Staging: sxg: Add NAPI feature to Sahara SXG Driver
[pandora-kernel.git] / drivers / staging / sxg / sxg.c
1 /**************************************************************************
2  *
3  * Copyright (C) 2000-2008 Alacritech, Inc.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above
12  *    copyright notice, this list of conditions and the following
13  *    disclaimer in the documentation and/or other materials provided
14  *    with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ALACRITECH, INC. OR
20  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * The views and conclusions contained in the software and documentation
30  * are those of the authors and should not be interpreted as representing
31  * official policies, either expressed or implied, of Alacritech, Inc.
32  *
33  * Parts developed by LinSysSoft Sahara team
34  *
35  **************************************************************************/
36
37 /*
38  * FILENAME: sxg.c
39  *
40  * The SXG driver for Alacritech's 10Gbe products.
41  *
42  * NOTE: This is the standard, non-accelerated version of Alacritech's
43  *       IS-NIC driver.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/string.h>
48 #include <linux/errno.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/ioport.h>
52 #include <linux/slab.h>
53 #include <linux/interrupt.h>
54 #include <linux/timer.h>
55 #include <linux/pci.h>
56 #include <linux/spinlock.h>
57 #include <linux/init.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/ethtool.h>
61 #include <linux/skbuff.h>
62 #include <linux/delay.h>
63 #include <linux/types.h>
64 #include <linux/dma-mapping.h>
65 #include <linux/mii.h>
66 #include <linux/ip.h>
67 #include <linux/in.h>
68 #include <linux/tcp.h>
69 #include <linux/ipv6.h>
70
71 #define SLIC_GET_STATS_ENABLED          0
72 #define LINUX_FREES_ADAPTER_RESOURCES   1
73 #define SXG_OFFLOAD_IP_CHECKSUM         0
74 #define SXG_POWER_MANAGEMENT_ENABLED    0
75 #define VPCI                            0
76 #define ATK_DEBUG                       1
77
78 #include "sxg_os.h"
79 #include "sxghw.h"
80 #include "sxghif.h"
81 #include "sxg.h"
82 #include "sxgdbg.h"
83
84 #include "sxgphycode.h"
85 #define SXG_UCODE_DBG                   0       /* Turn on for debugging */
86 #ifdef SXG_UCODE_DBG
87 #include "saharadbgdownload.c"
88 #include "saharadbgdownloadB.c"
89 #else
90 #include "saharadownload.c"
91 #include "saharadownloadB.c"
92 #endif
93
94 static int sxg_allocate_buffer_memory(struct adapter_t *adapter, u32 Size,
95                                       enum sxg_buffer_type BufferType);
96 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
97                                                 void *RcvBlock,
98                                                 dma_addr_t PhysicalAddress,
99                                                 u32 Length);
100 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
101                                              struct sxg_scatter_gather *SxgSgl,
102                                              dma_addr_t PhysicalAddress,
103                                              u32 Length);
104
105 static void sxg_mcast_init_crc32(void);
106 static int sxg_entry_open(struct net_device *dev);
107 static int sxg_second_open(struct net_device * dev);
108 static int sxg_entry_halt(struct net_device *dev);
109 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev);
111 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb);
112 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
113                                 struct sxg_scatter_gather *SxgSgl);
114
115 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
116                                          int budget);
117 static void sxg_interrupt(struct adapter_t *adapter);
118 static int sxg_poll(struct napi_struct *napi, int budget);
119 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId);
120 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
121                          int *sxg_napi_continue, int *work_done, int budget);
122 static void sxg_complete_slow_send(struct adapter_t *adapter, int irq_context);
123 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
124                                         struct sxg_event *Event);
125 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus);
126 static bool sxg_mac_filter(struct adapter_t *adapter,
127                            struct ether_header *EtherHdr, ushort length);
128 static struct net_device_stats *sxg_get_stats(struct net_device * dev);
129 void sxg_free_resources(struct adapter_t *adapter);
130 void sxg_free_rcvblocks(struct adapter_t *adapter);
131 void sxg_free_sgl_buffers(struct adapter_t *adapter);
132 void sxg_unmap_resources(struct adapter_t *adapter);
133 void sxg_free_mcast_addrs(struct adapter_t *adapter);
134 void sxg_collect_statistics(struct adapter_t *adapter);
135
136 #define XXXTODO 0
137
138 #if XXXTODO
139 static int sxg_mac_set_address(struct net_device *dev, void *ptr);
140 static void sxg_unmap_mmio_space(struct adapter_t *adapter);
141 #endif
142 static void sxg_mcast_set_list(struct net_device *dev);
143
144 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter);
145
146 static int sxg_initialize_adapter(struct adapter_t *adapter);
147 static void sxg_stock_rcv_buffers(struct adapter_t *adapter);
148 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
149                                            unsigned char Index);
150 static int sxg_initialize_link(struct adapter_t *adapter);
151 static int sxg_phy_init(struct adapter_t *adapter);
152 static void sxg_link_event(struct adapter_t *adapter);
153 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter);
154 static void sxg_link_state(struct adapter_t *adapter,
155                                 enum SXG_LINK_STATE LinkState);
156 static int sxg_write_mdio_reg(struct adapter_t *adapter,
157                               u32 DevAddr, u32 RegAddr, u32 Value);
158 static int sxg_read_mdio_reg(struct adapter_t *adapter,
159                              u32 DevAddr, u32 RegAddr, u32 *pValue);
160 static void sxg_set_mcast_addr(struct adapter_t *adapter);
161
162 static unsigned int sxg_first_init = 1;
163 static char *sxg_banner =
164     "Alacritech SLIC Technology(tm) Server and Storage \
165          10Gbe Accelerator (Non-Accelerated)\n";
166
167 static int sxg_debug = 1;
168 static int debug = -1;
169 static struct net_device *head_netdevice = NULL;
170
171 static struct sxgbase_driver sxg_global = {
172         .dynamic_intagg = 1,
173 };
174 static int intagg_delay = 100;
175 static u32 dynamic_intagg = 0;
176
177 char sxg_driver_name[] = "sxg_nic";
178 #define DRV_AUTHOR      "Alacritech, Inc. Engineering"
179 #define DRV_DESCRIPTION                                                 \
180         "Alacritech SLIC Techonology(tm) Non-Accelerated 10Gbe Driver"
181 #define DRV_COPYRIGHT                                                   \
182         "Copyright 2000-2008 Alacritech, Inc.  All rights reserved."
183
184 MODULE_AUTHOR(DRV_AUTHOR);
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_LICENSE("GPL");
187
188 module_param(dynamic_intagg, int, 0);
189 MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting");
190 module_param(intagg_delay, int, 0);
191 MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay");
192
193 static struct pci_device_id sxg_pci_tbl[] __devinitdata = {
194         {PCI_DEVICE(SXG_VENDOR_ID, SXG_DEVICE_ID)},
195         {0,}
196 };
197
198 MODULE_DEVICE_TABLE(pci, sxg_pci_tbl);
199
200 static inline void sxg_reg32_write(void __iomem *reg, u32 value, bool flush)
201 {
202         writel(value, reg);
203         if (flush)
204                 mb();
205 }
206
207 static inline void sxg_reg64_write(struct adapter_t *adapter, void __iomem *reg,
208                                    u64 value, u32 cpu)
209 {
210         u32 value_high = (u32) (value >> 32);
211         u32 value_low = (u32) (value & 0x00000000FFFFFFFF);
212         unsigned long flags;
213
214         spin_lock_irqsave(&adapter->Bit64RegLock, flags);
215         writel(value_high, (void __iomem *)(&adapter->UcodeRegs[cpu].Upper));
216         writel(value_low, reg);
217         spin_unlock_irqrestore(&adapter->Bit64RegLock, flags);
218 }
219
220 static void sxg_init_driver(void)
221 {
222         if (sxg_first_init) {
223                 DBG_ERROR("sxg: %s sxg_first_init set jiffies[%lx]\n",
224                           __func__, jiffies);
225                 sxg_first_init = 0;
226                 spin_lock_init(&sxg_global.driver_lock);
227         }
228 }
229
230 static void sxg_dbg_macaddrs(struct adapter_t *adapter)
231 {
232         DBG_ERROR("  (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
233                   adapter->netdev->name, adapter->currmacaddr[0],
234                   adapter->currmacaddr[1], adapter->currmacaddr[2],
235                   adapter->currmacaddr[3], adapter->currmacaddr[4],
236                   adapter->currmacaddr[5]);
237         DBG_ERROR("  (%s) mac  %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
238                   adapter->netdev->name, adapter->macaddr[0],
239                   adapter->macaddr[1], adapter->macaddr[2],
240                   adapter->macaddr[3], adapter->macaddr[4],
241                   adapter->macaddr[5]);
242         return;
243 }
244
245 /* SXG Globals */
246 static struct sxg_driver SxgDriver;
247
248 #ifdef  ATKDBG
249 static struct sxg_trace_buffer LSxgTraceBuffer;
250 #endif /* ATKDBG */
251 static struct sxg_trace_buffer *SxgTraceBuffer = NULL;
252
253 /*
254  * sxg_download_microcode
255  *
256  * Download Microcode to Sahara adapter
257  *
258  * Arguments -
259  *              adapter         - A pointer to our adapter structure
260  *              UcodeSel        - microcode file selection
261  *
262  * Return
263  *      int
264  */
265 static bool sxg_download_microcode(struct adapter_t *adapter,
266                                                 enum SXG_UCODE_SEL UcodeSel)
267 {
268         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
269         u32 Section;
270         u32 ThisSectionSize;
271         u32 *Instruction = NULL;
272         u32 BaseAddress, AddressOffset, Address;
273         /* u32 Failure; */
274         u32 ValueRead;
275         u32 i;
276         u32 numSections = 0;
277         u32 sectionSize[16];
278         u32 sectionStart[16];
279
280         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DnldUcod",
281                   adapter, 0, 0, 0);
282         DBG_ERROR("sxg: %s ENTER\n", __func__);
283
284         switch (UcodeSel) {
285         case SXG_UCODE_SAHARA:  /* Sahara operational ucode */
286                 numSections = SNumSections;
287                 for (i = 0; i < numSections; i++) {
288                         sectionSize[i] = SSectionSize[i];
289                         sectionStart[i] = SSectionStart[i];
290                 }
291                 break;
292         default:
293                 printk(KERN_ERR KBUILD_MODNAME
294                        ": Woah, big error with the microcode!\n");
295                 break;
296         }
297
298         DBG_ERROR("sxg: RESET THE CARD\n");
299         /* First, reset the card */
300         WRITE_REG(HwRegs->Reset, 0xDEAD, FLUSH);
301
302         /*
303          * Download each section of the microcode as specified in
304          * its download file.  The *download.c file is generated using
305          * the saharaobjtoc facility which converts the metastep .obj
306          * file to a .c file which contains a two dimentional array.
307          */
308         for (Section = 0; Section < numSections; Section++) {
309                 DBG_ERROR("sxg: SECTION # %d\n", Section);
310                 switch (UcodeSel) {
311                 case SXG_UCODE_SAHARA:
312                         Instruction = (u32 *) & SaharaUCode[Section][0];
313                         break;
314                 default:
315                         ASSERT(0);
316                         break;
317                 }
318                 BaseAddress = sectionStart[Section];
319                 /* Size in instructions */
320                 ThisSectionSize = sectionSize[Section] / 12;
321                 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
322                      AddressOffset++) {
323                         Address = BaseAddress + AddressOffset;
324                         ASSERT((Address & ~MICROCODE_ADDRESS_MASK) == 0);
325                         /* Write instruction bits 31 - 0 */
326                         WRITE_REG(HwRegs->UcodeDataLow, *Instruction, FLUSH);
327                         /* Write instruction bits 63-32 */
328                         WRITE_REG(HwRegs->UcodeDataMiddle, *(Instruction + 1),
329                                   FLUSH);
330                         /* Write instruction bits 95-64 */
331                         WRITE_REG(HwRegs->UcodeDataHigh, *(Instruction + 2),
332                                   FLUSH);
333                         /* Write instruction address with the WRITE bit set */
334                         WRITE_REG(HwRegs->UcodeAddr,
335                                   (Address | MICROCODE_ADDRESS_WRITE), FLUSH);
336                         /*
337                          * Sahara bug in the ucode download logic - the write to DataLow
338                          * for the next instruction could get corrupted.  To avoid this,
339                          * write to DataLow again for this instruction (which may get
340                          * corrupted, but it doesn't matter), then increment the address
341                          * and write the data for the next instruction to DataLow.  That
342                          * write should succeed.
343                          */
344                         WRITE_REG(HwRegs->UcodeDataLow, *Instruction, TRUE);
345                         /* Advance 3 u32S to start of next instruction */
346                         Instruction += 3;
347                 }
348         }
349         /*
350          * Now repeat the entire operation reading the instruction back and
351          * checking for parity errors
352          */
353         for (Section = 0; Section < numSections; Section++) {
354                 DBG_ERROR("sxg: check SECTION # %d\n", Section);
355                 switch (UcodeSel) {
356                 case SXG_UCODE_SAHARA:
357                         Instruction = (u32 *) & SaharaUCode[Section][0];
358                         break;
359                 default:
360                         ASSERT(0);
361                         break;
362                 }
363                 BaseAddress = sectionStart[Section];
364                 /* Size in instructions */
365                 ThisSectionSize = sectionSize[Section] / 12;
366                 for (AddressOffset = 0; AddressOffset < ThisSectionSize;
367                      AddressOffset++) {
368                         Address = BaseAddress + AddressOffset;
369                         /* Write the address with the READ bit set */
370                         WRITE_REG(HwRegs->UcodeAddr,
371                                   (Address | MICROCODE_ADDRESS_READ), FLUSH);
372                         /* Read it back and check parity bit. */
373                         READ_REG(HwRegs->UcodeAddr, ValueRead);
374                         if (ValueRead & MICROCODE_ADDRESS_PARITY) {
375                                 DBG_ERROR("sxg: %s PARITY ERROR\n",
376                                           __func__);
377
378                                 return FALSE;   /* Parity error */
379                         }
380                         ASSERT((ValueRead & MICROCODE_ADDRESS_MASK) == Address);
381                         /* Read the instruction back and compare */
382                         READ_REG(HwRegs->UcodeDataLow, ValueRead);
383                         if (ValueRead != *Instruction) {
384                                 DBG_ERROR("sxg: %s MISCOMPARE LOW\n",
385                                           __func__);
386                                 return FALSE;   /* Miscompare */
387                         }
388                         READ_REG(HwRegs->UcodeDataMiddle, ValueRead);
389                         if (ValueRead != *(Instruction + 1)) {
390                                 DBG_ERROR("sxg: %s MISCOMPARE MIDDLE\n",
391                                           __func__);
392                                 return FALSE;   /* Miscompare */
393                         }
394                         READ_REG(HwRegs->UcodeDataHigh, ValueRead);
395                         if (ValueRead != *(Instruction + 2)) {
396                                 DBG_ERROR("sxg: %s MISCOMPARE HIGH\n",
397                                           __func__);
398                                 return FALSE;   /* Miscompare */
399                         }
400                         /* Advance 3 u32S to start of next instruction */
401                         Instruction += 3;
402                 }
403         }
404
405         /* Everything OK, Go. */
406         WRITE_REG(HwRegs->UcodeAddr, MICROCODE_ADDRESS_GO, FLUSH);
407
408         /*
409          * Poll the CardUp register to wait for microcode to initialize
410          * Give up after 10,000 attemps (500ms).
411          */
412         for (i = 0; i < 10000; i++) {
413                 udelay(50);
414                 READ_REG(adapter->UcodeRegs[0].CardUp, ValueRead);
415                 if (ValueRead == 0xCAFE) {
416                         DBG_ERROR("sxg: %s BOO YA 0xCAFE\n", __func__);
417                         break;
418                 }
419         }
420         if (i == 10000) {
421                 DBG_ERROR("sxg: %s TIMEOUT\n", __func__);
422
423                 return FALSE;   /* Timeout */
424         }
425         /*
426          * Now write the LoadSync register.  This is used to
427          * synchronize with the card so it can scribble on the memory
428          * that contained 0xCAFE from the "CardUp" step above
429          */
430         if (UcodeSel == SXG_UCODE_SAHARA) {
431                 WRITE_REG(adapter->UcodeRegs[0].LoadSync, 0, FLUSH);
432         }
433
434         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDnldUcd",
435                   adapter, 0, 0, 0);
436         DBG_ERROR("sxg: %s EXIT\n", __func__);
437
438         return (TRUE);
439 }
440
441 /*
442  * sxg_allocate_resources - Allocate memory and locks
443  *
444  * Arguments -
445  *      adapter - A pointer to our adapter structure
446  *
447  * Return - int
448  */
449 static int sxg_allocate_resources(struct adapter_t *adapter)
450 {
451         int status;
452         u32 i;
453         u32 RssIds, IsrCount;
454         /* struct sxg_xmt_ring  *XmtRing; */
455         /* struct sxg_rcv_ring  *RcvRing; */
456
457         DBG_ERROR("%s ENTER\n", __func__);
458
459         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocRes",
460                   adapter, 0, 0, 0);
461
462         /* Windows tells us how many CPUs it plans to use for */
463         /* RSS */
464         RssIds = SXG_RSS_CPU_COUNT(adapter);
465         IsrCount = adapter->MsiEnabled ? RssIds : 1;
466
467         DBG_ERROR("%s Setup the spinlocks\n", __func__);
468
469         /* Allocate spinlocks and initialize listheads first. */
470         spin_lock_init(&adapter->RcvQLock);
471         spin_lock_init(&adapter->SglQLock);
472         spin_lock_init(&adapter->XmtZeroLock);
473         spin_lock_init(&adapter->Bit64RegLock);
474         spin_lock_init(&adapter->AdapterLock);
475         atomic_set(&adapter->pending_allocations, 0);
476
477         DBG_ERROR("%s Setup the lists\n", __func__);
478
479         InitializeListHead(&adapter->FreeRcvBuffers);
480         InitializeListHead(&adapter->FreeRcvBlocks);
481         InitializeListHead(&adapter->AllRcvBlocks);
482         InitializeListHead(&adapter->FreeSglBuffers);
483         InitializeListHead(&adapter->AllSglBuffers);
484
485         /*
486          * Mark these basic allocations done.  This flags essentially
487          * tells the SxgFreeResources routine that it can grab spinlocks
488          * and reference listheads.
489          */
490         adapter->BasicAllocations = TRUE;
491         /*
492          * Main allocation loop.  Start with the maximum supported by
493          * the microcode and back off if memory allocation
494          * fails.  If we hit a minimum, fail.
495          */
496
497         for (;;) {
498                 DBG_ERROR("%s Allocate XmtRings size[%x]\n", __func__,
499                           (unsigned int)(sizeof(struct sxg_xmt_ring) * 1));
500
501                 /*
502                  * Start with big items first - receive and transmit rings.
503                  * At the moment I'm going to keep the ring size fixed and
504                  * adjust the TCBs if we fail.  Later we might
505                  * consider reducing the ring size as well..
