Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[pandora-kernel.git] / drivers / staging / vme / vme.c
1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33
34 #include "vme.h"
35 #include "vme_bridge.h"
36
37 /* Bitmask and mutex to keep track of bridge numbers */
38 static unsigned int vme_bus_numbers;
39 static DEFINE_MUTEX(vme_bus_num_mtx);
40
41 static void __exit vme_exit(void);
42 static int __init vme_init(void);
43
44
45 /*
46  * Find the bridge resource associated with a specific device resource
47  */
48 static struct vme_bridge *dev_to_bridge(struct device *dev)
49 {
50         return dev->platform_data;
51 }
52
53 /*
54  * Find the bridge that the resource is associated with.
55  */
56 static struct vme_bridge *find_bridge(struct vme_resource *resource)
57 {
58         /* Get list to search */
59         switch (resource->type) {
60         case VME_MASTER:
61                 return list_entry(resource->entry, struct vme_master_resource,
62                         list)->parent;
63                 break;
64         case VME_SLAVE:
65                 return list_entry(resource->entry, struct vme_slave_resource,
66                         list)->parent;
67                 break;
68         case VME_DMA:
69                 return list_entry(resource->entry, struct vme_dma_resource,
70                         list)->parent;
71                 break;
72         case VME_LM:
73                 return list_entry(resource->entry, struct vme_lm_resource,
74                         list)->parent;
75                 break;
76         default:
77                 printk(KERN_ERR "Unknown resource type\n");
78                 return NULL;
79                 break;
80         }
81 }
82
83 /*
84  * Allocate a contiguous block of memory for use by the driver. This is used to
85  * create the buffers for the slave windows.
86  *
87  * XXX VME bridges could be available on buses other than PCI. At the momment
88  *     this framework only supports PCI devices.
89  */
90 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
91         dma_addr_t *dma)
92 {
93         struct vme_bridge *bridge;
94         struct pci_dev *pdev;
95
96         if (resource == NULL) {
97                 printk(KERN_ERR "No resource\n");
98                 return NULL;
99         }
100
101         bridge = find_bridge(resource);
102         if (bridge == NULL) {
103                 printk(KERN_ERR "Can't find bridge\n");
104                 return NULL;
105         }
106
107         /* Find pci_dev container of dev */
108         if (bridge->parent == NULL) {
109                 printk(KERN_ERR "Dev entry NULL\n");
110                 return NULL;
111         }
112         pdev = container_of(bridge->parent, struct pci_dev, dev);
113
114         return pci_alloc_consistent(pdev, size, dma);
115 }
116 EXPORT_SYMBOL(vme_alloc_consistent);
117
118 /*
119  * Free previously allocated contiguous block of memory.
120  *
121  * XXX VME bridges could be available on buses other than PCI. At the momment
122  *     this framework only supports PCI devices.
123  */
124 void vme_free_consistent(struct vme_resource *resource, size_t size,
125         void *vaddr, dma_addr_t dma)
126 {
127         struct vme_bridge *bridge;
128         struct pci_dev *pdev;
129
130         if (resource == NULL) {
131                 printk(KERN_ERR "No resource\n");
132                 return;
133         }
134
135         bridge = find_bridge(resource);
136         if (bridge == NULL) {
137                 printk(KERN_ERR "Can't find bridge\n");
138                 return;
139         }
140
141         /* Find pci_dev container of dev */
142         pdev = container_of(bridge->parent, struct pci_dev, dev);
143
144         pci_free_consistent(pdev, size, vaddr, dma);
145 }
146 EXPORT_SYMBOL(vme_free_consistent);
147
148 size_t vme_get_size(struct vme_resource *resource)
149 {
150         int enabled, retval;
151         unsigned long long base, size;
152         dma_addr_t buf_base;
153         vme_address_t aspace;
154         vme_cycle_t cycle;
155         vme_width_t dwidth;
156
157         switch (resource->type) {
158         case VME_MASTER:
159                 retval = vme_master_get(resource, &enabled, &base, &size,
160                         &aspace, &cycle, &dwidth);
161
162                 return size;
163                 break;
164         case VME_SLAVE:
165                 retval = vme_slave_get(resource, &enabled, &base, &size,
166                         &buf_base, &aspace, &cycle);
167
168                 return size;
169                 break;
170         case VME_DMA:
171                 return 0;
172                 break;
173         default:
174                 printk(KERN_ERR "Unknown resource type\n");
175                 return 0;
176                 break;
177         }
178 }
179 EXPORT_SYMBOL(vme_get_size);
180
181 static int vme_check_window(vme_address_t aspace, unsigned long long vme_base,
182         unsigned long long size)
183 {
184         int retval = 0;
185
186         switch (aspace) {
187         case VME_A16:
188                 if (((vme_base + size) > VME_A16_MAX) ||
189                                 (vme_base > VME_A16_MAX))
190                         retval = -EFAULT;
191                 break;
192         case VME_A24:
193                 if (((vme_base + size) > VME_A24_MAX) ||
194                                 (vme_base > VME_A24_MAX))
195                         retval = -EFAULT;
196                 break;
197         case VME_A32:
198                 if (((vme_base + size) > VME_A32_MAX) ||
199                                 (vme_base > VME_A32_MAX))
200                         retval = -EFAULT;
201                 break;
202         case VME_A64:
203                 /*
204                  * Any value held in an unsigned long long can be used as the
205                  * base
206                  */
207                 break;
208         case VME_CRCSR:
209                 if (((vme_base + size) > VME_CRCSR_MAX) ||
210                                 (vme_base > VME_CRCSR_MAX))
211                         retval = -EFAULT;
212                 break;
213         case VME_USER1:
214         case VME_USER2:
215         case VME_USER3:
216         case VME_USER4:
217                 /* User Defined */
218                 break;
219         default:
220                 printk(KERN_ERR "Invalid address space\n");
221                 retval = -EINVAL;
222                 break;
223         }
224
225         return retval;
226 }
227
228 /*
229  * Request a slave image with specific attributes, return some unique
230  * identifier.
