Merge tag 'rdma-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[pandora-kernel.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kernel.h>
30 #include <linux/kthread.h>
31 #include <linux/module.h>
32 #include <linux/platform_device.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/reset.h>
37 #include <linux/spi/spi.h>
38
39 #define SPI_COMMAND1                            0x000
40 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
41 #define SPI_PACKED                              (1 << 5)
42 #define SPI_TX_EN                               (1 << 11)
43 #define SPI_RX_EN                               (1 << 12)
44 #define SPI_BOTH_EN_BYTE                        (1 << 13)
45 #define SPI_BOTH_EN_BIT                         (1 << 14)
46 #define SPI_LSBYTE_FE                           (1 << 15)
47 #define SPI_LSBIT_FE                            (1 << 16)
48 #define SPI_BIDIROE                             (1 << 17)
49 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
50 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
51 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
52 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
53 #define SPI_IDLE_SDA_MASK                       (3 << 18)
54 #define SPI_CS_SS_VAL                           (1 << 20)
55 #define SPI_CS_SW_HW                            (1 << 21)
56 /* SPI_CS_POL_INACTIVE bits are default high */
57 #define SPI_CS_POL_INACTIVE                     22
58 #define SPI_CS_POL_INACTIVE_0                   (1 << 22)
59 #define SPI_CS_POL_INACTIVE_1                   (1 << 23)
60 #define SPI_CS_POL_INACTIVE_2                   (1 << 24)
61 #define SPI_CS_POL_INACTIVE_3                   (1 << 25)
62 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
63
64 #define SPI_CS_SEL_0                            (0 << 26)
65 #define SPI_CS_SEL_1                            (1 << 26)
66 #define SPI_CS_SEL_2                            (2 << 26)
67 #define SPI_CS_SEL_3                            (3 << 26)
68 #define SPI_CS_SEL_MASK                         (3 << 26)
69 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
70 #define SPI_CONTROL_MODE_0                      (0 << 28)
71 #define SPI_CONTROL_MODE_1                      (1 << 28)
72 #define SPI_CONTROL_MODE_2                      (2 << 28)
73 #define SPI_CONTROL_MODE_3                      (3 << 28)
74 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
75 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
76 #define SPI_M_S                                 (1 << 30)
77 #define SPI_PIO                                 (1 << 31)
78
79 #define SPI_COMMAND2                            0x004
80 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
81 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
82
83 #define SPI_CS_TIMING1                          0x008
84 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
85 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
86                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
87                 ((reg) & ~(0xFFu << ((cs) * 8))))
88
89 #define SPI_CS_TIMING2                          0x00C
90 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
91 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
92 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
93 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
94 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
95 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
96 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
97 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
98 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
99                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
100                         ((reg) & ~(1 << ((cs) * 8 + 5))))
101 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
102                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
103                         ((reg) & ~(0xF << ((cs) * 8))))
104
105 #define SPI_TRANS_STATUS                        0x010
106 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
107 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
108 #define SPI_RDY                                 (1 << 30)
109
110 #define SPI_FIFO_STATUS                         0x014
111 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
112 #define SPI_RX_FIFO_FULL                        (1 << 1)
113 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
114 #define SPI_TX_FIFO_FULL                        (1 << 3)
115 #define SPI_RX_FIFO_UNF                         (1 << 4)
116 #define SPI_RX_FIFO_OVF                         (1 << 5)
117 #define SPI_TX_FIFO_UNF                         (1 << 6)
118 #define SPI_TX_FIFO_OVF                         (1 << 7)
119 #define SPI_ERR                                 (1 << 8)
120 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
121 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
122 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
123 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
124 #define SPI_FRAME_END                           (1 << 30)
125 #define SPI_CS_INACTIVE                         (1 << 31)
126
127 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
128                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
129 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
130
131 #define SPI_TX_DATA                             0x018
132 #define SPI_RX_DATA                             0x01C
133
134 #define SPI_DMA_CTL                             0x020
135 #define SPI_TX_TRIG_1                           (0 << 15)
136 #define SPI_TX_TRIG_4                           (1 << 15)
137 #define SPI_TX_TRIG_8                           (2 << 15)
138 #define SPI_TX_TRIG_16                          (3 << 15)
139 #define SPI_TX_TRIG_MASK                        (3 << 15)
140 #define SPI_RX_TRIG_1                           (0 << 19)
141 #define SPI_RX_TRIG_4                           (1 << 19)
142 #define SPI_RX_TRIG_8                           (2 << 19)
143 #define SPI_RX_TRIG_16                          (3 << 19)
144 #define SPI_RX_TRIG_MASK                        (3 << 19)
145 #define SPI_IE_TX                               (1 << 28)
146 #define SPI_IE_RX                               (1 << 29)
147 #define SPI_CONT                                (1 << 30)
148 #define SPI_DMA                                 (1 << 31)
149 #define SPI_DMA_EN                              SPI_DMA
