Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~danvet/drm-intel
[pandora-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
75 {
76         bus->bus = &scsi_bus_type;
77         return register_acpi_bus_type(bus);
78 }
79 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
80
81 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
82 {
83         unregister_acpi_bus_type(bus);
84 }
85 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
86 #endif
87
88 /*
89  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
90  * not change behaviour from the previous unplug mechanism, experimentation
91  * may prove this needs changing.
92  */
93 #define SCSI_QUEUE_DELAY        3
94
95 /*
96  * Function:    scsi_unprep_request()
97  *
98  * Purpose:     Remove all preparation done for a request, including its
99  *              associated scsi_cmnd, so that it can be requeued.
100  *
101  * Arguments:   req     - request to unprepare
102  *
103  * Lock status: Assumed that no locks are held upon entry.
104  *
105  * Returns:     Nothing.
106  */
107 static void scsi_unprep_request(struct request *req)
108 {
109         struct scsi_cmnd *cmd = req->special;
110
111         blk_unprep_request(req);
112         req->special = NULL;
113
114         scsi_put_command(cmd);
115 }
116
117 /**
118  * __scsi_queue_insert - private queue insertion
119  * @cmd: The SCSI command being requeued
120  * @reason:  The reason for the requeue
121  * @unbusy: Whether the queue should be unbusied
122  *
123  * This is a private queue insertion.  The public interface
124  * scsi_queue_insert() always assumes the queue should be unbusied
125  * because it's always called before the completion.  This function is
126  * for a requeue after completion, which should only occur in this
127  * file.
128  */
129 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
130 {
131         struct Scsi_Host *host = cmd->device->host;
132         struct scsi_device *device = cmd->device;
133         struct scsi_target *starget = scsi_target(device);
134         struct request_queue *q = device->request_queue;
135         unsigned long flags;
136
137         SCSI_LOG_MLQUEUE(1,
138                  printk("Inserting command %p into mlqueue\n", cmd));
139
140         /*
141          * Set the appropriate busy bit for the device/host.
142          *
143          * If the host/device isn't busy, assume that something actually
144          * completed, and that we should be able to queue a command now.
145          *
146          * Note that the prior mid-layer assumption that any host could
147          * always queue at least one command is now broken.  The mid-layer
148          * will implement a user specifiable stall (see
149          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
150          * if a command is requeued with no other commands outstanding
151          * either for the device or for the host.
152          */
153         switch (reason) {
154         case SCSI_MLQUEUE_HOST_BUSY:
155                 host->host_blocked = host->max_host_blocked;
156                 break;
157         case SCSI_MLQUEUE_DEVICE_BUSY:
158         case SCSI_MLQUEUE_EH_RETRY:
159                 device->device_blocked = device->max_device_blocked;
160                 break;
161         case SCSI_MLQUEUE_TARGET_BUSY:
162                 starget->target_blocked = starget->max_target_blocked;
163                 break;
164         }
165
166         /*
167          * Decrement the counters, since these commands are no longer
168          * active on the host/device.
169          */
170         if (unbusy)
171                 scsi_device_unbusy(device);
172
173         /*
174          * Requeue this command.  It will go before all other commands
175          * that are already in the queue. Schedule requeue work under
176          * lock such that the kblockd_schedule_work() call happens
177          * before blk_cleanup_queue() finishes.
178          */
179         spin_lock_irqsave(q->queue_lock, flags);
180         blk_requeue_request(q, cmd->request);
181         kblockd_schedule_work(q, &device->requeue_work);
182         spin_unlock_irqrestore(q->queue_lock, flags);
183 }
184
185 /*
186  * Function:    scsi_queue_insert()
187  *
188  * Purpose:     Insert a command in the midlevel queue.
189  *
190  * Arguments:   cmd    - command that we are adding to queue.
191  *              reason - why we are inserting command to queue.
192  *
193  * Lock status: Assumed that lock is not held upon entry.
194  *
195  * Returns:     Nothing.
196  *
197  * Notes:       We do this for one of two cases.  Either the host is busy
198  *              and it cannot accept any more commands for the time being,
199  *              or the device returned QUEUE_FULL and can accept no more
200  *              commands.
201  * Notes:       This could be called either from an interrupt context or a
202  *              normal process context.
203  */
204 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
205 {
206         __scsi_queue_insert(cmd, reason, 1);
207 }
208 /**
209  * scsi_execute - insert request and wait for the result
210  * @sdev:       scsi device
211  * @cmd:        scsi command
212  * @data_direction: data direction
213  * @buffer:     data buffer
214  * @bufflen:    len of buffer
215  * @sense:      optional sense buffer
216  * @timeout:    request timeout in seconds
217  * @retries:    number of times to retry request
218  * @flags:      or into request flags;
219  * @resid:      optional residual length
220  *
221  * returns the req->errors value which is the scsi_cmnd result
222  * field.
223  */
224 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
225                  int data_direction, void *buffer, unsigned bufflen,
226                  unsigned char *sense, int timeout, int retries, int flags,
227                  int *resid)
228 {
229         struct request *req;
230         int write = (data_direction == DMA_TO_DEVICE);
231         int ret = DRIVER_ERROR << 24;
232
233         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
234         if (!req)
235                 return ret;
236
237         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
238                                         buffer, bufflen, __GFP_WAIT))
239                 goto out;
240
241         req->cmd_len = COMMAND_SIZE(cmd[0]);
242         memcpy(req->cmd, cmd, req->cmd_len);
243         req->sense = sense;
244         req->sense_len = 0;
245         req->retries = retries;
246         req->timeout = timeout;
247         req->cmd_type = REQ_TYPE_BLOCK_PC;
248         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
249
250         /*
251          * head injection *required* here otherwise quiesce won't work
252          */
253         blk_execute_rq(req->q, NULL, req, 1);
254
255         /*
256          * Some devices (USB mass-storage in particular) may transfer
257          * garbage data together with a residue indicating that the data
258          * is invalid.  Prevent the garbage from being misinterpreted
259          * and prevent security leaks by zeroing out the excess data.
260          */
261         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
262                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
263
264         if (resid)
265                 *resid = req->resid_len;
266         ret = req->errors;
267  out:
268         blk_put_request(req);
269
270         return ret;
271 }
272 EXPORT_SYMBOL(scsi_execute);
273
274
275 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
276                      int data_direction, void *buffer, unsigned bufflen,
277                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
278                      int *resid)
279 {
280         char *sense = NULL;
281         int result;
282         
283         if (sshdr) {
284                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
285                 if (!sense)
286                         return DRIVER_ERROR << 24;
287         }
288         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
289                               sense, timeout, retries, 0, resid);
290         if (sshdr)
291                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
292
293         kfree(sense);
294         return result;
295 }
296 EXPORT_SYMBOL(scsi_execute_req);
297
298 /*
299  * Function:    scsi_init_cmd_errh()
300  *
301  * Purpose:     Initialize cmd fields related to error handling.
302  *
303  * Arguments:   cmd     - command that is ready to be queued.
304  *
305  * Notes:       This function has the job of initializing a number of
306  *              fields related to error handling.   Typically this will
307  *              be called once for each command, as required.
308  */
309 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
310 {
311         cmd->serial_number = 0;
312         scsi_set_resid(cmd, 0);
313         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
314         if (cmd->cmd_len == 0)
315                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
316 }
317
318 void scsi_device_unbusy(struct scsi_device *sdev)
319 {
320         struct Scsi_Host *shost = sdev->host;
321         struct scsi_target *starget = scsi_target(sdev);
322         unsigned long flags;
323
324         spin_lock_irqsave(shost->host_lock, flags);
325         shost->host_busy--;
326         starget->target_busy--;
327         if (unlikely(scsi_host_in_recovery(shost) &&
328                      (shost->host_failed || shost->host_eh_scheduled)))
329                 scsi_eh_wakeup(shost);
330         spin_unlock(shost->host_lock);
331         spin_lock(sdev->request_queue->queue_lock);
332         sdev->device_busy--;
333         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
334 }
335
336 /*
337  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338  * and call blk_run_queue for all the scsi_devices on the target -
339  * including current_sdev first.
340  *
341  * Called with *no* scsi locks held.
342  */
343 static void scsi_single_lun_run(struct scsi_device *current_sdev)
344 {
345         struct Scsi_Host *shost = current_sdev->host;
346         struct scsi_device *sdev, *tmp;
347         struct scsi_target *starget = scsi_target(current_sdev);
348         unsigned long flags;
349
350         spin_lock_irqsave(shost->host_lock, flags);
351         starget->starget_sdev_user = NULL;
352         spin_unlock_irqrestore(shost->host_lock, flags);
353
354         /*
355          * Call blk_run_queue for all LUNs on the target, starting with
356          * current_sdev. We race with others (to set starget_sdev_user),
357          * but in most cases, we will be first. Ideally, each LU on the
358          * target would get some limited time or requests on the target.
359          */
360         blk_run_queue(current_sdev->request_queue);
361
362         spin_lock_irqsave(shost->host_lock, flags);
363         if (starget->starget_sdev_user)
364                 goto out;
365         list_for_each_entry_safe(sdev, tmp, &starget->devices,
366                         same_target_siblings) {
367                 if (sdev == current_sdev)
368                         continue;
369                 if (scsi_device_get(sdev))
370                         continue;
371
372                 spin_unlock_irqrestore(shost->host_lock, flags);
373                 blk_run_queue(sdev->request_queue);
374                 spin_lock_irqsave(shost->host_lock, flags);
375         
376                 scsi_device_put(sdev);
377         }
378  out:
379         spin_unlock_irqrestore(shost->host_lock, flags);
380 }
381
382 static inline int scsi_device_is_busy(struct scsi_device *sdev)
383 {
384         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
385                 return 1;
386
387         return 0;
388 }
389
390 static inline int scsi_target_is_busy(struct scsi_target *starget)
391 {
392         return ((starget->can_queue > 0 &&
393                  starget->target_busy >= starget->can_queue) ||
394                  starget->target_blocked);
395 }
396
397 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
398 {
399         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
400             shost->host_blocked || shost->host_self_blocked)
401                 return 1;
402
403         return 0;
404 }
405
406 /*
407  * Function:    scsi_run_queue()
408  *
409  * Purpose:     Select a proper request queue to serve next
410  *
411  * Arguments:   q       - last request's queue
412  *
413  * Returns:     Nothing
414  *
415  * Notes:       The previous command was completely finished, start
416  *              a new one if possible.
