gpio/tegra: Move Tegra gpio driver to drivers/gpio
[pandora-kernel.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/pci.h>
22 #include <linux/wait.h>
23 #include <linux/spi/spi.h>
24 #include <linux/interrupt.h>
25 #include <linux/sched.h>
26 #include <linux/spi/spidev.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30
31 #include <linux/dmaengine.h>
32 #include <linux/pch_dma.h>
33
34 /* Register offsets */
35 #define PCH_SPCR                0x00    /* SPI control register */
36 #define PCH_SPBRR               0x04    /* SPI baud rate register */
37 #define PCH_SPSR                0x08    /* SPI status register */
38 #define PCH_SPDWR               0x0C    /* SPI write data register */
39 #define PCH_SPDRR               0x10    /* SPI read data register */
40 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
41 #define PCH_SRST                0x1C    /* SPI reset register */
42 #define PCH_ADDRESS_SIZE        0x20
43
44 #define PCH_SPSR_TFD            0x000007C0
45 #define PCH_SPSR_RFD            0x0000F800
46
47 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
48 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
49
50 #define PCH_RX_THOLD            7
51 #define PCH_RX_THOLD_MAX        15
52
53 #define PCH_MAX_BAUDRATE        5000000
54 #define PCH_MAX_FIFO_DEPTH      16
55
56 #define STATUS_RUNNING          1
57 #define STATUS_EXITING          2
58 #define PCH_SLEEP_TIME          10
59
60 #define SSN_LOW                 0x02U
61 #define SSN_NO_CONTROL          0x00U
62 #define PCH_MAX_CS              0xFF
63 #define PCI_DEVICE_ID_GE_SPI    0x8816
64
65 #define SPCR_SPE_BIT            (1 << 0)
66 #define SPCR_MSTR_BIT           (1 << 1)
67 #define SPCR_LSBF_BIT           (1 << 4)
68 #define SPCR_CPHA_BIT           (1 << 5)
69 #define SPCR_CPOL_BIT           (1 << 6)
70 #define SPCR_TFIE_BIT           (1 << 8)
71 #define SPCR_RFIE_BIT           (1 << 9)
72 #define SPCR_FIE_BIT            (1 << 10)
73 #define SPCR_ORIE_BIT           (1 << 11)
74 #define SPCR_MDFIE_BIT          (1 << 12)
75 #define SPCR_FICLR_BIT          (1 << 24)
76 #define SPSR_TFI_BIT            (1 << 0)
77 #define SPSR_RFI_BIT            (1 << 1)
78 #define SPSR_FI_BIT             (1 << 2)
79 #define SPSR_ORF_BIT            (1 << 3)
80 #define SPBRR_SIZE_BIT          (1 << 10)
81
82 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
83                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
84
85 #define SPCR_RFIC_FIELD         20
86 #define SPCR_TFIC_FIELD         16
87
88 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
89 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
90 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
91
92 #define PCH_CLOCK_HZ            50000000
93 #define PCH_MAX_SPBR            1023
94
95 /* Definition for ML7213 by OKI SEMICONDUCTOR */
96 #define PCI_VENDOR_ID_ROHM              0x10DB
97 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
98
99 /*
100  * Set the number of SPI instance max
101  * Intel EG20T PCH :            1ch
102  * OKI SEMICONDUCTOR ML7213 IOH :       2ch
103 */
104 #define PCH_SPI_MAX_DEV                 2
105
106 #define PCH_BUF_SIZE            4096
107 #define PCH_DMA_TRANS_SIZE      12
108
109 static int use_dma = 1;
110
111 struct pch_spi_dma_ctrl {
112         struct dma_async_tx_descriptor  *desc_tx;
113         struct dma_async_tx_descriptor  *desc_rx;
114         struct pch_dma_slave            param_tx;
115         struct pch_dma_slave            param_rx;
116         struct dma_chan         *chan_tx;
117         struct dma_chan         *chan_rx;
118         struct scatterlist              *sg_tx_p;
119         struct scatterlist              *sg_rx_p;
120         struct scatterlist              sg_tx;
121         struct scatterlist              sg_rx;
122         int                             nent;
123         void                            *tx_buf_virt;
124         void                            *rx_buf_virt;
125         dma_addr_t                      tx_buf_dma;
126         dma_addr_t                      rx_buf_dma;
127 };
128 /**
129  * struct pch_spi_data - Holds the SPI channel specific details
130  * @io_remap_addr:              The remapped PCI base address
131  * @master:                     Pointer to the SPI master structure
132  * @work:                       Reference to work queue handler
133  * @wk:                         Workqueue for carrying out execution of the
134  *                              requests
135  * @wait:                       Wait queue for waking up upon receiving an
136  *                              interrupt.
137  * @transfer_complete:          Status of SPI Transfer
138  * @bcurrent_msg_processing:    Status flag for message processing
139  * @lock:                       Lock for protecting this structure
140  * @queue:                      SPI Message queue
141  * @status:                     Status of the SPI driver
142  * @bpw_len:                    Length of data to be transferred in bits per
143  *                              word
144  * @transfer_active:            Flag showing active transfer
145  * @tx_index:                   Transmit data count; for bookkeeping during
146  *                              transfer
147  * @rx_index:                   Receive data count; for bookkeeping during
148  *                              transfer
149  * @tx_buff:                    Buffer for data to be transmitted
150  * @rx_index:                   Buffer for Received data
151  * @n_curnt_chip:               The chip number that this SPI driver currently
152  *                              operates on
153  * @current_chip:               Reference to the current chip that this SPI
154  *                              driver currently operates on
155  * @current_msg:                The current message that this SPI driver is
156  *                              handling
157  * @cur_trans:                  The current transfer that this SPI driver is
158  *                              handling
159  * @board_dat:                  Reference to the SPI device data structure
160  * @plat_dev:                   platform_device structure
161  * @ch:                         SPI channel number
162  * @irq_reg_sts:                Status of IRQ registration
163  */
164 struct pch_spi_data {
165         void __iomem *io_remap_addr;
166         unsigned long io_base_addr;
167         struct spi_master *master;
168         struct work_struct work;
169         struct workqueue_struct *wk;
170         wait_queue_head_t wait;
171         u8 transfer_complete;
172         u8 bcurrent_msg_processing;
173         spinlock_t lock;
174         struct list_head queue;
175         u8 status;
176         u32 bpw_len;
177         u8 transfer_active;
178         u32 tx_index;
179         u32 rx_index;
180         u16 *pkt_tx_buff;
181         u16 *pkt_rx_buff;
182         u8 n_curnt_chip;
183         struct spi_device *current_chip;
184         struct spi_message *current_msg;
185         struct spi_transfer *cur_trans;
186         struct pch_spi_board_data *board_dat;
187         struct platform_device  *plat_dev;
188         int ch;
189         struct pch_spi_dma_ctrl dma;
190         int use_dma;
191         u8 irq_reg_sts;
192 };
193
194 /**
195  * struct pch_spi_board_data - Holds the SPI device specific details
196  * @pdev:               Pointer to the PCI device
197  * @suspend_sts:        Status of suspend
198  * @num:                The number of SPI device instance
199  */
200 struct pch_spi_board_data {
201         struct pci_dev *pdev;
202         u8 suspend_sts;
203         int num;
204 };
205
206 struct pch_pd_dev_save {
207         int num;
208         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
209         struct pch_spi_board_data *board_dat;
210 };
211
212 static struct pci_device_id pch_spi_pcidev_id[] = {
213         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
214         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
215         { }
216 };
217
218 /**
219  * pch_spi_writereg() - Performs  register writes
220  * @master:     Pointer to struct spi_master.
