sh: select ARCH_NO_SYSDEV_OPS.
[pandora-kernel.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/scsi_transport.h>
32 #include <scsi/scsi_transport_sas.h>
33 #include "../scsi_sas_internal.h"
34
35 static int sas_discover_expander(struct domain_device *dev);
36 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
37 static int sas_configure_phy(struct domain_device *dev, int phy_id,
38                              u8 *sas_addr, int include);
39 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
40
41 /* ---------- SMP task management ---------- */
42
43 static void smp_task_timedout(unsigned long _task)
44 {
45         struct sas_task *task = (void *) _task;
46         unsigned long flags;
47
48         spin_lock_irqsave(&task->task_state_lock, flags);
49         if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
50                 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
51         spin_unlock_irqrestore(&task->task_state_lock, flags);
52
53         complete(&task->completion);
54 }
55
56 static void smp_task_done(struct sas_task *task)
57 {
58         if (!del_timer(&task->timer))
59                 return;
60         complete(&task->completion);
61 }
62
63 /* Give it some long enough timeout. In seconds. */
64 #define SMP_TIMEOUT 10
65
66 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
67                             void *resp, int resp_size)
68 {
69         int res, retry;
70         struct sas_task *task = NULL;
71         struct sas_internal *i =
72                 to_sas_internal(dev->port->ha->core.shost->transportt);
73
74         for (retry = 0; retry < 3; retry++) {
75                 task = sas_alloc_task(GFP_KERNEL);
76                 if (!task)
77                         return -ENOMEM;
78
79                 task->dev = dev;
80                 task->task_proto = dev->tproto;
81                 sg_init_one(&task->smp_task.smp_req, req, req_size);
82                 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
83
84                 task->task_done = smp_task_done;
85
86                 task->timer.data = (unsigned long) task;
87                 task->timer.function = smp_task_timedout;
88                 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
89                 add_timer(&task->timer);
90
91                 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
92
93                 if (res) {
94                         del_timer(&task->timer);
95                         SAS_DPRINTK("executing SMP task failed:%d\n", res);
96                         goto ex_err;
97                 }
98
99                 wait_for_completion(&task->completion);
100                 res = -ECOMM;
101                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
102                         SAS_DPRINTK("smp task timed out or aborted\n");
103                         i->dft->lldd_abort_task(task);
104                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
105                                 SAS_DPRINTK("SMP task aborted and not done\n");
106                                 goto ex_err;
107                         }
108                 }
109                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
110                     task->task_status.stat == SAM_STAT_GOOD) {
111                         res = 0;
112                         break;
113                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
114                       task->task_status.stat == SAS_DATA_UNDERRUN) {
115                         /* no error, but return the number of bytes of
116                          * underrun */
117                         res = task->task_status.residual;
118                         break;
119                 } if (task->task_status.resp == SAS_TASK_COMPLETE &&
120                       task->task_status.stat == SAS_DATA_OVERRUN) {
121                         res = -EMSGSIZE;
122                         break;
123                 } else {
124                         SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
125                                     "status 0x%x\n", __func__,
126                                     SAS_ADDR(dev->sas_addr),
127                                     task->task_status.resp,
128                                     task->task_status.stat);
129                         sas_free_task(task);
130                         task = NULL;
131                 }
132         }
133 ex_err:
134         BUG_ON(retry == 3 && task != NULL);
135         if (task != NULL) {
136                 sas_free_task(task);
137         }
138         return res;
139 }
140
141 /* ---------- Allocations ---------- */
142
143 static inline void *alloc_smp_req(int size)
144 {
145         u8 *p = kzalloc(size, GFP_KERNEL);
146         if (p)
147                 p[0] = SMP_REQUEST;
148         return p;
149 }
150
151 static inline void *alloc_smp_resp(int size)
152 {
153         return kzalloc(size, GFP_KERNEL);
154 }
155
156 /* ---------- Expander configuration ---------- */
157
158 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
159                            void *disc_resp)
160 {
161         struct expander_device *ex = &dev->ex_dev;
162         struct ex_phy *phy = &ex->ex_phy[phy_id];
163         struct smp_resp *resp = disc_resp;
164         struct discover_resp *dr = &resp->disc;
165         struct sas_rphy *rphy = dev->rphy;
166         int rediscover = (phy->phy != NULL);
167
168         if (!rediscover) {
169                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
170
171                 /* FIXME: error_handling */
172                 BUG_ON(!phy->phy);
173         }
174
175         switch (resp->result) {
176         case SMP_RESP_PHY_VACANT:
177                 phy->phy_state = PHY_VACANT;
178                 break;
179         default:
180                 phy->phy_state = PHY_NOT_PRESENT;
181                 break;
182         case SMP_RESP_FUNC_ACC:
183                 phy->phy_state = PHY_EMPTY; /* do not know yet */
184                 break;
185         }
186
187         phy->phy_id = phy_id;
188         phy->attached_dev_type = dr->attached_dev_type;
189         phy->linkrate = dr->linkrate;
190         phy->attached_sata_host = dr->attached_sata_host;
191         phy->attached_sata_dev  = dr->attached_sata_dev;
192         phy->attached_sata_ps   = dr->attached_sata_ps;
193         phy->attached_iproto = dr->iproto << 1;
194         phy->attached_tproto = dr->tproto << 1;
195         memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
196         phy->attached_phy_id = dr->attached_phy_id;
197         phy->phy_change_count = dr->change_count;
198         phy->routing_attr = dr->routing_attr;
199         phy->virtual = dr->virtual;
200         phy->last_da_index = -1;
201
202         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
203         phy->phy->identify.target_port_protocols = phy->attached_tproto;
204         phy->phy->identify.phy_identifier = phy_id;
205         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
206         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
207         phy->phy->minimum_linkrate = dr->pmin_linkrate;
208         phy->phy->maximum_linkrate = dr->pmax_linkrate;
209         phy->phy->negotiated_linkrate = phy->linkrate;
210
211         if (!rediscover)
212                 if (sas_phy_add(phy->phy)) {
213                         sas_phy_free(phy->phy);
214                         return;
215                 }
216
217         SAS_DPRINTK("ex %016llx phy%02d:%c attached: %016llx\n",
218                     SAS_ADDR(dev->sas_addr), phy->phy_id,
219                     phy->routing_attr == TABLE_ROUTING ? 'T' :
220                     phy->routing_attr == DIRECT_ROUTING ? 'D' :
221                     phy->routing_attr == SUBTRACTIVE_ROUTING ? 'S' : '?',
222                     SAS_ADDR(phy->attached_sas_addr));
223
224         return;
225 }
226
227 #define DISCOVER_REQ_SIZE  16
228 #define DISCOVER_RESP_SIZE 56
229
230 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
231                                       u8 *disc_resp, int single)
232 {
233         int i, res;
234
235         disc_req[9] = single;
236         for (i = 1 ; i < 3; i++) {
237                 struct discover_resp *dr;
238
239                 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
240                                        disc_resp, DISCOVER_RESP_SIZE);
241                 if (res)
242                         return res;
243                 /* This is detecting a failure to transmit inital
244                  * dev to host FIS as described in section G.5 of
245                  * sas-2 r 04b */
246                 dr = &((struct smp_resp *)disc_resp)->disc;
247                 if (memcmp(dev->sas_addr, dr->attached_sas_addr,
248                           SAS_ADDR_SIZE) == 0) {
249                         sas_printk("Found loopback topology, just ignore it!\n");
250                         return 0;
251                 }
252                 if (!(dr->attached_dev_type == 0 &&
253                       dr->attached_sata_dev))
254                         break;
255                 /* In order to generate the dev to host FIS, we
256                  * send a link reset to the expander port */
257                 sas_smp_phy_control(dev, single, PHY_FUNC_LINK_RESET, NULL);
258                 /* Wait for the reset to trigger the negotiation */
259                 msleep(500);
260         }
261         sas_set_ex_phy(dev, single, disc_resp);
262         return 0;
263 }
264
265 static int sas_ex_phy_discover(struct domain_device *dev, int single)
266 {
267         struct expander_device *ex = &dev->ex_dev;
268         int  res = 0;
269         u8   *disc_req;
270         u8   *disc_resp;
271
272         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
273         if (!disc_req)
274                 return -ENOMEM;
275
276         disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
277         if (!disc_resp) {
278                 kfree(disc_req);
279                 return -ENOMEM;
280         }
281
282         disc_req[1] = SMP_DISCOVER;
283