417  */
418 static void scsi_run_queue(struct request_queue *q)
419 {
420         struct scsi_device *sdev = q->queuedata;
421         struct Scsi_Host *shost;
422         LIST_HEAD(starved_list);
423         unsigned long flags;
424
425         shost = sdev->host;
426         if (scsi_target(sdev)->single_lun)
427                 scsi_single_lun_run(sdev);
428
429         spin_lock_irqsave(shost->host_lock, flags);
430         list_splice_init(&shost->starved_list, &starved_list);
431
432         while (!list_empty(&starved_list)) {
433                 /*
434                  * As long as shost is accepting commands and we have
435                  * starved queues, call blk_run_queue. scsi_request_fn
436                  * drops the queue_lock and can add us back to the
437                  * starved_list.
438                  *
439                  * host_lock protects the starved_list and starved_entry.
440                  * scsi_request_fn must get the host_lock before checking
441                  * or modifying starved_list or starved_entry.
442                  */
443                 if (scsi_host_is_busy(shost))
444                         break;
445
446                 sdev = list_entry(starved_list.next,
447                                   struct scsi_device, starved_entry);
448                 list_del_init(&sdev->starved_entry);
449                 if (scsi_target_is_busy(scsi_target(sdev))) {
450                         list_move_tail(&sdev->starved_entry,
451                                        &shost->starved_list);
452                         continue;
453                 }
454
455                 spin_unlock(shost->host_lock);
456                 spin_lock(sdev->request_queue->queue_lock);
457                 __blk_run_queue(sdev->request_queue);
458                 spin_unlock(sdev->request_queue->queue_lock);
459                 spin_lock(shost->host_lock);
460         }
461         /* put any unprocessed entries back */
462         list_splice(&starved_list, &shost->starved_list);
463         spin_unlock_irqrestore(shost->host_lock, flags);
464
465         blk_run_queue(q);
466 }
467
468 void scsi_requeue_run_queue(struct work_struct *work)
469 {
470         struct scsi_device *sdev;
471         struct request_queue *q;
472
473         sdev = container_of(work, struct scsi_device, requeue_work);
474         q = sdev->request_queue;
475         scsi_run_queue(q);
476 }
477
478 /*
479  * Function:    scsi_requeue_command()
480  *
481  * Purpose:     Handle post-processing of completed commands.
482  *
483  * Arguments:   q       - queue to operate on
484  *              cmd     - command that may need to be requeued.
485  *
486  * Returns:     Nothing
487  *
488  * Notes:       After command completion, there may be blocks left
489  *              over which weren't finished by the previous command
490  *              this can be for a number of reasons - the main one is
491  *              I/O errors in the middle of the request, in which case
492  *              we need to request the blocks that come after the bad
493  *              sector.
494  * Notes:       Upon return, cmd is a stale pointer.
495  */
496 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
497 {
498         struct scsi_device *sdev = cmd->device;
499         struct request *req = cmd->request;
500         unsigned long flags;
501
502         /*
503          * We need to hold a reference on the device to avoid the queue being
504          * killed after the unlock and before scsi_run_queue is invoked which
505          * may happen because scsi_unprep_request() puts the command which
506          * releases its reference on the device.
507          */
508         get_device(&sdev->sdev_gendev);
509
510         spin_lock_irqsave(q->queue_lock, flags);
511         scsi_unprep_request(req);
512         blk_requeue_request(q, req);
513         spin_unlock_irqrestore(q->queue_lock, flags);
514
515         scsi_run_queue(q);
516
517         put_device(&sdev->sdev_gendev);
518 }
519
520 void scsi_next_command(struct scsi_cmnd *cmd)
521 {
522         struct scsi_device *sdev = cmd->device;
523         struct request_queue *q = sdev->request_queue;
524
525         /* need to hold a reference on the device before we let go of the cmd */
526         get_device(&sdev->sdev_gendev);
527
528         scsi_put_command(cmd);
529         scsi_run_queue(q);
530
531         /* ok to remove device now */
532         put_device(&sdev->sdev_gendev);
533 }
534
535 void scsi_run_host_queues(struct Scsi_Host *shost)
536 {
537         struct scsi_device *sdev;
538
539         shost_for_each_device(sdev, shost)
540                 scsi_run_queue(sdev->request_queue);
541 }
542
543 static void __scsi_release_buffers(struct scsi_cmnd *, int);
544
545 /*
546  * Function:    scsi_end_request()
547  *
548  * Purpose:     Post-processing of completed commands (usually invoked at end
549  *              of upper level post-processing and scsi_io_completion).
550  *
551  * Arguments:   cmd      - command that is complete.
552  *              error    - 0 if I/O indicates success, < 0 for I/O error.
553  *              bytes    - number of bytes of completed I/O
554  *              requeue  - indicates whether we should requeue leftovers.
555  *
556  * Lock status: Assumed that lock is not held upon entry.
557  *
558  * Returns:     cmd if requeue required, NULL otherwise.
559  *
560  * Notes:       This is called for block device requests in order to
561  *              mark some number of sectors as complete.
562  * 
563  *              We are guaranteeing that the request queue will be goosed
564  *              at some point during this call.
565  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
566  */
567 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
568                                           int bytes, int requeue)
569 {
570         struct request_queue *q = cmd->device->request_queue;
571         struct request *req = cmd->request;
572
573         /*
574          * If there are blocks left over at the end, set up the command
575          * to queue the remainder of them.
576          */
577         if (blk_end_request(req, error, bytes)) {
578                 /* kill remainder if no retrys */
579                 if (error && scsi_noretry_cmd(cmd))
580                         blk_end_request_all(req, error);
581                 else {
582                         if (requeue) {
583                                 /*
584                                  * Bleah.  Leftovers again.  Stick the
585                                  * leftovers in the front of the
586                                  * queue, and goose the queue again.
587                                  */
588                                 scsi_release_buffers(cmd);
589                                 scsi_requeue_command(q, cmd);
590                                 cmd = NULL;
591                         }
592                         return cmd;
593                 }
594         }
595
596         /*
597          * This will goose the queue request function at the end, so we don't
598          * need to worry about launching another command.
599          */
600         __scsi_release_buffers(cmd, 0);
601         scsi_next_command(cmd);
602         return NULL;
603 }
604
605 static inline unsigned int scsi_sgtable_index(unsigned short nents)
606 {
607         unsigned int index;
608
609         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
610
611         if (nents <= 8)
612                 index = 0;
613         else
614                 index = get_count_order(nents) - 3;
615
616         return index;
617 }
618
619 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
620 {
621         struct scsi_host_sg_pool *sgp;
622
623         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
624         mempool_free(sgl, sgp->pool);
625 }
626
627 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
628 {
629         struct scsi_host_sg_pool *sgp;
630
631         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
632         return mempool_alloc(sgp->pool, gfp_mask);
633 }
634
635 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
636                               gfp_t gfp_mask)
637 {
638         int ret;
639
640         BUG_ON(!nents);
641
642         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
643                                gfp_mask, scsi_sg_alloc);
644         if (unlikely(ret))
645                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
646                                 scsi_sg_free);
647
648         return ret;
649 }
650
651 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
652 {
653         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
654 }
655
656 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
657 {
658
659         if (cmd->sdb.table.nents)
660                 scsi_free_sgtable(&cmd->sdb);
661
662         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
663
664         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
665                 struct scsi_data_buffer *bidi_sdb =
666                         cmd->request->next_rq->special;
667                 scsi_free_sgtable(bidi_sdb);
668                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
669                 cmd->request->next_rq->special = NULL;
670         }
671
672         if (scsi_prot_sg_count(cmd))
673                 scsi_free_sgtable(cmd->prot_sdb);
674 }
675
676 /*
677  * Function:    scsi_release_buffers()
678  *
679  * Purpose:     Completion processing for block device I/O requests.
680  *
681  * Arguments:   cmd     - command that we are bailing.
682  *
683  * Lock status: Assumed that no lock is held upon entry.
684  *
685  * Returns:     Nothing
686  *
687  * Notes:       In the event that an upper level driver rejects a
688  *              command, we must release resources allocated during
689  *              the __init_io() function.  Primarily this would involve
690  *              the scatter-gather table, and potentially any bounce
691  *              buffers.
692  */
693 void scsi_release_buffers(struct scsi_cmnd *cmd)
694 {
695         __scsi_release_buffers(cmd, 1);
696 }
697 EXPORT_SYMBOL(scsi_release_buffers);
698
699 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
700 {
701         int error = 0;
702
703         switch(host_byte(result)) {
704         case DID_TRANSPORT_FAILFAST:
705                 error = -ENOLINK;
706                 break;
707         case DID_TARGET_FAILURE:
708                 set_host_byte(cmd, DID_OK);
709                 error = -EREMOTEIO;
710                 break;
711         case DID_NEXUS_FAILURE:
712                 set_host_byte(cmd, DID_OK);
713                 error = -EBADE;
714                 break;
715         default:
716                 error = -EIO;
717                 break;
718         }
719
720         return error;
721 }
722
723 /*
724  * Function:    scsi_io_completion()
725  *
726  * Purpose:     Completion processing for block device I/O requests.
727  *
728  * Arguments:   cmd   - command that is finished.
729  *
730  * Lock status: Assumed that no lock is held upon entry.
