scsi_debug: Fix off-by-one bug when unmapping region
[pandora-kernel.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE         2
38
39 struct scsi_host_sg_pool {
40         size_t          size;
41         char            *name;
42         struct kmem_cache       *slab;
43         mempool_t       *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51         SP(8),
52         SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54         SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56         SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58         SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65         SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73  * not change behaviour from the previous unplug mechanism, experimentation
74  * may prove this needs changing.
75  */
76 #define SCSI_QUEUE_DELAY        3
77
78 /*
79  * Function:    scsi_unprep_request()
80  *
81  * Purpose:     Remove all preparation done for a request, including its
82  *              associated scsi_cmnd, so that it can be requeued.
83  *
84  * Arguments:   req     - request to unprepare
85  *
86  * Lock status: Assumed that no locks are held upon entry.
87  *
88  * Returns:     Nothing.
89  */
90 static void scsi_unprep_request(struct request *req)
91 {
92         struct scsi_cmnd *cmd = req->special;
93
94         blk_unprep_request(req);
95         req->special = NULL;
96
97         scsi_put_command(cmd);
98 }
99
100 /**
101  * __scsi_queue_insert - private queue insertion
102  * @cmd: The SCSI command being requeued
103  * @reason:  The reason for the requeue
104  * @unbusy: Whether the queue should be unbusied
105  *
106  * This is a private queue insertion.  The public interface
107  * scsi_queue_insert() always assumes the queue should be unbusied
108  * because it's always called before the completion.  This function is
109  * for a requeue after completion, which should only occur in this
110  * file.
111  */
112 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
113 {
114         struct Scsi_Host *host = cmd->device->host;
115         struct scsi_device *device = cmd->device;
116         struct scsi_target *starget = scsi_target(device);
117         struct request_queue *q = device->request_queue;
118         unsigned long flags;
119
120         SCSI_LOG_MLQUEUE(1,
121                  printk("Inserting command %p into mlqueue\n", cmd));
122
123         /*
124          * Set the appropriate busy bit for the device/host.
125          *
126          * If the host/device isn't busy, assume that something actually
127          * completed, and that we should be able to queue a command now.
128          *
129          * Note that the prior mid-layer assumption that any host could
130          * always queue at least one command is now broken.  The mid-layer
131          * will implement a user specifiable stall (see
132          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133          * if a command is requeued with no other commands outstanding
134          * either for the device or for the host.
135          */
136         switch (reason) {
137         case SCSI_MLQUEUE_HOST_BUSY:
138                 host->host_blocked = host->max_host_blocked;
139                 break;
140         case SCSI_MLQUEUE_DEVICE_BUSY:
141         case SCSI_MLQUEUE_EH_RETRY:
142                 device->device_blocked = device->max_device_blocked;
143                 break;
144         case SCSI_MLQUEUE_TARGET_BUSY:
145                 starget->target_blocked = starget->max_target_blocked;
146                 break;
147         }
148
149         /*
150          * Decrement the counters, since these commands are no longer
151          * active on the host/device.
152          */
153         if (unbusy)
154                 scsi_device_unbusy(device);
155
156         /*
157          * Requeue this command.  It will go before all other commands
158          * that are already in the queue.
159          */
160         spin_lock_irqsave(q->queue_lock, flags);
161         blk_requeue_request(q, cmd->request);
162         spin_unlock_irqrestore(q->queue_lock, flags);
163
164         kblockd_schedule_work(q, &device->requeue_work);
165
166         return 0;
167 }
168
169 /*
170  * Function:    scsi_queue_insert()
171  *
172  * Purpose:     Insert a command in the midlevel queue.
173  *
174  * Arguments:   cmd    - command that we are adding to queue.
175  *              reason - why we are inserting command to queue.
176  *
177  * Lock status: Assumed that lock is not held upon entry.
178  *
179  * Returns:     Nothing.
180  *
181  * Notes:       We do this for one of two cases.  Either the host is busy
182  *              and it cannot accept any more commands for the time being,
183  *              or the device returned QUEUE_FULL and can accept no more
184  *              commands.
185  * Notes:       This could be called either from an interrupt context or a
186  *              normal process context.
187  */
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
189 {
190         return __scsi_queue_insert(cmd, reason, 1);
191 }
192 /**
193  * scsi_execute - insert request and wait for the result
194  * @sdev:       scsi device
195  * @cmd:        scsi command
196  * @data_direction: data direction
197  * @buffer:     data buffer
198  * @bufflen:    len of buffer
199  * @sense:      optional sense buffer
200  * @timeout:    request timeout in seconds
201  * @retries:    number of times to retry request
202  * @flags:      or into request flags;
203  * @resid:      optional residual length
204  *
205  * returns the req->errors value which is the scsi_cmnd result
206  * field.
207  */
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209                  int data_direction, void *buffer, unsigned bufflen,
210                  unsigned char *sense, int timeout, int retries, int flags,
211                  int *resid)
212 {
213         struct request *req;
214         int write = (data_direction == DMA_TO_DEVICE);
215         int ret = DRIVER_ERROR << 24;
216
217         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
218         if (!req)
219                 return ret;
220
221         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
222                                         buffer, bufflen, __GFP_WAIT))
223                 goto out;
224
225         req->cmd_len = COMMAND_SIZE(cmd[0]);
226         memcpy(req->cmd, cmd, req->cmd_len);
227         req->sense = sense;
228         req->sense_len = 0;
229         req->retries = retries;
230         req->timeout = timeout;
231         req->cmd_type = REQ_TYPE_BLOCK_PC;
232         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233
234         /*
235          * head injection *required* here otherwise quiesce won't work
236          */
237         blk_execute_rq(req->q, NULL, req, 1);
238
239         /*
240          * Some devices (USB mass-storage in particular) may transfer
241          * garbage data together with a residue indicating that the data
242          * is invalid.  Prevent the garbage from being misinterpreted
243          * and prevent security leaks by zeroing out the excess data.
244          */
245         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
246                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
247
248         if (resid)
249                 *resid = req->resid_len;
250         ret = req->errors;
251  out:
252         blk_put_request(req);
253
254         return ret;
255 }
256 EXPORT_SYMBOL(scsi_execute);
257
258
259 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
260                      int data_direction, void *buffer, unsigned bufflen,
261                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
262                      int *resid)
263 {
264         char *sense = NULL;
265         int result;
266         
267         if (sshdr) {
268                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
269                 if (!sense)
270                         return DRIVER_ERROR << 24;
271         }
272         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
273                               sense, timeout, retries, 0, resid);
274         if (sshdr)
275                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
276
277         kfree(sense);
278         return result;
279 }
280 EXPORT_SYMBOL(scsi_execute_req);
281
282 /*
283  * Function:    scsi_init_cmd_errh()
284  *
285  * Purpose:     Initialize cmd fields related to error handling.
286  *
287  * Arguments:   cmd     - command that is ready to be queued.
288  *
289  * Notes:       This function has the job of initializing a number of
290  *              fields related to error handling.   Typically this will
291  *              be called once for each command, as required.
292  */
293 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
294 {
295         cmd->serial_number = 0;
296         scsi_set_resid(cmd, 0);
297         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
298         if (cmd->cmd_len == 0)
299                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 }
301
302 void scsi_device_unbusy(struct scsi_device *sdev)
303 {
304         struct Scsi_Host *shost = sdev->host;
305         struct scsi_target *starget = scsi_target(sdev);
306         unsigned long flags;
307
308         spin_lock_irqsave(shost->host_lock, flags);
309         shost->host_busy--;
310         starget->target_busy--;
311         if (unlikely(scsi_host_in_recovery(shost) &&
312                      (shost->host_failed || shost->host_eh_scheduled)))
313                 scsi_eh_wakeup(shost);
314         spin_unlock(shost->host_lock);
315         spin_lock(sdev->request_queue->queue_lock);
316         sdev->device_busy--;
317         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
318 }
319
320 /*
321  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
322  * and call blk_run_queue for all the scsi_devices on the target -
323  * including current_sdev first.
324  *
325  * Called with *no* scsi locks held.
326  */
327 static void scsi_single_lun_run(struct scsi_device *current_sdev)
328 {
329         struct Scsi_Host *shost = current_sdev->host;
330         struct scsi_device *sdev, *tmp;
331         struct scsi_target *starget = scsi_target(current_sdev);
332         unsigned long flags;
333
334         spin_lock_irqsave(shost->host_lock, flags);
335         starget->starget_sdev_user = NULL;
336         spin_unlock_irqrestore(shost->host_lock, flags);
337
338         /*
339          * Call blk_run_queue for all LUNs on the target, starting with
340          * current_sdev. We race with others (to set starget_sdev_user),
341          * but in most cases, we will be first. Ideally, each LU on the
342          * target would get some limited time or requests on the target.
343          */
344         blk_run_queue(current_sdev->request_queue);
345
346         spin_lock_irqsave(shost->host_lock, flags);
347         if (starget->starget_sdev_user)
348                 goto out;
349         list_for_each_entry_safe(sdev, tmp, &starget->devices,
350                         same_target_siblings) {
351                 if (sdev == current_sdev)
352                         continue;
353                 if (scsi_device_get(sdev))
354                         continue;
355
356                 spin_unlock_irqrestore(shost->host_lock, flags);
357                 blk_run_queue(sdev->request_queue);
358                 spin_lock_irqsave(shost->host_lock, flags);
359         
360                 scsi_device_put(sdev);
361         }
362  out:
363         spin_unlock_irqrestore(shost->host_lock, flags);
364 }
365
366 static inline int scsi_device_is_busy(struct scsi_device *sdev)
367 {
368         if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
369                 return 1;
370
371         return 0;
372 }
373
374 static inline int scsi_target_is_busy(struct scsi_target *starget)
375 {
376         return ((starget->can_queue > 0 &&
377                  starget->target_busy >= starget->can_queue) ||
378                  starget->target_blocked);
379 }
380
381 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
382 {
383         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
384             shost->host_blocked || shost->host_self_blocked)
385                 return 1;
386
387         return 0;
388 }
389
390 /*
391  * Function:    scsi_run_queue()
392  *
393  * Purpose:     Select a proper request queue to serve next
394  *
395  * Arguments:   q       - last request's queue
396  *
397  * Returns:     Nothing
398  *
399  * Notes:       The previous command was completely finished, start
400  *              a new one if possible.