150
151 #define SPI_DMA_BLK                             0x024
152 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
153
154 #define SPI_TX_FIFO                             0x108
155 #define SPI_RX_FIFO                             0x188
156 #define MAX_CHIP_SELECT                         4
157 #define SPI_FIFO_DEPTH                          64
158 #define DATA_DIR_TX                             (1 << 0)
159 #define DATA_DIR_RX                             (1 << 1)
160
161 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
162 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
163 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
164 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
165 #define MAX_HOLD_CYCLES                         16
166 #define SPI_DEFAULT_SPEED                       25000000
167
168 #define MAX_CHIP_SELECT                         4
169 #define SPI_FIFO_DEPTH                          64
170
171 struct tegra_spi_data {
172         struct device                           *dev;
173         struct spi_master                       *master;
174         spinlock_t                              lock;
175
176         struct clk                              *clk;
177         struct reset_control                    *rst;
178         void __iomem                            *base;
179         phys_addr_t                             phys;
180         unsigned                                irq;
181         u32                                     spi_max_frequency;
182         u32                                     cur_speed;
183
184         struct spi_device                       *cur_spi;
185         struct spi_device                       *cs_control;
186         unsigned                                cur_pos;
187         unsigned                                cur_len;
188         unsigned                                words_per_32bit;
189         unsigned                                bytes_per_word;
190         unsigned                                curr_dma_words;
191         unsigned                                cur_direction;
192
193         unsigned                                cur_rx_pos;
194         unsigned                                cur_tx_pos;
195
196         unsigned                                dma_buf_size;
197         unsigned                                max_buf_size;
198         bool                                    is_curr_dma_xfer;
199
200         struct completion                       rx_dma_complete;
201         struct completion                       tx_dma_complete;
202
203         u32                                     tx_status;
204         u32                                     rx_status;
205         u32                                     status_reg;
206         bool                                    is_packed;
207         unsigned long                           packed_size;
208
209         u32                                     command1_reg;
210         u32                                     dma_control_reg;
211         u32                                     def_command1_reg;
212         u32                                     spi_cs_timing;
213
214         struct completion                       xfer_completion;
215         struct spi_transfer                     *curr_xfer;
216         struct dma_chan                         *rx_dma_chan;
217         u32                                     *rx_dma_buf;
218         dma_addr_t                              rx_dma_phys;
219         struct dma_async_tx_descriptor          *rx_dma_desc;
220
221         struct dma_chan                         *tx_dma_chan;
222         u32                                     *tx_dma_buf;
223         dma_addr_t                              tx_dma_phys;
224         struct dma_async_tx_descriptor          *tx_dma_desc;
225 };
226
227 static int tegra_spi_runtime_suspend(struct device *dev);
228 static int tegra_spi_runtime_resume(struct device *dev);
229
230 static inline unsigned long tegra_spi_readl(struct tegra_spi_data *tspi,
231                 unsigned long reg)
232 {
233         return readl(tspi->base + reg);
234 }
235
236 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
237                 unsigned long val, unsigned long reg)
238 {
239         writel(val, tspi->base + reg);
240
241         /* Read back register to make sure that register writes completed */
242         if (reg != SPI_TX_FIFO)
243                 readl(tspi->base + SPI_COMMAND1);
244 }
245
246 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
247 {
248         unsigned long val;
249
250         /* Write 1 to clear status register */
251         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
252         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
253
254         /* Clear fifo status error if any */
255         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
256         if (val & SPI_ERR)
257                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
258                                 SPI_FIFO_STATUS);
259 }
260
261 static unsigned tegra_spi_calculate_curr_xfer_param(
262         struct spi_device *spi, struct tegra_spi_data *tspi,
263         struct spi_transfer *t)
264 {
265         unsigned remain_len = t->len - tspi->cur_pos;
266         unsigned max_word;
267         unsigned bits_per_word = t->bits_per_word;
268         unsigned max_len;
269         unsigned total_fifo_words;
270
271         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
272
273         if (bits_per_word == 8 || bits_per_word == 16) {
274                 tspi->is_packed = 1;
275                 tspi->words_per_32bit = 32/bits_per_word;
276         } else {
277                 tspi->is_packed = 0;
278                 tspi->words_per_32bit = 1;
279         }
280
281         if (tspi->is_packed) {
282                 max_len = min(remain_len, tspi->max_buf_size);
283                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
284                 total_fifo_words = (max_len + 3) / 4;
285         } else {
286                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
287                 max_word = min(max_word, tspi->max_buf_size/4);
288                 tspi->curr_dma_words = max_word;
289                 total_fifo_words = max_word;
290         }
291         return total_fifo_words;
292 }
293
294 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