284         if (0 <= single && single < ex->num_phys) {
285                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
286         } else {
287                 int i;
288
289                 for (i = 0; i < ex->num_phys; i++) {
290                         res = sas_ex_phy_discover_helper(dev, disc_req,
291                                                          disc_resp, i);
292                         if (res)
293                                 goto out_err;
294                 }
295         }
296 out_err:
297         kfree(disc_resp);
298         kfree(disc_req);
299         return res;
300 }
301
302 static int sas_expander_discover(struct domain_device *dev)
303 {
304         struct expander_device *ex = &dev->ex_dev;
305         int res = -ENOMEM;
306
307         ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
308         if (!ex->ex_phy)
309                 return -ENOMEM;
310
311         res = sas_ex_phy_discover(dev, -1);
312         if (res)
313                 goto out_err;
314
315         return 0;
316  out_err:
317         kfree(ex->ex_phy);
318         ex->ex_phy = NULL;
319         return res;
320 }
321
322 #define MAX_EXPANDER_PHYS 128
323
324 static void ex_assign_report_general(struct domain_device *dev,
325                                             struct smp_resp *resp)
326 {
327         struct report_general_resp *rg = &resp->rg;
328
329         dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
330         dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
331         dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
332         dev->ex_dev.conf_route_table = rg->conf_route_table;
333         dev->ex_dev.configuring = rg->configuring;
334         memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
335 }
336
337 #define RG_REQ_SIZE   8
338 #define RG_RESP_SIZE 32
339
340 static int sas_ex_general(struct domain_device *dev)
341 {
342         u8 *rg_req;
343         struct smp_resp *rg_resp;
344         int res;
345         int i;
346
347         rg_req = alloc_smp_req(RG_REQ_SIZE);
348         if (!rg_req)
349                 return -ENOMEM;
350
351         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
352         if (!rg_resp) {
353                 kfree(rg_req);
354                 return -ENOMEM;
355         }
356
357         rg_req[1] = SMP_REPORT_GENERAL;
358
359         for (i = 0; i < 5; i++) {
360                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
361                                        RG_RESP_SIZE);
362
363                 if (res) {
364                         SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
365                                     SAS_ADDR(dev->sas_addr), res);
366                         goto out;
367                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
368                         SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
369                                     SAS_ADDR(dev->sas_addr), rg_resp->result);
370                         res = rg_resp->result;
371                         goto out;
372                 }
373
374                 ex_assign_report_general(dev, rg_resp);
375
376                 if (dev->ex_dev.configuring) {
377                         SAS_DPRINTK("RG: ex %llx self-configuring...\n",
378                                     SAS_ADDR(dev->sas_addr));
379                         schedule_timeout_interruptible(5*HZ);
380                 } else
381                         break;
382         }
383 out:
384         kfree(rg_req);
385         kfree(rg_resp);
386         return res;
387 }
388
389 static void ex_assign_manuf_info(struct domain_device *dev, void
390                                         *_mi_resp)
391 {
392         u8 *mi_resp = _mi_resp;
393         struct sas_rphy *rphy = dev->rphy;
394         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
395
396         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
397         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
398         memcpy(edev->product_rev, mi_resp + 36,
399                SAS_EXPANDER_PRODUCT_REV_LEN);
400
401         if (mi_resp[8] & 1) {
402                 memcpy(edev->component_vendor_id, mi_resp + 40,
403                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
404                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
405                 edev->component_revision_id = mi_resp[50];
406         }
407 }
408
409 #define MI_REQ_SIZE   8
410 #define MI_RESP_SIZE 64
411
412 static int sas_ex_manuf_info(struct domain_device *dev)
413 {
414         u8 *mi_req;
415         u8 *mi_resp;
416         int res;
417
418         mi_req = alloc_smp_req(MI_REQ_SIZE);
419         if (!mi_req)
420                 return -ENOMEM;
421
422         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
423         if (!mi_resp) {
424                 kfree(mi_req);
425                 return -ENOMEM;
426         }
427
428         mi_req[1] = SMP_REPORT_MANUF_INFO;
429
430         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
431         if (res) {
432                 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
433                             SAS_ADDR(dev->sas_addr), res);
434                 goto out;
435         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
436                 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
437                             SAS_ADDR(dev->sas_addr), mi_resp[2]);
438                 goto out;
439         }
440
441         ex_assign_manuf_info(dev, mi_resp);
442 out:
443         kfree(mi_req);
444         kfree(mi_resp);
445         return res;
446 }
447
448 #define PC_REQ_SIZE  44
449 #define PC_RESP_SIZE 8
450
451 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
452                         enum phy_func phy_func,
453                         struct sas_phy_linkrates *rates)
454 {
455         u8 *pc_req;
456         u8 *pc_resp;
457         int res;
458
459         pc_req = alloc_smp_req(PC_REQ_SIZE);
460         if (!pc_req)
461                 return -ENOMEM;
462
463         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
464         if (!pc_resp) {
465                 kfree(pc_req);
466                 return -ENOMEM;
467         }
468
469         pc_req[1] = SMP_PHY_CONTROL;
470         pc_req[9] = phy_id;
471         pc_req[10]= phy_func;
472         if (rates) {
473                 pc_req[32] = rates->minimum_linkrate << 4;
474                 pc_req[33] = rates->maximum_linkrate << 4;
475         }
476
477         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
478
479         kfree(pc_resp);
480         kfree(pc_req);
481         return res;
482 }
483
484 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
485 {
486         struct expander_device *ex = &dev->ex_dev;
487         struct ex_phy *phy = &ex->ex_phy[phy_id];
488
489         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
490         phy->linkrate = SAS_PHY_DISABLED;
491 }
492
493 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
494 {
495         struct expander_device *ex = &dev->ex_dev;
496         int i;
497
498         for (i = 0; i < ex->num_phys; i++) {
499                 struct ex_phy *phy = &ex->ex_phy[i];
500
501                 if (phy->phy_state == PHY_VACANT ||
502                     phy->phy_state == PHY_NOT_PRESENT)
503                         continue;
504
505                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
506                         sas_ex_disable_phy(dev, i);
507         }
508 }
509
510 static int sas_dev_present_in_domain(struct asd_sas_port *port,
511                                             u8 *sas_addr)
512 {
513         struct domain_device *dev;
514
515         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
516                 return 1;
517         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
518                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
519                         return 1;
520         }
521         return 0;
522 }
523
524 #define RPEL_REQ_SIZE   16
525 #define RPEL_RESP_SIZE  32
526 int sas_smp_get_phy_events(struct sas_phy *phy)
527 {
528         int res;
529         u8 *req;
530         u8 *resp;
531         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
532         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
533
534         req = alloc_smp_req(RPEL_REQ_SIZE);
535         if (!req)
536                 return -ENOMEM;
537
538         resp = alloc_smp_resp(RPEL_RESP_SIZE);
539         if (!resp) {
540                 kfree(req);
541                 return -ENOMEM;
542         }
543
544         req[1] = SMP_REPORT_PHY_ERR_LOG;
545         req[9] = phy->number;
546
547         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
548                                     resp, RPEL_RESP_SIZE);
549
550         if (!res)
551                 goto out;
552
553         phy->invalid_dword_count = scsi_to_u32(&resp[12]);
554         phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
555         phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
556         phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
557
558  out:
559         kfree(resp);
560         return res;
561
562 }
563
564 #ifdef CONFIG_SCSI_SAS_ATA
565
566 #define RPS_REQ_SIZE  16
567 #define RPS_RESP_SIZE 60
568
569 static int sas_get_report_phy_sata(struct domain_device *dev,
570                                           int phy_id,
571                                           struct smp_resp *rps_resp)
572 {
573         int res;
574         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
575         u8 *resp = (u8 *)rps_resp;
576
577         if (!rps_req)
578                 return -ENOMEM;
579
580         rps_req[1] = SMP_REPORT_PHY_SATA;
581         rps_req[9] = phy_id;
582
583         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
584                                     rps_resp, RPS_RESP_SIZE);
585
586         /* 0x34 is the FIS type for the D2H fis.  There's a potential
587          * standards cockup here.  sas-2 explicitly specifies the FIS
588          * should be encoded so that FIS type is in resp[24].