221  * @idx:        Register offset.
222  * @val:        Value to be written to register.
223  */
224 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
225 {
226         struct pch_spi_data *data = spi_master_get_devdata(master);
227         iowrite32(val, (data->io_remap_addr + idx));
228 }
229
230 /**
231  * pch_spi_readreg() - Performs register reads
232  * @master:     Pointer to struct spi_master.
233  * @idx:        Register offset.
234  */
235 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
236 {
237         struct pch_spi_data *data = spi_master_get_devdata(master);
238         return ioread32(data->io_remap_addr + idx);
239 }
240
241 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
242                                       u32 set, u32 clr)
243 {
244         u32 tmp = pch_spi_readreg(master, idx);
245         tmp = (tmp & ~clr) | set;
246         pch_spi_writereg(master, idx, tmp);
247 }
248
249 static void pch_spi_set_master_mode(struct spi_master *master)
250 {
251         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
252 }
253
254 /**
255  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
256  * @master:     Pointer to struct spi_master.
257  */
258 static void pch_spi_clear_fifo(struct spi_master *master)
259 {
260         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
261         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
262 }
263
264 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
265                                 void __iomem *io_remap_addr)
266 {
267         u32 n_read, tx_index, rx_index, bpw_len;
268         u16 *pkt_rx_buffer, *pkt_tx_buff;
269         int read_cnt;
270         u32 reg_spcr_val;
271         void __iomem *spsr;
272         void __iomem *spdrr;
273         void __iomem *spdwr;
274
275         spsr = io_remap_addr + PCH_SPSR;
276         iowrite32(reg_spsr_val, spsr);
277
278         if (data->transfer_active) {
279                 rx_index = data->rx_index;
280                 tx_index = data->tx_index;
281                 bpw_len = data->bpw_len;
282                 pkt_rx_buffer = data->pkt_rx_buff;
283                 pkt_tx_buff = data->pkt_tx_buff;
284
285                 spdrr = io_remap_addr + PCH_SPDRR;
286                 spdwr = io_remap_addr + PCH_SPDWR;
287
288                 n_read = PCH_READABLE(reg_spsr_val);
289
290                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
291                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
292                         if (tx_index < bpw_len)
293                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
294                 }
295
296                 /* disable RFI if not needed */
297                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
298                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
299                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
300
301                         /* reset rx threshold */
302                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
303                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
304
305                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
306                 }
307
308                 /* update counts */
309                 data->tx_index = tx_index;
310                 data->rx_index = rx_index;
311
312         }
313
314         /* if transfer complete interrupt */
315         if (reg_spsr_val & SPSR_FI_BIT) {
316                 if (tx_index < bpw_len)
317                         dev_err(&data->master->dev,
318                                 "%s : Transfer is not completed", __func__);
319                 /* disable interrupts */
320                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
321
322                 /* transfer is completed;inform pch_spi_process_messages */
323                 data->transfer_complete = true;
324                 data->transfer_active = false;
325                 wake_up(&data->wait);
326         }
327 }
328
329 /**
330  * pch_spi_handler() - Interrupt handler
331  * @irq:        The interrupt number.
332  * @dev_id:     Pointer to struct pch_spi_board_data.
333  */
334 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
335 {
336         u32 reg_spsr_val;
337         void __iomem *spsr;
338         void __iomem *io_remap_addr;
339         irqreturn_t ret = IRQ_NONE;
340         struct pch_spi_data *data = dev_id;
341         struct pch_spi_board_data *board_dat = data->board_dat;
342
343         if (board_dat->suspend_sts) {
344                 dev_dbg(&board_dat->pdev->dev,
345                         "%s returning due to suspend\n", __func__);
346                 return IRQ_NONE;
347         }
348         if (data->use_dma)
349                 return IRQ_NONE;
350
351         io_remap_addr = data->io_remap_addr;
352         spsr = io_remap_addr + PCH_SPSR;
353
354         reg_spsr_val = ioread32(spsr);
355
356         if (reg_spsr_val & SPSR_ORF_BIT)
357                 dev_err(&board_dat->pdev->dev, "%s Over run error", __func__);
358
359         /* Check if the interrupt is for SPI device */
360         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
361                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
362                 ret = IRQ_HANDLED;
363         }
364
365         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
366                 __func__, ret);
367
368         return ret;
369 }
370
371 /**
372  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
373  * @master:     Pointer to struct spi_master.
374  * @speed_hz:   Baud rate.
375  */
376 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
377 {
378         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
379
380         /* if baud rate is less than we can support limit it */
381         if (n_spbr > PCH_MAX_SPBR)
382                 n_spbr = PCH_MAX_SPBR;
383
384         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
385 }
386
387 /**
388  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
389  * @master:             Pointer to struct spi_master.
390  * @bits_per_word:      Bits per word for SPI transfer.
391  */
392 static void pch_spi_set_bits_per_word(struct spi_master *master,
393                                       u8 bits_per_word)
394 {
395         if (bits_per_word == 8)
396                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
397         else
398                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
399 }
400
401 /**
402  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
403  * @spi:        Pointer to struct spi_device.
404  */
405 static void pch_spi_setup_transfer(struct spi_device *spi)
406 {
407         u32 flags = 0;
408
409         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
410                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
411                 spi->max_speed_hz);
412         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
413
414         /* set bits per word */
415         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
416
417         if (!(spi->mode & SPI_LSB_FIRST))
418                 flags |= SPCR_LSBF_BIT;
419         if (spi->mode & SPI_CPOL)
420                 flags |= SPCR_CPOL_BIT;
421         if (spi->mode & SPI_CPHA)
422                 flags |= SPCR_CPHA_BIT;
423         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
424                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
425
426         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
427         pch_spi_clear_fifo(spi->master);
428 }
429
430 /**
431  * pch_spi_reset() - Clears SPI registers
432  * @master:     Pointer to struct spi_master.
