Merge master.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6
[pandora-kernel.git] / drivers / spi / spi_bfin5xx.c
1 /*
2  * File:         drivers/spi/bfin5xx_spi.c
3  * Based on:     N/A
4  * Author:       Luke Yang (Analog Devices Inc.)
5  *
6  * Created:      March. 10th 2006
7  * Description:  SPI controller driver for Blackfin 5xx
8  * Bugs:         Enter bugs at http://blackfin.uclinux.org/
9  *
10  * Modified:
11  *      March 10, 2006  bfin5xx_spi.c Created. (Luke Yang)
12  *      August 7, 2006  added full duplex mode (Axel Weiss & Luke Yang)
13  *
14  * Copyright 2004-2006 Analog Devices Inc.
15  *
16  * This program is free software ;  you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License as published by
18  * the Free Software Foundation ;  either version 2, or (at your option)
19  * any later version.
20  *
21  * This program is distributed in the hope that it will be useful,
22  * but WITHOUT ANY WARRANTY ;  without even the implied warranty of
23  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24  * GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License
27  * along with this program ;  see the file COPYING.
28  * If not, write to the Free Software Foundation,
29  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
30  */
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/device.h>
35 #include <linux/ioport.h>
36 #include <linux/errno.h>
37 #include <linux/interrupt.h>
38 #include <linux/platform_device.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/spi/spi.h>
41 #include <linux/workqueue.h>
42 #include <linux/errno.h>
43 #include <linux/delay.h>
44
45 #include <asm/io.h>
46 #include <asm/irq.h>
47 #include <asm/delay.h>
48 #include <asm/dma.h>
49
50 #include <asm/bfin5xx_spi.h>
51
52 MODULE_AUTHOR("Luke Yang");
53 MODULE_DESCRIPTION("Blackfin 5xx SPI Contoller");
54 MODULE_LICENSE("GPL");
55
56 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
57
58 #define DEFINE_SPI_REG(reg, off) \
59 static inline u16 read_##reg(void) \
60             { return *(volatile unsigned short*)(SPI0_REGBASE + off); } \
61 static inline void write_##reg(u16 v) \
62             {*(volatile unsigned short*)(SPI0_REGBASE + off) = v;\
63              SSYNC();}
64
65 DEFINE_SPI_REG(CTRL, 0x00)
66 DEFINE_SPI_REG(FLAG, 0x04)
67 DEFINE_SPI_REG(STAT, 0x08)
68 DEFINE_SPI_REG(TDBR, 0x0C)
69 DEFINE_SPI_REG(RDBR, 0x10)
70 DEFINE_SPI_REG(BAUD, 0x14)
71 DEFINE_SPI_REG(SHAW, 0x18)
72 #define START_STATE ((void*)0)
73 #define RUNNING_STATE ((void*)1)
74 #define DONE_STATE ((void*)2)
75 #define ERROR_STATE ((void*)-1)
76 #define QUEUE_RUNNING 0
77 #define QUEUE_STOPPED 1
78 int dma_requested;
79
80 struct driver_data {
81         /* Driver model hookup */
82         struct platform_device *pdev;
83
84         /* SPI framework hookup */
85         struct spi_master *master;
86
87         /* BFIN hookup */
88         struct bfin5xx_spi_master *master_info;
89
90         /* Driver message queue */
91         struct workqueue_struct *workqueue;
92         struct work_struct pump_messages;
93         spinlock_t lock;
94         struct list_head queue;
95         int busy;
96         int run;
97
98         /* Message Transfer pump */
99         struct tasklet_struct pump_transfers;
100
101         /* Current message transfer state info */
102         struct spi_message *cur_msg;
103         struct spi_transfer *cur_transfer;
104         struct chip_data *cur_chip;
105         size_t len_in_bytes;
106         size_t len;
107         void *tx;
108         void *tx_end;
109         void *rx;
110         void *rx_end;
111         int dma_mapped;
112         dma_addr_t rx_dma;
113         dma_addr_t tx_dma;
114         size_t rx_map_len;
115         size_t tx_map_len;
116         u8 n_bytes;
117         void (*write) (struct driver_data *);
118         void (*read) (struct driver_data *);
119         void (*duplex) (struct driver_data *);
120 };
121
122 struct chip_data {
123         u16 ctl_reg;
124         u16 baud;
125         u16 flag;
126
127         u8 chip_select_num;
128         u8 n_bytes;
129         u8 width;               /* 0 or 1 */
130         u8 enable_dma;
131         u8 bits_per_word;       /* 8 or 16 */
132         u8 cs_change_per_word;
133         u8 cs_chg_udelay;
134         void (*write) (struct driver_data *);
135         void (*read) (struct driver_data *);
136         void (*duplex) (struct driver_data *);
137 };
138
139 static void bfin_spi_enable(struct driver_data *drv_data)
140 {
141         u16 cr;
142
143         cr = read_CTRL();
144         write_CTRL(cr | BIT_CTL_ENABLE);
145         SSYNC();
146 }
147
148 static void bfin_spi_disable(struct driver_data *drv_data)
149 {
150         u16 cr;
151
152         cr = read_CTRL();
153         write_CTRL(cr & (~BIT_CTL_ENABLE));
154         SSYNC();
155 }
156
157 /* Caculate the SPI_BAUD register value based on input HZ */
158 static u16 hz_to_spi_baud(u32 speed_hz)
159 {
160         u_long sclk = get_sclk();
161         u16 spi_baud = (sclk / (2 * speed_hz));
162
163         if ((sclk % (2 * speed_hz)) > 0)
164                 spi_baud++;
165
166         return spi_baud;
167 }
168
169 static int flush(struct driver_data *drv_data)
170 {
171         unsigned long limit = loops_per_jiffy << 1;
172
173         /* wait for stop and clear stat */
174         while (!(read_STAT() & BIT_STAT_SPIF) && limit--)
175                 continue;
176
177         write_STAT(BIT_STAT_CLR);
178
179         return limit;
180 }
181
182 /* stop controller and re-config current chip*/
183 static void restore_state(struct driver_data *drv_data)
184 {
185         struct chip_data *chip = drv_data->cur_chip;
186
187         /* Clear status and disable clock */
188         write_STAT(BIT_STAT_CLR);
189         bfin_spi_disable(drv_data);
190         dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
191
192 #if defined(CONFIG_BF534) || defined(CONFIG_BF536) || defined(CONFIG_BF537)
193         dev_dbg(&drv_data->pdev->dev, 
194                 "chip select number is %d\n", chip->chip_select_num);
195         