231  */
232 struct vme_resource *vme_slave_request(struct device *dev,
233         vme_address_t address, vme_cycle_t cycle)
234 {
235         struct vme_bridge *bridge;
236         struct list_head *slave_pos = NULL;
237         struct vme_slave_resource *allocated_image = NULL;
238         struct vme_slave_resource *slave_image = NULL;
239         struct vme_resource *resource = NULL;
240
241         bridge = dev_to_bridge(dev);
242         if (bridge == NULL) {
243                 printk(KERN_ERR "Can't find VME bus\n");
244                 goto err_bus;
245         }
246
247         /* Loop through slave resources */
248         list_for_each(slave_pos, &bridge->slave_resources) {
249                 slave_image = list_entry(slave_pos,
250                         struct vme_slave_resource, list);
251
252                 if (slave_image == NULL) {
253                         printk(KERN_ERR "Registered NULL Slave resource\n");
254                         continue;
255                 }
256
257                 /* Find an unlocked and compatible image */
258                 mutex_lock(&slave_image->mtx);
259                 if (((slave_image->address_attr & address) == address) &&
260                         ((slave_image->cycle_attr & cycle) == cycle) &&
261                         (slave_image->locked == 0)) {
262
263                         slave_image->locked = 1;
264                         mutex_unlock(&slave_image->mtx);
265                         allocated_image = slave_image;
266                         break;
267                 }
268                 mutex_unlock(&slave_image->mtx);
269         }
270
271         /* No free image */
272         if (allocated_image == NULL)
273                 goto err_image;
274
275         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
276         if (resource == NULL) {
277                 printk(KERN_WARNING "Unable to allocate resource structure\n");
278                 goto err_alloc;
279         }
280         resource->type = VME_SLAVE;
281         resource->entry = &allocated_image->list;
282
283         return resource;
284
285 err_alloc:
286         /* Unlock image */
287         mutex_lock(&slave_image->mtx);
288         slave_image->locked = 0;
289         mutex_unlock(&slave_image->mtx);
290 err_image:
291 err_bus:
292         return NULL;
293 }
294 EXPORT_SYMBOL(vme_slave_request);
295
296 int vme_slave_set(struct vme_resource *resource, int enabled,
297         unsigned long long vme_base, unsigned long long size,
298         dma_addr_t buf_base, vme_address_t aspace, vme_cycle_t cycle)
299 {
300         struct vme_bridge *bridge = find_bridge(resource);
301         struct vme_slave_resource *image;
302         int retval;
303
304         if (resource->type != VME_SLAVE) {
305                 printk(KERN_ERR "Not a slave resource\n");
306                 return -EINVAL;
307         }
308
309         image = list_entry(resource->entry, struct vme_slave_resource, list);
310
311         if (bridge->slave_set == NULL) {
312                 printk(KERN_ERR "Function not supported\n");
313                 return -ENOSYS;
314         }
315
316         if (!(((image->address_attr & aspace) == aspace) &&
317                 ((image->cycle_attr & cycle) == cycle))) {
318                 printk(KERN_ERR "Invalid attributes\n");
319                 return -EINVAL;
320         }
321
322         retval = vme_check_window(aspace, vme_base, size);
323         if (retval)
324                 return retval;
325
326         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
327                 aspace, cycle);
328 }
329 EXPORT_SYMBOL(vme_slave_set);
330
331 int vme_slave_get(struct vme_resource *resource, int *enabled,
332         unsigned long long *vme_base, unsigned long long *size,
333         dma_addr_t *buf_base, vme_address_t *aspace, vme_cycle_t *cycle)
334 {
335         struct vme_bridge *bridge = find_bridge(resource);
336         struct vme_slave_resource *image;
337
338         if (resource->type != VME_SLAVE) {
339                 printk(KERN_ERR "Not a slave resource\n");
340                 return -EINVAL;
341         }
342
343         image = list_entry(resource->entry, struct vme_slave_resource, list);
344
345         if (bridge->slave_get == NULL) {
346                 printk(KERN_ERR "vme_slave_get not supported\n");
347                 return -EINVAL;
348         }
349
350         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
351                 aspace, cycle);
352 }
353 EXPORT_SYMBOL(vme_slave_get);
354
355 void vme_slave_free(struct vme_resource *resource)
356 {
357         struct vme_slave_resource *slave_image;
358
359         if (resource->type != VME_SLAVE) {
360                 printk(KERN_ERR "Not a slave resource\n");
361                 return;
362         }
363
364         slave_image = list_entry(resource->entry, struct vme_slave_resource,
365                 list);
366         if (slave_image == NULL) {
367                 printk(KERN_ERR "Can't find slave resource\n");
368                 return;
369         }
370
371         /* Unlock image */
372         mutex_lock(&slave_image->mtx);
373         if (slave_image->locked == 0)
374                 printk(KERN_ERR "Image is already free\n");
375
376         slave_image->locked = 0;
377         mutex_unlock(&slave_image->mtx);
378
379         /* Free up resource memory */
380         kfree(resource);
381 }
382 EXPORT_SYMBOL(vme_slave_free);
383
384 /*
385  * Request a master image with specific attributes, return some unique
386  * identifier.
