2 * Sonics Silicon Backplane
3 * Broadcom ChipCommon Power Management Unit driver
5 * Copyright 2009, Michael Buesch <mb@bu3sch.de>
6 * Copyright 2007, Broadcom Corporation
8 * Licensed under the GNU/GPL. See COPYING for details.
11 #include <linux/ssb/ssb.h>
12 #include <linux/ssb/ssb_regs.h>
13 #include <linux/ssb/ssb_driver_chipcommon.h>
14 #include <linux/delay.h>
16 #include "ssb_private.h"
18 static u32 ssb_chipco_pll_read(struct ssb_chipcommon *cc, u32 offset)
20 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
21 return chipco_read32(cc, SSB_CHIPCO_PLLCTL_DATA);
24 static void ssb_chipco_pll_write(struct ssb_chipcommon *cc,
25 u32 offset, u32 value)
27 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, offset);
28 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, value);
31 static void ssb_chipco_regctl_maskset(struct ssb_chipcommon *cc,
32 u32 offset, u32 mask, u32 set)
36 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
37 chipco_write32(cc, SSB_CHIPCO_REGCTL_ADDR, offset);
38 chipco_read32(cc, SSB_CHIPCO_REGCTL_ADDR);
39 value = chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
42 chipco_write32(cc, SSB_CHIPCO_REGCTL_DATA, value);
43 chipco_read32(cc, SSB_CHIPCO_REGCTL_DATA);
46 struct pmu0_plltab_entry {
47 u16 freq; /* Crystal frequency in kHz.*/
48 u8 xf; /* Crystal frequency value for PMU control */
53 static const struct pmu0_plltab_entry pmu0_plltab[] = {
54 { .freq = 12000, .xf = 1, .wb_int = 73, .wb_frac = 349525, },
55 { .freq = 13000, .xf = 2, .wb_int = 67, .wb_frac = 725937, },
56 { .freq = 14400, .xf = 3, .wb_int = 61, .wb_frac = 116508, },
57 { .freq = 15360, .xf = 4, .wb_int = 57, .wb_frac = 305834, },
58 { .freq = 16200, .xf = 5, .wb_int = 54, .wb_frac = 336579, },
59 { .freq = 16800, .xf = 6, .wb_int = 52, .wb_frac = 399457, },
60 { .freq = 19200, .xf = 7, .wb_int = 45, .wb_frac = 873813, },
61 { .freq = 19800, .xf = 8, .wb_int = 44, .wb_frac = 466033, },
62 { .freq = 20000, .xf = 9, .wb_int = 44, .wb_frac = 0, },
63 { .freq = 25000, .xf = 10, .wb_int = 70, .wb_frac = 419430, },
64 { .freq = 26000, .xf = 11, .wb_int = 67, .wb_frac = 725937, },
65 { .freq = 30000, .xf = 12, .wb_int = 58, .wb_frac = 699050, },
66 { .freq = 38400, .xf = 13, .wb_int = 45, .wb_frac = 873813, },
67 { .freq = 40000, .xf = 14, .wb_int = 45, .wb_frac = 0, },
69 #define SSB_PMU0_DEFAULT_XTALFREQ 20000
71 static const struct pmu0_plltab_entry * pmu0_plltab_find_entry(u32 crystalfreq)
73 const struct pmu0_plltab_entry *e;
76 for (i = 0; i < ARRAY_SIZE(pmu0_plltab); i++) {
78 if (e->freq == crystalfreq)
85 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
86 static void ssb_pmu0_pllinit_r0(struct ssb_chipcommon *cc,
89 struct ssb_bus *bus = cc->dev->bus;
90 const struct pmu0_plltab_entry *e = NULL;
91 u32 pmuctl, tmp, pllctl;
94 if ((bus->chip_id == 0x5354) && !crystalfreq) {
95 /* The 5354 crystal freq is 25MHz */
99 e = pmu0_plltab_find_entry(crystalfreq);
101 e = pmu0_plltab_find_entry(SSB_PMU0_DEFAULT_XTALFREQ);
103 crystalfreq = e->freq;
104 cc->pmu.crystalfreq = e->freq;