731  *
732  * Returns:     Nothing
733  *
734  * Notes:       This function is matched in terms of capabilities to
735  *              the function that created the scatter-gather list.
736  *              In other words, if there are no bounce buffers
737  *              (the normal case for most drivers), we don't need
738  *              the logic to deal with cleaning up afterwards.
739  *
740  *              We must call scsi_end_request().  This will finish off
741  *              the specified number of sectors.  If we are done, the
742  *              command block will be released and the queue function
743  *              will be goosed.  If we are not done then we have to
744  *              figure out what to do next:
745  *
746  *              a) We can call scsi_requeue_command().  The request
747  *                 will be unprepared and put back on the queue.  Then
748  *                 a new command will be created for it.  This should
749  *                 be used if we made forward progress, or if we want
750  *                 to switch from READ(10) to READ(6) for example.
751  *
752  *              b) We can call scsi_queue_insert().  The request will
753  *                 be put back on the queue and retried using the same
754  *                 command as before, possibly after a delay.
755  *
756  *              c) We can call blk_end_request() with -EIO to fail
757  *                 the remainder of the request.
758  */
759 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
760 {
761         int result = cmd->result;
762         struct request_queue *q = cmd->device->request_queue;
763         struct request *req = cmd->request;
764         int error = 0;
765         struct scsi_sense_hdr sshdr;
766         int sense_valid = 0;
767         int sense_deferred = 0;
768         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
769               ACTION_DELAYED_RETRY} action;
770         char *description = NULL;
771
772         if (result) {
773                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
774                 if (sense_valid)
775                         sense_deferred = scsi_sense_is_deferred(&sshdr);
776         }
777
778         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
779                 if (result) {
780                         if (sense_valid && req->sense) {
781                                 /*
782                                  * SG_IO wants current and deferred errors
783                                  */
784                                 int len = 8 + cmd->sense_buffer[7];
785
786                                 if (len > SCSI_SENSE_BUFFERSIZE)
787                                         len = SCSI_SENSE_BUFFERSIZE;
788                                 memcpy(req->sense, cmd->sense_buffer,  len);
789                                 req->sense_len = len;
790                         }
791                         if (!sense_deferred)
792                                 error = __scsi_error_from_host_byte(cmd, result);
793                 }
794                 /*
795                  * __scsi_error_from_host_byte may have reset the host_byte
796                  */
797                 req->errors = cmd->result;
798
799                 req->resid_len = scsi_get_resid(cmd);
800
801                 if (scsi_bidi_cmnd(cmd)) {
802                         /*
803                          * Bidi commands Must be complete as a whole,
804                          * both sides at once.
805                          */
806                         req->next_rq->resid_len = scsi_in(cmd)->resid;
807
808                         scsi_release_buffers(cmd);
809                         blk_end_request_all(req, 0);
810
811                         scsi_next_command(cmd);
812                         return;
813                 }
814         }
815
816         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
817         BUG_ON(blk_bidi_rq(req));
818
819         /*
820          * Next deal with any sectors which we were able to correctly
821          * handle.
822          */
823         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
824                                       "%d bytes done.\n",
825                                       blk_rq_sectors(req), good_bytes));
826
827         /*
828          * Recovered errors need reporting, but they're always treated
829          * as success, so fiddle the result code here.  For BLOCK_PC
830          * we already took a copy of the original into rq->errors which
831          * is what gets returned to the user
832          */
833         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
834                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
835                  * print since caller wants ATA registers. Only occurs on
836                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
837                  */
838                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
839                         ;
840                 else if (!(req->cmd_flags & REQ_QUIET))
841                         scsi_print_sense("", cmd);
842                 result = 0;
843                 /* BLOCK_PC may have set error */
844                 error = 0;
845         }
846
847         /*
848          * A number of bytes were successfully read.  If there
849          * are leftovers and there is some kind of error
850          * (result != 0), retry the rest.
851          */
852         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
853                 return;
854
855         error = __scsi_error_from_host_byte(cmd, result);
856
857         if (host_byte(result) == DID_RESET) {
858                 /* Third party bus reset or reset for error recovery
859                  * reasons.  Just retry the command and see what
860                  * happens.
861                  */
862                 action = ACTION_RETRY;
863         } else if (sense_valid && !sense_deferred) {
864                 switch (sshdr.sense_key) {
865                 case UNIT_ATTENTION:
866                         if (cmd->device->removable) {
867                                 /* Detected disc change.  Set a bit
868                                  * and quietly refuse further access.
869                                  */
870                                 cmd->device->changed = 1;
871                                 description = "Media Changed";
872                                 action = ACTION_FAIL;
873                         } else {
874                                 /* Must have been a power glitch, or a
875                                  * bus reset.  Could not have been a
876                                  * media change, so we just retry the
877                                  * command and see what happens.
878                                  */
879                                 action = ACTION_RETRY;
880                         }
881                         break;
882                 case ILLEGAL_REQUEST:
883                         /* If we had an ILLEGAL REQUEST returned, then
884                          * we may have performed an unsupported
885                          * command.  The only thing this should be
886                          * would be a ten byte read where only a six
887                          * byte read was supported.  Also, on a system
888                          * where READ CAPACITY failed, we may have
889                          * read past the end of the disk.
890                          */
891                         if ((cmd->device->use_10_for_rw &&
892                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
893                             (cmd->cmnd[0] == READ_10 ||
894                              cmd->cmnd[0] == WRITE_10)) {
895                                 /* This will issue a new 6-byte command. */
896                                 cmd->device->use_10_for_rw = 0;
897                                 action = ACTION_REPREP;
898                         } else if (sshdr.asc == 0x10) /* DIX */ {
899                                 description = "Host Data Integrity Failure";
900                                 action = ACTION_FAIL;
901                                 error = -EILSEQ;
902                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
903                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
904                                 switch (cmd->cmnd[0]) {
905                                 case UNMAP:
906                                         description = "Discard failure";
907                                         break;
908                                 case WRITE_SAME:
909                                 case WRITE_SAME_16:
910                                         if (cmd->cmnd[1] & 0x8)
911                                                 description = "Discard failure";
912                                         else
913                                                 description =
914                                                         "Write same failure";
915                                         break;
916                                 default:
917                                         description = "Invalid command failure";
918                                         break;
919                                 }
920                                 action = ACTION_FAIL;
921                                 error = -EREMOTEIO;
922                         } else
923                                 action = ACTION_FAIL;
924                         break;
925                 case ABORTED_COMMAND:
926                         action = ACTION_FAIL;
927                         if (sshdr.asc == 0x10) { /* DIF */
928                                 description = "Target Data Integrity Failure";
929                                 error = -EILSEQ;
930                         }
931                         break;
932                 case NOT_READY:
933                         /* If the device is in the process of becoming
934                          * ready, or has a temporary blockage, retry.
935                          */
936                         if (sshdr.asc == 0x04) {
937                                 switch (sshdr.ascq) {
938                                 case 0x01: /* becoming ready */
939                                 case 0x04: /* format in progress */
940                                 case 0x05: /* rebuild in progress */
941                                 case 0x06: /* recalculation in progress */
942                                 case 0x07: /* operation in progress */
943                                 case 0x08: /* Long write in progress */
944                                 case 0x09: /* self test in progress */
945                                 case 0x14: /* space allocation in progress */
946                                         action = ACTION_DELAYED_RETRY;
947                                         break;
948                                 default:
949                                         description = "Device not ready";
950                                         action = ACTION_FAIL;
951                                         break;
952                                 }
953                         } else {
954                                 description = "Device not ready";
955                                 action = ACTION_FAIL;
956                         }
957                         break;
958                 case VOLUME_OVERFLOW:
959                         /* See SSC3rXX or current. */
960                         action = ACTION_FAIL;
961                         break;
962                 default:
963                         description = "Unhandled sense code";
964                         action = ACTION_FAIL;
965                         break;
966                 }
967         } else {
968                 description = "Unhandled error code";
969                 action = ACTION_FAIL;
970         }
971
972         switch (action) {
973         case ACTION_FAIL:
974                 /* Give up and fail the remainder of the request */
975                 scsi_release_buffers(cmd);
976                 if (!(req->cmd_flags & REQ_QUIET)) {
977                         if (description)
978                                 scmd_printk(KERN_INFO, cmd, "%s\n",
979                                             description);
980                         scsi_print_result(cmd);
981                         if (driver_byte(result) & DRIVER_SENSE)
982                                 scsi_print_sense("", cmd);
983                         scsi_print_command(cmd);
984                 }
985                 if (blk_end_request_err(req, error))
986                         scsi_requeue_command(q, cmd);
987                 else
988                         scsi_next_command(cmd);
989                 break;
990         case ACTION_REPREP:
991                 /* Unprep the request and put it back at the head of the queue.
992                  * A new command will be prepared and issued.
993                  */
994                 scsi_release_buffers(cmd);
995                 scsi_requeue_command(q, cmd);
996                 break;
997         case ACTION_RETRY:
998                 /* Retry the same command immediately */
999                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000                 break;
1001         case ACTION_DELAYED_RETRY:
1002                 /* Retry the same command after a delay */
1003                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004                 break;
1005         }
1006 }
1007
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009                              gfp_t gfp_mask)
1010 {
1011         int count;
1012
1013         /*
1014          * If sg table allocation fails, requeue request later.
1015          */
1016         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017                                         gfp_mask))) {
1018                 return BLKPREP_DEFER;
1019         }
1020
1021         req->buffer = NULL;
1022
1023         /* 
1024          * Next, walk the list, and fill in the addresses and sizes of
1025          * each segment.
1026          */
1027         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028         BUG_ON(count > sdb->table.nents);
1029         sdb->table.nents = count;
1030         sdb->length = blk_rq_bytes(req);
1031         return BLKPREP_OK;
1032 }
1033
1034 /*
1035  * Function:    scsi_init_io()
1036  *
1037  * Purpose:     SCSI I/O initialize function.
