Bluetooth: Add public address configration for Broadcom USB devices
[pandora-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /**
79  * __scsi_queue_insert - private queue insertion
80  * @cmd: The SCSI command being requeued
81  * @reason:  The reason for the requeue
82  * @unbusy: Whether the queue should be unbusied
83  *
84  * This is a private queue insertion.  The public interface
85  * scsi_queue_insert() always assumes the queue should be unbusied
86  * because it's always called before the completion.  This function is
87  * for a requeue after completion, which should only occur in this
88  * file.
89  */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92         struct Scsi_Host *host = cmd->device->host;
93         struct scsi_device *device = cmd->device;
94         struct scsi_target *starget = scsi_target(device);
95         struct request_queue *q = device->request_queue;
96         unsigned long flags;
97
98         SCSI_LOG_MLQUEUE(1,
99                  printk("Inserting command %p into mlqueue\n", cmd));
100
101         /*
102          * Set the appropriate busy bit for the device/host.
103          *
104          * If the host/device isn't busy, assume that something actually
105          * completed, and that we should be able to queue a command now.
106          *
107          * Note that the prior mid-layer assumption that any host could
108          * always queue at least one command is now broken.  The mid-layer
109          * will implement a user specifiable stall (see
110          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111          * if a command is requeued with no other commands outstanding
112          * either for the device or for the host.
113          */
114         switch (reason) {
115         case SCSI_MLQUEUE_HOST_BUSY:
116                 host->host_blocked = host->max_host_blocked;
117                 break;
118         case SCSI_MLQUEUE_DEVICE_BUSY:
119         case SCSI_MLQUEUE_EH_RETRY:
120                 device->device_blocked = device->max_device_blocked;
121                 break;
122         case SCSI_MLQUEUE_TARGET_BUSY:
123                 starget->target_blocked = starget->max_target_blocked;
124                 break;
125         }
126
127         /*
128          * Decrement the counters, since these commands are no longer
129          * active on the host/device.
130          */
131         if (unbusy)
132                 scsi_device_unbusy(device);
133
134         /*
135          * Requeue this command.  It will go before all other commands
136          * that are already in the queue. Schedule requeue work under
137          * lock such that the kblockd_schedule_work() call happens
138          * before blk_cleanup_queue() finishes.
139          */
140         cmd->result = 0;
141         spin_lock_irqsave(q->queue_lock, flags);
142         blk_requeue_request(q, cmd->request);
143         kblockd_schedule_work(&device->requeue_work);
144         spin_unlock_irqrestore(q->queue_lock, flags);
145 }
146
147 /*
148  * Function:    scsi_queue_insert()
149  *
150  * Purpose:     Insert a command in the midlevel queue.
151  *
152  * Arguments:   cmd    - command that we are adding to queue.
153  *              reason - why we are inserting command to queue.
154  *
155  * Lock status: Assumed that lock is not held upon entry.
156  *
157  * Returns:     Nothing.
158  *
159  * Notes:       We do this for one of two cases.  Either the host is busy
160  *              and it cannot accept any more commands for the time being,
161  *              or the device returned QUEUE_FULL and can accept no more
162  *              commands.
163  * Notes:       This could be called either from an interrupt context or a
164  *              normal process context.
165  */
166 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
167 {
168         __scsi_queue_insert(cmd, reason, 1);
169 }
170 /**
171  * scsi_execute - insert request and wait for the result
172  * @sdev:       scsi device
173  * @cmd:        scsi command
174  * @data_direction: data direction
175  * @buffer:     data buffer
176  * @bufflen:    len of buffer
177  * @sense:      optional sense buffer
178  * @timeout:    request timeout in seconds
179  * @retries:    number of times to retry request
180  * @flags:      or into request flags;
181  * @resid:      optional residual length
182  *
183  * returns the req->errors value which is the scsi_cmnd result
184  * field.
185  */
186 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
187                  int data_direction, void *buffer, unsigned bufflen,
188                  unsigned char *sense, int timeout, int retries, u64 flags,
189                  int *resid)
190 {
191         struct request *req;
192         int write = (data_direction == DMA_TO_DEVICE);
193         int ret = DRIVER_ERROR << 24;
194
195         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
196         if (!req)
197                 return ret;
198         blk_rq_set_block_pc(req);
199
200         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
201                                         buffer, bufflen, __GFP_WAIT))
202                 goto out;
203
204         req->cmd_len = COMMAND_SIZE(cmd[0]);
205         memcpy(req->cmd, cmd, req->cmd_len);
206         req->sense = sense;
207         req->sense_len = 0;
208         req->retries = retries;
209         req->timeout = timeout;
210         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
211
212         /*
213          * head injection *required* here otherwise quiesce won't work
214          */
215         blk_execute_rq(req->q, NULL, req, 1);
216
217         /*
218          * Some devices (USB mass-storage in particular) may transfer
219          * garbage data together with a residue indicating that the data
220          * is invalid.  Prevent the garbage from being misinterpreted
221          * and prevent security leaks by zeroing out the excess data.
222          */
223         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
224                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
225
226         if (resid)
227                 *resid = req->resid_len;
228         ret = req->errors;
229  out:
230         blk_put_request(req);
231
232         return ret;
233 }
234 EXPORT_SYMBOL(scsi_execute);
235
236 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
237                      int data_direction, void *buffer, unsigned bufflen,
238                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
239                      int *resid, u64 flags)
240 {
241         char *sense = NULL;
242         int result;
243         
244         if (sshdr) {
245                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
246                 if (!sense)
247                         return DRIVER_ERROR << 24;
248         }
249         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
250                               sense, timeout, retries, flags, resid);
251         if (sshdr)
252                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
253
254         kfree(sense);
255         return result;
256 }
257 EXPORT_SYMBOL(scsi_execute_req_flags);
258
259 /*
260  * Function:    scsi_init_cmd_errh()
261  *
262  * Purpose:     Initialize cmd fields related to error handling.
263  *
264  * Arguments:   cmd     - command that is ready to be queued.
265  *
266  * Notes:       This function has the job of initializing a number of
267  *              fields related to error handling.   Typically this will
268  *              be called once for each command, as required.
269  */
270 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
271 {
272         cmd->serial_number = 0;
273         scsi_set_resid(cmd, 0);
274         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
275         if (cmd->cmd_len == 0)
276                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
277 }
278
279 void scsi_device_unbusy(struct scsi_device *sdev)
280 {
281         struct Scsi_Host *shost = sdev->host;
282         struct scsi_target *starget = scsi_target(sdev);
283         unsigned long flags;
284
285         spin_lock_irqsave(shost->host_lock, flags);
286         shost->host_busy--;
287         starget->target_busy--;
288         if (unlikely(scsi_host_in_recovery(shost) &&
289                      (shost->host_failed || shost->host_eh_scheduled)))
290                 scsi_eh_wakeup(shost);
291         spin_unlock(shost->host_lock);
292         spin_lock(sdev->request_queue->queue_lock);
293         sdev->device_busy--;
294         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
295 }
296
297 /*
298  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
299  * and call blk_run_queue for all the scsi_devices on the target -
300  * including current_sdev first.
301  *
302  * Called with *no* scsi locks held.
303  */
304 static void scsi_single_lun_run(struct scsi_device *current_sdev)
305 {
306         struct Scsi_Host *shost = current_sdev->host;
307         struct scsi_device *sdev, *tmp;
308         struct scsi_target *starget = scsi_target(current_sdev);
309         unsigned long flags;
310
311         spin_lock_irqsave(shost->host_lock, flags);
312         starget->starget_sdev_user = NULL;
313         spin_unlock_irqrestore(shost->host_lock, flags);
314
315         /*
316          * Call blk_run_queue for all LUNs on the target, starting with
317          * current_sdev. We race with others (to set starget_sdev_user),
318          * but in most cases, we will be first. Ideally, each LU on the
319          * target would get some limited time or requests on the target.
320          */
321         blk_run_queue(current_sdev->request_queue);
322
323         spin_lock_irqsave(shost->host_lock, flags);
324         if (starget->starget_sdev_user)
325                 goto out;
326         list_for_each_entry_safe(sdev, tmp, &starget->devices,
327                         same_target_siblings) {
328                 if (sdev == current_sdev)
329                         continue;
330                 if (scsi_device_get(sdev))
331                         continue;
332
333                 spin_unlock_irqrestore(shost->host_lock, flags);
334                 blk_run_queue(sdev->request_queue);
335                 spin_lock_irqsave(shost->host_lock, flags);
336         
337                 scsi_device_put(sdev);
338         }
339  out:
340         spin_unlock_irqrestore(shost->host_lock, flags);
341 }
342
343 static inline int scsi_device_is_busy(struct scsi_device *sdev)
344 {
345         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
346                 return 1;
347
348         return 0;
349 }
350
351 static inline int scsi_target_is_busy(struct scsi_target *starget)
352 {
353         return ((starget->can_queue > 0 &&
354                  starget->target_busy >= starget->can_queue) ||
355                  starget->target_blocked);
356 }
357
358 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
359 {
360         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
361             shost->host_blocked || shost->host_self_blocked)
362                 return 1;
363
364         return 0;
365 }
366
367 static void scsi_starved_list_run(struct Scsi_Host *shost)
368 {
369         LIST_HEAD(starved_list);
370         struct scsi_device *sdev;
371         unsigned long flags;
372
373         spin_lock_irqsave(shost->host_lock, flags);
374         list_splice_init(&shost->starved_list, &starved_list);
375
376         while (!list_empty(&starved_list)) {
377                 struct request_queue *slq;
378
379                 /*
380                  * As long as shost is accepting commands and we have
381                  * starved queues, call blk_run_queue. scsi_request_fn
382                  * drops the queue_lock and can add us back to the
383                  * starved_list.