106 /* Check if the PLL already is programmed to this frequency. */
107 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
108 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
109 /* We're already there... */
113 ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
114 (crystalfreq / 1000), (crystalfreq % 1000));
116 /* First turn the PLL off. */
117 switch (bus->chip_id) {
119 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
120 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
121 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
122 ~(1 << SSB_PMURES_4328_BB_PLL_PU));
125 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
126 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
127 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
128 ~(1 << SSB_PMURES_5354_BB_PLL_PU));
133 for (i = 1500; i; i--) {
134 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
135 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
139 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
140 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
141 ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
143 /* Set PDIV in PLL control 0. */
144 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL0);
145 if (crystalfreq >= SSB_PMU0_PLLCTL0_PDIV_FREQ)
146 pllctl |= SSB_PMU0_PLLCTL0_PDIV_MSK;
148 pllctl &= ~SSB_PMU0_PLLCTL0_PDIV_MSK;
149 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL0, pllctl);
151 /* Set WILD in PLL control 1. */
152 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL1);
153 pllctl &= ~SSB_PMU0_PLLCTL1_STOPMOD;
154 pllctl &= ~(SSB_PMU0_PLLCTL1_WILD_IMSK | SSB_PMU0_PLLCTL1_WILD_FMSK);
155 pllctl |= ((u32)e->wb_int << SSB_PMU0_PLLCTL1_WILD_IMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_IMSK;
156 pllctl |= ((u32)e->wb_frac << SSB_PMU0_PLLCTL1_WILD_FMSK_SHIFT) & SSB_PMU0_PLLCTL1_WILD_FMSK;
158 pllctl |= SSB_PMU0_PLLCTL1_STOPMOD;
159 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL1, pllctl);
161 /* Set WILD in PLL control 2. */
162 pllctl = ssb_chipco_pll_read(cc, SSB_PMU0_PLLCTL2);
163 pllctl &= ~SSB_PMU0_PLLCTL2_WILD_IMSKHI;
164 pllctl |= (((u32)e->wb_int >> 4) << SSB_PMU0_PLLCTL2_WILD_IMSKHI_SHIFT) & SSB_PMU0_PLLCTL2_WILD_IMSKHI;
165 ssb_chipco_pll_write(cc, SSB_PMU0_PLLCTL2, pllctl);
167 /* Set the crystalfrequency and the divisor. */
168 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
169 pmuctl &= ~SSB_CHIPCO_PMU_CTL_ILP_DIV;
170 pmuctl |= (((crystalfreq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
171 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
172 pmuctl &= ~SSB_CHIPCO_PMU_CTL_XTALFREQ;
173 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
174 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
177 struct pmu1_plltab_entry {
178 u16 freq; /* Crystal frequency in kHz.*/
179 u8 xf; /* Crystal frequency value for PMU control */
186 static const struct pmu1_plltab_entry pmu1_plltab[] = {
187 { .freq = 12000, .xf = 1, .p1div = 3, .p2div = 22, .ndiv_int = 0x9, .ndiv_frac = 0xFFFFEF, },