506                  */
507                 adapter->XmtRings = pci_alloc_consistent(adapter->pcidev,
508                                                  sizeof(struct sxg_xmt_ring) *
509                                                  1,
510                                                  &adapter->PXmtRings);
511                 DBG_ERROR("%s XmtRings[%p]\n", __func__, adapter->XmtRings);
512
513                 if (!adapter->XmtRings) {
514                         goto per_tcb_allocation_failed;
515                 }
516                 memset(adapter->XmtRings, 0, sizeof(struct sxg_xmt_ring) * 1);
517
518                 DBG_ERROR("%s Allocate RcvRings size[%x]\n", __func__,
519                           (unsigned int)(sizeof(struct sxg_rcv_ring) * 1));
520                 adapter->RcvRings =
521                     pci_alloc_consistent(adapter->pcidev,
522                                          sizeof(struct sxg_rcv_ring) * 1,
523                                          &adapter->PRcvRings);
524                 DBG_ERROR("%s RcvRings[%p]\n", __func__, adapter->RcvRings);
525                 if (!adapter->RcvRings) {
526                         goto per_tcb_allocation_failed;
527                 }
528                 memset(adapter->RcvRings, 0, sizeof(struct sxg_rcv_ring) * 1);
529                 adapter->ucode_stats = kzalloc(sizeof(struct sxg_ucode_stats), GFP_ATOMIC);
530                 adapter->pucode_stats = pci_map_single(adapter->pcidev,
531                                                 adapter->ucode_stats,
532                                                 sizeof(struct sxg_ucode_stats),
533                                                 PCI_DMA_FROMDEVICE);
534 //              memset(adapter->ucode_stats, 0, sizeof(struct sxg_ucode_stats));
535                 break;
536
537               per_tcb_allocation_failed:
538                 /* an allocation failed.  Free any successful allocations. */
539                 if (adapter->XmtRings) {
540                         pci_free_consistent(adapter->pcidev,
541                                             sizeof(struct sxg_xmt_ring) * 1,
542                                             adapter->XmtRings,
543                                             adapter->PXmtRings);
544                         adapter->XmtRings = NULL;
545                 }
546                 if (adapter->RcvRings) {
547                         pci_free_consistent(adapter->pcidev,
548                                             sizeof(struct sxg_rcv_ring) * 1,
549                                             adapter->RcvRings,
550                                             adapter->PRcvRings);
551                         adapter->RcvRings = NULL;
552                 }
553                 /* Loop around and try again.... */
554                 if (adapter->ucode_stats) {
555                         pci_unmap_single(adapter->pcidev,
556                                         sizeof(struct sxg_ucode_stats),
557                                         adapter->pucode_stats, PCI_DMA_FROMDEVICE);
558                         adapter->ucode_stats = NULL;
559                 }
560
561         }
562
563         DBG_ERROR("%s Initialize RCV ZERO and XMT ZERO rings\n", __func__);
564         /* Initialize rcv zero and xmt zero rings */
565         SXG_INITIALIZE_RING(adapter->RcvRingZeroInfo, SXG_RCV_RING_SIZE);
566         SXG_INITIALIZE_RING(adapter->XmtRingZeroInfo, SXG_XMT_RING_SIZE);
567
568         /* Sanity check receive data structure format */
569         /* ASSERT((adapter->ReceiveBufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
570                (adapter->ReceiveBufferSize == SXG_RCV_JUMBO_BUFFER_SIZE)); */
571         ASSERT(sizeof(struct sxg_rcv_descriptor_block) ==
572                SXG_RCV_DESCRIPTOR_BLOCK_SIZE);
573
574         /*
575          * Allocate receive data buffers.  We allocate a block of buffers and
576          * a corresponding descriptor block at once.  See sxghw.h:SXG_RCV_BLOCK
577          */
578         for (i = 0; i < SXG_INITIAL_RCV_DATA_BUFFERS;
579                                 i += SXG_RCV_DESCRIPTORS_PER_BLOCK) {
580                         status = sxg_allocate_buffer_memory(adapter,
581                                 SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
582                                            SXG_BUFFER_TYPE_RCV);
583                         if (status != STATUS_SUCCESS)
584                                 return status;
585         }
586         /*
587          * NBL resource allocation can fail in the 'AllocateComplete' routine,
588          * which doesn't return status.  Make sure we got the number of buffers
589          * we requested
590          */
591         if (adapter->FreeRcvBufferCount < SXG_INITIAL_RCV_DATA_BUFFERS) {
592                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF6",
593                           adapter, adapter->FreeRcvBufferCount, SXG_MAX_ENTRIES,
594                           0);
595                 return (STATUS_RESOURCES);
596         }
597
598         DBG_ERROR("%s Allocate EventRings size[%x]\n", __func__,
599                   (unsigned int)(sizeof(struct sxg_event_ring) * RssIds));
600
601         /* Allocate event queues. */
602         adapter->EventRings = pci_alloc_consistent(adapter->pcidev,
603                                            sizeof(struct sxg_event_ring) *
604                                            RssIds,
605                                            &adapter->PEventRings);
606
607         if (!adapter->EventRings) {
608                 /* Caller will call SxgFreeAdapter to clean up above
609                  * allocations */
610                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF8",
611                           adapter, SXG_MAX_ENTRIES, 0, 0);
612                 status = STATUS_RESOURCES;
613                 goto per_tcb_allocation_failed;
614         }
615         memset(adapter->EventRings, 0, sizeof(struct sxg_event_ring) * RssIds);
616
617         DBG_ERROR("%s Allocate ISR size[%x]\n", __func__, IsrCount);
618         /* Allocate ISR */
619         adapter->Isr = pci_alloc_consistent(adapter->pcidev,
620                                             IsrCount, &adapter->PIsr);
621         if (!adapter->Isr) {
622                 /* Caller will call SxgFreeAdapter to clean up above
623                  * allocations */
624                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF9",
625                           adapter, SXG_MAX_ENTRIES, 0, 0);
626                 status = STATUS_RESOURCES;
627                 goto per_tcb_allocation_failed;
628         }
629         memset(adapter->Isr, 0, sizeof(u32) * IsrCount);
630
631         DBG_ERROR("%s Allocate shared XMT ring zero index location size[%x]\n",
632                   __func__, (unsigned int)sizeof(u32));
633
634         /* Allocate shared XMT ring zero index location */
635         adapter->XmtRingZeroIndex = pci_alloc_consistent(adapter->pcidev,
636                                                          sizeof(u32),
637                                                          &adapter->
638                                                          PXmtRingZeroIndex);
639         if (!adapter->XmtRingZeroIndex) {
640                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAResF10",
641                           adapter, SXG_MAX_ENTRIES, 0, 0);
642                 status = STATUS_RESOURCES;
643                 goto per_tcb_allocation_failed;
644         }
645         memset(adapter->XmtRingZeroIndex, 0, sizeof(u32));
646
647         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlcResS",
648                   adapter, SXG_MAX_ENTRIES, 0, 0);
649
650         return status;
651 }
652
653 /*
654  * sxg_config_pci -
655  *
656  * Set up PCI Configuration space
657  *
658  * Arguments -
659  *              pcidev                  - A pointer to our adapter structure
660  */
661 static void sxg_config_pci(struct pci_dev *pcidev)
662 {
663         u16 pci_command;
664         u16 new_command;
665
666         pci_read_config_word(pcidev, PCI_COMMAND, &pci_command);
667         DBG_ERROR("sxg: %s  PCI command[%4.4x]\n", __func__, pci_command);
668         /* Set the command register */
669         new_command = pci_command | (
670                                      /* Memory Space Enable */
671                                      PCI_COMMAND_MEMORY |
672                                      /* Bus master enable */
673                                      PCI_COMMAND_MASTER |
674                                      /* Memory write and invalidate */
675                                      PCI_COMMAND_INVALIDATE |
676                                      /* Parity error response */
677                                      PCI_COMMAND_PARITY |
678                                      /* System ERR */
679                                      PCI_COMMAND_SERR |
680                                      /* Fast back-to-back */
681                                      PCI_COMMAND_FAST_BACK);
682         if (pci_command != new_command) {
683                 DBG_ERROR("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n",
684                           __func__, pci_command, new_command);
685                 pci_write_config_word(pcidev, PCI_COMMAND, new_command);
686         }
687 }
688
689 /*
690  * sxg_read_config
691  *      @adapter : Pointer to the adapter structure for the card
692  * This function will read the configuration data from EEPROM/FLASH
693  */
694 static inline int sxg_read_config(struct adapter_t *adapter)
695 {
696         /* struct sxg_config    data; */
697         struct sw_cfg_data      *data;
698         dma_addr_t              p_addr;
699         unsigned long           status;
700         unsigned long           i;
701
702         data = pci_alloc_consistent(adapter->pcidev,
703                                         sizeof(struct sw_cfg_data), &p_addr);
704         if(!data) {
705                 /*
706                  * We cant get even this much memory. Raise a hell
707                  * Get out of here
708                  */
709                 printk(KERN_ERR"%s : Could not allocate memory for reading \
710                                  EEPROM\n", __FUNCTION__);
711                 return -ENOMEM;
712         }
713
714         WRITE_REG(adapter->UcodeRegs[0].ConfigStat, SXG_CFG_TIMEOUT, TRUE);
715
716         WRITE_REG64(adapter, adapter->UcodeRegs[0].Config, p_addr, 0);
717         for(i=0; i<1000; i++) {
718                 READ_REG(adapter->UcodeRegs[0].ConfigStat, status);
719                 if (status != SXG_CFG_TIMEOUT)
720                         break;
721                 mdelay(1);                      /* Do we really need this */
722         }
723
724         switch(status) {
725         /* Config read from EEPROM succeeded */
726         case SXG_CFG_LOAD_EEPROM:
727         /* Config read from Flash succeeded */
728         case SXG_CFG_LOAD_FLASH:
729         /* Copy the MAC address to adapter structure */
730                 /* TODO: We are not doing the remaining part : FRU,
731                  * etc
732                  */
733                 memcpy(adapter->macaddr, data->MacAddr[0].MacAddr,
734                               sizeof(struct sxg_config_mac));
735                 break;
736         case SXG_CFG_TIMEOUT:
737         case SXG_CFG_LOAD_INVALID:
738         case SXG_CFG_LOAD_ERROR:
739         default:        /* Fix default handler later */
740                 printk(KERN_WARNING"%s  : We could not read the config \
741                         word. Status = %ld\n", __FUNCTION__, status);
742                 break;
743         }
744         pci_free_consistent(adapter->pcidev, sizeof(struct sw_cfg_data), data,
745                                 p_addr);
746         if (adapter->netdev) {
747                 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
748                 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
749         }
750         sxg_dbg_macaddrs(adapter);
751
752         return status;
753 }
754
755 static int sxg_entry_probe(struct pci_dev *pcidev,
756                            const struct pci_device_id *pci_tbl_entry)
757 {
758         static int did_version = 0;
759         int err;
760         struct net_device *netdev;
761         struct adapter_t *adapter;
762         void __iomem *memmapped_ioaddr;
763         u32 status = 0;
764         ulong mmio_start = 0;
765         ulong mmio_len = 0;
766
767         DBG_ERROR("sxg: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n",
768                   __func__, jiffies, smp_processor_id());
769
770         /* Initialize trace buffer */
771 #ifdef ATKDBG
772         SxgTraceBuffer = &LSxgTraceBuffer;
773         SXG_TRACE_INIT(SxgTraceBuffer, TRACE_NOISY);
774 #endif
775
776         sxg_global.dynamic_intagg = dynamic_intagg;
777
778         err = pci_enable_device(pcidev);
779
780         DBG_ERROR("Call pci_enable_device(%p)  status[%x]\n", pcidev, err);
781         if (err) {
782                 return err;
783         }
784
785         if (sxg_debug > 0 && did_version++ == 0) {
786                 printk(KERN_INFO "%s\n", sxg_banner);
787                 printk(KERN_INFO "%s\n", SXG_DRV_VERSION);
788         }
789
790         if (!(err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK))) {
791                 DBG_ERROR("pci_set_dma_mask(DMA_64BIT_MASK) successful\n");
792         } else {
793                 if ((err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK))) {
794                         DBG_ERROR
795                             ("No usable DMA configuration, aborting  err[%x]\n",
796                              err);
797                         return err;
798                 }
799                 DBG_ERROR("pci_set_dma_mask(DMA_32BIT_MASK) successful\n");
800         }
801
802         DBG_ERROR("Call pci_request_regions\n");
803
804         err = pci_request_regions(pcidev, sxg_driver_name);
805         if (err) {
806                 DBG_ERROR("pci_request_regions FAILED err[%x]\n", err);
807                 return err;
808         }
809
810         DBG_ERROR("call pci_set_master\n");
811         pci_set_master(pcidev);
812
813         DBG_ERROR("call alloc_etherdev\n");
814         netdev = alloc_etherdev(sizeof(struct adapter_t));
815         if (!netdev) {
816                 err = -ENOMEM;
817                 goto err_out_exit_sxg_probe;
818         }
819         DBG_ERROR("alloc_etherdev for slic netdev[%p]\n", netdev);
820
821         SET_NETDEV_DEV(netdev, &pcidev->dev);
822
823         pci_set_drvdata(pcidev, netdev);
824         adapter = netdev_priv(netdev);
825         adapter->netdev = netdev;
826         adapter->pcidev = pcidev;
827
828         mmio_start = pci_resource_start(pcidev, 0);
829         mmio_len = pci_resource_len(pcidev, 0);
830
831         DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
832                   mmio_start, mmio_len);
833
834         memmapped_ioaddr = ioremap(mmio_start, mmio_len);
835         DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
836                   memmapped_ioaddr);
837         if (!memmapped_ioaddr) {
838                 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
839                           __func__, mmio_len, mmio_start);
840                 goto err_out_free_mmio_region_0;
841         }
842
843         DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, start[%lx] \
844               len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start,
845                                               mmio_len, pcidev->irq);
846
847         adapter->HwRegs = (void *)memmapped_ioaddr;
848         adapter->base_addr = memmapped_ioaddr;
849
850         mmio_start = pci_resource_start(pcidev, 2);
851         mmio_len = pci_resource_len(pcidev, 2);
852
853         DBG_ERROR("sxg: call ioremap(mmio_start[%lx], mmio_len[%lx])\n",
854                   mmio_start, mmio_len);
855
856         memmapped_ioaddr = ioremap(mmio_start, mmio_len);
857         DBG_ERROR("sxg: %s MEMMAPPED_IOADDR [%p]\n", __func__,
858                   memmapped_ioaddr);
859         if (!memmapped_ioaddr) {
860                 DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n",
861                           __func__, mmio_len, mmio_start);
862                 goto err_out_free_mmio_region_2;
863         }
864
865         DBG_ERROR("sxg: %s found Alacritech SXG PCI, MMIO at %p, "
866                   "start[%lx] len[%lx], IRQ %d.\n", __func__,
867                   memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq);
868
869         adapter->UcodeRegs = (void *)memmapped_ioaddr;
870
871         adapter->State = SXG_STATE_INITIALIZING;
872         /*
873          * Maintain a list of all adapters anchored by
874          * the global SxgDriver structure.
875          */
876         adapter->Next = SxgDriver.Adapters;
877         SxgDriver.Adapters = adapter;
878         adapter->AdapterID = ++SxgDriver.AdapterID;
879
880         /* Initialize CRC table used to determine multicast hash */
881         sxg_mcast_init_crc32();
882
883         adapter->JumboEnabled = FALSE;
884         adapter->RssEnabled = FALSE;
885         if (adapter->JumboEnabled) {
886                 adapter->FrameSize = JUMBOMAXFRAME;
887                 adapter->ReceiveBufferSize = SXG_RCV_JUMBO_BUFFER_SIZE;
888         } else {
889                 adapter->FrameSize = ETHERMAXFRAME;
890                 adapter->ReceiveBufferSize = SXG_RCV_DATA_BUFFER_SIZE;
891         }
892
893         /*
894          *    status = SXG_READ_EEPROM(adapter);
895          *    if (!status) {
896          *        goto sxg_init_bad;
897          *    }
898          */
899
900         DBG_ERROR("sxg: %s ENTER sxg_config_pci\n", __func__);
901         sxg_config_pci(pcidev);
902         DBG_ERROR("sxg: %s EXIT sxg_config_pci\n", __func__);
903
904         DBG_ERROR("sxg: %s ENTER sxg_init_driver\n", __func__);
905         sxg_init_driver();
906         DBG_ERROR("sxg: %s EXIT sxg_init_driver\n", __func__);
907
908         adapter->vendid = pci_tbl_entry->vendor;
909         adapter->devid = pci_tbl_entry->device;
910         adapter->subsysid = pci_tbl_entry->subdevice;
911         adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F);
912         adapter->functionnumber = (pcidev->devfn & 0x7);
913         adapter->memorylength = pci_resource_len(pcidev, 0);
914         adapter->irq = pcidev->irq;
915         adapter->next_netdevice = head_netdevice;
916         head_netdevice = netdev;
917         adapter->port = 0;      /*adapter->functionnumber; */
918
919         /* Allocate memory and other resources */
920         DBG_ERROR("sxg: %s ENTER sxg_allocate_resources\n", __func__);
921         status = sxg_allocate_resources(adapter);
922         DBG_ERROR("sxg: %s EXIT sxg_allocate_resources status %x\n",
923                   __func__, status);
924         if (status != STATUS_SUCCESS) {
925                 goto err_out_unmap;
926         }
927
928         DBG_ERROR("sxg: %s ENTER sxg_download_microcode\n", __func__);
929         if (sxg_download_microcode(adapter, SXG_UCODE_SAHARA)) {
930                 DBG_ERROR("sxg: %s ENTER sxg_adapter_set_hwaddr\n",
931                           __func__);
932                 sxg_read_config(adapter);
933                 status = sxg_adapter_set_hwaddr(adapter);
934         } else {
935                 adapter->state = ADAPT_FAIL;
936                 adapter->linkstate = LINK_DOWN;
937                 DBG_ERROR("sxg_download_microcode FAILED status[%x]\n", status);
938         }
939
940         netdev->base_addr = (unsigned long)adapter->base_addr;
941         netdev->irq = adapter->irq;
942         netdev->open = sxg_entry_open;
943         netdev->stop = sxg_entry_halt;
944         netdev->hard_start_xmit = sxg_send_packets;
945         netdev->do_ioctl = sxg_ioctl;
946 #if XXXTODO
947         netdev->set_mac_address = sxg_mac_set_address;
948 #endif
949         netdev->get_stats = sxg_get_stats;
950         netdev->set_multicast_list = sxg_mcast_set_list;
951         SET_ETHTOOL_OPS(netdev, &sxg_nic_ethtool_ops);
952
953         strcpy(netdev->name, "eth%d");
954         /*  strcpy(netdev->name, pci_name(pcidev)); */
955         if ((err = register_netdev(netdev))) {
956                 DBG_ERROR("Cannot register net device, aborting. %s\n",
957                           netdev->name);
958                 goto err_out_unmap;
959         }
960
961         netif_napi_add(netdev, &adapter->napi,
962                 sxg_poll, SXG_NETDEV_WEIGHT);
963         DBG_ERROR
964             ("sxg: %s addr 0x%lx, irq %d, MAC addr \
965                 %02X:%02X:%02X:%02X:%02X:%02X\n",
966              netdev->name, netdev->base_addr, pcidev->irq, netdev->dev_addr[0],
967              netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3],
968              netdev->dev_addr[4], netdev->dev_addr[5]);
969
970         /* sxg_init_bad: */
971         ASSERT(status == FALSE);
972         /* sxg_free_adapter(adapter); */
973
974         DBG_ERROR("sxg: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__,
975                   status, jiffies, smp_processor_id());
976         return status;
977
978       err_out_unmap:
979         sxg_free_resources(adapter);
980
981       err_out_free_mmio_region_2:
982
983         mmio_start = pci_resource_start(pcidev, 2);
984         mmio_len = pci_resource_len(pcidev, 2);
985         release_mem_region(mmio_start, mmio_len);
986
987       err_out_free_mmio_region_0:
988
989         mmio_start = pci_resource_start(pcidev, 0);
990         mmio_len = pci_resource_len(pcidev, 0);
991
992         release_mem_region(mmio_start, mmio_len);
993
994       err_out_exit_sxg_probe:
995
996         DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies,
997                   smp_processor_id());
998
999         pci_disable_device(pcidev);
1000         DBG_ERROR("sxg: %s deallocate device\n", __FUNCTION__);
1001         kfree(netdev);
1002         printk("Exit %s, Sxg driver loading failed..\n", __FUNCTION__);
1003
1004         return -ENODEV;
1005 }
1006
1007 /*
1008  * LINE BASE Interrupt routines..
1009  *
1010  * sxg_disable_interrupt
1011  *
1012  * DisableInterrupt Handler
1013  *
1014  * Arguments:
1015  *
1016  *   adapter:   Our adapter structure
1017  *
1018  * Return Value:
1019  *      None.
1020  */
1021 static void sxg_disable_interrupt(struct adapter_t *adapter)
1022 {
1023         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DisIntr",
1024                   adapter, adapter->InterruptsEnabled, 0, 0);
1025         /* For now, RSS is disabled with line based interrupts */
1026         ASSERT(adapter->RssEnabled == FALSE);
1027         ASSERT(adapter->MsiEnabled == FALSE);
1028         /* Turn off interrupts by writing to the icr register. */
1029         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_DISABLE), TRUE);
1030
1031         adapter->InterruptsEnabled = 0;
1032
1033         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDisIntr",
1034                   adapter, adapter->InterruptsEnabled, 0, 0);
1035 }
1036
1037 /*
1038  * sxg_enable_interrupt
1039  *
1040  * EnableInterrupt Handler
1041  *
1042  * Arguments:
1043  *
1044  *   adapter:   Our adapter structure
1045  *
1046  * Return Value:
1047  *      None.