384                  *
385                  * host_lock protects the starved_list and starved_entry.
386                  * scsi_request_fn must get the host_lock before checking
387                  * or modifying starved_list or starved_entry.
388                  */
389                 if (scsi_host_is_busy(shost))
390                         break;
391
392                 sdev = list_entry(starved_list.next,
393                                   struct scsi_device, starved_entry);
394                 list_del_init(&sdev->starved_entry);
395                 if (scsi_target_is_busy(scsi_target(sdev))) {
396                         list_move_tail(&sdev->starved_entry,
397                                        &shost->starved_list);
398                         continue;
399                 }
400
401                 /*
402                  * Once we drop the host lock, a racing scsi_remove_device()
403                  * call may remove the sdev from the starved list and destroy
404                  * it and the queue.  Mitigate by taking a reference to the
405                  * queue and never touching the sdev again after we drop the
406                  * host lock.  Note: if __scsi_remove_device() invokes
407                  * blk_cleanup_queue() before the queue is run from this
408                  * function then blk_run_queue() will return immediately since
409                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
410                  */
411                 slq = sdev->request_queue;
412                 if (!blk_get_queue(slq))
413                         continue;
414                 spin_unlock_irqrestore(shost->host_lock, flags);
415
416                 blk_run_queue(slq);
417                 blk_put_queue(slq);
418
419                 spin_lock_irqsave(shost->host_lock, flags);
420         }
421         /* put any unprocessed entries back */
422         list_splice(&starved_list, &shost->starved_list);
423         spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425
426 /*
427  * Function:   scsi_run_queue()
428  *
429  * Purpose:    Select a proper request queue to serve next
430  *
431  * Arguments:  q       - last request's queue
432  *
433  * Returns:     Nothing
434  *
435  * Notes:      The previous command was completely finished, start
436  *             a new one if possible.
437  */
438 static void scsi_run_queue(struct request_queue *q)
439 {
440         struct scsi_device *sdev = q->queuedata;
441
442         if (scsi_target(sdev)->single_lun)
443                 scsi_single_lun_run(sdev);
444         if (!list_empty(&sdev->host->starved_list))
445                 scsi_starved_list_run(sdev->host);
446
447         blk_run_queue(q);
448 }
449
450 void scsi_requeue_run_queue(struct work_struct *work)
451 {
452         struct scsi_device *sdev;
453         struct request_queue *q;
454
455         sdev = container_of(work, struct scsi_device, requeue_work);
456         q = sdev->request_queue;
457         scsi_run_queue(q);
458 }
459
460 /*
461  * Function:    scsi_requeue_command()
462  *
463  * Purpose:     Handle post-processing of completed commands.
464  *
465  * Arguments:   q       - queue to operate on
466  *              cmd     - command that may need to be requeued.
467  *
468  * Returns:     Nothing
469  *
470  * Notes:       After command completion, there may be blocks left
471  *              over which weren't finished by the previous command
472  *              this can be for a number of reasons - the main one is
473  *              I/O errors in the middle of the request, in which case
474  *              we need to request the blocks that come after the bad
475  *              sector.
476  * Notes:       Upon return, cmd is a stale pointer.
477  */
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
479 {
480         struct scsi_device *sdev = cmd->device;
481         struct request *req = cmd->request;
482         unsigned long flags;
483
484         spin_lock_irqsave(q->queue_lock, flags);
485         blk_unprep_request(req);
486         req->special = NULL;
487         scsi_put_command(cmd);
488         blk_requeue_request(q, req);
489         spin_unlock_irqrestore(q->queue_lock, flags);
490
491         scsi_run_queue(q);
492
493         put_device(&sdev->sdev_gendev);
494 }
495
496 void scsi_next_command(struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request_queue *q = sdev->request_queue;
500
501         scsi_put_command(cmd);
502         scsi_run_queue(q);
503
504         put_device(&sdev->sdev_gendev);
505 }
506
507 void scsi_run_host_queues(struct Scsi_Host *shost)
508 {
509         struct scsi_device *sdev;
510
511         shost_for_each_device(sdev, shost)
512                 scsi_run_queue(sdev->request_queue);
513 }
514
515 static inline unsigned int scsi_sgtable_index(unsigned short nents)
516 {
517         unsigned int index;
518
519         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
520
521         if (nents <= 8)
522                 index = 0;
523         else
524                 index = get_count_order(nents) - 3;
525
526         return index;
527 }
528
529 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
530 {
531         struct scsi_host_sg_pool *sgp;
532
533         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
534         mempool_free(sgl, sgp->pool);
535 }
536
537 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
538 {
539         struct scsi_host_sg_pool *sgp;
540
541         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
542         return mempool_alloc(sgp->pool, gfp_mask);
543 }
544
545 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
546                               gfp_t gfp_mask)
547 {
548         int ret;
549
550         BUG_ON(!nents);
551
552         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
553                                gfp_mask, scsi_sg_alloc);
554         if (unlikely(ret))
555                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
556                                 scsi_sg_free);
557
558         return ret;
559 }
560
561 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
562 {
563         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
564 }
565
566 /*
567  * Function:    scsi_release_buffers()
568  *
569  * Purpose:     Free resources allocate for a scsi_command.
570  *
571  * Arguments:   cmd     - command that we are bailing.
572  *
573  * Lock status: Assumed that no lock is held upon entry.
574  *
575  * Returns:     Nothing
576  *
577  * Notes:       In the event that an upper level driver rejects a
578  *              command, we must release resources allocated during
579  *              the __init_io() function.  Primarily this would involve
580  *              the scatter-gather table.
581  */
582 void scsi_release_buffers(struct scsi_cmnd *cmd)
583 {
584         if (cmd->sdb.table.nents)
585                 scsi_free_sgtable(&cmd->sdb);
586
587         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
588
589         if (scsi_prot_sg_count(cmd))
590                 scsi_free_sgtable(cmd->prot_sdb);
591 }
592 EXPORT_SYMBOL(scsi_release_buffers);
593
594 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
595 {
596         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
597
598         scsi_free_sgtable(bidi_sdb);
599         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
600         cmd->request->next_rq->special = NULL;
601 }
602
603 /**
604  * __scsi_error_from_host_byte - translate SCSI error code into errno
605  * @cmd:        SCSI command (unused)
606  * @result:     scsi error code
607  *
608  * Translate SCSI error code into standard UNIX errno.
609  * Return values:
610  * -ENOLINK     temporary transport failure
611  * -EREMOTEIO   permanent target failure, do not retry
612  * -EBADE       permanent nexus failure, retry on other path
613  * -ENOSPC      No write space available
614  * -ENODATA     Medium error
615  * -EIO         unspecified I/O error
616  */
617 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
618 {
619         int error = 0;
620
621         switch(host_byte(result)) {
622         case DID_TRANSPORT_FAILFAST:
623                 error = -ENOLINK;
624                 break;
625         case DID_TARGET_FAILURE:
626                 set_host_byte(cmd, DID_OK);
627                 error = -EREMOTEIO;
628                 break;
629         case DID_NEXUS_FAILURE:
630                 set_host_byte(cmd, DID_OK);
631                 error = -EBADE;
632                 break;
633         case DID_ALLOC_FAILURE:
634                 set_host_byte(cmd, DID_OK);
635                 error = -ENOSPC;
636                 break;
637         case DID_MEDIUM_ERROR:
638                 set_host_byte(cmd, DID_OK);
639                 error = -ENODATA;
640                 break;
641         default:
642                 error = -EIO;
643                 break;
644         }
645
646         return error;
647 }
648
649 /*
650  * Function:    scsi_io_completion()
651  *
652  * Purpose:     Completion processing for block device I/O requests.
653  *
654  * Arguments:   cmd   - command that is finished.
655  *
656  * Lock status: Assumed that no lock is held upon entry.
657  *
658  * Returns:     Nothing
659  *
660  * Notes:       We will finish off the specified number of sectors.  If we
661  *              are done, the command block will be released and the queue
662  *              function will be goosed.  If we are not done then we have to
663  *              figure out what to do next:
664  *
665  *              a) We can call scsi_requeue_command().  The request
666  *                 will be unprepared and put back on the queue.  Then
667  *                 a new command will be created for it.  This should
668  *                 be used if we made forward progress, or if we want
669  *                 to switch from READ(10) to READ(6) for example.
670  *
671  *              b) We can call __scsi_queue_insert().  The request will
672  *                 be put back on the queue and retried using the same
673  *                 command as before, possibly after a delay.
674  *
675  *              c) We can call blk_end_request() with -EIO to fail
676  *                 the remainder of the request.
677  */
678 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
679 {
680         int result = cmd->result;
681         struct request_queue *q = cmd->device->request_queue;
682         struct request *req = cmd->request;
683         int error = 0;
684         struct scsi_sense_hdr sshdr;
685         int sense_valid = 0;
686         int sense_deferred = 0;
687         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
688               ACTION_DELAYED_RETRY} action;
689         char *description = NULL;
690         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
691
692         if (result) {
693                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
694                 if (sense_valid)
695                         sense_deferred = scsi_sense_is_deferred(&sshdr);
696         }
697
698         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
699                 if (result) {
700                         if (sense_valid && req->sense) {
701                                 /*
702                                  * SG_IO wants current and deferred errors
703                                  */
704                                 int len = 8 + cmd->sense_buffer[7];
705
706                                 if (len > SCSI_SENSE_BUFFERSIZE)
707                                         len = SCSI_SENSE_BUFFERSIZE;
708                                 memcpy(req->sense, cmd->sense_buffer,  len);
709                                 req->sense_len = len;
710                         }
711                         if (!sense_deferred)
712                                 error = __scsi_error_from_host_byte(cmd, result);
713                 }
714                 /*
715                  * __scsi_error_from_host_byte may have reset the host_byte
716                  */
717                 req->errors = cmd->result;
718
719                 req->resid_len = scsi_get_resid(cmd);
720
721                 if (scsi_bidi_cmnd(cmd)) {
722                         /*
723                          * Bidi commands Must be complete as a whole,
724                          * both sides at once.
