lock, flags);
4554         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4555                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4556                 return;
4557         }
4558         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4559
4560         /*
4561          * If there are still expected incoming fabric WRITEs, we wait
4562          * until until they have completed before sending a TASK_ABORTED
4563          * response.  This response with TASK_ABORTED status will be
4564          * queued back to fabric module by transport_check_aborted_status().
4565          */
4566         if (cmd->data_direction == DMA_TO_DEVICE) {
4567                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4568                         atomic_inc(&cmd->t_transport_aborted);
4569                         smp_mb__after_atomic_inc();
4570                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4571                         transport_new_cmd_failure(cmd);
4572                         return;
4573                 }
4574         }
4575         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4576 #if 0
4577         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4578                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4579                 cmd->se_tfo->get_task_tag(cmd));
4580 #endif
4581         cmd->se_tfo->queue_status(cmd);
4582 }
4583
4584 /*      transport_generic_do_tmr():
4585  *
4586  *
4587  */
4588 int transport_generic_do_tmr(struct se_cmd *cmd)
4589 {
4590         struct se_device *dev = cmd->se_dev;
4591         struct se_tmr_req *tmr = cmd->se_tmr_req;
4592         int ret;
4593
4594         switch (tmr->function) {
4595         case TMR_ABORT_TASK:
4596                 tmr->response = TMR_FUNCTION_REJECTED;
4597                 break;
4598         case TMR_ABORT_TASK_SET:
4599         case TMR_CLEAR_ACA:
4600         case TMR_CLEAR_TASK_SET:
4601                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4602                 break;
4603         case TMR_LUN_RESET:
4604                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4605                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4606                                          TMR_FUNCTION_REJECTED;
4607                 break;
4608         case TMR_TARGET_WARM_RESET:
4609                 tmr->response = TMR_FUNCTION_REJECTED;
4610                 break;
4611         case TMR_TARGET_COLD_RESET:
4612                 tmr->response = TMR_FUNCTION_REJECTED;
4613                 break;
4614         default:
4615                 pr_err("Uknown TMR function: 0x%02x.\n",
4616                                 tmr->function);
4617                 tmr->response = TMR_FUNCTION_REJECTED;
4618                 break;
4619         }
4620
4621         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4622         cmd->se_tfo->queue_tm_rsp(cmd);
4623
4624         transport_cmd_check_stop_to_fabric(cmd);
4625         return 0;
4626 }
4627
4628 /*      transport_processing_thread():
4629  *
4630  *
4631  */
4632 static int transport_processing_thread(void *param)
4633 {
4634         int ret;
4635         struct se_cmd *cmd;
4636         struct se_device *dev = (struct se_device *) param;
4637
4638         set_user_nice(current, -20);
4639
4640         while (!kthread_should_stop()) {
4641                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4642                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4643                                 kthread_should_stop());
4644                 if (ret < 0)
4645                         goto out;
4646
4647 get_cmd:
4648                 __transport_execute_tasks(dev);
4649
4650                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4651                 if (!cmd)
4652                         continue;
4653
4654                 switch (cmd->t_state) {
4655                 case TRANSPORT_NEW_CMD:
4656                         BUG();
4657                         break;
4658                 case TRANSPORT_NEW_CMD_MAP:
4659                         if (!cmd->se_tfo->new_cmd_map) {
4660                                 pr_err("cmd->se_tfo->new_cmd_map is"
4661                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4662                                 BUG();
4663                         }
4664                         ret = cmd->se_tfo->new_cmd_map(cmd);
4665                         if (ret < 0) {
4666                                 cmd->transport_error_status = ret;
4667                                 transport_generic_request_failure(cmd,
4668                                                 0, (cmd->data_direction !=
4669                                                     DMA_TO_DEVICE));
4670                                 break;
4671                         }
4672                         ret = transport_generic_new_cmd(cmd);
4673                         if (ret < 0) {
4674                                 cmd->transport_error_status = ret;
4675                                 transport_generic_request_failure(cmd,
4676                                         0, (cmd->data_direction !=
4677                                          DMA_TO_DEVICE));
4678                         }
4679                         break;
4680                 case TRANSPORT_PROCESS_WRITE:
4681                         transport_generic_process_write(cmd);
4682                         break;
4683                 case TRANSPORT_PROCESS_TMR:
4684                         transport_generic_do_tmr(cmd);
4685                         break;
4686                 case TRANSPORT_COMPLETE_QF_WP:
4687                         transport_write_pending_qf(cmd);
4688                         break;
4689                 case TRANSPORT_COMPLETE_QF_OK:
4690                         transport_complete_qf(cmd);
4691                         break;
4692                 default:
4693                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4694                                 "i_state: %d on SE LUN: %u\n",
4695                                 cmd->t_state,
4696                                 cmd->se_tfo->get_task_tag(cmd),
4697                                 cmd->se_tfo->get_cmd_state(cmd),
4698                                 cmd->se_lun->unpacked_lun);
4699                         BUG();
4700                 }
4701
4702                 goto get_cmd;
4703         }
4704
4705 out:
4706         WARN_ON(!list_empty(&dev->state_task_list));
4707         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4708         dev->process_thread = NULL;
4709         return 0;
4710 }