Merge branch 'misc-3.2' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux
[pandora-kernel.git] / drivers / scsi / isci / host.c
1 /*
2  * This file is provided under a dual BSD/GPLv2 license.  When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  *   * Redistributions of source code must retain the above copyright
34  *     notice, this list of conditions and the following disclaimer.
35  *   * Redistributions in binary form must reproduce the above copyright
36  *     notice, this list of conditions and the following disclaimer in
37  *     the documentation and/or other materials provided with the
38  *     distribution.
39  *   * Neither the name of Intel Corporation nor the names of its
40  *     contributors may be used to endorse or promote products derived
41  *     from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 #include <linux/circ_buf.h>
56 #include <linux/device.h>
57 #include <scsi/sas.h>
58 #include "host.h"
59 #include "isci.h"
60 #include "port.h"
61 #include "host.h"
62 #include "probe_roms.h"
63 #include "remote_device.h"
64 #include "request.h"
65 #include "scu_completion_codes.h"
66 #include "scu_event_codes.h"
67 #include "registers.h"
68 #include "scu_remote_node_context.h"
69 #include "scu_task_context.h"
70
71 #define SCU_CONTEXT_RAM_INIT_STALL_TIME      200
72
73 #define smu_max_ports(dcc_value) \
74         (\
75                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
76                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
77         )
78
79 #define smu_max_task_contexts(dcc_value)        \
80         (\
81                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
82                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
83         )
84
85 #define smu_max_rncs(dcc_value) \
86         (\
87                 (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
88                  >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
89         )
90
91 #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT      100
92
93 /**
94  *
95  *
96  * The number of milliseconds to wait while a given phy is consuming power
97  * before allowing another set of phys to consume power. Ultimately, this will
98  * be specified by OEM parameter.
99  */
100 #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
101
102 /**
103  * NORMALIZE_PUT_POINTER() -
104  *
105  * This macro will normalize the completion queue put pointer so its value can
106  * be used as an array inde
107  */
108 #define NORMALIZE_PUT_POINTER(x) \
109         ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
110
111
112 /**
113  * NORMALIZE_EVENT_POINTER() -
114  *
115  * This macro will normalize the completion queue event entry so its value can
116  * be used as an index.
117  */
118 #define NORMALIZE_EVENT_POINTER(x) \
119         (\
120                 ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
121                 >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
122         )
123
124 /**
125  * NORMALIZE_GET_POINTER() -
126  *
127  * This macro will normalize the completion queue get pointer so its value can
128  * be used as an index into an array
129  */
130 #define NORMALIZE_GET_POINTER(x) \
131         ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
132
133 /**
134  * NORMALIZE_GET_POINTER_CYCLE_BIT() -
135  *
136  * This macro will normalize the completion queue cycle pointer so it matches
137  * the completion queue cycle bit
138  */
139 #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
140         ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
141
142 /**
143  * COMPLETION_QUEUE_CYCLE_BIT() -
144  *
145  * This macro will return the cycle bit of the completion queue entry
146  */
147 #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
148
149 /* Init the state machine and call the state entry function (if any) */
150 void sci_init_sm(struct sci_base_state_machine *sm,
151                  const struct sci_base_state *state_table, u32 initial_state)
152 {
153         sci_state_transition_t handler;
154
155         sm->initial_state_id    = initial_state;
156         sm->previous_state_id   = initial_state;
157         sm->current_state_id    = initial_state;
158         sm->state_table         = state_table;
159
160         handler = sm->state_table[initial_state].enter_state;
161         if (handler)
162                 handler(sm);
163 }
164
165 /* Call the state exit fn, update the current state, call the state entry fn */
166 void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
167 {
168         sci_state_transition_t handler;
169
170         handler = sm->state_table[sm->current_state_id].exit_state;
171         if (handler)
172                 handler(sm);
173
174         sm->previous_state_id = sm->current_state_id;
175         sm->current_state_id = next_state;
176
177         handler = sm->state_table[sm->current_state_id].enter_state;
178         if (handler)
179                 handler(sm);
180 }
181
182 static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost)
183 {
184         u32 get_value = ihost->completion_queue_get;
185         u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
186
187         if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
188             COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]))
189                 return true;
190
191         return false;
192 }
193
194 static bool sci_controller_isr(struct isci_host *ihost)
195 {
196         if (sci_controller_completion_queue_has_entries(ihost)) {
197                 return true;
198         } else {
199                 /*
200                  * we have a spurious interrupt it could be that we have already
201                  * emptied the completion queue from a previous interrupt */