401  */
402 static void scsi_run_queue(struct request_queue *q)
403 {
404         struct scsi_device *sdev = q->queuedata;
405         struct Scsi_Host *shost;
406         LIST_HEAD(starved_list);
407         unsigned long flags;
408
409         shost = sdev->host;
410         if (scsi_target(sdev)->single_lun)
411                 scsi_single_lun_run(sdev);
412
413         spin_lock_irqsave(shost->host_lock, flags);
414         list_splice_init(&shost->starved_list, &starved_list);
415
416         while (!list_empty(&starved_list)) {
417                 /*
418                  * As long as shost is accepting commands and we have
419                  * starved queues, call blk_run_queue. scsi_request_fn
420                  * drops the queue_lock and can add us back to the
421                  * starved_list.
422                  *
423                  * host_lock protects the starved_list and starved_entry.
424                  * scsi_request_fn must get the host_lock before checking
425                  * or modifying starved_list or starved_entry.
426                  */
427                 if (scsi_host_is_busy(shost))
428                         break;
429
430                 sdev = list_entry(starved_list.next,
431                                   struct scsi_device, starved_entry);
432                 list_del_init(&sdev->starved_entry);
433                 if (scsi_target_is_busy(scsi_target(sdev))) {
434                         list_move_tail(&sdev->starved_entry,
435                                        &shost->starved_list);
436                         continue;
437                 }
438
439                 spin_unlock(shost->host_lock);
440                 spin_lock(sdev->request_queue->queue_lock);
441                 __blk_run_queue(sdev->request_queue);
442                 spin_unlock(sdev->request_queue->queue_lock);
443                 spin_lock(shost->host_lock);
444         }
445         /* put any unprocessed entries back */
446         list_splice(&starved_list, &shost->starved_list);
447         spin_unlock_irqrestore(shost->host_lock, flags);
448
449         blk_run_queue(q);
450 }
451
452 void scsi_requeue_run_queue(struct work_struct *work)
453 {
454         struct scsi_device *sdev;
455         struct request_queue *q;
456
457         sdev = container_of(work, struct scsi_device, requeue_work);
458         q = sdev->request_queue;
459         scsi_run_queue(q);
460 }
461
462 /*
463  * Function:    scsi_requeue_command()
464  *
465  * Purpose:     Handle post-processing of completed commands.
466  *
467  * Arguments:   q       - queue to operate on
468  *              cmd     - command that may need to be requeued.
469  *
470  * Returns:     Nothing
471  *
472  * Notes:       After command completion, there may be blocks left
473  *              over which weren't finished by the previous command
474  *              this can be for a number of reasons - the main one is
475  *              I/O errors in the middle of the request, in which case
476  *              we need to request the blocks that come after the bad
477  *              sector.
478  * Notes:       Upon return, cmd is a stale pointer.
479  */
480 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
481 {
482         struct scsi_device *sdev = cmd->device;
483         struct request *req = cmd->request;
484         unsigned long flags;
485
486         /*
487          * We need to hold a reference on the device to avoid the queue being
488          * killed after the unlock and before scsi_run_queue is invoked which
489          * may happen because scsi_unprep_request() puts the command which
490          * releases its reference on the device.
491          */
492         get_device(&sdev->sdev_gendev);
493
494         spin_lock_irqsave(q->queue_lock, flags);
495         scsi_unprep_request(req);
496         blk_requeue_request(q, req);
497         spin_unlock_irqrestore(q->queue_lock, flags);
498
499         scsi_run_queue(q);
500
501         put_device(&sdev->sdev_gendev);
502 }
503
504 void scsi_next_command(struct scsi_cmnd *cmd)
505 {
506         struct scsi_device *sdev = cmd->device;
507         struct request_queue *q = sdev->request_queue;
508
509         /* need to hold a reference on the device before we let go of the cmd */
510         get_device(&sdev->sdev_gendev);
511
512         scsi_put_command(cmd);
513         scsi_run_queue(q);
514
515         /* ok to remove device now */
516         put_device(&sdev->sdev_gendev);
517 }
518
519 void scsi_run_host_queues(struct Scsi_Host *shost)
520 {
521         struct scsi_device *sdev;
522
523         shost_for_each_device(sdev, shost)
524                 scsi_run_queue(sdev->request_queue);
525 }
526
527 static void __scsi_release_buffers(struct scsi_cmnd *, int);
528
529 /*
530  * Function:    scsi_end_request()
531  *
532  * Purpose:     Post-processing of completed commands (usually invoked at end
533  *              of upper level post-processing and scsi_io_completion).
534  *
535  * Arguments:   cmd      - command that is complete.
536  *              error    - 0 if I/O indicates success, < 0 for I/O error.
537  *              bytes    - number of bytes of completed I/O
538  *              requeue  - indicates whether we should requeue leftovers.
539  *
540  * Lock status: Assumed that lock is not held upon entry.
541  *
542  * Returns:     cmd if requeue required, NULL otherwise.
543  *
544  * Notes:       This is called for block device requests in order to
545  *              mark some number of sectors as complete.
546  * 
547  *              We are guaranteeing that the request queue will be goosed
548  *              at some point during this call.
549  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
550  */
551 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
552                                           int bytes, int requeue)
553 {
554         struct request_queue *q = cmd->device->request_queue;
555         struct request *req = cmd->request;
556
557         /*
558          * If there are blocks left over at the end, set up the command
559          * to queue the remainder of them.
560          */
561         if (blk_end_request(req, error, bytes)) {
562                 /* kill remainder if no retrys */
563                 if (error && scsi_noretry_cmd(cmd))
564                         blk_end_request_all(req, error);
565                 else {
566                         if (requeue) {
567                                 /*
568                                  * Bleah.  Leftovers again.  Stick the
569                                  * leftovers in the front of the
570                                  * queue, and goose the queue again.
571                                  */
572                                 scsi_release_buffers(cmd);
573                                 scsi_requeue_command(q, cmd);
574                                 cmd = NULL;
575                         }
576                         return cmd;
577                 }
578         }
579
580         /*
581          * This will goose the queue request function at the end, so we don't
582          * need to worry about launching another command.
583          */
584         __scsi_release_buffers(cmd, 0);
585         scsi_next_command(cmd);
586         return NULL;
587 }
588
589 static inline unsigned int scsi_sgtable_index(unsigned short nents)
590 {
591         unsigned int index;
592
593         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
594
595         if (nents <= 8)
596                 index = 0;
597         else
598                 index = get_count_order(nents) - 3;
599
600         return index;
601 }
602
603 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
604 {
605         struct scsi_host_sg_pool *sgp;
606
607         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
608         mempool_free(sgl, sgp->pool);
609 }
610
611 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
612 {
613         struct scsi_host_sg_pool *sgp;
614
615         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
616         return mempool_alloc(sgp->pool, gfp_mask);
617 }
618
619 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
620                               gfp_t gfp_mask)
621 {
622         int ret;
623
624         BUG_ON(!nents);
625
626         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
627                                gfp_mask, scsi_sg_alloc);
628         if (unlikely(ret))
629                 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
630                                 scsi_sg_free);
631
632         return ret;
633 }
634
635 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
636 {
637         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
638 }
639
640 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
641 {
642
643         if (cmd->sdb.table.nents)
644                 scsi_free_sgtable(&cmd->sdb);
645
646         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
647
648         if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
649                 struct scsi_data_buffer *bidi_sdb =
650                         cmd->request->next_rq->special;
651                 scsi_free_sgtable(bidi_sdb);
652                 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
653                 cmd->request->next_rq->special = NULL;
654         }
655
656         if (scsi_prot_sg_count(cmd))
657                 scsi_free_sgtable(cmd->prot_sdb);
658 }
659
660 /*
661  * Function:    scsi_release_buffers()
662  *
663  * Purpose:     Completion processing for block device I/O requests.
664  *
665  * Arguments:   cmd     - command that we are bailing.
666  *
667  * Lock status: Assumed that no lock is held upon entry.
668  *
669  * Returns:     Nothing
670  *
671  * Notes:       In the event that an upper level driver rejects a
672  *              command, we must release resources allocated during
673  *              the __init_io() function.  Primarily this would involve
674  *              the scatter-gather table, and potentially any bounce
675  *              buffers.
676  */
677 void scsi_release_buffers(struct scsi_cmnd *cmd)
678 {
679         __scsi_release_buffers(cmd, 1);
680 }
681 EXPORT_SYMBOL(scsi_release_buffers);
682
683 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
684 {
685         int error = 0;
686
687         switch(host_byte(result)) {
688         case DID_TRANSPORT_FAILFAST:
689                 error = -ENOLINK;
690                 break;
691         case DID_TARGET_FAILURE:
692                 cmd->result |= (DID_OK << 16);
693                 error = -EREMOTEIO;
694                 break;
695         case DID_NEXUS_FAILURE:
696                 cmd->result |= (DID_OK << 16);
697                 error = -EBADE;
698                 break;
699         default:
700                 error = -EIO;
701                 break;
702         }
703
704         return error;
705 }
706
707 /*
708  * Function:    scsi_io_completion()
709  *
710  * Purpose:     Completion processing for block device I/O requests.