433  */
434 static void pch_spi_reset(struct spi_master *master)
435 {
436         /* write 1 to reset SPI */
437         pch_spi_writereg(master, PCH_SRST, 0x1);
438
439         /* clear reset */
440         pch_spi_writereg(master, PCH_SRST, 0x0);
441 }
442
443 static int pch_spi_setup(struct spi_device *pspi)
444 {
445         /* check bits per word */
446         if (pspi->bits_per_word == 0) {
447                 pspi->bits_per_word = 8;
448                 dev_dbg(&pspi->dev, "%s 8 bits per word\n", __func__);
449         }
450
451         if ((pspi->bits_per_word != 8) && (pspi->bits_per_word != 16)) {
452                 dev_err(&pspi->dev, "%s Invalid bits per word\n", __func__);
453                 return -EINVAL;
454         }
455
456         /* Check baud rate setting */
457         /* if baud rate of chip is greater than
458            max we can support,return error */
459         if ((pspi->max_speed_hz) > PCH_MAX_BAUDRATE)
460                 pspi->max_speed_hz = PCH_MAX_BAUDRATE;
461
462         dev_dbg(&pspi->dev, "%s MODE = %x\n", __func__,
463                 (pspi->mode) & (SPI_CPOL | SPI_CPHA));
464
465         return 0;
466 }
467
468 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
469 {
470
471         struct spi_transfer *transfer;
472         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
473         int retval;
474         unsigned long flags;
475
476         /* validate spi message and baud rate */
477         if (unlikely(list_empty(&pmsg->transfers) == 1)) {
478                 dev_err(&pspi->dev, "%s list empty\n", __func__);
479                 retval = -EINVAL;
480                 goto err_out;
481         }
482
483         if (unlikely(pspi->max_speed_hz == 0)) {
484                 dev_err(&pspi->dev, "%s pch_spi_tranfer maxspeed=%d\n",
485                         __func__, pspi->max_speed_hz);
486                 retval = -EINVAL;
487                 goto err_out;
488         }
489
490         dev_dbg(&pspi->dev, "%s Transfer List not empty. "
491                 "Transfer Speed is set.\n", __func__);
492
493         spin_lock_irqsave(&data->lock, flags);
494         /* validate Tx/Rx buffers and Transfer length */
495         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
496                 if (!transfer->tx_buf && !transfer->rx_buf) {
497                         dev_err(&pspi->dev,
498                                 "%s Tx and Rx buffer NULL\n", __func__);
499                         retval = -EINVAL;
500                         goto err_return_spinlock;
501                 }
502
503                 if (!transfer->len) {
504                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
505                                 __func__);
506                         retval = -EINVAL;
507                         goto err_return_spinlock;
508                 }
509
510                 dev_dbg(&pspi->dev, "%s Tx/Rx buffer valid. Transfer length"
511                         " valid\n", __func__);
512
513                 /* if baud rate has been specified validate the same */
514                 if (transfer->speed_hz > PCH_MAX_BAUDRATE)
515                         transfer->speed_hz = PCH_MAX_BAUDRATE;
516
517                 /* if bits per word has been specified validate the same */
518                 if (transfer->bits_per_word) {
519                         if ((transfer->bits_per_word != 8)
520                             && (transfer->bits_per_word != 16)) {
521                                 retval = -EINVAL;
522                                 dev_err(&pspi->dev,
523                                         "%s Invalid bits per word\n", __func__);
524                                 goto err_return_spinlock;
525                         }
526                 }
527         }
528         spin_unlock_irqrestore(&data->lock, flags);
529
530         /* We won't process any messages if we have been asked to terminate */
531         if (data->status == STATUS_EXITING) {
532                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
533                 retval = -ESHUTDOWN;
534                 goto err_out;
535         }
536
537         /* If suspended ,return -EINVAL */
538         if (data->board_dat->suspend_sts) {
539                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
540                 retval = -EINVAL;
541                 goto err_out;
542         }
543
544         /* set status of message */
545         pmsg->actual_length = 0;
546         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
547
548         pmsg->status = -EINPROGRESS;
549         spin_lock_irqsave(&data->lock, flags);
550         /* add message to queue */
551         list_add_tail(&pmsg->queue, &data->queue);
552         spin_unlock_irqrestore(&data->lock, flags);
553
554         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
555
556         /* schedule work queue to run */
557         queue_work(data->wk, &data->work);
558         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
559
560         retval = 0;
561
562 err_out:
563         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
564         return retval;
565 err_return_spinlock:
566         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
567         spin_unlock_irqrestore(&data->lock, flags);
568         return retval;
569 }
570
571 static inline void pch_spi_select_chip(struct pch_spi_data *data,
572                                        struct spi_device *pspi)
573 {
574         if (data->current_chip != NULL) {
575                 if (pspi->chip_select != data->n_curnt_chip) {
576                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
577                         data->current_chip = NULL;
578                 }
579         }
580
581         data->current_chip = pspi;
582
583         data->n_curnt_chip = data->current_chip->chip_select;
584
585         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
586         pch_spi_setup_transfer(pspi);
587 }
588
589 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
590 {
591         int size;
592         u32 n_writes;
593         int j;
594         struct spi_message *pmsg;
595         const u8 *tx_buf;
596         const u16 *tx_sbuf;
597
598         /* set baud rate if needed */
599         if (data->cur_trans->speed_hz) {
600                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
601                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
602         }
603
604         /* set bits per word if needed */
605         if (data->cur_trans->bits_per_word &&
606             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
607                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
608                 pch_spi_set_bits_per_word(data->master,
609                                           data->cur_trans->bits_per_word);
610                 *bpw = data->cur_trans->bits_per_word;
611         } else {
612                 *bpw = data->current_msg->spi->bits_per_word;
613         }
614
615         /* reset Tx/Rx index */
616         data->tx_index = 0;
617         data->rx_index = 0;
618
619         data->bpw_len = data->cur_trans->len / (*bpw / 8);
620
621         /* find alloc size */
622         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
623
624         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
625         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
626         if (data->pkt_tx_buff != NULL) {
627                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
628                 if (!data->pkt_rx_buff)
629                         kfree(data->pkt_tx_buff);
630         }
631
632         if (!data->pkt_rx_buff) {
633                 /* flush queue and set status of all transfers to -ENOMEM */
634                 dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
635                 list_for_each_entry(pmsg, data->queue.next, queue) {
636                         pmsg->status = -ENOMEM;
637
638                         if (pmsg->complete != 0)
639                                 pmsg->complete(pmsg->context);
640
641                         /* delete from queue */
642                         list_del_init(&pmsg->queue);
643                 }
644                 return;
645         }
646
647         /* copy Tx Data */
648         if (data->cur_trans->tx_buf != NULL) {
649                 if (*bpw == 8) {