202                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
203
204                 /*
205                  * There is a race in the hardware that could cause us not to be notified
206                  * of an interrupt completion if we do not take this step.  We will mask
207                  * then unmask the interrupts so if there is another interrupt pending
208                  * the clearing of the interrupt source we get the next interrupt message. */
209                 writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
210                 writel(0, &ihost->smu_registers->interrupt_mask);
211         }
212
213         return false;
214 }
215
216 irqreturn_t isci_msix_isr(int vec, void *data)
217 {
218         struct isci_host *ihost = data;
219
220         if (sci_controller_isr(ihost))
221                 tasklet_schedule(&ihost->completion_tasklet);
222
223         return IRQ_HANDLED;
224 }
225
226 static bool sci_controller_error_isr(struct isci_host *ihost)
227 {
228         u32 interrupt_status;
229
230         interrupt_status =
231                 readl(&ihost->smu_registers->interrupt_status);
232         interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
233
234         if (interrupt_status != 0) {
235                 /*
236                  * There is an error interrupt pending so let it through and handle
237                  * in the callback */
238                 return true;
239         }
240
241         /*
242          * There is a race in the hardware that could cause us not to be notified
243          * of an interrupt completion if we do not take this step.  We will mask
244          * then unmask the error interrupts so if there was another interrupt
245          * pending we will be notified.
246          * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
247         writel(0xff, &ihost->smu_registers->interrupt_mask);
248         writel(0, &ihost->smu_registers->interrupt_mask);
249
250         return false;
251 }
252
253 static void sci_controller_task_completion(struct isci_host *ihost, u32 ent)
254 {
255         u32 index = SCU_GET_COMPLETION_INDEX(ent);
256         struct isci_request *ireq = ihost->reqs[index];
257
258         /* Make sure that we really want to process this IO request */
259         if (test_bit(IREQ_ACTIVE, &ireq->flags) &&
260             ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
261             ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index])
262                 /* Yep this is a valid io request pass it along to the
263                  * io request handler
264                  */
265                 sci_io_request_tc_completion(ireq, ent);
266 }
267
268 static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent)
269 {
270         u32 index;
271         struct isci_request *ireq;
272         struct isci_remote_device *idev;
273
274         index = SCU_GET_COMPLETION_INDEX(ent);
275
276         switch (scu_get_command_request_type(ent)) {
277         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
278         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
279                 ireq = ihost->reqs[index];
280                 dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n",
281                          __func__, ent, ireq);
282                 /* @todo For a post TC operation we need to fail the IO
283                  * request
284                  */
285                 break;
286         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
287         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
288         case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
289                 idev = ihost->device_table[index];
290                 dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n",
291                          __func__, ent, idev);
292                 /* @todo For a port RNC operation we need to fail the
293                  * device
294                  */
295                 break;
296         default:
297                 dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n",
298                          __func__, ent);
299                 break;
300         }
301 }
302
303 static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent)
304 {
305         u32 index;
306         u32 frame_index;
307
308         struct scu_unsolicited_frame_header *frame_header;
309         struct isci_phy *iphy;
310         struct isci_remote_device *idev;
311
312         enum sci_status result = SCI_FAILURE;
313
314         frame_index = SCU_GET_FRAME_INDEX(ent);
315
316         frame_header = ihost->uf_control.buffers.array[frame_index].header;
317         ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
318
319         if (SCU_GET_FRAME_ERROR(ent)) {
320                 /*
321                  * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
322                  * /       this cause a problem? We expect the phy initialization will
323                  * /       fail if there is an error in the frame. */
324                 sci_controller_release_frame(ihost, frame_index);
325                 return;
326         }
327
328         if (frame_header->is_address_frame) {
329                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
330                 iphy = &ihost->phys[index];
331                 result = sci_phy_frame_handler(iphy, frame_index);
332         } else {
333
334                 index = SCU_GET_COMPLETION_INDEX(ent);
335
336                 if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
337                         /*
338                          * This is a signature fis or a frame from a direct attached SATA
339                          * device that has not yet been created.  In either case forwared