387  */
388 struct vme_resource *vme_master_request(struct device *dev,
389         vme_address_t address, vme_cycle_t cycle, vme_width_t dwidth)
390 {
391         struct vme_bridge *bridge;
392         struct list_head *master_pos = NULL;
393         struct vme_master_resource *allocated_image = NULL;
394         struct vme_master_resource *master_image = NULL;
395         struct vme_resource *resource = NULL;
396
397         bridge = dev_to_bridge(dev);
398         if (bridge == NULL) {
399                 printk(KERN_ERR "Can't find VME bus\n");
400                 goto err_bus;
401         }
402
403         /* Loop through master resources */
404         list_for_each(master_pos, &bridge->master_resources) {
405                 master_image = list_entry(master_pos,
406                         struct vme_master_resource, list);
407
408                 if (master_image == NULL) {
409                         printk(KERN_WARNING "Registered NULL master resource\n");
410                         continue;
411                 }
412
413                 /* Find an unlocked and compatible image */
414                 spin_lock(&master_image->lock);
415                 if (((master_image->address_attr & address) == address) &&
416                         ((master_image->cycle_attr & cycle) == cycle) &&
417                         ((master_image->width_attr & dwidth) == dwidth) &&
418                         (master_image->locked == 0)) {
419
420                         master_image->locked = 1;
421                         spin_unlock(&master_image->lock);
422                         allocated_image = master_image;
423                         break;
424                 }
425                 spin_unlock(&master_image->lock);
426         }
427
428         /* Check to see if we found a resource */
429         if (allocated_image == NULL) {
430                 printk(KERN_ERR "Can't find a suitable resource\n");
431                 goto err_image;
432         }
433
434         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
435         if (resource == NULL) {
436                 printk(KERN_ERR "Unable to allocate resource structure\n");
437                 goto err_alloc;
438         }
439         resource->type = VME_MASTER;
440         resource->entry = &allocated_image->list;
441
442         return resource;
443
444 err_alloc:
445         /* Unlock image */
446         spin_lock(&master_image->lock);
447         master_image->locked = 0;
448         spin_unlock(&master_image->lock);
449 err_image:
450 err_bus:
451         return NULL;
452 }
453 EXPORT_SYMBOL(vme_master_request);
454
455 int vme_master_set(struct vme_resource *resource, int enabled,
456         unsigned long long vme_base, unsigned long long size,
457         vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
458 {
459         struct vme_bridge *bridge = find_bridge(resource);
460         struct vme_master_resource *image;
461         int retval;
462
463         if (resource->type != VME_MASTER) {
464                 printk(KERN_ERR "Not a master resource\n");
465                 return -EINVAL;
466         }
467
468         image = list_entry(resource->entry, struct vme_master_resource, list);
469
470         if (bridge->master_set == NULL) {
471                 printk(KERN_WARNING "vme_master_set not supported\n");
472                 return -EINVAL;
473         }
474
475         if (!(((image->address_attr & aspace) == aspace) &&
476                 ((image->cycle_attr & cycle) == cycle) &&
477                 ((image->width_attr & dwidth) == dwidth))) {
478                 printk(KERN_WARNING "Invalid attributes\n");
479                 return -EINVAL;
480         }
481
482         retval = vme_check_window(aspace, vme_base, size);
483         if (retval)
484                 return retval;
485
486         return bridge->master_set(image, enabled, vme_base, size, aspace,
487                 cycle, dwidth);
488 }
489 EXPORT_SYMBOL(vme_master_set);
490
491 int vme_master_get(struct vme_resource *resource, int *enabled,
492         unsigned long long *vme_base, unsigned long long *size,
493         vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
494 {
495         struct vme_bridge *bridge = find_bridge(resource);
496         struct vme_master_resource *image;
497
498         if (resource->type != VME_MASTER) {
499                 printk(KERN_ERR "Not a master resource\n");
500                 return -EINVAL;
501         }
502
503         image = list_entry(resource->entry, struct vme_master_resource, list);
504
505         if (bridge->master_get == NULL) {
506                 printk(KERN_WARNING "vme_master_set not supported\n");
507                 return -EINVAL;
508         }
509
510         return bridge->master_get(image, enabled, vme_base, size, aspace,
511                 cycle, dwidth);
512 }
513 EXPORT_SYMBOL(vme_master_get);
514
515 /*
516  * Read data out of VME space into a buffer.
517  */
518 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
519         loff_t offset)
520 {
521         struct vme_bridge *bridge = find_bridge(resource);
522         struct vme_master_resource *image;
523         size_t length;
524
525         if (bridge->master_read == NULL) {
526                 printk(KERN_WARNING "Reading from resource not supported\n");
527                 return -EINVAL;
528         }
529
530         if (resource->type != VME_MASTER) {
531                 printk(KERN_ERR "Not a master resource\n");
532                 return -EINVAL;
533         }
534
535         image = list_entry(resource->entry, struct vme_master_resource, list);
536
537         length = vme_get_size(resource);
538
539         if (offset > length) {
540                 printk(KERN_WARNING "Invalid Offset\n");
541                 return -EFAULT;
542         }
543
544         if ((offset + count) > length)
545                 count = length - offset;
546
547         return bridge->master_read(image, buf, count, offset);
548
549 }
550 EXPORT_SYMBOL(vme_master_read);
551
552 /*
553  * Write data out to VME space from a buffer.
554  */
555 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
556         size_t count, loff_t offset)
557 {
558         struct vme_bridge *bridge = find_bridge(resource);
559         struct vme_master_resource *image;
560         size_t length;
561
562         if (bridge->master_write == NULL) {
563                 printk(KERN_WARNING "Writing to resource not supported\n");
564                 return -EINVAL;
565         }
566
567         if (resource->type != VME_MASTER) {
568                 printk(KERN_ERR "Not a master resource\n");
569                 return -EINVAL;
570         }
571
572         image = list_entry(resource->entry, struct vme_master_resource, list);
573
574         length = vme_get_size(resource);
575
576         if (offset > length) {
577                 printk(KERN_WARNING "Invalid Offset\n");
578                 return -EFAULT;
579         }
580
581         if ((offset + count) > length)
582                 count = length - offset;
583
584         return bridge->master_write(image, buf, count, offset);
585 }
586 EXPORT_SYMBOL(vme_master_write);
587
588 /*
589  * Perform RMW cycle to provided location.