725                          */
726                         req->next_rq->resid_len = scsi_in(cmd)->resid;
727
728                         scsi_release_buffers(cmd);
729                         scsi_release_bidi_buffers(cmd);
730
731                         blk_end_request_all(req, 0);
732
733                         scsi_next_command(cmd);
734                         return;
735                 }
736         }
737
738         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
739         BUG_ON(blk_bidi_rq(req));
740
741         /*
742          * Next deal with any sectors which we were able to correctly
743          * handle.
744          */
745         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
746                                       "%d bytes done.\n",
747                                       blk_rq_sectors(req), good_bytes));
748
749         /*
750          * Recovered errors need reporting, but they're always treated
751          * as success, so fiddle the result code here.  For BLOCK_PC
752          * we already took a copy of the original into rq->errors which
753          * is what gets returned to the user
754          */
755         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
756                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
757                  * print since caller wants ATA registers. Only occurs on
758                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
759                  */
760                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
761                         ;
762                 else if (!(req->cmd_flags & REQ_QUIET))
763                         scsi_print_sense("", cmd);
764                 result = 0;
765                 /* BLOCK_PC may have set error */
766                 error = 0;
767         }
768
769         /*
770          * If we finished all bytes in the request we are done now.
771          */
772         if (!blk_end_request(req, error, good_bytes))
773                 goto next_command;
774
775         /*
776          * Kill remainder if no retrys.
777          */
778         if (error && scsi_noretry_cmd(cmd)) {
779                 blk_end_request_all(req, error);
780                 goto next_command;
781         }
782
783         /*
784          * If there had been no error, but we have leftover bytes in the
785          * requeues just queue the command up again.
786          */
787         if (result == 0)
788                 goto requeue;
789
790         error = __scsi_error_from_host_byte(cmd, result);
791
792         if (host_byte(result) == DID_RESET) {
793                 /* Third party bus reset or reset for error recovery
794                  * reasons.  Just retry the command and see what
795                  * happens.
796                  */
797                 action = ACTION_RETRY;
798         } else if (sense_valid && !sense_deferred) {
799                 switch (sshdr.sense_key) {
800                 case UNIT_ATTENTION:
801                         if (cmd->device->removable) {
802                                 /* Detected disc change.  Set a bit
803                                  * and quietly refuse further access.
804                                  */
805                                 cmd->device->changed = 1;
806                                 description = "Media Changed";
807                                 action = ACTION_FAIL;
808                         } else {
809                                 /* Must have been a power glitch, or a
810                                  * bus reset.  Could not have been a
811                                  * media change, so we just retry the
812                                  * command and see what happens.
813                                  */
814                                 action = ACTION_RETRY;
815                         }
816                         break;
817                 case ILLEGAL_REQUEST:
818                         /* If we had an ILLEGAL REQUEST returned, then
819                          * we may have performed an unsupported
820                          * command.  The only thing this should be
821                          * would be a ten byte read where only a six
822                          * byte read was supported.  Also, on a system
823                          * where READ CAPACITY failed, we may have
824                          * read past the end of the disk.
825                          */
826                         if ((cmd->device->use_10_for_rw &&
827                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
828                             (cmd->cmnd[0] == READ_10 ||
829                              cmd->cmnd[0] == WRITE_10)) {
830                                 /* This will issue a new 6-byte command. */
831                                 cmd->device->use_10_for_rw = 0;
832                                 action = ACTION_REPREP;
833                         } else if (sshdr.asc == 0x10) /* DIX */ {
834                                 description = "Host Data Integrity Failure";
835                                 action = ACTION_FAIL;
836                                 error = -EILSEQ;
837                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
838                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
839                                 switch (cmd->cmnd[0]) {
840                                 case UNMAP:
841                                         description = "Discard failure";
842                                         break;
843                                 case WRITE_SAME:
844                                 case WRITE_SAME_16:
845                                         if (cmd->cmnd[1] & 0x8)
846                                                 description = "Discard failure";
847                                         else
848                                                 description =
849                                                         "Write same failure";
850                                         break;
851                                 default:
852                                         description = "Invalid command failure";
853                                         break;
854                                 }
855                                 action = ACTION_FAIL;
856                                 error = -EREMOTEIO;
857                         } else
858                                 action = ACTION_FAIL;
859                         break;
860                 case ABORTED_COMMAND:
861                         action = ACTION_FAIL;
862                         if (sshdr.asc == 0x10) { /* DIF */
863                                 description = "Target Data Integrity Failure";
864                                 error = -EILSEQ;
865                         }
866                         break;
867                 case NOT_READY:
868                         /* If the device is in the process of becoming
869                          * ready, or has a temporary blockage, retry.
870                          */
871                         if (sshdr.asc == 0x04) {
872                                 switch (sshdr.ascq) {
873                                 case 0x01: /* becoming ready */
874                                 case 0x04: /* format in progress */
875                                 case 0x05: /* rebuild in progress */
876                                 case 0x06: /* recalculation in progress */
877                                 case 0x07: /* operation in progress */
878                                 case 0x08: /* Long write in progress */
879                                 case 0x09: /* self test in progress */
880                                 case 0x14: /* space allocation in progress */
881                                         action = ACTION_DELAYED_RETRY;
882                                         break;
883                                 default:
884                                         description = "Device not ready";
885                                         action = ACTION_FAIL;
886                                         break;
887                                 }
888                         } else {
889                                 description = "Device not ready";
890                                 action = ACTION_FAIL;
891                         }
892                         break;
893                 case VOLUME_OVERFLOW:
894                         /* See SSC3rXX or current. */
895                         action = ACTION_FAIL;
896                         break;
897                 default:
898                         description = "Unhandled sense code";
899                         action = ACTION_FAIL;
900                         break;
901                 }
902         } else {
903                 description = "Unhandled error code";
904                 action = ACTION_FAIL;
905         }
906
907         if (action != ACTION_FAIL &&
908             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
909                 action = ACTION_FAIL;
910                 description = "Command timed out";
911         }
912
913         switch (action) {
914         case ACTION_FAIL:
915                 /* Give up and fail the remainder of the request */
916                 if (!(req->cmd_flags & REQ_QUIET)) {
917                         if (description)
918                                 scmd_printk(KERN_INFO, cmd, "%s\n",
919                                             description);
920                         scsi_print_result(cmd);
921                         if (driver_byte(result) & DRIVER_SENSE)
922                                 scsi_print_sense("", cmd);
923                         scsi_print_command(cmd);
924                 }
925                 if (!blk_end_request_err(req, error))
926                         goto next_command;
927                 /*FALLTHRU*/
928         case ACTION_REPREP:
929         requeue:
930                 /* Unprep the request and put it back at the head of the queue.
931                  * A new command will be prepared and issued.
932                  */
933                 scsi_release_buffers(cmd);
934                 scsi_requeue_command(q, cmd);
935                 break;
936         case ACTION_RETRY:
937                 /* Retry the same command immediately */
938                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
939                 break;
940         case ACTION_DELAYED_RETRY:
941                 /* Retry the same command after a delay */
942                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
943                 break;
944         }
945         return;
946
947 next_command:
948         scsi_release_buffers(cmd);
949         scsi_next_command(cmd);
950 }
951
952 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
953                              gfp_t gfp_mask)
954 {
955         int count;
956
957         /*
958          * If sg table allocation fails, requeue request later.
959          */
960         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
961                                         gfp_mask))) {
962                 return BLKPREP_DEFER;
963         }
964
965         /* 
966          * Next, walk the list, and fill in the addresses and sizes of
967          * each segment.
968          */
969         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
970         BUG_ON(count > sdb->table.nents);
971         sdb->table.nents = count;
972         sdb->length = blk_rq_bytes(req);
973         return BLKPREP_OK;
974 }
975
976 /*
977  * Function:    scsi_init_io()
978  *
979  * Purpose:     SCSI I/O initialize function.
980  *
981  * Arguments:   cmd   - Command descriptor we wish to initialize
982  *
983  * Returns:     0 on success
984  *              BLKPREP_DEFER if the failure is retryable
985  *              BLKPREP_KILL if the failure is fatal
986  */
987 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
988 {
989         struct scsi_device *sdev = cmd->device;
990         struct request *rq = cmd->request;
991
992         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
993         if (error)
994                 goto err_exit;
995
996         if (blk_bidi_rq(rq)) {
997                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
998                         scsi_sdb_cache, GFP_ATOMIC);
999                 if (!bidi_sdb) {
1000                         error = BLKPREP_DEFER;
1001                         goto err_exit;
1002                 }
1003
1004                 rq->next_rq->special = bidi_sdb;
1005                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1006                 if (error)
1007                         goto err_exit;
1008         }
1009
1010         if (blk_integrity_rq(rq)) {
1011                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1012                 int ivecs, count;
1013
1014                 BUG_ON(prot_sdb == NULL);
1015                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1016
1017                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1018                         error = BLKPREP_DEFER;
1019                         goto err_exit;
1020                 }
1021
1022                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1023                                                 prot_sdb->table.sgl);
1024                 BUG_ON(unlikely(count > ivecs));
1025                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1026
1027                 cmd->prot_sdb = prot_sdb;
1028                 cmd->prot_sdb->table.nents = count;
1029         }
1030
1031         return BLKPREP_OK ;
1032
1033 err_exit:
1034         scsi_release_buffers(cmd);
1035         cmd->request->special = NULL;
1036         scsi_put_command(cmd);
1037         put_device(&sdev->sdev_gendev);
1038         return error;
1039 }
1040 EXPORT_SYMBOL(scsi_init_io);
1041
1042 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1043                 struct request *req)
1044 {
1045         struct scsi_cmnd *cmd;
1046
1047         if (!req->special) {
1048                 /* Bail if we can't get a reference to the device */
1049                 if (!get_device(&sdev->sdev_gendev))
1050                         return NULL;
1051
1052                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1053                 if (unlikely(!cmd)) {
1054                         put_device(&sdev->sdev_gendev);
1055                         return NULL;
1056                 }
1057                 req->special = cmd;
1058         } else {
1059                 cmd = req->special;
1060         }
1061
1062         /* pull a tag out of the request if we have one */
1063         cmd->tag = req->tag;
1064         cmd->request = req;
1065
1066         cmd->cmnd = req->cmd;
1067         cmd->prot_op = SCSI_PROT_NORMAL;
1068
1069         return cmd;
1070 }
1071
1072 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1073 {
1074         struct scsi_cmnd *cmd = req->special;
1075
1076         /*
1077          * BLOCK_PC requests may transfer data, in which case they must
1078          * a bio attached to them.  Or they might contain a SCSI command
1079          * that does not transfer data, in which case they may optionally
1080          * submit a request without an attached bio.