1038  *
1039  * Arguments:   cmd   - Command descriptor we wish to initialize
1040  *
1041  * Returns:     0 on success
1042  *              BLKPREP_DEFER if the failure is retryable
1043  *              BLKPREP_KILL if the failure is fatal
1044  */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047         struct request *rq = cmd->request;
1048
1049         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1050         if (error)
1051                 goto err_exit;
1052
1053         if (blk_bidi_rq(rq)) {
1054                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1055                         scsi_sdb_cache, GFP_ATOMIC);
1056                 if (!bidi_sdb) {
1057                         error = BLKPREP_DEFER;
1058                         goto err_exit;
1059                 }
1060
1061                 rq->next_rq->special = bidi_sdb;
1062                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1063                 if (error)
1064                         goto err_exit;
1065         }
1066
1067         if (blk_integrity_rq(rq)) {
1068                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1069                 int ivecs, count;
1070
1071                 BUG_ON(prot_sdb == NULL);
1072                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073
1074                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1075                         error = BLKPREP_DEFER;
1076                         goto err_exit;
1077                 }
1078
1079                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1080                                                 prot_sdb->table.sgl);
1081                 BUG_ON(unlikely(count > ivecs));
1082                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1083
1084                 cmd->prot_sdb = prot_sdb;
1085                 cmd->prot_sdb->table.nents = count;
1086         }
1087
1088         return BLKPREP_OK ;
1089
1090 err_exit:
1091         scsi_release_buffers(cmd);
1092         cmd->request->special = NULL;
1093         scsi_put_command(cmd);
1094         return error;
1095 }
1096 EXPORT_SYMBOL(scsi_init_io);
1097
1098 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1099                 struct request *req)
1100 {
1101         struct scsi_cmnd *cmd;
1102
1103         if (!req->special) {
1104                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1105                 if (unlikely(!cmd))
1106                         return NULL;
1107                 req->special = cmd;
1108         } else {
1109                 cmd = req->special;
1110         }
1111
1112         /* pull a tag out of the request if we have one */
1113         cmd->tag = req->tag;
1114         cmd->request = req;
1115
1116         cmd->cmnd = req->cmd;
1117         cmd->prot_op = SCSI_PROT_NORMAL;
1118
1119         return cmd;
1120 }
1121
1122 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1123 {
1124         struct scsi_cmnd *cmd;
1125         int ret = scsi_prep_state_check(sdev, req);
1126
1127         if (ret != BLKPREP_OK)
1128                 return ret;
1129
1130         cmd = scsi_get_cmd_from_req(sdev, req);
1131         if (unlikely(!cmd))
1132                 return BLKPREP_DEFER;
1133
1134         /*
1135          * BLOCK_PC requests may transfer data, in which case they must
1136          * a bio attached to them.  Or they might contain a SCSI command
1137          * that does not transfer data, in which case they may optionally
1138          * submit a request without an attached bio.
1139          */
1140         if (req->bio) {
1141                 int ret;
1142
1143                 BUG_ON(!req->nr_phys_segments);
1144
1145                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1146                 if (unlikely(ret))
1147                         return ret;
1148         } else {
1149                 BUG_ON(blk_rq_bytes(req));
1150
1151                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152                 req->buffer = NULL;
1153         }
1154
1155         cmd->cmd_len = req->cmd_len;
1156         if (!blk_rq_bytes(req))
1157                 cmd->sc_data_direction = DMA_NONE;
1158         else if (rq_data_dir(req) == WRITE)
1159                 cmd->sc_data_direction = DMA_TO_DEVICE;
1160         else
1161                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1162         
1163         cmd->transfersize = blk_rq_bytes(req);
1164         cmd->allowed = req->retries;
1165         return BLKPREP_OK;
1166 }
1167 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1168
1169 /*
1170  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1171  * from filesystems that still need to be translated to SCSI CDBs from
1172  * the ULD.
1173  */
1174 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1175 {
1176         struct scsi_cmnd *cmd;
1177         int ret = scsi_prep_state_check(sdev, req);
1178
1179         if (ret != BLKPREP_OK)
1180                 return ret;
1181
1182         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1183                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1184                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1185                 if (ret != BLKPREP_OK)
1186                         return ret;
1187         }
1188
1189         /*
1190          * Filesystem requests must transfer data.
1191          */
1192         BUG_ON(!req->nr_phys_segments);
1193
1194         cmd = scsi_get_cmd_from_req(sdev, req);
1195         if (unlikely(!cmd))
1196                 return BLKPREP_DEFER;
1197
1198         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1199         return scsi_init_io(cmd, GFP_ATOMIC);
1200 }
1201 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1202
1203 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205         int ret = BLKPREP_OK;
1206
1207         /*
1208          * If the device is not in running state we will reject some
1209          * or all commands.
1210          */
1211         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1212                 switch (sdev->sdev_state) {
1213                 case SDEV_OFFLINE:
1214                 case SDEV_TRANSPORT_OFFLINE:
1215                         /*
1216                          * If the device is offline we refuse to process any
1217                          * commands.  The device must be brought online
1218                          * before trying any recovery commands.
1219                          */
1220                         sdev_printk(KERN_ERR, sdev,
1221                                     "rejecting I/O to offline device\n");
1222                         ret = BLKPREP_KILL;
1223                         break;
1224                 case SDEV_DEL:
1225                         /*
1226                          * If the device is fully deleted, we refuse to
1227                          * process any commands as well.
1228                          */
1229                         sdev_printk(KERN_ERR, sdev,
1230                                     "rejecting I/O to dead device\n");
1231                         ret = BLKPREP_KILL;
1232                         break;
1233                 case SDEV_QUIESCE:
1234                 case SDEV_BLOCK:
1235                 case SDEV_CREATED_BLOCK:
1236                         /*
1237                          * If the devices is blocked we defer normal commands.
1238                          */
1239                         if (!(req->cmd_flags & REQ_PREEMPT))
1240                                 ret = BLKPREP_DEFER;
1241                         break;
1242                 default:
1243                         /*
1244                          * For any other not fully online state we only allow
1245                          * special commands.  In particular any user initiated
1246                          * command is not allowed.
1247                          */
1248                         if (!(req->cmd_flags & REQ_PREEMPT))
1249                                 ret = BLKPREP_KILL;
1250                         break;
1251                 }
1252         }
1253         return ret;
1254 }
1255 EXPORT_SYMBOL(scsi_prep_state_check);
1256
1257 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1258 {
1259         struct scsi_device *sdev = q->queuedata;
1260
1261         switch (ret) {
1262         case BLKPREP_KILL:
1263                 req->errors = DID_NO_CONNECT << 16;
1264                 /* release the command and kill it */
1265                 if (req->special) {
1266                         struct scsi_cmnd *cmd = req->special;
1267                         scsi_release_buffers(cmd);
1268                         scsi_put_command(cmd);
1269                         req->special = NULL;
1270                 }
1271                 break;
1272         case BLKPREP_DEFER:
1273                 /*
1274                  * If we defer, the blk_peek_request() returns NULL, but the
1275                  * queue must be restarted, so we schedule a callback to happen
1276                  * shortly.
1277                  */
1278                 if (sdev->device_busy == 0)
1279                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280                 break;
1281         default:
1282                 req->cmd_flags |= REQ_DONTPREP;
1283         }
1284
1285         return ret;
1286 }
1287 EXPORT_SYMBOL(scsi_prep_return);
1288
1289 int scsi_prep_fn(struct request_queue *q, struct request *req)
1290 {
1291         struct scsi_device *sdev = q->queuedata;
1292         int ret = BLKPREP_KILL;
1293
1294         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1295                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1296         return scsi_prep_return(q, req, ret);
1297 }
1298 EXPORT_SYMBOL(scsi_prep_fn);
1299
1300 /*
1301  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1302  * return 0.
1303  *
1304  * Called with the queue_lock held.
1305  */
1306 static inline int scsi_dev_queue_ready(struct request_queue *q,
1307                                   struct scsi_device *sdev)
1308 {
1309         if (sdev->device_busy == 0 && sdev->device_blocked) {
1310                 /*
1311                  * unblock after device_blocked iterates to zero
1312                  */
1313                 if (--sdev->device_blocked == 0) {
1314                         SCSI_LOG_MLQUEUE(3,
1315                                    sdev_printk(KERN_INFO, sdev,
1316                                    "unblocking device at zero depth\n"));
1317                 } else {
1318                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1319                         return 0;
1320                 }
1321         }
1322         if (scsi_device_is_busy(sdev))
1323                 return 0;
1324
1325         return 1;
1326 }
1327
1328
1329 /*
1330  * scsi_target_queue_ready: checks if there we can send commands to target
1331  * @sdev: scsi device on starget to check.
1332  *
1333  * Called with the host lock held.
1334  */
1335 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1336                                            struct scsi_device *sdev)
1337 {
1338         struct scsi_target *starget = scsi_target(sdev);
1339
1340         if (starget->single_lun) {
1341                 if (starget->starget_sdev_user &&
1342                     starget->starget_sdev_user != sdev)
1343                         return 0;
1344                 starget->starget_sdev_user = sdev;
1345         }
1346
1347         if (starget->target_busy == 0 && starget->target_blocked) {
1348                 /*
1349                  * unblock after target_blocked iterates to zero
1350                  */
1351                 if (--starget->target_blocked == 0) {
1352                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1353                                          "unblocking target at zero depth\n"));
1354                 } else
1355                         return 0;
1356         }
1357
1358         if (scsi_target_is_busy(starget)) {
1359                 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1360                 return 0;
1361         }
1362
1363         return 1;
1364 }
1365
1366 /*
1367  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1368  * return 0. We must end up running the queue again whenever 0 is
1369  * returned, else IO can hang.
1370  *
1371  * Called with host_lock held.