590  */
591 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
592         unsigned int compare, unsigned int swap, loff_t offset)
593 {
594         struct vme_bridge *bridge = find_bridge(resource);
595         struct vme_master_resource *image;
596
597         if (bridge->master_rmw == NULL) {
598                 printk(KERN_WARNING "Writing to resource not supported\n");
599                 return -EINVAL;
600         }
601
602         if (resource->type != VME_MASTER) {
603                 printk(KERN_ERR "Not a master resource\n");
604                 return -EINVAL;
605         }
606
607         image = list_entry(resource->entry, struct vme_master_resource, list);
608
609         return bridge->master_rmw(image, mask, compare, swap, offset);
610 }
611 EXPORT_SYMBOL(vme_master_rmw);
612
613 void vme_master_free(struct vme_resource *resource)
614 {
615         struct vme_master_resource *master_image;
616
617         if (resource->type != VME_MASTER) {
618                 printk(KERN_ERR "Not a master resource\n");
619                 return;
620         }
621
622         master_image = list_entry(resource->entry, struct vme_master_resource,
623                 list);
624         if (master_image == NULL) {
625                 printk(KERN_ERR "Can't find master resource\n");
626                 return;
627         }
628
629         /* Unlock image */
630         spin_lock(&master_image->lock);
631         if (master_image->locked == 0)
632                 printk(KERN_ERR "Image is already free\n");
633
634         master_image->locked = 0;
635         spin_unlock(&master_image->lock);
636
637         /* Free up resource memory */
638         kfree(resource);
639 }
640 EXPORT_SYMBOL(vme_master_free);
641
642 /*
643  * Request a DMA controller with specific attributes, return some unique
644  * identifier.
645  */
646 struct vme_resource *vme_dma_request(struct device *dev, vme_dma_route_t route)
647 {
648         struct vme_bridge *bridge;
649         struct list_head *dma_pos = NULL;
650         struct vme_dma_resource *allocated_ctrlr = NULL;
651         struct vme_dma_resource *dma_ctrlr = NULL;
652         struct vme_resource *resource = NULL;
653
654         /* XXX Not checking resource attributes */
655         printk(KERN_ERR "No VME resource Attribute tests done\n");
656
657         bridge = dev_to_bridge(dev);
658         if (bridge == NULL) {
659                 printk(KERN_ERR "Can't find VME bus\n");
660                 goto err_bus;
661         }
662
663         /* Loop through DMA resources */
664         list_for_each(dma_pos, &bridge->dma_resources) {
665                 dma_ctrlr = list_entry(dma_pos,
666                         struct vme_dma_resource, list);
667
668                 if (dma_ctrlr == NULL) {
669                         printk(KERN_ERR "Registered NULL DMA resource\n");
670                         continue;
671                 }
672
673                 /* Find an unlocked and compatible controller */
674                 mutex_lock(&dma_ctrlr->mtx);
675                 if (((dma_ctrlr->route_attr & route) == route) &&
676                         (dma_ctrlr->locked == 0)) {
677
678                         dma_ctrlr->locked = 1;
679                         mutex_unlock(&dma_ctrlr->mtx);
680                         allocated_ctrlr = dma_ctrlr;
681                         break;
682                 }
683                 mutex_unlock(&dma_ctrlr->mtx);
684         }
685
686         /* Check to see if we found a resource */
687         if (allocated_ctrlr == NULL)
688                 goto err_ctrlr;
689
690         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
691         if (resource == NULL) {
692                 printk(KERN_WARNING "Unable to allocate resource structure\n");
693                 goto err_alloc;
694         }
695         resource->type = VME_DMA;
696         resource->entry = &allocated_ctrlr->list;
697
698         return resource;
699
700 err_alloc:
701         /* Unlock image */
702         mutex_lock(&dma_ctrlr->mtx);
703         dma_ctrlr->locked = 0;
704         mutex_unlock(&dma_ctrlr->mtx);
705 err_ctrlr:
706 err_bus:
707         return NULL;
708 }
709 EXPORT_SYMBOL(vme_dma_request);
710
711 /*
712  * Start new list
713  */
714 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
715 {
716         struct vme_dma_resource *ctrlr;
717         struct vme_dma_list *dma_list;
718
719         if (resource->type != VME_DMA) {
720                 printk(KERN_ERR "Not a DMA resource\n");
721                 return NULL;
722         }
723
724         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
725
726         dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
727         if (dma_list == NULL) {
728                 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
729                 return NULL;
730         }
731         INIT_LIST_HEAD(&dma_list->entries);
732         dma_list->parent = ctrlr;
733         mutex_init(&dma_list->mtx);
734
735         return dma_list;
736 }
737 EXPORT_SYMBOL(vme_new_dma_list);
738
739 /*
740  * Create "Pattern" type attributes
741  */
742 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern,
743         vme_pattern_t type)
744 {
745         struct vme_dma_attr *attributes;
746         struct vme_dma_pattern *pattern_attr;
747
748         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
749         if (attributes == NULL) {