589          * However, some expanders endian reverse this.  Undo the
590          * reversal here */
591         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
592                 int i;
593
594                 for (i = 0; i < 5; i++) {
595                         int j = 24 + (i*4);
596                         u8 a, b;
597                         a = resp[j + 0];
598                         b = resp[j + 1];
599                         resp[j + 0] = resp[j + 3];
600                         resp[j + 1] = resp[j + 2];
601                         resp[j + 2] = b;
602                         resp[j + 3] = a;
603                 }
604         }
605
606         kfree(rps_req);
607         return res;
608 }
609 #endif
610
611 static void sas_ex_get_linkrate(struct domain_device *parent,
612                                        struct domain_device *child,
613                                        struct ex_phy *parent_phy)
614 {
615         struct expander_device *parent_ex = &parent->ex_dev;
616         struct sas_port *port;
617         int i;
618
619         child->pathways = 0;
620
621         port = parent_phy->port;
622
623         for (i = 0; i < parent_ex->num_phys; i++) {
624                 struct ex_phy *phy = &parent_ex->ex_phy[i];
625
626                 if (phy->phy_state == PHY_VACANT ||
627                     phy->phy_state == PHY_NOT_PRESENT)
628                         continue;
629
630                 if (SAS_ADDR(phy->attached_sas_addr) ==
631                     SAS_ADDR(child->sas_addr)) {
632
633                         child->min_linkrate = min(parent->min_linkrate,
634                                                   phy->linkrate);
635                         child->max_linkrate = max(parent->max_linkrate,
636                                                   phy->linkrate);
637                         child->pathways++;
638                         sas_port_add_phy(port, phy->phy);
639                 }
640         }
641         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
642         child->pathways = min(child->pathways, parent->pathways);
643 }
644
645 static struct domain_device *sas_ex_discover_end_dev(
646         struct domain_device *parent, int phy_id)
647 {
648         struct expander_device *parent_ex = &parent->ex_dev;
649         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
650         struct domain_device *child = NULL;
651         struct sas_rphy *rphy;
652         int res;
653
654         if (phy->attached_sata_host || phy->attached_sata_ps)
655                 return NULL;
656
657         child = kzalloc(sizeof(*child), GFP_KERNEL);
658         if (!child)
659                 return NULL;
660
661         child->parent = parent;
662         child->port   = parent->port;
663         child->iproto = phy->attached_iproto;
664         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
665         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
666         if (!phy->port) {
667                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
668                 if (unlikely(!phy->port))
669                         goto out_err;
670                 if (unlikely(sas_port_add(phy->port) != 0)) {
671                         sas_port_free(phy->port);
672                         goto out_err;
673                 }
674         }
675         sas_ex_get_linkrate(parent, child, phy);
676
677 #ifdef CONFIG_SCSI_SAS_ATA
678         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
679                 child->dev_type = SATA_DEV;
680                 if (phy->attached_tproto & SAS_PROTOCOL_STP)
681                         child->tproto = phy->attached_tproto;
682                 if (phy->attached_sata_dev)
683                         child->tproto |= SATA_DEV;
684                 res = sas_get_report_phy_sata(parent, phy_id,
685                                               &child->sata_dev.rps_resp);
686                 if (res) {
687                         SAS_DPRINTK("report phy sata to %016llx:0x%x returned "
688                                     "0x%x\n", SAS_ADDR(parent->sas_addr),
689                                     phy_id, res);
690                         goto out_free;
691                 }
692                 memcpy(child->frame_rcvd, &child->sata_dev.rps_resp.rps.fis,
693                        sizeof(struct dev_to_host_fis));
694
695                 rphy = sas_end_device_alloc(phy->port);
696                 if (unlikely(!rphy))
697                         goto out_free;
698
699                 sas_init_dev(child);
700
701                 child->rphy = rphy;
702
703                 spin_lock_irq(&parent->port->dev_list_lock);
704                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
705                 spin_unlock_irq(&parent->port->dev_list_lock);
706
707                 res = sas_discover_sata(child);
708                 if (res) {
709                         SAS_DPRINTK("sas_discover_sata() for device %16llx at "
710                                     "%016llx:0x%x returned 0x%x\n",
711                                     SAS_ADDR(child->sas_addr),
712                                     SAS_ADDR(parent->sas_addr), phy_id, res);
713                         goto out_list_del;
714                 }
715         } else
716 #endif
717           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
718                 child->dev_type = SAS_END_DEV;
719                 rphy = sas_end_device_alloc(phy->port);
720                 /* FIXME: error handling */
721                 if (unlikely(!rphy))
722                         goto out_free;
723                 child->tproto = phy->attached_tproto;
724                 sas_init_dev(child);
725
726                 child->rphy = rphy;
727                 sas_fill_in_rphy(child, rphy);
728
729                 spin_lock_irq(&parent->port->dev_list_lock);
730                 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
731                 spin_unlock_irq(&parent->port->dev_list_lock);
732
733                 res = sas_discover_end_dev(child);
734                 if (res) {
735                         SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
736                                     "at %016llx:0x%x returned 0x%x\n",
737                                     SAS_ADDR(child->sas_addr),
738                                     SAS_ADDR(parent->sas_addr), phy_id, res);
739                         goto out_list_del;
740                 }
741         } else {
742                 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
743                             phy->attached_tproto, SAS_ADDR(parent->sas_addr),
744                             phy_id);
745                 goto out_free;
746         }
747
748         list_add_tail(&child->siblings, &parent_ex->children);
749         return child;
750
751  out_list_del:
752         sas_rphy_free(child->rphy);
753         child->rphy = NULL;
754         list_del(&child->dev_list_node);
755  out_free:
756         sas_port_delete(phy->port);
757  out_err:
758         phy->port = NULL;
759         kfree(child);
760         return NULL;
761 }
762
763 /* See if this phy is part of a wide port */
764 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
765 {
766         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
767         int i;
768
769         for (i = 0; i < parent->ex_dev.num_phys; i++) {
770                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
771
772                 if (ephy == phy)
773                         continue;
774
775                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
776                             SAS_ADDR_SIZE) && ephy->port) {
777                         sas_port_add_phy(ephy->port, phy->phy);
778                         phy->port = ephy->port;
779                         phy->phy_state = PHY_DEVICE_DISCOVERED;
780                         return 0;
781                 }
782         }
783
784         return -ENODEV;
785 }
786
787 static struct domain_device *sas_ex_discover_expander(
788         struct domain_device *parent, int phy_id)
789 {
790         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
791         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
792         struct domain_device *child = NULL;
793         struct sas_rphy *rphy;
794         struct sas_expander_device *edev;
795         struct asd_sas_port *port;
796         int res;
797
798         if (phy->routing_attr == DIRECT_ROUTING) {
799                 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
800                             "allowed\n",
801                             SAS_ADDR(parent->sas_addr), phy_id,
802                             SAS_ADDR(phy->attached_sas_addr),
803                             phy->attached_phy_id);
804                 return NULL;
805         }
806         child = kzalloc(sizeof(*child), GFP_KERNEL);
807         if (!child)
808                 return NULL;
809
810         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
811         /* FIXME: better error handling */
812         BUG_ON(sas_port_add(phy->port) != 0);
813
814
815         switch (phy->attached_dev_type) {
816         case EDGE_DEV:
817                 rphy = sas_expander_alloc(phy->port,
818                                           SAS_EDGE_EXPANDER_DEVICE);
819                 break;
820         case FANOUT_DEV:
821                 rphy = sas_expander_alloc(phy->port,