1372  */
1373 static inline int scsi_host_queue_ready(struct request_queue *q,
1374                                    struct Scsi_Host *shost,
1375                                    struct scsi_device *sdev)
1376 {
1377         if (scsi_host_in_recovery(shost))
1378                 return 0;
1379         if (shost->host_busy == 0 && shost->host_blocked) {
1380                 /*
1381                  * unblock after host_blocked iterates to zero
1382                  */
1383                 if (--shost->host_blocked == 0) {
1384                         SCSI_LOG_MLQUEUE(3,
1385                                 printk("scsi%d unblocking host at zero depth\n",
1386                                         shost->host_no));
1387                 } else {
1388                         return 0;
1389                 }
1390         }
1391         if (scsi_host_is_busy(shost)) {
1392                 if (list_empty(&sdev->starved_entry))
1393                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1394                 return 0;
1395         }
1396
1397         /* We're OK to process the command, so we can't be starved */
1398         if (!list_empty(&sdev->starved_entry))
1399                 list_del_init(&sdev->starved_entry);
1400
1401         return 1;
1402 }
1403
1404 /*
1405  * Busy state exporting function for request stacking drivers.
1406  *
1407  * For efficiency, no lock is taken to check the busy state of
1408  * shost/starget/sdev, since the returned value is not guaranteed and
1409  * may be changed after request stacking drivers call the function,
1410  * regardless of taking lock or not.
1411  *
1412  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1413  * needs to return 'not busy'. Otherwise, request stacking drivers
1414  * may hold requests forever.
1415  */
1416 static int scsi_lld_busy(struct request_queue *q)
1417 {
1418         struct scsi_device *sdev = q->queuedata;
1419         struct Scsi_Host *shost;
1420
1421         if (blk_queue_dying(q))
1422                 return 0;
1423
1424         shost = sdev->host;
1425
1426         /*
1427          * Ignore host/starget busy state.
1428          * Since block layer does not have a concept of fairness across
1429          * multiple queues, congestion of host/starget needs to be handled
1430          * in SCSI layer.
1431          */
1432         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1433                 return 1;
1434
1435         return 0;
1436 }
1437
1438 /*
1439  * Kill a request for a dead device
1440  */
1441 static void scsi_kill_request(struct request *req, struct request_queue *q)
1442 {
1443         struct scsi_cmnd *cmd = req->special;
1444         struct scsi_device *sdev;
1445         struct scsi_target *starget;
1446         struct Scsi_Host *shost;
1447
1448         blk_start_request(req);
1449
1450         scmd_printk(KERN_INFO, cmd, "killing request\n");
1451
1452         sdev = cmd->device;
1453         starget = scsi_target(sdev);
1454         shost = sdev->host;
1455         scsi_init_cmd_errh(cmd);
1456         cmd->result = DID_NO_CONNECT << 16;
1457         atomic_inc(&cmd->device->iorequest_cnt);
1458
1459         /*
1460          * SCSI request completion path will do scsi_device_unbusy(),
1461          * bump busy counts.  To bump the counters, we need to dance
1462          * with the locks as normal issue path does.
1463          */
1464         sdev->device_busy++;
1465         spin_unlock(sdev->request_queue->queue_lock);
1466         spin_lock(shost->host_lock);
1467         shost->host_busy++;
1468         starget->target_busy++;
1469         spin_unlock(shost->host_lock);
1470         spin_lock(sdev->request_queue->queue_lock);
1471
1472         blk_complete_request(req);
1473 }
1474
1475 static void scsi_softirq_done(struct request *rq)
1476 {
1477         struct scsi_cmnd *cmd = rq->special;
1478         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1479         int disposition;
1480
1481         INIT_LIST_HEAD(&cmd->eh_entry);
1482
1483         atomic_inc(&cmd->device->iodone_cnt);
1484         if (cmd->result)
1485                 atomic_inc(&cmd->device->ioerr_cnt);
1486
1487         disposition = scsi_decide_disposition(cmd);
1488         if (disposition != SUCCESS &&
1489             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1490                 sdev_printk(KERN_ERR, cmd->device,
1491                             "timing out command, waited %lus\n",
1492                             wait_for/HZ);
1493                 disposition = SUCCESS;
1494         }
1495                         
1496         scsi_log_completion(cmd, disposition);
1497
1498         switch (disposition) {
1499                 case SUCCESS:
1500                         scsi_finish_command(cmd);
1501                         break;
1502                 case NEEDS_RETRY:
1503                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1504                         break;
1505                 case ADD_TO_MLQUEUE:
1506                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1507                         break;
1508                 default:
1509                         if (!scsi_eh_scmd_add(cmd, 0))
1510                                 scsi_finish_command(cmd);
1511         }
1512 }
1513
1514 /*
1515  * Function:    scsi_request_fn()
1516  *
1517  * Purpose:     Main strategy routine for SCSI.
1518  *
1519  * Arguments:   q       - Pointer to actual queue.
1520  *
1521  * Returns:     Nothing
1522  *
1523  * Lock status: IO request lock assumed to be held when called.
1524  */
1525 static void scsi_request_fn(struct request_queue *q)
1526 {
1527         struct scsi_device *sdev = q->queuedata;
1528         struct Scsi_Host *shost;
1529         struct scsi_cmnd *cmd;
1530         struct request *req;
1531
1532         if(!get_device(&sdev->sdev_gendev))
1533                 /* We must be tearing the block queue down already */
1534                 return;
1535
1536         /*
1537          * To start with, we keep looping until the queue is empty, or until
1538          * the host is no longer able to accept any more requests.
1539          */
1540         shost = sdev->host;
1541         for (;;) {
1542                 int rtn;
1543                 /*
1544                  * get next queueable request.  We do this early to make sure
1545                  * that the request is fully prepared even if we cannot 
1546                  * accept it.
1547                  */
1548                 req = blk_peek_request(q);
1549                 if (!req || !scsi_dev_queue_ready(q, sdev))
1550                         break;
1551
1552                 if (unlikely(!scsi_device_online(sdev))) {
1553                         sdev_printk(KERN_ERR, sdev,
1554                                     "rejecting I/O to offline device\n");
1555                         scsi_kill_request(req, q);
1556                         continue;
1557                 }
1558
1559
1560                 /*
1561                  * Remove the request from the request list.
1562                  */
1563                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1564                         blk_start_request(req);
1565                 sdev->device_busy++;
1566
1567                 spin_unlock(q->queue_lock);
1568                 cmd = req->special;
1569                 if (unlikely(cmd == NULL)) {
1570                         printk(KERN_CRIT "impossible request in %s.\n"
1571                                          "please mail a stack trace to "
1572                                          "linux-scsi@vger.kernel.org\n",
1573                                          __func__);
1574                         blk_dump_rq_flags(req, "foo");
1575                         BUG();
1576                 }
1577                 spin_lock(shost->host_lock);
1578
1579                 /*
1580                  * We hit this when the driver is using a host wide
1581                  * tag map. For device level tag maps the queue_depth check
1582                  * in the device ready fn would prevent us from trying
1583                  * to allocate a tag. Since the map is a shared host resource
1584                  * we add the dev to the starved list so it eventually gets
1585                  * a run when a tag is freed.
1586                  */
1587                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1588                         if (list_empty(&sdev->starved_entry))
1589                                 list_add_tail(&sdev->starved_entry,
1590                                               &shost->starved_list);
1591                         goto not_ready;
1592                 }
1593
1594                 if (!scsi_target_queue_ready(shost, sdev))
1595                         goto not_ready;
1596
1597                 if (!scsi_host_queue_ready(q, shost, sdev))
1598                         goto not_ready;
1599
1600                 scsi_target(sdev)->target_busy++;
1601                 shost->host_busy++;
1602
1603                 /*
1604                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1605                  *              take the lock again.
1606                  */
1607                 spin_unlock_irq(shost->host_lock);
1608
1609                 /*
1610                  * Finally, initialize any error handling parameters, and set up
1611                  * the timers for timeouts.
1612                  */
1613                 scsi_init_cmd_errh(cmd);
1614
1615                 /*
1616                  * Dispatch the command to the low-level driver.
1617                  */
1618                 rtn = scsi_dispatch_cmd(cmd);
1619                 spin_lock_irq(q->queue_lock);
1620                 if (rtn)
1621                         goto out_delay;
1622         }
1623
1624         goto out;
1625
1626  not_ready:
1627         spin_unlock_irq(shost->host_lock);
1628
1629         /*
1630          * lock q, handle tag, requeue req, and decrement device_busy. We
1631          * must return with queue_lock held.
1632          *
1633          * Decrementing device_busy without checking it is OK, as all such
1634          * cases (host limits or settings) should run the queue at some
1635          * later time.
1636          */
1637         spin_lock_irq(q->queue_lock);
1638         blk_requeue_request(q, req);
1639         sdev->device_busy--;
1640 out_delay:
1641         if (sdev->device_busy == 0)
1642                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1643 out:
1644         /* must be careful here...if we trigger the ->remove() function
1645          * we cannot be holding the q lock */
1646         spin_unlock_irq(q->queue_lock);
1647         put_device(&sdev->sdev_gendev);
1648         spin_lock_irq(q->queue_lock);
1649 }
1650
1651 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1652 {
1653         struct device *host_dev;
1654         u64 bounce_limit = 0xffffffff;
1655
1656         if (shost->unchecked_isa_dma)
1657                 return BLK_BOUNCE_ISA;
1658         /*
1659          * Platforms with virtual-DMA translation
1660          * hardware have no practical limit.