650                         tx_buf = data->cur_trans->tx_buf;
651                         for (j = 0; j < data->bpw_len; j++)
652                                 data->pkt_tx_buff[j] = *tx_buf++;
653                 } else {
654                         tx_sbuf = data->cur_trans->tx_buf;
655                         for (j = 0; j < data->bpw_len; j++)
656                                 data->pkt_tx_buff[j] = *tx_sbuf++;
657                 }
658         }
659
660         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
661         n_writes = data->bpw_len;
662         if (n_writes > PCH_MAX_FIFO_DEPTH)
663                 n_writes = PCH_MAX_FIFO_DEPTH;
664
665         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
666                 "0x2 to SSNXCR\n", __func__);
667         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
668
669         for (j = 0; j < n_writes; j++)
670                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
671
672         /* update tx_index */
673         data->tx_index = j;
674
675         /* reset transfer complete flag */
676         data->transfer_complete = false;
677         data->transfer_active = true;
678 }
679
680 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
681 {
682         struct spi_message *pmsg;
683         dev_dbg(&data->master->dev, "%s called\n", __func__);
684         /* Invoke complete callback
685          * [To the spi core..indicating end of transfer] */
686         data->current_msg->status = 0;
687
688         if (data->current_msg->complete != 0) {
689                 dev_dbg(&data->master->dev,
690                         "%s:Invoking callback of SPI core\n", __func__);
691                 data->current_msg->complete(data->current_msg->context);
692         }
693
694         /* update status in global variable */
695         data->bcurrent_msg_processing = false;
696
697         dev_dbg(&data->master->dev,
698                 "%s:data->bcurrent_msg_processing = false\n", __func__);
699
700         data->current_msg = NULL;
701         data->cur_trans = NULL;
702
703         /* check if we have items in list and not suspending
704          * return 1 if list empty */
705         if ((list_empty(&data->queue) == 0) &&
706             (!data->board_dat->suspend_sts) &&
707             (data->status != STATUS_EXITING)) {
708                 /* We have some more work to do (either there is more tranint
709                  * bpw;sfer requests in the current message or there are
710                  *more messages)
711                  */
712                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
713                 queue_work(data->wk, &data->work);
714         } else if (data->board_dat->suspend_sts ||
715                    data->status == STATUS_EXITING) {
716                 dev_dbg(&data->master->dev,
717                         "%s suspend/remove initiated, flushing queue\n",
718                         __func__);
719                 list_for_each_entry(pmsg, data->queue.next, queue) {
720                         pmsg->status = -EIO;
721
722                         if (pmsg->complete)
723                                 pmsg->complete(pmsg->context);
724
725                         /* delete from queue */
726                         list_del_init(&pmsg->queue);
727                 }
728         }
729 }
730
731 static void pch_spi_set_ir(struct pch_spi_data *data)
732 {
733         /* enable interrupts, set threshold, enable SPI */
734         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
735                 /* set receive threshold to PCH_RX_THOLD */
736                 pch_spi_setclr_reg(data->master, PCH_SPCR,
737                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
738                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
739                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
740                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
741         else
742                 /* set receive threshold to maximum */
743                 pch_spi_setclr_reg(data->master, PCH_SPCR,
744                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
745                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
746                                    SPCR_SPE_BIT,
747                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
748
749         /* Wait until the transfer completes; go to sleep after
750                                  initiating the transfer. */
751         dev_dbg(&data->master->dev,
752                 "%s:waiting for transfer to get over\n", __func__);
753
754         wait_event_interruptible(data->wait, data->transfer_complete);
755
756         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
757         dev_dbg(&data->master->dev,
758                 "%s:no more control over SSN-writing 0 to SSNXCR.", __func__);
759
760         /* clear all interrupts */
761         pch_spi_writereg(data->master, PCH_SPSR,
762                          pch_spi_readreg(data->master, PCH_SPSR));
763         /* Disable interrupts and SPI transfer */
764         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
765         /* clear FIFO */
766         pch_spi_clear_fifo(data->master);
767 }
768
769 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
770 {
771         int j;
772         u8 *rx_buf;
773         u16 *rx_sbuf;
774
775         /* copy Rx Data */
776         if (!data->cur_trans->rx_buf)
777                 return;
778
779         if (bpw == 8) {
780                 rx_buf = data->cur_trans->rx_buf;
781                 for (j = 0; j < data->bpw_len; j++)
782                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
783         } else {
784                 rx_sbuf = data->cur_trans->rx_buf;
785                 for (j = 0; j < data->bpw_len; j++)
786                         *rx_sbuf++ = data->pkt_rx_buff[j];
787         }
788 }
789
790 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
791 {
792         int j;
793         u8 *rx_buf;
794         u16 *rx_sbuf;
795         const u8 *rx_dma_buf;
796         const u16 *rx_dma_sbuf;
797
798         /* copy Rx Data */
799         if (!data->cur_trans->rx_buf)
800                 return;
801
802         if (bpw == 8) {
803                 rx_buf = data->cur_trans->rx_buf;
804                 rx_dma_buf = data->dma.rx_buf_virt;
805                 for (j = 0; j < data->bpw_len; j++)
806                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
807         } else {
808                 rx_sbuf = data->cur_trans->rx_buf;
809                 rx_dma_sbuf = data->dma.rx_buf_virt;
810                 for (j = 0; j < data->bpw_len; j++)
811                         *rx_sbuf++ = *rx_dma_sbuf++;
812         }
813 }
814
815 static void pch_spi_start_transfer(struct pch_spi_data *data)
816 {
817         struct pch_spi_dma_ctrl *dma;
818         unsigned long flags;
819
820         dma = &data->dma;
821
822         spin_lock_irqsave(&data->lock, flags);
823
824         /* disable interrupts, SPI set enable */
825         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
826
827         spin_unlock_irqrestore(&data->lock, flags);
828
829         /* Wait until the transfer completes; go to sleep after
830                                  initiating the transfer. */
831         dev_dbg(&data->master->dev,
832                 "%s:waiting for transfer to get over\n", __func__);
833         wait_event_interruptible(data->wait, data->transfer_complete);
834
835         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
836                             DMA_FROM_DEVICE);
837         async_tx_ack(dma->desc_rx);
838         async_tx_ack(dma->desc_tx);
839         kfree(dma->sg_tx_p);
840         kfree(dma->sg_rx_p);
841
842         spin_lock_irqsave(&data->lock, flags);
843         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
844         dev_dbg(&data->master->dev,
845                 "%s:no more control over SSN-writing 0 to SSNXCR.", __func__);
846
847         /* clear fifo threshold, disable interrupts, disable SPI transfer */
848         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
849                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
850                            SPCR_SPE_BIT);
851         /* clear all interrupts */
852         pch_spi_writereg(data->master, PCH_SPSR,