188 { .freq = 13000, .xf = 2, .p1div = 1, .p2div = 6, .ndiv_int = 0xb, .ndiv_frac = 0x483483, },
189 { .freq = 14400, .xf = 3, .p1div = 1, .p2div = 10, .ndiv_int = 0xa, .ndiv_frac = 0x1C71C7, },
190 { .freq = 15360, .xf = 4, .p1div = 1, .p2div = 5, .ndiv_int = 0xb, .ndiv_frac = 0x755555, },
191 { .freq = 16200, .xf = 5, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x6E9E06, },
192 { .freq = 16800, .xf = 6, .p1div = 1, .p2div = 10, .ndiv_int = 0x5, .ndiv_frac = 0x3CF3CF, },
193 { .freq = 19200, .xf = 7, .p1div = 1, .p2div = 9, .ndiv_int = 0x5, .ndiv_frac = 0x17B425, },
194 { .freq = 19800, .xf = 8, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0xA57EB, },
195 { .freq = 20000, .xf = 9, .p1div = 1, .p2div = 11, .ndiv_int = 0x4, .ndiv_frac = 0, },
196 { .freq = 24000, .xf = 10, .p1div = 3, .p2div = 11, .ndiv_int = 0xa, .ndiv_frac = 0, },
197 { .freq = 25000, .xf = 11, .p1div = 5, .p2div = 16, .ndiv_int = 0xb, .ndiv_frac = 0, },
198 { .freq = 26000, .xf = 12, .p1div = 1, .p2div = 2, .ndiv_int = 0x10, .ndiv_frac = 0xEC4EC4, },
199 { .freq = 30000, .xf = 13, .p1div = 3, .p2div = 8, .ndiv_int = 0xb, .ndiv_frac = 0, },
200 { .freq = 38400, .xf = 14, .p1div = 1, .p2div = 5, .ndiv_int = 0x4, .ndiv_frac = 0x955555, },
201 { .freq = 40000, .xf = 15, .p1div = 1, .p2div = 2, .ndiv_int = 0xb, .ndiv_frac = 0, },
204 #define SSB_PMU1_DEFAULT_XTALFREQ 15360
206 static const struct pmu1_plltab_entry * pmu1_plltab_find_entry(u32 crystalfreq)
208 const struct pmu1_plltab_entry *e;
211 for (i = 0; i < ARRAY_SIZE(pmu1_plltab); i++) {
213 if (e->freq == crystalfreq)
220 /* Tune the PLL to the crystal speed. crystalfreq is in kHz. */
221 static void ssb_pmu1_pllinit_r0(struct ssb_chipcommon *cc,
224 struct ssb_bus *bus = cc->dev->bus;
225 const struct pmu1_plltab_entry *e = NULL;
226 u32 buffer_strength = 0;
227 u32 tmp, pllctl, pmuctl;
230 if (bus->chip_id == 0x4312) {
231 /* We do not touch the BCM4312 PLL and assume
232 * the default crystal settings work out-of-the-box. */
233 cc->pmu.crystalfreq = 20000;
238 e = pmu1_plltab_find_entry(crystalfreq);
240 e = pmu1_plltab_find_entry(SSB_PMU1_DEFAULT_XTALFREQ);
242 crystalfreq = e->freq;
243 cc->pmu.crystalfreq = e->freq;
245 /* Check if the PLL already is programmed to this frequency. */
246 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
247 if (((pmuctl & SSB_CHIPCO_PMU_CTL_XTALFREQ) >> SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) == e->xf) {
248 /* We're already there... */
252 ssb_printk(KERN_INFO PFX "Programming PLL to %u.%03u MHz\n",
253 (crystalfreq / 1000), (crystalfreq % 1000));
255 /* First turn the PLL off. */
256 switch (bus->chip_id) {
258 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK,
259 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
260 (1 << SSB_PMURES_4325_HT_AVAIL)));
261 chipco_mask32(cc, SSB_CHIPCO_PMU_MAXRES_MSK,
262 ~((1 << SSB_PMURES_4325_BBPLL_PWRSW_PU) |
263 (1 << SSB_PMURES_4325_HT_AVAIL)));
264 /* Adjust the BBPLL to 2 on all channels later. */
265 buffer_strength = 0x222222;
270 for (i = 1500; i; i--) {