340                          * the frame to the PE and let it take care of the frame data. */
341                         index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
342                         iphy = &ihost->phys[index];
343                         result = sci_phy_frame_handler(iphy, frame_index);
344                 } else {
345                         if (index < ihost->remote_node_entries)
346                                 idev = ihost->device_table[index];
347                         else
348                                 idev = NULL;
349
350                         if (idev != NULL)
351                                 result = sci_remote_device_frame_handler(idev, frame_index);
352                         else
353                                 sci_controller_release_frame(ihost, frame_index);
354                 }
355         }
356
357         if (result != SCI_SUCCESS) {
358                 /*
359                  * / @todo Is there any reason to report some additional error message
360                  * /       when we get this failure notifiction? */
361         }
362 }
363
364 static void sci_controller_event_completion(struct isci_host *ihost, u32 ent)
365 {
366         struct isci_remote_device *idev;
367         struct isci_request *ireq;
368         struct isci_phy *iphy;
369         u32 index;
370
371         index = SCU_GET_COMPLETION_INDEX(ent);
372
373         switch (scu_get_event_type(ent)) {
374         case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
375                 /* / @todo The driver did something wrong and we need to fix the condtion. */
376                 dev_err(&ihost->pdev->dev,
377                         "%s: SCIC Controller 0x%p received SMU command error "
378                         "0x%x\n",
379                         __func__,
380                         ihost,
381                         ent);
382                 break;
383
384         case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
385         case SCU_EVENT_TYPE_SMU_ERROR:
386         case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
387                 /*
388                  * / @todo This is a hardware failure and its likely that we want to
389                  * /       reset the controller. */
390                 dev_err(&ihost->pdev->dev,
391                         "%s: SCIC Controller 0x%p received fatal controller "
392                         "event  0x%x\n",
393                         __func__,
394                         ihost,
395                         ent);
396                 break;
397
398         case SCU_EVENT_TYPE_TRANSPORT_ERROR:
399                 ireq = ihost->reqs[index];
400                 sci_io_request_event_handler(ireq, ent);
401                 break;
402
403         case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
404                 switch (scu_get_event_specifier(ent)) {
405                 case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
406                 case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
407                         ireq = ihost->reqs[index];
408                         if (ireq != NULL)
409                                 sci_io_request_event_handler(ireq, ent);
410                         else
411                                 dev_warn(&ihost->pdev->dev,
412                                          "%s: SCIC Controller 0x%p received "
413                                          "event 0x%x for io request object "
414                                          "that doesnt exist.\n",
415                                          __func__,
416                                          ihost,
417                                          ent);
418
419                         break;
420
421                 case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
422                         idev = ihost->device_table[index];
423                         if (idev != NULL)
424                                 sci_remote_device_event_handler(idev, ent);
425                         else
426                                 dev_warn(&ihost->pdev->dev,
427                                          "%s: SCIC Controller 0x%p received "
428                                          "event 0x%x for remote device object "
429                                          "that doesnt exist.\n",
430                                          __func__,
431                                          ihost,
432                                          ent);
433
434                         break;
435                 }
436                 break;
437
438         case SCU_EVENT_TYPE_BROADCAST_CHANGE:
439         /*
440          * direct the broadcast change event to the phy first and then let
441          * the phy redirect the broadcast change to the port object */
442         case SCU_EVENT_TYPE_ERR_CNT_EVENT:
443         /*
444          * direct error counter event to the phy object since that is where
445          * we get the event notification.  This is a type 4 event. */
446         case SCU_EVENT_TYPE_OSSP_EVENT:
447                 index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent);
448                 iphy = &ihost->phys[index];
449                 sci_phy_event_handler(iphy, ent);
450                 break;
451
452         case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
453         case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
454         case SCU_EVENT_TYPE_RNC_OPS_MISC:
455                 if (index < ihost->remote_node_entries) {
456                         idev = ihost->device_table[index];
457
458                         if (idev != NULL)
459                                 sci_remote_device_event_handler(idev, ent);
460                 } else