822                                           SAS_FANOUT_EXPANDER_DEVICE);
823                 break;
824         default:
825                 rphy = NULL;    /* shut gcc up */
826                 BUG();
827         }
828         port = parent->port;
829         child->rphy = rphy;
830         edev = rphy_to_expander_device(rphy);
831         child->dev_type = phy->attached_dev_type;
832         child->parent = parent;
833         child->port = port;
834         child->iproto = phy->attached_iproto;
835         child->tproto = phy->attached_tproto;
836         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
837         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
838         sas_ex_get_linkrate(parent, child, phy);
839         edev->level = parent_ex->level + 1;
840         parent->port->disc.max_level = max(parent->port->disc.max_level,
841                                            edev->level);
842         sas_init_dev(child);
843         sas_fill_in_rphy(child, rphy);
844         sas_rphy_add(rphy);
845
846         spin_lock_irq(&parent->port->dev_list_lock);
847         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
848         spin_unlock_irq(&parent->port->dev_list_lock);
849
850         res = sas_discover_expander(child);
851         if (res) {
852                 kfree(child);
853                 return NULL;
854         }
855         list_add_tail(&child->siblings, &parent->ex_dev.children);
856         return child;
857 }
858
859 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
860 {
861         struct expander_device *ex = &dev->ex_dev;
862         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
863         struct domain_device *child = NULL;
864         int res = 0;
865
866         /* Phy state */
867         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
868                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
869                         res = sas_ex_phy_discover(dev, phy_id);
870                 if (res)
871                         return res;
872         }
873
874         /* Parent and domain coherency */
875         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
876                              SAS_ADDR(dev->port->sas_addr))) {
877                 sas_add_parent_port(dev, phy_id);
878                 return 0;
879         }
880         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
881                             SAS_ADDR(dev->parent->sas_addr))) {
882                 sas_add_parent_port(dev, phy_id);
883                 if (ex_phy->routing_attr == TABLE_ROUTING)
884                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
885                 return 0;
886         }
887
888         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
889                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
890
891         if (ex_phy->attached_dev_type == NO_DEVICE) {
892                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
893                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
894                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
895                 }
896                 return 0;
897         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
898                 return 0;
899
900         if (ex_phy->attached_dev_type != SAS_END_DEV &&
901             ex_phy->attached_dev_type != FANOUT_DEV &&
902             ex_phy->attached_dev_type != EDGE_DEV) {
903                 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
904                             "phy 0x%x\n", ex_phy->attached_dev_type,
905                             SAS_ADDR(dev->sas_addr),
906                             phy_id);
907                 return 0;
908         }
909
910         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
911         if (res) {
912                 SAS_DPRINTK("configure routing for dev %016llx "
913                             "reported 0x%x. Forgotten\n",
914                             SAS_ADDR(ex_phy->attached_sas_addr), res);
915                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
916                 return res;
917         }
918
919         res = sas_ex_join_wide_port(dev, phy_id);
920         if (!res) {
921                 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
922                             phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
923                 return res;
924         }
925
926         switch (ex_phy->attached_dev_type) {
927         case SAS_END_DEV:
928                 child = sas_ex_discover_end_dev(dev, phy_id);
929                 break;
930         case FANOUT_DEV:
931                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
932                         SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
933                                     "attached to ex %016llx phy 0x%x\n",
934                                     SAS_ADDR(ex_phy->attached_sas_addr),
935                                     ex_phy->attached_phy_id,
936                                     SAS_ADDR(dev->sas_addr),
937                                     phy_id);
938                         sas_ex_disable_phy(dev, phy_id);
939                         break;
940                 } else
941                         memcpy(dev->port->disc.fanout_sas_addr,
942                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
943                 /* fallthrough */
944         case EDGE_DEV:
945                 child = sas_ex_discover_expander(dev, phy_id);
946                 break;
947         default:
948                 break;
949         }
950
951         if (child) {
952                 int i;
953
954                 for (i = 0; i < ex->num_phys; i++) {
955                         if (ex->ex_phy[i].phy_state == PHY_VACANT ||
956                             ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
957                                 continue;
958                         /*
959                          * Due to races, the phy might not get added to the
960                          * wide port, so we add the phy to the wide port here.
961                          */
962                         if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
963                             SAS_ADDR(child->sas_addr)) {
964                                 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
965                                 res = sas_ex_join_wide_port(dev, i);
966                                 if (!res)
967                                         SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
968                                                     i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
969
970                         }
971                 }
972         }
973
974         return res;
975 }
976
977 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
978 {
979         struct expander_device *ex = &dev->ex_dev;
980         int i;
981
982         for (i = 0; i < ex->num_phys; i++) {
983                 struct ex_phy *phy = &ex->ex_phy[i];
984
985                 if (phy->phy_state == PHY_VACANT ||
986                     phy->phy_state == PHY_NOT_PRESENT)
987                         continue;
988
989                 if ((phy->attached_dev_type == EDGE_DEV ||
990                      phy->attached_dev_type == FANOUT_DEV) &&
991                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
992
993                         memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
994
995                         return 1;
996                 }
997         }
998         return 0;
999 }
1000
1001 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1002 {
1003         struct expander_device *ex = &dev->ex_dev;
1004         struct domain_device *child;
1005         u8 sub_addr[8] = {0, };
1006
1007         list_for_each_entry(child, &ex->children, siblings) {
1008                 if (child->dev_type != EDGE_DEV &&
1009                     child->dev_type != FANOUT_DEV)
1010                         continue;
1011                 if (sub_addr[0] == 0) {
1012                         sas_find_sub_addr(child, sub_addr);
1013                         continue;
1014                 } else {
1015                         u8 s2[8];
1016
1017                         if (sas_find_sub_addr(child, s2) &&
1018                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1019
1020                                 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1021                                             "diverges from subtractive "
1022                                             "boundary %016llx\n",
1023                                             SAS_ADDR(dev->sas_addr),
1024                                             SAS_ADDR(child->sas_addr),
1025                                             SAS_ADDR(s2),
1026                                             SAS_ADDR(sub_addr));
1027
1028                                 sas_ex_disable_port(child, s2);
1029                         }
1030                 }
1031         }
1032         return 0;
1033 }
1034 /**
1035  * sas_ex_discover_devices -- discover devices attached to this expander
1036  * dev: pointer to the expander domain device
1037  * single: if you want to do a single phy, else set to -1;
1038  *
1039  * Configure this expander for use with its devices and register the
1040  * devices of this expander.