1661          */
1662         if (!PCI_DMA_BUS_IS_PHYS)
1663                 return BLK_BOUNCE_ANY;
1664
1665         host_dev = scsi_get_device(shost);
1666         if (host_dev && host_dev->dma_mask)
1667                 bounce_limit = *host_dev->dma_mask;
1668
1669         return bounce_limit;
1670 }
1671 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1672
1673 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1674                                          request_fn_proc *request_fn)
1675 {
1676         struct request_queue *q;
1677         struct device *dev = shost->dma_dev;
1678
1679         q = blk_init_queue(request_fn, NULL);
1680         if (!q)
1681                 return NULL;
1682
1683         /*
1684          * this limit is imposed by hardware restrictions
1685          */
1686         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1687                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1688
1689         if (scsi_host_prot_dma(shost)) {
1690                 shost->sg_prot_tablesize =
1691                         min_not_zero(shost->sg_prot_tablesize,
1692                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1693                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1694                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1695         }
1696
1697         blk_queue_max_hw_sectors(q, shost->max_sectors);
1698         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1699         blk_queue_segment_boundary(q, shost->dma_boundary);
1700         dma_set_seg_boundary(dev, shost->dma_boundary);
1701
1702         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1703
1704         if (!shost->use_clustering)
1705                 q->limits.cluster = 0;
1706
1707         /*
1708          * set a reasonable default alignment on word boundaries: the
1709          * host and device may alter it using
1710          * blk_queue_update_dma_alignment() later.
1711          */
1712         blk_queue_dma_alignment(q, 0x03);
1713
1714         return q;
1715 }
1716 EXPORT_SYMBOL(__scsi_alloc_queue);
1717
1718 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1719 {
1720         struct request_queue *q;
1721
1722         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1723         if (!q)
1724                 return NULL;
1725
1726         blk_queue_prep_rq(q, scsi_prep_fn);
1727         blk_queue_softirq_done(q, scsi_softirq_done);
1728         blk_queue_rq_timed_out(q, scsi_times_out);
1729         blk_queue_lld_busy(q, scsi_lld_busy);
1730         return q;
1731 }
1732
1733 /*
1734  * Function:    scsi_block_requests()
1735  *
1736  * Purpose:     Utility function used by low-level drivers to prevent further
1737  *              commands from being queued to the device.
1738  *
1739  * Arguments:   shost       - Host in question
1740  *
1741  * Returns:     Nothing
1742  *
1743  * Lock status: No locks are assumed held.
1744  *
1745  * Notes:       There is no timer nor any other means by which the requests
1746  *              get unblocked other than the low-level driver calling
1747  *              scsi_unblock_requests().
1748  */
1749 void scsi_block_requests(struct Scsi_Host *shost)
1750 {
1751         shost->host_self_blocked = 1;
1752 }
1753 EXPORT_SYMBOL(scsi_block_requests);
1754
1755 /*
1756  * Function:    scsi_unblock_requests()
1757  *
1758  * Purpose:     Utility function used by low-level drivers to allow further
1759  *              commands from being queued to the device.
1760  *
1761  * Arguments:   shost       - Host in question
1762  *
1763  * Returns:     Nothing
1764  *
1765  * Lock status: No locks are assumed held.
1766  *
1767  * Notes:       There is no timer nor any other means by which the requests
1768  *              get unblocked other than the low-level driver calling
1769  *              scsi_unblock_requests().
1770  *
1771  *              This is done as an API function so that changes to the
1772  *              internals of the scsi mid-layer won't require wholesale
1773  *              changes to drivers that use this feature.
1774  */
1775 void scsi_unblock_requests(struct Scsi_Host *shost)
1776 {
1777         shost->host_self_blocked = 0;
1778         scsi_run_host_queues(shost);
1779 }
1780 EXPORT_SYMBOL(scsi_unblock_requests);
1781
1782 int __init scsi_init_queue(void)
1783 {
1784         int i;
1785
1786         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1787                                            sizeof(struct scsi_data_buffer),
1788                                            0, 0, NULL);
1789         if (!scsi_sdb_cache) {
1790                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1791                 return -ENOMEM;
1792         }
1793
1794         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1795                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1796                 int size = sgp->size * sizeof(struct scatterlist);
1797
1798                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1799                                 SLAB_HWCACHE_ALIGN, NULL);
1800                 if (!sgp->slab) {
1801                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1802                                         sgp->name);
1803                         goto cleanup_sdb;
1804                 }
1805
1806                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1807                                                      sgp->slab);
1808                 if (!sgp->pool) {
1809                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1810                                         sgp->name);
1811                         goto cleanup_sdb;
1812                 }
1813         }
1814
1815         return 0;
1816
1817 cleanup_sdb:
1818         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1819                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1820                 if (sgp->pool)
1821                         mempool_destroy(sgp->pool);
1822                 if (sgp->slab)
1823                         kmem_cache_destroy(sgp->slab);
1824         }
1825         kmem_cache_destroy(scsi_sdb_cache);
1826
1827         return -ENOMEM;
1828 }
1829
1830 void scsi_exit_queue(void)
1831 {
1832         int i;
1833
1834         kmem_cache_destroy(scsi_sdb_cache);
1835
1836         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1837                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1838                 mempool_destroy(sgp->pool);
1839                 kmem_cache_destroy(sgp->slab);
1840         }
1841 }
1842
1843 /**
1844  *      scsi_mode_select - issue a mode select
1845  *      @sdev:  SCSI device to be queried
1846  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1847  *      @sp:    Save page bit (0 == don't save, 1 == save)
1848  *      @modepage: mode page being requested
1849  *      @buffer: request buffer (may not be smaller than eight bytes)
1850  *      @len:   length of request buffer.
1851  *      @timeout: command timeout
1852  *      @retries: number of retries before failing
1853  *      @data: returns a structure abstracting the mode header data
1854  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1855  *              must be SCSI_SENSE_BUFFERSIZE big.
1856  *
1857  *      Returns zero if successful; negative error number or scsi
1858  *      status on error
1859  *
1860  */
1861 int
1862 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1863                  unsigned char *buffer, int len, int timeout, int retries,
1864                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1865 {
1866         unsigned char cmd[10];
1867         unsigned char *real_buffer;
1868         int ret;
1869
1870         memset(cmd, 0, sizeof(cmd));
1871         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1872
1873         if (sdev->use_10_for_ms) {
1874                 if (len > 65535)
1875                         return -EINVAL;
1876                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1877                 if (!real_buffer)
1878                         return -ENOMEM;
1879                 memcpy(real_buffer + 8, buffer, len);
1880                 len += 8;
1881                 real_buffer[0] = 0;
1882                 real_buffer[1] = 0;
1883                 real_buffer[2] = data->medium_type;
1884                 real_buffer[3] = data->device_specific;
1885                 real_buffer[4] = data->longlba ? 0x01 : 0;
1886                 real_buffer[5] = 0;
1887                 real_buffer[6] = data->block_descriptor_length >> 8;
1888                 real_buffer[7] = data->block_descriptor_length;
1889
1890                 cmd[0] = MODE_SELECT_10;
1891                 cmd[7] = len >> 8;
1892                 cmd[8] = len;
1893         } else {
1894                 if (len > 255 || data->block_descriptor_length > 255 ||
1895                     data->longlba)
1896                         return -EINVAL;
1897
1898                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1899                 if (!real_buffer)
1900                         return -ENOMEM;
1901                 memcpy(real_buffer + 4, buffer, len);
1902                 len += 4;
1903                 real_buffer[0] = 0;
1904                 real_buffer[1] = data->medium_type;
1905                 real_buffer[2] = data->device_specific;
1906                 real_buffer[3] = data->block_descriptor_length;
1907                 
1908
1909                 cmd[0] = MODE_SELECT;
1910                 cmd[4] = len;
1911         }
1912
1913         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1914                                sshdr, timeout, retries, NULL);
1915         kfree(real_buffer);
1916         return ret;
1917 }
1918 EXPORT_SYMBOL_GPL(scsi_mode_select);
1919
1920 /**
1921  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1922  *      @sdev:  SCSI device to be queried
1923  *      @dbd:   set if mode sense will allow block descriptors to be returned
1924  *      @modepage: mode page being requested
1925  *      @buffer: request buffer (may not be smaller than eight bytes)
1926  *      @len:   length of request buffer.
1927  *      @timeout: command timeout
1928  *      @retries: number of retries before failing
1929  *      @data: returns a structure abstracting the mode header data
1930  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1931  *              must be SCSI_SENSE_BUFFERSIZE big.
1932  *
1933  *      Returns zero if unsuccessful, or the header offset (either 4
1934  *      or 8 depending on whether a six or ten byte command was
1935  *      issued) if successful.