750                 printk(KERN_ERR "Unable to allocate memory for attributes "
751                         "structure\n");
752                 goto err_attr;
753         }
754
755         pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
756         if (pattern_attr == NULL) {
757                 printk(KERN_ERR "Unable to allocate memory for pattern "
758                         "attributes\n");
759                 goto err_pat;
760         }
761
762         attributes->type = VME_DMA_PATTERN;
763         attributes->private = (void *)pattern_attr;
764
765         pattern_attr->pattern = pattern;
766         pattern_attr->type = type;
767
768         return attributes;
769
770 err_pat:
771         kfree(attributes);
772 err_attr:
773         return NULL;
774 }
775 EXPORT_SYMBOL(vme_dma_pattern_attribute);
776
777 /*
778  * Create "PCI" type attributes
779  */
780 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
781 {
782         struct vme_dma_attr *attributes;
783         struct vme_dma_pci *pci_attr;
784
785         /* XXX Run some sanity checks here */
786
787         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
788         if (attributes == NULL) {
789                 printk(KERN_ERR "Unable to allocate memory for attributes "
790                         "structure\n");
791                 goto err_attr;
792         }
793
794         pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
795         if (pci_attr == NULL) {
796                 printk(KERN_ERR "Unable to allocate memory for pci "
797                         "attributes\n");
798                 goto err_pci;
799         }
800
801
802
803         attributes->type = VME_DMA_PCI;
804         attributes->private = (void *)pci_attr;
805
806         pci_attr->address = address;
807
808         return attributes;
809
810 err_pci:
811         kfree(attributes);
812 err_attr:
813         return NULL;
814 }
815 EXPORT_SYMBOL(vme_dma_pci_attribute);
816
817 /*
818  * Create "VME" type attributes
819  */
820 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
821         vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
822 {
823         struct vme_dma_attr *attributes;
824         struct vme_dma_vme *vme_attr;
825
826         attributes = kmalloc(
827                 sizeof(struct vme_dma_attr), GFP_KERNEL);
828         if (attributes == NULL) {
829                 printk(KERN_ERR "Unable to allocate memory for attributes "
830                         "structure\n");
831                 goto err_attr;
832         }
833
834         vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
835         if (vme_attr == NULL) {
836                 printk(KERN_ERR "Unable to allocate memory for vme "
837                         "attributes\n");
838                 goto err_vme;
839         }
840
841         attributes->type = VME_DMA_VME;
842         attributes->private = (void *)vme_attr;
843
844         vme_attr->address = address;
845         vme_attr->aspace = aspace;
846         vme_attr->cycle = cycle;
847         vme_attr->dwidth = dwidth;
848
849         return attributes;
850
851 err_vme:
852         kfree(attributes);
853 err_attr:
854         return NULL;
855 }
856 EXPORT_SYMBOL(vme_dma_vme_attribute);
857
858 /*
859  * Free attribute
860  */
861 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
862 {
863         kfree(attributes->private);
864         kfree(attributes);
865 }
866 EXPORT_SYMBOL(vme_dma_free_attribute);
867
868 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
869         struct vme_dma_attr *dest, size_t count)
870 {
871         struct vme_bridge *bridge = list->parent->parent;
872         int retval;
873
874         if (bridge->dma_list_add == NULL) {
875                 printk(KERN_WARNING "Link List DMA generation not supported\n");
876                 return -EINVAL;
877         }
878
879         if (!mutex_trylock(&list->mtx)) {
880                 printk(KERN_ERR "Link List already submitted\n");
881                 return -EINVAL;
882         }
883
884         retval = bridge->dma_list_add(list, src, dest, count);
885
886         mutex_unlock(&list->mtx);
887
888         return retval;
889 }
890 EXPORT_SYMBOL(vme_dma_list_add);
891
892 int vme_dma_list_exec(struct vme_dma_list *list)
893 {
894         struct vme_bridge *bridge = list->parent->parent;
895         int retval;
896
897         if (bridge->dma_list_exec == NULL) {
898                 printk(KERN_ERR "Link List DMA execution not supported\n");
899                 return -EINVAL;
900         }
901
902         mutex_lock(&list->mtx);
903
904         retval = bridge->dma_list_exec(list);
905
906         mutex_unlock(&list->mtx);
907
908         return retval;
909 }
910 EXPORT_SYMBOL(vme_dma_list_exec);
911
912 int vme_dma_list_free(struct vme_dma_list *list)
913 {
914         struct vme_bridge *bridge = list->parent->parent;
915         int retval;
916
917         if (bridge->dma_list_empty == NULL) {
918                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
919                 return -EINVAL;
920         }
921
922         if (!mutex_trylock(&list->mtx)) {
923                 printk(KERN_ERR "Link List in use\n");
924                 return -EINVAL;
925         }
926
927         /*
928          * Empty out all of the entries from the dma list. We need to go to the
929          * low level driver as dma entries are driver specific.