196         switch (chip->chip_select_num) {
197         case 1:
198                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3c00);
199                 SSYNC();
200                 break;
201
202         case 2:
203         case 3:
204                 bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJSE_SPI);
205                 SSYNC();
206                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
207                 SSYNC();
208                 break;
209
210         case 4:
211                 bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS4E_SPI);
212                 SSYNC();
213                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3840);
214                 SSYNC();
215                 break;
216
217         case 5:
218                 bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS5E_SPI);
219                 SSYNC();
220                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3820);
221                 SSYNC();
222                 break;
223
224         case 6:
225                 bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PFS6E_SPI);
226                 SSYNC();
227                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3810);
228                 SSYNC();
229                 break;
230
231         case 7:
232                 bfin_write_PORT_MUX(bfin_read_PORT_MUX() | PJCE_SPI);
233                 SSYNC();
234                 bfin_write_PORTF_FER(bfin_read_PORTF_FER() | 0x3800);
235                 SSYNC();
236                 break;
237         }
238 #endif
239
240         /* Load the registers */
241         write_CTRL(chip->ctl_reg);
242         write_BAUD(chip->baud);
243         write_FLAG(chip->flag);
244 }
245
246 /* used to kick off transfer in rx mode */
247 static unsigned short dummy_read(void)
248 {
249         unsigned short tmp;
250         tmp = read_RDBR();
251         return tmp;
252 }
253
254 static void null_writer(struct driver_data *drv_data)
255 {
256         u8 n_bytes = drv_data->n_bytes;
257
258         while (drv_data->tx < drv_data->tx_end) {
259                 write_TDBR(0);
260                 while ((read_STAT() & BIT_STAT_TXS))
261                         continue;
262                 drv_data->tx += n_bytes;
263         }
264 }
265
266 static void null_reader(struct driver_data *drv_data)
267 {
268         u8 n_bytes = drv_data->n_bytes;
269         dummy_read();
270
271         while (drv_data->rx < drv_data->rx_end) {
272                 while (!(read_STAT() & BIT_STAT_RXS))
273                         continue;
274                 dummy_read();
275                 drv_data->rx += n_bytes;
276         }
277 }
278
279 static void u8_writer(struct driver_data *drv_data)
280 {
281         dev_dbg(&drv_data->pdev->dev, 
282                 "cr8-s is 0x%x\n", read_STAT());
283         while (drv_data->tx < drv_data->tx_end) {
284                 write_TDBR(*(u8 *) (drv_data->tx));
285                 while (read_STAT() & BIT_STAT_TXS)
286                         continue;
287                 ++drv_data->tx;
288         }
289
290         /* poll for SPI completion before returning */
291         while (!(read_STAT() & BIT_STAT_SPIF))
292                 continue;
293 }
294
295 static void u8_cs_chg_writer(struct driver_data *drv_data)
296 {
297         struct chip_data *chip = drv_data->cur_chip;
298
299         while (drv_data->tx < drv_data->tx_end) {
300                 write_FLAG(chip->flag);
301                 SSYNC();
302
303                 write_TDBR(*(u8 *) (drv_data->tx));
304                 while (read_STAT() & BIT_STAT_TXS)
305                         continue;
306                 while (!(read_STAT() & BIT_STAT_SPIF))
307                         continue;
308                 write_FLAG(0xFF00 | chip->flag);
309                 SSYNC();
310                 if (chip->cs_chg_udelay)
311                         udelay(chip->cs_chg_udelay);
312                 ++drv_data->tx;
313         }
314         write_FLAG(0xFF00);
315         SSYNC();
316 }
317
318 static void u8_reader(struct driver_data *drv_data)
319 {
320         dev_dbg(&drv_data->pdev->dev, 
321                 "cr-8 is 0x%x\n", read_STAT());
322
323         /* clear TDBR buffer before read(else it will be shifted out) */
324         write_TDBR(0xFFFF);
325
326         dummy_read();
327
328         while (drv_data->rx < drv_data->rx_end - 1) {
329                 while (!(read_STAT() & BIT_STAT_RXS))
330                         continue;
331                 *(u8 *) (drv_data->rx) = read_RDBR();
332                 ++drv_data->rx;
333         }
334
335         while (!(read_STAT() & BIT_STAT_RXS))
336                 continue;
337         *(u8 *) (drv_data->rx) = read_SHAW();
338         ++drv_data->rx;
339 }
340
341 static void u8_cs_chg_reader(struct driver_data *drv_data)
342 {
343         struct chip_data *chip = drv_data->cur_chip;
344
345         while (drv_data->rx < drv_data->rx_end) {
346                 write_FLAG(chip->flag);
347                 SSYNC();
348
349                 read_RDBR();    /* kick off */
350                 while (!(read_STAT() & BIT_STAT_RXS))
351                         continue;
352                 while (!(read_STAT() & BIT_STAT_SPIF))
353                         continue;
354                 *(u8 *) (drv_data->rx) = read_SHAW();
355                 write_FLAG(0xFF00 | chip->flag);
356                 SSYNC();
357                 if (chip->cs_chg_udelay)
358                         udelay(chip->cs_chg_udelay);
359                 ++drv_data->rx;
360         }
361         write_FLAG(0xFF00);
362         SSYNC();
363 }
364
365 static void u8_duplex(struct driver_data *drv_data)
366 {
367         /* in duplex mode, clk is triggered by writing of TDBR */
368         while (drv_data->rx < drv_data->rx_end) {
369                 write_TDBR(*(u8 *) (drv_data->tx));
370                 while (!(read_STAT() & BIT_STAT_SPIF))
371                         continue;
372                 while (!(read_STAT() & BIT_STAT_RXS))
373                         continue;