711  *
712  * Arguments:   cmd   - command that is finished.
713  *
714  * Lock status: Assumed that no lock is held upon entry.
715  *
716  * Returns:     Nothing
717  *
718  * Notes:       This function is matched in terms of capabilities to
719  *              the function that created the scatter-gather list.
720  *              In other words, if there are no bounce buffers
721  *              (the normal case for most drivers), we don't need
722  *              the logic to deal with cleaning up afterwards.
723  *
724  *              We must call scsi_end_request().  This will finish off
725  *              the specified number of sectors.  If we are done, the
726  *              command block will be released and the queue function
727  *              will be goosed.  If we are not done then we have to
728  *              figure out what to do next:
729  *
730  *              a) We can call scsi_requeue_command().  The request
731  *                 will be unprepared and put back on the queue.  Then
732  *                 a new command will be created for it.  This should
733  *                 be used if we made forward progress, or if we want
734  *                 to switch from READ(10) to READ(6) for example.
735  *
736  *              b) We can call scsi_queue_insert().  The request will
737  *                 be put back on the queue and retried using the same
738  *                 command as before, possibly after a delay.
739  *
740  *              c) We can call blk_end_request() with -EIO to fail
741  *                 the remainder of the request.
742  */
743 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
744 {
745         int result = cmd->result;
746         struct request_queue *q = cmd->device->request_queue;
747         struct request *req = cmd->request;
748         int error = 0;
749         struct scsi_sense_hdr sshdr;
750         int sense_valid = 0;
751         int sense_deferred = 0;
752         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
753               ACTION_DELAYED_RETRY} action;
754         char *description = NULL;
755
756         if (result) {
757                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
758                 if (sense_valid)
759                         sense_deferred = scsi_sense_is_deferred(&sshdr);
760         }
761
762         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
763                 req->errors = result;
764                 if (result) {
765                         if (sense_valid && req->sense) {
766                                 /*
767                                  * SG_IO wants current and deferred errors
768                                  */
769                                 int len = 8 + cmd->sense_buffer[7];
770
771                                 if (len > SCSI_SENSE_BUFFERSIZE)
772                                         len = SCSI_SENSE_BUFFERSIZE;
773                                 memcpy(req->sense, cmd->sense_buffer,  len);
774                                 req->sense_len = len;
775                         }
776                         if (!sense_deferred)
777                                 error = __scsi_error_from_host_byte(cmd, result);
778                 }
779
780                 req->resid_len = scsi_get_resid(cmd);
781
782                 if (scsi_bidi_cmnd(cmd)) {
783                         /*
784                          * Bidi commands Must be complete as a whole,
785                          * both sides at once.
786                          */
787                         req->next_rq->resid_len = scsi_in(cmd)->resid;
788
789                         scsi_release_buffers(cmd);
790                         blk_end_request_all(req, 0);
791
792                         scsi_next_command(cmd);
793                         return;
794                 }
795         }
796
797         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
798         BUG_ON(blk_bidi_rq(req));
799
800         /*
801          * Next deal with any sectors which we were able to correctly
802          * handle.
803          */
804         SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
805                                       "%d bytes done.\n",
806                                       blk_rq_sectors(req), good_bytes));
807
808         /*
809          * Recovered errors need reporting, but they're always treated
810          * as success, so fiddle the result code here.  For BLOCK_PC
811          * we already took a copy of the original into rq->errors which
812          * is what gets returned to the user
813          */
814         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
815                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
816                  * print since caller wants ATA registers. Only occurs on
817                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
818                  */
819                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
820                         ;
821                 else if (!(req->cmd_flags & REQ_QUIET))
822                         scsi_print_sense("", cmd);
823                 result = 0;
824                 /* BLOCK_PC may have set error */
825                 error = 0;
826         }
827
828         /*
829          * A number of bytes were successfully read.  If there
830          * are leftovers and there is some kind of error
831          * (result != 0), retry the rest.
832          */
833         if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
834                 return;
835
836         error = __scsi_error_from_host_byte(cmd, result);
837
838         if (host_byte(result) == DID_RESET) {
839                 /* Third party bus reset or reset for error recovery
840                  * reasons.  Just retry the command and see what
841                  * happens.
842                  */
843                 action = ACTION_RETRY;
844         } else if (sense_valid && !sense_deferred) {
845                 switch (sshdr.sense_key) {
846                 case UNIT_ATTENTION:
847                         if (cmd->device->removable) {
848                                 /* Detected disc change.  Set a bit
849                                  * and quietly refuse further access.
850                                  */
851                                 cmd->device->changed = 1;
852                                 description = "Media Changed";
853                                 action = ACTION_FAIL;
854                         } else {
855                                 /* Must have been a power glitch, or a
856                                  * bus reset.  Could not have been a
857                                  * media change, so we just retry the
858                                  * command and see what happens.
859                                  */
860                                 action = ACTION_RETRY;
861                         }
862                         break;
863                 case ILLEGAL_REQUEST:
864                         /* If we had an ILLEGAL REQUEST returned, then
865                          * we may have performed an unsupported
866                          * command.  The only thing this should be
867                          * would be a ten byte read where only a six
868                          * byte read was supported.  Also, on a system
869                          * where READ CAPACITY failed, we may have
870                          * read past the end of the disk.
871                          */
872                         if ((cmd->device->use_10_for_rw &&
873                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
874                             (cmd->cmnd[0] == READ_10 ||
875                              cmd->cmnd[0] == WRITE_10)) {
876                                 /* This will issue a new 6-byte command. */
877                                 cmd->device->use_10_for_rw = 0;
878                                 action = ACTION_REPREP;
879                         } else if (sshdr.asc == 0x10) /* DIX */ {
880                                 description = "Host Data Integrity Failure";
881                                 action = ACTION_FAIL;
882                                 error = -EILSEQ;
883                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
884                         } else if ((sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
885                                    (cmd->cmnd[0] == UNMAP ||
886                                     cmd->cmnd[0] == WRITE_SAME_16 ||
887                                     cmd->cmnd[0] == WRITE_SAME)) {
888                                 description = "Discard failure";
889                                 action = ACTION_FAIL;
890                         } else
891                                 action = ACTION_FAIL;
892                         break;
893                 case ABORTED_COMMAND:
894                         action = ACTION_FAIL;
895                         if (sshdr.asc == 0x10) { /* DIF */
896                                 description = "Target Data Integrity Failure";
897                                 error = -EILSEQ;
898                         }
899                         break;
900                 case NOT_READY:
901                         /* If the device is in the process of becoming
902                          * ready, or has a temporary blockage, retry.
903                          */
904                         if (sshdr.asc == 0x04) {
905                                 switch (sshdr.ascq) {
906                                 case 0x01: /* becoming ready */
907                                 case 0x04: /* format in progress */
908                                 case 0x05: /* rebuild in progress */
909                                 case 0x06: /* recalculation in progress */
910                                 case 0x07: /* operation in progress */
911                                 case 0x08: /* Long write in progress */
912                                 case 0x09: /* self test in progress */
913                                 case 0x14: /* space allocation in progress */
914                                         action = ACTION_DELAYED_RETRY;
915                                         break;
916                                 default:
917                                         description = "Device not ready";
918                                         action = ACTION_FAIL;
919                                         break;
920                                 }
921                         } else {
922                                 description = "Device not ready";
923                                 action = ACTION_FAIL;
924                         }
925                         break;
926                 case VOLUME_OVERFLOW:
927                         /* See SSC3rXX or current. */
928                         action = ACTION_FAIL;
929                         break;
930                 default:
931                         description = "Unhandled sense code";
932                         action = ACTION_FAIL;
933                         break;
934                 }
935         } else {
936                 description = "Unhandled error code";
937                 action = ACTION_FAIL;
938         }
939
940         switch (action) {
941         case ACTION_FAIL:
942                 /* Give up and fail the remainder of the request */
943                 scsi_release_buffers(cmd);
944                 if (!(req->cmd_flags & REQ_QUIET)) {
945                         if (description)
946                                 scmd_printk(KERN_INFO, cmd, "%s\n",
947                                             description);
948                         scsi_print_result(cmd);
949                         if (driver_byte(result) & DRIVER_SENSE)
950                                 scsi_print_sense("", cmd);
951                         scsi_print_command(cmd);
952                 }
953                 if (blk_end_request_err(req, error))
954                         scsi_requeue_command(q, cmd);
955                 else
956                         scsi_next_command(cmd);
957                 break;
958         case ACTION_REPREP:
959                 /* Unprep the request and put it back at the head of the queue.
960                  * A new command will be prepared and issued.
961                  */
962                 scsi_release_buffers(cmd);
963                 scsi_requeue_command(q, cmd);
964                 break;
965         case ACTION_RETRY:
966                 /* Retry the same command immediately */
967                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
968                 break;
969         case ACTION_DELAYED_RETRY:
970                 /* Retry the same command after a delay */
971                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
972                 break;
973         }
974 }
975
976 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
977                              gfp_t gfp_mask)
978 {
979         int count;
980
981         /*
982          * If sg table allocation fails, requeue request later.
983          */
984         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
985                                         gfp_mask))) {
986                 return BLKPREP_DEFER;
987         }
988
989         req->buffer = NULL;
990
991         /* 
992          * Next, walk the list, and fill in the addresses and sizes of
993          * each segment.
994          */
995         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
996         BUG_ON(count > sdb->table.nents);
997         sdb->table.nents = count;
998         sdb->length = blk_rq_bytes(req);
999         return BLKPREP_OK;
1000 }
1001
1002 /*
1003  * Function:    scsi_init_io()
1004  *
1005  * Purpose:     SCSI I/O initialize function.