853                          pch_spi_readreg(data->master, PCH_SPSR));
854         /* clear FIFO */
855         pch_spi_clear_fifo(data->master);
856
857         spin_unlock_irqrestore(&data->lock, flags);
858 }
859
860 static void pch_dma_rx_complete(void *arg)
861 {
862         struct pch_spi_data *data = arg;
863
864         /* transfer is completed;inform pch_spi_process_messages_dma */
865         data->transfer_complete = true;
866         wake_up_interruptible(&data->wait);
867 }
868
869 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
870 {
871         struct pch_dma_slave *param = slave;
872
873         if ((chan->chan_id == param->chan_id) &&
874             (param->dma_dev == chan->device->dev)) {
875                 chan->private = param;
876                 return true;
877         } else {
878                 return false;
879         }
880 }
881
882 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
883 {
884         dma_cap_mask_t mask;
885         struct dma_chan *chan;
886         struct pci_dev *dma_dev;
887         struct pch_dma_slave *param;
888         struct pch_spi_dma_ctrl *dma;
889         unsigned int width;
890
891         if (bpw == 8)
892                 width = PCH_DMA_WIDTH_1_BYTE;
893         else
894                 width = PCH_DMA_WIDTH_2_BYTES;
895
896         dma = &data->dma;
897         dma_cap_zero(mask);
898         dma_cap_set(DMA_SLAVE, mask);
899
900         /* Get DMA's dev information */
901         dma_dev = pci_get_bus_and_slot(2, PCI_DEVFN(12, 0));
902
903         /* Set Tx DMA */
904         param = &dma->param_tx;
905         param->dma_dev = &dma_dev->dev;
906         param->chan_id = data->master->bus_num * 2; /* Tx = 0, 2 */
907         param->tx_reg = data->io_base_addr + PCH_SPDWR;
908         param->width = width;
909         chan = dma_request_channel(mask, pch_spi_filter, param);
910         if (!chan) {
911                 dev_err(&data->master->dev,
912                         "ERROR: dma_request_channel FAILS(Tx)\n");
913                 data->use_dma = 0;
914                 return;
915         }
916         dma->chan_tx = chan;
917
918         /* Set Rx DMA */
919         param = &dma->param_rx;
920         param->dma_dev = &dma_dev->dev;
921         param->chan_id = data->master->bus_num * 2 + 1; /* Rx = Tx + 1 */
922         param->rx_reg = data->io_base_addr + PCH_SPDRR;
923         param->width = width;
924         chan = dma_request_channel(mask, pch_spi_filter, param);
925         if (!chan) {
926                 dev_err(&data->master->dev,
927                         "ERROR: dma_request_channel FAILS(Rx)\n");
928                 dma_release_channel(dma->chan_tx);
929                 dma->chan_tx = NULL;
930                 data->use_dma = 0;
931                 return;
932         }
933         dma->chan_rx = chan;
934 }
935
936 static void pch_spi_release_dma(struct pch_spi_data *data)
937 {
938         struct pch_spi_dma_ctrl *dma;
939
940         dma = &data->dma;
941         if (dma->chan_tx) {
942                 dma_release_channel(dma->chan_tx);
943                 dma->chan_tx = NULL;
944         }
945         if (dma->chan_rx) {
946                 dma_release_channel(dma->chan_rx);
947                 dma->chan_rx = NULL;
948         }
949         return;
950 }
951
952 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
953 {
954         const u8 *tx_buf;
955         const u16 *tx_sbuf;
956         u8 *tx_dma_buf;
957         u16 *tx_dma_sbuf;
958         struct scatterlist *sg;
959         struct dma_async_tx_descriptor *desc_tx;
960         struct dma_async_tx_descriptor *desc_rx;
961         int num;
962         int i;
963         int size;
964         int rem;
965         unsigned long flags;
966         struct pch_spi_dma_ctrl *dma;
967
968         dma = &data->dma;
969
970         /* set baud rate if needed */
971         if (data->cur_trans->speed_hz) {
972                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
973                 spin_lock_irqsave(&data->lock, flags);
974                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
975                 spin_unlock_irqrestore(&data->lock, flags);
976         }
977
978         /* set bits per word if needed */
979         if (data->cur_trans->bits_per_word &&
980             (data->current_msg->spi->bits_per_word !=
981              data->cur_trans->bits_per_word)) {
982                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
983                 spin_lock_irqsave(&data->lock, flags);
984                 pch_spi_set_bits_per_word(data->master,
985                                           data->cur_trans->bits_per_word);
986                 spin_unlock_irqrestore(&data->lock, flags);
987                 *bpw = data->cur_trans->bits_per_word;
988         } else {
989                 *bpw = data->current_msg->spi->bits_per_word;
990         }
991         data->bpw_len = data->cur_trans->len / (*bpw / 8);
992
993         /* copy Tx Data */
994         if (data->cur_trans->tx_buf != NULL) {
995                 if (*bpw == 8) {
996                         tx_buf = data->cur_trans->tx_buf;
997                         tx_dma_buf = dma->tx_buf_virt;
998                         for (i = 0; i < data->bpw_len; i++)
999                                 *tx_dma_buf++ = *tx_buf++;
1000                 } else {
1001                         tx_sbuf = data->cur_trans->tx_buf;
1002                         tx_dma_sbuf = dma->tx_buf_virt;
1003                         for (i = 0; i < data->bpw_len; i++)
1004                                 *tx_dma_sbuf++ = *tx_sbuf++;
1005                 }
1006         }
1007         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
1008                 num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1009                 size = PCH_DMA_TRANS_SIZE;
1010                 rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
1011         } else {
1012                 num = 1;
1013                 size = data->bpw_len;
1014                 rem = data->bpw_len;
1015         }
1016         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
1017                 __func__, num, size, rem);
1018         spin_lock_irqsave(&data->lock, flags);
1019
1020         /* set receive fifo threshold and transmit fifo threshold */
1021         pch_spi_setclr_reg(data->master, PCH_SPCR,
1022                            ((size - 1) << SPCR_RFIC_FIELD) |
1023                            ((PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE) <<
1024                             SPCR_TFIC_FIELD),
1025                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1026
1027         spin_unlock_irqrestore(&data->lock, flags);
1028
1029         /* RX */
1030         dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1031         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1032         /* offset, length setting */
1033         sg = dma->sg_rx_p;
1034         for (i = 0; i < num; i++, sg++) {
1035                 if (i == 0) {
1036                         sg->offset = 0;
1037                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1038                                     sg->offset);
1039                         sg_dma_len(sg) = rem;
1040                 } else {
1041                         sg->offset = rem + size * (i - 1);
1042                         sg->offset = sg->offset * (*bpw / 8);
1043                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1044                                     sg->offset);
1045                         sg_dma_len(sg) = size;
1046                 }
1047                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1048         }
1049         sg = dma->sg_rx_p;
1050         desc_rx = dma->chan_rx->device->device_prep_slave_sg(dma->chan_rx, sg,
1051                                         num, DMA_FROM_DEVICE,
1052                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1053         if (!desc_rx) {
1054                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1055                         __func__);
1056                 return;
1057         }
1058         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1059         desc_rx->callback = pch_dma_rx_complete;
1060         desc_rx->callback_param = data;
1061         dma->nent = num;
1062         dma->desc_rx = desc_rx;