374                 *(u8 *) (drv_data->rx) = read_RDBR();
375                 ++drv_data->rx;
376                 ++drv_data->tx;
377         }
378 }
379
380 static void u8_cs_chg_duplex(struct driver_data *drv_data)
381 {
382         struct chip_data *chip = drv_data->cur_chip;
383
384         while (drv_data->rx < drv_data->rx_end) {
385                 write_FLAG(chip->flag);
386                 SSYNC();
387
388                 write_TDBR(*(u8 *) (drv_data->tx));
389                 while (!(read_STAT() & BIT_STAT_SPIF))
390                         continue;
391                 while (!(read_STAT() & BIT_STAT_RXS))
392                         continue;
393                 *(u8 *) (drv_data->rx) = read_RDBR();
394                 write_FLAG(0xFF00 | chip->flag);
395                 SSYNC();
396                 if (chip->cs_chg_udelay)
397                         udelay(chip->cs_chg_udelay);
398                 ++drv_data->rx;
399                 ++drv_data->tx;
400         }
401         write_FLAG(0xFF00);
402         SSYNC();
403 }
404
405 static void u16_writer(struct driver_data *drv_data)
406 {
407         dev_dbg(&drv_data->pdev->dev, 
408                 "cr16 is 0x%x\n", read_STAT());
409
410         while (drv_data->tx < drv_data->tx_end) {
411                 write_TDBR(*(u16 *) (drv_data->tx));
412                 while ((read_STAT() & BIT_STAT_TXS))
413                         continue;
414                 drv_data->tx += 2;
415         }
416
417         /* poll for SPI completion before returning */
418         while (!(read_STAT() & BIT_STAT_SPIF))
419                 continue;
420 }
421
422 static void u16_cs_chg_writer(struct driver_data *drv_data)
423 {
424         struct chip_data *chip = drv_data->cur_chip;
425
426         while (drv_data->tx < drv_data->tx_end) {
427                 write_FLAG(chip->flag);
428                 SSYNC();
429
430                 write_TDBR(*(u16 *) (drv_data->tx));
431                 while ((read_STAT() & BIT_STAT_TXS))
432                         continue;
433                 while (!(read_STAT() & BIT_STAT_SPIF))
434                         continue;
435                 write_FLAG(0xFF00 | chip->flag);
436                 SSYNC();
437                 if (chip->cs_chg_udelay)
438                         udelay(chip->cs_chg_udelay);
439                 drv_data->tx += 2;
440         }
441         write_FLAG(0xFF00);
442         SSYNC();
443 }
444
445 static void u16_reader(struct driver_data *drv_data)
446 {
447         dev_dbg(&drv_data->pdev->dev,
448                 "cr-16 is 0x%x\n", read_STAT());
449         dummy_read();
450
451         while (drv_data->rx < (drv_data->rx_end - 2)) {
452                 while (!(read_STAT() & BIT_STAT_RXS))
453                         continue;
454                 *(u16 *) (drv_data->rx) = read_RDBR();
455                 drv_data->rx += 2;
456         }
457
458         while (!(read_STAT() & BIT_STAT_RXS))
459                 continue;
460         *(u16 *) (drv_data->rx) = read_SHAW();
461         drv_data->rx += 2;
462 }
463
464 static void u16_cs_chg_reader(struct driver_data *drv_data)
465 {
466         struct chip_data *chip = drv_data->cur_chip;
467
468         while (drv_data->rx < drv_data->rx_end) {
469                 write_FLAG(chip->flag);
470                 SSYNC();
471
472                 read_RDBR();    /* kick off */
473                 while (!(read_STAT() & BIT_STAT_RXS))
474                         continue;
475                 while (!(read_STAT() & BIT_STAT_SPIF))
476                         continue;
477                 *(u16 *) (drv_data->rx) = read_SHAW();
478                 write_FLAG(0xFF00 | chip->flag);
479                 SSYNC();
480                 if (chip->cs_chg_udelay)
481                         udelay(chip->cs_chg_udelay);
482                 drv_data->rx += 2;
483         }
484         write_FLAG(0xFF00);
485         SSYNC();
486 }
487
488 static void u16_duplex(struct driver_data *drv_data)
489 {
490         /* in duplex mode, clk is triggered by writing of TDBR */
491         while (drv_data->tx < drv_data->tx_end) {
492                 write_TDBR(*(u16 *) (drv_data->tx));
493                 while (!(read_STAT() & BIT_STAT_SPIF))
494                         continue;
495                 while (!(read_STAT() & BIT_STAT_RXS))
496                         continue;
497                 *(u16 *) (drv_data->rx) = read_RDBR();
498                 drv_data->rx += 2;
499                 drv_data->tx += 2;
500         }
501 }
502
503 static void u16_cs_chg_duplex(struct driver_data *drv_data)
504 {
505         struct chip_data *chip = drv_data->cur_chip;
506
507         while (drv_data->tx < drv_data->tx_end) {
508                 write_FLAG(chip->flag);
509                 SSYNC();
510
511                 write_TDBR(*(u16 *) (drv_data->tx));
512                 while (!(read_STAT() & BIT_STAT_SPIF))
513                         continue;
514                 while (!(read_STAT() & BIT_STAT_RXS))
515                         continue;
516                 *(u16 *) (drv_data->rx) = read_RDBR();
517                 write_FLAG(0xFF00 | chip->flag);
518                 SSYNC();
519                 if (chip->cs_chg_udelay)
520                         udelay(chip->cs_chg_udelay);
521                 drv_data->rx += 2;
522                 drv_data->tx += 2;
523         }
524         write_FLAG(0xFF00);
525         SSYNC();
526 }
527
528 /* test if ther is more transfer to be done */
529 static void *next_transfer(struct driver_data *drv_data)
530 {
531         struct spi_message *msg = drv_data->cur_msg;
532         struct spi_transfer *trans = drv_data->cur_transfer;
533
534         /* Move to next transfer */
535         if (trans->transfer_list.next != &msg->transfers) {
536                 drv_data->cur_transfer =
537                     list_entry(trans->transfer_list.next,
538                                struct spi_transfer, transfer_list);
539                 return RUNNING_STATE;
540         } else
541                 return DONE_STATE;
542 }
543
544 /*
545  * caller already set message->status;