1048  */
1049 static void sxg_enable_interrupt(struct adapter_t *adapter)
1050 {
1051         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "EnIntr",
1052                   adapter, adapter->InterruptsEnabled, 0, 0);
1053         /* For now, RSS is disabled with line based interrupts */
1054         ASSERT(adapter->RssEnabled == FALSE);
1055         ASSERT(adapter->MsiEnabled == FALSE);
1056         /* Turn on interrupts by writing to the icr register. */
1057         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_ENABLE), TRUE);
1058
1059         adapter->InterruptsEnabled = 1;
1060
1061         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XEnIntr",
1062                   adapter, 0, 0, 0);
1063 }
1064
1065 /*
1066  * sxg_isr - Process an line-based interrupt
1067  *
1068  * Arguments:
1069  *              Context         - Our adapter structure
1070  *              QueueDefault    - Output parameter to queue to default CPU
1071  *              TargetCpus      - Output bitmap to schedule DPC's
1072  *
1073  * Return Value: TRUE if our interrupt
1074  */
1075 static irqreturn_t sxg_isr(int irq, void *dev_id)
1076 {
1077         struct net_device *dev = (struct net_device *) dev_id;
1078         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1079
1080         if(adapter->state != ADAPT_UP)
1081                 return IRQ_NONE;
1082         adapter->Stats.NumInts++;
1083         if (adapter->Isr[0] == 0) {
1084                 /*
1085                  * The SLIC driver used to experience a number of spurious
1086                  * interrupts due to the delay associated with the masking of
1087                  * the interrupt (we'd bounce back in here).  If we see that
1088                  * again with Sahara,add a READ_REG of the Icr register after
1089                  * the WRITE_REG below.
1090                  */
1091                 adapter->Stats.FalseInts++;
1092                 return IRQ_NONE;
1093         }
1094         /*
1095          * Move the Isr contents and clear the value in
1096          * shared memory, and mask interrupts
1097          */
1098         /* ASSERT(adapter->IsrDpcsPending == 0); */
1099 #if XXXTODO                     /* RSS Stuff */
1100         /*
1101          * If RSS is enabled and the ISR specifies SXG_ISR_EVENT, then
1102          * schedule DPC's based on event queues.
1103          */
1104         if (adapter->RssEnabled && (adapter->IsrCopy[0] & SXG_ISR_EVENT)) {
1105                 for (i = 0;
1106                      i < adapter->RssSystemInfo->ProcessorInfo.RssCpuCount;
1107                      i++) {
1108                         struct sxg_event_ring *EventRing =
1109                                                 &adapter->EventRings[i];
1110                         struct sxg_event *Event =
1111                             &EventRing->Ring[adapter->NextEvent[i]];
1112                         unsigned char Cpu =
1113                             adapter->RssSystemInfo->RssIdToCpu[i];
1114                         if (Event->Status & EVENT_STATUS_VALID) {
1115                                 adapter->IsrDpcsPending++;
1116                                 CpuMask |= (1 << Cpu);
1117                         }
1118                 }
1119         }
1120         /*
1121          * Now, either schedule the CPUs specified by the CpuMask,
1122          * or queue default
1123          */
1124         if (CpuMask) {
1125                 *QueueDefault = FALSE;
1126         } else {
1127                 adapter->IsrDpcsPending = 1;
1128                 *QueueDefault = TRUE;
1129         }
1130         *TargetCpus = CpuMask;
1131 #endif
1132         sxg_interrupt(adapter);
1133
1134         return IRQ_HANDLED;
1135 }
1136
1137 static void sxg_interrupt(struct adapter_t *adapter)
1138 {
1139         WRITE_REG(adapter->UcodeRegs[0].Icr, SXG_ICR(0, SXG_ICR_MASK), TRUE);
1140
1141         if (netif_rx_schedule_prep(&adapter->napi)) {
1142                 __netif_rx_schedule(&adapter->napi);
1143         }
1144 }
1145
1146 static void sxg_handle_interrupt(struct adapter_t *adapter, int *work_done,
1147                                          int budget)
1148 {
1149         /* unsigned char           RssId   = 0; */
1150         u32 NewIsr;
1151         int sxg_napi_continue = 1;
1152         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "HndlIntr",
1153                   adapter, adapter->IsrCopy[0], 0, 0);
1154         /* For now, RSS is disabled with line based interrupts */
1155         ASSERT(adapter->RssEnabled == FALSE);
1156         ASSERT(adapter->MsiEnabled == FALSE);
1157
1158         adapter->IsrCopy[0] = adapter->Isr[0];
1159         adapter->Isr[0] = 0;
1160
1161         /* Always process the event queue. */
1162         while (sxg_napi_continue)
1163         {
1164                 sxg_process_event_queue(adapter,
1165                                 (adapter->RssEnabled ? /*RssId */ 0 : 0),
1166                                  &sxg_napi_continue, work_done, budget);
1167         }
1168
1169 #if XXXTODO                     /* RSS stuff */
1170         if (--adapter->IsrDpcsPending) {
1171                 /* We're done. */
1172                 ASSERT(adapter->RssEnabled);
1173                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DPCsPend",
1174                           adapter, 0, 0, 0);
1175                 return;
1176         }
1177 #endif
1178         /* Last (or only) DPC processes the ISR and clears the interrupt. */
1179         NewIsr = sxg_process_isr(adapter, 0);
1180         /* Reenable interrupts */
1181         adapter->IsrCopy[0] = 0;
1182         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ClearIsr",
1183                   adapter, NewIsr, 0, 0);
1184
1185         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XHndlInt",
1186                   adapter, 0, 0, 0);
1187 }
1188 static int sxg_poll(struct napi_struct *napi, int budget)
1189 {
1190         struct adapter_t *adapter = container_of(napi, struct adapter_t, napi);
1191         int work_done = 0;
1192
1193         sxg_handle_interrupt(adapter, &work_done, budget);
1194
1195         if (work_done < budget) {
1196                 netif_rx_complete(napi);
1197                 WRITE_REG(adapter->UcodeRegs[0].Isr, 0, TRUE);
1198         }
1199
1200         return work_done;
1201 }
1202
1203 /*
1204  * sxg_process_isr - Process an interrupt.  Called from the line-based and
1205  *                      message based interrupt DPC routines
1206  *
1207  * Arguments:
1208  *              adapter                 - Our adapter structure
1209  *              Queue                   - The ISR that needs processing
1210  *
1211  * Return Value:
1212  *      None
1213  */
1214 static int sxg_process_isr(struct adapter_t *adapter, u32 MessageId)
1215 {
1216         u32 Isr = adapter->IsrCopy[MessageId];
1217         u32 NewIsr = 0;
1218
1219         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "ProcIsr",
1220                   adapter, Isr, 0, 0);
1221
1222         /* Error */
1223         if (Isr & SXG_ISR_ERR) {
1224                 if (Isr & SXG_ISR_PDQF) {
1225                         adapter->Stats.PdqFull++;
1226                         DBG_ERROR("%s: SXG_ISR_ERR  PDQF!!\n", __func__);
1227                 }
1228                 /* No host buffer */
1229                 if (Isr & SXG_ISR_RMISS) {
1230                         /*
1231                          * There is a bunch of code in the SLIC driver which
1232                          * attempts to process more receive events per DPC
1233                          * if we start to fall behind.  We'll probablyd
1234                          * need to do something similar here, but hold
1235                          * off for now.  I don't want to make the code more
1236                          * complicated than strictly needed.
1237                          */
1238                         adapter->stats.rx_missed_errors++;
1239                         if (adapter->stats.rx_missed_errors< 5) {
1240                                 DBG_ERROR("%s: SXG_ISR_ERR  RMISS!!\n",
1241                                           __func__);
1242                         }
1243                 }
1244                 /* Card crash */
1245                 if (Isr & SXG_ISR_DEAD) {
1246                         /*
1247                          * Set aside the crash info and set the adapter state
1248                          * to RESET
1249                          */
1250                         adapter->CrashCpu = (unsigned char)
1251                                 ((Isr & SXG_ISR_CPU) >> SXG_ISR_CPU_SHIFT);
1252                         adapter->CrashLocation = (ushort) (Isr & SXG_ISR_CRASH);
1253                         adapter->Dead = TRUE;
1254                         DBG_ERROR("%s: ISR_DEAD %x, CPU: %d\n", __func__,
1255                                   adapter->CrashLocation, adapter->CrashCpu);
1256                 }
1257                 /* Event ring full */
1258                 if (Isr & SXG_ISR_ERFULL) {
1259                         /*
1260                          * Same issue as RMISS, really.  This means the
1261                          * host is falling behind the card.  Need to increase
1262                          * event ring size, process more events per interrupt,
1263                          * and/or reduce/remove interrupt aggregation.
1264                          */
1265                         adapter->Stats.EventRingFull++;
1266                         DBG_ERROR("%s: SXG_ISR_ERR  EVENT RING FULL!!\n",
1267                                   __func__);
1268                 }
1269                 /* Transmit drop - no DRAM buffers or XMT error */
1270                 if (Isr & SXG_ISR_XDROP) {
1271                         DBG_ERROR("%s: SXG_ISR_ERR  XDROP!!\n", __func__);
1272                 }
1273         }
1274         /* Slowpath send completions */
1275         if (Isr & SXG_ISR_SPSEND) {
1276                 sxg_complete_slow_send(adapter, 1);
1277         }
1278         /* Dump */
1279         if (Isr & SXG_ISR_UPC) {
1280                 /* Maybe change when debug is added.. */
1281 //              ASSERT(adapter->DumpCmdRunning);
1282                 adapter->DumpCmdRunning = FALSE;
1283         }
1284         /* Link event */
1285         if (Isr & SXG_ISR_LINK) {
1286                 sxg_link_event(adapter);
1287         }
1288         /* Debug - breakpoint hit */
1289         if (Isr & SXG_ISR_BREAK) {
1290                 /*
1291                  * At the moment AGDB isn't written to support interactive
1292                  * debug sessions.  When it is, this interrupt will be used to
1293                  * signal AGDB that it has hit a breakpoint.  For now, ASSERT.
1294                  */
1295                 ASSERT(0);
1296         }
1297         /* Heartbeat response */
1298         if (Isr & SXG_ISR_PING) {
1299                 adapter->PingOutstanding = FALSE;
1300         }
1301         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XProcIsr",
1302                   adapter, Isr, NewIsr, 0);
1303
1304         return (NewIsr);
1305 }
1306
1307 /*
1308  * sxg_process_event_queue - Process our event queue
1309  *
1310  * Arguments:
1311  *              - adapter       - Adapter structure
1312  *              - RssId         - The event queue requiring processing
1313  *
1314  * Return Value:
1315  *      None.
1316  */
1317 static u32 sxg_process_event_queue(struct adapter_t *adapter, u32 RssId,
1318                          int *sxg_napi_continue, int *work_done, int budget)
1319 {
1320         struct sxg_event_ring *EventRing = &adapter->EventRings[RssId];
1321         struct sxg_event *Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1322         u32 EventsProcessed = 0, Batches = 0;
1323         struct sk_buff *skb;
1324 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1325         struct sk_buff *prev_skb = NULL;
1326         struct sk_buff *IndicationList[SXG_RCV_ARRAYSIZE];
1327         u32 Index;
1328         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1329 #endif
1330         u32 ReturnStatus = 0;
1331
1332         ASSERT((adapter->State == SXG_STATE_RUNNING) ||
1333                (adapter->State == SXG_STATE_PAUSING) ||
1334                (adapter->State == SXG_STATE_PAUSED) ||
1335                (adapter->State == SXG_STATE_HALTING));
1336         /*
1337          * We may still have unprocessed events on the queue if
1338          * the card crashed.  Don't process them.
1339          */
1340         if (adapter->Dead) {
1341                 return (0);
1342         }
1343         /*
1344          *  In theory there should only be a single processor that
1345          * accesses this queue, and only at interrupt-DPC time.  So/
1346          * we shouldn't need a lock for any of this.
1347          */
1348         while (Event->Status & EVENT_STATUS_VALID) {
1349                 (*sxg_napi_continue) = 1;
1350                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "Event",
1351                           Event, Event->Code, Event->Status,
1352                           adapter->NextEvent);
1353                 switch (Event->Code) {
1354                 case EVENT_CODE_BUFFERS:
1355                         /* struct sxg_ring_info Head & Tail == unsigned char */
1356                         ASSERT(!(Event->CommandIndex & 0xFF00));
1357                         sxg_complete_descriptor_blocks(adapter,
1358                                                        Event->CommandIndex);
1359                         break;
1360                 case EVENT_CODE_SLOWRCV:
1361                         (*work_done)++;
1362                         --adapter->RcvBuffersOnCard;
1363                         if ((skb = sxg_slow_receive(adapter, Event))) {
1364                                 u32 rx_bytes;
1365 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1366                                 /* Add it to our indication list */
1367                                 SXG_ADD_RCV_PACKET(adapter, skb, prev_skb,
1368                                                    IndicationList, num_skbs);
1369                                 /*
1370                                  * Linux, we just pass up each skb to the
1371                                  * protocol above at this point, there is no
1372                                  * capability of an indication list.
1373                                  */
1374 #else
1375                                 /* CHECK skb_pull(skb, INIC_RCVBUF_HEADSIZE); */
1376                                 /* (rcvbuf->length & IRHDDR_FLEN_MSK); */
1377                                 rx_bytes = Event->Length;
1378                                 adapter->stats.rx_packets++;
1379                                 adapter->stats.rx_bytes += rx_bytes;
1380 #if SXG_OFFLOAD_IP_CHECKSUM
1381                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1382 #endif
1383                                 skb->dev = adapter->netdev;
1384                                 netif_receive_skb(skb);
1385 #endif
1386                         }
1387                         break;
1388                 default:
1389                         DBG_ERROR("%s: ERROR  Invalid EventCode %d\n",
1390                                   __func__, Event->Code);
1391                 /* ASSERT(0); */
1392                 }
1393                 /*
1394                  * See if we need to restock card receive buffers.
1395                  * There are two things to note here:
1396                  *  First - This test is not SMP safe.  The
1397                  *    adapter->BuffersOnCard field is protected via atomic
1398                  *    interlocked calls, but we do not protect it with respect
1399                  *    to these tests.  The only way to do that is with a lock,
1400                  *    and I don't want to grab a lock every time we adjust the
1401                  *    BuffersOnCard count.  Instead, we allow the buffer
1402                  *    replenishment to be off once in a while. The worst that
1403                  *    can happen is the card is given on more-or-less descriptor
1404                  *    block than the arbitrary value we've chosen. No big deal
1405                  *    In short DO NOT ADD A LOCK HERE, OR WHERE RcvBuffersOnCard
1406                  *    is adjusted.
1407                  *  Second - We expect this test to rarely
1408                  *    evaluate to true.  We attempt to refill descriptor blocks
1409                  *    as they are returned to us (sxg_complete_descriptor_blocks)
1410                  *    so The only time this should evaluate to true is when
1411                  *    sxg_complete_descriptor_blocks failed to allocate
1412                  *    receive buffers.
1413                  */
1414                 if (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
1415                         sxg_stock_rcv_buffers(adapter);
1416                 }
1417                 /*
1418                  * It's more efficient to just set this to zero.
1419                  * But clearing the top bit saves potential debug info...
1420                  */
1421                 Event->Status &= ~EVENT_STATUS_VALID;
1422                 /* Advance to the next event */
1423                 SXG_ADVANCE_INDEX(adapter->NextEvent[RssId], EVENT_RING_SIZE);
1424                 Event = &EventRing->Ring[adapter->NextEvent[RssId]];
1425                 EventsProcessed++;
1426                 if (EventsProcessed == EVENT_RING_BATCH) {
1427                         /* Release a batch of events back to the card */
1428                         WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1429                                   EVENT_RING_BATCH, FALSE);
1430                         EventsProcessed = 0;
1431                         /*
1432                          * If we've processed our batch limit, break out of the
1433                          * loop and return SXG_ISR_EVENT to arrange for us to
1434                          * be called again
1435                          */
1436                         if (Batches++ == EVENT_BATCH_LIMIT) {
1437                                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1438                                           TRACE_NOISY, "EvtLimit", Batches,
1439                                           adapter->NextEvent, 0, 0);
1440                                 ReturnStatus = SXG_ISR_EVENT;
1441                                 break;
1442                         }
1443                 }
1444                 if (*work_done >= budget) {
1445                         WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1446                                   EventsProcessed, FALSE);
1447                         EventsProcessed = 0;
1448                         (*sxg_napi_continue) = 0;
1449                         break;
1450                 }
1451         }
1452         if (!(Event->Status & EVENT_STATUS_VALID))
1453                 (*sxg_napi_continue) = 0;
1454
1455 #ifdef LINUX_HANDLES_RCV_INDICATION_LISTS
1456         /* Indicate any received dumb-nic frames */
1457         SXG_INDICATE_PACKETS(adapter, IndicationList, num_skbs);
1458 #endif
1459         /* Release events back to the card. */
1460         if (EventsProcessed) {
1461                 WRITE_REG(adapter->UcodeRegs[RssId].EventRelease,
1462                           EventsProcessed, FALSE);
1463         }
1464         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XPrcEvnt",
1465                   Batches, EventsProcessed, adapter->NextEvent, num_skbs);
1466
1467         return (ReturnStatus);
1468 }
1469
1470 /*
1471  * sxg_complete_slow_send - Complete slowpath or dumb-nic sends
1472  *
1473  * Arguments -
1474  *      adapter         - A pointer to our adapter structure
1475  *      irq_context     - An integer to denote if we are in interrupt context
1476  * Return
1477  *      None
1478  */
1479 static void sxg_complete_slow_send(struct adapter_t *adapter, int irq_context)
1480 {
1481         struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
1482         struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
1483         u32 *ContextType;
1484         struct sxg_cmd *XmtCmd;
1485         unsigned long flags = 0;
1486         unsigned long sgl_flags = 0;
1487         unsigned int processed_count = 0;
1488
1489         /*
1490          * NOTE - This lock is dropped and regrabbed in this loop.
1491          * This means two different processors can both be running/
1492          * through this loop. Be *very* careful.