1081          */
1082         if (req->bio) {
1083                 int ret;
1084
1085                 BUG_ON(!req->nr_phys_segments);
1086
1087                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1088                 if (unlikely(ret))
1089                         return ret;
1090         } else {
1091                 BUG_ON(blk_rq_bytes(req));
1092
1093                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1094         }
1095
1096         cmd->cmd_len = req->cmd_len;
1097         if (!blk_rq_bytes(req))
1098                 cmd->sc_data_direction = DMA_NONE;
1099         else if (rq_data_dir(req) == WRITE)
1100                 cmd->sc_data_direction = DMA_TO_DEVICE;
1101         else
1102                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1103         
1104         cmd->transfersize = blk_rq_bytes(req);
1105         cmd->allowed = req->retries;
1106         return BLKPREP_OK;
1107 }
1108 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1109
1110 /*
1111  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1112  * from filesystems that still need to be translated to SCSI CDBs from
1113  * the ULD.
1114  */
1115 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1116 {
1117         struct scsi_cmnd *cmd = req->special;
1118
1119         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1120                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1121                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1122                 if (ret != BLKPREP_OK)
1123                         return ret;
1124         }
1125
1126         /*
1127          * Filesystem requests must transfer data.
1128          */
1129         BUG_ON(!req->nr_phys_segments);
1130
1131         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1132         return scsi_init_io(cmd, GFP_ATOMIC);
1133 }
1134 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1135
1136 static int
1137 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1138 {
1139         int ret = BLKPREP_OK;
1140
1141         /*
1142          * If the device is not in running state we will reject some
1143          * or all commands.
1144          */
1145         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1146                 switch (sdev->sdev_state) {
1147                 case SDEV_OFFLINE:
1148                 case SDEV_TRANSPORT_OFFLINE:
1149                         /*
1150                          * If the device is offline we refuse to process any
1151                          * commands.  The device must be brought online
1152                          * before trying any recovery commands.
1153                          */
1154                         sdev_printk(KERN_ERR, sdev,
1155                                     "rejecting I/O to offline device\n");
1156                         ret = BLKPREP_KILL;
1157                         break;
1158                 case SDEV_DEL:
1159                         /*
1160                          * If the device is fully deleted, we refuse to
1161                          * process any commands as well.
1162                          */
1163                         sdev_printk(KERN_ERR, sdev,
1164                                     "rejecting I/O to dead device\n");
1165                         ret = BLKPREP_KILL;
1166                         break;
1167                 case SDEV_QUIESCE:
1168                 case SDEV_BLOCK:
1169                 case SDEV_CREATED_BLOCK:
1170                         /*
1171                          * If the devices is blocked we defer normal commands.
1172                          */
1173                         if (!(req->cmd_flags & REQ_PREEMPT))
1174                                 ret = BLKPREP_DEFER;
1175                         break;
1176                 default:
1177                         /*
1178                          * For any other not fully online state we only allow
1179                          * special commands.  In particular any user initiated
1180                          * command is not allowed.
1181                          */
1182                         if (!(req->cmd_flags & REQ_PREEMPT))
1183                                 ret = BLKPREP_KILL;
1184                         break;
1185                 }
1186         }
1187         return ret;
1188 }
1189
1190 static int
1191 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1192 {
1193         struct scsi_device *sdev = q->queuedata;
1194
1195         switch (ret) {
1196         case BLKPREP_KILL:
1197                 req->errors = DID_NO_CONNECT << 16;
1198                 /* release the command and kill it */
1199                 if (req->special) {
1200                         struct scsi_cmnd *cmd = req->special;
1201                         scsi_release_buffers(cmd);
1202                         scsi_put_command(cmd);
1203                         put_device(&sdev->sdev_gendev);
1204                         req->special = NULL;
1205                 }
1206                 break;
1207         case BLKPREP_DEFER:
1208                 /*
1209                  * If we defer, the blk_peek_request() returns NULL, but the
1210                  * queue must be restarted, so we schedule a callback to happen
1211                  * shortly.
1212                  */
1213                 if (sdev->device_busy == 0)
1214                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1215                 break;
1216         default:
1217                 req->cmd_flags |= REQ_DONTPREP;
1218         }
1219
1220         return ret;
1221 }
1222
1223 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1224 {
1225         struct scsi_device *sdev = q->queuedata;
1226         struct scsi_cmnd *cmd;
1227         int ret;
1228
1229         ret = scsi_prep_state_check(sdev, req);
1230         if (ret != BLKPREP_OK)
1231                 goto out;
1232
1233         cmd = scsi_get_cmd_from_req(sdev, req);
1234         if (unlikely(!cmd)) {
1235                 ret = BLKPREP_DEFER;
1236                 goto out;
1237         }
1238
1239         if (req->cmd_type == REQ_TYPE_FS)
1240                 ret = scsi_cmd_to_driver(cmd)->init_command(cmd);
1241         else if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1242                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1243         else
1244                 ret = BLKPREP_KILL;
1245
1246 out:
1247         return scsi_prep_return(q, req, ret);
1248 }
1249
1250 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1251 {
1252         if (req->cmd_type == REQ_TYPE_FS) {
1253                 struct scsi_cmnd *cmd = req->special;
1254                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
1255
1256                 if (drv->uninit_command)
1257                         drv->uninit_command(cmd);
1258         }
1259 }
1260
1261 /*
1262  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1263  * return 0.
1264  *
1265  * Called with the queue_lock held.
1266  */
1267 static inline int scsi_dev_queue_ready(struct request_queue *q,
1268                                   struct scsi_device *sdev)
1269 {
1270         if (sdev->device_busy == 0 && sdev->device_blocked) {
1271                 /*
1272                  * unblock after device_blocked iterates to zero
1273                  */
1274                 if (--sdev->device_blocked == 0) {
1275                         SCSI_LOG_MLQUEUE(3,
1276                                    sdev_printk(KERN_INFO, sdev,
1277                                    "unblocking device at zero depth\n"));
1278                 } else {
1279                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280                         return 0;
1281                 }
1282         }
1283         if (scsi_device_is_busy(sdev))
1284                 return 0;
1285
1286         return 1;
1287 }
1288
1289
1290 /*
1291  * scsi_target_queue_ready: checks if there we can send commands to target
1292  * @sdev: scsi device on starget to check.
1293  *
1294  * Called with the host lock held.
1295  */
1296 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1297                                            struct scsi_device *sdev)
1298 {
1299         struct scsi_target *starget = scsi_target(sdev);
1300
1301         if (starget->single_lun) {
1302                 if (starget->starget_sdev_user &&
1303                     starget->starget_sdev_user != sdev)
1304                         return 0;
1305                 starget->starget_sdev_user = sdev;
1306         }
1307
1308         if (starget->target_busy == 0 && starget->target_blocked) {
1309                 /*
1310                  * unblock after target_blocked iterates to zero
1311                  */
1312                 if (--starget->target_blocked == 0) {
1313                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1314                                          "unblocking target at zero depth\n"));
1315                 } else
1316                         return 0;
1317         }
1318
1319         if (scsi_target_is_busy(starget)) {
1320                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1321                 return 0;
1322         }
1323
1324         return 1;
1325 }
1326
1327 /*
1328  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1329  * return 0. We must end up running the queue again whenever 0 is
1330  * returned, else IO can hang.
1331  *
1332  * Called with host_lock held.
1333  */
1334 static inline int scsi_host_queue_ready(struct request_queue *q,
1335                                    struct Scsi_Host *shost,
1336                                    struct scsi_device *sdev)
1337 {
1338         if (scsi_host_in_recovery(shost))
1339                 return 0;
1340         if (shost->host_busy == 0 && shost->host_blocked) {
1341                 /*
1342                  * unblock after host_blocked iterates to zero
1343                  */
1344                 if (--shost->host_blocked == 0) {
1345                         SCSI_LOG_MLQUEUE(3,
1346                                 printk("scsi%d unblocking host at zero depth\n",
1347                                         shost->host_no));
1348                 } else {
1349                         return 0;
1350                 }
1351         }
1352         if (scsi_host_is_busy(shost)) {
1353                 if (list_empty(&sdev->starved_entry))
1354                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1355                 return 0;
1356         }
1357
1358         /* We're OK to process the command, so we can't be starved */
1359         if (!list_empty(&sdev->starved_entry))
1360                 list_del_init(&sdev->starved_entry);
1361
1362         return 1;
1363 }
1364
1365 /*
1366  * Busy state exporting function for request stacking drivers.