461                         dev_err(&ihost->pdev->dev,
462                                 "%s: SCIC Controller 0x%p received event 0x%x "
463                                 "for remote device object 0x%0x that doesnt "
464                                 "exist.\n",
465                                 __func__,
466                                 ihost,
467                                 ent,
468                                 index);
469
470                 break;
471
472         default:
473                 dev_warn(&ihost->pdev->dev,
474                          "%s: SCIC Controller received unknown event code %x\n",
475                          __func__,
476                          ent);
477                 break;
478         }
479 }
480
481 static void sci_controller_process_completions(struct isci_host *ihost)
482 {
483         u32 completion_count = 0;
484         u32 ent;
485         u32 get_index;
486         u32 get_cycle;
487         u32 event_get;
488         u32 event_cycle;
489
490         dev_dbg(&ihost->pdev->dev,
491                 "%s: completion queue begining get:0x%08x\n",
492                 __func__,
493                 ihost->completion_queue_get);
494
495         /* Get the component parts of the completion queue */
496         get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get);
497         get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get;
498
499         event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get);
500         event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get;
501
502         while (
503                 NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
504                 == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])
505                 ) {
506                 completion_count++;
507
508                 ent = ihost->completion_queue[get_index];
509
510                 /* increment the get pointer and check for rollover to toggle the cycle bit */
511                 get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) <<
512                              (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT);
513                 get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1);
514
515                 dev_dbg(&ihost->pdev->dev,
516                         "%s: completion queue entry:0x%08x\n",
517                         __func__,
518                         ent);
519
520                 switch (SCU_GET_COMPLETION_TYPE(ent)) {
521                 case SCU_COMPLETION_TYPE_TASK:
522                         sci_controller_task_completion(ihost, ent);
523                         break;
524
525                 case SCU_COMPLETION_TYPE_SDMA:
526                         sci_controller_sdma_completion(ihost, ent);
527                         break;
528
529                 case SCU_COMPLETION_TYPE_UFI:
530                         sci_controller_unsolicited_frame(ihost, ent);
531                         break;
532
533                 case SCU_COMPLETION_TYPE_EVENT:
534                         sci_controller_event_completion(ihost, ent);
535                         break;
536
537                 case SCU_COMPLETION_TYPE_NOTIFY: {
538                         event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) <<
539                                        (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT);
540                         event_get = (event_get+1) & (SCU_MAX_EVENTS-1);
541
542                         sci_controller_event_completion(ihost, ent);
543                         break;
544                 }
545                 default:
546                         dev_warn(&ihost->pdev->dev,
547                                  "%s: SCIC Controller received unknown "
548                                  "completion type %x\n",
549                                  __func__,
550                                  ent);
551                         break;
552                 }
553         }
554
555         /* Update the get register if we completed one or more entries */
556         if (completion_count > 0) {
557                 ihost->completion_queue_get =
558                         SMU_CQGR_GEN_BIT(ENABLE) |
559                         SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
560                         event_cycle |
561                         SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) |
562                         get_cycle |
563                         SMU_CQGR_GEN_VAL(POINTER, get_index);
564
565                 writel(ihost->completion_queue_get,
566                        &ihost->smu_registers->completion_queue_get);
567
568         }
569
570         dev_dbg(&ihost->pdev->dev,
571                 "%s: completion queue ending get:0x%08x\n",
572                 __func__,
573                 ihost->completion_queue_get);
574
575 }
576
577 static void sci_controller_error_handler(struct isci_host *ihost)
578 {
579         u32 interrupt_status;
580
581         interrupt_status =
582                 readl(&ihost->smu_registers->interrupt_status);
583
584         if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
585             sci_controller_completion_queue_has_entries(ihost)) {
586
587                 sci_controller_process_completions(ihost);
588                 writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status);
589         } else {
590                 dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__,
591                         interrupt_status);
592
593                 sci_change_state(&ihost->sm, SCIC_FAILED);
594
595                 return;
596         }
597
598         /* If we dont process any completions I am not sure that we want to do this.
599          * We are in the middle of a hardware fault and should probably be reset.