1493          */
1494         if(irq_context) {
1495                 if(!spin_trylock(&adapter->XmtZeroLock))
1496                         goto lock_busy;
1497         }
1498         else
1499                 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1500
1501         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnds",
1502                   adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1503
1504         while ((XmtRingInfo->Tail != *adapter->XmtRingZeroIndex)
1505                 && processed_count++ < SXG_COMPLETE_SLOW_SEND_LIMIT)  {
1506                 /*
1507                  * Locate the current Cmd (ring descriptor entry), and
1508                  * associated SGL, and advance the tail
1509                  */
1510                 SXG_RETURN_CMD(XmtRing, XmtRingInfo, XmtCmd, ContextType);
1511                 ASSERT(ContextType);
1512                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1513                           XmtRingInfo->Head, XmtRingInfo->Tail, XmtCmd, 0);
1514                 /* Clear the SGL field. */
1515                 XmtCmd->Sgl = 0;
1516
1517                 switch (*ContextType) {
1518                 case SXG_SGL_DUMB:
1519                         {
1520                                 struct sk_buff *skb;
1521                                 struct sxg_scatter_gather *SxgSgl =
1522                                         (struct sxg_scatter_gather *)ContextType;
1523                                 dma64_addr_t FirstSgeAddress;
1524                                 u32 FirstSgeLength;
1525
1526                                 /* Dumb-nic send.  Command context is the dumb-nic SGL */
1527                                 skb = (struct sk_buff *)ContextType;
1528                                 skb = SxgSgl->DumbPacket;
1529                                 FirstSgeAddress = XmtCmd->Buffer.FirstSgeAddress;
1530                                 FirstSgeLength = XmtCmd->Buffer.FirstSgeLength;
1531                                 /* Complete the send */
1532                                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer,
1533                                           TRACE_IMPORTANT, "DmSndCmp", skb, 0,
1534                                           0, 0);
1535                                 ASSERT(adapter->Stats.XmtQLen);
1536                                 /*
1537                                  * Now drop the lock and complete the send
1538                                  * back to Microsoft.  We need to drop the lock
1539                                  * because Microsoft can come back with a
1540                                  * chimney send, which results in a double trip
1541                                  * in SxgTcpOuput
1542                                  */
1543                                 if(irq_context)
1544                                         spin_unlock(&adapter->XmtZeroLock);
1545                                 else
1546                                         spin_unlock_irqrestore(
1547                                                 &adapter->XmtZeroLock, flags);
1548
1549                                 SxgSgl->DumbPacket = NULL;
1550                                 SXG_COMPLETE_DUMB_SEND(adapter, skb,
1551                                                         FirstSgeAddress,
1552                                                         FirstSgeLength);
1553                                 SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL,
1554                                                 irq_context);
1555                                 /* and reacquire.. */
1556                                 if(irq_context) {
1557                                         if(!spin_trylock(&adapter->XmtZeroLock))
1558                                                 goto lock_busy;
1559                                 }
1560                                 else
1561                                         spin_lock_irqsave(&adapter->XmtZeroLock, flags);
1562                         }
1563                         break;
1564                 default:
1565                         ASSERT(0);
1566                 }
1567         }
1568         if(irq_context)
1569                 spin_unlock(&adapter->XmtZeroLock);
1570         else
1571                 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
1572 lock_busy:
1573         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpSnd",
1574                   adapter, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
1575 }
1576
1577 /*
1578  * sxg_slow_receive
1579  *
1580  * Arguments -
1581  *      adapter         - A pointer to our adapter structure
1582  *      Event           - Receive event
1583  *
1584  * Return - skb
1585  */
1586 static struct sk_buff *sxg_slow_receive(struct adapter_t *adapter,
1587                                                 struct sxg_event *Event)
1588 {
1589         u32 BufferSize = adapter->ReceiveBufferSize;
1590         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
1591         struct sk_buff *Packet;
1592         static int read_counter = 0;
1593
1594         RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *) Event->HostHandle;
1595         if(read_counter++ & 0x100)
1596         {
1597                 sxg_collect_statistics(adapter);
1598                 read_counter = 0;
1599         }
1600         ASSERT(RcvDataBufferHdr);
1601         ASSERT(RcvDataBufferHdr->State == SXG_BUFFER_ONCARD);
1602         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "SlowRcv", Event,
1603                   RcvDataBufferHdr, RcvDataBufferHdr->State,
1604                   /*RcvDataBufferHdr->VirtualAddress*/ 0);
1605         /* Drop rcv frames in non-running state */
1606         switch (adapter->State) {
1607         case SXG_STATE_RUNNING:
1608                 break;
1609         case SXG_STATE_PAUSING:
1610         case SXG_STATE_PAUSED:
1611         case SXG_STATE_HALTING:
1612                 goto drop;
1613         default:
1614                 ASSERT(0);
1615                 goto drop;
1616         }
1617
1618         /*
1619          * memcpy(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1620          *              RcvDataBufferHdr->VirtualAddress, Event->Length);
1621          */
1622
1623         /* Change buffer state to UPSTREAM */
1624         RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
1625         if (Event->Status & EVENT_STATUS_RCVERR) {
1626                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvError",
1627                           Event, Event->Status, Event->HostHandle, 0);
1628                 /* XXXTODO - Remove this print later */
1629                 DBG_ERROR("SXG: Receive error %x\n", *(u32 *)
1630                           SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr));
1631                 sxg_process_rcv_error(adapter, *(u32 *)
1632                                       SXG_RECEIVE_DATA_LOCATION
1633                                       (RcvDataBufferHdr));
1634                 goto drop;
1635         }
1636 #if XXXTODO                     /* VLAN stuff */
1637         /* If there's a VLAN tag, extract it and validate it */
1638         if (((struct ether_header *)
1639                 (SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)))->EtherType
1640                                                         == ETHERTYPE_VLAN) {
1641                 if (SxgExtractVlanHeader(adapter, RcvDataBufferHdr, Event) !=
1642                     STATUS_SUCCESS) {
1643                         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY,
1644                                   "BadVlan", Event,
1645                                   SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1646                                   Event->Length, 0);
1647                         goto drop;
1648                 }
1649         }
1650 #endif
1651         /* Dumb-nic frame.  See if it passes our mac filter and update stats */
1652
1653         if (!sxg_mac_filter(adapter,
1654             (struct ether_header *)(SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr)),
1655             Event->Length)) {
1656                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "RcvFiltr",
1657                             Event, SXG_RECEIVE_DATA_LOCATION(RcvDataBufferHdr),
1658                             Event->Length, 0);
1659           goto drop;
1660         }
1661
1662         Packet = RcvDataBufferHdr->SxgDumbRcvPacket;
1663         SXG_ADJUST_RCV_PACKET(Packet, RcvDataBufferHdr, Event);
1664         Packet->protocol = eth_type_trans(Packet, adapter->netdev);
1665
1666         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumbRcv",
1667                   RcvDataBufferHdr, Packet, Event->Length, 0);
1668         /* Lastly adjust the receive packet length. */
1669         RcvDataBufferHdr->SxgDumbRcvPacket = NULL;
1670         RcvDataBufferHdr->PhysicalAddress = (dma_addr_t)NULL;
1671         SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
1672         if (RcvDataBufferHdr->skb)
1673         {
1674                 spin_lock(&adapter->RcvQLock);
1675                 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1676                 // adapter->RcvBuffersOnCard ++;
1677                 spin_unlock(&adapter->RcvQLock);
1678         }
1679         return (Packet);
1680
1681       drop:
1682         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DropRcv",
1683                   RcvDataBufferHdr, Event->Length, 0, 0);
1684         adapter->stats.rx_dropped++;
1685 //      adapter->Stats.RcvDiscards++;
1686         spin_lock(&adapter->RcvQLock);
1687         SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
1688         spin_unlock(&adapter->RcvQLock);
1689         return (NULL);
1690 }
1691
1692 /*
1693  * sxg_process_rcv_error - process receive error and update
1694  * stats
1695  *
1696  * Arguments:
1697  *              adapter         - Adapter structure
1698  *              ErrorStatus     - 4-byte receive error status
1699  *
1700  * Return Value         : None
1701  */
1702 static void sxg_process_rcv_error(struct adapter_t *adapter, u32 ErrorStatus)
1703 {
1704         u32 Error;
1705
1706         adapter->stats.rx_errors++;
1707
1708         if (ErrorStatus & SXG_RCV_STATUS_TRANSPORT_ERROR) {
1709                 Error = ErrorStatus & SXG_RCV_STATUS_TRANSPORT_MASK;
1710                 switch (Error) {
1711                 case SXG_RCV_STATUS_TRANSPORT_CSUM:
1712                         adapter->Stats.TransportCsum++;
1713                         break;
1714                 case SXG_RCV_STATUS_TRANSPORT_UFLOW:
1715                         adapter->Stats.TransportUflow++;
1716                         break;
1717                 case SXG_RCV_STATUS_TRANSPORT_HDRLEN:
1718                         adapter->Stats.TransportHdrLen++;
1719                         break;
1720                 }
1721         }
1722         if (ErrorStatus & SXG_RCV_STATUS_NETWORK_ERROR) {
1723                 Error = ErrorStatus & SXG_RCV_STATUS_NETWORK_MASK;
1724                 switch (Error) {
1725                 case SXG_RCV_STATUS_NETWORK_CSUM:
1726                         adapter->Stats.NetworkCsum++;
1727                         break;
1728                 case SXG_RCV_STATUS_NETWORK_UFLOW:
1729                         adapter->Stats.NetworkUflow++;
1730                         break;
1731                 case SXG_RCV_STATUS_NETWORK_HDRLEN:
1732                         adapter->Stats.NetworkHdrLen++;
1733                         break;
1734                 }
1735         }
1736         if (ErrorStatus & SXG_RCV_STATUS_PARITY) {
1737                 adapter->Stats.Parity++;
1738         }
1739         if (ErrorStatus & SXG_RCV_STATUS_LINK_ERROR) {
1740                 Error = ErrorStatus & SXG_RCV_STATUS_LINK_MASK;
1741                 switch (Error) {
1742                 case SXG_RCV_STATUS_LINK_PARITY:
1743                         adapter->Stats.LinkParity++;
1744                         break;
1745                 case SXG_RCV_STATUS_LINK_EARLY:
1746                         adapter->Stats.LinkEarly++;
1747                         break;
1748                 case SXG_RCV_STATUS_LINK_BUFOFLOW:
1749                         adapter->Stats.LinkBufOflow++;
1750                         break;
1751                 case SXG_RCV_STATUS_LINK_CODE:
1752                         adapter->Stats.LinkCode++;
1753                         break;
1754                 case SXG_RCV_STATUS_LINK_DRIBBLE:
1755                         adapter->Stats.LinkDribble++;
1756                         break;
1757                 case SXG_RCV_STATUS_LINK_CRC:
1758                         adapter->Stats.LinkCrc++;
1759                         break;
1760                 case SXG_RCV_STATUS_LINK_OFLOW:
1761                         adapter->Stats.LinkOflow++;
1762                         break;
1763                 case SXG_RCV_STATUS_LINK_UFLOW:
1764                         adapter->Stats.LinkUflow++;
1765                         break;
1766                 }
1767         }
1768 }
1769
1770 /*
1771  * sxg_mac_filter
1772  *
1773  * Arguments:
1774  *              adapter         - Adapter structure
1775  *              pether          - Ethernet header
1776  *              length          - Frame length
1777  *
1778  * Return Value : TRUE if the frame is to be allowed
1779  */
1780 static bool sxg_mac_filter(struct adapter_t *adapter,
1781                 struct ether_header *EtherHdr, ushort length)
1782 {
1783         bool EqualAddr;
1784         struct net_device *dev = adapter->netdev;
1785
1786         if (SXG_MULTICAST_PACKET(EtherHdr)) {
1787                 if (SXG_BROADCAST_PACKET(EtherHdr)) {
1788                         /* broadcast */
1789                         if (adapter->MacFilter & MAC_BCAST) {
1790                                 adapter->Stats.DumbRcvBcastPkts++;
1791                                 adapter->Stats.DumbRcvBcastBytes += length;
1792                                 return (TRUE);
1793                         }
1794                 } else {
1795                         /* multicast */
1796                         if (adapter->MacFilter & MAC_ALLMCAST) {
1797                                 adapter->Stats.DumbRcvMcastPkts++;
1798                                 adapter->Stats.DumbRcvMcastBytes += length;
1799                                 return (TRUE);
1800                         }
1801                         if (adapter->MacFilter & MAC_MCAST) {
1802                                 struct dev_mc_list *mclist = dev->mc_list;
1803                                 while (mclist) {
1804                                         ETHER_EQ_ADDR(mclist->da_addr,
1805                                                       EtherHdr->ether_dhost,
1806                                                       EqualAddr);
1807                                         if (EqualAddr) {
1808                                                 adapter->Stats.
1809                                                     DumbRcvMcastPkts++;
1810                                                 adapter->Stats.
1811                                                     DumbRcvMcastBytes += length;
1812                                                 return (TRUE);
1813                                         }
1814                                         mclist = mclist->next;
1815                                 }
1816                         }
1817                 }
1818         } else if (adapter->MacFilter & MAC_DIRECTED) {
1819                 /*
1820                  * Not broadcast or multicast.  Must be directed at us or
1821                  * the card is in promiscuous mode.  Either way, consider it
1822                  * ours if MAC_DIRECTED is set
1823                  */
1824                 adapter->Stats.DumbRcvUcastPkts++;
1825                 adapter->Stats.DumbRcvUcastBytes += length;
1826                 return (TRUE);
1827         }
1828         if (adapter->MacFilter & MAC_PROMISC) {
1829                 /* Whatever it is, keep it. */
1830                 return (TRUE);
1831         }
1832         return (FALSE);
1833 }
1834
1835 static int sxg_register_interrupt(struct adapter_t *adapter)
1836 {
1837         if (!adapter->intrregistered) {
1838                 int retval;
1839
1840                 DBG_ERROR
1841                     ("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x] %x\n",
1842                      __func__, adapter, adapter->netdev->irq, NR_IRQS);
1843
1844                 spin_unlock_irqrestore(&sxg_global.driver_lock,
1845                                        sxg_global.flags);
1846
1847                 retval = request_irq(adapter->netdev->irq,
1848                                      &sxg_isr,
1849                                      IRQF_SHARED,
1850                                      adapter->netdev->name, adapter->netdev);
1851
1852                 spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1853
1854                 if (retval) {
1855                         DBG_ERROR("sxg: request_irq (%s) FAILED [%x]\n",
1856                                   adapter->netdev->name, retval);
1857                         return (retval);
1858                 }
1859                 adapter->intrregistered = 1;
1860                 adapter->IntRegistered = TRUE;
1861                 /* Disable RSS with line-based interrupts */
1862                 adapter->MsiEnabled = FALSE;
1863                 adapter->RssEnabled = FALSE;
1864                 DBG_ERROR("sxg: %s AllocAdaptRsrcs adapter[%p] dev->irq[%x]\n",
1865                           __func__, adapter, adapter->netdev->irq);
1866         }
1867         return (STATUS_SUCCESS);
1868 }
1869
1870 static void sxg_deregister_interrupt(struct adapter_t *adapter)
1871 {
1872         DBG_ERROR("sxg: %s ENTER adapter[%p]\n", __func__, adapter);
1873 #if XXXTODO
1874         slic_init_cleanup(adapter);
1875 #endif
1876         memset(&adapter->stats, 0, sizeof(struct net_device_stats));
1877         adapter->error_interrupts = 0;
1878         adapter->rcv_interrupts = 0;
1879         adapter->xmit_interrupts = 0;
1880         adapter->linkevent_interrupts = 0;
1881         adapter->upr_interrupts = 0;
1882         adapter->num_isrs = 0;
1883         adapter->xmit_completes = 0;
1884         adapter->rcv_broadcasts = 0;
1885         adapter->rcv_multicasts = 0;
1886         adapter->rcv_unicasts = 0;
1887         DBG_ERROR("sxg: %s EXIT\n", __func__);
1888 }
1889
1890 /*
1891  *  sxg_if_init
1892  *
1893  *  Perform initialization of our slic interface.
1894  *
1895  */
1896 static int sxg_if_init(struct adapter_t *adapter)
1897 {
1898         struct net_device *dev = adapter->netdev;
1899         int status = 0;
1900
1901         DBG_ERROR("sxg: %s (%s) ENTER states[%d:%d] flags[%x]\n",
1902                   __func__, adapter->netdev->name,
1903                   adapter->state,
1904                   adapter->linkstate, dev->flags);
1905
1906         /* adapter should be down at this point */
1907         if (adapter->state != ADAPT_DOWN) {
1908                 DBG_ERROR("sxg_if_init adapter->state != ADAPT_DOWN\n");
1909                 return (-EIO);
1910         }
1911         ASSERT(adapter->linkstate == LINK_DOWN);
1912
1913         adapter->devflags_prev = dev->flags;
1914         adapter->MacFilter = MAC_DIRECTED;
1915         if (dev->flags) {
1916                 DBG_ERROR("sxg: %s (%s) Set MAC options: ", __func__,
1917                           adapter->netdev->name);
1918                 if (dev->flags & IFF_BROADCAST) {
1919                         adapter->MacFilter |= MAC_BCAST;
1920                         DBG_ERROR("BCAST ");
1921                 }
1922                 if (dev->flags & IFF_PROMISC) {
1923                         adapter->MacFilter |= MAC_PROMISC;
1924                         DBG_ERROR("PROMISC ");
1925                 }
1926                 if (dev->flags & IFF_ALLMULTI) {
1927                         adapter->MacFilter |= MAC_ALLMCAST;
1928                         DBG_ERROR("ALL_MCAST ");
1929                 }
1930                 if (dev->flags & IFF_MULTICAST) {
1931                         adapter->MacFilter |= MAC_MCAST;
1932                         DBG_ERROR("MCAST ");
1933                 }
1934                 DBG_ERROR("\n");
1935         }
1936         status = sxg_register_interrupt(adapter);
1937         if (status != STATUS_SUCCESS) {
1938                 DBG_ERROR("sxg_if_init: sxg_register_interrupt FAILED %x\n",
1939                           status);
1940                 sxg_deregister_interrupt(adapter);
1941                 return (status);
1942         }
1943
1944         adapter->state = ADAPT_UP;
1945
1946         /*    clear any pending events, then enable interrupts */
1947         DBG_ERROR("sxg: %s ENABLE interrupts(slic)\n", __func__);
1948
1949         return (STATUS_SUCCESS);
1950 }
1951
1952 void sxg_set_interrupt_aggregation(struct adapter_t *adapter)
1953 {
1954         /*
1955          * Top bit disables aggregation on xmt (SXG_AGG_XMT_DISABLE).
1956          * Make sure Max is less than 0x8000.
1957          */
1958         adapter->max_aggregation = SXG_MAX_AGG_DEFAULT;
1959         adapter->min_aggregation = SXG_MIN_AGG_DEFAULT;
1960         WRITE_REG(adapter->UcodeRegs[0].Aggregation,
1961                 ((adapter->max_aggregation << SXG_MAX_AGG_SHIFT) |
1962                         adapter->min_aggregation),
1963                         TRUE);
1964 }
1965
1966 static int sxg_entry_open(struct net_device *dev)
1967 {
1968         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
1969         int status;
1970         static int turn;
1971
1972         if (turn) {
1973                 sxg_second_open(adapter->netdev);
1974
1975                 return STATUS_SUCCESS;
1976         }
1977
1978         turn++;
1979
1980         ASSERT(adapter);
1981         DBG_ERROR("sxg: %s adapter->activated[%d]\n", __func__,
1982                   adapter->activated);
1983         DBG_ERROR
1984             ("sxg: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] port[%d]\n",
1985              __func__, adapter->netdev->name, jiffies, smp_processor_id(),
1986              adapter->netdev, adapter, adapter->port);
1987
1988         netif_stop_queue(adapter->netdev);
1989
1990         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
1991         if (!adapter->activated) {
1992                 sxg_global.num_sxg_ports_active++;
1993                 adapter->activated = 1;
1994         }
1995         /* Initialize the adapter */
1996         DBG_ERROR("sxg: %s ENTER sxg_initialize_adapter\n", __func__);
1997         status = sxg_initialize_adapter(adapter);
1998         DBG_ERROR("sxg: %s EXIT sxg_initialize_adapter status[%x]\n",
1999                   __func__, status);
2000
2001         if (status == STATUS_SUCCESS) {
2002                 DBG_ERROR("sxg: %s ENTER sxg_if_init\n", __func__);
2003                 status = sxg_if_init(adapter);
2004                 DBG_ERROR("sxg: %s EXIT sxg_if_init status[%x]\n", __func__,
2005                           status);
2006         }
2007
2008         if (status != STATUS_SUCCESS) {
2009                 if (adapter->activated) {
2010                         sxg_global.num_sxg_ports_active--;
2011                         adapter->activated = 0;
2012                 }
2013                 spin_unlock_irqrestore(&sxg_global.driver_lock,
2014                                        sxg_global.flags);
2015                 return (status);
2016         }
2017         DBG_ERROR("sxg: %s ENABLE ALL INTERRUPTS\n", __func__);
2018         sxg_set_interrupt_aggregation(adapter);
2019         napi_enable(&adapter->napi);
2020
2021         /* Enable interrupts */
2022         SXG_ENABLE_ALL_INTERRUPTS(adapter);
2023
2024         DBG_ERROR("sxg: %s EXIT\n", __func__);
2025
2026         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2027         return STATUS_SUCCESS;
2028 }
2029
2030 int sxg_second_open(struct net_device * dev)
2031 {
2032         struct adapter_t *adapter = (struct adapter_t*) netdev_priv(dev);
2033         int status = 0;
2034
2035         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2036         netif_start_queue(adapter->netdev);
2037         adapter->state = ADAPT_UP;
2038         adapter->linkstate = LINK_UP;
2039
2040         status = sxg_initialize_adapter(adapter);
2041         sxg_set_interrupt_aggregation(adapter);
2042         napi_enable(&adapter->napi);
2043         /* Re-enable interrupts */
2044         SXG_ENABLE_ALL_INTERRUPTS(adapter);
2045
2046         netif_carrier_on(dev);
2047         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2048         sxg_register_interrupt(adapter);
2049         return (STATUS_SUCCESS);
2050
2051 }
2052
2053 static void __devexit sxg_entry_remove(struct pci_dev *pcidev)
2054 {
2055         u32 mmio_start = 0;
2056         u32 mmio_len = 0;
2057
2058         struct net_device *dev = pci_get_drvdata(pcidev);
2059         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2060
2061         flush_scheduled_work();
2062
2063         /* Deallocate Resources */
2064         unregister_netdev(dev);
2065         sxg_free_resources(adapter);
2066
2067         ASSERT(adapter);
2068
2069         mmio_start = pci_resource_start(pcidev, 0);
2070         mmio_len = pci_resource_len(pcidev, 0);
2071
2072         DBG_ERROR("sxg: %s rel_region(0) start[%x] len[%x]\n", __FUNCTION__,
2073                   mmio_start, mmio_len);
2074         release_mem_region(mmio_start, mmio_len);
2075
2076         mmio_start = pci_resource_start(pcidev, 2);
2077         mmio_len = pci_resource_len(pcidev, 2);
2078
2079         DBG_ERROR("sxg: %s rel_region(2) start[%x] len[%x]\n", __FUNCTION__,
2080                   mmio_start, mmio_len);
2081         release_mem_region(mmio_start, mmio_len);
2082
2083         pci_disable_device(pcidev);
2084
2085         DBG_ERROR("sxg: %s deallocate device\n", __func__);
2086         kfree(dev);
2087         DBG_ERROR("sxg: %s EXIT\n", __func__);
2088 }
2089
2090 static int sxg_entry_halt(struct net_device *dev)
2091 {
2092         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2093
2094         napi_disable(&adapter->napi);
2095         spin_lock_irqsave(&sxg_global.driver_lock, sxg_global.flags);
2096         DBG_ERROR("sxg: %s (%s) ENTER\n", __func__, dev->name);
2097
2098         netif_stop_queue(adapter->netdev);
2099         adapter->state = ADAPT_DOWN;
2100         adapter->linkstate = LINK_DOWN;
2101         adapter->devflags_prev = 0;
2102         DBG_ERROR("sxg: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n",
2103                   __func__, dev->name, adapter, adapter->state);
2104
2105         DBG_ERROR("sxg: %s (%s) EXIT\n", __func__, dev->name);
2106         DBG_ERROR("sxg: %s EXIT\n", __func__);
2107
2108         /* Disable interrupts */
2109         SXG_DISABLE_ALL_INTERRUPTS(adapter);
2110
2111         netif_carrier_off(dev);
2112         spin_unlock_irqrestore(&sxg_global.driver_lock, sxg_global.flags);
2113
2114         sxg_deregister_interrupt(adapter);
2115         return (STATUS_SUCCESS);
2116 }
2117
2118 static int sxg_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2119 {
2120         ASSERT(rq);
2121 /*      DBG_ERROR("sxg: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev);*/
2122         switch (cmd) {
2123         case SIOCSLICSETINTAGG:
2124                 {
2125                         /* struct adapter_t *adapter = (struct adapter_t *)
2126                          * netdev_priv(dev);
2127                          */
2128                         u32 data[7];
2129                         u32 intagg;
2130
2131                         if (copy_from_user(data, rq->ifr_data, 28)) {
2132                                 DBG_ERROR("copy_from_user FAILED  getting \
2133                                          initial params\n");
2134                                 return -EFAULT;
2135                         }
2136                         intagg = data[0];
2137                         printk(KERN_EMERG
2138                                "%s: set interrupt aggregation to %d\n",
2139                                __func__, intagg);
2140                         return 0;
2141                 }
2142
2143         default:
2144                 /* DBG_ERROR("sxg: %s UNSUPPORTED[%x]\n", __func__, cmd); */
2145                 return -EOPNOTSUPP;
2146         }
2147         return 0;
2148 }
2149
2150 #define NORMAL_ETHFRAME     0
2151
2152 /*
2153  * sxg_send_packets - Send a skb packet
2154  *
2155  * Arguments:
2156  *                      skb - The packet to send
2157  *                      dev - Our linux net device that refs our adapter
2158  *
2159  * Return:
2160  *              0   regardless of outcome    XXXTODO refer to e1000 driver
2161  */
2162 static int sxg_send_packets(struct sk_buff *skb, struct net_device *dev)
2163 {
2164         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
2165         u32 status = STATUS_SUCCESS;
2166
2167         /*
2168          * DBG_ERROR("sxg: %s ENTER sxg_send_packets skb[%p]\n", __FUNCTION__,
2169          *        skb);
2170          */
2171
2172         /* Check the adapter state */
2173         switch (adapter->State) {
2174         case SXG_STATE_INITIALIZING:
2175         case SXG_STATE_HALTED:
2176         case SXG_STATE_SHUTDOWN:
2177                 ASSERT(0);      /* unexpected */
2178                 /* fall through */
2179         case SXG_STATE_RESETTING:
2180         case SXG_STATE_SLEEP:
2181         case SXG_STATE_BOOTDIAG:
2182         case SXG_STATE_DIAG:
2183         case SXG_STATE_HALTING:
2184                 status = STATUS_FAILURE;
2185                 break;
2186         case SXG_STATE_RUNNING:
2187                 if (adapter->LinkState != SXG_LINK_UP) {
2188                         status = STATUS_FAILURE;
2189                 }
2190                 break;
2191         default:
2192                 ASSERT(0);
2193                 status = STATUS_FAILURE;
2194         }
2195         if (status != STATUS_SUCCESS) {
2196                 goto xmit_fail;
2197         }
2198         /* send a packet */
2199         status = sxg_transmit_packet(adapter, skb);
2200         if (status == STATUS_SUCCESS) {
2201                 goto xmit_done;
2202         }
2203
2204       xmit_fail:
2205         /* reject & complete all the packets if they cant be sent */
2206         if (status != STATUS_SUCCESS) {
2207 #if XXXTODO
2208         /* sxg_send_packets_fail(adapter, skb, status); */
2209 #else
2210                 SXG_DROP_DUMB_SEND(adapter, skb);
2211                 adapter->stats.tx_dropped++;
2212                 return NETDEV_TX_BUSY;
2213 #endif
2214         }
2215         DBG_ERROR("sxg: %s EXIT sxg_send_packets status[%x]\n", __func__,
2216                   status);
2217
2218       xmit_done:
2219         return NETDEV_TX_OK;
2220 }
2221
2222 /*
2223  * sxg_transmit_packet
2224  *
2225  * This function transmits a single packet.