295         struct tegra_spi_data *tspi, struct spi_transfer *t)
296 {
297         unsigned nbytes;
298         unsigned tx_empty_count;
299         unsigned long fifo_status;
300         unsigned max_n_32bit;
301         unsigned i, count;
302         unsigned long x;
303         unsigned int written_words;
304         unsigned fifo_words_left;
305         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
306
307         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
308         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
309
310         if (tspi->is_packed) {
311                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
312                 written_words = min(fifo_words_left, tspi->curr_dma_words);
313                 nbytes = written_words * tspi->bytes_per_word;
314                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
315                 for (count = 0; count < max_n_32bit; count++) {
316                         x = 0;
317                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
318                                 x |= (*tx_buf++) << (i*8);
319                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
320                 }
321         } else {
322                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
323                 written_words = max_n_32bit;
324                 nbytes = written_words * tspi->bytes_per_word;
325                 for (count = 0; count < max_n_32bit; count++) {
326                         x = 0;
327                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
328                                                         i++, nbytes--)
329                                 x |= ((*tx_buf++) << i*8);
330                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
331                 }
332         }
333         tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
334         return written_words;
335 }
336
337 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
338                 struct tegra_spi_data *tspi, struct spi_transfer *t)
339 {
340         unsigned rx_full_count;
341         unsigned long fifo_status;
342         unsigned i, count;
343         unsigned long x;
344         unsigned int read_words = 0;
345         unsigned len;
346         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
347
348         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
349         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
350         if (tspi->is_packed) {
351                 len = tspi->curr_dma_words * tspi->bytes_per_word;
352                 for (count = 0; count < rx_full_count; count++) {
353                         x = tegra_spi_readl(tspi, SPI_RX_FIFO);
354                         for (i = 0; len && (i < 4); i++, len--)
355                                 *rx_buf++ = (x >> i*8) & 0xFF;
356                 }
357                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
358                 read_words += tspi->curr_dma_words;
359         } else {
360                 unsigned int rx_mask;
361                 unsigned int bits_per_word = t->bits_per_word;
362
363                 rx_mask = (1 << bits_per_word) - 1;
364                 for (count = 0; count < rx_full_count; count++) {
365                         x = tegra_spi_readl(tspi, SPI_RX_FIFO);
366                         x &= rx_mask;
367                         for (i = 0; (i < tspi->bytes_per_word); i++)
368                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
369                 }
370                 tspi->cur_rx_pos += rx_full_count * tspi->bytes_per_word;
371                 read_words += rx_full_count;
372         }
373         return read_words;
374 }
375
376 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
377                 struct tegra_spi_data *tspi, struct spi_transfer *t)
378 {
379         unsigned len;
380
381         /* Make the dma buffer to read by cpu */
382         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
383                                 tspi->dma_buf_size, DMA_TO_DEVICE);
384
385         if (tspi->is_packed) {
386                 len = tspi->curr_dma_words * tspi->bytes_per_word;
387                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
388         } else {
389                 unsigned int i;
390                 unsigned int count;
391                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
392                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
393                 unsigned int x;
394
395                 for (count = 0; count < tspi->curr_dma_words; count++) {
396                         x = 0;
397                         for (i = 0; consume && (i < tspi->bytes_per_word);
398                                                         i++, consume--)
399                                 x |= ((*tx_buf++) << i * 8);
400                         tspi->tx_dma_buf[count] = x;
401                 }
402         }
403         tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
404
405         /* Make the dma buffer to read by dma */
406         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
407                                 tspi->dma_buf_size, DMA_TO_DEVICE);
408 }
409
410 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
411                 struct tegra_spi_data *tspi, struct spi_transfer *t)
412 {
413         unsigned len;
414
415         /* Make the dma buffer to read by cpu */
416         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
417                 tspi->dma_buf_size, DMA_FROM_DEVICE);
418
419         if (tspi->is_packed) {
420                 len = tspi->curr_dma_words * tspi->bytes_per_word;
421                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
422         } else {
423                 unsigned int i;
424                 unsigned int count;
425                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
426                 unsigned int x;
427                 unsigned int rx_mask;
428                 unsigned int bits_per_word = t->bits_per_word;
429
430                 rx_mask = (1 << bits_per_word) - 1;
431                 for (count = 0; count < tspi->curr_dma_words; count++) {
432                         x = tspi->rx_dma_buf[count];
433                         x &= rx_mask;
434                         for (i = 0; (i < tspi->bytes_per_word); i++)