600          */
601         writel(0, &ihost->smu_registers->interrupt_mask);
602 }
603
604 irqreturn_t isci_intx_isr(int vec, void *data)
605 {
606         irqreturn_t ret = IRQ_NONE;
607         struct isci_host *ihost = data;
608
609         if (sci_controller_isr(ihost)) {
610                 writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
611                 tasklet_schedule(&ihost->completion_tasklet);
612                 ret = IRQ_HANDLED;
613         } else if (sci_controller_error_isr(ihost)) {
614                 spin_lock(&ihost->scic_lock);
615                 sci_controller_error_handler(ihost);
616                 spin_unlock(&ihost->scic_lock);
617                 ret = IRQ_HANDLED;
618         }
619
620         return ret;
621 }
622
623 irqreturn_t isci_error_isr(int vec, void *data)
624 {
625         struct isci_host *ihost = data;
626
627         if (sci_controller_error_isr(ihost))
628                 sci_controller_error_handler(ihost);
629
630         return IRQ_HANDLED;
631 }
632
633 /**
634  * isci_host_start_complete() - This function is called by the core library,
635  *    through the ISCI Module, to indicate controller start status.
636  * @isci_host: This parameter specifies the ISCI host object
637  * @completion_status: This parameter specifies the completion status from the
638  *    core library.
639  *
640  */
641 static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
642 {
643         if (completion_status != SCI_SUCCESS)
644                 dev_info(&ihost->pdev->dev,
645                         "controller start timed out, continuing...\n");
646         isci_host_change_state(ihost, isci_ready);
647         clear_bit(IHOST_START_PENDING, &ihost->flags);
648         wake_up(&ihost->eventq);
649 }
650
651 int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
652 {
653         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
654
655         if (test_bit(IHOST_START_PENDING, &ihost->flags))
656                 return 0;
657
658         /* todo: use sas_flush_discovery once it is upstream */
659         scsi_flush_work(shost);
660
661         scsi_flush_work(shost);
662
663         dev_dbg(&ihost->pdev->dev,
664                 "%s: ihost->status = %d, time = %ld\n",
665                  __func__, isci_host_get_state(ihost), time);
666
667         return 1;
668
669 }
670
671 /**
672  * sci_controller_get_suggested_start_timeout() - This method returns the
673  *    suggested sci_controller_start() timeout amount.  The user is free to
674  *    use any timeout value, but this method provides the suggested minimum
675  *    start timeout value.  The returned value is based upon empirical
676  *    information determined as a result of interoperability testing.
677  * @controller: the handle to the controller object for which to return the
678  *    suggested start timeout.
679  *
680  * This method returns the number of milliseconds for the suggested start
681  * operation timeout.
682  */
683 static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost)
684 {
685         /* Validate the user supplied parameters. */
686         if (!ihost)
687                 return 0;
688
689         /*
690          * The suggested minimum timeout value for a controller start operation:
691          *
692          *     Signature FIS Timeout
693          *   + Phy Start Timeout
694          *   + Number of Phy Spin Up Intervals
695          *   ---------------------------------
696          *   Number of milliseconds for the controller start operation.
697          *
698          * NOTE: The number of phy spin up intervals will be equivalent
699          *       to the number of phys divided by the number phys allowed
700          *       per interval - 1 (once OEM parameters are supported).
701          *       Currently we assume only 1 phy per interval. */
702
703         return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
704                 + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
705                 + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
706 }
707
708 static void sci_controller_enable_interrupts(struct isci_host *ihost)
709 {
710         BUG_ON(ihost->smu_registers == NULL);
711         writel(0, &ihost->smu_registers->interrupt_mask);
712 }
713
714 void sci_controller_disable_interrupts(struct isci_host *ihost)
715 {
716         BUG_ON(ihost->smu_registers == NULL);
717         writel(0xffffffff, &ihost->smu_registers->interrupt_mask);
718 }
719
720 static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost)
721 {
722         u32 port_task_scheduler_value;
723
724         port_task_scheduler_value =
725                 readl(&ihost->scu_registers->peg0.ptsg.control);
726         port_task_scheduler_value |=
727                 (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
728                  SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
729         writel(port_task_scheduler_value,
730                &ihost->scu_registers->peg0.ptsg.control);
731 }
732
733 static void sci_controller_assign_task_entries(struct isci_host *ihost)
734 {
735         u32 task_assignment;
736
737         /*
738          * Assign all the TCs to function 0
739          * TODO: Do we actually need to read this register to write it back?