2226  *
2227  * Arguments -
2228  *              adapter                 - Pointer to our adapter structure
2229  *      skb             - The packet to be sent
2230  *
2231  * Return - STATUS of send
2232  */
2233 static int sxg_transmit_packet(struct adapter_t *adapter, struct sk_buff *skb)
2234 {
2235         struct sxg_x64_sgl         *pSgl;
2236         struct sxg_scatter_gather  *SxgSgl;
2237         unsigned long sgl_flags;
2238         /* void *SglBuffer; */
2239         /* u32 SglBufferLength; */
2240
2241         /*
2242          * The vast majority of work is done in the shared
2243          * sxg_dumb_sgl routine.
2244          */
2245         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSend",
2246                   adapter, skb, 0, 0);
2247
2248         /* Allocate a SGL buffer */
2249         SXG_GET_SGL_BUFFER(adapter, SxgSgl, 0);
2250         if (!SxgSgl) {
2251                 adapter->Stats.NoSglBuf++;
2252                 adapter->stats.tx_errors++;
2253                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "SndPktF1",
2254                           adapter, skb, 0, 0);
2255                 return (STATUS_RESOURCES);
2256         }
2257         ASSERT(SxgSgl->adapter == adapter);
2258         /*SglBuffer = SXG_SGL_BUFFER(SxgSgl);
2259         SglBufferLength = SXG_SGL_BUF_SIZE; */
2260         SxgSgl->VlanTag.VlanTci = 0;
2261         SxgSgl->VlanTag.VlanTpid = 0;
2262         SxgSgl->Type = SXG_SGL_DUMB;
2263         SxgSgl->DumbPacket = skb;
2264         pSgl = NULL;
2265
2266         /* Call the common sxg_dumb_sgl routine to complete the send. */
2267         return (sxg_dumb_sgl(pSgl, SxgSgl));
2268 }
2269
2270 /*
2271  * sxg_dumb_sgl
2272  *
2273  * Arguments:
2274  *              pSgl     -
2275  *              SxgSgl   - struct sxg_scatter_gather
2276  *
2277  * Return Value:
2278  *      Status of send operation.
2279  */
2280 static int sxg_dumb_sgl(struct sxg_x64_sgl *pSgl,
2281                                 struct sxg_scatter_gather *SxgSgl)
2282 {
2283         struct adapter_t *adapter = SxgSgl->adapter;
2284         struct sk_buff *skb = SxgSgl->DumbPacket;
2285         /* For now, all dumb-nic sends go on RSS queue zero */
2286         struct sxg_xmt_ring *XmtRing = &adapter->XmtRings[0];
2287         struct sxg_ring_info *XmtRingInfo = &adapter->XmtRingZeroInfo;
2288         struct sxg_cmd *XmtCmd = NULL;
2289         /* u32 Index = 0; */
2290         u32 DataLength = skb->len;
2291         /* unsigned int BufLen; */
2292         /* u32 SglOffset; */
2293         u64 phys_addr;
2294         unsigned long flags;
2295         unsigned long queue_id=0;
2296
2297         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbSgl",
2298                   pSgl, SxgSgl, 0, 0);
2299
2300         /* Set aside a pointer to the sgl */
2301         SxgSgl->pSgl = pSgl;
2302
2303         /* Sanity check that our SGL format is as we expect. */
2304         ASSERT(sizeof(struct sxg_x64_sge) == sizeof(struct sxg_x64_sge));
2305         /* Shouldn't be a vlan tag on this frame */
2306         ASSERT(SxgSgl->VlanTag.VlanTci == 0);
2307         ASSERT(SxgSgl->VlanTag.VlanTpid == 0);
2308
2309         /*
2310          * From here below we work with the SGL placed in our
2311          * buffer.
2312          */
2313
2314         SxgSgl->Sgl.NumberOfElements = 1;
2315         /*
2316          * Set ucode Queue ID based on bottom bits of destination TCP port.
2317          * This Queue ID splits slowpath/dumb-nic packet processing across
2318          * multiple threads on the card to improve performance.  It is split
2319          * using the TCP port to avoid out-of-order packets that can result
2320          * from multithreaded processing.  We use the destination port because
2321          * we expect to be run on a server, so in nearly all cases the local
2322          * port is likely to be constant (well-known server port) and the
2323          * remote port is likely to be random.  The exception to this is iSCSI,
2324          * in which case we use the sport instead.  Note
2325          * that original attempt at XOR'ing source and dest port resulted in
2326          * poor balance on NTTTCP/iometer applications since they tend to
2327          * line up (even-even, odd-odd..).
2328          */
2329
2330         if (skb->protocol == htons(ETH_P_IP)) {
2331                 struct iphdr *ip;
2332
2333                 ip = ip_hdr(skb);
2334                 if ((ip->protocol == IPPROTO_TCP)&&(DataLength >= sizeof(
2335                                                         struct tcphdr))){
2336                         queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2337                                         (ntohs (tcp_hdr(skb)->source) &
2338                                                 SXG_LARGE_SEND_QUEUE_MASK):
2339                                                 (ntohs(tcp_hdr(skb)->dest) &
2340                                                 SXG_LARGE_SEND_QUEUE_MASK));
2341                 }
2342         } else if (skb->protocol == htons(ETH_P_IPV6)) {
2343                 if ( (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) && (DataLength >=
2344                                                  sizeof(struct tcphdr)) ) {
2345                         queue_id = ((ntohs(tcp_hdr(skb)->dest) == ISCSI_PORT) ?
2346                                         (ntohs (tcp_hdr(skb)->source) &
2347                                         SXG_LARGE_SEND_QUEUE_MASK):
2348                                         (ntohs(tcp_hdr(skb)->dest) &
2349                                         SXG_LARGE_SEND_QUEUE_MASK));
2350                 }
2351         }
2352
2353         /* Grab the spinlock and acquire a command */
2354         spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2355         SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2356         if (XmtCmd == NULL) {
2357                 /*
2358                  * Call sxg_complete_slow_send to see if we can
2359                  * free up any XmtRingZero entries and then try again
2360                  */
2361
2362                 spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2363                 sxg_complete_slow_send(adapter, 0);
2364                 spin_lock_irqsave(&adapter->XmtZeroLock, flags);
2365                 SXG_GET_CMD(XmtRing, XmtRingInfo, XmtCmd, SxgSgl);
2366                 if (XmtCmd == NULL) {
2367                         adapter->Stats.XmtZeroFull++;
2368                         goto abortcmd;
2369                 }
2370         }
2371         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DumbCmd",
2372                   XmtCmd, XmtRingInfo->Head, XmtRingInfo->Tail, 0);
2373         /* Update stats */
2374         adapter->stats.tx_packets++;
2375         adapter->stats.tx_bytes += DataLength;
2376 #if XXXTODO                     /* Stats stuff */
2377         if (SXG_MULTICAST_PACKET(EtherHdr)) {
2378                 if (SXG_BROADCAST_PACKET(EtherHdr)) {
2379                         adapter->Stats.DumbXmtBcastPkts++;
2380                         adapter->Stats.DumbXmtBcastBytes += DataLength;
2381                 } else {
2382                         adapter->Stats.DumbXmtMcastPkts++;
2383                         adapter->Stats.DumbXmtMcastBytes += DataLength;
2384                 }
2385         } else {
2386                 adapter->Stats.DumbXmtUcastPkts++;
2387                 adapter->Stats.DumbXmtUcastBytes += DataLength;
2388         }
2389 #endif
2390         /*
2391          * Fill in the command
2392          * Copy out the first SGE to the command and adjust for offset
2393          */
2394         phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len,
2395                            PCI_DMA_TODEVICE);
2396         memset(XmtCmd, '\0', sizeof(*XmtCmd));
2397         XmtCmd->Buffer.FirstSgeAddress = phys_addr;
2398         XmtCmd->Buffer.FirstSgeLength = DataLength;
2399         XmtCmd->Buffer.SgeOffset = 0;
2400         XmtCmd->Buffer.TotalLength = DataLength;
2401         XmtCmd->SgEntries = 1;
2402         XmtCmd->Flags = 0;
2403         /*
2404          * Advance transmit cmd descripter by 1.
2405          * NOTE - See comments in SxgTcpOutput where we write
2406          * to the XmtCmd register regarding CPU ID values and/or
2407          * multiple commands.
2408          * Top 16 bits specify queue_id.  See comments about queue_id above
2409          */
2410         /* Four queues at the moment */
2411         ASSERT((queue_id & ~SXG_LARGE_SEND_QUEUE_MASK) == 0);
2412         WRITE_REG(adapter->UcodeRegs[0].XmtCmd, ((queue_id << 16) | 1), TRUE);
2413         adapter->Stats.XmtQLen++;       /* Stats within lock */
2414         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2415         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XDumSgl2",
2416                   XmtCmd, pSgl, SxgSgl, 0);
2417         return  STATUS_SUCCESS;
2418
2419       abortcmd:
2420         /*
2421          * NOTE - Only jump to this label AFTER grabbing the
2422          * XmtZeroLock, and DO NOT DROP IT between the
2423          * command allocation and the following abort.
2424          */
2425         if (XmtCmd) {
2426                 SXG_ABORT_CMD(XmtRingInfo);
2427         }
2428         spin_unlock_irqrestore(&adapter->XmtZeroLock, flags);
2429
2430 /*
2431  * failsgl:
2432  *      Jump to this label if failure occurs before the
2433  *      XmtZeroLock is grabbed
2434  */
2435         adapter->stats.tx_errors++;
2436         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "DumSGFal",
2437                   pSgl, SxgSgl, XmtRingInfo->Head, XmtRingInfo->Tail);
2438         /* SxgSgl->DumbPacket is the skb */
2439         // SXG_COMPLETE_DUMB_SEND(adapter, SxgSgl->DumbPacket);
2440
2441         return STATUS_FAILURE;
2442 }
2443
2444 /*
2445  * Link management functions
2446  *
2447  * sxg_initialize_link - Initialize the link stuff
2448  *
2449  * Arguments -
2450  *      adapter         - A pointer to our adapter structure
2451  *
2452  * Return
2453  *      status
2454  */
2455 static int sxg_initialize_link(struct adapter_t *adapter)
2456 {
2457         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2458         u32 Value;
2459         u32 ConfigData;
2460         u32 MaxFrame;
2461         int status;
2462
2463         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitLink",
2464                   adapter, 0, 0, 0);
2465
2466         /* Reset PHY and XGXS module */
2467         WRITE_REG(HwRegs->LinkStatus, LS_SERDES_POWER_DOWN, TRUE);
2468
2469         /* Reset transmit configuration register */
2470         WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_RESET, TRUE);
2471
2472         /* Reset receive configuration register */
2473         WRITE_REG(HwRegs->RcvConfig, RCV_CONFIG_RESET, TRUE);
2474
2475         /* Reset all MAC modules */
2476         WRITE_REG(HwRegs->MacConfig0, AXGMAC_CFG0_SUB_RESET, TRUE);
2477
2478         /*
2479          * Link address 0
2480          * XXXTODO - This assumes the MAC address (0a:0b:0c:0d:0e:0f)
2481          * is stored with the first nibble (0a) in the byte 0
2482          * of the Mac address.  Possibly reverse?
2483          */
2484         Value = *(u32 *) adapter->macaddr;
2485         WRITE_REG(HwRegs->LinkAddress0Low, Value, TRUE);
2486         /* also write the MAC address to the MAC.  Endian is reversed. */
2487         WRITE_REG(HwRegs->MacAddressLow, ntohl(Value), TRUE);
2488         Value = (*(u16 *) & adapter->macaddr[4] & 0x0000FFFF);
2489         WRITE_REG(HwRegs->LinkAddress0High, Value | LINK_ADDRESS_ENABLE, TRUE);
2490         /* endian swap for the MAC (put high bytes in bits [31:16], swapped) */
2491         Value = ntohl(Value);
2492         WRITE_REG(HwRegs->MacAddressHigh, Value, TRUE);
2493         /* Link address 1 */
2494         WRITE_REG(HwRegs->LinkAddress1Low, 0, TRUE);
2495         WRITE_REG(HwRegs->LinkAddress1High, 0, TRUE);
2496         /* Link address 2 */
2497         WRITE_REG(HwRegs->LinkAddress2Low, 0, TRUE);
2498         WRITE_REG(HwRegs->LinkAddress2High, 0, TRUE);
2499         /* Link address 3 */
2500         WRITE_REG(HwRegs->LinkAddress3Low, 0, TRUE);
2501         WRITE_REG(HwRegs->LinkAddress3High, 0, TRUE);
2502
2503         /* Enable MAC modules */
2504         WRITE_REG(HwRegs->MacConfig0, 0, TRUE);
2505
2506         /* Configure MAC */
2507         WRITE_REG(HwRegs->MacConfig1, (
2508                                         /* Allow sending of pause */
2509                                         AXGMAC_CFG1_XMT_PAUSE |
2510                                         /* Enable XMT */
2511                                         AXGMAC_CFG1_XMT_EN |
2512                                         /* Enable detection of pause */
2513                                         AXGMAC_CFG1_RCV_PAUSE |
2514                                         /* Enable receive */
2515                                         AXGMAC_CFG1_RCV_EN |
2516                                         /* short frame detection */
2517                                         AXGMAC_CFG1_SHORT_ASSERT |
2518                                         /* Verify frame length */
2519                                         AXGMAC_CFG1_CHECK_LEN |
2520                                         /* Generate FCS */
2521                                         AXGMAC_CFG1_GEN_FCS |
2522                                         /* Pad frames to 64 bytes */
2523                                         AXGMAC_CFG1_PAD_64),
2524                                   TRUE);
2525
2526         /* Set AXGMAC max frame length if jumbo.  Not needed for standard MTU */
2527         if (adapter->JumboEnabled) {
2528                 WRITE_REG(HwRegs->MacMaxFrameLen, AXGMAC_MAXFRAME_JUMBO, TRUE);
2529         }
2530         /*
2531          * AMIIM Configuration Register -
2532          * The value placed in the AXGMAC_AMIIM_CFG_HALF_CLOCK portion
2533          * (bottom bits) of this register is used to determine the MDC frequency
2534          * as specified in the A-XGMAC Design Document. This value must not be
2535          * zero.  The following value (62 or 0x3E) is based on our MAC transmit
2536          * clock frequency (MTCLK) of 312.5 MHz. Given a maximum MDIO clock
2537          * frequency of 2.5 MHz (see the PHY spec), we get:
2538          *      312.5/(2*(X+1)) < 2.5  ==> X = 62.
2539          * This value happens to be the default value for this register, so we
2540          * really don't have to do this.
2541          */
2542         WRITE_REG(HwRegs->MacAmiimConfig, 0x0000003E, TRUE);
2543
2544         /* Power up and enable PHY and XAUI/XGXS/Serdes logic */
2545         WRITE_REG(HwRegs->LinkStatus,
2546                   (LS_PHY_CLR_RESET |
2547                    LS_XGXS_ENABLE |
2548                    LS_XGXS_CTL | LS_PHY_CLK_EN | LS_ATTN_ALARM), TRUE);
2549         DBG_ERROR("After Power Up and enable PHY in sxg_initialize_link\n");
2550
2551         /*
2552          * Per information given by Aeluros, wait 100 ms after removing reset.
2553          * It's not enough to wait for the self-clearing reset bit in reg 0 to
2554          * clear.
2555          */
2556         mdelay(100);
2557
2558         /* Verify the PHY has come up by checking that the Reset bit has
2559          * cleared.