435                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
436                 }
437         }
438         tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
439
440         /* Make the dma buffer to read by dma */
441         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
442                 tspi->dma_buf_size, DMA_FROM_DEVICE);
443 }
444
445 static void tegra_spi_dma_complete(void *args)
446 {
447         struct completion *dma_complete = args;
448
449         complete(dma_complete);
450 }
451
452 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
453 {
454         reinit_completion(&tspi->tx_dma_complete);
455         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
456                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
457                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
458         if (!tspi->tx_dma_desc) {
459                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
460                 return -EIO;
461         }
462
463         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
464         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
465
466         dmaengine_submit(tspi->tx_dma_desc);
467         dma_async_issue_pending(tspi->tx_dma_chan);
468         return 0;
469 }
470
471 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
472 {
473         reinit_completion(&tspi->rx_dma_complete);
474         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
475                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
476                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
477         if (!tspi->rx_dma_desc) {
478                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
479                 return -EIO;
480         }
481
482         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
483         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
484
485         dmaengine_submit(tspi->rx_dma_desc);
486         dma_async_issue_pending(tspi->rx_dma_chan);
487         return 0;
488 }
489
490 static int tegra_spi_start_dma_based_transfer(
491                 struct tegra_spi_data *tspi, struct spi_transfer *t)
492 {
493         unsigned long val;
494         unsigned int len;
495         int ret = 0;
496         unsigned long status;
497
498         /* Make sure that Rx and Tx fifo are empty */
499         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
500         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
501                 dev_err(tspi->dev,
502                         "Rx/Tx fifo are not empty status 0x%08lx\n", status);
503                 return -EIO;
504         }
505
506         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
507         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
508
509         if (tspi->is_packed)
510                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
511                                         4) * 4;
512         else
513                 len = tspi->curr_dma_words * 4;
514
515         /* Set attention level based on length of transfer */
516         if (len & 0xF)
517                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
518         else if (((len) >> 4) & 0x1)
519                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
520         else
521                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
522
523         if (tspi->cur_direction & DATA_DIR_TX)
524                 val |= SPI_IE_TX;
525
526         if (tspi->cur_direction & DATA_DIR_RX)
527                 val |= SPI_IE_RX;
528
529         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
530         tspi->dma_control_reg = val;
531
532         if (tspi->cur_direction & DATA_DIR_TX) {
533                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
534                 ret = tegra_spi_start_tx_dma(tspi, len);
535                 if (ret < 0) {
536                         dev_err(tspi->dev,
537                                 "Starting tx dma failed, err %d\n", ret);
538                         return ret;
539                 }
540         }
541
542         if (tspi->cur_direction & DATA_DIR_RX) {
543                 /* Make the dma buffer to read by dma */
544                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
545                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
546
547                 ret = tegra_spi_start_rx_dma(tspi, len);
548                 if (ret < 0) {
549                         dev_err(tspi->dev,
550                                 "Starting rx dma failed, err %d\n", ret);
551                         if (tspi->cur_direction & DATA_DIR_TX)
552                                 dmaengine_terminate_all(tspi->tx_dma_chan);
553                         return ret;
554                 }
555         }
556         tspi->is_curr_dma_xfer = true;
557         tspi->dma_control_reg = val;
558
559         val |= SPI_DMA_EN;
560         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
561         return ret;
562 }
563
564 static int tegra_spi_start_cpu_based_transfer(
565                 struct tegra_spi_data *tspi, struct spi_transfer *t)
566 {
567         unsigned long val;
568         unsigned cur_words;
569
570         if (tspi->cur_direction & DATA_DIR_TX)
571                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
572         else
573                 cur_words = tspi->curr_dma_words;
574
575         val = SPI_DMA_BLK_SET(cur_words - 1);
576         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
577
578         val = 0;
579         if (tspi->cur_direction & DATA_DIR_TX)
580                 val |= SPI_IE_TX;
581
582         if (tspi->cur_direction & DATA_DIR_RX)
583                 val |= SPI_IE_RX;
584
585         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
586         tspi->dma_control_reg = val;
587
588         tspi->is_curr_dma_xfer = false;
589
590         val |= SPI_DMA_EN;
591         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
592         return 0;
593 }
594
595 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
596                         bool dma_to_memory)
597 {
598         struct dma_chan *dma_chan;
599         u32 *dma_buf;
600         dma_addr_t dma_phys;
601         int ret;
602         struct dma_slave_config dma_sconfig;
603
604         dma_chan = dma_request_slave_channel_reason(tspi->dev,