1367  *
1368  * For efficiency, no lock is taken to check the busy state of
1369  * shost/starget/sdev, since the returned value is not guaranteed and
1370  * may be changed after request stacking drivers call the function,
1371  * regardless of taking lock or not.
1372  *
1373  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1374  * needs to return 'not busy'. Otherwise, request stacking drivers
1375  * may hold requests forever.
1376  */
1377 static int scsi_lld_busy(struct request_queue *q)
1378 {
1379         struct scsi_device *sdev = q->queuedata;
1380         struct Scsi_Host *shost;
1381
1382         if (blk_queue_dying(q))
1383                 return 0;
1384
1385         shost = sdev->host;
1386
1387         /*
1388          * Ignore host/starget busy state.
1389          * Since block layer does not have a concept of fairness across
1390          * multiple queues, congestion of host/starget needs to be handled
1391          * in SCSI layer.
1392          */
1393         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1394                 return 1;
1395
1396         return 0;
1397 }
1398
1399 /*
1400  * Kill a request for a dead device
1401  */
1402 static void scsi_kill_request(struct request *req, struct request_queue *q)
1403 {
1404         struct scsi_cmnd *cmd = req->special;
1405         struct scsi_device *sdev;
1406         struct scsi_target *starget;
1407         struct Scsi_Host *shost;
1408
1409         blk_start_request(req);
1410
1411         scmd_printk(KERN_INFO, cmd, "killing request\n");
1412
1413         sdev = cmd->device;
1414         starget = scsi_target(sdev);
1415         shost = sdev->host;
1416         scsi_init_cmd_errh(cmd);
1417         cmd->result = DID_NO_CONNECT << 16;
1418         atomic_inc(&cmd->device->iorequest_cnt);
1419
1420         /*
1421          * SCSI request completion path will do scsi_device_unbusy(),
1422          * bump busy counts.  To bump the counters, we need to dance
1423          * with the locks as normal issue path does.
1424          */
1425         sdev->device_busy++;
1426         spin_unlock(sdev->request_queue->queue_lock);
1427         spin_lock(shost->host_lock);
1428         shost->host_busy++;
1429         starget->target_busy++;
1430         spin_unlock(shost->host_lock);
1431         spin_lock(sdev->request_queue->queue_lock);
1432
1433         blk_complete_request(req);
1434 }
1435
1436 static void scsi_softirq_done(struct request *rq)
1437 {
1438         struct scsi_cmnd *cmd = rq->special;
1439         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1440         int disposition;
1441
1442         INIT_LIST_HEAD(&cmd->eh_entry);
1443
1444         atomic_inc(&cmd->device->iodone_cnt);
1445         if (cmd->result)
1446                 atomic_inc(&cmd->device->ioerr_cnt);
1447
1448         disposition = scsi_decide_disposition(cmd);
1449         if (disposition != SUCCESS &&
1450             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1451                 sdev_printk(KERN_ERR, cmd->device,
1452                             "timing out command, waited %lus\n",
1453                             wait_for/HZ);
1454                 disposition = SUCCESS;
1455         }
1456                         
1457         scsi_log_completion(cmd, disposition);
1458
1459         switch (disposition) {
1460                 case SUCCESS:
1461                         scsi_finish_command(cmd);
1462                         break;
1463                 case NEEDS_RETRY:
1464                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1465                         break;
1466                 case ADD_TO_MLQUEUE:
1467                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1468                         break;
1469                 default:
1470                         if (!scsi_eh_scmd_add(cmd, 0))
1471                                 scsi_finish_command(cmd);
1472         }
1473 }
1474
1475 /*
1476  * Function:    scsi_request_fn()
1477  *
1478  * Purpose:     Main strategy routine for SCSI.
1479  *
1480  * Arguments:   q       - Pointer to actual queue.
1481  *
1482  * Returns:     Nothing
1483  *
1484  * Lock status: IO request lock assumed to be held when called.
1485  */
1486 static void scsi_request_fn(struct request_queue *q)
1487         __releases(q->queue_lock)
1488         __acquires(q->queue_lock)
1489 {
1490         struct scsi_device *sdev = q->queuedata;
1491         struct Scsi_Host *shost;
1492         struct scsi_cmnd *cmd;
1493         struct request *req;
1494
1495         /*
1496          * To start with, we keep looping until the queue is empty, or until
1497          * the host is no longer able to accept any more requests.
1498          */
1499         shost = sdev->host;
1500         for (;;) {
1501                 int rtn;
1502                 /*
1503                  * get next queueable request.  We do this early to make sure
1504                  * that the request is fully prepared even if we cannot 
1505                  * accept it.
1506                  */
1507                 req = blk_peek_request(q);
1508                 if (!req || !scsi_dev_queue_ready(q, sdev))
1509                         break;
1510
1511                 if (unlikely(!scsi_device_online(sdev))) {
1512                         sdev_printk(KERN_ERR, sdev,
1513                                     "rejecting I/O to offline device\n");
1514                         scsi_kill_request(req, q);
1515                         continue;
1516                 }
1517
1518
1519                 /*
1520                  * Remove the request from the request list.
1521                  */
1522                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1523                         blk_start_request(req);
1524                 sdev->device_busy++;
1525
1526                 spin_unlock(q->queue_lock);
1527                 cmd = req->special;
1528                 if (unlikely(cmd == NULL)) {
1529                         printk(KERN_CRIT "impossible request in %s.\n"
1530                                          "please mail a stack trace to "
1531                                          "linux-scsi@vger.kernel.org\n",
1532                                          __func__);
1533                         blk_dump_rq_flags(req, "foo");
1534                         BUG();
1535                 }
1536                 spin_lock(shost->host_lock);
1537
1538                 /*
1539                  * We hit this when the driver is using a host wide
1540                  * tag map. For device level tag maps the queue_depth check
1541                  * in the device ready fn would prevent us from trying
1542                  * to allocate a tag. Since the map is a shared host resource
1543                  * we add the dev to the starved list so it eventually gets
1544                  * a run when a tag is freed.
1545                  */
1546                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1547                         if (list_empty(&sdev->starved_entry))
1548                                 list_add_tail(&sdev->starved_entry,
1549                                               &shost->starved_list);
1550                         goto not_ready;
1551                 }
1552
1553                 if (!scsi_target_queue_ready(shost, sdev))
1554                         goto not_ready;
1555
1556                 if (!scsi_host_queue_ready(q, shost, sdev))
1557                         goto not_ready;
1558
1559                 scsi_target(sdev)->target_busy++;
1560                 shost->host_busy++;
1561
1562                 /*
1563                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1564                  *              take the lock again.
1565                  */
1566                 spin_unlock_irq(shost->host_lock);
1567
1568                 /*
1569                  * Finally, initialize any error handling parameters, and set up
1570                  * the timers for timeouts.
1571                  */
1572                 scsi_init_cmd_errh(cmd);
1573
1574                 /*
1575                  * Dispatch the command to the low-level driver.
1576                  */
1577                 rtn = scsi_dispatch_cmd(cmd);
1578                 spin_lock_irq(q->queue_lock);
1579                 if (rtn)
1580                         goto out_delay;
1581         }
1582
1583         return;
1584
1585  not_ready:
1586         spin_unlock_irq(shost->host_lock);
1587
1588         /*
1589          * lock q, handle tag, requeue req, and decrement device_busy. We
1590          * must return with queue_lock held.
1591          *
1592          * Decrementing device_busy without checking it is OK, as all such
1593          * cases (host limits or settings) should run the queue at some
1594          * later time.
1595          */
1596         spin_lock_irq(q->queue_lock);
1597         blk_requeue_request(q, req);
1598         sdev->device_busy--;
1599 out_delay:
1600         if (sdev->device_busy == 0)
1601                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1602 }
1603
1604 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1605 {
1606         struct device *host_dev;
1607         u64 bounce_limit = 0xffffffff;
1608
1609         if (shost->unchecked_isa_dma)
1610                 return BLK_BOUNCE_ISA;
1611         /*
1612          * Platforms with virtual-DMA translation
1613          * hardware have no practical limit.
1614          */
1615         if (!PCI_DMA_BUS_IS_PHYS)
1616                 return BLK_BOUNCE_ANY;
1617
1618         host_dev = scsi_get_device(shost);
1619         if (host_dev && host_dev->dma_mask)
1620                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1621
1622         return bounce_limit;
1623 }
1624 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1625
1626 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1627                                          request_fn_proc *request_fn)
1628 {
1629         struct request_queue *q;
1630         struct device *dev = shost->dma_dev;
1631
1632         q = blk_init_queue(request_fn, NULL);
1633         if (!q)
1634                 return NULL;
1635
1636         /*
1637          * this limit is imposed by hardware restrictions
1638          */
1639         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1640                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1641
1642         if (scsi_host_prot_dma(shost)) {
1643                 shost->sg_prot_tablesize =
1644                         min_not_zero(shost->sg_prot_tablesize,
1645                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1646                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1647                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1648         }
1649
1650         blk_queue_max_hw_sectors(q, shost->max_sectors);
1651         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1652         blk_queue_segment_boundary(q, shost->dma_boundary);
1653         dma_set_seg_boundary(dev, shost->dma_boundary);
1654
1655         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1656
1657         if (!shost->use_clustering)
1658                 q->limits.cluster = 0;
1659
1660         /*
1661          * set a reasonable default alignment on word boundaries: the
1662          * host and device may alter it using
1663          * blk_queue_update_dma_alignment() later.