1006  *
1007  * Arguments:   cmd   - Command descriptor we wish to initialize
1008  *
1009  * Returns:     0 on success
1010  *              BLKPREP_DEFER if the failure is retryable
1011  *              BLKPREP_KILL if the failure is fatal
1012  */
1013 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1014 {
1015         struct request *rq = cmd->request;
1016
1017         int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1018         if (error)
1019                 goto err_exit;
1020
1021         if (blk_bidi_rq(rq)) {
1022                 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1023                         scsi_sdb_cache, GFP_ATOMIC);
1024                 if (!bidi_sdb) {
1025                         error = BLKPREP_DEFER;
1026                         goto err_exit;
1027                 }
1028
1029                 rq->next_rq->special = bidi_sdb;
1030                 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1031                 if (error)
1032                         goto err_exit;
1033         }
1034
1035         if (blk_integrity_rq(rq)) {
1036                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1037                 int ivecs, count;
1038
1039                 BUG_ON(prot_sdb == NULL);
1040                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1041
1042                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1043                         error = BLKPREP_DEFER;
1044                         goto err_exit;
1045                 }
1046
1047                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1048                                                 prot_sdb->table.sgl);
1049                 BUG_ON(unlikely(count > ivecs));
1050                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1051
1052                 cmd->prot_sdb = prot_sdb;
1053                 cmd->prot_sdb->table.nents = count;
1054         }
1055
1056         return BLKPREP_OK ;
1057
1058 err_exit:
1059         scsi_release_buffers(cmd);
1060         cmd->request->special = NULL;
1061         scsi_put_command(cmd);
1062         return error;
1063 }
1064 EXPORT_SYMBOL(scsi_init_io);
1065
1066 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1067                 struct request *req)
1068 {
1069         struct scsi_cmnd *cmd;
1070
1071         if (!req->special) {
1072                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1073                 if (unlikely(!cmd))
1074                         return NULL;
1075                 req->special = cmd;
1076         } else {
1077                 cmd = req->special;
1078         }
1079
1080         /* pull a tag out of the request if we have one */
1081         cmd->tag = req->tag;
1082         cmd->request = req;
1083
1084         cmd->cmnd = req->cmd;
1085         cmd->prot_op = SCSI_PROT_NORMAL;
1086
1087         return cmd;
1088 }
1089
1090 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091 {
1092         struct scsi_cmnd *cmd;
1093         int ret = scsi_prep_state_check(sdev, req);
1094
1095         if (ret != BLKPREP_OK)
1096                 return ret;
1097
1098         cmd = scsi_get_cmd_from_req(sdev, req);
1099         if (unlikely(!cmd))
1100                 return BLKPREP_DEFER;
1101
1102         /*
1103          * BLOCK_PC requests may transfer data, in which case they must
1104          * a bio attached to them.  Or they might contain a SCSI command
1105          * that does not transfer data, in which case they may optionally
1106          * submit a request without an attached bio.
1107          */
1108         if (req->bio) {
1109                 int ret;
1110
1111                 BUG_ON(!req->nr_phys_segments);
1112
1113                 ret = scsi_init_io(cmd, GFP_ATOMIC);
1114                 if (unlikely(ret))
1115                         return ret;
1116         } else {
1117                 BUG_ON(blk_rq_bytes(req));
1118
1119                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1120                 req->buffer = NULL;
1121         }
1122
1123         cmd->cmd_len = req->cmd_len;
1124         if (!blk_rq_bytes(req))
1125                 cmd->sc_data_direction = DMA_NONE;
1126         else if (rq_data_dir(req) == WRITE)
1127                 cmd->sc_data_direction = DMA_TO_DEVICE;
1128         else
1129                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1130         
1131         cmd->transfersize = blk_rq_bytes(req);
1132         cmd->allowed = req->retries;
1133         return BLKPREP_OK;
1134 }
1135 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1136
1137 /*
1138  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1139  * from filesystems that still need to be translated to SCSI CDBs from
1140  * the ULD.
1141  */
1142 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1143 {
1144         struct scsi_cmnd *cmd;
1145         int ret = scsi_prep_state_check(sdev, req);
1146
1147         if (ret != BLKPREP_OK)
1148                 return ret;
1149
1150         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1151                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1152                 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1153                 if (ret != BLKPREP_OK)
1154                         return ret;
1155         }
1156
1157         /*
1158          * Filesystem requests must transfer data.
1159          */
1160         BUG_ON(!req->nr_phys_segments);
1161
1162         cmd = scsi_get_cmd_from_req(sdev, req);
1163         if (unlikely(!cmd))
1164                 return BLKPREP_DEFER;
1165
1166         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1167         return scsi_init_io(cmd, GFP_ATOMIC);
1168 }
1169 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1170
1171 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1172 {
1173         int ret = BLKPREP_OK;
1174
1175         /*
1176          * If the device is not in running state we will reject some
1177          * or all commands.
1178          */
1179         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1180                 switch (sdev->sdev_state) {
1181                 case SDEV_OFFLINE:
1182                         /*
1183                          * If the device is offline we refuse to process any
1184                          * commands.  The device must be brought online
1185                          * before trying any recovery commands.
1186                          */
1187                         sdev_printk(KERN_ERR, sdev,
1188                                     "rejecting I/O to offline device\n");
1189                         ret = BLKPREP_KILL;
1190                         break;
1191                 case SDEV_DEL:
1192                         /*
1193                          * If the device is fully deleted, we refuse to
1194                          * process any commands as well.
1195                          */
1196                         sdev_printk(KERN_ERR, sdev,
1197                                     "rejecting I/O to dead device\n");
1198                         ret = BLKPREP_KILL;
1199                         break;
1200                 case SDEV_QUIESCE:
1201                 case SDEV_BLOCK:
1202                 case SDEV_CREATED_BLOCK:
1203                         /*
1204                          * If the devices is blocked we defer normal commands.
1205                          */
1206                         if (!(req->cmd_flags & REQ_PREEMPT))
1207                                 ret = BLKPREP_DEFER;
1208                         break;
1209                 default:
1210                         /*
1211                          * For any other not fully online state we only allow
1212                          * special commands.  In particular any user initiated
1213                          * command is not allowed.
1214                          */
1215                         if (!(req->cmd_flags & REQ_PREEMPT))
1216                                 ret = BLKPREP_KILL;
1217                         break;
1218                 }
1219         }
1220         return ret;
1221 }
1222 EXPORT_SYMBOL(scsi_prep_state_check);
1223
1224 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1225 {
1226         struct scsi_device *sdev = q->queuedata;
1227
1228         switch (ret) {
1229         case BLKPREP_KILL:
1230                 req->errors = DID_NO_CONNECT << 16;
1231                 /* release the command and kill it */
1232                 if (req->special) {
1233                         struct scsi_cmnd *cmd = req->special;
1234                         scsi_release_buffers(cmd);
1235                         scsi_put_command(cmd);
1236                         req->special = NULL;
1237                 }
1238                 break;
1239         case BLKPREP_DEFER:
1240                 /*
1241                  * If we defer, the blk_peek_request() returns NULL, but the
1242                  * queue must be restarted, so we schedule a callback to happen
1243                  * shortly.
1244                  */
1245                 if (sdev->device_busy == 0)
1246                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1247                 break;
1248         default:
1249                 req->cmd_flags |= REQ_DONTPREP;
1250         }
1251
1252         return ret;
1253 }
1254 EXPORT_SYMBOL(scsi_prep_return);
1255
1256 int scsi_prep_fn(struct request_queue *q, struct request *req)
1257 {
1258         struct scsi_device *sdev = q->queuedata;
1259         int ret = BLKPREP_KILL;
1260
1261         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1262                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1263         return scsi_prep_return(q, req, ret);
1264 }
1265 EXPORT_SYMBOL(scsi_prep_fn);
1266
1267 /*
1268  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1269  * return 0.
1270  *
1271  * Called with the queue_lock held.
1272  */
1273 static inline int scsi_dev_queue_ready(struct request_queue *q,
1274                                   struct scsi_device *sdev)
1275 {
1276         if (sdev->device_busy == 0 && sdev->device_blocked) {
1277                 /*
1278                  * unblock after device_blocked iterates to zero
1279                  */
1280                 if (--sdev->device_blocked == 0) {
1281                         SCSI_LOG_MLQUEUE(3,
1282                                    sdev_printk(KERN_INFO, sdev,
1283                                    "unblocking device at zero depth\n"));
1284                 } else {
1285                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1286                         return 0;
1287                 }
1288         }
1289         if (scsi_device_is_busy(sdev))
1290                 return 0;
1291
1292         return 1;
1293 }
1294
1295
1296 /*
1297  * scsi_target_queue_ready: checks if there we can send commands to target
1298  * @sdev: scsi device on starget to check.
1299  *
1300  * Called with the host lock held.
1301  */
1302 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1303                                            struct scsi_device *sdev)
1304 {
1305         struct scsi_target *starget = scsi_target(sdev);
1306
1307         if (starget->single_lun) {
1308                 if (starget->starget_sdev_user &&
1309                     starget->starget_sdev_user != sdev)
1310                         return 0;
1311                 starget->starget_sdev_user = sdev;
1312         }
1313
1314         if (starget->target_busy == 0 && starget->target_blocked) {
1315                 /*
1316                  * unblock after target_blocked iterates to zero
1317                  */
1318                 if (--starget->target_blocked == 0) {
1319                         SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1320                                          "unblocking target at zero depth\n"));
1321                 } else
1322                         return 0;
1323         }
1324
1325         if (scsi_target_is_busy(starget)) {
1326                 if (list_empty(&sdev->starved_entry))
1327                         list_add_tail(&sdev->starved_entry,
1328                                       &shost->starved_list);
1329                 return 0;
1330         }
1331
1332         /* We're OK to process the command, so we can't be starved */
1333         if (!list_empty(&sdev->starved_entry))
1334                 list_del_init(&sdev->starved_entry);
1335         return 1;
1336 }
1337
1338 /*
1339  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1340  * return 0. We must end up running the queue again whenever 0 is
1341  * returned, else IO can hang.