605                                         dma_to_memory ? "rx" : "tx");
606         if (IS_ERR(dma_chan)) {
607                 ret = PTR_ERR(dma_chan);
608                 if (ret != -EPROBE_DEFER)
609                         dev_err(tspi->dev,
610                                 "Dma channel is not available: %d\n", ret);
611                 return ret;
612         }
613
614         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
615                                 &dma_phys, GFP_KERNEL);
616         if (!dma_buf) {
617                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
618                 dma_release_channel(dma_chan);
619                 return -ENOMEM;
620         }
621
622         if (dma_to_memory) {
623                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
624                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
625                 dma_sconfig.src_maxburst = 0;
626         } else {
627                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
628                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
629                 dma_sconfig.dst_maxburst = 0;
630         }
631
632         ret = dmaengine_slave_config(dma_chan, &dma_sconfig);
633         if (ret)
634                 goto scrub;
635         if (dma_to_memory) {
636                 tspi->rx_dma_chan = dma_chan;
637                 tspi->rx_dma_buf = dma_buf;
638                 tspi->rx_dma_phys = dma_phys;
639         } else {
640                 tspi->tx_dma_chan = dma_chan;
641                 tspi->tx_dma_buf = dma_buf;
642                 tspi->tx_dma_phys = dma_phys;
643         }
644         return 0;
645
646 scrub:
647         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
648         dma_release_channel(dma_chan);
649         return ret;
650 }
651
652 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
653         bool dma_to_memory)
654 {
655         u32 *dma_buf;
656         dma_addr_t dma_phys;
657         struct dma_chan *dma_chan;
658
659         if (dma_to_memory) {
660                 dma_buf = tspi->rx_dma_buf;
661                 dma_chan = tspi->rx_dma_chan;
662                 dma_phys = tspi->rx_dma_phys;
663                 tspi->rx_dma_chan = NULL;
664                 tspi->rx_dma_buf = NULL;
665         } else {
666                 dma_buf = tspi->tx_dma_buf;
667                 dma_chan = tspi->tx_dma_chan;
668                 dma_phys = tspi->tx_dma_phys;
669                 tspi->tx_dma_buf = NULL;
670                 tspi->tx_dma_chan = NULL;
671         }
672         if (!dma_chan)
673                 return;
674
675         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
676         dma_release_channel(dma_chan);
677 }
678
679 static unsigned long tegra_spi_setup_transfer_one(struct spi_device *spi,
680                 struct spi_transfer *t, bool is_first_of_msg)
681 {
682         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
683         u32 speed = t->speed_hz;
684         u8 bits_per_word = t->bits_per_word;
685         unsigned long command1;
686         int req_mode;
687
688         if (speed != tspi->cur_speed) {
689                 clk_set_rate(tspi->clk, speed);
690                 tspi->cur_speed = speed;
691         }
692
693         tspi->cur_spi = spi;
694         tspi->cur_pos = 0;
695         tspi->cur_rx_pos = 0;
696         tspi->cur_tx_pos = 0;
697         tspi->curr_xfer = t;
698
699         if (is_first_of_msg) {
700                 tegra_spi_clear_status(tspi);
701
702                 command1 = tspi->def_command1_reg;
703                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
704
705                 command1 &= ~SPI_CONTROL_MODE_MASK;
706                 req_mode = spi->mode & 0x3;
707                 if (req_mode == SPI_MODE_0)
708                         command1 |= SPI_CONTROL_MODE_0;
709                 else if (req_mode == SPI_MODE_1)
710                         command1 |= SPI_CONTROL_MODE_1;
711                 else if (req_mode == SPI_MODE_2)
712                         command1 |= SPI_CONTROL_MODE_2;
713                 else if (req_mode == SPI_MODE_3)
714                         command1 |= SPI_CONTROL_MODE_3;
715
716                 if (tspi->cs_control) {
717                         if (tspi->cs_control != spi)
718                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
719                         tspi->cs_control = NULL;
720                 } else
721                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
722
723                 command1 |= SPI_CS_SW_HW;
724                 if (spi->mode & SPI_CS_HIGH)
725                         command1 |= SPI_CS_SS_VAL;
726                 else
727                         command1 &= ~SPI_CS_SS_VAL;
728
729                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
730         } else {
731                 command1 = tspi->command1_reg;
732                 command1 &= ~SPI_BIT_LENGTH(~0);
733                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
734         }
735
736         return command1;
737 }
738
739 static int tegra_spi_start_transfer_one(struct spi_device *spi,
740                 struct spi_transfer *t, unsigned long command1)
741 {
742         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
743         unsigned total_fifo_words;
744         int ret;
745
746         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
747
748         if (tspi->is_packed)
749                 command1 |= SPI_PACKED;
750
751         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
752         tspi->cur_direction = 0;
753         if (t->rx_buf) {
754                 command1 |= SPI_RX_EN;
755                 tspi->cur_direction |= DATA_DIR_RX;
756         }
757         if (t->tx_buf) {
758                 command1 |= SPI_TX_EN;
759                 tspi->cur_direction |= DATA_DIR_TX;
760         }
761         command1 |= SPI_CS_SEL(spi->chip_select);
762         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
763         tspi->command1_reg = command1;
764
765         dev_dbg(tspi->dev, "The def 0x%x and written 0x%lx\n",
766                                 tspi->def_command1_reg, command1);
767
768         if (total_fifo_words > SPI_FIFO_DEPTH)
769                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
770         else
771                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
772         return ret;