1063
1064         /* TX */
1065         dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
1066         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1067         /* offset, length setting */
1068         sg = dma->sg_tx_p;
1069         for (i = 0; i < num; i++, sg++) {
1070                 if (i == 0) {
1071                         sg->offset = 0;
1072                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1073                                     sg->offset);
1074                         sg_dma_len(sg) = rem;
1075                 } else {
1076                         sg->offset = rem + size * (i - 1);
1077                         sg->offset = sg->offset * (*bpw / 8);
1078                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1079                                     sg->offset);
1080                         sg_dma_len(sg) = size;
1081                 }
1082                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1083         }
1084         sg = dma->sg_tx_p;
1085         desc_tx = dma->chan_tx->device->device_prep_slave_sg(dma->chan_tx,
1086                                         sg, num, DMA_TO_DEVICE,
1087                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1088         if (!desc_tx) {
1089                 dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
1090                         __func__);
1091                 return;
1092         }
1093         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1094         desc_tx->callback = NULL;
1095         desc_tx->callback_param = data;
1096         dma->nent = num;
1097         dma->desc_tx = desc_tx;
1098
1099         dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
1100                 "0x2 to SSNXCR\n", __func__);
1101
1102         spin_lock_irqsave(&data->lock, flags);
1103         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1104         desc_rx->tx_submit(desc_rx);
1105         desc_tx->tx_submit(desc_tx);
1106         spin_unlock_irqrestore(&data->lock, flags);
1107
1108         /* reset transfer complete flag */
1109         data->transfer_complete = false;
1110 }
1111
1112 static void pch_spi_process_messages(struct work_struct *pwork)
1113 {
1114         struct spi_message *pmsg;
1115         struct pch_spi_data *data;
1116         int bpw;
1117
1118         data = container_of(pwork, struct pch_spi_data, work);
1119         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1120
1121         spin_lock(&data->lock);
1122         /* check if suspend has been initiated;if yes flush queue */
1123         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1124                 dev_dbg(&data->master->dev, "%s suspend/remove initiated,"
1125                         "flushing queue\n", __func__);
1126                 list_for_each_entry(pmsg, data->queue.next, queue) {
1127                         pmsg->status = -EIO;
1128
1129                         if (pmsg->complete != 0) {
1130                                 spin_unlock(&data->lock);
1131                                 pmsg->complete(pmsg->context);
1132                                 spin_lock(&data->lock);
1133                         }
1134
1135                         /* delete from queue */
1136                         list_del_init(&pmsg->queue);
1137                 }
1138
1139                 spin_unlock(&data->lock);
1140                 return;
1141         }
1142
1143         data->bcurrent_msg_processing = true;
1144         dev_dbg(&data->master->dev,
1145                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1146
1147         /* Get the message from the queue and delete it from there. */
1148         data->current_msg = list_entry(data->queue.next, struct spi_message,
1149                                         queue);
1150
1151         list_del_init(&data->current_msg->queue);
1152
1153         data->current_msg->status = 0;
1154
1155         pch_spi_select_chip(data, data->current_msg->spi);
1156
1157         spin_unlock(&data->lock);
1158
1159         if (data->use_dma)
1160                 pch_spi_request_dma(data,
1161                                     data->current_msg->spi->bits_per_word);
1162         do {
1163                 /* If we are already processing a message get the next
1164                 transfer structure from the message otherwise retrieve
1165                 the 1st transfer request from the message. */
1166                 spin_lock(&data->lock);
1167                 if (data->cur_trans == NULL) {
1168                         data->cur_trans =
1169                                 list_entry(data->current_msg->transfers.next,
1170                                            struct spi_transfer, transfer_list);
1171                         dev_dbg(&data->master->dev, "%s "
1172                                 ":Getting 1st transfer message\n", __func__);
1173                 } else {
1174                         data->cur_trans =
1175                                 list_entry(data->cur_trans->transfer_list.next,
1176                                            struct spi_transfer, transfer_list);
1177                         dev_dbg(&data->master->dev, "%s "
1178                                 ":Getting next transfer message\n", __func__);
1179                 }
1180                 spin_unlock(&data->lock);
1181
1182                 if (data->use_dma) {
1183                         pch_spi_handle_dma(data, &bpw);
1184                         pch_spi_start_transfer(data);
1185                         pch_spi_copy_rx_data_for_dma(data, bpw);
1186                 } else {
1187                         pch_spi_set_tx(data, &bpw);
1188                         pch_spi_set_ir(data);
1189                         pch_spi_copy_rx_data(data, bpw);
1190                         kfree(data->pkt_rx_buff);
1191                         data->pkt_rx_buff = NULL;
1192                         kfree(data->pkt_tx_buff);
1193                         data->pkt_tx_buff = NULL;
1194                 }
1195                 /* increment message count */
1196                 data->current_msg->actual_length += data->cur_trans->len;
1197
1198                 dev_dbg(&data->master->dev,
1199                         "%s:data->current_msg->actual_length=%d\n",
1200                         __func__, data->current_msg->actual_length);
1201
1202                 /* check for delay */
1203                 if (data->cur_trans->delay_usecs) {
1204                         dev_dbg(&data->master->dev, "%s:"
1205                                 "delay in usec=%d\n", __func__,
1206                                 data->cur_trans->delay_usecs);
1207                         udelay(data->cur_trans->delay_usecs);
1208                 }
1209
1210                 spin_lock(&data->lock);
1211
1212                 /* No more transfer in this message. */
1213                 if ((data->cur_trans->transfer_list.next) ==
1214                     &(data->current_msg->transfers)) {
1215                         pch_spi_nomore_transfer(data);
1216                 }
1217
1218                 spin_unlock(&data->lock);
1219
1220         } while (data->cur_trans != NULL);
1221
1222         if (data->use_dma)
1223                 pch_spi_release_dma(data);
1224 }
1225
1226 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1227                                    struct pch_spi_data *data)
1228 {
1229         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1230
1231         /* free workqueue */
1232         if (data->wk != NULL) {
1233                 destroy_workqueue(data->wk);
1234                 data->wk = NULL;
1235                 dev_dbg(&board_dat->pdev->dev,
1236                         "%s destroy_workqueue invoked successfully\n",
1237                         __func__);
1238         }
1239 }
1240
1241 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1242                                  struct pch_spi_data *data)
1243 {
1244         int retval = 0;
1245
1246         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1247
1248         /* create workqueue */
1249         data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
1250         if (!data->wk) {
1251                 dev_err(&board_dat->pdev->dev,
1252                         "%s create_singlet hread_workqueue failed\n", __func__);
1253                 retval = -EBUSY;