1342  *
1343  * Called with host_lock held.
1344  */
1345 static inline int scsi_host_queue_ready(struct request_queue *q,
1346                                    struct Scsi_Host *shost,
1347                                    struct scsi_device *sdev)
1348 {
1349         if (scsi_host_in_recovery(shost))
1350                 return 0;
1351         if (shost->host_busy == 0 && shost->host_blocked) {
1352                 /*
1353                  * unblock after host_blocked iterates to zero
1354                  */
1355                 if (--shost->host_blocked == 0) {
1356                         SCSI_LOG_MLQUEUE(3,
1357                                 printk("scsi%d unblocking host at zero depth\n",
1358                                         shost->host_no));
1359                 } else {
1360                         return 0;
1361                 }
1362         }
1363         if (scsi_host_is_busy(shost)) {
1364                 if (list_empty(&sdev->starved_entry))
1365                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1366                 return 0;
1367         }
1368
1369         /* We're OK to process the command, so we can't be starved */
1370         if (!list_empty(&sdev->starved_entry))
1371                 list_del_init(&sdev->starved_entry);
1372
1373         return 1;
1374 }
1375
1376 /*
1377  * Busy state exporting function for request stacking drivers.
1378  *
1379  * For efficiency, no lock is taken to check the busy state of
1380  * shost/starget/sdev, since the returned value is not guaranteed and
1381  * may be changed after request stacking drivers call the function,
1382  * regardless of taking lock or not.
1383  *
1384  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1385  * needs to return 'not busy'. Otherwise, request stacking drivers
1386  * may hold requests forever.
1387  */
1388 static int scsi_lld_busy(struct request_queue *q)
1389 {
1390         struct scsi_device *sdev = q->queuedata;
1391         struct Scsi_Host *shost;
1392
1393         if (blk_queue_dead(q))
1394                 return 0;
1395
1396         shost = sdev->host;
1397
1398         /*
1399          * Ignore host/starget busy state.
1400          * Since block layer does not have a concept of fairness across
1401          * multiple queues, congestion of host/starget needs to be handled
1402          * in SCSI layer.
1403          */
1404         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1405                 return 1;
1406
1407         return 0;
1408 }
1409
1410 /*
1411  * Kill a request for a dead device
1412  */
1413 static void scsi_kill_request(struct request *req, struct request_queue *q)
1414 {
1415         struct scsi_cmnd *cmd = req->special;
1416         struct scsi_device *sdev;
1417         struct scsi_target *starget;
1418         struct Scsi_Host *shost;
1419
1420         blk_start_request(req);
1421
1422         scmd_printk(KERN_INFO, cmd, "killing request\n");
1423
1424         sdev = cmd->device;
1425         starget = scsi_target(sdev);
1426         shost = sdev->host;
1427         scsi_init_cmd_errh(cmd);
1428         cmd->result = DID_NO_CONNECT << 16;
1429         atomic_inc(&cmd->device->iorequest_cnt);
1430
1431         /*
1432          * SCSI request completion path will do scsi_device_unbusy(),
1433          * bump busy counts.  To bump the counters, we need to dance
1434          * with the locks as normal issue path does.
1435          */
1436         sdev->device_busy++;
1437         spin_unlock(sdev->request_queue->queue_lock);
1438         spin_lock(shost->host_lock);
1439         shost->host_busy++;
1440         starget->target_busy++;
1441         spin_unlock(shost->host_lock);
1442         spin_lock(sdev->request_queue->queue_lock);
1443
1444         blk_complete_request(req);
1445 }
1446
1447 static void scsi_softirq_done(struct request *rq)
1448 {
1449         struct scsi_cmnd *cmd = rq->special;
1450         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1451         int disposition;
1452
1453         INIT_LIST_HEAD(&cmd->eh_entry);
1454
1455         atomic_inc(&cmd->device->iodone_cnt);
1456         if (cmd->result)
1457                 atomic_inc(&cmd->device->ioerr_cnt);
1458
1459         disposition = scsi_decide_disposition(cmd);
1460         if (disposition != SUCCESS &&
1461             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1462                 sdev_printk(KERN_ERR, cmd->device,
1463                             "timing out command, waited %lus\n",
1464                             wait_for/HZ);
1465                 disposition = SUCCESS;
1466         }
1467                         
1468         scsi_log_completion(cmd, disposition);
1469
1470         switch (disposition) {
1471                 case SUCCESS:
1472                         scsi_finish_command(cmd);
1473                         break;
1474                 case NEEDS_RETRY:
1475                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1476                         break;
1477                 case ADD_TO_MLQUEUE:
1478                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1479                         break;
1480                 default:
1481                         if (!scsi_eh_scmd_add(cmd, 0))
1482                                 scsi_finish_command(cmd);
1483         }
1484 }
1485
1486 /*
1487  * Function:    scsi_request_fn()
1488  *
1489  * Purpose:     Main strategy routine for SCSI.
1490  *
1491  * Arguments:   q       - Pointer to actual queue.
1492  *
1493  * Returns:     Nothing
1494  *
1495  * Lock status: IO request lock assumed to be held when called.
1496  */
1497 static void scsi_request_fn(struct request_queue *q)
1498 {
1499         struct scsi_device *sdev = q->queuedata;
1500         struct Scsi_Host *shost;
1501         struct scsi_cmnd *cmd;
1502         struct request *req;
1503
1504         if(!get_device(&sdev->sdev_gendev))
1505                 /* We must be tearing the block queue down already */
1506                 return;
1507
1508         /*
1509          * To start with, we keep looping until the queue is empty, or until
1510          * the host is no longer able to accept any more requests.
1511          */
1512         shost = sdev->host;
1513         for (;;) {
1514                 int rtn;
1515                 /*
1516                  * get next queueable request.  We do this early to make sure
1517                  * that the request is fully prepared even if we cannot 
1518                  * accept it.
1519                  */
1520                 req = blk_peek_request(q);
1521                 if (!req || !scsi_dev_queue_ready(q, sdev))
1522                         break;
1523
1524                 if (unlikely(!scsi_device_online(sdev))) {
1525                         sdev_printk(KERN_ERR, sdev,
1526                                     "rejecting I/O to offline device\n");
1527                         scsi_kill_request(req, q);
1528                         continue;
1529                 }
1530
1531
1532                 /*
1533                  * Remove the request from the request list.
1534                  */
1535                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1536                         blk_start_request(req);
1537                 sdev->device_busy++;
1538
1539                 spin_unlock(q->queue_lock);
1540                 cmd = req->special;
1541                 if (unlikely(cmd == NULL)) {
1542                         printk(KERN_CRIT "impossible request in %s.\n"
1543                                          "please mail a stack trace to "
1544                                          "linux-scsi@vger.kernel.org\n",
1545                                          __func__);
1546                         blk_dump_rq_flags(req, "foo");
1547                         BUG();
1548                 }
1549                 spin_lock(shost->host_lock);
1550
1551                 /*
1552                  * We hit this when the driver is using a host wide
1553                  * tag map. For device level tag maps the queue_depth check
1554                  * in the device ready fn would prevent us from trying
1555                  * to allocate a tag. Since the map is a shared host resource
1556                  * we add the dev to the starved list so it eventually gets
1557                  * a run when a tag is freed.
1558                  */
1559                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1560                         if (list_empty(&sdev->starved_entry))
1561                                 list_add_tail(&sdev->starved_entry,
1562                                               &shost->starved_list);
1563                         goto not_ready;
1564                 }
1565
1566                 if (!scsi_target_queue_ready(shost, sdev))
1567                         goto not_ready;
1568
1569                 if (!scsi_host_queue_ready(q, shost, sdev))
1570                         goto not_ready;
1571
1572                 scsi_target(sdev)->target_busy++;
1573                 shost->host_busy++;
1574
1575                 /*
1576                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1577                  *              take the lock again.
1578                  */
1579                 spin_unlock_irq(shost->host_lock);
1580
1581                 /*
1582                  * Finally, initialize any error handling parameters, and set up
1583                  * the timers for timeouts.
1584                  */
1585                 scsi_init_cmd_errh(cmd);
1586
1587                 /*
1588                  * Dispatch the command to the low-level driver.
1589                  */
1590                 rtn = scsi_dispatch_cmd(cmd);
1591                 spin_lock_irq(q->queue_lock);
1592                 if (rtn)
1593                         goto out_delay;
1594         }
1595
1596         goto out;
1597
1598  not_ready:
1599         spin_unlock_irq(shost->host_lock);
1600
1601         /*
1602          * lock q, handle tag, requeue req, and decrement device_busy. We
1603          * must return with queue_lock held.
1604          *
1605          * Decrementing device_busy without checking it is OK, as all such
1606          * cases (host limits or settings) should run the queue at some
1607          * later time.
1608          */
1609         spin_lock_irq(q->queue_lock);
1610         blk_requeue_request(q, req);
1611         sdev->device_busy--;
1612 out_delay:
1613         if (sdev->device_busy == 0)
1614                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1615 out:
1616         /* must be careful here...if we trigger the ->remove() function
1617          * we cannot be holding the q lock */
1618         spin_unlock_irq(q->queue_lock);
1619         put_device(&sdev->sdev_gendev);
1620         spin_lock_irq(q->queue_lock);
1621 }
1622
1623 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1624 {
1625         struct device *host_dev;
1626         u64 bounce_limit = 0xffffffff;
1627
1628         if (shost->unchecked_isa_dma)
1629                 return BLK_BOUNCE_ISA;
1630         /*
1631          * Platforms with virtual-DMA translation
1632          * hardware have no practical limit.