271 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
272 if (!(tmp & SSB_CHIPCO_CLKCTLST_HAVEHT))
276 tmp = chipco_read32(cc, SSB_CHIPCO_CLKCTLST);
277 if (tmp & SSB_CHIPCO_CLKCTLST_HAVEHT)
278 ssb_printk(KERN_EMERG PFX "Failed to turn the PLL off!\n");
280 /* Set p1div and p2div. */
281 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL0);
282 pllctl &= ~(SSB_PMU1_PLLCTL0_P1DIV | SSB_PMU1_PLLCTL0_P2DIV);
283 pllctl |= ((u32)e->p1div << SSB_PMU1_PLLCTL0_P1DIV_SHIFT) & SSB_PMU1_PLLCTL0_P1DIV;
284 pllctl |= ((u32)e->p2div << SSB_PMU1_PLLCTL0_P2DIV_SHIFT) & SSB_PMU1_PLLCTL0_P2DIV;
285 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL0, pllctl);
287 /* Set ndiv int and ndiv mode */
288 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL2);
289 pllctl &= ~(SSB_PMU1_PLLCTL2_NDIVINT | SSB_PMU1_PLLCTL2_NDIVMODE);
290 pllctl |= ((u32)e->ndiv_int << SSB_PMU1_PLLCTL2_NDIVINT_SHIFT) & SSB_PMU1_PLLCTL2_NDIVINT;
291 pllctl |= (1 << SSB_PMU1_PLLCTL2_NDIVMODE_SHIFT) & SSB_PMU1_PLLCTL2_NDIVMODE;
292 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL2, pllctl);
295 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL3);
296 pllctl &= ~SSB_PMU1_PLLCTL3_NDIVFRAC;
297 pllctl |= ((u32)e->ndiv_frac << SSB_PMU1_PLLCTL3_NDIVFRAC_SHIFT) & SSB_PMU1_PLLCTL3_NDIVFRAC;
298 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL3, pllctl);
300 /* Change the drive strength, if required. */
301 if (buffer_strength) {
302 pllctl = ssb_chipco_pll_read(cc, SSB_PMU1_PLLCTL5);
303 pllctl &= ~SSB_PMU1_PLLCTL5_CLKDRV;
304 pllctl |= (buffer_strength << SSB_PMU1_PLLCTL5_CLKDRV_SHIFT) & SSB_PMU1_PLLCTL5_CLKDRV;
305 ssb_chipco_pll_write(cc, SSB_PMU1_PLLCTL5, pllctl);
308 /* Tune the crystalfreq and the divisor. */
309 pmuctl = chipco_read32(cc, SSB_CHIPCO_PMU_CTL);
310 pmuctl &= ~(SSB_CHIPCO_PMU_CTL_ILP_DIV | SSB_CHIPCO_PMU_CTL_XTALFREQ);
311 pmuctl |= ((((u32)e->freq + 127) / 128 - 1) << SSB_CHIPCO_PMU_CTL_ILP_DIV_SHIFT)
312 & SSB_CHIPCO_PMU_CTL_ILP_DIV;
313 pmuctl |= ((u32)e->xf << SSB_CHIPCO_PMU_CTL_XTALFREQ_SHIFT) & SSB_CHIPCO_PMU_CTL_XTALFREQ;
314 chipco_write32(cc, SSB_CHIPCO_PMU_CTL, pmuctl);
317 static void ssb_pmu_pll_init(struct ssb_chipcommon *cc)
319 struct ssb_bus *bus = cc->dev->bus;
320 u32 crystalfreq = 0; /* in kHz. 0 = keep default freq. */
322 if (bus->bustype == SSB_BUSTYPE_SSB) {
323 /* TODO: The user may override the crystal frequency. */
326 switch (bus->chip_id) {
329 ssb_pmu1_pllinit_r0(cc, crystalfreq);
333 ssb_pmu0_pllinit_r0(cc, crystalfreq);
336 if (cc->pmu.rev == 2) {
337 chipco_write32(cc, SSB_CHIPCO_PLLCTL_ADDR, 0x0000000A);
338 chipco_write32(cc, SSB_CHIPCO_PLLCTL_DATA, 0x380005C0);
342 ssb_printk(KERN_ERR PFX
343 "ERROR: PLL init unknown for device %04X\n",
348 struct pmu_res_updown_tab_entry {
349 u8 resource; /* The resource number */
350 u16 updown; /* The updown value */
353 enum pmu_res_depend_tab_task {
359 struct pmu_res_depend_tab_entry {
360 u8 resource; /* The resource number */
361 u8 task; /* SET | ADD | REMOVE */
362 u32 depend; /* The depend mask */
365 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4328a0[] = {