546  * dma and pio irqs are blocked give finished message back
547  */
548 static void giveback(struct driver_data *drv_data)
549 {
550         struct spi_transfer *last_transfer;
551         unsigned long flags;
552         struct spi_message *msg;
553
554         spin_lock_irqsave(&drv_data->lock, flags);
555         msg = drv_data->cur_msg;
556         drv_data->cur_msg = NULL;
557         drv_data->cur_transfer = NULL;
558         drv_data->cur_chip = NULL;
559         queue_work(drv_data->workqueue, &drv_data->pump_messages);
560         spin_unlock_irqrestore(&drv_data->lock, flags);
561
562         last_transfer = list_entry(msg->transfers.prev,
563                                    struct spi_transfer, transfer_list);
564
565         msg->state = NULL;
566
567         /* disable chip select signal. And not stop spi in autobuffer mode */
568         if (drv_data->tx_dma != 0xFFFF) {
569                 write_FLAG(0xFF00);
570                 bfin_spi_disable(drv_data);
571         }
572
573         if (msg->complete)
574                 msg->complete(msg->context);
575 }
576
577 static irqreturn_t dma_irq_handler(int irq, void *dev_id)
578 {
579         struct driver_data *drv_data = (struct driver_data *)dev_id;
580         struct spi_message *msg = drv_data->cur_msg;
581
582         dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
583         clear_dma_irqstat(CH_SPI);
584
585         /* Wait for DMA to complete */
586         while (get_dma_curr_irqstat(CH_SPI) & DMA_RUN)
587                 continue;
588
589         /*
590          * wait for the last transaction shifted out.  HRM states:
591          * at this point there may still be data in the SPI DMA FIFO waiting
592          * to be transmitted ... software needs to poll TXS in the SPI_STAT
593          * register until it goes low for 2 successive reads
594          */
595         if (drv_data->tx != NULL) {
596                 while ((bfin_read_SPI_STAT() & TXS) ||
597                        (bfin_read_SPI_STAT() & TXS))
598                         continue;
599         }
600
601         while (!(bfin_read_SPI_STAT() & SPIF))
602                 continue;
603
604         bfin_spi_disable(drv_data);
605
606         msg->actual_length += drv_data->len_in_bytes;
607
608         /* Move to next transfer */
609         msg->state = next_transfer(drv_data);
610
611         /* Schedule transfer tasklet */
612         tasklet_schedule(&drv_data->pump_transfers);
613
614         /* free the irq handler before next transfer */
615         dev_dbg(&drv_data->pdev->dev,
616                 "disable dma channel irq%d\n",
617                 CH_SPI);
618         dma_disable_irq(CH_SPI);
619
620         return IRQ_HANDLED;
621 }
622
623 static void pump_transfers(unsigned long data)
624 {
625         struct driver_data *drv_data = (struct driver_data *)data;
626         struct spi_message *message = NULL;
627         struct spi_transfer *transfer = NULL;
628         struct spi_transfer *previous = NULL;
629         struct chip_data *chip = NULL;
630         u8 width;
631         u16 cr, dma_width, dma_config;
632         u32 tranf_success = 1;
633
634         /* Get current state information */
635         message = drv_data->cur_msg;
636         transfer = drv_data->cur_transfer;
637         chip = drv_data->cur_chip;
638
639         /*
640          * if msg is error or done, report it back using complete() callback
641          */
642
643          /* Handle for abort */
644         if (message->state == ERROR_STATE) {
645                 message->status = -EIO;
646                 giveback(drv_data);
647                 return;
648         }
649
650         /* Handle end of message */
651         if (message->state == DONE_STATE) {
652                 message->status = 0;
653                 giveback(drv_data);
654                 return;
655         }
656
657         /* Delay if requested at end of transfer */
658         if (message->state == RUNNING_STATE) {
659                 previous = list_entry(transfer->transfer_list.prev,
660                                       struct spi_transfer, transfer_list);
661                 if (previous->delay_usecs)
662                         udelay(previous->delay_usecs);
663         }
664
665         /* Setup the transfer state based on the type of transfer */
666         if (flush(drv_data) == 0) {
667                 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
668                 message->status = -EIO;
669                 giveback(drv_data);
670                 return;
671         }
672
673         if (transfer->tx_buf != NULL) {
674                 drv_data->tx = (void *)transfer->tx_buf;
675                 drv_data->tx_end = drv_data->tx + transfer->len;
676                 dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
677                         transfer->tx_buf, drv_data->tx_end);
678         } else {
679                 drv_data->tx = NULL;
680         }
681
682         if (transfer->rx_buf != NULL) {
683                 drv_data->rx = transfer->rx_buf;
684                 drv_data->rx_end = drv_data->rx + transfer->len;
685                 dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
686                         transfer->rx_buf, drv_data->rx_end);
687         } else {
688                 drv_data->rx = NULL;
689         }
690
691         drv_data->rx_dma = transfer->rx_dma;
692         drv_data->tx_dma = transfer->tx_dma;
693         drv_data->len_in_bytes = transfer->len;
694
695         width = chip->width;
696         if (width == CFG_SPI_WORDSIZE16) {
697                 drv_data->len = (transfer->len) >> 1;
698         } else {
699                 drv_data->len = transfer->len;
700         }
701         drv_data->write = drv_data->tx ? chip->write : null_writer;
702         drv_data->read = drv_data->rx ? chip->read : null_reader;
703         drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
704         dev_dbg(&drv_data->pdev->dev,
705                 "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