740          */
741
742         task_assignment =
743                 readl(&ihost->smu_registers->task_context_assignment[0]);
744
745         task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
746                 (SMU_TCA_GEN_VAL(ENDING,  ihost->task_context_entries - 1)) |
747                 (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
748
749         writel(task_assignment,
750                 &ihost->smu_registers->task_context_assignment[0]);
751
752 }
753
754 static void sci_controller_initialize_completion_queue(struct isci_host *ihost)
755 {
756         u32 index;
757         u32 completion_queue_control_value;
758         u32 completion_queue_get_value;
759         u32 completion_queue_put_value;
760
761         ihost->completion_queue_get = 0;
762
763         completion_queue_control_value =
764                 (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
765                  SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
766
767         writel(completion_queue_control_value,
768                &ihost->smu_registers->completion_queue_control);
769
770
771         /* Set the completion queue get pointer and enable the queue */
772         completion_queue_get_value = (
773                 (SMU_CQGR_GEN_VAL(POINTER, 0))
774                 | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
775                 | (SMU_CQGR_GEN_BIT(ENABLE))
776                 | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
777                 );
778
779         writel(completion_queue_get_value,
780                &ihost->smu_registers->completion_queue_get);
781
782         /* Set the completion queue put pointer */
783         completion_queue_put_value = (
784                 (SMU_CQPR_GEN_VAL(POINTER, 0))
785                 | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
786                 );
787
788         writel(completion_queue_put_value,
789                &ihost->smu_registers->completion_queue_put);
790
791         /* Initialize the cycle bit of the completion queue entries */
792         for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
793                 /*
794                  * If get.cycle_bit != completion_queue.cycle_bit
795                  * its not a valid completion queue entry
796                  * so at system start all entries are invalid */
797                 ihost->completion_queue[index] = 0x80000000;
798         }
799 }
800
801 static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost)
802 {
803         u32 frame_queue_control_value;
804         u32 frame_queue_get_value;
805         u32 frame_queue_put_value;
806
807         /* Write the queue size */
808         frame_queue_control_value =
809                 SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
810
811         writel(frame_queue_control_value,
812                &ihost->scu_registers->sdma.unsolicited_frame_queue_control);
813
814         /* Setup the get pointer for the unsolicited frame queue */
815         frame_queue_get_value = (
816                 SCU_UFQGP_GEN_VAL(POINTER, 0)
817                 |  SCU_UFQGP_GEN_BIT(ENABLE_BIT)
818                 );
819
820         writel(frame_queue_get_value,
821                &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
822         /* Setup the put pointer for the unsolicited frame queue */
823         frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
824         writel(frame_queue_put_value,
825                &ihost->scu_registers->sdma.unsolicited_frame_put_pointer);
826 }
827
828 static void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status)
829 {
830         if (ihost->sm.current_state_id == SCIC_STARTING) {
831                 /*
832                  * We move into the ready state, because some of the phys/ports
833                  * may be up and operational.
834                  */
835                 sci_change_state(&ihost->sm, SCIC_READY);
836
837                 isci_host_start_complete(ihost, status);
838         }
839 }
840
841 static bool is_phy_starting(struct isci_phy *iphy)
842 {
843         enum sci_phy_states state;
844
845         state = iphy->sm.current_state_id;
846         switch (state) {
847         case SCI_PHY_STARTING:
848         case SCI_PHY_SUB_INITIAL:
849         case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
850         case SCI_PHY_SUB_AWAIT_IAF_UF:
851         case SCI_PHY_SUB_AWAIT_SAS_POWER:
852         case SCI_PHY_SUB_AWAIT_SATA_POWER:
853         case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
854         case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
855         case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
856         case SCI_PHY_SUB_FINAL:
857                 return true;
858         default:
859                 return false;
860         }
861 }
862
863 /**
864  * sci_controller_start_next_phy - start phy
865  * @scic: controller
866  *
867  * If all the phys have been started, then attempt to transition the
868  * controller to the READY state and inform the user
869  * (sci_cb_controller_start_complete()).