366 { .resource = SSB_PMURES_4328_EXT_SWITCHER_PWM, .updown = 0x0101, },
367 { .resource = SSB_PMURES_4328_BB_SWITCHER_PWM, .updown = 0x1F01, },
368 { .resource = SSB_PMURES_4328_BB_SWITCHER_BURST, .updown = 0x010F, },
369 { .resource = SSB_PMURES_4328_BB_EXT_SWITCHER_BURST, .updown = 0x0101, },
370 { .resource = SSB_PMURES_4328_ILP_REQUEST, .updown = 0x0202, },
371 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_PWM, .updown = 0x0F01, },
372 { .resource = SSB_PMURES_4328_RADIO_SWITCHER_BURST, .updown = 0x0F01, },
373 { .resource = SSB_PMURES_4328_ROM_SWITCH, .updown = 0x0101, },
374 { .resource = SSB_PMURES_4328_PA_REF_LDO, .updown = 0x0F01, },
375 { .resource = SSB_PMURES_4328_RADIO_LDO, .updown = 0x0F01, },
376 { .resource = SSB_PMURES_4328_AFE_LDO, .updown = 0x0F01, },
377 { .resource = SSB_PMURES_4328_PLL_LDO, .updown = 0x0F01, },
378 { .resource = SSB_PMURES_4328_BG_FILTBYP, .updown = 0x0101, },
379 { .resource = SSB_PMURES_4328_TX_FILTBYP, .updown = 0x0101, },
380 { .resource = SSB_PMURES_4328_RX_FILTBYP, .updown = 0x0101, },
381 { .resource = SSB_PMURES_4328_XTAL_PU, .updown = 0x0101, },
382 { .resource = SSB_PMURES_4328_XTAL_EN, .updown = 0xA001, },
383 { .resource = SSB_PMURES_4328_BB_PLL_FILTBYP, .updown = 0x0101, },
384 { .resource = SSB_PMURES_4328_RF_PLL_FILTBYP, .updown = 0x0101, },
385 { .resource = SSB_PMURES_4328_BB_PLL_PU, .updown = 0x0701, },
388 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4328a0[] = {
390 /* Adjust ILP Request to avoid forcing EXT/BB into burst mode. */
391 .resource = SSB_PMURES_4328_ILP_REQUEST,
392 .task = PMU_RES_DEP_SET,
393 .depend = ((1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
394 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM)),
398 static const struct pmu_res_updown_tab_entry pmu_res_updown_tab_4325a0[] = {
399 { .resource = SSB_PMURES_4325_XTAL_PU, .updown = 0x1501, },
402 static const struct pmu_res_depend_tab_entry pmu_res_depend_tab_4325a0[] = {
404 /* Adjust HT-Available dependencies. */
405 .resource = SSB_PMURES_4325_HT_AVAIL,
406 .task = PMU_RES_DEP_ADD,
407 .depend = ((1 << SSB_PMURES_4325_RX_PWRSW_PU) |
408 (1 << SSB_PMURES_4325_TX_PWRSW_PU) |
409 (1 << SSB_PMURES_4325_LOGEN_PWRSW_PU) |
410 (1 << SSB_PMURES_4325_AFE_PWRSW_PU)),
414 static void ssb_pmu_resources_init(struct ssb_chipcommon *cc)
416 struct ssb_bus *bus = cc->dev->bus;
417 u32 min_msk = 0, max_msk = 0;
419 const struct pmu_res_updown_tab_entry *updown_tab = NULL;
420 unsigned int updown_tab_size;
421 const struct pmu_res_depend_tab_entry *depend_tab = NULL;
422 unsigned int depend_tab_size;
424 switch (bus->chip_id) {
429 /* We keep the default settings:
435 /* Power OTP down later. */
436 min_msk = (1 << SSB_PMURES_4325_CBUCK_BURST) |
437 (1 << SSB_PMURES_4325_LNLDO2_PU);
438 if (chipco_read32(cc, SSB_CHIPCO_CHIPSTAT) &
439 SSB_CHIPCO_CHST_4325_PMUTOP_2B)
440 min_msk |= (1 << SSB_PMURES_4325_CLDO_CBUCK_BURST);
441 /* The PLL may turn on, if it decides so. */
443 updown_tab = pmu_res_updown_tab_4325a0;