930          */
931         retval = bridge->dma_list_empty(list);
932         if (retval) {
933                 printk(KERN_ERR "Unable to empty link-list entries\n");
934                 mutex_unlock(&list->mtx);
935                 return retval;
936         }
937         mutex_unlock(&list->mtx);
938         kfree(list);
939
940         return retval;
941 }
942 EXPORT_SYMBOL(vme_dma_list_free);
943
944 int vme_dma_free(struct vme_resource *resource)
945 {
946         struct vme_dma_resource *ctrlr;
947
948         if (resource->type != VME_DMA) {
949                 printk(KERN_ERR "Not a DMA resource\n");
950                 return -EINVAL;
951         }
952
953         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
954
955         if (!mutex_trylock(&ctrlr->mtx)) {
956                 printk(KERN_ERR "Resource busy, can't free\n");
957                 return -EBUSY;
958         }
959
960         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
961                 printk(KERN_WARNING "Resource still processing transfers\n");
962                 mutex_unlock(&ctrlr->mtx);
963                 return -EBUSY;
964         }
965
966         ctrlr->locked = 0;
967
968         mutex_unlock(&ctrlr->mtx);
969
970         return 0;
971 }
972 EXPORT_SYMBOL(vme_dma_free);
973
974 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
975 {
976         void (*call)(int, int, void *);
977         void *priv_data;
978
979         call = bridge->irq[level - 1].callback[statid].func;
980         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
981
982         if (call != NULL)
983                 call(level, statid, priv_data);
984         else
985                 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, "
986                         "vector:%x\n", level, statid);
987 }
988 EXPORT_SYMBOL(vme_irq_handler);
989
990 int vme_irq_request(struct device *dev, int level, int statid,
991         void (*callback)(int, int, void *),
992         void *priv_data)
993 {
994         struct vme_bridge *bridge;
995
996         bridge = dev_to_bridge(dev);
997         if (bridge == NULL) {
998                 printk(KERN_ERR "Can't find VME bus\n");
999                 return -EINVAL;
1000         }
1001
1002         if ((level < 1) || (level > 7)) {
1003                 printk(KERN_ERR "Invalid interrupt level\n");
1004                 return -EINVAL;
1005         }
1006
1007         if (bridge->irq_set == NULL) {
1008                 printk(KERN_ERR "Configuring interrupts not supported\n");
1009                 return -EINVAL;
1010         }
1011
1012         mutex_lock(&bridge->irq_mtx);
1013
1014         if (bridge->irq[level - 1].callback[statid].func) {
1015                 mutex_unlock(&bridge->irq_mtx);
1016                 printk(KERN_WARNING "VME Interrupt already taken\n");
1017                 return -EBUSY;
1018         }
1019
1020         bridge->irq[level - 1].count++;
1021         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1022         bridge->irq[level - 1].callback[statid].func = callback;
1023
1024         /* Enable IRQ level */
1025         bridge->irq_set(bridge, level, 1, 1);
1026
1027         mutex_unlock(&bridge->irq_mtx);
1028
1029         return 0;
1030 }
1031 EXPORT_SYMBOL(vme_irq_request);
1032
1033 void vme_irq_free(struct device *dev, int level, int statid)
1034 {
1035         struct vme_bridge *bridge;
1036
1037         bridge = dev_to_bridge(dev);
1038         if (bridge == NULL) {
1039                 printk(KERN_ERR "Can't find VME bus\n");
1040                 return;
1041         }
1042
1043         if ((level < 1) || (level > 7)) {
1044                 printk(KERN_ERR "Invalid interrupt level\n");
1045                 return;
1046         }
1047
1048         if (bridge->irq_set == NULL) {
1049                 printk(KERN_ERR "Configuring interrupts not supported\n");
1050                 return;
1051         }
1052
1053         mutex_lock(&bridge->irq_mtx);
1054
1055         bridge->irq[level - 1].count--;
1056
1057         /* Disable IRQ level if no more interrupts attached at this level*/
1058         if (bridge->irq[level - 1].count == 0)
1059                 bridge->irq_set(bridge, level, 0, 1);
1060
1061         bridge->irq[level - 1].callback[statid].func = NULL;
1062         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1063
1064         mutex_unlock(&bridge->irq_mtx);
1065 }
1066 EXPORT_SYMBOL(vme_irq_free);
1067
1068 int vme_irq_generate(struct device *dev, int level, int statid)
1069 {
1070         struct vme_bridge *bridge;
1071
1072         bridge = dev_to_bridge(dev);
1073         if (bridge == NULL) {
1074                 printk(KERN_ERR "Can't find VME bus\n");
1075                 return -EINVAL;
1076         }
1077
1078         if ((level < 1) || (level > 7)) {
1079                 printk(KERN_WARNING "Invalid interrupt level\n");
1080                 return -EINVAL;
1081         }
1082
1083         if (bridge->irq_generate == NULL) {
1084                 printk(KERN_WARNING "Interrupt generation not supported\n");
1085                 return -EINVAL;
1086         }
1087
1088         return bridge->irq_generate(bridge, level, statid);
1089 }
1090 EXPORT_SYMBOL(vme_irq_generate);
1091
1092 /*
1093  * Request the location monitor, return resource or NULL
1094  */
1095 struct vme_resource *vme_lm_request(struct device *dev)
1096 {
1097         struct vme_bridge *bridge;
1098         struct list_head *lm_pos = NULL;
1099         struct vme_lm_resource *allocated_lm = NULL;
1100         struct vme_lm_resource *lm = NULL;
1101         struct vme_resource *resource = NULL;
1102
1103         bridge = dev_to_bridge(dev);
1104         if (bridge == NULL) {
1105                 printk(KERN_ERR "Can't find VME bus\n");
1106                 goto err_bus;
1107         }
1108
1109         /* Loop through DMA resources */
1110         list_for_each(lm_pos, &bridge->lm_resources) {
1111                 lm = list_entry(lm_pos,
1112                         struct vme_lm_resource, list);
1113
1114                 if (lm == NULL) {
1115                         printk(KERN_ERR "Registered NULL Location Monitor "
1116                                 "resource\n");
1117                         continue;
1118                 }
1119
1120                 /* Find an unlocked controller */
1121                 mutex_lock(&lm->mtx);
1122                 if (lm->locked == 0) {
1123                         lm->locked = 1;
1124                         mutex_unlock(&lm->mtx);
1125                         allocated_lm = lm;
1126                         break;
1127                 }