773 }
774
775 static int tegra_spi_setup(struct spi_device *spi)
776 {
777         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
778         unsigned long val;
779         unsigned long flags;
780         int ret;
781         unsigned int cs_pol_bit[MAX_CHIP_SELECT] = {
782                         SPI_CS_POL_INACTIVE_0,
783                         SPI_CS_POL_INACTIVE_1,
784                         SPI_CS_POL_INACTIVE_2,
785                         SPI_CS_POL_INACTIVE_3,
786         };
787
788         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
789                 spi->bits_per_word,
790                 spi->mode & SPI_CPOL ? "" : "~",
791                 spi->mode & SPI_CPHA ? "" : "~",
792                 spi->max_speed_hz);
793
794         BUG_ON(spi->chip_select >= MAX_CHIP_SELECT);
795
796         /* Set speed to the spi max fequency if spi device has not set */
797         spi->max_speed_hz = spi->max_speed_hz ? : tspi->spi_max_frequency;
798
799         ret = pm_runtime_get_sync(tspi->dev);
800         if (ret < 0) {
801                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
802                 return ret;
803         }
804
805         spin_lock_irqsave(&tspi->lock, flags);
806         val = tspi->def_command1_reg;
807         if (spi->mode & SPI_CS_HIGH)
808                 val &= ~cs_pol_bit[spi->chip_select];
809         else
810                 val |= cs_pol_bit[spi->chip_select];
811         tspi->def_command1_reg = val;
812         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
813         spin_unlock_irqrestore(&tspi->lock, flags);
814
815         pm_runtime_put(tspi->dev);
816         return 0;
817 }
818
819 static void tegra_spi_transfer_delay(int delay)
820 {
821         if (!delay)
822                 return;
823
824         if (delay >= 1000)
825                 mdelay(delay / 1000);
826
827         udelay(delay % 1000);
828 }
829
830 static int tegra_spi_transfer_one_message(struct spi_master *master,
831                         struct spi_message *msg)
832 {
833         bool is_first_msg = true;
834         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
835         struct spi_transfer *xfer;
836         struct spi_device *spi = msg->spi;
837         int ret;
838         bool skip = false;
839
840         msg->status = 0;
841         msg->actual_length = 0;
842
843         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
844                 unsigned long cmd1;
845
846                 reinit_completion(&tspi->xfer_completion);
847
848                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
849
850                 if (!xfer->len) {
851                         ret = 0;
852                         skip = true;
853                         goto complete_xfer;
854                 }
855
856                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
857                 if (ret < 0) {
858                         dev_err(tspi->dev,
859                                 "spi can not start transfer, err %d\n", ret);
860                         goto complete_xfer;
861                 }
862
863                 is_first_msg = false;
864                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
865                                                 SPI_DMA_TIMEOUT);
866                 if (WARN_ON(ret == 0)) {
867                         dev_err(tspi->dev,
868                                 "spi trasfer timeout, err %d\n", ret);
869                         ret = -EIO;
870                         goto complete_xfer;
871                 }
872
873                 if (tspi->tx_status ||  tspi->rx_status) {
874                         dev_err(tspi->dev, "Error in Transfer\n");
875                         ret = -EIO;
876                         goto complete_xfer;
877                 }
878                 msg->actual_length += xfer->len;
879
880 complete_xfer:
881                 if (ret < 0 || skip) {
882                         tegra_spi_writel(tspi, tspi->def_command1_reg,
883                                         SPI_COMMAND1);
884                         tegra_spi_transfer_delay(xfer->delay_usecs);
885                         goto exit;
886                 } else if (msg->transfers.prev == &xfer->transfer_list) {
887                         /* This is the last transfer in message */
888                         if (xfer->cs_change)
889                                 tspi->cs_control = spi;
890                         else {
891                                 tegra_spi_writel(tspi, tspi->def_command1_reg,
892                                                 SPI_COMMAND1);
893                                 tegra_spi_transfer_delay(xfer->delay_usecs);
894                         }
895                 } else if (xfer->cs_change) {
896                         tegra_spi_writel(tspi, tspi->def_command1_reg,
897                                         SPI_COMMAND1);
898                         tegra_spi_transfer_delay(xfer->delay_usecs);
899                 }
900
901         }
902         ret = 0;
903 exit:
904         msg->status = ret;
905         spi_finalize_current_message(master);
906         return ret;
907 }
908
909 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
910 {
911         struct spi_transfer *t = tspi->curr_xfer;
912         unsigned long flags;
913
914         spin_lock_irqsave(&tspi->lock, flags);
915         if (tspi->tx_status ||  tspi->rx_status) {
916                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
917                         tspi->status_reg);
918                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
919                         tspi->command1_reg, tspi->dma_control_reg);
920                 reset_control_assert(tspi->rst);
921                 udelay(2);
922                 reset_control_deassert(tspi->rst);
923                 complete(&tspi->xfer_completion);
924                 goto exit;
925         }
926
927         if (tspi->cur_direction & DATA_DIR_RX)
928                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
929
930         if (tspi->cur_direction & DATA_DIR_TX)
931                 tspi->cur_pos = tspi->cur_tx_pos;
932         else
933                 tspi->cur_pos = tspi->cur_rx_pos;
934
935         if (tspi->cur_pos == t->len) {
936                 complete(&tspi->xfer_completion);
937                 goto exit;
938         }
939
940         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