1254                 goto err_return;
1255         }
1256
1257         /* reset PCH SPI h/w */
1258         pch_spi_reset(data->master);
1259         dev_dbg(&board_dat->pdev->dev,
1260                 "%s pch_spi_reset invoked successfully\n", __func__);
1261
1262         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1263
1264 err_return:
1265         if (retval != 0) {
1266                 dev_err(&board_dat->pdev->dev,
1267                         "%s FAIL:invoking pch_spi_free_resources\n", __func__);
1268                 pch_spi_free_resources(board_dat, data);
1269         }
1270
1271         dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
1272
1273         return retval;
1274 }
1275
1276 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1277                              struct pch_spi_data *data)
1278 {
1279         struct pch_spi_dma_ctrl *dma;
1280
1281         dma = &data->dma;
1282         if (dma->tx_buf_dma)
1283                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1284                                   dma->tx_buf_virt, dma->tx_buf_dma);
1285         if (dma->rx_buf_dma)
1286                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1287                                   dma->rx_buf_virt, dma->rx_buf_dma);
1288         return;
1289 }
1290
1291 static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1292                               struct pch_spi_data *data)
1293 {
1294         struct pch_spi_dma_ctrl *dma;
1295
1296         dma = &data->dma;
1297         /* Get Consistent memory for Tx DMA */
1298         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1299                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1300         /* Get Consistent memory for Rx DMA */
1301         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1302                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1303 }
1304
1305 static int __devinit pch_spi_pd_probe(struct platform_device *plat_dev)
1306 {
1307         int ret;
1308         struct spi_master *master;
1309         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1310         struct pch_spi_data *data;
1311
1312         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1313
1314         master = spi_alloc_master(&board_dat->pdev->dev,
1315                                   sizeof(struct pch_spi_data));
1316         if (!master) {
1317                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1318                         plat_dev->id);
1319                 return -ENOMEM;
1320         }
1321
1322         data = spi_master_get_devdata(master);
1323         data->master = master;
1324
1325         platform_set_drvdata(plat_dev, data);
1326
1327         /* baseaddress + address offset) */
1328         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1329                                          PCH_ADDRESS_SIZE * plat_dev->id;
1330         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0) +
1331                                          PCH_ADDRESS_SIZE * plat_dev->id;
1332         if (!data->io_remap_addr) {
1333                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1334                 ret = -ENOMEM;
1335                 goto err_pci_iomap;
1336         }
1337
1338         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1339                 plat_dev->id, data->io_remap_addr);
1340
1341         /* initialize members of SPI master */
1342         master->bus_num = -1;
1343         master->num_chipselect = PCH_MAX_CS;
1344         master->setup = pch_spi_setup;
1345         master->transfer = pch_spi_transfer;
1346
1347         data->board_dat = board_dat;
1348         data->plat_dev = plat_dev;
1349         data->n_curnt_chip = 255;
1350         data->status = STATUS_RUNNING;
1351         data->ch = plat_dev->id;
1352         data->use_dma = use_dma;
1353
1354         INIT_LIST_HEAD(&data->queue);
1355         spin_lock_init(&data->lock);
1356         INIT_WORK(&data->work, pch_spi_process_messages);
1357         init_waitqueue_head(&data->wait);
1358
1359         ret = pch_spi_get_resources(board_dat, data);
1360         if (ret) {
1361                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1362                 goto err_spi_get_resources;
1363         }
1364
1365         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1366                           IRQF_SHARED, KBUILD_MODNAME, data);
1367         if (ret) {
1368                 dev_err(&plat_dev->dev,
1369                         "%s request_irq failed\n", __func__);
1370                 goto err_request_irq;
1371         }
1372         data->irq_reg_sts = true;
1373
1374         pch_spi_set_master_mode(master);
1375
1376         ret = spi_register_master(master);
1377         if (ret != 0) {
1378                 dev_err(&plat_dev->dev,
1379                         "%s spi_register_master FAILED\n", __func__);
1380                 goto err_spi_register_master;
1381         }
1382
1383         if (use_dma) {
1384                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1385                 pch_alloc_dma_buf(board_dat, data);
1386         }
1387
1388         return 0;
1389
1390 err_spi_register_master:
1391         free_irq(board_dat->pdev->irq, board_dat);
1392 err_request_irq:
1393         pch_spi_free_resources(board_dat, data);
1394 err_spi_get_resources:
1395         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1396 err_pci_iomap:
1397         spi_master_put(master);
1398
1399         return ret;
1400 }
1401
1402 static int __devexit pch_spi_pd_remove(struct platform_device *plat_dev)
1403 {
1404         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1405         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1406         int count;
1407         unsigned long flags;
1408
1409         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1410                 __func__, plat_dev->id, board_dat->pdev->irq);
1411
1412         if (use_dma)
1413                 pch_free_dma_buf(board_dat, data);
1414
1415         /* check for any pending messages; no action is taken if the queue
1416          * is still full; but at least we tried.  Unload anyway */
1417         count = 500;
1418         spin_lock_irqsave(&data->lock, flags);
1419         data->status = STATUS_EXITING;
1420         while ((list_empty(&data->queue) == 0) && --count) {
1421                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1422                         __func__);
1423                 spin_unlock_irqrestore(&data->lock, flags);
1424                 msleep(PCH_SLEEP_TIME);
1425                 spin_lock_irqsave(&data->lock, flags);
1426         }
1427         spin_unlock_irqrestore(&data->lock, flags);
1428
1429         pch_spi_free_resources(board_dat, data);
1430         /* disable interrupts & free IRQ */
1431         if (data->irq_reg_sts) {
1432                 /* disable interrupts */
1433                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1434                 data->irq_reg_sts = false;
1435                 free_irq(board_dat->pdev->irq, data);
1436         }
1437
1438         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1439         spi_unregister_master(data->master);
1440         spi_master_put(data->master);
1441         platform_set_drvdata(plat_dev, NULL);
1442
1443         return 0;
1444 }
1445 #ifdef CONFIG_PM
1446 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1447                               pm_message_t state)
1448 {
1449         u8 count;
1450         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1451         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1452
1453         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1454
1455         if (!board_dat) {
1456                 dev_err(&pd_dev->dev,
1457                         "%s pci_get_drvdata returned NULL\n", __func__);
1458                 return -EFAULT;
1459         }
1460
1461         /* check if the current message is processed:
1462            Only after thats done the transfer will be suspended */
1463         count = 255;
1464         while ((--count) > 0) {
1465                 if (!(data->bcurrent_msg_processing))
1466                         break;
1467                 msleep(PCH_SLEEP_TIME);
1468         }
1469
1470         /* Free IRQ */
1471         if (data->irq_reg_sts) {