1128                 mutex_unlock(&lm->mtx);
1129         }
1130
1131         /* Check to see if we found a resource */
1132         if (allocated_lm == NULL)
1133                 goto err_lm;
1134
1135         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1136         if (resource == NULL) {
1137                 printk(KERN_ERR "Unable to allocate resource structure\n");
1138                 goto err_alloc;
1139         }
1140         resource->type = VME_LM;
1141         resource->entry = &allocated_lm->list;
1142
1143         return resource;
1144
1145 err_alloc:
1146         /* Unlock image */
1147         mutex_lock(&lm->mtx);
1148         lm->locked = 0;
1149         mutex_unlock(&lm->mtx);
1150 err_lm:
1151 err_bus:
1152         return NULL;
1153 }
1154 EXPORT_SYMBOL(vme_lm_request);
1155
1156 int vme_lm_count(struct vme_resource *resource)
1157 {
1158         struct vme_lm_resource *lm;
1159
1160         if (resource->type != VME_LM) {
1161                 printk(KERN_ERR "Not a Location Monitor resource\n");
1162                 return -EINVAL;
1163         }
1164
1165         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1166
1167         return lm->monitors;
1168 }
1169 EXPORT_SYMBOL(vme_lm_count);
1170
1171 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1172         vme_address_t aspace, vme_cycle_t cycle)
1173 {
1174         struct vme_bridge *bridge = find_bridge(resource);
1175         struct vme_lm_resource *lm;
1176
1177         if (resource->type != VME_LM) {
1178                 printk(KERN_ERR "Not a Location Monitor resource\n");
1179                 return -EINVAL;
1180         }
1181
1182         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1183
1184         if (bridge->lm_set == NULL) {
1185                 printk(KERN_ERR "vme_lm_set not supported\n");
1186                 return -EINVAL;
1187         }
1188
1189         return bridge->lm_set(lm, lm_base, aspace, cycle);
1190 }
1191 EXPORT_SYMBOL(vme_lm_set);
1192
1193 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1194         vme_address_t *aspace, vme_cycle_t *cycle)
1195 {
1196         struct vme_bridge *bridge = find_bridge(resource);
1197         struct vme_lm_resource *lm;
1198
1199         if (resource->type != VME_LM) {
1200                 printk(KERN_ERR "Not a Location Monitor resource\n");
1201                 return -EINVAL;
1202         }
1203
1204         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1205
1206         if (bridge->lm_get == NULL) {
1207                 printk(KERN_ERR "vme_lm_get not supported\n");
1208                 return -EINVAL;
1209         }
1210
1211         return bridge->lm_get(lm, lm_base, aspace, cycle);
1212 }
1213 EXPORT_SYMBOL(vme_lm_get);
1214
1215 int vme_lm_attach(struct vme_resource *resource, int monitor,
1216         void (*callback)(int))
1217 {
1218         struct vme_bridge *bridge = find_bridge(resource);
1219         struct vme_lm_resource *lm;
1220
1221         if (resource->type != VME_LM) {
1222                 printk(KERN_ERR "Not a Location Monitor resource\n");
1223                 return -EINVAL;
1224         }
1225
1226         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1227
1228         if (bridge->lm_attach == NULL) {
1229                 printk(KERN_ERR "vme_lm_attach not supported\n");
1230                 return -EINVAL;
1231         }
1232
1233         return bridge->lm_attach(lm, monitor, callback);
1234 }
1235 EXPORT_SYMBOL(vme_lm_attach);
1236
1237 int vme_lm_detach(struct vme_resource *resource, int monitor)
1238 {
1239         struct vme_bridge *bridge = find_bridge(resource);
1240         struct vme_lm_resource *lm;
1241
1242         if (resource->type != VME_LM) {
1243                 printk(KERN_ERR "Not a Location Monitor resource\n");
1244                 return -EINVAL;
1245         }
1246
1247         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1248
1249         if (bridge->lm_detach == NULL) {
1250                 printk(KERN_ERR "vme_lm_detach not supported\n");
1251                 return -EINVAL;
1252         }
1253
1254         return bridge->lm_detach(lm, monitor);
1255 }
1256 EXPORT_SYMBOL(vme_lm_detach);
1257
1258 void vme_lm_free(struct vme_resource *resource)
1259 {
1260         struct vme_lm_resource *lm;
1261
1262         if (resource->type != VME_LM) {
1263                 printk(KERN_ERR "Not a Location Monitor resource\n");
1264                 return;
1265         }
1266
1267         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1268
1269         mutex_lock(&lm->mtx);
1270
1271         /* XXX
1272          * Check to see that there aren't any callbacks still attached, if
1273          * there are we should probably be detaching them!
1274          */
1275
1276         lm->locked = 0;
1277
1278         mutex_unlock(&lm->mtx);
1279
1280         kfree(resource);
1281 }
1282 EXPORT_SYMBOL(vme_lm_free);
1283
1284 int vme_slot_get(struct device *bus)
1285 {
1286         struct vme_bridge *bridge;
1287
1288         bridge = dev_to_bridge(bus);
1289         if (bridge == NULL) {
1290                 printk(KERN_ERR "Can't find VME bus\n");
1291                 return -EINVAL;
1292         }
1293
1294         if (bridge->slot_get == NULL) {
1295                 printk(KERN_WARNING "vme_slot_get not supported\n");
1296                 return -EINVAL;
1297         }
1298
1299         return bridge->slot_get(bridge);
1300 }
1301 EXPORT_SYMBOL(vme_slot_get);
1302
1303
1304 /* - Bridge Registration --------------------------------------------------- */
1305
1306 static int vme_alloc_bus_num(void)
1307 {
1308         int i;
1309
1310         mutex_lock(&vme_bus_num_mtx);
1311         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1312                 if (((vme_bus_numbers >> i) & 0x1) == 0) {
1313                         vme_bus_numbers |= (0x1 << i);
1314                         break;
1315                 }
1316         }
1317         mutex_unlock(&vme_bus_num_mtx);
1318
1319         return i;
1320 }
1321
1322 static void vme_free_bus_num(int bus)
1323 {
1324         mutex_lock(&vme_bus_num_mtx);
1325         vme_bus_numbers &= ~(0x1 << bus);
1326         mutex_unlock(&vme_bus_num_mtx);
1327 }
1328
1329 int vme_register_bridge(struct vme_bridge *bridge)
1330 {
1331         struct device *dev;
1332         int retval;
1333         int i;
1334
1335         bridge->num = vme_alloc_bus_num();
1336
1337         /* This creates 32 vme "slot" devices. This equates to a slot for each
1338          * ID available in a system conforming to the ANSI/VITA 1-1994
1339          * specification.