1041  */
1042 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1043 {
1044         struct expander_device *ex = &dev->ex_dev;
1045         int i = 0, end = ex->num_phys;
1046         int res = 0;
1047
1048         if (0 <= single && single < end) {
1049                 i = single;
1050                 end = i+1;
1051         }
1052
1053         for ( ; i < end; i++) {
1054                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1055
1056                 if (ex_phy->phy_state == PHY_VACANT ||
1057                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1058                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1059                         continue;
1060
1061                 switch (ex_phy->linkrate) {
1062                 case SAS_PHY_DISABLED:
1063                 case SAS_PHY_RESET_PROBLEM:
1064                 case SAS_SATA_PORT_SELECTOR:
1065                         continue;
1066                 default:
1067                         res = sas_ex_discover_dev(dev, i);
1068                         if (res)
1069                                 break;
1070                         continue;
1071                 }
1072         }
1073
1074         if (!res)
1075                 sas_check_level_subtractive_boundary(dev);
1076
1077         return res;
1078 }
1079
1080 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1081 {
1082         struct expander_device *ex = &dev->ex_dev;
1083         int i;
1084         u8  *sub_sas_addr = NULL;
1085
1086         if (dev->dev_type != EDGE_DEV)
1087                 return 0;
1088
1089         for (i = 0; i < ex->num_phys; i++) {
1090                 struct ex_phy *phy = &ex->ex_phy[i];
1091
1092                 if (phy->phy_state == PHY_VACANT ||
1093                     phy->phy_state == PHY_NOT_PRESENT)
1094                         continue;
1095
1096                 if ((phy->attached_dev_type == FANOUT_DEV ||
1097                      phy->attached_dev_type == EDGE_DEV) &&
1098                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1099
1100                         if (!sub_sas_addr)
1101                                 sub_sas_addr = &phy->attached_sas_addr[0];
1102                         else if (SAS_ADDR(sub_sas_addr) !=
1103                                  SAS_ADDR(phy->attached_sas_addr)) {
1104
1105                                 SAS_DPRINTK("ex %016llx phy 0x%x "
1106                                             "diverges(%016llx) on subtractive "
1107                                             "boundary(%016llx). Disabled\n",
1108                                             SAS_ADDR(dev->sas_addr), i,
1109                                             SAS_ADDR(phy->attached_sas_addr),
1110                                             SAS_ADDR(sub_sas_addr));
1111                                 sas_ex_disable_phy(dev, i);
1112                         }
1113                 }
1114         }
1115         return 0;
1116 }
1117
1118 static void sas_print_parent_topology_bug(struct domain_device *child,
1119                                                  struct ex_phy *parent_phy,
1120                                                  struct ex_phy *child_phy)
1121 {
1122         static const char ra_char[] = {
1123                 [DIRECT_ROUTING] = 'D',
1124                 [SUBTRACTIVE_ROUTING] = 'S',
1125                 [TABLE_ROUTING] = 'T',
1126         };
1127         static const char *ex_type[] = {
1128                 [EDGE_DEV] = "edge",
1129                 [FANOUT_DEV] = "fanout",
1130         };
1131         struct domain_device *parent = child->parent;
1132
1133         sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x "
1134                    "has %c:%c routing link!\n",
1135
1136                    ex_type[parent->dev_type],
1137                    SAS_ADDR(parent->sas_addr),
1138                    parent_phy->phy_id,
1139
1140                    ex_type[child->dev_type],
1141                    SAS_ADDR(child->sas_addr),
1142                    child_phy->phy_id,
1143
1144                    ra_char[parent_phy->routing_attr],
1145                    ra_char[child_phy->routing_attr]);
1146 }
1147
1148 static int sas_check_eeds(struct domain_device *child,
1149                                  struct ex_phy *parent_phy,
1150                                  struct ex_phy *child_phy)
1151 {
1152         int res = 0;
1153         struct domain_device *parent = child->parent;
1154
1155         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1156                 res = -ENODEV;
1157                 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1158                             "phy S:0x%x, while there is a fanout ex %016llx\n",
1159                             SAS_ADDR(parent->sas_addr),
1160                             parent_phy->phy_id,
1161                             SAS_ADDR(child->sas_addr),
1162                             child_phy->phy_id,
1163                             SAS_ADDR(parent->port->disc.fanout_sas_addr));
1164         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1165                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1166                        SAS_ADDR_SIZE);
1167                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1168                        SAS_ADDR_SIZE);
1169         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1170                     SAS_ADDR(parent->sas_addr)) ||
1171                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1172                     SAS_ADDR(child->sas_addr)))
1173                    &&
1174                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1175                      SAS_ADDR(parent->sas_addr)) ||
1176                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1177                      SAS_ADDR(child->sas_addr))))
1178                 ;
1179         else {
1180                 res = -ENODEV;
1181                 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1182                             "phy 0x%x link forms a third EEDS!\n",
1183                             SAS_ADDR(parent->sas_addr),
1184                             parent_phy->phy_id,
1185                             SAS_ADDR(child->sas_addr),
1186                             child_phy->phy_id);
1187         }
1188
1189         return res;
1190 }
1191
1192 /* Here we spill over 80 columns.  It is intentional.