2560          */
2561         status = sxg_read_mdio_reg(adapter,
2562                                 MIIM_DEV_PHY_PMA, /* PHY PMA/PMD module */
2563                                 PHY_PMA_CONTROL1, /* PMA/PMD control register */
2564                                 &Value);
2565         DBG_ERROR("After sxg_read_mdio_reg Value[%x] fail=%x\n", Value,
2566                                          (Value & PMA_CONTROL1_RESET));
2567         if (status != STATUS_SUCCESS)
2568                 return (STATUS_FAILURE);
2569         if (Value & PMA_CONTROL1_RESET) /* reset complete if bit is 0 */
2570                 return (STATUS_FAILURE);
2571
2572         /* The SERDES should be initialized by now - confirm */
2573         READ_REG(HwRegs->LinkStatus, Value);
2574         if (Value & LS_SERDES_DOWN)     /* verify SERDES is initialized */
2575                 return (STATUS_FAILURE);
2576
2577         /* The XAUI link should also be up - confirm */
2578         if (!(Value & LS_XAUI_LINK_UP)) /* verify XAUI link is up */
2579                 return (STATUS_FAILURE);
2580
2581         /* Initialize the PHY */
2582         status = sxg_phy_init(adapter);
2583         if (status != STATUS_SUCCESS)
2584                 return (STATUS_FAILURE);
2585
2586         /* Enable the Link Alarm */
2587
2588         /* MIIM_DEV_PHY_PMA             - PHY PMA/PMD module
2589          * LASI_CONTROL                 - LASI control register
2590          * LASI_CTL_LS_ALARM_ENABLE     - enable link alarm bit
2591          */
2592         status = sxg_write_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2593                                     LASI_CONTROL,
2594                                     LASI_CTL_LS_ALARM_ENABLE);
2595         if (status != STATUS_SUCCESS)
2596                 return (STATUS_FAILURE);
2597
2598         /* XXXTODO - temporary - verify bit is set */
2599
2600         /* MIIM_DEV_PHY_PMA             - PHY PMA/PMD module
2601          * LASI_CONTROL                 - LASI control register
2602          */
2603         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2604                                    LASI_CONTROL,
2605                                    &Value);
2606
2607         if (status != STATUS_SUCCESS)
2608                 return (STATUS_FAILURE);
2609         if (!(Value & LASI_CTL_LS_ALARM_ENABLE)) {
2610                 DBG_ERROR("Error!  LASI Control Alarm Enable bit not set!\n");
2611         }
2612         /* Enable receive */
2613         MaxFrame = adapter->JumboEnabled ? JUMBOMAXFRAME : ETHERMAXFRAME;
2614         ConfigData = (RCV_CONFIG_ENABLE |
2615                       RCV_CONFIG_ENPARSE |
2616                       RCV_CONFIG_RCVBAD |
2617                       RCV_CONFIG_RCVPAUSE |
2618                       RCV_CONFIG_TZIPV6 |
2619                       RCV_CONFIG_TZIPV4 |
2620                       RCV_CONFIG_HASH_16 |
2621                       RCV_CONFIG_SOCKET | RCV_CONFIG_BUFSIZE(MaxFrame));
2622         WRITE_REG(HwRegs->RcvConfig, ConfigData, TRUE);
2623
2624         WRITE_REG(HwRegs->XmtConfig, XMT_CONFIG_ENABLE, TRUE);
2625
2626         /* Mark the link as down.  We'll get a link event when it comes up. */
2627         sxg_link_state(adapter, SXG_LINK_DOWN);
2628
2629         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInitLnk",
2630                   adapter, 0, 0, 0);
2631         return (STATUS_SUCCESS);
2632 }
2633
2634 /*
2635  * sxg_phy_init - Initialize the PHY
2636  *
2637  * Arguments -
2638  *      adapter         - A pointer to our adapter structure
2639  *
2640  * Return
2641  *      status
2642  */
2643 static int sxg_phy_init(struct adapter_t *adapter)
2644 {
2645         u32 Value;
2646         struct phy_ucode *p;
2647         int status;
2648
2649         DBG_ERROR("ENTER %s\n", __func__);
2650
2651         /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module
2652          * 0xC205 - PHY ID register (?)
2653          * &Value - XXXTODO - add def
2654          */
2655         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2656                                    0xC205,
2657                                    &Value);
2658         if (status != STATUS_SUCCESS)
2659                 return (STATUS_FAILURE);
2660
2661         if (Value == 0x0012) {
2662                 /* 0x0012 == AEL2005C PHY(?) - XXXTODO - add def */
2663                 DBG_ERROR("AEL2005C PHY detected.  Downloading PHY \
2664                                  microcode.\n");
2665
2666                 /* Initialize AEL2005C PHY and download PHY microcode */
2667                 for (p = PhyUcode; p->Addr != 0xFFFF; p++) {
2668                         if (p->Addr == 0) {
2669                                 /* if address == 0, data == sleep time in ms */
2670                                 mdelay(p->Data);
2671                         } else {
2672                         /* write the given data to the specified address */
2673                                 status = sxg_write_mdio_reg(adapter,
2674                                                         MIIM_DEV_PHY_PMA,
2675                                                         /* PHY address */
2676                                                             p->Addr,
2677                                                         /* PHY data */
2678                                                             p->Data);
2679                                 if (status != STATUS_SUCCESS)
2680                                         return (STATUS_FAILURE);
2681                         }
2682                 }
2683         }
2684         DBG_ERROR("EXIT %s\n", __func__);
2685
2686         return (STATUS_SUCCESS);
2687 }
2688
2689 /*
2690  * sxg_link_event - Process a link event notification from the card
2691  *
2692  * Arguments -
2693  *      adapter         - A pointer to our adapter structure
2694  *
2695  * Return
2696  *      None
2697  */
2698 static void sxg_link_event(struct adapter_t *adapter)
2699 {
2700         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2701         struct net_device *netdev = adapter->netdev;
2702         enum SXG_LINK_STATE LinkState;
2703         int status;
2704         u32 Value;
2705
2706         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "LinkEvnt",
2707                   adapter, 0, 0, 0);
2708         DBG_ERROR("ENTER %s\n", __func__);
2709
2710         /* Check the Link Status register.  We should have a Link Alarm. */
2711         READ_REG(HwRegs->LinkStatus, Value);
2712         if (Value & LS_LINK_ALARM) {
2713                 /*
2714                  * We got a Link Status alarm.  First, pause to let the
2715                  * link state settle (it can bounce a number of times)
2716                  */
2717                 mdelay(10);
2718
2719                 /* Now clear the alarm by reading the LASI status register. */
2720                 /* MIIM_DEV_PHY_PMA - PHY PMA/PMD module */
2721                 status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2722                                         /* LASI status register */
2723                                            LASI_STATUS,
2724                                            &Value);
2725                 if (status != STATUS_SUCCESS) {
2726                         DBG_ERROR("Error reading LASI Status MDIO register!\n");
2727                         sxg_link_state(adapter, SXG_LINK_DOWN);
2728                 /* ASSERT(0); */
2729                 }
2730                 ASSERT(Value & LASI_STATUS_LS_ALARM);
2731
2732                 /* Now get and set the link state */
2733                 LinkState = sxg_get_link_state(adapter);
2734                 sxg_link_state(adapter, LinkState);
2735                 DBG_ERROR("SXG: Link Alarm occurred.  Link is %s\n",
2736                           ((LinkState == SXG_LINK_UP) ? "UP" : "DOWN"));
2737                 if (LinkState == SXG_LINK_UP)
2738                         netif_carrier_on(netdev);
2739                 else
2740                         netif_carrier_off(netdev);
2741         } else {
2742                 /*
2743                  * XXXTODO - Assuming Link Attention is only being generated
2744                  * for the Link Alarm pin (and not for a XAUI Link Status change)
2745                  * , then it's impossible to get here.  Yet we've gotten here
2746                  * twice (under extreme conditions - bouncing the link up and
2747                  * down many times a second). Needs further investigation.
2748                  */
2749                 DBG_ERROR("SXG: sxg_link_event: Can't get here!\n");
2750                 DBG_ERROR("SXG: Link Status == 0x%08X.\n", Value);
2751                 /* ASSERT(0); */
2752         }
2753         DBG_ERROR("EXIT %s\n", __func__);
2754
2755 }
2756
2757 /*
2758  * sxg_get_link_state - Determine if the link is up or down
2759  *
2760  * Arguments -
2761  *      adapter         - A pointer to our adapter structure
2762  *
2763  * Return
2764  *      Link State
2765  */
2766 static enum SXG_LINK_STATE sxg_get_link_state(struct adapter_t *adapter)
2767 {
2768         int status;
2769         u32 Value;
2770
2771         DBG_ERROR("ENTER %s\n", __func__);
2772
2773         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "GetLink",
2774                   adapter, 0, 0, 0);
2775
2776         /*
2777          * Per the Xenpak spec (and the IEEE 10Gb spec?), the link is up if
2778          * the following 3 bits (from 3 different MDIO registers) are all true.
2779          */
2780
2781         /* MIIM_DEV_PHY_PMA -  PHY PMA/PMD module */
2782         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PMA,
2783                                 /* PMA/PMD Receive Signal Detect register */
2784                                    PHY_PMA_RCV_DET,
2785                                    &Value);
2786         if (status != STATUS_SUCCESS)
2787                 goto bad;
2788
2789         /* If PMA/PMD receive signal detect is 0, then the link is down */
2790         if (!(Value & PMA_RCV_DETECT))
2791                 return (SXG_LINK_DOWN);
2792
2793         /* MIIM_DEV_PHY_PCS - PHY PCS module */
2794         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_PCS,
2795                                 /* PCS 10GBASE-R Status 1 register */
2796                                    PHY_PCS_10G_STATUS1,
2797                                    &Value);
2798         if (status != STATUS_SUCCESS)
2799                 goto bad;
2800
2801         /* If PCS is not locked to receive blocks, then the link is down */
2802         if (!(Value & PCS_10B_BLOCK_LOCK))
2803                 return (SXG_LINK_DOWN);
2804
2805         status = sxg_read_mdio_reg(adapter, MIIM_DEV_PHY_XS,/* PHY XS module */
2806                                 /* XS Lane Status register */
2807                                    PHY_XS_LANE_STATUS,
2808                                    &Value);
2809         if (status != STATUS_SUCCESS)
2810                 goto bad;
2811
2812         /* If XS transmit lanes are not aligned, then the link is down */
2813         if (!(Value & XS_LANE_ALIGN))
2814                 return (SXG_LINK_DOWN);
2815
2816         /* All 3 bits are true, so the link is up */
2817         DBG_ERROR("EXIT %s\n", __func__);
2818
2819         return (SXG_LINK_UP);
2820
2821       bad:
2822         /* An error occurred reading an MDIO register. This shouldn't happen. */
2823         DBG_ERROR("Error reading an MDIO register!\n");
2824         ASSERT(0);
2825         return (SXG_LINK_DOWN);
2826 }
2827
2828 static void sxg_indicate_link_state(struct adapter_t *adapter,
2829                                     enum SXG_LINK_STATE LinkState)
2830 {
2831         if (adapter->LinkState == SXG_LINK_UP) {
2832                 DBG_ERROR("%s: LINK now UP, call netif_start_queue\n",
2833                           __func__);
2834                 netif_start_queue(adapter->netdev);
2835         } else {
2836                 DBG_ERROR("%s: LINK now DOWN, call netif_stop_queue\n",
2837                           __func__);
2838                 netif_stop_queue(adapter->netdev);
2839         }
2840 }
2841
2842 /*
2843  * sxg_link_state - Set the link state and if necessary, indicate.
2844  *      This routine the central point of processing for all link state changes.
2845  *      Nothing else in the driver should alter the link state or perform
2846  *      link state indications
2847  *
2848  * Arguments -
2849  *      adapter         - A pointer to our adapter structure
2850  *      LinkState       - The link state
2851  *
2852  * Return
2853  *      None
2854  */
2855 static void sxg_link_state(struct adapter_t *adapter,
2856                                 enum SXG_LINK_STATE LinkState)
2857 {
2858         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "LnkINDCT",
2859                   adapter, LinkState, adapter->LinkState, adapter->State);
2860
2861         DBG_ERROR("ENTER %s\n", __func__);
2862
2863         /*
2864          * Hold the adapter lock during this routine.  Maybe move
2865          * the lock to the caller.
2866          */
2867         /* IMP TODO : Check if we can survive without taking this lock */
2868 //      spin_lock(&adapter->AdapterLock);
2869         if (LinkState == adapter->LinkState) {
2870                 /* Nothing changed.. */
2871 //              spin_unlock(&adapter->AdapterLock);
2872                 DBG_ERROR("EXIT #0 %s. Link status = %d\n",
2873                                          __func__, LinkState);
2874                 return;
2875         }
2876         /* Save the adapter state */
2877         adapter->LinkState = LinkState;
2878
2879         /* Drop the lock and indicate link state */
2880 //      spin_unlock(&adapter->AdapterLock);
2881         DBG_ERROR("EXIT #1 %s\n", __func__);
2882
2883         sxg_indicate_link_state(adapter, LinkState);
2884 }
2885
2886 /*
2887  * sxg_write_mdio_reg - Write to a register on the MDIO bus
2888  *
2889  * Arguments -
2890  *      adapter         - A pointer to our adapter structure
2891  *  DevAddr     - MDIO device number being addressed
2892  *  RegAddr     - register address for the specified MDIO device
2893  *  Value               - value to write to the MDIO register
2894  *
2895  * Return
2896  *      status
2897  */
2898 static int sxg_write_mdio_reg(struct adapter_t *adapter,
2899                               u32 DevAddr, u32 RegAddr, u32 Value)
2900 {
2901         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2902         /* Address operation (written to MIIM field reg) */
2903         u32 AddrOp;
2904         /* Write operation (written to MIIM field reg) */
2905         u32 WriteOp;
2906         u32 Cmd;/* Command (written to MIIM command reg) */
2907         u32 ValueRead;
2908         u32 Timeout;
2909
2910         /* DBG_ERROR("ENTER %s\n", __func__); */
2911
2912         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
2913                   adapter, 0, 0, 0);
2914
2915         /* Ensure values don't exceed field width */
2916         DevAddr &= 0x001F;      /* 5-bit field */
2917         RegAddr &= 0xFFFF;      /* 16-bit field */
2918         Value &= 0xFFFF;        /* 16-bit field */
2919
2920         /* Set MIIM field register bits for an MIIM address operation */
2921         AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2922             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2923             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2924             (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
2925
2926         /* Set MIIM field register bits for an MIIM write operation */
2927         WriteOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
2928             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
2929             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
2930             (MIIM_OP_WRITE << AXGMAC_AMIIM_FIELD_OP_SHIFT) | Value;
2931
2932         /* Set MIIM command register bits to execute an MIIM command */
2933         Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
2934
2935         /* Reset the command register command bit (in case it's not 0) */
2936         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2937
2938         /* MIIM write to set the address of the specified MDIO register */
2939         WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
2940
2941         /* Write to MIIM Command Register to execute to address operation */
2942         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2943
2944         /* Poll AMIIM Indicator register to wait for completion */
2945         Timeout = SXG_LINK_TIMEOUT;
2946         do {
2947                 udelay(100);    /* Timeout in 100us units */
2948                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2949                 if (--Timeout == 0) {
2950                         return (STATUS_FAILURE);
2951                 }
2952         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2953
2954         /* Reset the command register command bit */
2955         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
2956
2957         /* MIIM write to set up an MDIO write operation */
2958         WRITE_REG(HwRegs->MacAmiimField, WriteOp, TRUE);
2959
2960         /* Write to MIIM Command Register to execute the write operation */
2961         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
2962
2963         /* Poll AMIIM Indicator register to wait for completion */
2964         Timeout = SXG_LINK_TIMEOUT;
2965         do {
2966                 udelay(100);    /* Timeout in 100us units */
2967                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
2968                 if (--Timeout == 0) {
2969                         return (STATUS_FAILURE);
2970                 }
2971         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
2972
2973         /* DBG_ERROR("EXIT %s\n", __func__); */
2974
2975         return (STATUS_SUCCESS);
2976 }
2977
2978 /*
2979  * sxg_read_mdio_reg - Read a register on the MDIO bus
2980  *
2981  * Arguments -
2982  *      adapter         - A pointer to our adapter structure
2983  *  DevAddr     - MDIO device number being addressed
2984  *  RegAddr     - register address for the specified MDIO device
2985  *  pValue      - pointer to where to put data read from the MDIO register
2986  *
2987  * Return
2988  *      status
2989  */
2990 static int sxg_read_mdio_reg(struct adapter_t *adapter,
2991                              u32 DevAddr, u32 RegAddr, u32 *pValue)
2992 {
2993         struct sxg_hw_regs *HwRegs = adapter->HwRegs;
2994         u32 AddrOp;     /* Address operation (written to MIIM field reg) */
2995         u32 ReadOp;     /* Read operation (written to MIIM field reg) */
2996         u32 Cmd;        /* Command (written to MIIM command reg) */
2997         u32 ValueRead;
2998         u32 Timeout;
2999
3000         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "WrtMDIO",
3001                   adapter, 0, 0, 0);
3002         DBG_ERROR("ENTER %s\n", __FUNCTION__);
3003
3004         /* Ensure values don't exceed field width */
3005         DevAddr &= 0x001F;      /* 5-bit field */
3006         RegAddr &= 0xFFFF;      /* 16-bit field */
3007
3008         /* Set MIIM field register bits for an MIIM address operation */
3009         AddrOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3010             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3011             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3012             (MIIM_OP_ADDR << AXGMAC_AMIIM_FIELD_OP_SHIFT) | RegAddr;
3013
3014         /* Set MIIM field register bits for an MIIM read operation */
3015         ReadOp = (MIIM_PORT_NUM << AXGMAC_AMIIM_FIELD_PORT_SHIFT) |
3016             (DevAddr << AXGMAC_AMIIM_FIELD_DEV_SHIFT) |
3017             (MIIM_TA_10GB << AXGMAC_AMIIM_FIELD_TA_SHIFT) |
3018             (MIIM_OP_READ << AXGMAC_AMIIM_FIELD_OP_SHIFT);
3019
3020         /* Set MIIM command register bits to execute an MIIM command */
3021         Cmd = AXGMAC_AMIIM_CMD_START | AXGMAC_AMIIM_CMD_10G_OPERATION;
3022
3023         /* Reset the command register command bit (in case it's not 0) */
3024         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3025
3026         /* MIIM write to set the address of the specified MDIO register */
3027         WRITE_REG(HwRegs->MacAmiimField, AddrOp, TRUE);
3028
3029         /* Write to MIIM Command Register to execute to address operation */
3030         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3031
3032         /* Poll AMIIM Indicator register to wait for completion */
3033         Timeout = SXG_LINK_TIMEOUT;
3034         do {
3035                 udelay(100);    /* Timeout in 100us units */
3036                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3037                 if (--Timeout == 0) {
3038             DBG_ERROR("EXIT %s with STATUS_FAILURE 1\n", __FUNCTION__);
3039
3040                         return (STATUS_FAILURE);
3041                 }
3042         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3043
3044         /* Reset the command register command bit */
3045         WRITE_REG(HwRegs->MacAmiimCmd, 0, TRUE);
3046
3047         /* MIIM write to set up an MDIO register read operation */
3048         WRITE_REG(HwRegs->MacAmiimField, ReadOp, TRUE);
3049
3050         /* Write to MIIM Command Register to execute the read operation */
3051         WRITE_REG(HwRegs->MacAmiimCmd, Cmd, TRUE);
3052
3053         /* Poll AMIIM Indicator register to wait for completion */
3054         Timeout = SXG_LINK_TIMEOUT;
3055         do {
3056                 udelay(100);    /* Timeout in 100us units */
3057                 READ_REG(HwRegs->MacAmiimIndicator, ValueRead);
3058                 if (--Timeout == 0) {
3059             DBG_ERROR("EXIT %s with STATUS_FAILURE 2\n", __FUNCTION__);
3060
3061                         return (STATUS_FAILURE);
3062                 }
3063         } while (ValueRead & AXGMAC_AMIIM_INDC_BUSY);
3064
3065         /* Read the MDIO register data back from the field register */
3066         READ_REG(HwRegs->MacAmiimField, *pValue);
3067         *pValue &= 0xFFFF;      /* data is in the lower 16 bits */
3068
3069         DBG_ERROR("EXIT %s\n", __FUNCTION__);
3070
3071         return (STATUS_SUCCESS);
3072 }
3073
3074 /*
3075  * Functions to obtain the CRC corresponding to the destination mac address.
3076  * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using
3077  * the polynomial:
3078  *   x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5
3079  *    + x^4 + x^2 + x^1.
3080  *
3081  * After the CRC for the 6 bytes is generated (but before the value is
3082  * complemented), we must then transpose the value and return bits 30-23.
3083  */
3084 static u32 sxg_crc_table[256];/* Table of CRC's for all possible byte values */
3085 static u32 sxg_crc_init;        /* Is table initialized */
3086
3087 /* Contruct the CRC32 table */
3088 static void sxg_mcast_init_crc32(void)
3089 {
3090         u32 c;                  /*  CRC shit reg */
3091         u32 e = 0;              /*  Poly X-or pattern */
3092         int i;                  /*  counter */
3093         int k;                  /*  byte being shifted into crc  */
3094
3095         static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 };
3096
3097         for (i = 0; i < sizeof(p) / sizeof(int); i++) {
3098                 e |= 1L << (31 - p[i]);
3099         }
3100
3101         for (i = 1; i < 256; i++) {
3102                 c = i;
3103                 for (k = 8; k; k--) {
3104                         c = c & 1 ? (c >> 1) ^ e : c >> 1;
3105                 }
3106                 sxg_crc_table[i] = c;
3107         }
3108 }
3109
3110 /*
3111  *  Return the MAC hast as described above.