1664          */
1665         blk_queue_dma_alignment(q, 0x03);
1666
1667         return q;
1668 }
1669 EXPORT_SYMBOL(__scsi_alloc_queue);
1670
1671 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1672 {
1673         struct request_queue *q;
1674
1675         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1676         if (!q)
1677                 return NULL;
1678
1679         blk_queue_prep_rq(q, scsi_prep_fn);
1680         blk_queue_unprep_rq(q, scsi_unprep_fn);
1681         blk_queue_softirq_done(q, scsi_softirq_done);
1682         blk_queue_rq_timed_out(q, scsi_times_out);
1683         blk_queue_lld_busy(q, scsi_lld_busy);
1684         return q;
1685 }
1686
1687 /*
1688  * Function:    scsi_block_requests()
1689  *
1690  * Purpose:     Utility function used by low-level drivers to prevent further
1691  *              commands from being queued to the device.
1692  *
1693  * Arguments:   shost       - Host in question
1694  *
1695  * Returns:     Nothing
1696  *
1697  * Lock status: No locks are assumed held.
1698  *
1699  * Notes:       There is no timer nor any other means by which the requests
1700  *              get unblocked other than the low-level driver calling
1701  *              scsi_unblock_requests().
1702  */
1703 void scsi_block_requests(struct Scsi_Host *shost)
1704 {
1705         shost->host_self_blocked = 1;
1706 }
1707 EXPORT_SYMBOL(scsi_block_requests);
1708
1709 /*
1710  * Function:    scsi_unblock_requests()
1711  *
1712  * Purpose:     Utility function used by low-level drivers to allow further
1713  *              commands from being queued to the device.
1714  *
1715  * Arguments:   shost       - Host in question
1716  *
1717  * Returns:     Nothing
1718  *
1719  * Lock status: No locks are assumed held.
1720  *
1721  * Notes:       There is no timer nor any other means by which the requests
1722  *              get unblocked other than the low-level driver calling
1723  *              scsi_unblock_requests().
1724  *
1725  *              This is done as an API function so that changes to the
1726  *              internals of the scsi mid-layer won't require wholesale
1727  *              changes to drivers that use this feature.
1728  */
1729 void scsi_unblock_requests(struct Scsi_Host *shost)
1730 {
1731         shost->host_self_blocked = 0;
1732         scsi_run_host_queues(shost);
1733 }
1734 EXPORT_SYMBOL(scsi_unblock_requests);
1735
1736 int __init scsi_init_queue(void)
1737 {
1738         int i;
1739
1740         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1741                                            sizeof(struct scsi_data_buffer),
1742                                            0, 0, NULL);
1743         if (!scsi_sdb_cache) {
1744                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1745                 return -ENOMEM;
1746         }
1747
1748         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1749                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1750                 int size = sgp->size * sizeof(struct scatterlist);
1751
1752                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1753                                 SLAB_HWCACHE_ALIGN, NULL);
1754                 if (!sgp->slab) {
1755                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1756                                         sgp->name);
1757                         goto cleanup_sdb;
1758                 }
1759
1760                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1761                                                      sgp->slab);
1762                 if (!sgp->pool) {
1763                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1764                                         sgp->name);
1765                         goto cleanup_sdb;
1766                 }
1767         }
1768
1769         return 0;
1770
1771 cleanup_sdb:
1772         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1773                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1774                 if (sgp->pool)
1775                         mempool_destroy(sgp->pool);
1776                 if (sgp->slab)
1777                         kmem_cache_destroy(sgp->slab);
1778         }
1779         kmem_cache_destroy(scsi_sdb_cache);
1780
1781         return -ENOMEM;
1782 }
1783
1784 void scsi_exit_queue(void)
1785 {
1786         int i;
1787
1788         kmem_cache_destroy(scsi_sdb_cache);
1789
1790         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792                 mempool_destroy(sgp->pool);
1793                 kmem_cache_destroy(sgp->slab);
1794         }
1795 }
1796
1797 /**
1798  *      scsi_mode_select - issue a mode select
1799  *      @sdev:  SCSI device to be queried
1800  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1801  *      @sp:    Save page bit (0 == don't save, 1 == save)
1802  *      @modepage: mode page being requested
1803  *      @buffer: request buffer (may not be smaller than eight bytes)
1804  *      @len:   length of request buffer.
1805  *      @timeout: command timeout
1806  *      @retries: number of retries before failing
1807  *      @data: returns a structure abstracting the mode header data
1808  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1809  *              must be SCSI_SENSE_BUFFERSIZE big.
1810  *
1811  *      Returns zero if successful; negative error number or scsi
1812  *      status on error
1813  *
1814  */
1815 int
1816 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1817                  unsigned char *buffer, int len, int timeout, int retries,
1818                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1819 {
1820         unsigned char cmd[10];
1821         unsigned char *real_buffer;
1822         int ret;
1823
1824         memset(cmd, 0, sizeof(cmd));
1825         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1826
1827         if (sdev->use_10_for_ms) {
1828                 if (len > 65535)
1829                         return -EINVAL;
1830                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1831                 if (!real_buffer)
1832                         return -ENOMEM;
1833                 memcpy(real_buffer + 8, buffer, len);
1834                 len += 8;
1835                 real_buffer[0] = 0;
1836                 real_buffer[1] = 0;
1837                 real_buffer[2] = data->medium_type;
1838                 real_buffer[3] = data->device_specific;
1839                 real_buffer[4] = data->longlba ? 0x01 : 0;
1840                 real_buffer[5] = 0;
1841                 real_buffer[6] = data->block_descriptor_length >> 8;
1842                 real_buffer[7] = data->block_descriptor_length;
1843
1844                 cmd[0] = MODE_SELECT_10;
1845                 cmd[7] = len >> 8;
1846                 cmd[8] = len;
1847         } else {
1848                 if (len > 255 || data->block_descriptor_length > 255 ||
1849                     data->longlba)
1850                         return -EINVAL;
1851
1852                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1853                 if (!real_buffer)
1854                         return -ENOMEM;
1855                 memcpy(real_buffer + 4, buffer, len);
1856                 len += 4;
1857                 real_buffer[0] = 0;
1858                 real_buffer[1] = data->medium_type;
1859                 real_buffer[2] = data->device_specific;
1860                 real_buffer[3] = data->block_descriptor_length;
1861                 
1862
1863                 cmd[0] = MODE_SELECT;
1864                 cmd[4] = len;
1865         }
1866
1867         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1868                                sshdr, timeout, retries, NULL);
1869         kfree(real_buffer);
1870         return ret;
1871 }
1872 EXPORT_SYMBOL_GPL(scsi_mode_select);
1873
1874 /**
1875  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1876  *      @sdev:  SCSI device to be queried
1877  *      @dbd:   set if mode sense will allow block descriptors to be returned
1878  *      @modepage: mode page being requested
1879  *      @buffer: request buffer (may not be smaller than eight bytes)
1880  *      @len:   length of request buffer.
1881  *      @timeout: command timeout
1882  *      @retries: number of retries before failing
1883  *      @data: returns a structure abstracting the mode header data
1884  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1885  *              must be SCSI_SENSE_BUFFERSIZE big.
1886  *
1887  *      Returns zero if unsuccessful, or the header offset (either 4
1888  *      or 8 depending on whether a six or ten byte command was
1889  *      issued) if successful.
1890  */
1891 int
1892 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1893                   unsigned char *buffer, int len, int timeout, int retries,
1894                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1895 {
1896         unsigned char cmd[12];
1897         int use_10_for_ms;
1898         int header_length;
1899         int result;
1900         struct scsi_sense_hdr my_sshdr;
1901
1902         memset(data, 0, sizeof(*data));
1903         memset(&cmd[0], 0, 12);
1904         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1905         cmd[2] = modepage;
1906
1907         /* caller might not be interested in sense, but we need it */
1908         if (!sshdr)
1909                 sshdr = &my_sshdr;
1910
1911  retry:
1912         use_10_for_ms = sdev->use_10_for_ms;
1913
1914         if (use_10_for_ms) {
1915                 if (len < 8)
1916                         len = 8;
1917
1918                 cmd[0] = MODE_SENSE_10;
1919                 cmd[8] = len;
1920                 header_length = 8;
1921         } else {
1922                 if (len < 4)
1923                         len = 4;
1924
1925                 cmd[0] = MODE_SENSE;
1926                 cmd[4] = len;
1927                 header_length = 4;
1928         }
1929
1930         memset(buffer, 0, len);
1931
1932         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1933                                   sshdr, timeout, retries, NULL);
1934
1935         /* This code looks awful: what it's doing is making sure an
1936          * ILLEGAL REQUEST sense return identifies the actual command
1937          * byte as the problem.  MODE_SENSE commands can return
1938          * ILLEGAL REQUEST if the code page isn't supported */
1939
1940         if (use_10_for_ms && !scsi_status_is_good(result) &&
1941             (driver_byte(result) & DRIVER_SENSE)) {
1942                 if (scsi_sense_valid(sshdr)) {
1943                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1944                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1945                                 /* 
1946                                  * Invalid command operation code
1947                                  */
1948                                 sdev->use_10_for_ms = 0;
1949                                 goto retry;
1950                         }
1951                 }
1952         }
1953
1954         if(scsi_status_is_good(result)) {
1955                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1956                              (modepage == 6 || modepage == 8))) {
1957                         /* Initio breakage? */
1958                         header_length = 0;
1959                         data->length = 13;
1960                         data->medium_type = 0;
1961                         data->device_specific = 0;
1962                         data->longlba = 0;
1963                         data->block_descriptor_length = 0;
1964                 } else if(use_10_for_ms) {
1965                         data->length = buffer[0]*256 + buffer[1] + 2;
1966                         data->medium_type = buffer[2];
1967                         data->device_specific = buffer[3];
1968                         data->longlba = buffer[4] & 0x01;
1969                         data->block_descriptor_length = buffer[6]*256
1970                                 + buffer[7];
1971                 } else {
1972                         data->length = buffer[0] + 1;
1973                         data->medium_type = buffer[1];
1974                         data->device_specific = buffer[2];
1975                         data->block_descriptor_length = buffer[3];
1976                 }
1977                 data->header_length = header_length;
1978         }
1979
1980         return result;
1981 }
1982 EXPORT_SYMBOL(scsi_mode_sense);
1983
1984 /**
1985  *      scsi_test_unit_ready - test if unit is ready
1986  *      @sdev:  scsi device to change the state of.