1193  */
1194 static int sas_check_parent_topology(struct domain_device *child)
1195 {
1196         struct expander_device *child_ex = &child->ex_dev;
1197         struct expander_device *parent_ex;
1198         int i;
1199         int res = 0;
1200
1201         if (!child->parent)
1202                 return 0;
1203
1204         if (child->parent->dev_type != EDGE_DEV &&
1205             child->parent->dev_type != FANOUT_DEV)
1206                 return 0;
1207
1208         parent_ex = &child->parent->ex_dev;
1209
1210         for (i = 0; i < parent_ex->num_phys; i++) {
1211                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1212                 struct ex_phy *child_phy;
1213
1214                 if (parent_phy->phy_state == PHY_VACANT ||
1215                     parent_phy->phy_state == PHY_NOT_PRESENT)
1216                         continue;
1217
1218                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1219                         continue;
1220
1221                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1222
1223                 switch (child->parent->dev_type) {
1224                 case EDGE_DEV:
1225                         if (child->dev_type == FANOUT_DEV) {
1226                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1227                                     child_phy->routing_attr != TABLE_ROUTING) {
1228                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1229                                         res = -ENODEV;
1230                                 }
1231                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1232                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1233                                         res = sas_check_eeds(child, parent_phy, child_phy);
1234                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1235                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1236                                         res = -ENODEV;
1237                                 }
1238                         } else if (parent_phy->routing_attr == TABLE_ROUTING &&
1239                                    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1240                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1241                                 res = -ENODEV;
1242                         }
1243                         break;
1244                 case FANOUT_DEV:
1245                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1246                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1247                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1248                                 res = -ENODEV;
1249                         }
1250                         break;
1251                 default:
1252                         break;
1253                 }
1254         }
1255
1256         return res;
1257 }
1258
1259 #define RRI_REQ_SIZE  16
1260 #define RRI_RESP_SIZE 44
1261
1262 static int sas_configure_present(struct domain_device *dev, int phy_id,
1263                                  u8 *sas_addr, int *index, int *present)
1264 {
1265         int i, res = 0;
1266         struct expander_device *ex = &dev->ex_dev;
1267         struct ex_phy *phy = &ex->ex_phy[phy_id];
1268         u8 *rri_req;
1269         u8 *rri_resp;
1270
1271         *present = 0;
1272         *index = 0;
1273
1274         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1275         if (!rri_req)
1276                 return -ENOMEM;
1277
1278         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1279         if (!rri_resp) {
1280                 kfree(rri_req);
1281                 return -ENOMEM;
1282         }
1283
1284         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1285         rri_req[9] = phy_id;
1286
1287         for (i = 0; i < ex->max_route_indexes ; i++) {
1288                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1289                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1290                                        RRI_RESP_SIZE);
1291                 if (res)
1292                         goto out;
1293                 res = rri_resp[2];
1294                 if (res == SMP_RESP_NO_INDEX) {
1295                         SAS_DPRINTK("overflow of indexes: dev %016llx "
1296                                     "phy 0x%x index 0x%x\n",
1297                                     SAS_ADDR(dev->sas_addr), phy_id, i);
1298                         goto out;
1299                 } else if (res != SMP_RESP_FUNC_ACC) {
1300                         SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1301                                     "result 0x%x\n", __func__,
1302                                     SAS_ADDR(dev->sas_addr), phy_id, i, res);
1303                         goto out;
1304                 }
1305                 if (SAS_ADDR(sas_addr) != 0) {
1306                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1307                                 *index = i;
1308                                 if ((rri_resp[12] & 0x80) == 0x80)
1309                                         *present = 0;
1310                                 else
1311                                         *present = 1;
1312                                 goto out;
1313                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1314                                 *index = i;
1315                                 *present = 0;
1316                                 goto out;
1317                         }
1318                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1319                            phy->last_da_index < i) {
1320                         phy->last_da_index = i;
1321                         *index = i;
1322                         *present = 0;
1323                         goto out;
1324                 }
1325         }
1326         res = -1;
1327 out:
1328         kfree(rri_req);
1329         kfree(rri_resp);
1330         return res;
1331 }
1332
1333 #define CRI_REQ_SIZE  44
1334 #define CRI_RESP_SIZE  8
1335
1336 static int sas_configure_set(struct domain_device *dev, int phy_id,
1337                              u8 *sas_addr, int index, int include)
1338 {
1339         int res;
1340         u8 *cri_req;
1341         u8 *cri_resp;
1342
1343         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1344         if (!cri_req)
1345                 return -ENOMEM;
1346
1347         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1348         if (!cri_resp) {
1349                 kfree(cri_req);
1350                 return -ENOMEM;
1351         }
1352
1353         cri_req[1] = SMP_CONF_ROUTE_INFO;
1354         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1355         cri_req[9] = phy_id;
1356         if (SAS_ADDR(sas_addr) == 0 || !include)
1357                 cri_req[12] |= 0x80;
1358         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1359
1360         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1361                                CRI_RESP_SIZE);
1362         if (res)
1363                 goto out;
1364         res = cri_resp[2];
1365         if (res == SMP_RESP_NO_INDEX) {
1366                 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1367                             "index 0x%x\n",
1368                             SAS_ADDR(dev->sas_addr), phy_id, index);
1369         }
1370 out:
1371         kfree(cri_req);
1372         kfree(cri_resp);
1373         return res;
1374 }
1375
1376 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1377                                     u8 *sas_addr, int include)
1378 {
1379         int index;
1380         int present;
1381         int res;
1382
1383         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1384         if (res)
1385                 return res;
1386         if (include ^ present)
1387                 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1388
1389         return res;
1390 }
1391
1392 /**
1393  * sas_configure_parent -- configure routing table of parent
1394  * parent: parent expander
1395  * child: child expander
1396  * sas_addr: SAS port identifier of device directly attached to child
1397  */
1398 static int sas_configure_parent(struct domain_device *parent,
1399                                 struct domain_device *child,
1400                                 u8 *sas_addr, int include)
1401 {
1402         struct expander_device *ex_parent = &parent->ex_dev;
1403         int res = 0;
1404         int i;
1405
1406         if (parent->parent) {
1407                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1408                                            include);
1409                 if (res)
1410                         return res;
1411         }
1412
1413         if (ex_parent->conf_route_table == 0) {
1414                 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1415                             SAS_ADDR(parent->sas_addr));
1416                 return 0;
1417         }
1418
1419         for (i = 0; i < ex_parent->num_phys; i++) {
1420                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1421
1422                 if ((phy->routing_attr == TABLE_ROUTING) &&
1423                     (SAS_ADDR(phy->attached_sas_addr) ==
1424                      SAS_ADDR(child->sas_addr))) {
1425                         res = sas_configure_phy(parent, i, sas_addr, include);
1426                         if (res)
1427                                 return res;
1428                 }
1429         }
1430
1431         return res;
1432 }
1433
1434 /**
1435  * sas_configure_routing -- configure routing
1436  * dev: expander device
1437  * sas_addr: port identifier of device directly attached to the expander device
1438  */
1439 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1440 {
1441         if (dev->parent)
1442                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1443         return 0;
1444 }
1445
1446 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1447 {
1448         if (dev->parent)
1449                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1450         return 0;
1451 }
1452
1453 /**
1454  * sas_discover_expander -- expander discovery
1455  * @ex: pointer to expander domain device
1456  *
1457  * See comment in sas_discover_sata().