1936  */
1937 int
1938 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1939                   unsigned char *buffer, int len, int timeout, int retries,
1940                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1941 {
1942         unsigned char cmd[12];
1943         int use_10_for_ms;
1944         int header_length;
1945         int result;
1946         struct scsi_sense_hdr my_sshdr;
1947
1948         memset(data, 0, sizeof(*data));
1949         memset(&cmd[0], 0, 12);
1950         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1951         cmd[2] = modepage;
1952
1953         /* caller might not be interested in sense, but we need it */
1954         if (!sshdr)
1955                 sshdr = &my_sshdr;
1956
1957  retry:
1958         use_10_for_ms = sdev->use_10_for_ms;
1959
1960         if (use_10_for_ms) {
1961                 if (len < 8)
1962                         len = 8;
1963
1964                 cmd[0] = MODE_SENSE_10;
1965                 cmd[8] = len;
1966                 header_length = 8;
1967         } else {
1968                 if (len < 4)
1969                         len = 4;
1970
1971                 cmd[0] = MODE_SENSE;
1972                 cmd[4] = len;
1973                 header_length = 4;
1974         }
1975
1976         memset(buffer, 0, len);
1977
1978         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1979                                   sshdr, timeout, retries, NULL);
1980
1981         /* This code looks awful: what it's doing is making sure an
1982          * ILLEGAL REQUEST sense return identifies the actual command
1983          * byte as the problem.  MODE_SENSE commands can return
1984          * ILLEGAL REQUEST if the code page isn't supported */
1985
1986         if (use_10_for_ms && !scsi_status_is_good(result) &&
1987             (driver_byte(result) & DRIVER_SENSE)) {
1988                 if (scsi_sense_valid(sshdr)) {
1989                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1990                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1991                                 /* 
1992                                  * Invalid command operation code
1993                                  */
1994                                 sdev->use_10_for_ms = 0;
1995                                 goto retry;
1996                         }
1997                 }
1998         }
1999
2000         if(scsi_status_is_good(result)) {
2001                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2002                              (modepage == 6 || modepage == 8))) {
2003                         /* Initio breakage? */
2004                         header_length = 0;
2005                         data->length = 13;
2006                         data->medium_type = 0;
2007                         data->device_specific = 0;
2008                         data->longlba = 0;
2009                         data->block_descriptor_length = 0;
2010                 } else if(use_10_for_ms) {
2011                         data->length = buffer[0]*256 + buffer[1] + 2;
2012                         data->medium_type = buffer[2];
2013                         data->device_specific = buffer[3];
2014                         data->longlba = buffer[4] & 0x01;
2015                         data->block_descriptor_length = buffer[6]*256
2016                                 + buffer[7];
2017                 } else {
2018                         data->length = buffer[0] + 1;
2019                         data->medium_type = buffer[1];
2020                         data->device_specific = buffer[2];
2021                         data->block_descriptor_length = buffer[3];
2022                 }
2023                 data->header_length = header_length;
2024         }
2025
2026         return result;
2027 }
2028 EXPORT_SYMBOL(scsi_mode_sense);
2029
2030 /**
2031  *      scsi_test_unit_ready - test if unit is ready
2032  *      @sdev:  scsi device to change the state of.
2033  *      @timeout: command timeout
2034  *      @retries: number of retries before failing
2035  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2036  *              returning sense. Make sure that this is cleared before passing
2037  *              in.
2038  *
2039  *      Returns zero if unsuccessful or an error if TUR failed.  For
2040  *      removable media, UNIT_ATTENTION sets ->changed flag.
2041  **/
2042 int
2043 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2044                      struct scsi_sense_hdr *sshdr_external)
2045 {
2046         char cmd[] = {
2047                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2048         };
2049         struct scsi_sense_hdr *sshdr;
2050         int result;
2051
2052         if (!sshdr_external)
2053                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2054         else
2055                 sshdr = sshdr_external;
2056
2057         /* try to eat the UNIT_ATTENTION if there are enough retries */
2058         do {
2059                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2060                                           timeout, retries, NULL);
2061                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2062                     sshdr->sense_key == UNIT_ATTENTION)
2063                         sdev->changed = 1;
2064         } while (scsi_sense_valid(sshdr) &&
2065                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2066
2067         if (!sshdr_external)
2068                 kfree(sshdr);
2069         return result;
2070 }
2071 EXPORT_SYMBOL(scsi_test_unit_ready);
2072
2073 /**
2074  *      scsi_device_set_state - Take the given device through the device state model.
2075  *      @sdev:  scsi device to change the state of.
2076  *      @state: state to change to.
2077  *
2078  *      Returns zero if unsuccessful or an error if the requested 
2079  *      transition is illegal.
2080  */
2081 int
2082 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2083 {
2084         enum scsi_device_state oldstate = sdev->sdev_state;
2085
2086         if (state == oldstate)
2087                 return 0;
2088
2089         switch (state) {
2090         case SDEV_CREATED:
2091                 switch (oldstate) {
2092                 case SDEV_CREATED_BLOCK:
2093                         break;
2094                 default:
2095                         goto illegal;
2096                 }
2097                 break;
2098                         
2099         case SDEV_RUNNING:
2100                 switch (oldstate) {
2101                 case SDEV_CREATED:
2102                 case SDEV_OFFLINE:
2103                 case SDEV_TRANSPORT_OFFLINE:
2104                 case SDEV_QUIESCE:
2105                 case SDEV_BLOCK:
2106                         break;
2107                 default:
2108                         goto illegal;
2109                 }
2110                 break;
2111
2112         case SDEV_QUIESCE:
2113                 switch (oldstate) {
2114                 case SDEV_RUNNING:
2115                 case SDEV_OFFLINE:
2116                 case SDEV_TRANSPORT_OFFLINE:
2117                         break;
2118                 default:
2119                         goto illegal;
2120                 }
2121                 break;
2122
2123         case SDEV_OFFLINE:
2124         case SDEV_TRANSPORT_OFFLINE:
2125                 switch (oldstate) {
2126                 case SDEV_CREATED:
2127                 case SDEV_RUNNING:
2128                 case SDEV_QUIESCE:
2129                 case SDEV_BLOCK:
2130                         break;
2131                 default:
2132                         goto illegal;
2133                 }
2134                 break;
2135
2136         case SDEV_BLOCK:
2137                 switch (oldstate) {
2138                 case SDEV_RUNNING:
2139                 case SDEV_CREATED_BLOCK:
2140                         break;
2141                 default:
2142                         goto illegal;
2143                 }
2144                 break;
2145
2146         case SDEV_CREATED_BLOCK:
2147                 switch (oldstate) {
2148                 case SDEV_CREATED:
2149                         break;
2150                 default:
2151                         goto illegal;
2152                 }
2153                 break;
2154
2155         case SDEV_CANCEL:
2156                 switch (oldstate) {
2157                 case SDEV_CREATED:
2158                 case SDEV_RUNNING:
2159                 case SDEV_QUIESCE:
2160                 case SDEV_OFFLINE:
2161                 case SDEV_TRANSPORT_OFFLINE:
2162                 case SDEV_BLOCK:
2163                         break;
2164                 default:
2165                         goto illegal;
2166                 }
2167                 break;
2168
2169         case SDEV_DEL:
2170                 switch (oldstate) {
2171                 case SDEV_CREATED:
2172                 case SDEV_RUNNING:
2173                 case SDEV_OFFLINE:
2174                 case SDEV_TRANSPORT_OFFLINE:
2175                 case SDEV_CANCEL:
2176                         break;
2177                 default:
2178                         goto illegal;
2179                 }
2180                 break;
2181
2182         }
2183         sdev->sdev_state = state;
2184         return 0;
2185
2186  illegal:
2187         SCSI_LOG_ERROR_RECOVERY(1, 
2188                                 sdev_printk(KERN_ERR, sdev,
2189                                             "Illegal state transition %s->%s\n",
2190                                             scsi_device_state_name(oldstate),
2191                                             scsi_device_state_name(state))
2192                                 );
2193         return -EINVAL;
2194 }
2195 EXPORT_SYMBOL(scsi_device_set_state);
2196
2197 /**
2198  *      sdev_evt_emit - emit a single SCSI device uevent
2199  *      @sdev: associated SCSI device
2200  *      @evt: event to emit
2201  *
2202  *      Send a single uevent (scsi_event) to the associated scsi_device.
2203  */
2204 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2205 {
2206         int idx = 0;
2207         char *envp[3];
2208
2209         switch (evt->evt_type) {
2210         case SDEV_EVT_MEDIA_CHANGE:
2211                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2212                 break;
2213
2214         default:
2215                 /* do nothing */
2216                 break;
2217         }
2218
2219         envp[idx++] = NULL;
2220
2221         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2222 }
2223
2224 /**
2225  *      sdev_evt_thread - send a uevent for each scsi event
2226  *      @work: work struct for scsi_device
2227  *
2228  *      Dispatch queued events to their associated scsi_device kobjects
2229  *      as uevents.
2230  */
2231 void scsi_evt_thread(struct work_struct *work)
2232 {
2233         struct scsi_device *sdev;
2234         LIST_HEAD(event_list);
2235
2236         sdev = container_of(work, struct scsi_device, event_work);
2237
2238         while (1) {
2239                 struct scsi_event *evt;
2240                 struct list_head *this, *tmp;
2241                 unsigned long flags;
2242
2243                 spin_lock_irqsave(&sdev->list_lock, flags);
2244                 list_splice_init(&sdev->event_list, &event_list);
2245                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2246
2247                 if (list_empty(&event_list))
2248                         break;
2249
2250                 list_for_each_safe(this, tmp, &event_list) {
2251                         evt = list_entry(this, struct scsi_event, node);
2252                         list_del(&evt->node);
2253                         scsi_evt_emit(sdev, evt);
2254                         kfree(evt);
2255                 }
2256         }
2257 }
2258
2259 /**
2260  *      sdev_evt_send - send asserted event to uevent thread
2261  *      @sdev: scsi_device event occurred on
2262  *      @evt: event to send
2263  *
2264  *      Assert scsi device event asynchronously.
2265  */
2266 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2267 {
2268         unsigned long flags;
2269
2270 #if 0
2271         /* FIXME: currently this check eliminates all media change events
2272          * for polled devices.  Need to update to discriminate between AN
2273          * and polled events */
2274         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2275                 kfree(evt);
2276                 return;
2277         }
2278 #endif
2279
2280         spin_lock_irqsave(&sdev->list_lock, flags);
2281         list_add_tail(&evt->node, &sdev->event_list);
2282         schedule_work(&sdev->event_work);
2283         spin_unlock_irqrestore(&sdev->list_lock, flags);
2284 }
2285 EXPORT_SYMBOL_GPL(sdev_evt_send);
2286
2287 /**
2288  *      sdev_evt_alloc - allocate a new scsi event
2289  *      @evt_type: type of event to allocate
2290  *      @gfpflags: GFP flags for allocation
2291  *
2292  *      Allocates and returns a new scsi_event.