941         tegra_spi_start_cpu_based_transfer(tspi, t);
942 exit:
943         spin_unlock_irqrestore(&tspi->lock, flags);
944         return IRQ_HANDLED;
945 }
946
947 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
948 {
949         struct spi_transfer *t = tspi->curr_xfer;
950         long wait_status;
951         int err = 0;
952         unsigned total_fifo_words;
953         unsigned long flags;
954
955         /* Abort dmas if any error */
956         if (tspi->cur_direction & DATA_DIR_TX) {
957                 if (tspi->tx_status) {
958                         dmaengine_terminate_all(tspi->tx_dma_chan);
959                         err += 1;
960                 } else {
961                         wait_status = wait_for_completion_interruptible_timeout(
962                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
963                         if (wait_status <= 0) {
964                                 dmaengine_terminate_all(tspi->tx_dma_chan);
965                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
966                                 err += 1;
967                         }
968                 }
969         }
970
971         if (tspi->cur_direction & DATA_DIR_RX) {
972                 if (tspi->rx_status) {
973                         dmaengine_terminate_all(tspi->rx_dma_chan);
974                         err += 2;
975                 } else {
976                         wait_status = wait_for_completion_interruptible_timeout(
977                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
978                         if (wait_status <= 0) {
979                                 dmaengine_terminate_all(tspi->rx_dma_chan);
980                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
981                                 err += 2;
982                         }
983                 }
984         }
985
986         spin_lock_irqsave(&tspi->lock, flags);
987         if (err) {
988                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
989                         tspi->status_reg);
990                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
991                         tspi->command1_reg, tspi->dma_control_reg);
992                 reset_control_assert(tspi->rst);
993                 udelay(2);
994                 reset_control_deassert(tspi->rst);
995                 complete(&tspi->xfer_completion);
996                 spin_unlock_irqrestore(&tspi->lock, flags);
997                 return IRQ_HANDLED;
998         }
999
1000         if (tspi->cur_direction & DATA_DIR_RX)
1001                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1002
1003         if (tspi->cur_direction & DATA_DIR_TX)
1004                 tspi->cur_pos = tspi->cur_tx_pos;
1005         else
1006                 tspi->cur_pos = tspi->cur_rx_pos;
1007
1008         if (tspi->cur_pos == t->len) {
1009                 complete(&tspi->xfer_completion);
1010                 goto exit;
1011         }
1012
1013         /* Continue transfer in current message */
1014         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1015                                                         tspi, t);
1016         if (total_fifo_words > SPI_FIFO_DEPTH)
1017                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1018         else
1019                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1020
1021 exit:
1022         spin_unlock_irqrestore(&tspi->lock, flags);
1023         return IRQ_HANDLED;
1024 }
1025
1026 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1027 {
1028         struct tegra_spi_data *tspi = context_data;
1029
1030         if (!tspi->is_curr_dma_xfer)
1031                 return handle_cpu_based_xfer(tspi);
1032         return handle_dma_based_xfer(tspi);
1033 }
1034
1035 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1036 {
1037         struct tegra_spi_data *tspi = context_data;
1038
1039         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1040         if (tspi->cur_direction & DATA_DIR_TX)
1041                 tspi->tx_status = tspi->status_reg &
1042                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1043
1044         if (tspi->cur_direction & DATA_DIR_RX)
1045                 tspi->rx_status = tspi->status_reg &
1046                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1047         tegra_spi_clear_status(tspi);
1048
1049         return IRQ_WAKE_THREAD;
1050 }
1051
1052 static void tegra_spi_parse_dt(struct platform_device *pdev,
1053         struct tegra_spi_data *tspi)
1054 {
1055         struct device_node *np = pdev->dev.of_node;
1056
1057         if (of_property_read_u32(np, "spi-max-frequency",
1058                                 &tspi->spi_max_frequency))
1059                 tspi->spi_max_frequency = 25000000; /* 25MHz */
1060 }
1061
1062 static struct of_device_id tegra_spi_of_match[] = {
1063         { .compatible = "nvidia,tegra114-spi", },
1064         {}
1065 };
1066 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1067
1068 static int tegra_spi_probe(struct platform_device *pdev)
1069 {
1070         struct spi_master       *master;
1071         struct tegra_spi_data   *tspi;
1072         struct resource         *r;
1073         int ret, spi_irq;
1074
1075         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1076         if (!master) {
1077                 dev_err(&pdev->dev, "master allocation failed\n");
1078                 return -ENOMEM;
1079         }
1080         platform_set_drvdata(pdev, master);
1081         tspi = spi_master_get_devdata(master);
1082
1083         /* Parse DT */
1084         tegra_spi_parse_dt(pdev, tspi);
1085
1086         /* the spi->mode bits understood by this driver: */
1087         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1088         master->setup = tegra_spi_setup;
1089         master->transfer_one_message = tegra_spi_transfer_one_message;
1090         master->num_chipselect = MAX_CHIP_SELECT;
1091         master->bus_num = -1;
1092         master->auto_runtime_pm = true;
1093
1094         tspi->master = master;
1095         tspi->dev = &pdev->dev;
1096         spin_lock_init(&tspi->lock);
1097
1098         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1099         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1100         if (IS_ERR(tspi->base)) {
1101                 ret = PTR_ERR(tspi->base);