1458  */
1459 static int sas_discover_expander(struct domain_device *dev)
1460 {
1461         int res;
1462
1463         res = sas_notify_lldd_dev_found(dev);
1464         if (res)
1465                 return res;
1466
1467         res = sas_ex_general(dev);
1468         if (res)
1469                 goto out_err;
1470         res = sas_ex_manuf_info(dev);
1471         if (res)
1472                 goto out_err;
1473
1474         res = sas_expander_discover(dev);
1475         if (res) {
1476                 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1477                             SAS_ADDR(dev->sas_addr), res);
1478                 goto out_err;
1479         }
1480
1481         sas_check_ex_subtractive_boundary(dev);
1482         res = sas_check_parent_topology(dev);
1483         if (res)
1484                 goto out_err;
1485         return 0;
1486 out_err:
1487         sas_notify_lldd_dev_gone(dev);
1488         return res;
1489 }
1490
1491 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1492 {
1493         int res = 0;
1494         struct domain_device *dev;
1495
1496         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1497                 if (dev->dev_type == EDGE_DEV ||
1498                     dev->dev_type == FANOUT_DEV) {
1499                         struct sas_expander_device *ex =
1500                                 rphy_to_expander_device(dev->rphy);
1501
1502                         if (level == ex->level)
1503                                 res = sas_ex_discover_devices(dev, -1);
1504                         else if (level > 0)
1505                                 res = sas_ex_discover_devices(port->port_dev, -1);
1506
1507                 }
1508         }
1509
1510         return res;
1511 }
1512
1513 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1514 {
1515         int res;
1516         int level;
1517
1518         do {
1519                 level = port->disc.max_level;
1520                 res = sas_ex_level_discovery(port, level);
1521                 mb();
1522         } while (level < port->disc.max_level);
1523
1524         return res;
1525 }
1526
1527 int sas_discover_root_expander(struct domain_device *dev)
1528 {
1529         int res;
1530         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1531
1532         res = sas_rphy_add(dev->rphy);
1533         if (res)
1534                 goto out_err;
1535
1536         ex->level = dev->port->disc.max_level; /* 0 */
1537         res = sas_discover_expander(dev);
1538         if (res)
1539                 goto out_err2;
1540
1541         sas_ex_bfs_disc(dev->port);
1542
1543         return res;
1544
1545 out_err2:
1546         sas_rphy_remove(dev->rphy);
1547 out_err:
1548         return res;
1549 }
1550
1551 /* ---------- Domain revalidation ---------- */
1552
1553 static int sas_get_phy_discover(struct domain_device *dev,
1554                                 int phy_id, struct smp_resp *disc_resp)
1555 {
1556         int res;
1557         u8 *disc_req;
1558
1559         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1560         if (!disc_req)
1561                 return -ENOMEM;
1562
1563         disc_req[1] = SMP_DISCOVER;
1564         disc_req[9] = phy_id;
1565
1566         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1567                                disc_resp, DISCOVER_RESP_SIZE);
1568         if (res)
1569                 goto out;
1570         else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1571                 res = disc_resp->result;
1572                 goto out;
1573         }
1574 out:
1575         kfree(disc_req);
1576         return res;
1577 }
1578
1579 static int sas_get_phy_change_count(struct domain_device *dev,
1580                                     int phy_id, int *pcc)
1581 {
1582         int res;
1583         struct smp_resp *disc_resp;
1584
1585         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1586         if (!disc_resp)
1587                 return -ENOMEM;
1588
1589         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1590         if (!res)
1591                 *pcc = disc_resp->disc.change_count;
1592
1593         kfree(disc_resp);
1594         return res;
1595 }
1596
1597 static int sas_get_phy_attached_sas_addr(struct domain_device *dev,
1598                                          int phy_id, u8 *attached_sas_addr)
1599 {
1600         int res;
1601         struct smp_resp *disc_resp;
1602         struct discover_resp *dr;
1603
1604         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1605         if (!disc_resp)
1606                 return -ENOMEM;
1607         dr = &disc_resp->disc;
1608
1609         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1610         if (!res) {
1611                 memcpy(attached_sas_addr,disc_resp->disc.attached_sas_addr,8);
1612                 if (dr->attached_dev_type == 0)
1613                         memset(attached_sas_addr, 0, 8);
1614         }
1615         kfree(disc_resp);
1616         return res;
1617 }
1618
1619 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1620                               int from_phy, bool update)
1621 {
1622         struct expander_device *ex = &dev->ex_dev;
1623         int res = 0;
1624         int i;
1625
1626         for (i = from_phy; i < ex->num_phys; i++) {
1627                 int phy_change_count = 0;
1628
1629                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1630                 if (res)
1631                         goto out;
1632                 else if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1633                         if (update)
1634                                 ex->ex_phy[i].phy_change_count =
1635                                         phy_change_count;
1636                         *phy_id = i;
1637                         return 0;
1638                 }
1639         }
1640 out:
1641         return res;
1642 }
1643
1644 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1645 {
1646         int res;
1647         u8  *rg_req;
1648         struct smp_resp  *rg_resp;
1649
1650         rg_req = alloc_smp_req(RG_REQ_SIZE);
1651         if (!rg_req)
1652                 return -ENOMEM;
1653
1654         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1655         if (!rg_resp) {
1656                 kfree(rg_req);
1657                 return -ENOMEM;
1658         }
1659
1660         rg_req[1] = SMP_REPORT_GENERAL;
1661
1662         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1663                                RG_RESP_SIZE);
1664         if (res)
1665                 goto out;
1666         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1667                 res = rg_resp->result;
1668                 goto out;
1669         }
1670
1671         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1672 out:
1673         kfree(rg_resp);
1674         kfree(rg_req);
1675         return res;
1676 }
1677 /**
1678  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1679  * @dev:domain device to be detect.
1680  * @src_dev: the device which originated BROADCAST(CHANGE).
1681  *
1682  * Add self-configuration expander suport. Suppose two expander cascading,
1683  * when the first level expander is self-configuring, hotplug the disks in
1684  * second level expander, BROADCAST(CHANGE) will not only be originated
1685  * in the second level expander, but also be originated in the first level
1686  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1687  * expander changed count in two level expanders will all increment at least
1688  * once, but the phy which chang count has changed is the source device which
1689  * we concerned.
1690  */
1691
1692 static int sas_find_bcast_dev(struct domain_device *dev,
1693                               struct domain_device **src_dev)
1694 {
1695         struct expander_device *ex = &dev->ex_dev;
1696         int ex_change_count = -1;
1697         int phy_id = -1;
1698         int res;
1699         struct domain_device *ch;
1700
1701         res = sas_get_ex_change_count(dev, &ex_change_count);
1702         if (res)
1703                 goto out;
1704         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1705                 /* Just detect if this expander phys phy change count changed,
1706                 * in order to determine if this expander originate BROADCAST,
1707                 * and do not update phy change count field in our structure.
1708                 */
1709                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1710                 if (phy_id != -1) {
1711                         *src_dev = dev;
1712                         ex->ex_change_count = ex_change_count;
1713                         SAS_DPRINTK("Expander phy change count has changed\n");
1714                         return res;
1715                 } else
1716                         SAS_DPRINTK("Expander phys DID NOT change\n");
1717         }
1718         list_for_each_entry(ch, &ex->children, siblings) {
1719                 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1720                         res = sas_find_bcast_dev(ch, src_dev);
1721                         if (src_dev)
1722                                 return res;
1723                 }
1724         }
1725 out:
1726         return res;
1727 }
1728
1729 static void sas_unregister_ex_tree(struct domain_device *dev)
1730 {
1731         struct expander_device *ex = &dev->ex_dev;
1732         struct domain_device *child, *n;
1733
1734         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1735                 child->gone = 1;
1736                 if (child->dev_type == EDGE_DEV ||
1737                     child->dev_type == FANOUT_DEV)
1738                         sas_unregister_ex_tree(child);
1739                 else
1740                         sas_unregister_dev(child);
1741         }
1742         sas_unregister_dev(dev);
1743 }
1744
1745 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1746                                          int phy_id, bool last)
1747 {
1748         struct expander_device *ex_dev = &parent->ex_dev;
1749         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1750         struct domain_device *child, *n;
1751         if (last) {
1752                 list_for_each_entry_safe(child, n,
1753                         &ex_dev->children, siblings) {
1754                         if (SAS_ADDR(child->sas_addr) ==
1755                             SAS_ADDR(phy->attached_sas_addr)) {
1756                                 child->gone = 1;
1757                                 if (child->dev_type == EDGE_DEV ||
1758                                     child->dev_type == FANOUT_DEV)
1759                                         sas_unregister_ex_tree(child);