1987  *      @timeout: command timeout
1988  *      @retries: number of retries before failing
1989  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1990  *              returning sense. Make sure that this is cleared before passing
1991  *              in.
1992  *
1993  *      Returns zero if unsuccessful or an error if TUR failed.  For
1994  *      removable media, UNIT_ATTENTION sets ->changed flag.
1995  **/
1996 int
1997 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1998                      struct scsi_sense_hdr *sshdr_external)
1999 {
2000         char cmd[] = {
2001                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2002         };
2003         struct scsi_sense_hdr *sshdr;
2004         int result;
2005
2006         if (!sshdr_external)
2007                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2008         else
2009                 sshdr = sshdr_external;
2010
2011         /* try to eat the UNIT_ATTENTION if there are enough retries */
2012         do {
2013                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2014                                           timeout, retries, NULL);
2015                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2016                     sshdr->sense_key == UNIT_ATTENTION)
2017                         sdev->changed = 1;
2018         } while (scsi_sense_valid(sshdr) &&
2019                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2020
2021         if (!sshdr_external)
2022                 kfree(sshdr);
2023         return result;
2024 }
2025 EXPORT_SYMBOL(scsi_test_unit_ready);
2026
2027 /**
2028  *      scsi_device_set_state - Take the given device through the device state model.
2029  *      @sdev:  scsi device to change the state of.
2030  *      @state: state to change to.
2031  *
2032  *      Returns zero if unsuccessful or an error if the requested 
2033  *      transition is illegal.
2034  */
2035 int
2036 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2037 {
2038         enum scsi_device_state oldstate = sdev->sdev_state;
2039
2040         if (state == oldstate)
2041                 return 0;
2042
2043         switch (state) {
2044         case SDEV_CREATED:
2045                 switch (oldstate) {
2046                 case SDEV_CREATED_BLOCK:
2047                         break;
2048                 default:
2049                         goto illegal;
2050                 }
2051                 break;
2052                         
2053         case SDEV_RUNNING:
2054                 switch (oldstate) {
2055                 case SDEV_CREATED:
2056                 case SDEV_OFFLINE:
2057                 case SDEV_TRANSPORT_OFFLINE:
2058                 case SDEV_QUIESCE:
2059                 case SDEV_BLOCK:
2060                         break;
2061                 default:
2062                         goto illegal;
2063                 }
2064                 break;
2065
2066         case SDEV_QUIESCE:
2067                 switch (oldstate) {
2068                 case SDEV_RUNNING:
2069                 case SDEV_OFFLINE:
2070                 case SDEV_TRANSPORT_OFFLINE:
2071                         break;
2072                 default:
2073                         goto illegal;
2074                 }
2075                 break;
2076
2077         case SDEV_OFFLINE:
2078         case SDEV_TRANSPORT_OFFLINE:
2079                 switch (oldstate) {
2080                 case SDEV_CREATED:
2081                 case SDEV_RUNNING:
2082                 case SDEV_QUIESCE:
2083                 case SDEV_BLOCK:
2084                         break;
2085                 default:
2086                         goto illegal;
2087                 }
2088                 break;
2089
2090         case SDEV_BLOCK:
2091                 switch (oldstate) {
2092                 case SDEV_RUNNING:
2093                 case SDEV_CREATED_BLOCK:
2094                         break;
2095                 default:
2096                         goto illegal;
2097                 }
2098                 break;
2099
2100         case SDEV_CREATED_BLOCK:
2101                 switch (oldstate) {
2102                 case SDEV_CREATED:
2103                         break;
2104                 default:
2105                         goto illegal;
2106                 }
2107                 break;
2108
2109         case SDEV_CANCEL:
2110                 switch (oldstate) {
2111                 case SDEV_CREATED:
2112                 case SDEV_RUNNING:
2113                 case SDEV_QUIESCE:
2114                 case SDEV_OFFLINE:
2115                 case SDEV_TRANSPORT_OFFLINE:
2116                 case SDEV_BLOCK:
2117                         break;
2118                 default:
2119                         goto illegal;
2120                 }
2121                 break;
2122
2123         case SDEV_DEL:
2124                 switch (oldstate) {
2125                 case SDEV_CREATED:
2126                 case SDEV_RUNNING:
2127                 case SDEV_OFFLINE:
2128                 case SDEV_TRANSPORT_OFFLINE:
2129                 case SDEV_CANCEL:
2130                 case SDEV_CREATED_BLOCK:
2131                         break;
2132                 default:
2133                         goto illegal;
2134                 }
2135                 break;
2136
2137         }
2138         sdev->sdev_state = state;
2139         return 0;
2140
2141  illegal:
2142         SCSI_LOG_ERROR_RECOVERY(1, 
2143                                 sdev_printk(KERN_ERR, sdev,
2144                                             "Illegal state transition %s->%s\n",
2145                                             scsi_device_state_name(oldstate),
2146                                             scsi_device_state_name(state))
2147                                 );
2148         return -EINVAL;
2149 }
2150 EXPORT_SYMBOL(scsi_device_set_state);
2151
2152 /**
2153  *      sdev_evt_emit - emit a single SCSI device uevent
2154  *      @sdev: associated SCSI device
2155  *      @evt: event to emit
2156  *
2157  *      Send a single uevent (scsi_event) to the associated scsi_device.
2158  */
2159 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2160 {
2161         int idx = 0;
2162         char *envp[3];
2163
2164         switch (evt->evt_type) {
2165         case SDEV_EVT_MEDIA_CHANGE:
2166                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2167                 break;
2168         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2169                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2170                 break;
2171         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2172                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2173                 break;
2174         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2175                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2176                 break;
2177         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2178                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2179                 break;
2180         case SDEV_EVT_LUN_CHANGE_REPORTED:
2181                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2182                 break;
2183         default:
2184                 /* do nothing */
2185                 break;
2186         }
2187
2188         envp[idx++] = NULL;
2189
2190         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2191 }
2192
2193 /**
2194  *      sdev_evt_thread - send a uevent for each scsi event
2195  *      @work: work struct for scsi_device
2196  *
2197  *      Dispatch queued events to their associated scsi_device kobjects
2198  *      as uevents.
2199  */
2200 void scsi_evt_thread(struct work_struct *work)
2201 {
2202         struct scsi_device *sdev;
2203         enum scsi_device_event evt_type;
2204         LIST_HEAD(event_list);
2205
2206         sdev = container_of(work, struct scsi_device, event_work);
2207
2208         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2209                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2210                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2211
2212         while (1) {
2213                 struct scsi_event *evt;
2214                 struct list_head *this, *tmp;
2215                 unsigned long flags;
2216
2217                 spin_lock_irqsave(&sdev->list_lock, flags);
2218                 list_splice_init(&sdev->event_list, &event_list);
2219                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2220
2221                 if (list_empty(&event_list))
2222                         break;
2223
2224                 list_for_each_safe(this, tmp, &event_list) {
2225                         evt = list_entry(this, struct scsi_event, node);
2226                         list_del(&evt->node);
2227                         scsi_evt_emit(sdev, evt);
2228                         kfree(evt);
2229                 }
2230         }
2231 }
2232
2233 /**
2234  *      sdev_evt_send - send asserted event to uevent thread
2235  *      @sdev: scsi_device event occurred on
2236  *      @evt: event to send
2237  *
2238  *      Assert scsi device event asynchronously.
2239  */
2240 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2241 {
2242         unsigned long flags;
2243
2244 #if 0
2245         /* FIXME: currently this check eliminates all media change events
2246          * for polled devices.  Need to update to discriminate between AN
2247          * and polled events */
2248         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2249                 kfree(evt);
2250                 return;
2251         }
2252 #endif
2253
2254         spin_lock_irqsave(&sdev->list_lock, flags);
2255         list_add_tail(&evt->node, &sdev->event_list);
2256         schedule_work(&sdev->event_work);
2257         spin_unlock_irqrestore(&sdev->list_lock, flags);
2258 }
2259 EXPORT_SYMBOL_GPL(sdev_evt_send);
2260
2261 /**
2262  *      sdev_evt_alloc - allocate a new scsi event
2263  *      @evt_type: type of event to allocate
2264  *      @gfpflags: GFP flags for allocation
2265  *
2266  *      Allocates and returns a new scsi_event.
2267  */
2268 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2269                                   gfp_t gfpflags)
2270 {
2271         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2272         if (!evt)
2273                 return NULL;
2274
2275         evt->evt_type = evt_type;
2276         INIT_LIST_HEAD(&evt->node);
2277
2278         /* evt_type-specific initialization, if any */
2279         switch (evt_type) {
2280         case SDEV_EVT_MEDIA_CHANGE:
2281         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2282         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2283         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2284         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2285         case SDEV_EVT_LUN_CHANGE_REPORTED:
2286         default:
2287                 /* do nothing */
2288                 break;
2289         }
2290
2291         return evt;
2292 }
2293 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2294
2295 /**
2296  *      sdev_evt_send_simple - send asserted event to uevent thread
2297  *      @sdev: scsi_device event occurred on
2298  *      @evt_type: type of event to send
2299  *      @gfpflags: GFP flags for allocation
2300  *
2301  *      Assert scsi device event asynchronously, given an event type.