706                 drv_data->write, chip->write, null_writer);
707
708         /* speed and width has been set on per message */
709         message->state = RUNNING_STATE;
710         dma_config = 0;
711
712         /* restore spi status for each spi transfer */
713         if (transfer->speed_hz) {
714                 write_BAUD(hz_to_spi_baud(transfer->speed_hz));
715         } else {
716                 write_BAUD(chip->baud);
717         }
718         write_FLAG(chip->flag);
719
720         dev_dbg(&drv_data->pdev->dev,
721                 "now pumping a transfer: width is %d, len is %d\n",
722                 width, transfer->len);
723
724         /*
725          * Try to map dma buffer and do a dma transfer if
726          * successful use different way to r/w according to
727          * drv_data->cur_chip->enable_dma
728          */
729         if (drv_data->cur_chip->enable_dma && drv_data->len > 6) {
730
731                 write_STAT(BIT_STAT_CLR);
732                 disable_dma(CH_SPI);
733                 clear_dma_irqstat(CH_SPI);
734                 bfin_spi_disable(drv_data);
735
736                 /* config dma channel */
737                 dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
738                 if (width == CFG_SPI_WORDSIZE16) {
739                         set_dma_x_count(CH_SPI, drv_data->len);
740                         set_dma_x_modify(CH_SPI, 2);
741                         dma_width = WDSIZE_16;
742                 } else {
743                         set_dma_x_count(CH_SPI, drv_data->len);
744                         set_dma_x_modify(CH_SPI, 1);
745                         dma_width = WDSIZE_8;
746                 }
747
748                 /* set transfer width,direction. And enable spi */
749                 cr = (read_CTRL() & (~BIT_CTL_TIMOD));
750
751                 /* dirty hack for autobuffer DMA mode */
752                 if (drv_data->tx_dma == 0xFFFF) {
753                         dev_dbg(&drv_data->pdev->dev,
754                                 "doing autobuffer DMA out.\n");
755
756                         /* no irq in autobuffer mode */
757                         dma_config =
758                             (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
759                         set_dma_config(CH_SPI, dma_config);
760                         set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
761                         enable_dma(CH_SPI);
762                         write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
763                                    (CFG_SPI_ENABLE << 14));
764
765                         /* just return here, there can only be one transfer in this mode */
766                         message->status = 0;
767                         giveback(drv_data);
768                         return;
769                 }
770
771                 /* In dma mode, rx or tx must be NULL in one transfer */
772                 if (drv_data->rx != NULL) {
773                         /* set transfer mode, and enable SPI */
774                         dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
775
776                         /* disable SPI before write to TDBR */
777                         write_CTRL(cr & ~BIT_CTL_ENABLE);
778
779                         /* clear tx reg soformer data is not shifted out */
780                         write_TDBR(0xFF);
781
782                         set_dma_x_count(CH_SPI, drv_data->len);
783
784                         /* start dma */
785                         dma_enable_irq(CH_SPI);
786                         dma_config = (WNR | RESTART | dma_width | DI_EN);
787                         set_dma_config(CH_SPI, dma_config);
788                         set_dma_start_addr(CH_SPI, (unsigned long)drv_data->rx);
789                         enable_dma(CH_SPI);
790
791                         cr |=
792                             CFG_SPI_DMAREAD | (width << 8) | (CFG_SPI_ENABLE <<
793                                                               14);
794                         /* set transfer mode, and enable SPI */
795                         write_CTRL(cr);
796                 } else if (drv_data->tx != NULL) {
797                         dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
798
799                         /* start dma */
800                         dma_enable_irq(CH_SPI);
801                         dma_config = (RESTART | dma_width | DI_EN);
802                         set_dma_config(CH_SPI, dma_config);
803                         set_dma_start_addr(CH_SPI, (unsigned long)drv_data->tx);
804                         enable_dma(CH_SPI);
805
806                         write_CTRL(cr | CFG_SPI_DMAWRITE | (width << 8) |
807                                    (CFG_SPI_ENABLE << 14));
808
809                 }
810         } else {
811                 /* IO mode write then read */
812                 dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
813
814                 write_STAT(BIT_STAT_CLR);
815
816                 if (drv_data->tx != NULL && drv_data->rx != NULL) {
817                         /* full duplex mode */
818                         BUG_ON((drv_data->tx_end - drv_data->tx) !=
819                                (drv_data->rx_end - drv_data->rx));
820                         cr = (read_CTRL() & (~BIT_CTL_TIMOD));  
821                         cr |= CFG_SPI_WRITE | (width << 8) |
822                                 (CFG_SPI_ENABLE << 14);
823                         dev_dbg(&drv_data->pdev->dev,
824                                 "IO duplex: cr is 0x%x\n", cr);
825
826                         write_CTRL(cr);
827                         SSYNC();
828
829                         drv_data->duplex(drv_data);
830
831                         if (drv_data->tx != drv_data->tx_end)
832                                 tranf_success = 0;
833                 } else if (drv_data->tx != NULL) {
834                         /* write only half duplex */
835                         cr = (read_CTRL() & (~BIT_CTL_TIMOD));
836                         cr |= CFG_SPI_WRITE | (width << 8) |