1633          */
1634         if (!PCI_DMA_BUS_IS_PHYS)
1635                 return BLK_BOUNCE_ANY;
1636
1637         host_dev = scsi_get_device(shost);
1638         if (host_dev && host_dev->dma_mask)
1639                 bounce_limit = *host_dev->dma_mask;
1640
1641         return bounce_limit;
1642 }
1643 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1644
1645 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1646                                          request_fn_proc *request_fn)
1647 {
1648         struct request_queue *q;
1649         struct device *dev = shost->shost_gendev.parent;
1650
1651         q = blk_init_queue(request_fn, NULL);
1652         if (!q)
1653                 return NULL;
1654
1655         /*
1656          * this limit is imposed by hardware restrictions
1657          */
1658         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1659                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1660
1661         if (scsi_host_prot_dma(shost)) {
1662                 shost->sg_prot_tablesize =
1663                         min_not_zero(shost->sg_prot_tablesize,
1664                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1665                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1666                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1667         }
1668
1669         blk_queue_max_hw_sectors(q, shost->max_sectors);
1670         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1671         blk_queue_segment_boundary(q, shost->dma_boundary);
1672         dma_set_seg_boundary(dev, shost->dma_boundary);
1673
1674         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1675
1676         if (!shost->use_clustering)
1677                 q->limits.cluster = 0;
1678
1679         /*
1680          * set a reasonable default alignment on word boundaries: the
1681          * host and device may alter it using
1682          * blk_queue_update_dma_alignment() later.
1683          */
1684         blk_queue_dma_alignment(q, 0x03);
1685
1686         return q;
1687 }
1688 EXPORT_SYMBOL(__scsi_alloc_queue);
1689
1690 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1691 {
1692         struct request_queue *q;
1693
1694         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1695         if (!q)
1696                 return NULL;
1697
1698         blk_queue_prep_rq(q, scsi_prep_fn);
1699         blk_queue_softirq_done(q, scsi_softirq_done);
1700         blk_queue_rq_timed_out(q, scsi_times_out);
1701         blk_queue_lld_busy(q, scsi_lld_busy);
1702         return q;
1703 }
1704
1705 /*
1706  * Function:    scsi_block_requests()
1707  *
1708  * Purpose:     Utility function used by low-level drivers to prevent further
1709  *              commands from being queued to the device.
1710  *
1711  * Arguments:   shost       - Host in question
1712  *
1713  * Returns:     Nothing
1714  *
1715  * Lock status: No locks are assumed held.
1716  *
1717  * Notes:       There is no timer nor any other means by which the requests
1718  *              get unblocked other than the low-level driver calling
1719  *              scsi_unblock_requests().
1720  */
1721 void scsi_block_requests(struct Scsi_Host *shost)
1722 {
1723         shost->host_self_blocked = 1;
1724 }
1725 EXPORT_SYMBOL(scsi_block_requests);
1726
1727 /*
1728  * Function:    scsi_unblock_requests()
1729  *
1730  * Purpose:     Utility function used by low-level drivers to allow further
1731  *              commands from being queued to the device.
1732  *
1733  * Arguments:   shost       - Host in question
1734  *
1735  * Returns:     Nothing
1736  *
1737  * Lock status: No locks are assumed held.
1738  *
1739  * Notes:       There is no timer nor any other means by which the requests
1740  *              get unblocked other than the low-level driver calling
1741  *              scsi_unblock_requests().
1742  *
1743  *              This is done as an API function so that changes to the
1744  *              internals of the scsi mid-layer won't require wholesale
1745  *              changes to drivers that use this feature.
1746  */
1747 void scsi_unblock_requests(struct Scsi_Host *shost)
1748 {
1749         shost->host_self_blocked = 0;
1750         scsi_run_host_queues(shost);
1751 }
1752 EXPORT_SYMBOL(scsi_unblock_requests);
1753
1754 int __init scsi_init_queue(void)
1755 {
1756         int i;
1757
1758         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1759                                            sizeof(struct scsi_data_buffer),
1760                                            0, 0, NULL);
1761         if (!scsi_sdb_cache) {
1762                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1763                 return -ENOMEM;
1764         }
1765
1766         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1767                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1768                 int size = sgp->size * sizeof(struct scatterlist);
1769
1770                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1771                                 SLAB_HWCACHE_ALIGN, NULL);
1772                 if (!sgp->slab) {
1773                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1774                                         sgp->name);
1775                         goto cleanup_sdb;
1776                 }
1777
1778                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1779                                                      sgp->slab);
1780                 if (!sgp->pool) {
1781                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1782                                         sgp->name);
1783                         goto cleanup_sdb;
1784                 }
1785         }
1786
1787         return 0;
1788
1789 cleanup_sdb:
1790         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1791                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1792                 if (sgp->pool)
1793                         mempool_destroy(sgp->pool);
1794                 if (sgp->slab)
1795                         kmem_cache_destroy(sgp->slab);
1796         }
1797         kmem_cache_destroy(scsi_sdb_cache);
1798
1799         return -ENOMEM;
1800 }
1801
1802 void scsi_exit_queue(void)
1803 {
1804         int i;
1805
1806         kmem_cache_destroy(scsi_sdb_cache);
1807
1808         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1809                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1810                 mempool_destroy(sgp->pool);
1811                 kmem_cache_destroy(sgp->slab);
1812         }
1813 }
1814
1815 /**
1816  *      scsi_mode_select - issue a mode select
1817  *      @sdev:  SCSI device to be queried
1818  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1819  *      @sp:    Save page bit (0 == don't save, 1 == save)
1820  *      @modepage: mode page being requested
1821  *      @buffer: request buffer (may not be smaller than eight bytes)
1822  *      @len:   length of request buffer.
1823  *      @timeout: command timeout
1824  *      @retries: number of retries before failing
1825  *      @data: returns a structure abstracting the mode header data
1826  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1827  *              must be SCSI_SENSE_BUFFERSIZE big.
1828  *
1829  *      Returns zero if successful; negative error number or scsi
1830  *      status on error
1831  *
1832  */
1833 int
1834 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1835                  unsigned char *buffer, int len, int timeout, int retries,
1836                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1837 {
1838         unsigned char cmd[10];
1839         unsigned char *real_buffer;
1840         int ret;
1841
1842         memset(cmd, 0, sizeof(cmd));
1843         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1844
1845         if (sdev->use_10_for_ms) {
1846                 if (len > 65535)
1847                         return -EINVAL;
1848                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1849                 if (!real_buffer)
1850                         return -ENOMEM;
1851                 memcpy(real_buffer + 8, buffer, len);
1852                 len += 8;
1853                 real_buffer[0] = 0;
1854                 real_buffer[1] = 0;
1855                 real_buffer[2] = data->medium_type;
1856                 real_buffer[3] = data->device_specific;
1857                 real_buffer[4] = data->longlba ? 0x01 : 0;
1858                 real_buffer[5] = 0;
1859                 real_buffer[6] = data->block_descriptor_length >> 8;
1860                 real_buffer[7] = data->block_descriptor_length;
1861
1862                 cmd[0] = MODE_SELECT_10;
1863                 cmd[7] = len >> 8;
1864                 cmd[8] = len;
1865         } else {
1866                 if (len > 255 || data->block_descriptor_length > 255 ||
1867                     data->longlba)
1868                         return -EINVAL;
1869
1870                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1871                 if (!real_buffer)
1872                         return -ENOMEM;
1873                 memcpy(real_buffer + 4, buffer, len);
1874                 len += 4;
1875                 real_buffer[0] = 0;
1876                 real_buffer[1] = data->medium_type;
1877                 real_buffer[2] = data->device_specific;
1878                 real_buffer[3] = data->block_descriptor_length;
1879                 
1880
1881                 cmd[0] = MODE_SELECT;
1882                 cmd[4] = len;
1883         }
1884
1885         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1886                                sshdr, timeout, retries, NULL);
1887         kfree(real_buffer);
1888         return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(scsi_mode_select);
1891
1892 /**
1893  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1894  *      @sdev:  SCSI device to be queried
1895  *      @dbd:   set if mode sense will allow block descriptors to be returned
1896  *      @modepage: mode page being requested
1897  *      @buffer: request buffer (may not be smaller than eight bytes)
1898  *      @len:   length of request buffer.
1899  *      @timeout: command timeout
1900  *      @retries: number of retries before failing
1901  *      @data: returns a structure abstracting the mode header data
1902  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1903  *              must be SCSI_SENSE_BUFFERSIZE big.
1904  *
1905  *      Returns zero if unsuccessful, or the header offset (either 4
1906  *      or 8 depending on whether a six or ten byte command was
1907  *      issued) if successful.