1340          */
1341         for (i = 0; i < VME_SLOTS_MAX; i++) {
1342                 dev = &bridge->dev[i];
1343                 memset(dev, 0, sizeof(struct device));
1344
1345                 dev->parent = bridge->parent;
1346                 dev->bus = &vme_bus_type;
1347                 /*
1348                  * We save a pointer to the bridge in platform_data so that we
1349                  * can get to it later. We keep driver_data for use by the
1350                  * driver that binds against the slot
1351                  */
1352                 dev->platform_data = bridge;
1353                 dev_set_name(dev, "vme-%x.%x", bridge->num, i + 1);
1354
1355                 retval = device_register(dev);
1356                 if (retval)
1357                         goto err_reg;
1358         }
1359
1360         return retval;
1361
1362 err_reg:
1363         while (--i >= 0) {
1364                 dev = &bridge->dev[i];
1365                 device_unregister(dev);
1366         }
1367         vme_free_bus_num(bridge->num);
1368         return retval;
1369 }
1370 EXPORT_SYMBOL(vme_register_bridge);
1371
1372 void vme_unregister_bridge(struct vme_bridge *bridge)
1373 {
1374         int i;
1375         struct device *dev;
1376
1377
1378         for (i = 0; i < VME_SLOTS_MAX; i++) {
1379                 dev = &bridge->dev[i];
1380                 device_unregister(dev);
1381         }
1382         vme_free_bus_num(bridge->num);
1383 }
1384 EXPORT_SYMBOL(vme_unregister_bridge);
1385
1386
1387 /* - Driver Registration --------------------------------------------------- */
1388
1389 int vme_register_driver(struct vme_driver *drv)
1390 {
1391         drv->driver.name = drv->name;
1392         drv->driver.bus = &vme_bus_type;
1393
1394         return driver_register(&drv->driver);
1395 }
1396 EXPORT_SYMBOL(vme_register_driver);
1397
1398 void vme_unregister_driver(struct vme_driver *drv)
1399 {
1400         driver_unregister(&drv->driver);
1401 }
1402 EXPORT_SYMBOL(vme_unregister_driver);
1403
1404 /* - Bus Registration ------------------------------------------------------ */
1405
1406 static int vme_calc_slot(struct device *dev)
1407 {
1408         struct vme_bridge *bridge;
1409         int num;
1410
1411         bridge = dev_to_bridge(dev);
1412
1413         /* Determine slot number */
1414         num = 0;
1415         while (num < VME_SLOTS_MAX) {
1416                 if (&bridge->dev[num] == dev)
1417                         break;
1418
1419                 num++;
1420         }
1421         if (num == VME_SLOTS_MAX) {
1422                 dev_err(dev, "Failed to identify slot\n");
1423                 num = 0;
1424                 goto err_dev;
1425         }
1426         num++;
1427
1428 err_dev:
1429         return num;
1430 }
1431
1432 static struct vme_driver *dev_to_vme_driver(struct device *dev)
1433 {
1434         if (dev->driver == NULL)
1435                 printk(KERN_ERR "Bugger dev->driver is NULL\n");
1436
1437         return container_of(dev->driver, struct vme_driver, driver);
1438 }
1439
1440 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1441 {
1442         struct vme_bridge *bridge;
1443         struct vme_driver *driver;
1444         int i, num;
1445
1446         bridge = dev_to_bridge(dev);
1447         driver = container_of(drv, struct vme_driver, driver);
1448
1449         num = vme_calc_slot(dev);
1450         if (!num)
1451                 goto err_dev;
1452
1453         if (driver->bind_table == NULL) {
1454                 dev_err(dev, "Bind table NULL\n");
1455                 goto err_table;
1456         }
1457
1458         i = 0;
1459         while ((driver->bind_table[i].bus != 0) ||
1460                 (driver->bind_table[i].slot != 0)) {
1461
1462                 if (bridge->num == driver->bind_table[i].bus) {
1463                         if (num == driver->bind_table[i].slot)
1464                                 return 1;
1465
1466                         if (driver->bind_table[i].slot == VME_SLOT_ALL)
1467                                 return 1;
1468
1469                         if ((driver->bind_table[i].slot == VME_SLOT_CURRENT) &&
1470                                 (num == vme_slot_get(dev)))
1471                                 return 1;
1472                 }
1473                 i++;
1474         }
1475
1476 err_dev:
1477 err_table:
1478         return 0;
1479 }
1480
1481 static int vme_bus_probe(struct device *dev)
1482 {
1483         struct vme_bridge *bridge;
1484         struct vme_driver *driver;
1485         int retval = -ENODEV;
1486
1487         driver = dev_to_vme_driver(dev);
1488         bridge = dev_to_bridge(dev);
1489
1490         if (driver->probe != NULL)
1491                 retval = driver->probe(dev, bridge->num, vme_calc_slot(dev));
1492
1493         return retval;
1494 }
1495
1496 static int vme_bus_remove(struct device *dev)
1497 {
1498         struct vme_bridge *bridge;
1499         struct vme_driver *driver;
1500         int retval = -ENODEV;
1501
1502         driver = dev_to_vme_driver(dev);
1503         bridge = dev_to_bridge(dev);
1504
1505         if (driver->remove != NULL)
1506                 retval = driver->remove(dev, bridge->num, vme_calc_slot(dev));
1507
1508         return retval;
1509 }
1510
1511 struct bus_type vme_bus_type = {
1512         .name = "vme",
1513         .match = vme_bus_match,
1514         .probe = vme_bus_probe,
1515         .remove = vme_bus_remove,
1516 };
1517 EXPORT_SYMBOL(vme_bus_type);
1518
1519 static int __init vme_init(void)
1520 {
1521         return bus_register(&vme_bus_type);
1522 }
1523
1524 static void __exit vme_exit(void)
1525 {
1526         bus_unregister(&vme_bus_type);
1527 }
1528
1529 MODULE_DESCRIPTION("VME bridge driver framework");
1530 MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com");
1531 MODULE_LICENSE("GPL");
1532
1533 module_init(vme_init);
1534 module_exit(vme_exit);