444 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4325a0);
445 depend_tab = pmu_res_depend_tab_4325a0;
446 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4325a0);
449 min_msk = (1 << SSB_PMURES_4328_EXT_SWITCHER_PWM) |
450 (1 << SSB_PMURES_4328_BB_SWITCHER_PWM) |
451 (1 << SSB_PMURES_4328_XTAL_EN);
452 /* The PLL may turn on, if it decides so. */
454 updown_tab = pmu_res_updown_tab_4328a0;
455 updown_tab_size = ARRAY_SIZE(pmu_res_updown_tab_4328a0);
456 depend_tab = pmu_res_depend_tab_4328a0;
457 depend_tab_size = ARRAY_SIZE(pmu_res_depend_tab_4328a0);
460 /* The PLL may turn on, if it decides so. */
464 ssb_printk(KERN_ERR PFX
465 "ERROR: PMU resource config unknown for device %04X\n",
470 for (i = 0; i < updown_tab_size; i++) {
471 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
472 updown_tab[i].resource);
473 chipco_write32(cc, SSB_CHIPCO_PMU_RES_UPDNTM,
474 updown_tab[i].updown);
478 for (i = 0; i < depend_tab_size; i++) {
479 chipco_write32(cc, SSB_CHIPCO_PMU_RES_TABSEL,
480 depend_tab[i].resource);
481 switch (depend_tab[i].task) {
482 case PMU_RES_DEP_SET:
483 chipco_write32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
484 depend_tab[i].depend);
486 case PMU_RES_DEP_ADD:
487 chipco_set32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
488 depend_tab[i].depend);
490 case PMU_RES_DEP_REMOVE:
491 chipco_mask32(cc, SSB_CHIPCO_PMU_RES_DEPMSK,
492 ~(depend_tab[i].depend));
500 /* Set the resource masks. */
502 chipco_write32(cc, SSB_CHIPCO_PMU_MINRES_MSK, min_msk);
504 chipco_write32(cc, SSB_CHIPCO_PMU_MAXRES_MSK, max_msk);
507 /* http://bcm-v4.sipsolutions.net/802.11/SSB/PmuInit */
508 void ssb_pmu_init(struct ssb_chipcommon *cc)
512 if (!(cc->capabilities & SSB_CHIPCO_CAP_PMU))
515 pmucap = chipco_read32(cc, SSB_CHIPCO_PMU_CAP);
516 cc->pmu.rev = (pmucap & SSB_CHIPCO_PMU_CAP_REVISION);
518 ssb_dprintk(KERN_DEBUG PFX "Found rev %u PMU (capabilities 0x%08X)\n",
519 cc->pmu.rev, pmucap);
521 if (cc->pmu.rev == 1)
522 chipco_mask32(cc, SSB_CHIPCO_PMU_CTL,
523 ~SSB_CHIPCO_PMU_CTL_NOILPONW);
525 chipco_set32(cc, SSB_CHIPCO_PMU_CTL,
526 SSB_CHIPCO_PMU_CTL_NOILPONW);
527 ssb_pmu_pll_init(cc);
528 ssb_pmu_resources_init(cc);
531 void ssb_pmu_set_ldo_voltage(struct ssb_chipcommon *cc,
532 enum ssb_pmu_ldo_volt_id id, u32 voltage)
534 struct ssb_bus *bus = cc->dev->bus;
535 u32 addr, shift, mask;
537 switch (bus->chip_id) {
567 if (SSB_WARN_ON(id != LDO_PAREF))
577 ssb_chipco_regctl_maskset(cc, addr, ~(mask << shift),
578 (voltage & mask) << shift);
581 void ssb_pmu_set_ldo_paref(struct ssb_chipcommon *cc, bool on)
583 struct ssb_bus *bus = cc->dev->bus;
586 switch (bus->chip_id) {
588 ldo = SSB_PMURES_4312_PA_REF_LDO;
591 ldo = SSB_PMURES_4328_PA_REF_LDO;
594 ldo = SSB_PMURES_5354_PA_REF_LDO;
601 chipco_set32(cc, SSB_CHIPCO_PMU_MINRES_MSK, 1 << ldo);
603 chipco_mask32(cc, SSB_CHIPCO_PMU_MINRES_MSK, ~(1 << ldo));
604 chipco_read32(cc, SSB_CHIPCO_PMU_MINRES_MSK); //SPEC FIXME found via mmiotrace - dummy read?
607 EXPORT_SYMBOL(ssb_pmu_set_ldo_voltage);
608 EXPORT_SYMBOL(ssb_pmu_set_ldo_paref);