837                                 (CFG_SPI_ENABLE << 14);
838                         dev_dbg(&drv_data->pdev->dev, 
839                                 "IO write: cr is 0x%x\n", cr);
840
841                         write_CTRL(cr);
842                         SSYNC();
843
844                         drv_data->write(drv_data);
845
846                         if (drv_data->tx != drv_data->tx_end)
847                                 tranf_success = 0;
848                 } else if (drv_data->rx != NULL) {
849                         /* read only half duplex */
850                         cr = (read_CTRL() & (~BIT_CTL_TIMOD));
851                         cr |= CFG_SPI_READ | (width << 8) |
852                                 (CFG_SPI_ENABLE << 14);
853                         dev_dbg(&drv_data->pdev->dev, 
854                                 "IO read: cr is 0x%x\n", cr);
855
856                         write_CTRL(cr);
857                         SSYNC();
858
859                         drv_data->read(drv_data);
860                         if (drv_data->rx != drv_data->rx_end)
861                                 tranf_success = 0;
862                 }
863
864                 if (!tranf_success) {
865                         dev_dbg(&drv_data->pdev->dev, 
866                                 "IO write error!\n");
867                         message->state = ERROR_STATE;
868                 } else {
869                         /* Update total byte transfered */
870                         message->actual_length += drv_data->len;
871
872                         /* Move to next transfer of this msg */
873                         message->state = next_transfer(drv_data);
874                 }
875
876                 /* Schedule next transfer tasklet */
877                 tasklet_schedule(&drv_data->pump_transfers);
878
879         }
880 }
881
882 /* pop a msg from queue and kick off real transfer */
883 static void pump_messages(struct work_struct *work)
884 {
885         struct driver_data *drv_data = container_of(work, struct driver_data, pump_messages);
886         unsigned long flags;
887
888         /* Lock queue and check for queue work */
889         spin_lock_irqsave(&drv_data->lock, flags);
890         if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
891                 /* pumper kicked off but no work to do */
892                 drv_data->busy = 0;
893                 spin_unlock_irqrestore(&drv_data->lock, flags);
894                 return;
895         }
896
897         /* Make sure we are not already running a message */
898         if (drv_data->cur_msg) {
899                 spin_unlock_irqrestore(&drv_data->lock, flags);
900                 return;
901         }
902
903         /* Extract head of queue */
904         drv_data->cur_msg = list_entry(drv_data->queue.next,
905                                        struct spi_message, queue);
906         list_del_init(&drv_data->cur_msg->queue);
907
908         /* Initial message state */
909         drv_data->cur_msg->state = START_STATE;
910         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
911                                             struct spi_transfer, transfer_list);
912
913         /* Setup the SSP using the per chip configuration */
914         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
915         restore_state(drv_data);
916         dev_dbg(&drv_data->pdev->dev,
917                 "got a message to pump, state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
918                 drv_data->cur_chip->baud, drv_data->cur_chip->flag,
919                 drv_data->cur_chip->ctl_reg);
920         
921         dev_dbg(&drv_data->pdev->dev, 
922                 "the first transfer len is %d\n",
923                 drv_data->cur_transfer->len);
924
925         /* Mark as busy and launch transfers */
926         tasklet_schedule(&drv_data->pump_transfers);
927
928         drv_data->busy = 1;
929         spin_unlock_irqrestore(&drv_data->lock, flags);
930 }
931
932 /*
933  * got a msg to transfer, queue it in drv_data->queue.
934  * And kick off message pumper
935  */
936 static int transfer(struct spi_device *spi, struct spi_message *msg)
937 {
938         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
939         unsigned long flags;
940
941         spin_lock_irqsave(&drv_data->lock, flags);
942
943         if (drv_data->run == QUEUE_STOPPED) {
944                 spin_unlock_irqrestore(&drv_data->lock, flags);
945                 return -ESHUTDOWN;
946         }
947
948         msg->actual_length = 0;
949         msg->status = -EINPROGRESS;
950         msg->state = START_STATE;
951
952         dev_dbg(&spi->dev, "adding an msg in transfer() \n");
953         list_add_tail(&msg->queue, &drv_data->queue);
954
955         if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
956                 queue_work(drv_data->workqueue, &drv_data->pump_messages);
957
958         spin_unlock_irqrestore(&drv_data->lock, flags);
959
960         return 0;
961 }
962
963 /* first setup for new devices */
964 static int setup(struct spi_device *spi)
965 {
966         struct bfin5xx_spi_chip *chip_info = NULL;
967         struct chip_data *chip;
968         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
969         u8 spi_flg;
970
971         /* Abort device setup if requested features are not supported */
972         if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
973                 dev_err(&spi->dev, "requested mode not fully supported\n");
974                 return -EINVAL;
975         }
976
977         /* Zero (the default) here means 8 bits */
978         if (!spi->bits_per_word)
979                 spi->bits_per_word = 8;
980
981         if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
982                 return -EINVAL;
983
984         /* Only alloc (or use chip_info) on first setup */
985         chip = spi_get_ctldata(spi);
986         if (chip == NULL) {
987                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
988                 if (!chip)