2302  */
2303 void sdev_evt_send_simple(struct scsi_device *sdev,
2304                           enum scsi_device_event evt_type, gfp_t gfpflags)
2305 {
2306         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2307         if (!evt) {
2308                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2309                             evt_type);
2310                 return;
2311         }
2312
2313         sdev_evt_send(sdev, evt);
2314 }
2315 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2316
2317 /**
2318  *      scsi_device_quiesce - Block user issued commands.
2319  *      @sdev:  scsi device to quiesce.
2320  *
2321  *      This works by trying to transition to the SDEV_QUIESCE state
2322  *      (which must be a legal transition).  When the device is in this
2323  *      state, only special requests will be accepted, all others will
2324  *      be deferred.  Since special requests may also be requeued requests,
2325  *      a successful return doesn't guarantee the device will be 
2326  *      totally quiescent.
2327  *
2328  *      Must be called with user context, may sleep.
2329  *
2330  *      Returns zero if unsuccessful or an error if not.
2331  */
2332 int
2333 scsi_device_quiesce(struct scsi_device *sdev)
2334 {
2335         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2336         if (err)
2337                 return err;
2338
2339         scsi_run_queue(sdev->request_queue);
2340         while (sdev->device_busy) {
2341                 msleep_interruptible(200);
2342                 scsi_run_queue(sdev->request_queue);
2343         }
2344         return 0;
2345 }
2346 EXPORT_SYMBOL(scsi_device_quiesce);
2347
2348 /**
2349  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2350  *      @sdev:  scsi device to resume.
2351  *
2352  *      Moves the device from quiesced back to running and restarts the
2353  *      queues.
2354  *
2355  *      Must be called with user context, may sleep.
2356  */
2357 void scsi_device_resume(struct scsi_device *sdev)
2358 {
2359         /* check if the device state was mutated prior to resume, and if
2360          * so assume the state is being managed elsewhere (for example
2361          * device deleted during suspend)
2362          */
2363         if (sdev->sdev_state != SDEV_QUIESCE ||
2364             scsi_device_set_state(sdev, SDEV_RUNNING))
2365                 return;
2366         scsi_run_queue(sdev->request_queue);
2367 }
2368 EXPORT_SYMBOL(scsi_device_resume);
2369
2370 static void
2371 device_quiesce_fn(struct scsi_device *sdev, void *data)
2372 {
2373         scsi_device_quiesce(sdev);
2374 }
2375
2376 void
2377 scsi_target_quiesce(struct scsi_target *starget)
2378 {
2379         starget_for_each_device(starget, NULL, device_quiesce_fn);
2380 }
2381 EXPORT_SYMBOL(scsi_target_quiesce);
2382
2383 static void
2384 device_resume_fn(struct scsi_device *sdev, void *data)
2385 {
2386         scsi_device_resume(sdev);
2387 }
2388
2389 void
2390 scsi_target_resume(struct scsi_target *starget)
2391 {
2392         starget_for_each_device(starget, NULL, device_resume_fn);
2393 }
2394 EXPORT_SYMBOL(scsi_target_resume);
2395
2396 /**
2397  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2398  * @sdev:       device to block
2399  *
2400  * Block request made by scsi lld's to temporarily stop all
2401  * scsi commands on the specified device.  Called from interrupt
2402  * or normal process context.
2403  *
2404  * Returns zero if successful or error if not
2405  *
2406  * Notes:       
2407  *      This routine transitions the device to the SDEV_BLOCK state
2408  *      (which must be a legal transition).  When the device is in this
2409  *      state, all commands are deferred until the scsi lld reenables
2410  *      the device with scsi_device_unblock or device_block_tmo fires.
2411  */
2412 int
2413 scsi_internal_device_block(struct scsi_device *sdev)
2414 {
2415         struct request_queue *q = sdev->request_queue;
2416         unsigned long flags;
2417         int err = 0;
2418
2419         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2420         if (err) {
2421                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2422
2423                 if (err)
2424                         return err;
2425         }
2426
2427         /* 
2428          * The device has transitioned to SDEV_BLOCK.  Stop the
2429          * block layer from calling the midlayer with this device's
2430          * request queue. 
2431          */
2432         spin_lock_irqsave(q->queue_lock, flags);
2433         blk_stop_queue(q);
2434         spin_unlock_irqrestore(q->queue_lock, flags);
2435
2436         return 0;
2437 }
2438 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2439  
2440 /**
2441  * scsi_internal_device_unblock - resume a device after a block request
2442  * @sdev:       device to resume
2443  * @new_state:  state to set devices to after unblocking
2444  *
2445  * Called by scsi lld's or the midlayer to restart the device queue
2446  * for the previously suspended scsi device.  Called from interrupt or
2447  * normal process context.
2448  *
2449  * Returns zero if successful or error if not.
2450  *
2451  * Notes:       
2452  *      This routine transitions the device to the SDEV_RUNNING state
2453  *      or to one of the offline states (which must be a legal transition)
2454  *      allowing the midlayer to goose the queue for this device.
2455  */
2456 int
2457 scsi_internal_device_unblock(struct scsi_device *sdev,
2458                              enum scsi_device_state new_state)
2459 {
2460         struct request_queue *q = sdev->request_queue; 
2461         unsigned long flags;
2462
2463         /*
2464          * Try to transition the scsi device to SDEV_RUNNING or one of the
2465          * offlined states and goose the device queue if successful.
2466          */
2467         if ((sdev->sdev_state == SDEV_BLOCK) ||
2468             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2469                 sdev->sdev_state = new_state;
2470         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2471                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2472                     new_state == SDEV_OFFLINE)
2473                         sdev->sdev_state = new_state;
2474                 else
2475                         sdev->sdev_state = SDEV_CREATED;
2476         } else if (sdev->sdev_state != SDEV_CANCEL &&
2477                  sdev->sdev_state != SDEV_OFFLINE)
2478                 return -EINVAL;
2479
2480         spin_lock_irqsave(q->queue_lock, flags);
2481         blk_start_queue(q);
2482         spin_unlock_irqrestore(q->queue_lock, flags);
2483
2484         return 0;
2485 }
2486 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2487
2488 static void
2489 device_block(struct scsi_device *sdev, void *data)
2490 {
2491         scsi_internal_device_block(sdev);
2492 }
2493
2494 static int
2495 target_block(struct device *dev, void *data)
2496 {
2497         if (scsi_is_target_device(dev))
2498                 starget_for_each_device(to_scsi_target(dev), NULL,
2499                                         device_block);
2500         return 0;
2501 }
2502
2503 void
2504 scsi_target_block(struct device *dev)
2505 {
2506         if (scsi_is_target_device(dev))
2507                 starget_for_each_device(to_scsi_target(dev), NULL,
2508                                         device_block);
2509         else
2510                 device_for_each_child(dev, NULL, target_block);
2511 }
2512 EXPORT_SYMBOL_GPL(scsi_target_block);
2513
2514 static void
2515 device_unblock(struct scsi_device *sdev, void *data)
2516 {
2517         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2518 }
2519
2520 static int
2521 target_unblock(struct device *dev, void *data)
2522 {
2523         if (scsi_is_target_device(dev))
2524                 starget_for_each_device(to_scsi_target(dev), data,
2525                                         device_unblock);
2526         return 0;
2527 }
2528
2529 void
2530 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2531 {
2532         if (scsi_is_target_device(dev))
2533                 starget_for_each_device(to_scsi_target(dev), &new_state,
2534                                         device_unblock);
2535         else
2536                 device_for_each_child(dev, &new_state, target_unblock);
2537 }
2538 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2539
2540 /**
2541  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2542  * @sgl:        scatter-gather list
2543  * @sg_count:   number of segments in sg
2544  * @offset:     offset in bytes into sg, on return offset into the mapped area
2545  * @len:        bytes to map, on return number of bytes mapped
2546  *
2547  * Returns virtual address of the start of the mapped page
2548  */
2549 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2550                           size_t *offset, size_t *len)
2551 {
2552         int i;
2553         size_t sg_len = 0, len_complete = 0;
2554         struct scatterlist *sg;
2555         struct page *page;
2556
2557         WARN_ON(!irqs_disabled());
2558
2559         for_each_sg(sgl, sg, sg_count, i) {
2560                 len_complete = sg_len; /* Complete sg-entries */
2561                 sg_len += sg->length;
2562                 if (sg_len > *offset)
2563                         break;
2564         }
2565
2566         if (unlikely(i == sg_count)) {
2567                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2568                         "elements %d\n",
2569                        __func__, sg_len, *offset, sg_count);
2570                 WARN_ON(1);
2571                 return NULL;
2572         }
2573
2574         /* Offset starting from the beginning of first page in this sg-entry */
2575         *offset = *offset - len_complete + sg->offset;
2576
2577         /* Assumption: contiguous pages can be accessed as "page + i" */
2578         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2579         *offset &= ~PAGE_MASK;
2580
2581         /* Bytes in this sg-entry from *offset to the end of the page */
2582         sg_len = PAGE_SIZE - *offset;
2583         if (*len > sg_len)
2584                 *len = sg_len;
2585
2586         return kmap_atomic(page);
2587 }
2588 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2589
2590 /**
2591  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2592  * @virt:       virtual address to be unmapped
2593  */
2594 void scsi_kunmap_atomic_sg(void *virt)
2595 {
2596         kunmap_atomic(virt);
2597 }
2598 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2599
2600 void sdev_disable_disk_events(struct scsi_device *sdev)
2601 {
2602         atomic_inc(&sdev->disk_events_disable_depth);
2603 }
2604 EXPORT_SYMBOL(sdev_disable_disk_events);
2605
2606 void sdev_enable_disk_events(struct scsi_device *sdev)
2607 {
2608         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2609                 return;
2610         atomic_dec(&sdev->disk_events_disable_depth);
2611 }
2612 EXPORT_SYMBOL(sdev_enable_disk_events);