1908  */
1909 int
1910 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1911                   unsigned char *buffer, int len, int timeout, int retries,
1912                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1913 {
1914         unsigned char cmd[12];
1915         int use_10_for_ms;
1916         int header_length;
1917         int result;
1918         struct scsi_sense_hdr my_sshdr;
1919
1920         memset(data, 0, sizeof(*data));
1921         memset(&cmd[0], 0, 12);
1922         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1923         cmd[2] = modepage;
1924
1925         /* caller might not be interested in sense, but we need it */
1926         if (!sshdr)
1927                 sshdr = &my_sshdr;
1928
1929  retry:
1930         use_10_for_ms = sdev->use_10_for_ms;
1931
1932         if (use_10_for_ms) {
1933                 if (len < 8)
1934                         len = 8;
1935
1936                 cmd[0] = MODE_SENSE_10;
1937                 cmd[8] = len;
1938                 header_length = 8;
1939         } else {
1940                 if (len < 4)
1941                         len = 4;
1942
1943                 cmd[0] = MODE_SENSE;
1944                 cmd[4] = len;
1945                 header_length = 4;
1946         }
1947
1948         memset(buffer, 0, len);
1949
1950         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1951                                   sshdr, timeout, retries, NULL);
1952
1953         /* This code looks awful: what it's doing is making sure an
1954          * ILLEGAL REQUEST sense return identifies the actual command
1955          * byte as the problem.  MODE_SENSE commands can return
1956          * ILLEGAL REQUEST if the code page isn't supported */
1957
1958         if (use_10_for_ms && !scsi_status_is_good(result) &&
1959             (driver_byte(result) & DRIVER_SENSE)) {
1960                 if (scsi_sense_valid(sshdr)) {
1961                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1962                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1963                                 /* 
1964                                  * Invalid command operation code
1965                                  */
1966                                 sdev->use_10_for_ms = 0;
1967                                 goto retry;
1968                         }
1969                 }
1970         }
1971
1972         if(scsi_status_is_good(result)) {
1973                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1974                              (modepage == 6 || modepage == 8))) {
1975                         /* Initio breakage? */
1976                         header_length = 0;
1977                         data->length = 13;
1978                         data->medium_type = 0;
1979                         data->device_specific = 0;
1980                         data->longlba = 0;
1981                         data->block_descriptor_length = 0;
1982                 } else if(use_10_for_ms) {
1983                         data->length = buffer[0]*256 + buffer[1] + 2;
1984                         data->medium_type = buffer[2];
1985                         data->device_specific = buffer[3];
1986                         data->longlba = buffer[4] & 0x01;
1987                         data->block_descriptor_length = buffer[6]*256
1988                                 + buffer[7];
1989                 } else {
1990                         data->length = buffer[0] + 1;
1991                         data->medium_type = buffer[1];
1992                         data->device_specific = buffer[2];
1993                         data->block_descriptor_length = buffer[3];
1994                 }
1995                 data->header_length = header_length;
1996         }
1997
1998         return result;
1999 }
2000 EXPORT_SYMBOL(scsi_mode_sense);
2001
2002 /**
2003  *      scsi_test_unit_ready - test if unit is ready
2004  *      @sdev:  scsi device to change the state of.
2005  *      @timeout: command timeout
2006  *      @retries: number of retries before failing
2007  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2008  *              returning sense. Make sure that this is cleared before passing
2009  *              in.
2010  *
2011  *      Returns zero if unsuccessful or an error if TUR failed.  For
2012  *      removable media, UNIT_ATTENTION sets ->changed flag.
2013  **/
2014 int
2015 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2016                      struct scsi_sense_hdr *sshdr_external)
2017 {
2018         char cmd[] = {
2019                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2020         };
2021         struct scsi_sense_hdr *sshdr;
2022         int result;
2023
2024         if (!sshdr_external)
2025                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2026         else
2027                 sshdr = sshdr_external;
2028
2029         /* try to eat the UNIT_ATTENTION if there are enough retries */
2030         do {
2031                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2032                                           timeout, retries, NULL);
2033                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2034                     sshdr->sense_key == UNIT_ATTENTION)
2035                         sdev->changed = 1;
2036         } while (scsi_sense_valid(sshdr) &&
2037                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2038
2039         if (!sshdr_external)
2040                 kfree(sshdr);
2041         return result;
2042 }
2043 EXPORT_SYMBOL(scsi_test_unit_ready);
2044
2045 /**
2046  *      scsi_device_set_state - Take the given device through the device state model.
2047  *      @sdev:  scsi device to change the state of.
2048  *      @state: state to change to.
2049  *
2050  *      Returns zero if unsuccessful or an error if the requested 
2051  *      transition is illegal.
2052  */
2053 int
2054 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2055 {
2056         enum scsi_device_state oldstate = sdev->sdev_state;
2057
2058         if (state == oldstate)
2059                 return 0;
2060
2061         switch (state) {
2062         case SDEV_CREATED:
2063                 switch (oldstate) {
2064                 case SDEV_CREATED_BLOCK:
2065                         break;
2066                 default:
2067                         goto illegal;
2068                 }
2069                 break;
2070                         
2071         case SDEV_RUNNING:
2072                 switch (oldstate) {
2073                 case SDEV_CREATED:
2074                 case SDEV_OFFLINE:
2075                 case SDEV_QUIESCE:
2076                 case SDEV_BLOCK:
2077                         break;
2078                 default:
2079                         goto illegal;
2080                 }
2081                 break;
2082
2083         case SDEV_QUIESCE:
2084                 switch (oldstate) {
2085                 case SDEV_RUNNING:
2086                 case SDEV_OFFLINE:
2087                         break;
2088                 default:
2089                         goto illegal;
2090                 }
2091                 break;
2092
2093         case SDEV_OFFLINE:
2094                 switch (oldstate) {
2095                 case SDEV_CREATED:
2096                 case SDEV_RUNNING:
2097                 case SDEV_QUIESCE:
2098                 case SDEV_BLOCK:
2099                         break;
2100                 default:
2101                         goto illegal;
2102                 }
2103                 break;
2104
2105         case SDEV_BLOCK:
2106                 switch (oldstate) {
2107                 case SDEV_RUNNING:
2108                 case SDEV_CREATED_BLOCK:
2109                         break;
2110                 default:
2111                         goto illegal;
2112                 }
2113                 break;
2114
2115         case SDEV_CREATED_BLOCK:
2116                 switch (oldstate) {
2117                 case SDEV_CREATED:
2118                         break;
2119                 default:
2120                         goto illegal;
2121                 }
2122                 break;
2123
2124         case SDEV_CANCEL:
2125                 switch (oldstate) {
2126                 case SDEV_CREATED:
2127                 case SDEV_RUNNING:
2128                 case SDEV_QUIESCE:
2129                 case SDEV_OFFLINE:
2130                 case SDEV_BLOCK:
2131                         break;
2132                 default:
2133                         goto illegal;
2134                 }
2135                 break;
2136
2137         case SDEV_DEL:
2138                 switch (oldstate) {
2139                 case SDEV_CREATED:
2140                 case SDEV_RUNNING:
2141                 case SDEV_OFFLINE:
2142                 case SDEV_CANCEL:
2143                         break;
2144                 default:
2145                         goto illegal;
2146                 }
2147                 break;
2148
2149         }
2150         sdev->sdev_state = state;
2151         return 0;
2152
2153  illegal:
2154         SCSI_LOG_ERROR_RECOVERY(1, 
2155                                 sdev_printk(KERN_ERR, sdev,
2156                                             "Illegal state transition %s->%s\n",
2157                                             scsi_device_state_name(oldstate),
2158                                             scsi_device_state_name(state))
2159                                 );
2160         return -EINVAL;
2161 }
2162 EXPORT_SYMBOL(scsi_device_set_state);
2163
2164 /**
2165  *      sdev_evt_emit - emit a single SCSI device uevent
2166  *      @sdev: associated SCSI device
2167  *      @evt: event to emit
2168  *
2169  *      Send a single uevent (scsi_event) to the associated scsi_device.
2170  */
2171 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2172 {
2173         int idx = 0;
2174         char *envp[3];
2175
2176         switch (evt->evt_type) {
2177         case SDEV_EVT_MEDIA_CHANGE:
2178                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2179                 break;
2180
2181         default:
2182                 /* do nothing */
2183                 break;
2184         }
2185
2186         envp[idx++] = NULL;
2187
2188         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2189 }
2190
2191 /**
2192  *      sdev_evt_thread - send a uevent for each scsi event
2193  *      @work: work struct for scsi_device
2194  *
2195  *      Dispatch queued events to their associated scsi_device kobjects
2196  *      as uevents.
2197  */
2198 void scsi_evt_thread(struct work_struct *work)
2199 {
2200         struct scsi_device *sdev;
2201         LIST_HEAD(event_list);
2202
2203         sdev = container_of(work, struct scsi_device, event_work);
2204
2205         while (1) {
2206                 struct scsi_event *evt;
2207                 struct list_head *this, *tmp;
2208                 unsigned long flags;
2209
2210                 spin_lock_irqsave(&sdev->list_lock, flags);
2211                 list_splice_init(&sdev->event_list, &event_list);
2212                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2213
2214                 if (list_empty(&event_list))
2215                         break;
2216
2217                 list_for_each_safe(this, tmp, &event_list) {
2218                         evt = list_entry(this, struct scsi_event, node);
2219                         list_del(&evt->node);
2220                         scsi_evt_emit(sdev, evt);
2221                         kfree(evt);
2222                 }
2223         }
2224 }
2225
2226 /**
2227  *      sdev_evt_send - send asserted event to uevent thread
2228  *      @sdev: scsi_device event occurred on
2229  *      @evt: event to send
2230  *
2231  *      Assert scsi device event asynchronously.
2232  */
2233 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2234 {
2235         unsigned long flags;
2236
2237 #if 0
2238         /* FIXME: currently this check eliminates all media change events
2239          * for polled devices.  Need to update to discriminate between AN
2240          * and polled events */
2241         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2242                 kfree(evt);
2243                 return;
2244         }
2245 #endif
2246
2247         spin_lock_irqsave(&sdev->list_lock, flags);
2248         list_add_tail(&evt->node, &sdev->event_list);
2249         schedule_work(&sdev->event_work);
2250         spin_unlock_irqrestore(&sdev->list_lock, flags);
2251 }
2252 EXPORT_SYMBOL_GPL(sdev_evt_send);
2253
2254 /**
2255  *      sdev_evt_alloc - allocate a new scsi event
2256  *      @evt_type: type of event to allocate
2257  *      @gfpflags: GFP flags for allocation
2258  *
2259  *      Allocates and returns a new scsi_event.