3112  */
3113 static unsigned char sxg_mcast_get_mac_hash(char *macaddr)
3114 {
3115         u32 crc;
3116         char *p;
3117         int i;
3118         unsigned char machash = 0;
3119
3120         if (!sxg_crc_init) {
3121                 sxg_mcast_init_crc32();
3122                 sxg_crc_init = 1;
3123         }
3124
3125         crc = 0xFFFFFFFF;       /* Preload shift register, per crc-32 spec */
3126         for (i = 0, p = macaddr; i < 6; ++p, ++i) {
3127                 crc = (crc >> 8) ^ sxg_crc_table[(crc ^ *p) & 0xFF];
3128         }
3129
3130         /* Return bits 1-8, transposed */
3131         for (i = 1; i < 9; i++) {
3132                 machash |= (((crc >> i) & 1) << (8 - i));
3133         }
3134
3135         return (machash);
3136 }
3137
3138 static void sxg_mcast_set_mask(struct adapter_t *adapter)
3139 {
3140         struct sxg_ucode_regs *sxg_regs = adapter->UcodeRegs;
3141
3142         DBG_ERROR("%s ENTER (%s) MacFilter[%x] mask[%llx]\n", __FUNCTION__,
3143                   adapter->netdev->name, (unsigned int)adapter->MacFilter,
3144                   adapter->MulticastMask);
3145
3146         if (adapter->MacFilter & (MAC_ALLMCAST | MAC_PROMISC)) {
3147                 /*
3148                  * Turn on all multicast addresses. We have to do this for
3149                  * promiscuous mode as well as ALLMCAST mode.  It saves the
3150                  * Microcode from having keep state about the MAC configuration
3151                  */
3152                 /* DBG_ERROR("sxg: %s MacFilter = MAC_ALLMCAST | MAC_PROMISC\n \
3153                  *                              SLUT MODE!!!\n",__func__);
3154                  */
3155                 WRITE_REG(sxg_regs->McastLow, 0xFFFFFFFF, FLUSH);
3156                 WRITE_REG(sxg_regs->McastHigh, 0xFFFFFFFF, FLUSH);
3157                 /* DBG_ERROR("%s (%s) WRITE to slic_regs slic_mcastlow&high \
3158                  * 0xFFFFFFFF\n",__func__, adapter->netdev->name);
3159                  */
3160
3161         } else {
3162                 /*
3163                  * Commit our multicast mast to the SLIC by writing to the
3164                  * multicast address mask registers
3165                  */
3166                 DBG_ERROR("%s (%s) WRITE mcastlow[%lx] mcasthigh[%lx]\n",
3167                           __func__, adapter->netdev->name,
3168                           ((ulong) (adapter->MulticastMask & 0xFFFFFFFF)),
3169                           ((ulong)
3170                            ((adapter->MulticastMask >> 32) & 0xFFFFFFFF)));
3171
3172                 WRITE_REG(sxg_regs->McastLow,
3173                           (u32) (adapter->MulticastMask & 0xFFFFFFFF), FLUSH);
3174                 WRITE_REG(sxg_regs->McastHigh,
3175                           (u32) ((adapter->
3176                                   MulticastMask >> 32) & 0xFFFFFFFF), FLUSH);
3177         }
3178 }
3179
3180 static void sxg_mcast_set_bit(struct adapter_t *adapter, char *address)
3181 {
3182         unsigned char crcpoly;
3183
3184         /* Get the CRC polynomial for the mac address */
3185         crcpoly = sxg_mcast_get_mac_hash(address);
3186
3187         /*
3188          * We only have space on the SLIC for 64 entries.  Lop
3189          * off the top two bits. (2^6 = 64)
3190          */
3191         crcpoly &= 0x3F;
3192
3193         /* OR in the new bit into our 64 bit mask. */
3194         adapter->MulticastMask |= (u64) 1 << crcpoly;
3195 }
3196
3197 /*
3198  *   Function takes MAC addresses from dev_mc_list and generates the Mask
3199  */
3200
3201 static void sxg_set_mcast_addr(struct adapter_t *adapter)
3202 {
3203         struct dev_mc_list *mclist;
3204         struct net_device *dev = adapter->netdev;
3205         int i;
3206
3207         if (adapter->MacFilter & (MAC_ALLMCAST | MAC_MCAST)) {
3208                for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
3209                              i++, mclist = mclist->next) {
3210                         sxg_mcast_set_bit(adapter,mclist->da_addr);
3211                 }
3212         }
3213         sxg_mcast_set_mask(adapter);
3214 }
3215
3216 static void sxg_mcast_set_list(struct net_device *dev)
3217 {
3218         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3219
3220         ASSERT(adapter);
3221         if (dev->flags & IFF_PROMISC) {
3222                 adapter->MacFilter |= MAC_PROMISC;
3223         }
3224
3225         if (dev->flags & IFF_MULTICAST)
3226                 adapter->MacFilter |= MAC_MCAST;
3227
3228         if (dev->flags & IFF_ALLMULTI) {
3229                 adapter->MacFilter |= MAC_ALLMCAST;
3230         }
3231
3232         //XXX handle other flags as well
3233         sxg_set_mcast_addr(adapter);
3234 }
3235
3236 #if XXXTODO
3237 static void sxg_unmap_mmio_space(struct adapter_t *adapter)
3238 {
3239 #if LINUX_FREES_ADAPTER_RESOURCES
3240 /*
3241  *       if (adapter->Regs) {
3242  *              iounmap(adapter->Regs);
3243  *      }
3244  *      adapter->slic_regs = NULL;
3245  */
3246 #endif
3247 }
3248 #endif
3249
3250 void sxg_free_sgl_buffers(struct adapter_t *adapter)
3251 {
3252         struct list_entry               *ple;
3253         struct sxg_scatter_gather       *Sgl;
3254
3255         while(!(IsListEmpty(&adapter->AllSglBuffers))) {
3256                 ple = RemoveHeadList(&adapter->AllSglBuffers);
3257                 Sgl = container_of(ple, struct sxg_scatter_gather, AllList);
3258                 kfree(Sgl);
3259                 adapter->AllSglBufferCount--;
3260         }
3261 }
3262
3263 void sxg_free_rcvblocks(struct adapter_t *adapter)
3264 {
3265         u32                             i;
3266         void                            *temp_RcvBlock;
3267         struct list_entry               *ple;
3268         struct sxg_rcv_block_hdr        *RcvBlockHdr;
3269         struct sxg_rcv_data_buffer_hdr  *RcvDataBufferHdr;
3270         ASSERT((adapter->state == SXG_STATE_INITIALIZING) ||
3271                     (adapter->state == SXG_STATE_HALTING));
3272         while(!(IsListEmpty(&adapter->AllRcvBlocks))) {
3273
3274                  ple = RemoveHeadList(&adapter->AllRcvBlocks);
3275                  RcvBlockHdr = container_of(ple, struct sxg_rcv_block_hdr, AllList);
3276
3277                 if(RcvBlockHdr->VirtualAddress) {
3278                         temp_RcvBlock = RcvBlockHdr->VirtualAddress;
3279
3280                         for(i=0; i< SXG_RCV_DESCRIPTORS_PER_BLOCK;
3281                              i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3282                                 RcvDataBufferHdr =
3283                                         (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3284                                 SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3285                         }
3286                 }
3287
3288                 pci_free_consistent(adapter->pcidev,
3289                                          SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE),
3290                                          RcvBlockHdr->VirtualAddress,
3291                                          RcvBlockHdr->PhysicalAddress);
3292                 adapter->AllRcvBlockCount--;
3293         }
3294         ASSERT(adapter->AllRcvBlockCount == 0);
3295         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3296                         adapter, 0, 0, 0);
3297 }
3298 void sxg_free_mcast_addrs(struct adapter_t *adapter)
3299 {
3300         struct sxg_multicast_address    *address;
3301         while(adapter->MulticastAddrs) {
3302                 address = adapter->MulticastAddrs;
3303                 adapter->MulticastAddrs = address->Next;
3304                 kfree(address);
3305          }
3306
3307         adapter->MulticastMask= 0;
3308 }
3309
3310 void sxg_unmap_resources(struct adapter_t *adapter)
3311 {
3312         if(adapter->HwRegs) {
3313                 iounmap((void *)adapter->HwRegs);
3314          }
3315         if(adapter->UcodeRegs) {
3316                 iounmap((void *)adapter->UcodeRegs);
3317         }
3318
3319         ASSERT(adapter->AllRcvBlockCount == 0);
3320         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFrRBlk",
3321                            adapter, 0, 0, 0);
3322 }
3323
3324
3325
3326 /*
3327  * sxg_free_resources - Free everything allocated in SxgAllocateResources
3328  *
3329  * Arguments -
3330  *      adapter         - A pointer to our adapter structure
3331  *
3332  * Return
3333  *      none
3334  */
3335 void sxg_free_resources(struct adapter_t *adapter)
3336 {
3337         u32 RssIds, IsrCount;
3338         struct net_device *netdev = adapter->netdev;
3339         RssIds = SXG_RSS_CPU_COUNT(adapter);
3340         IsrCount = adapter->MsiEnabled ? RssIds : 1;
3341
3342         if (adapter->BasicAllocations == FALSE) {
3343                 /*
3344                  * No allocations have been made, including spinlocks,
3345                  * or listhead initializations.  Return.
3346                  */
3347                 return;
3348         }
3349
3350         /* Free Irq */
3351         free_irq(adapter->netdev->irq, netdev);
3352
3353         if (!(IsListEmpty(&adapter->AllRcvBlocks))) {
3354                 sxg_free_rcvblocks(adapter);
3355         }
3356         if (!(IsListEmpty(&adapter->AllSglBuffers))) {
3357                 sxg_free_sgl_buffers(adapter);
3358         }
3359
3360         if (adapter->XmtRingZeroIndex) {
3361                 pci_free_consistent(adapter->pcidev,
3362                                     sizeof(u32),
3363                                     adapter->XmtRingZeroIndex,
3364                                     adapter->PXmtRingZeroIndex);
3365         }
3366         if (adapter->Isr) {
3367                 pci_free_consistent(adapter->pcidev,
3368                                     sizeof(u32) * IsrCount,
3369                                     adapter->Isr, adapter->PIsr);
3370         }
3371
3372         if (adapter->EventRings) {
3373                 pci_free_consistent(adapter->pcidev,
3374                                     sizeof(struct sxg_event_ring) * RssIds,
3375                                     adapter->EventRings, adapter->PEventRings);
3376         }
3377         if (adapter->RcvRings) {
3378                 pci_free_consistent(adapter->pcidev,
3379                                    sizeof(struct sxg_rcv_ring) * 1,
3380                                    adapter->RcvRings,
3381                                    adapter->PRcvRings);
3382                 adapter->RcvRings = NULL;
3383         }
3384
3385         if(adapter->XmtRings) {
3386                 pci_free_consistent(adapter->pcidev,
3387                                             sizeof(struct sxg_xmt_ring) * 1,
3388                                             adapter->XmtRings,
3389                                             adapter->PXmtRings);
3390                         adapter->XmtRings = NULL;
3391         }
3392
3393         if (adapter->ucode_stats) {
3394                 pci_unmap_single(adapter->pcidev,
3395                                 sizeof(struct sxg_ucode_stats),
3396                                  adapter->pucode_stats, PCI_DMA_FROMDEVICE);
3397                 adapter->ucode_stats = NULL;
3398         }
3399
3400
3401         /* Unmap register spaces */
3402         sxg_unmap_resources(adapter);
3403
3404         sxg_free_mcast_addrs(adapter);
3405
3406         adapter->BasicAllocations = FALSE;
3407
3408 }
3409
3410 /*
3411  * sxg_allocate_complete -
3412  *
3413  * This routine is called when a memory allocation has completed.
3414  *
3415  * Arguments -
3416  *      struct adapter_t *      - Our adapter structure
3417  *      VirtualAddress  - Memory virtual address
3418  *      PhysicalAddress - Memory physical address
3419  *      Length          - Length of memory allocated (or 0)
3420  *      Context         - The type of buffer allocated
3421  *
3422  * Return
3423  *      None.
3424  */
3425 static int sxg_allocate_complete(struct adapter_t *adapter,
3426                                   void *VirtualAddress,
3427                                   dma_addr_t PhysicalAddress,
3428                                   u32 Length, enum sxg_buffer_type Context)
3429 {
3430         int status = 0;
3431         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocCmp",
3432                   adapter, VirtualAddress, Length, Context);
3433         ASSERT(atomic_read(&adapter->pending_allocations));
3434         atomic_dec(&adapter->pending_allocations);
3435
3436         switch (Context) {
3437
3438         case SXG_BUFFER_TYPE_RCV:
3439                 status = sxg_allocate_rcvblock_complete(adapter,
3440                                                VirtualAddress,
3441                                                PhysicalAddress, Length);
3442                 break;
3443         case SXG_BUFFER_TYPE_SGL:
3444                 sxg_allocate_sgl_buffer_complete(adapter, (struct sxg_scatter_gather *)
3445                                                  VirtualAddress,
3446                                                  PhysicalAddress, Length);
3447                 break;
3448         }
3449         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocCmp",
3450                   adapter, VirtualAddress, Length, Context);
3451
3452         return status;
3453 }
3454
3455 /*
3456  * sxg_allocate_buffer_memory - Shared memory allocation routine used for
3457  *              synchronous and asynchronous buffer allocations
3458  *
3459  * Arguments -
3460  *      adapter         - A pointer to our adapter structure
3461  *      Size            - block size to allocate
3462  *      BufferType      - Type of buffer to allocate
3463  *
3464  * Return
3465  *      int
3466  */
3467 static int sxg_allocate_buffer_memory(struct adapter_t *adapter,
3468                                       u32 Size, enum sxg_buffer_type BufferType)
3469 {
3470         int status;
3471         void *Buffer;
3472         dma_addr_t pBuffer;
3473
3474         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AllocMem",
3475                   adapter, Size, BufferType, 0);
3476         /*
3477          * Grab the adapter lock and check the state. If we're in anything other
3478          * than INITIALIZING or RUNNING state, fail.  This is to prevent
3479          * allocations in an improper driver state
3480          */
3481
3482         atomic_inc(&adapter->pending_allocations);
3483
3484         if(BufferType != SXG_BUFFER_TYPE_SGL)
3485                 Buffer = pci_alloc_consistent(adapter->pcidev, Size, &pBuffer);
3486         else {
3487                 Buffer = kzalloc(Size, GFP_ATOMIC);
3488                 pBuffer = (dma_addr_t)NULL;
3489         }
3490         if (Buffer == NULL) {
3491                 /*
3492                  * Decrement the AllocationsPending count while holding
3493                  * the lock.  Pause processing relies on this
3494                  */
3495                 atomic_dec(&adapter->pending_allocations);
3496                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlcMemF1",
3497                           adapter, Size, BufferType, 0);
3498                 return (STATUS_RESOURCES);
3499         }
3500         status = sxg_allocate_complete(adapter, Buffer, pBuffer, Size, BufferType);
3501
3502         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlocMem",
3503                   adapter, Size, BufferType, status);
3504         return status;
3505 }
3506
3507 /*
3508  * sxg_allocate_rcvblock_complete - Complete a receive descriptor
3509  *                                      block allocation
3510  *
3511  * Arguments -
3512  *      adapter                         - A pointer to our adapter structure
3513  *      RcvBlock                        - receive block virtual address
3514  *      PhysicalAddress         - Physical address
3515  *      Length                          - Memory length
3516  *
3517  * Return
3518  */
3519 static int sxg_allocate_rcvblock_complete(struct adapter_t *adapter,
3520                                            void *RcvBlock,
3521                                            dma_addr_t PhysicalAddress,
3522                                            u32 Length)
3523 {
3524         u32 i;
3525         u32 BufferSize = adapter->ReceiveBufferSize;
3526         u64 Paddr;
3527         void *temp_RcvBlock;
3528         struct sxg_rcv_block_hdr *RcvBlockHdr;
3529         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3530         struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3531         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3532
3533         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlRcvBlk",
3534                   adapter, RcvBlock, Length, 0);
3535         if (RcvBlock == NULL) {
3536                 goto fail;
3537         }
3538         memset(RcvBlock, 0, Length);
3539         ASSERT((BufferSize == SXG_RCV_DATA_BUFFER_SIZE) ||
3540                (BufferSize == SXG_RCV_JUMBO_BUFFER_SIZE));
3541         ASSERT(Length == SXG_RCV_BLOCK_SIZE(SXG_RCV_DATA_HDR_SIZE));
3542         /*
3543          * First, initialize the contained pool of receive data buffers.