989                         return -ENOMEM;
990
991                 chip->enable_dma = 0;
992                 chip_info = spi->controller_data;
993         }
994
995         /* chip_info isn't always needed */
996         if (chip_info) {
997                 chip->enable_dma = chip_info->enable_dma != 0
998                     && drv_data->master_info->enable_dma;
999                 chip->ctl_reg = chip_info->ctl_reg;
1000                 chip->bits_per_word = chip_info->bits_per_word;
1001                 chip->cs_change_per_word = chip_info->cs_change_per_word;
1002                 chip->cs_chg_udelay = chip_info->cs_chg_udelay;
1003         }
1004
1005         /* translate common spi framework into our register */
1006         if (spi->mode & SPI_CPOL)
1007                 chip->ctl_reg |= CPOL;
1008         if (spi->mode & SPI_CPHA)
1009                 chip->ctl_reg |= CPHA;
1010         if (spi->mode & SPI_LSB_FIRST)
1011                 chip->ctl_reg |= LSBF;
1012         /* we dont support running in slave mode (yet?) */
1013         chip->ctl_reg |= MSTR;
1014
1015         /*
1016          * if any one SPI chip is registered and wants DMA, request the
1017          * DMA channel for it
1018          */
1019         if (chip->enable_dma && !dma_requested) {
1020                 /* register dma irq handler */
1021                 if (request_dma(CH_SPI, "BF53x_SPI_DMA") < 0) {
1022                         dev_dbg(&spi->dev,
1023                                 "Unable to request BlackFin SPI DMA channel\n");
1024                         return -ENODEV;
1025                 }
1026                 if (set_dma_callback(CH_SPI, (void *)dma_irq_handler, drv_data)
1027                     < 0) {
1028                         dev_dbg(&spi->dev, "Unable to set dma callback\n");
1029                         return -EPERM;
1030                 }
1031                 dma_disable_irq(CH_SPI);
1032                 dma_requested = 1;
1033         }
1034
1035         /*
1036          * Notice: for blackfin, the speed_hz is the value of register
1037          * SPI_BAUD, not the real baudrate
1038          */
1039         chip->baud = hz_to_spi_baud(spi->max_speed_hz);
1040         spi_flg = ~(1 << (spi->chip_select));
1041         chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
1042         chip->chip_select_num = spi->chip_select;
1043
1044         switch (chip->bits_per_word) {
1045         case 8:
1046                 chip->n_bytes = 1;
1047                 chip->width = CFG_SPI_WORDSIZE8;
1048                 chip->read = chip->cs_change_per_word ?
1049                         u8_cs_chg_reader : u8_reader;
1050                 chip->write = chip->cs_change_per_word ?
1051                         u8_cs_chg_writer : u8_writer;
1052                 chip->duplex = chip->cs_change_per_word ?
1053                         u8_cs_chg_duplex : u8_duplex;
1054                 break;
1055
1056         case 16:
1057                 chip->n_bytes = 2;
1058                 chip->width = CFG_SPI_WORDSIZE16;
1059                 chip->read = chip->cs_change_per_word ?
1060                         u16_cs_chg_reader : u16_reader;
1061                 chip->write = chip->cs_change_per_word ?
1062                         u16_cs_chg_writer : u16_writer;
1063                 chip->duplex = chip->cs_change_per_word ?
1064                         u16_cs_chg_duplex : u16_duplex;
1065                 break;
1066
1067         default:
1068                 dev_err(&spi->dev, "%d bits_per_word is not supported\n",
1069                                 chip->bits_per_word);
1070                 kfree(chip);
1071                 return -ENODEV;
1072         }
1073
1074         dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d,",
1075                         spi->modalias, chip->width, chip->enable_dma);
1076         dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
1077                         chip->ctl_reg, chip->flag);
1078
1079         spi_set_ctldata(spi, chip);
1080
1081         return 0;
1082 }
1083
1084 /*
1085  * callback for spi framework.
1086  * clean driver specific data
1087  */
1088 static void cleanup(struct spi_device *spi)
1089 {
1090         struct chip_data *chip = spi_get_ctldata(spi);
1091
1092         kfree(chip);
1093 }
1094
1095 static inline int init_queue(struct driver_data *drv_data)
1096 {
1097         INIT_LIST_HEAD(&drv_data->queue);
1098         spin_lock_init(&drv_data->lock);
1099
1100         drv_data->run = QUEUE_STOPPED;
1101         drv_data->busy = 0;
1102
1103         /* init transfer tasklet */
1104         tasklet_init(&drv_data->pump_transfers,
1105                      pump_transfers, (unsigned long)drv_data);
1106
1107         /* init messages workqueue */
1108         INIT_WORK(&drv_data->pump_messages, pump_messages);
1109         drv_data->workqueue =
1110             create_singlethread_workqueue(drv_data->master->cdev.dev->bus_id);
1111         if (drv_data->workqueue == NULL)
1112                 return -EBUSY;
1113
1114         return 0;
1115 }
1116
1117 static inline int start_queue(struct driver_data *drv_data)
1118 {
1119         unsigned long flags;
1120
1121         spin_lock_irqsave(&drv_data->lock, flags);
1122
1123         if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1124                 spin_unlock_irqrestore(&drv_data->lock, flags);
1125                 return -EBUSY;
1126         }
1127
1128         drv_data->run = QUEUE_RUNNING;
1129         drv_data->cur_msg = NULL;
1130         drv_data->cur_transfer = NULL;
1131         drv_data->cur_chip = NULL;
1132         spin_unlock_irqrestore(&drv_data->lock, flags);
1133
1134         queue_work(drv_data->workqueue, &drv_data->pump_messages);
1135
1136         return 0;
1137 }
1138
1139 static inline int stop_queue(struct driver_data *drv_data)
1140 {
1141         unsigned long flags;
1142         unsigned limit = 500;
1143         int status = 0;
1144
1145         spin_lock_irqsave(&drv_data->lock, flags);
1146
1147         /*
1148          * This is a bit lame, but is optimized for the common execution path.