1760                                 else
1761                                         sas_unregister_dev(child);
1762                                 break;
1763                         }
1764                 }
1765                 parent->gone = 1;
1766                 sas_disable_routing(parent, phy->attached_sas_addr);
1767         }
1768         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1769         sas_port_delete_phy(phy->port, phy->phy);
1770         if (phy->port->num_phys == 0)
1771                 sas_port_delete(phy->port);
1772         phy->port = NULL;
1773 }
1774
1775 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1776                                           const int level)
1777 {
1778         struct expander_device *ex_root = &root->ex_dev;
1779         struct domain_device *child;
1780         int res = 0;
1781
1782         list_for_each_entry(child, &ex_root->children, siblings) {
1783                 if (child->dev_type == EDGE_DEV ||
1784                     child->dev_type == FANOUT_DEV) {
1785                         struct sas_expander_device *ex =
1786                                 rphy_to_expander_device(child->rphy);
1787
1788                         if (level > ex->level)
1789                                 res = sas_discover_bfs_by_root_level(child,
1790                                                                      level);
1791                         else if (level == ex->level)
1792                                 res = sas_ex_discover_devices(child, -1);
1793                 }
1794         }
1795         return res;
1796 }
1797
1798 static int sas_discover_bfs_by_root(struct domain_device *dev)
1799 {
1800         int res;
1801         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1802         int level = ex->level+1;
1803
1804         res = sas_ex_discover_devices(dev, -1);
1805         if (res)
1806                 goto out;
1807         do {
1808                 res = sas_discover_bfs_by_root_level(dev, level);
1809                 mb();
1810                 level += 1;
1811         } while (level <= dev->port->disc.max_level);
1812 out:
1813         return res;
1814 }
1815
1816 static int sas_discover_new(struct domain_device *dev, int phy_id)
1817 {
1818         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1819         struct domain_device *child;
1820         bool found = false;
1821         int res, i;
1822
1823         SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1824                     SAS_ADDR(dev->sas_addr), phy_id);
1825         res = sas_ex_phy_discover(dev, phy_id);
1826         if (res)
1827                 goto out;
1828         /* to support the wide port inserted */
1829         for (i = 0; i < dev->ex_dev.num_phys; i++) {
1830                 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1831                 if (i == phy_id)
1832                         continue;
1833                 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1834                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1835                         found = true;
1836                         break;
1837                 }
1838         }
1839         if (found) {
1840                 sas_ex_join_wide_port(dev, phy_id);
1841                 return 0;
1842         }
1843         res = sas_ex_discover_devices(dev, phy_id);
1844         if (!res)
1845                 goto out;
1846         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1847                 if (SAS_ADDR(child->sas_addr) ==
1848                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1849                         if (child->dev_type == EDGE_DEV ||
1850                             child->dev_type == FANOUT_DEV)
1851                                 res = sas_discover_bfs_by_root(child);
1852                         break;
1853                 }
1854         }
1855 out:
1856         return res;
1857 }
1858
1859 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
1860 {
1861         struct expander_device *ex = &dev->ex_dev;
1862         struct ex_phy *phy = &ex->ex_phy[phy_id];
1863         u8 attached_sas_addr[8];
1864         int res;
1865
1866         res = sas_get_phy_attached_sas_addr(dev, phy_id, attached_sas_addr);
1867         switch (res) {
1868         case SMP_RESP_NO_PHY:
1869                 phy->phy_state = PHY_NOT_PRESENT;
1870                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1871                 goto out; break;
1872         case SMP_RESP_PHY_VACANT:
1873                 phy->phy_state = PHY_VACANT;
1874                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1875                 goto out; break;
1876         case SMP_RESP_FUNC_ACC:
1877                 break;
1878         }
1879
1880         if (SAS_ADDR(attached_sas_addr) == 0) {
1881                 phy->phy_state = PHY_EMPTY;
1882                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1883         } else if (SAS_ADDR(attached_sas_addr) ==
1884                    SAS_ADDR(phy->attached_sas_addr)) {
1885                 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter\n",
1886                             SAS_ADDR(dev->sas_addr), phy_id);
1887                 sas_ex_phy_discover(dev, phy_id);
1888         } else
1889                 res = sas_discover_new(dev, phy_id);
1890 out:
1891         return res;
1892 }
1893
1894 /**
1895  * sas_rediscover - revalidate the domain.
1896  * @dev:domain device to be detect.
1897  * @phy_id: the phy id will be detected.
1898  *
1899  * NOTE: this process _must_ quit (return) as soon as any connection
1900  * errors are encountered.  Connection recovery is done elsewhere.
1901  * Discover process only interrogates devices in order to discover the
1902  * domain.For plugging out, we un-register the device only when it is
1903  * the last phy in the port, for other phys in this port, we just delete it
1904  * from the port.For inserting, we do discovery when it is the
1905  * first phy,for other phys in this port, we add it to the port to
1906  * forming the wide-port.
1907  */
1908 static int sas_rediscover(struct domain_device *dev, const int phy_id)
1909 {
1910         struct expander_device *ex = &dev->ex_dev;
1911         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
1912         int res = 0;
1913         int i;
1914         bool last = true;       /* is this the last phy of the port */
1915
1916         SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
1917                     SAS_ADDR(dev->sas_addr), phy_id);
1918
1919         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
1920                 for (i = 0; i < ex->num_phys; i++) {
1921                         struct ex_phy *phy = &ex->ex_phy[i];
1922
1923                         if (i == phy_id)
1924                                 continue;
1925                         if (SAS_ADDR(phy->attached_sas_addr) ==
1926                             SAS_ADDR(changed_phy->attached_sas_addr)) {
1927                                 SAS_DPRINTK("phy%d part of wide port with "
1928                                             "phy%d\n", phy_id, i);
1929                                 last = false;
1930                                 break;
1931                         }
1932                 }
1933                 res = sas_rediscover_dev(dev, phy_id, last);
1934         } else
1935                 res = sas_discover_new(dev, phy_id);
1936         return res;
1937 }
1938
1939 /**
1940  * sas_revalidate_domain -- revalidate the domain
1941  * @port: port to the domain of interest
1942  *
1943  * NOTE: this process _must_ quit (return) as soon as any connection
1944  * errors are encountered.  Connection recovery is done elsewhere.
1945  * Discover process only interrogates devices in order to discover the
1946  * domain.
1947  */
1948 int sas_ex_revalidate_domain(struct domain_device *port_dev)
1949 {
1950         int res;
1951         struct domain_device *dev = NULL;
1952
1953         res = sas_find_bcast_dev(port_dev, &dev);
1954         if (res)
1955                 goto out;
1956         if (dev) {
1957                 struct expander_device *ex = &dev->ex_dev;
1958                 int i = 0, phy_id;
1959
1960                 do {
1961                         phy_id = -1;
1962                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
1963                         if (phy_id == -1)
1964                                 break;
1965                         res = sas_rediscover(dev, phy_id);
1966                         i = phy_id + 1;
1967                 } while (i < ex->num_phys);
1968         }
1969 out:
1970         return res;
1971 }
1972
1973 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
1974                     struct request *req)
1975 {
1976         struct domain_device *dev;
1977         int ret, type;
1978         struct request *rsp = req->next_rq;
1979
1980         if (!rsp) {
1981                 printk("%s: space for a smp response is missing\n",
1982                        __func__);
1983                 return -EINVAL;
1984         }
1985
1986         /* no rphy means no smp target support (ie aic94xx host) */
1987         if (!rphy)
1988                 return sas_smp_host_handler(shost, req, rsp);
1989
1990         type = rphy->identify.device_type;
1991
1992         if (type != SAS_EDGE_EXPANDER_DEVICE &&
1993             type != SAS_FANOUT_EXPANDER_DEVICE) {
1994                 printk("%s: can we send a smp request to a device?\n",
1995                        __func__);
1996                 return -EINVAL;
1997         }
1998
1999         dev = sas_find_dev_by_rphy(rphy);
2000         if (!dev) {
2001                 printk("%s: fail to find a domain_device?\n", __func__);
2002                 return -EINVAL;
2003         }
2004
2005         /* do we need to support multiple segments? */
2006         if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2007                 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2008                        __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2009                        rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2010                 return -EINVAL;
2011         }
2012
2013         ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2014                                bio_data(rsp->bio), blk_rq_bytes(rsp));
2015         if (ret > 0) {
2016                 /* positive number is the untransferred residual */
2017                 rsp->resid_len = ret;
2018                 req->resid_len = 0;
2019                 ret = 0;
2020         } else if (ret == 0) {
2021                 rsp->resid_len = 0;
2022                 req->resid_len = 0;
2023         }
2024
2025         return ret;
2026 }