3544          * This initialization requires NBL/NB/MDL allocations, if any of them
3545          * fail, free the block and return without queueing the shared memory
3546          */
3547         //RcvDataBuffer = RcvBlock;
3548         temp_RcvBlock = RcvBlock;
3549         for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3550                  i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3551                 RcvDataBufferHdr = (struct sxg_rcv_data_buffer_hdr *)
3552                                         temp_RcvBlock;
3553                 /* For FREE macro assertion */
3554                 RcvDataBufferHdr->State = SXG_BUFFER_UPSTREAM;
3555                 SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr, BufferSize);
3556                 if (RcvDataBufferHdr->SxgDumbRcvPacket == NULL)
3557                         goto fail;
3558
3559         }
3560
3561         /*
3562          * Place this entire block of memory on the AllRcvBlocks queue so it
3563          * can be free later
3564          */
3565
3566         RcvBlockHdr = (struct sxg_rcv_block_hdr *) ((unsigned char *)RcvBlock +
3567                         SXG_RCV_BLOCK_HDR_OFFSET(SXG_RCV_DATA_HDR_SIZE));
3568         RcvBlockHdr->VirtualAddress = RcvBlock;
3569         RcvBlockHdr->PhysicalAddress = PhysicalAddress;
3570         spin_lock(&adapter->RcvQLock);
3571         adapter->AllRcvBlockCount++;
3572         InsertTailList(&adapter->AllRcvBlocks, &RcvBlockHdr->AllList);
3573         spin_unlock(&adapter->RcvQLock);
3574
3575         /* Now free the contained receive data buffers that we
3576          * initialized above */
3577         temp_RcvBlock = RcvBlock;
3578         for (i = 0, Paddr = PhysicalAddress;
3579              i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3580              i++, Paddr += SXG_RCV_DATA_HDR_SIZE,
3581              temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3582                 RcvDataBufferHdr =
3583                         (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3584                 spin_lock(&adapter->RcvQLock);
3585                 SXG_FREE_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3586                 spin_unlock(&adapter->RcvQLock);
3587         }
3588
3589         /* Locate the descriptor block and put it on a separate free queue */
3590         RcvDescriptorBlock =
3591             (struct sxg_rcv_descriptor_block *) ((unsigned char *)RcvBlock +
3592                                          SXG_RCV_DESCRIPTOR_BLOCK_OFFSET
3593                                          (SXG_RCV_DATA_HDR_SIZE));
3594         RcvDescriptorBlockHdr =
3595             (struct sxg_rcv_descriptor_block_hdr *) ((unsigned char *)RcvBlock +
3596                                              SXG_RCV_DESCRIPTOR_BLOCK_HDR_OFFSET
3597                                              (SXG_RCV_DATA_HDR_SIZE));
3598         RcvDescriptorBlockHdr->VirtualAddress = RcvDescriptorBlock;
3599         RcvDescriptorBlockHdr->PhysicalAddress = Paddr;
3600         spin_lock(&adapter->RcvQLock);
3601         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter, RcvDescriptorBlockHdr);
3602         spin_unlock(&adapter->RcvQLock);
3603         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlRBlk",
3604                   adapter, RcvBlock, Length, 0);
3605         return STATUS_SUCCESS;
3606 fail:
3607         /* Free any allocated resources */
3608         if (RcvBlock) {
3609                 temp_RcvBlock = RcvBlock;
3610                 for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK;
3611                      i++, temp_RcvBlock += SXG_RCV_DATA_HDR_SIZE) {
3612                         RcvDataBufferHdr =
3613                             (struct sxg_rcv_data_buffer_hdr *)temp_RcvBlock;
3614                         SXG_FREE_RCV_PACKET(RcvDataBufferHdr);
3615                 }
3616                 pci_free_consistent(adapter->pcidev,
3617                                     Length, RcvBlock, PhysicalAddress);
3618         }
3619         DBG_ERROR("%s: OUT OF RESOURCES\n", __func__);
3620         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_IMPORTANT, "RcvAFail",
3621                   adapter, adapter->FreeRcvBufferCount,
3622                   adapter->FreeRcvBlockCount, adapter->AllRcvBlockCount);
3623         adapter->Stats.NoMem++;
3624         /* As allocation failed, free all previously allocated blocks..*/
3625         //sxg_free_rcvblocks(adapter);
3626
3627         return STATUS_RESOURCES;
3628 }
3629
3630 /*
3631  * sxg_allocate_sgl_buffer_complete - Complete a SGL buffer allocation
3632  *
3633  * Arguments -
3634  *      adapter                         - A pointer to our adapter structure
3635  *      SxgSgl                          - struct sxg_scatter_gather buffer
3636  *      PhysicalAddress         - Physical address
3637  *      Length                          - Memory length
3638  *
3639  * Return
3640  */
3641 static void sxg_allocate_sgl_buffer_complete(struct adapter_t *adapter,
3642                                              struct sxg_scatter_gather *SxgSgl,
3643                                              dma_addr_t PhysicalAddress,
3644                                              u32 Length)
3645 {
3646         unsigned long sgl_flags;
3647         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "AlSglCmp",
3648                   adapter, SxgSgl, Length, 0);
3649         if(!in_irq())
3650                 spin_lock_irqsave(&adapter->SglQLock, sgl_flags);
3651         else
3652                 spin_lock(&adapter->SglQLock);
3653         adapter->AllSglBufferCount++;
3654         /* PhysicalAddress; */
3655         SxgSgl->PhysicalAddress = PhysicalAddress;
3656         /* Initialize backpointer once */
3657         SxgSgl->adapter = adapter;
3658         InsertTailList(&adapter->AllSglBuffers, &SxgSgl->AllList);
3659         if(!in_irq())
3660                 spin_unlock_irqrestore(&adapter->SglQLock, sgl_flags);
3661         else
3662                 spin_unlock(&adapter->SglQLock);
3663         SxgSgl->State = SXG_BUFFER_BUSY;
3664         SXG_FREE_SGL_BUFFER(adapter, SxgSgl, NULL, in_irq());
3665         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XAlSgl",
3666                   adapter, SxgSgl, Length, 0);
3667 }
3668
3669
3670 static int sxg_adapter_set_hwaddr(struct adapter_t *adapter)
3671 {
3672         /*
3673          *  DBG_ERROR ("%s ENTER card->config_set[%x] port[%d] physport[%d] \
3674          *  funct#[%d]\n", __func__, card->config_set,
3675          *  adapter->port, adapter->physport, adapter->functionnumber);
3676          *
3677          *  sxg_dbg_macaddrs(adapter);
3678          */
3679         /* DBG_ERROR ("%s AFTER copying from config.macinfo into currmacaddr\n",
3680          *                      __FUNCTION__);
3681          */
3682
3683         /* sxg_dbg_macaddrs(adapter); */
3684
3685         struct net_device * dev = adapter->netdev;
3686         if(!dev)
3687         {
3688                 printk("sxg: Dev is Null\n");
3689         }
3690
3691         DBG_ERROR("%s ENTER (%s)\n", __FUNCTION__, adapter->netdev->name);
3692
3693         if (netif_running(dev)) {
3694                 return -EBUSY;
3695         }
3696         if (!adapter) {
3697                 return -EBUSY;
3698         }
3699
3700         if (!(adapter->currmacaddr[0] ||
3701               adapter->currmacaddr[1] ||
3702               adapter->currmacaddr[2] ||
3703               adapter->currmacaddr[3] ||
3704               adapter->currmacaddr[4] || adapter->currmacaddr[5])) {
3705                 memcpy(adapter->currmacaddr, adapter->macaddr, 6);
3706         }
3707         if (adapter->netdev) {
3708                 memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6);
3709                 memcpy(adapter->netdev->perm_addr, adapter->currmacaddr, 6);
3710         }
3711         /* DBG_ERROR ("%s EXIT port %d\n", __func__, adapter->port); */
3712         sxg_dbg_macaddrs(adapter);
3713
3714         return 0;
3715 }
3716
3717 #if XXXTODO
3718 static int sxg_mac_set_address(struct net_device *dev, void *ptr)
3719 {
3720         struct adapter_t *adapter = (struct adapter_t *) netdev_priv(dev);
3721         struct sockaddr *addr = ptr;
3722
3723         DBG_ERROR("%s ENTER (%s)\n", __func__, adapter->netdev->name);
3724
3725         if (netif_running(dev)) {
3726                 return -EBUSY;
3727         }
3728         if (!adapter) {
3729                 return -EBUSY;
3730         }
3731         DBG_ERROR("sxg: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3732                   __func__, adapter->netdev->name, adapter->currmacaddr[0],
3733                   adapter->currmacaddr[1], adapter->currmacaddr[2],
3734                   adapter->currmacaddr[3], adapter->currmacaddr[4],
3735                   adapter->currmacaddr[5]);
3736         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3737         memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len);
3738         DBG_ERROR("sxg: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
3739                   __func__, adapter->netdev->name, adapter->currmacaddr[0],
3740                   adapter->currmacaddr[1], adapter->currmacaddr[2],
3741                   adapter->currmacaddr[3], adapter->currmacaddr[4],
3742                   adapter->currmacaddr[5]);
3743
3744         sxg_config_set(adapter, TRUE);
3745         return 0;
3746 }
3747 #endif
3748
3749 /*
3750  * SXG DRIVER FUNCTIONS  (below)
3751  *
3752  * sxg_initialize_adapter - Initialize adapter
3753  *
3754  * Arguments -
3755  *      adapter         - A pointer to our adapter structure
3756  *
3757  * Return - int
3758  */
3759 static int sxg_initialize_adapter(struct adapter_t *adapter)
3760 {
3761         u32 RssIds, IsrCount;
3762         u32 i;
3763         int status;
3764
3765         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "InitAdpt",
3766                   adapter, 0, 0, 0);
3767
3768         RssIds = 1;             /*  XXXTODO  SXG_RSS_CPU_COUNT(adapter); */
3769         IsrCount = adapter->MsiEnabled ? RssIds : 1;
3770
3771         /*
3772          * Sanity check SXG_UCODE_REGS structure definition to
3773          * make sure the length is correct
3774          */
3775         ASSERT(sizeof(struct sxg_ucode_regs) == SXG_REGISTER_SIZE_PER_CPU);
3776
3777         /* Disable interrupts */
3778         SXG_DISABLE_ALL_INTERRUPTS(adapter);
3779
3780         /* Set MTU */
3781         ASSERT((adapter->FrameSize == ETHERMAXFRAME) ||
3782                (adapter->FrameSize == JUMBOMAXFRAME));
3783         WRITE_REG(adapter->UcodeRegs[0].LinkMtu, adapter->FrameSize, TRUE);
3784
3785         /* Set event ring base address and size */
3786         WRITE_REG64(adapter,
3787                     adapter->UcodeRegs[0].EventBase, adapter->PEventRings, 0);
3788         WRITE_REG(adapter->UcodeRegs[0].EventSize, EVENT_RING_SIZE, TRUE);
3789
3790         /* Per-ISR initialization */
3791         for (i = 0; i < IsrCount; i++) {
3792                 u64 Addr;
3793                 /* Set interrupt status pointer */
3794                 Addr = adapter->PIsr + (i * sizeof(u32));
3795                 WRITE_REG64(adapter, adapter->UcodeRegs[i].Isp, Addr, i);
3796         }
3797
3798         /* XMT ring zero index */
3799         WRITE_REG64(adapter,
3800                     adapter->UcodeRegs[0].SPSendIndex,
3801                     adapter->PXmtRingZeroIndex, 0);
3802
3803         /* Per-RSS initialization */
3804         for (i = 0; i < RssIds; i++) {
3805                 /* Release all event ring entries to the Microcode */
3806                 WRITE_REG(adapter->UcodeRegs[i].EventRelease, EVENT_RING_SIZE,
3807                           TRUE);
3808         }
3809
3810         /* Transmit ring base and size */
3811         WRITE_REG64(adapter,
3812                     adapter->UcodeRegs[0].XmtBase, adapter->PXmtRings, 0);
3813         WRITE_REG(adapter->UcodeRegs[0].XmtSize, SXG_XMT_RING_SIZE, TRUE);
3814
3815         /* Receive ring base and size */
3816         WRITE_REG64(adapter,
3817                     adapter->UcodeRegs[0].RcvBase, adapter->PRcvRings, 0);
3818         WRITE_REG(adapter->UcodeRegs[0].RcvSize, SXG_RCV_RING_SIZE, TRUE);
3819
3820         /* Populate the card with receive buffers */
3821         sxg_stock_rcv_buffers(adapter);
3822
3823         /*
3824          * Initialize checksum offload capabilities.  At the moment we always
3825          * enable IP and TCP receive checksums on the card. Depending on the
3826          * checksum configuration specified by the user, we can choose to
3827          * report or ignore the checksum information provided by the card.
3828          */
3829         WRITE_REG(adapter->UcodeRegs[0].ReceiveChecksum,
3830                   SXG_RCV_TCP_CSUM_ENABLED | SXG_RCV_IP_CSUM_ENABLED, TRUE);
3831
3832         /* Initialize the MAC, XAUI */
3833         DBG_ERROR("sxg: %s ENTER sxg_initialize_link\n", __func__);
3834         status = sxg_initialize_link(adapter);
3835         DBG_ERROR("sxg: %s EXIT sxg_initialize_link status[%x]\n", __func__,
3836                   status);
3837         if (status != STATUS_SUCCESS) {
3838                 return (status);
3839         }
3840         /*
3841          * Initialize Dead to FALSE.
3842          * SlicCheckForHang or SlicDumpThread will take it from here.
3843          */
3844         adapter->Dead = FALSE;
3845         adapter->PingOutstanding = FALSE;
3846         adapter->State = SXG_STATE_RUNNING;
3847
3848         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XInit",
3849                   adapter, 0, 0, 0);
3850         return (STATUS_SUCCESS);
3851 }
3852
3853 /*
3854  * sxg_fill_descriptor_block - Populate a descriptor block and give it to
3855  * the card.  The caller should hold the RcvQLock
3856  *
3857  * Arguments -
3858  *      adapter         - A pointer to our adapter structure
3859  *  RcvDescriptorBlockHdr       - Descriptor block to fill
3860  *
3861  * Return
3862  *      status
3863  */
3864 static int sxg_fill_descriptor_block(struct adapter_t *adapter,
3865              struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr)
3866 {
3867         u32 i;
3868         struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
3869         struct sxg_rcv_data_buffer_hdr *RcvDataBufferHdr;
3870         struct sxg_rcv_descriptor_block *RcvDescriptorBlock;
3871         struct sxg_cmd *RingDescriptorCmd;
3872         struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
3873
3874         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "FilBlk",
3875                   adapter, adapter->RcvBuffersOnCard,
3876                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3877
3878         ASSERT(RcvDescriptorBlockHdr);
3879
3880         /*
3881          * If we don't have the resources to fill the descriptor block,
3882          * return failure
3883          */
3884         if ((adapter->FreeRcvBufferCount < SXG_RCV_DESCRIPTORS_PER_BLOCK) ||
3885             SXG_RING_FULL(RcvRingInfo)) {
3886                 adapter->Stats.NoMem++;
3887                 return (STATUS_FAILURE);
3888         }
3889         /* Get a ring descriptor command */
3890         SXG_GET_CMD(RingZero,
3891                     RcvRingInfo, RingDescriptorCmd, RcvDescriptorBlockHdr);
3892         ASSERT(RingDescriptorCmd);
3893         RcvDescriptorBlockHdr->State = SXG_BUFFER_ONCARD;
3894         RcvDescriptorBlock = (struct sxg_rcv_descriptor_block *)
3895                                  RcvDescriptorBlockHdr->VirtualAddress;
3896
3897         /* Fill in the descriptor block */
3898         for (i = 0; i < SXG_RCV_DESCRIPTORS_PER_BLOCK; i++) {
3899                 SXG_GET_RCV_DATA_BUFFER(adapter, RcvDataBufferHdr);
3900                 ASSERT(RcvDataBufferHdr);
3901 //              ASSERT(RcvDataBufferHdr->SxgDumbRcvPacket);
3902                 if (!RcvDataBufferHdr->SxgDumbRcvPacket) {
3903                         SXG_ALLOCATE_RCV_PACKET(adapter, RcvDataBufferHdr,
3904                                                 adapter->ReceiveBufferSize);
3905                         if(RcvDataBufferHdr->skb)
3906                                 RcvDataBufferHdr->SxgDumbRcvPacket =
3907                                                 RcvDataBufferHdr->skb;
3908                         else
3909                                 goto no_memory;
3910                 }
3911                 SXG_REINIATIALIZE_PACKET(RcvDataBufferHdr->SxgDumbRcvPacket);
3912                 RcvDataBufferHdr->State = SXG_BUFFER_ONCARD;
3913                 RcvDescriptorBlock->Descriptors[i].VirtualAddress =
3914                                             (void *)RcvDataBufferHdr;
3915
3916                 RcvDescriptorBlock->Descriptors[i].PhysicalAddress =
3917                     RcvDataBufferHdr->PhysicalAddress;
3918         }
3919         /* Add the descriptor block to receive descriptor ring 0 */
3920         RingDescriptorCmd->Sgl = RcvDescriptorBlockHdr->PhysicalAddress;
3921
3922         /*
3923          * RcvBuffersOnCard is not protected via the receive lock (see
3924          * sxg_process_event_queue) We don't want to grap a lock every time a
3925          * buffer is returned to us, so we use atomic interlocked functions
3926          * instead.
3927          */
3928         adapter->RcvBuffersOnCard += SXG_RCV_DESCRIPTORS_PER_BLOCK;
3929
3930         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "DscBlk",
3931                   RcvDescriptorBlockHdr,
3932                   RingDescriptorCmd, RcvRingInfo->Head, RcvRingInfo->Tail);
3933
3934         WRITE_REG(adapter->UcodeRegs[0].RcvCmd, 1, true);
3935         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlk",
3936                   adapter, adapter->RcvBuffersOnCard,
3937                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3938         return (STATUS_SUCCESS);
3939 no_memory:
3940         return (-ENOMEM);
3941 }
3942
3943 /*
3944  * sxg_stock_rcv_buffers - Stock the card with receive buffers
3945  *
3946  * Arguments -
3947  *      adapter         - A pointer to our adapter structure
3948  *
3949  * Return
3950  *      None
3951  */
3952 static void sxg_stock_rcv_buffers(struct adapter_t *adapter)
3953 {
3954         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
3955
3956         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "StockBuf",
3957                   adapter, adapter->RcvBuffersOnCard,
3958                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
3959         /*
3960          * First, see if we've got less than our minimum threshold of
3961          * receive buffers, there isn't an allocation in progress, and
3962          * we haven't exceeded our maximum.. get another block of buffers
3963          * None of this needs to be SMP safe.  It's round numbers.
3964          */
3965         if ((adapter->FreeRcvBufferCount < SXG_MIN_RCV_DATA_BUFFERS) &&
3966             (adapter->AllRcvBlockCount < SXG_MAX_RCV_BLOCKS) &&
3967             (atomic_read(&adapter->pending_allocations) == 0)) {
3968                 sxg_allocate_buffer_memory(adapter,
3969                                            SXG_RCV_BLOCK_SIZE
3970                                            (SXG_RCV_DATA_HDR_SIZE),
3971                                            SXG_BUFFER_TYPE_RCV);
3972         }
3973         /* Now grab the RcvQLock lock and proceed */
3974         spin_lock(&adapter->RcvQLock);
3975         while (adapter->RcvBuffersOnCard < SXG_RCV_DATA_BUFFERS) {
3976                 struct list_entry *_ple;
3977
3978                 /* Get a descriptor block */
3979                 RcvDescriptorBlockHdr = NULL;
3980                 if (adapter->FreeRcvBlockCount) {
3981                         _ple = RemoveHeadList(&adapter->FreeRcvBlocks);
3982                         RcvDescriptorBlockHdr =
3983                             container_of(_ple, struct sxg_rcv_descriptor_block_hdr,
3984                                          FreeList);
3985                         adapter->FreeRcvBlockCount--;
3986                         RcvDescriptorBlockHdr->State = SXG_BUFFER_BUSY;
3987                 }
3988
3989                 if (RcvDescriptorBlockHdr == NULL) {
3990                         /* Bail out.. */
3991                         adapter->Stats.NoMem++;
3992                         break;
3993                 }
3994                 /* Fill in the descriptor block and give it to the card */
3995                 if (sxg_fill_descriptor_block(adapter, RcvDescriptorBlockHdr) ==
3996                     STATUS_FAILURE) {
3997                         /* Free the descriptor block */
3998                         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
3999                                                       RcvDescriptorBlockHdr);
4000                         break;
4001                 }
4002         }
4003         spin_unlock(&adapter->RcvQLock);
4004         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XFilBlks",
4005                   adapter, adapter->RcvBuffersOnCard,
4006                   adapter->FreeRcvBufferCount, adapter->AllRcvBlockCount);
4007 }
4008
4009 /*
4010  * sxg_complete_descriptor_blocks - Return descriptor blocks that have been
4011  * completed by the microcode
4012  *
4013  * Arguments -
4014  *      adapter         - A pointer to our adapter structure
4015  *      Index           - Where the microcode is up to
4016  *
4017  * Return
4018  *      None
4019  */
4020 static void sxg_complete_descriptor_blocks(struct adapter_t *adapter,
4021                                            unsigned char Index)
4022 {
4023         struct sxg_rcv_ring *RingZero = &adapter->RcvRings[0];
4024         struct sxg_ring_info *RcvRingInfo = &adapter->RcvRingZeroInfo;
4025         struct sxg_rcv_descriptor_block_hdr *RcvDescriptorBlockHdr;
4026         struct sxg_cmd *RingDescriptorCmd;
4027
4028         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlks",
4029                   adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4030
4031         /* Now grab the RcvQLock lock and proceed */
4032         spin_lock(&adapter->RcvQLock);
4033         ASSERT(Index != RcvRingInfo->Tail);
4034         while (sxg_ring_get_forward_diff(RcvRingInfo, Index,
4035                                         RcvRingInfo->Tail) > 3) {
4036                 /*
4037                  * Locate the current Cmd (ring descriptor entry), and
4038                  * associated receive descriptor block, and advance
4039                  * the tail
4040                  */
4041                 SXG_RETURN_CMD(RingZero,
4042                                RcvRingInfo,
4043                                RingDescriptorCmd, RcvDescriptorBlockHdr);
4044                 SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "CmpRBlk",
4045                           RcvRingInfo->Head, RcvRingInfo->Tail,
4046                           RingDescriptorCmd, RcvDescriptorBlockHdr);
4047
4048                 /* Clear the SGL field */
4049                 RingDescriptorCmd->Sgl = 0;
4050                 /*
4051                  * Attempt to refill it and hand it right back to the
4052                  * card.  If we fail to refill it, free the descriptor block
4053                  * header.  The card will be restocked later via the
4054                  * RcvBuffersOnCard test
4055                  */
4056                 if (sxg_fill_descriptor_block(adapter,
4057                          RcvDescriptorBlockHdr) == STATUS_FAILURE)
4058                         SXG_FREE_RCV_DESCRIPTOR_BLOCK(adapter,
4059                                                       RcvDescriptorBlockHdr);
4060         }
4061         spin_unlock(&adapter->RcvQLock);
4062         SXG_TRACE(TRACE_SXG, SxgTraceBuffer, TRACE_NOISY, "XCRBlks",
4063                   adapter, Index, RcvRingInfo->Head, RcvRingInfo->Tail);
4064 }
4065
4066 /*
4067  * Read the statistics which the card has been maintaining.
4068  */
4069 void sxg_collect_statistics(struct adapter_t *adapter)
4070 {
4071         if(adapter->ucode_stats)
4072                 WRITE_REG64(adapter, adapter->UcodeRegs[0].GetUcodeStats,
4073                                 adapter->pucode_stats, 0);
4074         adapter->stats.rx_fifo_errors = adapter->ucode_stats->ERDrops;
4075         adapter->stats.rx_over_errors = adapter->ucode_stats->NBDrops;
4076         adapter->stats.tx_fifo_errors = adapter->ucode_stats->XDrops;
4077 }
4078
4079 static struct net_device_stats *sxg_get_stats(struct net_device * dev)
4080 {
4081         struct adapter_t *adapter = netdev_priv(dev);
4082
4083         sxg_collect_statistics(adapter);
4084         return (&adapter->stats);
4085 }
4086
4087 static struct pci_driver sxg_driver = {
4088         .name = sxg_driver_name,
4089         .id_table = sxg_pci_tbl,
4090         .probe = sxg_entry_probe,
4091         .remove = sxg_entry_remove,
4092 #if SXG_POWER_MANAGEMENT_ENABLED
4093         .suspend = sxgpm_suspend,
4094         .resume = sxgpm_resume,
4095 #endif
4096         /* .shutdown   =     slic_shutdown,  MOOK_INVESTIGATE */
4097 };
4098
4099 static int __init sxg_module_init(void)
4100 {
4101         sxg_init_driver();
4102
4103         if (debug >= 0)
4104                 sxg_debug = debug;
4105
4106         return pci_register_driver(&sxg_driver);
4107 }
4108
4109 static void __exit sxg_module_cleanup(void)
4110 {
4111         pci_unregister_driver(&sxg_driver);
4112 }
4113
4114 module_init(sxg_module_init);
4115 module_exit(sxg_module_cleanup);