1149          * A wait_queue on the drv_data->busy could be used, but then the common
1150          * execution path (pump_messages) would be required to call wake_up or
1151          * friends on every SPI message. Do this instead
1152          */
1153         drv_data->run = QUEUE_STOPPED;
1154         while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1155                 spin_unlock_irqrestore(&drv_data->lock, flags);
1156                 msleep(10);
1157                 spin_lock_irqsave(&drv_data->lock, flags);
1158         }
1159
1160         if (!list_empty(&drv_data->queue) || drv_data->busy)
1161                 status = -EBUSY;
1162
1163         spin_unlock_irqrestore(&drv_data->lock, flags);
1164
1165         return status;
1166 }
1167
1168 static inline int destroy_queue(struct driver_data *drv_data)
1169 {
1170         int status;
1171
1172         status = stop_queue(drv_data);
1173         if (status != 0)
1174                 return status;
1175
1176         destroy_workqueue(drv_data->workqueue);
1177
1178         return 0;
1179 }
1180
1181 static int __init bfin5xx_spi_probe(struct platform_device *pdev)
1182 {
1183         struct device *dev = &pdev->dev;
1184         struct bfin5xx_spi_master *platform_info;
1185         struct spi_master *master;
1186         struct driver_data *drv_data = 0;
1187         int status = 0;
1188
1189         platform_info = dev->platform_data;
1190
1191         /* Allocate master with space for drv_data */
1192         master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1193         if (!master) {
1194                 dev_err(&pdev->dev, "can not alloc spi_master\n");
1195                 return -ENOMEM;
1196         }
1197         drv_data = spi_master_get_devdata(master);
1198         drv_data->master = master;
1199         drv_data->master_info = platform_info;
1200         drv_data->pdev = pdev;
1201
1202         master->bus_num = pdev->id;
1203         master->num_chipselect = platform_info->num_chipselect;
1204         master->cleanup = cleanup;
1205         master->setup = setup;
1206         master->transfer = transfer;
1207
1208         /* Initial and start queue */
1209         status = init_queue(drv_data);
1210         if (status != 0) {
1211                 dev_err(&pdev->dev, "problem initializing queue\n");
1212                 goto out_error_queue_alloc;
1213         }
1214         status = start_queue(drv_data);
1215         if (status != 0) {
1216                 dev_err(&pdev->dev, "problem starting queue\n");
1217                 goto out_error_queue_alloc;
1218         }
1219
1220         /* Register with the SPI framework */
1221         platform_set_drvdata(pdev, drv_data);
1222         status = spi_register_master(master);
1223         if (status != 0) {
1224                 dev_err(&pdev->dev, "problem registering spi master\n");
1225                 goto out_error_queue_alloc;
1226         }
1227         dev_dbg(&pdev->dev, "controller probe successfully\n");
1228         return status;
1229
1230       out_error_queue_alloc:
1231         destroy_queue(drv_data);
1232         spi_master_put(master);
1233         return status;
1234 }
1235
1236 /* stop hardware and remove the driver */
1237 static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
1238 {
1239         struct driver_data *drv_data = platform_get_drvdata(pdev);
1240         int status = 0;
1241
1242         if (!drv_data)
1243                 return 0;
1244
1245         /* Remove the queue */
1246         status = destroy_queue(drv_data);
1247         if (status != 0)
1248                 return status;
1249
1250         /* Disable the SSP at the peripheral and SOC level */
1251         bfin_spi_disable(drv_data);
1252
1253         /* Release DMA */
1254         if (drv_data->master_info->enable_dma) {
1255                 if (dma_channel_active(CH_SPI))
1256                         free_dma(CH_SPI);
1257         }
1258
1259         /* Disconnect from the SPI framework */
1260         spi_unregister_master(drv_data->master);
1261
1262         /* Prevent double remove */
1263         platform_set_drvdata(pdev, NULL);
1264
1265         return 0;
1266 }
1267
1268 #ifdef CONFIG_PM
1269 static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
1270 {
1271         struct driver_data *drv_data = platform_get_drvdata(pdev);
1272         int status = 0;
1273
1274         status = stop_queue(drv_data);
1275         if (status != 0)
1276                 return status;
1277
1278         /* stop hardware */
1279         bfin_spi_disable(drv_data);
1280
1281         return 0;
1282 }
1283
1284 static int bfin5xx_spi_resume(struct platform_device *pdev)
1285 {
1286         struct driver_data *drv_data = platform_get_drvdata(pdev);
1287         int status = 0;
1288
1289         /* Enable the SPI interface */
1290         bfin_spi_enable(drv_data);
1291
1292         /* Start the queue running */
1293         status = start_queue(drv_data);
1294         if (status != 0) {
1295                 dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1296                 return status;
1297         }
1298
1299         return 0;
1300 }
1301 #else
1302 #define bfin5xx_spi_suspend NULL
1303 #define bfin5xx_spi_resume NULL
1304 #endif                          /* CONFIG_PM */
1305
1306 static struct platform_driver bfin5xx_spi_driver = {
1307         .driver         = {
1308                 .name   = "bfin-spi-master",
1309                 .owner  = THIS_MODULE,
1310         },
1311         .suspend        = bfin5xx_spi_suspend,
1312         .resume         = bfin5xx_spi_resume,
1313         .remove         = __devexit_p(bfin5xx_spi_remove),
1314 };
1315
1316 static int __init bfin5xx_spi_init(void)
1317 {
1318         return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
1319 }
1320 module_init(bfin5xx_spi_init);
1321
1322 static void __exit bfin5xx_spi_exit(void)
1323 {
1324         platform_driver_unregister(&bfin5xx_spi_driver);
1325 }
1326 module_exit(bfin5xx_spi_exit);