2293  */
2294 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2295                                   gfp_t gfpflags)
2296 {
2297         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2298         if (!evt)
2299                 return NULL;
2300
2301         evt->evt_type = evt_type;
2302         INIT_LIST_HEAD(&evt->node);
2303
2304         /* evt_type-specific initialization, if any */
2305         switch (evt_type) {
2306         case SDEV_EVT_MEDIA_CHANGE:
2307         default:
2308                 /* do nothing */
2309                 break;
2310         }
2311
2312         return evt;
2313 }
2314 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2315
2316 /**
2317  *      sdev_evt_send_simple - send asserted event to uevent thread
2318  *      @sdev: scsi_device event occurred on
2319  *      @evt_type: type of event to send
2320  *      @gfpflags: GFP flags for allocation
2321  *
2322  *      Assert scsi device event asynchronously, given an event type.
2323  */
2324 void sdev_evt_send_simple(struct scsi_device *sdev,
2325                           enum scsi_device_event evt_type, gfp_t gfpflags)
2326 {
2327         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2328         if (!evt) {
2329                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2330                             evt_type);
2331                 return;
2332         }
2333
2334         sdev_evt_send(sdev, evt);
2335 }
2336 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2337
2338 /**
2339  *      scsi_device_quiesce - Block user issued commands.
2340  *      @sdev:  scsi device to quiesce.
2341  *
2342  *      This works by trying to transition to the SDEV_QUIESCE state
2343  *      (which must be a legal transition).  When the device is in this
2344  *      state, only special requests will be accepted, all others will
2345  *      be deferred.  Since special requests may also be requeued requests,
2346  *      a successful return doesn't guarantee the device will be 
2347  *      totally quiescent.
2348  *
2349  *      Must be called with user context, may sleep.
2350  *
2351  *      Returns zero if unsuccessful or an error if not.
2352  */
2353 int
2354 scsi_device_quiesce(struct scsi_device *sdev)
2355 {
2356         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2357         if (err)
2358                 return err;
2359
2360         scsi_run_queue(sdev->request_queue);
2361         while (sdev->device_busy) {
2362                 msleep_interruptible(200);
2363                 scsi_run_queue(sdev->request_queue);
2364         }
2365         return 0;
2366 }
2367 EXPORT_SYMBOL(scsi_device_quiesce);
2368
2369 /**
2370  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2371  *      @sdev:  scsi device to resume.
2372  *
2373  *      Moves the device from quiesced back to running and restarts the
2374  *      queues.
2375  *
2376  *      Must be called with user context, may sleep.
2377  */
2378 void scsi_device_resume(struct scsi_device *sdev)
2379 {
2380         /* check if the device state was mutated prior to resume, and if
2381          * so assume the state is being managed elsewhere (for example
2382          * device deleted during suspend)
2383          */
2384         if (sdev->sdev_state != SDEV_QUIESCE ||
2385             scsi_device_set_state(sdev, SDEV_RUNNING))
2386                 return;
2387         scsi_run_queue(sdev->request_queue);
2388 }
2389 EXPORT_SYMBOL(scsi_device_resume);
2390
2391 static void
2392 device_quiesce_fn(struct scsi_device *sdev, void *data)
2393 {
2394         scsi_device_quiesce(sdev);
2395 }
2396
2397 void
2398 scsi_target_quiesce(struct scsi_target *starget)
2399 {
2400         starget_for_each_device(starget, NULL, device_quiesce_fn);
2401 }
2402 EXPORT_SYMBOL(scsi_target_quiesce);
2403
2404 static void
2405 device_resume_fn(struct scsi_device *sdev, void *data)
2406 {
2407         scsi_device_resume(sdev);
2408 }
2409
2410 void
2411 scsi_target_resume(struct scsi_target *starget)
2412 {
2413         starget_for_each_device(starget, NULL, device_resume_fn);
2414 }
2415 EXPORT_SYMBOL(scsi_target_resume);
2416
2417 /**
2418  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2419  * @sdev:       device to block
2420  *
2421  * Block request made by scsi lld's to temporarily stop all
2422  * scsi commands on the specified device.  Called from interrupt
2423  * or normal process context.
2424  *
2425  * Returns zero if successful or error if not
2426  *
2427  * Notes:       
2428  *      This routine transitions the device to the SDEV_BLOCK state
2429  *      (which must be a legal transition).  When the device is in this
2430  *      state, all commands are deferred until the scsi lld reenables
2431  *      the device with scsi_device_unblock or device_block_tmo fires.
2432  */
2433 int
2434 scsi_internal_device_block(struct scsi_device *sdev)
2435 {
2436         struct request_queue *q = sdev->request_queue;
2437         unsigned long flags;
2438         int err = 0;
2439
2440         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2441         if (err) {
2442                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2443
2444                 if (err)
2445                         return err;
2446         }
2447
2448         /* 
2449          * The device has transitioned to SDEV_BLOCK.  Stop the
2450          * block layer from calling the midlayer with this device's
2451          * request queue. 
2452          */
2453         spin_lock_irqsave(q->queue_lock, flags);
2454         blk_stop_queue(q);
2455         spin_unlock_irqrestore(q->queue_lock, flags);
2456
2457         return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2460  
2461 /**
2462  * scsi_internal_device_unblock - resume a device after a block request
2463  * @sdev:       device to resume
2464  * @new_state:  state to set devices to after unblocking
2465  *
2466  * Called by scsi lld's or the midlayer to restart the device queue
2467  * for the previously suspended scsi device.  Called from interrupt or
2468  * normal process context.
2469  *
2470  * Returns zero if successful or error if not.
2471  *
2472  * Notes:       
2473  *      This routine transitions the device to the SDEV_RUNNING state
2474  *      or to one of the offline states (which must be a legal transition)
2475  *      allowing the midlayer to goose the queue for this device.
2476  */
2477 int
2478 scsi_internal_device_unblock(struct scsi_device *sdev,
2479                              enum scsi_device_state new_state)
2480 {
2481         struct request_queue *q = sdev->request_queue; 
2482         unsigned long flags;
2483
2484         /*
2485          * Try to transition the scsi device to SDEV_RUNNING or one of the
2486          * offlined states and goose the device queue if successful.
2487          */
2488         if ((sdev->sdev_state == SDEV_BLOCK) ||
2489             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2490                 sdev->sdev_state = new_state;
2491         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2492                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2493                     new_state == SDEV_OFFLINE)
2494                         sdev->sdev_state = new_state;
2495                 else
2496                         sdev->sdev_state = SDEV_CREATED;
2497         } else if (sdev->sdev_state != SDEV_CANCEL &&
2498                  sdev->sdev_state != SDEV_OFFLINE)
2499                 return -EINVAL;
2500
2501         spin_lock_irqsave(q->queue_lock, flags);
2502         blk_start_queue(q);
2503         spin_unlock_irqrestore(q->queue_lock, flags);
2504
2505         return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2508
2509 static void
2510 device_block(struct scsi_device *sdev, void *data)
2511 {
2512         scsi_internal_device_block(sdev);
2513 }
2514
2515 static int
2516 target_block(struct device *dev, void *data)
2517 {
2518         if (scsi_is_target_device(dev))
2519                 starget_for_each_device(to_scsi_target(dev), NULL,
2520                                         device_block);
2521         return 0;
2522 }
2523
2524 void
2525 scsi_target_block(struct device *dev)
2526 {
2527         if (scsi_is_target_device(dev))
2528                 starget_for_each_device(to_scsi_target(dev), NULL,
2529                                         device_block);
2530         else
2531                 device_for_each_child(dev, NULL, target_block);
2532 }
2533 EXPORT_SYMBOL_GPL(scsi_target_block);
2534
2535 static void
2536 device_unblock(struct scsi_device *sdev, void *data)
2537 {
2538         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2539 }
2540
2541 static int
2542 target_unblock(struct device *dev, void *data)
2543 {
2544         if (scsi_is_target_device(dev))
2545                 starget_for_each_device(to_scsi_target(dev), data,
2546                                         device_unblock);
2547         return 0;
2548 }
2549
2550 void
2551 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2552 {
2553         if (scsi_is_target_device(dev))
2554                 starget_for_each_device(to_scsi_target(dev), &new_state,
2555                                         device_unblock);
2556         else
2557                 device_for_each_child(dev, &new_state, target_unblock);
2558 }
2559 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2560
2561 /**
2562  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2563  * @sgl:        scatter-gather list
2564  * @sg_count:   number of segments in sg
2565  * @offset:     offset in bytes into sg, on return offset into the mapped area
2566  * @len:        bytes to map, on return number of bytes mapped
2567  *
2568  * Returns virtual address of the start of the mapped page
2569  */
2570 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2571                           size_t *offset, size_t *len)
2572 {
2573         int i;
2574         size_t sg_len = 0, len_complete = 0;
2575         struct scatterlist *sg;
2576         struct page *page;
2577
2578         WARN_ON(!irqs_disabled());
2579
2580         for_each_sg(sgl, sg, sg_count, i) {
2581                 len_complete = sg_len; /* Complete sg-entries */
2582                 sg_len += sg->length;
2583                 if (sg_len > *offset)
2584                         break;
2585         }
2586
2587         if (unlikely(i == sg_count)) {
2588                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2589                         "elements %d\n",
2590                        __func__, sg_len, *offset, sg_count);
2591                 WARN_ON(1);
2592                 return NULL;
2593         }
2594
2595         /* Offset starting from the beginning of first page in this sg-entry */
2596         *offset = *offset - len_complete + sg->offset;
2597
2598         /* Assumption: contiguous pages can be accessed as "page + i" */
2599         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2600         *offset &= ~PAGE_MASK;
2601
2602         /* Bytes in this sg-entry from *offset to the end of the page */
2603         sg_len = PAGE_SIZE - *offset;
2604         if (*len > sg_len)
2605                 *len = sg_len;
2606
2607         return kmap_atomic(page);
2608 }
2609 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2610
2611 /**
2612  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2613  * @virt:       virtual address to be unmapped
2614  */
2615 void scsi_kunmap_atomic_sg(void *virt)
2616 {
2617         kunmap_atomic(virt);
2618 }
2619 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);