1102                 goto exit_free_master;
1103         }
1104         tspi->phys = r->start;
1105
1106         spi_irq = platform_get_irq(pdev, 0);
1107         tspi->irq = spi_irq;
1108         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1109                         tegra_spi_isr_thread, IRQF_ONESHOT,
1110                         dev_name(&pdev->dev), tspi);
1111         if (ret < 0) {
1112                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1113                                         tspi->irq);
1114                 goto exit_free_master;
1115         }
1116
1117         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1118         if (IS_ERR(tspi->clk)) {
1119                 dev_err(&pdev->dev, "can not get clock\n");
1120                 ret = PTR_ERR(tspi->clk);
1121                 goto exit_free_irq;
1122         }
1123
1124         tspi->rst = devm_reset_control_get(&pdev->dev, "spi");
1125         if (IS_ERR(tspi->rst)) {
1126                 dev_err(&pdev->dev, "can not get reset\n");
1127                 ret = PTR_ERR(tspi->rst);
1128                 goto exit_free_irq;
1129         }
1130
1131         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1132         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1133
1134         ret = tegra_spi_init_dma_param(tspi, true);
1135         if (ret < 0)
1136                 goto exit_free_irq;
1137         ret = tegra_spi_init_dma_param(tspi, false);
1138         if (ret < 0)
1139                 goto exit_rx_dma_free;
1140         tspi->max_buf_size = tspi->dma_buf_size;
1141         init_completion(&tspi->tx_dma_complete);
1142         init_completion(&tspi->rx_dma_complete);
1143
1144         init_completion(&tspi->xfer_completion);
1145
1146         pm_runtime_enable(&pdev->dev);
1147         if (!pm_runtime_enabled(&pdev->dev)) {
1148                 ret = tegra_spi_runtime_resume(&pdev->dev);
1149                 if (ret)
1150                         goto exit_pm_disable;
1151         }
1152
1153         ret = pm_runtime_get_sync(&pdev->dev);
1154         if (ret < 0) {
1155                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1156                 goto exit_pm_disable;
1157         }
1158         tspi->def_command1_reg  = SPI_M_S;
1159         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1160         pm_runtime_put(&pdev->dev);
1161
1162         master->dev.of_node = pdev->dev.of_node;
1163         ret = devm_spi_register_master(&pdev->dev, master);
1164         if (ret < 0) {
1165                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1166                 goto exit_pm_disable;
1167         }
1168         return ret;
1169
1170 exit_pm_disable:
1171         pm_runtime_disable(&pdev->dev);
1172         if (!pm_runtime_status_suspended(&pdev->dev))
1173                 tegra_spi_runtime_suspend(&pdev->dev);
1174         tegra_spi_deinit_dma_param(tspi, false);
1175 exit_rx_dma_free:
1176         tegra_spi_deinit_dma_param(tspi, true);
1177 exit_free_irq:
1178         free_irq(spi_irq, tspi);
1179 exit_free_master:
1180         spi_master_put(master);
1181         return ret;
1182 }
1183
1184 static int tegra_spi_remove(struct platform_device *pdev)
1185 {
1186         struct spi_master *master = platform_get_drvdata(pdev);
1187         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1188
1189         free_irq(tspi->irq, tspi);
1190
1191         if (tspi->tx_dma_chan)
1192                 tegra_spi_deinit_dma_param(tspi, false);
1193
1194         if (tspi->rx_dma_chan)
1195                 tegra_spi_deinit_dma_param(tspi, true);
1196
1197         pm_runtime_disable(&pdev->dev);
1198         if (!pm_runtime_status_suspended(&pdev->dev))
1199                 tegra_spi_runtime_suspend(&pdev->dev);
1200
1201         return 0;
1202 }
1203
1204 #ifdef CONFIG_PM_SLEEP
1205 static int tegra_spi_suspend(struct device *dev)
1206 {
1207         struct spi_master *master = dev_get_drvdata(dev);
1208
1209         return spi_master_suspend(master);
1210 }
1211
1212 static int tegra_spi_resume(struct device *dev)
1213 {
1214         struct spi_master *master = dev_get_drvdata(dev);
1215         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1216         int ret;
1217
1218         ret = pm_runtime_get_sync(dev);
1219         if (ret < 0) {
1220                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1221                 return ret;
1222         }
1223         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1224         pm_runtime_put(dev);
1225
1226         return spi_master_resume(master);
1227 }
1228 #endif
1229
1230 static int tegra_spi_runtime_suspend(struct device *dev)
1231 {
1232         struct spi_master *master = dev_get_drvdata(dev);
1233         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1234
1235         /* Flush all write which are in PPSB queue by reading back */
1236         tegra_spi_readl(tspi, SPI_COMMAND1);
1237
1238         clk_disable_unprepare(tspi->clk);
1239         return 0;
1240 }
1241
1242 static int tegra_spi_runtime_resume(struct device *dev)
1243 {
1244         struct spi_master *master = dev_get_drvdata(dev);
1245         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1246         int ret;
1247
1248         ret = clk_prepare_enable(tspi->clk);
1249         if (ret < 0) {
1250                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1251                 return ret;
1252         }
1253         return 0;
1254 }
1255
1256 static const struct dev_pm_ops tegra_spi_pm_ops = {
1257         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1258                 tegra_spi_runtime_resume, NULL)
1259         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1260 };
1261 static struct platform_driver tegra_spi_driver = {
1262         .driver = {
1263                 .name           = "spi-tegra114",
1264                 .owner          = THIS_MODULE,
1265                 .pm             = &tegra_spi_pm_ops,
1266                 .of_match_table = tegra_spi_of_match,
1267         },
1268         .probe =        tegra_spi_probe,
1269         .remove =       tegra_spi_remove,
1270 };
1271 module_platform_driver(tegra_spi_driver);
1272
1273 MODULE_ALIAS("platform:spi-tegra114");
1274 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1275 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1276 MODULE_LICENSE("GPL v2");