1472                 /* disable all interrupts */
1473                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1474                 pch_spi_reset(data->master);
1475                 free_irq(board_dat->pdev->irq, data);
1476
1477                 data->irq_reg_sts = false;
1478                 dev_dbg(&pd_dev->dev,
1479                         "%s free_irq invoked successfully.\n", __func__);
1480         }
1481
1482         return 0;
1483 }
1484
1485 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1486 {
1487         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1488         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1489         int retval;
1490
1491         if (!board_dat) {
1492                 dev_err(&pd_dev->dev,
1493                         "%s pci_get_drvdata returned NULL\n", __func__);
1494                 return -EFAULT;
1495         }
1496
1497         if (!data->irq_reg_sts) {
1498                 /* register IRQ */
1499                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1500                                      IRQF_SHARED, KBUILD_MODNAME, data);
1501                 if (retval < 0) {
1502                         dev_err(&pd_dev->dev,
1503                                 "%s request_irq failed\n", __func__);
1504                         return retval;
1505                 }
1506
1507                 /* reset PCH SPI h/w */
1508                 pch_spi_reset(data->master);
1509                 pch_spi_set_master_mode(data->master);
1510                 data->irq_reg_sts = true;
1511         }
1512         return 0;
1513 }
1514 #else
1515 #define pch_spi_pd_suspend NULL
1516 #define pch_spi_pd_resume NULL
1517 #endif
1518
1519 static struct platform_driver pch_spi_pd_driver = {
1520         .driver = {
1521                 .name = "pch-spi",
1522                 .owner = THIS_MODULE,
1523         },
1524         .probe = pch_spi_pd_probe,
1525         .remove = __devexit_p(pch_spi_pd_remove),
1526         .suspend = pch_spi_pd_suspend,
1527         .resume = pch_spi_pd_resume
1528 };
1529
1530 static int __devinit pch_spi_probe(struct pci_dev *pdev,
1531                                    const struct pci_device_id *id)
1532 {
1533         struct pch_spi_board_data *board_dat;
1534         struct platform_device *pd_dev = NULL;
1535         int retval;
1536         int i;
1537         struct pch_pd_dev_save *pd_dev_save;
1538
1539         pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
1540         if (!pd_dev_save) {
1541                 dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
1542                 return -ENOMEM;
1543         }
1544
1545         board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
1546         if (!board_dat) {
1547                 dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
1548                 retval = -ENOMEM;
1549                 goto err_no_mem;
1550         }
1551
1552         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1553         if (retval) {
1554                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1555                 goto pci_request_regions;
1556         }
1557
1558         board_dat->pdev = pdev;
1559         board_dat->num = id->driver_data;
1560         pd_dev_save->num = id->driver_data;
1561         pd_dev_save->board_dat = board_dat;
1562
1563         retval = pci_enable_device(pdev);
1564         if (retval) {
1565                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1566                 goto pci_enable_device;
1567         }
1568
1569         for (i = 0; i < board_dat->num; i++) {
1570                 pd_dev = platform_device_alloc("pch-spi", i);
1571                 if (!pd_dev) {
1572                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1573                         goto err_platform_device;
1574                 }
1575                 pd_dev_save->pd_save[i] = pd_dev;
1576                 pd_dev->dev.parent = &pdev->dev;
1577
1578                 retval = platform_device_add_data(pd_dev, board_dat,
1579                                                   sizeof(*board_dat));
1580                 if (retval) {
1581                         dev_err(&pdev->dev,
1582                                 "platform_device_add_data failed\n");
1583                         platform_device_put(pd_dev);
1584                         goto err_platform_device;
1585                 }
1586
1587                 retval = platform_device_add(pd_dev);
1588                 if (retval) {
1589                         dev_err(&pdev->dev, "platform_device_add failed\n");
1590                         platform_device_put(pd_dev);
1591                         goto err_platform_device;
1592                 }
1593         }
1594
1595         pci_set_drvdata(pdev, pd_dev_save);
1596
1597         return 0;
1598
1599 err_platform_device:
1600         pci_disable_device(pdev);
1601 pci_enable_device:
1602         pci_release_regions(pdev);
1603 pci_request_regions:
1604         kfree(board_dat);
1605 err_no_mem:
1606         kfree(pd_dev_save);
1607
1608         return retval;
1609 }
1610
1611 static void __devexit pch_spi_remove(struct pci_dev *pdev)
1612 {
1613         int i;
1614         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1615
1616         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1617
1618         for (i = 0; i < pd_dev_save->num; i++)
1619                 platform_device_unregister(pd_dev_save->pd_save[i]);
1620
1621         pci_disable_device(pdev);
1622         pci_release_regions(pdev);
1623         kfree(pd_dev_save->board_dat);
1624         kfree(pd_dev_save);
1625 }
1626
1627 #ifdef CONFIG_PM
1628 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1629 {
1630         int retval;
1631         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1632
1633         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1634
1635         pd_dev_save->board_dat->suspend_sts = true;
1636
1637         /* save config space */
1638         retval = pci_save_state(pdev);
1639         if (retval == 0) {
1640                 pci_enable_wake(pdev, PCI_D3hot, 0);
1641                 pci_disable_device(pdev);
1642                 pci_set_power_state(pdev, PCI_D3hot);
1643         } else {
1644                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1645         }
1646
1647         return retval;
1648 }
1649
1650 static int pch_spi_resume(struct pci_dev *pdev)
1651 {
1652         int retval;
1653         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1654         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1655
1656         pci_set_power_state(pdev, PCI_D0);
1657         pci_restore_state(pdev);
1658
1659         retval = pci_enable_device(pdev);
1660         if (retval < 0) {
1661                 dev_err(&pdev->dev,
1662                         "%s pci_enable_device failed\n", __func__);
1663         } else {
1664                 pci_enable_wake(pdev, PCI_D3hot, 0);
1665
1666                 /* set suspend status to false */
1667                 pd_dev_save->board_dat->suspend_sts = false;
1668         }
1669
1670         return retval;
1671 }
1672 #else
1673 #define pch_spi_suspend NULL
1674 #define pch_spi_resume NULL
1675
1676 #endif
1677
1678 static struct pci_driver pch_spi_pcidev = {
1679         .name = "pch_spi",
1680         .id_table = pch_spi_pcidev_id,
1681         .probe = pch_spi_probe,
1682         .remove = pch_spi_remove,
1683         .suspend = pch_spi_suspend,
1684         .resume = pch_spi_resume,
1685 };
1686
1687 static int __init pch_spi_init(void)
1688 {
1689         int ret;
1690         ret = platform_driver_register(&pch_spi_pd_driver);
1691         if (ret)
1692                 return ret;
1693
1694         ret = pci_register_driver(&pch_spi_pcidev);
1695         if (ret)
1696                 return ret;
1697
1698         return 0;
1699 }
1700 module_init(pch_spi_init);
1701
1702 static void __exit pch_spi_exit(void)
1703 {
1704         pci_unregister_driver(&pch_spi_pcidev);
1705         platform_driver_unregister(&pch_spi_pd_driver);
1706 }
1707 module_exit(pch_spi_exit);
1708
1709 module_param(use_dma, int, 0644);
1710 MODULE_PARM_DESC(use_dma,
1711                  "to use DMA for data transfers pass 1 else 0; default 1");
1712
1713 MODULE_LICENSE("GPL");
1714 MODULE_DESCRIPTION("Intel EG20T PCH/OKI SEMICONDUCTOR ML7213 IOH SPI Driver");