2260  */
2261 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2262                                   gfp_t gfpflags)
2263 {
2264         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2265         if (!evt)
2266                 return NULL;
2267
2268         evt->evt_type = evt_type;
2269         INIT_LIST_HEAD(&evt->node);
2270
2271         /* evt_type-specific initialization, if any */
2272         switch (evt_type) {
2273         case SDEV_EVT_MEDIA_CHANGE:
2274         default:
2275                 /* do nothing */
2276                 break;
2277         }
2278
2279         return evt;
2280 }
2281 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2282
2283 /**
2284  *      sdev_evt_send_simple - send asserted event to uevent thread
2285  *      @sdev: scsi_device event occurred on
2286  *      @evt_type: type of event to send
2287  *      @gfpflags: GFP flags for allocation
2288  *
2289  *      Assert scsi device event asynchronously, given an event type.
2290  */
2291 void sdev_evt_send_simple(struct scsi_device *sdev,
2292                           enum scsi_device_event evt_type, gfp_t gfpflags)
2293 {
2294         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2295         if (!evt) {
2296                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2297                             evt_type);
2298                 return;
2299         }
2300
2301         sdev_evt_send(sdev, evt);
2302 }
2303 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2304
2305 /**
2306  *      scsi_device_quiesce - Block user issued commands.
2307  *      @sdev:  scsi device to quiesce.
2308  *
2309  *      This works by trying to transition to the SDEV_QUIESCE state
2310  *      (which must be a legal transition).  When the device is in this
2311  *      state, only special requests will be accepted, all others will
2312  *      be deferred.  Since special requests may also be requeued requests,
2313  *      a successful return doesn't guarantee the device will be 
2314  *      totally quiescent.
2315  *
2316  *      Must be called with user context, may sleep.
2317  *
2318  *      Returns zero if unsuccessful or an error if not.
2319  */
2320 int
2321 scsi_device_quiesce(struct scsi_device *sdev)
2322 {
2323         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2324         if (err)
2325                 return err;
2326
2327         scsi_run_queue(sdev->request_queue);
2328         while (sdev->device_busy) {
2329                 msleep_interruptible(200);
2330                 scsi_run_queue(sdev->request_queue);
2331         }
2332         return 0;
2333 }
2334 EXPORT_SYMBOL(scsi_device_quiesce);
2335
2336 /**
2337  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2338  *      @sdev:  scsi device to resume.
2339  *
2340  *      Moves the device from quiesced back to running and restarts the
2341  *      queues.
2342  *
2343  *      Must be called with user context, may sleep.
2344  */
2345 void
2346 scsi_device_resume(struct scsi_device *sdev)
2347 {
2348         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2349                 return;
2350         scsi_run_queue(sdev->request_queue);
2351 }
2352 EXPORT_SYMBOL(scsi_device_resume);
2353
2354 static void
2355 device_quiesce_fn(struct scsi_device *sdev, void *data)
2356 {
2357         scsi_device_quiesce(sdev);
2358 }
2359
2360 void
2361 scsi_target_quiesce(struct scsi_target *starget)
2362 {
2363         starget_for_each_device(starget, NULL, device_quiesce_fn);
2364 }
2365 EXPORT_SYMBOL(scsi_target_quiesce);
2366
2367 static void
2368 device_resume_fn(struct scsi_device *sdev, void *data)
2369 {
2370         scsi_device_resume(sdev);
2371 }
2372
2373 void
2374 scsi_target_resume(struct scsi_target *starget)
2375 {
2376         starget_for_each_device(starget, NULL, device_resume_fn);
2377 }
2378 EXPORT_SYMBOL(scsi_target_resume);
2379
2380 /**
2381  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2382  * @sdev:       device to block
2383  *
2384  * Block request made by scsi lld's to temporarily stop all
2385  * scsi commands on the specified device.  Called from interrupt
2386  * or normal process context.
2387  *
2388  * Returns zero if successful or error if not
2389  *
2390  * Notes:       
2391  *      This routine transitions the device to the SDEV_BLOCK state
2392  *      (which must be a legal transition).  When the device is in this
2393  *      state, all commands are deferred until the scsi lld reenables
2394  *      the device with scsi_device_unblock or device_block_tmo fires.
2395  *      This routine assumes the host_lock is held on entry.
2396  */
2397 int
2398 scsi_internal_device_block(struct scsi_device *sdev)
2399 {
2400         struct request_queue *q = sdev->request_queue;
2401         unsigned long flags;
2402         int err = 0;
2403
2404         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2405         if (err) {
2406                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2407
2408                 if (err)
2409                         return err;
2410         }
2411
2412         /* 
2413          * The device has transitioned to SDEV_BLOCK.  Stop the
2414          * block layer from calling the midlayer with this device's
2415          * request queue. 
2416          */
2417         spin_lock_irqsave(q->queue_lock, flags);
2418         blk_stop_queue(q);
2419         spin_unlock_irqrestore(q->queue_lock, flags);
2420
2421         return 0;
2422 }
2423 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2424  
2425 /**
2426  * scsi_internal_device_unblock - resume a device after a block request
2427  * @sdev:       device to resume
2428  *
2429  * Called by scsi lld's or the midlayer to restart the device queue
2430  * for the previously suspended scsi device.  Called from interrupt or
2431  * normal process context.
2432  *
2433  * Returns zero if successful or error if not.
2434  *
2435  * Notes:       
2436  *      This routine transitions the device to the SDEV_RUNNING state
2437  *      (which must be a legal transition) allowing the midlayer to
2438  *      goose the queue for this device.  This routine assumes the 
2439  *      host_lock is held upon entry.
2440  */
2441 int
2442 scsi_internal_device_unblock(struct scsi_device *sdev)
2443 {
2444         struct request_queue *q = sdev->request_queue; 
2445         unsigned long flags;
2446         
2447         /* 
2448          * Try to transition the scsi device to SDEV_RUNNING
2449          * and goose the device queue if successful.  
2450          */
2451         if (sdev->sdev_state == SDEV_BLOCK)
2452                 sdev->sdev_state = SDEV_RUNNING;
2453         else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2454                 sdev->sdev_state = SDEV_CREATED;
2455         else if (sdev->sdev_state != SDEV_CANCEL &&
2456                  sdev->sdev_state != SDEV_OFFLINE)
2457                 return -EINVAL;
2458
2459         spin_lock_irqsave(q->queue_lock, flags);
2460         blk_start_queue(q);
2461         spin_unlock_irqrestore(q->queue_lock, flags);
2462
2463         return 0;
2464 }
2465 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2466
2467 static void
2468 device_block(struct scsi_device *sdev, void *data)
2469 {
2470         scsi_internal_device_block(sdev);
2471 }
2472
2473 static int
2474 target_block(struct device *dev, void *data)
2475 {
2476         if (scsi_is_target_device(dev))
2477                 starget_for_each_device(to_scsi_target(dev), NULL,
2478                                         device_block);
2479         return 0;
2480 }
2481
2482 void
2483 scsi_target_block(struct device *dev)
2484 {
2485         if (scsi_is_target_device(dev))
2486                 starget_for_each_device(to_scsi_target(dev), NULL,
2487                                         device_block);
2488         else
2489                 device_for_each_child(dev, NULL, target_block);
2490 }
2491 EXPORT_SYMBOL_GPL(scsi_target_block);
2492
2493 static void
2494 device_unblock(struct scsi_device *sdev, void *data)
2495 {
2496         scsi_internal_device_unblock(sdev);
2497 }
2498
2499 static int
2500 target_unblock(struct device *dev, void *data)
2501 {
2502         if (scsi_is_target_device(dev))
2503                 starget_for_each_device(to_scsi_target(dev), NULL,
2504                                         device_unblock);
2505         return 0;
2506 }
2507
2508 void
2509 scsi_target_unblock(struct device *dev)
2510 {
2511         if (scsi_is_target_device(dev))
2512                 starget_for_each_device(to_scsi_target(dev), NULL,
2513                                         device_unblock);
2514         else
2515                 device_for_each_child(dev, NULL, target_unblock);
2516 }
2517 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2518
2519 /**
2520  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2521  * @sgl:        scatter-gather list
2522  * @sg_count:   number of segments in sg
2523  * @offset:     offset in bytes into sg, on return offset into the mapped area
2524  * @len:        bytes to map, on return number of bytes mapped
2525  *
2526  * Returns virtual address of the start of the mapped page
2527  */
2528 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2529                           size_t *offset, size_t *len)
2530 {
2531         int i;
2532         size_t sg_len = 0, len_complete = 0;
2533         struct scatterlist *sg;
2534         struct page *page;
2535
2536         WARN_ON(!irqs_disabled());
2537
2538         for_each_sg(sgl, sg, sg_count, i) {
2539                 len_complete = sg_len; /* Complete sg-entries */
2540                 sg_len += sg->length;
2541                 if (sg_len > *offset)
2542                         break;
2543         }
2544
2545         if (unlikely(i == sg_count)) {
2546                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2547                         "elements %d\n",
2548                        __func__, sg_len, *offset, sg_count);
2549                 WARN_ON(1);
2550                 return NULL;
2551         }
2552
2553         /* Offset starting from the beginning of first page in this sg-entry */
2554         *offset = *offset - len_complete + sg->offset;
2555
2556         /* Assumption: contiguous pages can be accessed as "page + i" */
2557         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2558         *offset &= ~PAGE_MASK;
2559
2560         /* Bytes in this sg-entry from *offset to the end of the page */
2561         sg_len = PAGE_SIZE - *offset;
2562         if (*len > sg_len)
2563                 *len = sg_len;
2564
2565         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2566 }
2567 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2568
2569 /**
2570  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2571  * @virt:       virtual address to be unmapped
2572  */
2573 void scsi_kunmap_atomic_sg(void *virt)
2574 {
2575         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2576 }
2577 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);