870  */
871 static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost)
872 {
873         struct sci_oem_params *oem = &ihost->oem_parameters;
874         struct isci_phy *iphy;
875         enum sci_status status;
876
877         status = SCI_SUCCESS;
878
879         if (ihost->phy_startup_timer_pending)
880                 return status;
881
882         if (ihost->next_phy_to_start >= SCI_MAX_PHYS) {
883                 bool is_controller_start_complete = true;
884                 u32 state;
885                 u8 index;
886
887                 for (index = 0; index < SCI_MAX_PHYS; index++) {
888                         iphy = &ihost->phys[index];
889                         state = iphy->sm.current_state_id;
890
891                         if (!phy_get_non_dummy_port(iphy))
892                                 continue;
893
894                         /* The controller start operation is complete iff:
895                          * - all links have been given an opportunity to start
896                          * - have no indication of a connected device
897                          * - have an indication of a connected device and it has
898                          *   finished the link training process.
899                          */
900                         if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
901                             (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
902                             (iphy->is_in_link_training == true && is_phy_starting(iphy))) {
903                                 is_controller_start_complete = false;
904                                 break;
905                         }
906                 }
907
908                 /*
909                  * The controller has successfully finished the start process.
910                  * Inform the SCI Core user and transition to the READY state. */
911                 if (is_controller_start_complete == true) {
912                         sci_controller_transition_to_ready(ihost, SCI_SUCCESS);
913                         sci_del_timer(&ihost->phy_timer);
914                         ihost->phy_startup_timer_pending = false;
915                 }
916         } else {
917                 iphy = &ihost->phys[ihost->next_phy_to_start];
918
919                 if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
920                         if (phy_get_non_dummy_port(iphy) == NULL) {
921                                 ihost->next_phy_to_start++;
922
923                                 /* Caution recursion ahead be forwarned
924                                  *
925                                  * The PHY was never added to a PORT in MPC mode
926                                  * so start the next phy in sequence This phy
927                                  * will never go link up and will not draw power
928                                  * the OEM parameters either configured the phy
929                                  * incorrectly for the PORT or it was never
930                                  * assigned to a PORT
931                                  */
932                                 return sci_controller_start_next_phy(ihost);
933                         }
934                 }
935
936                 status = sci_phy_start(iphy);
937
938                 if (status == SCI_SUCCESS) {
939                         sci_mod_timer(&ihost->phy_timer,
940                                       SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
941                         ihost->phy_startup_timer_pending = true;
942                 } else {
943                         dev_warn(&ihost->pdev->dev,
944                                  "%s: Controller stop operation failed "
945                                  "to stop phy %d because of status "
946                                  "%d.\n",
947                                  __func__,
948                                  ihost->phys[ihost->next_phy_to_start].phy_index,
949                                  status);
950                 }
951
952                 ihost->next_phy_to_start++;
953         }
954
955         return status;
956 }
957
958 static void phy_startup_timeout(unsigned long data)
959 {
960         struct sci_timer *tmr = (struct sci_timer *)data;
961         struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer);
962         unsigned long flags;
963         enum sci_status status;
964
965         spin_lock_irqsave(&ihost->scic_lock, flags);
966
967         if (tmr->cancel)
968                 goto done;
969
970         ihost->phy_startup_timer_pending = false;
971
972         do {
973                 status = sci_controller_start_next_phy(ihost);
974         } while (status != SCI_SUCCESS);
975
976 done:
977         spin_unlock_irqrestore(&ihost->scic_lock, flags);
978 }
979
980 static u16 isci_tci_active(struct isci_host *ihost)
981 {
982         return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
983 }
984
985 static enum sci_status sci_controller_start(struct isci_host *ihost,
986                                              u32 timeout)
987 {
988         enum sci_status result;
989         u16 index;
990
991         if (ihost->sm.current_state_id != SCIC_INITIALIZED) {
992                 dev_warn(&ihost->pdev->dev,
993                          "SCIC Controller start operation requested in "
994                          "invalid state\n");
995                 return SCI_FAILURE_INVALID_STATE;
996         }
997
998         /* Build the TCi free pool */
999         BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
1000         ihost->tci_head = 0;
1001         ihost->tci_tail = 0;
1002         for (index = 0; index < ihost->task_context_entries; index++)
1003                 isci_tci_free(ihost, index);
1004
1005         /* Build the RNi free pool */
1006         sci_remote_node_table_initialize(&ihost->available_remote_nodes,
1007                                          ihost->remote_node_entries);
1008
1009         /*
1010          * Before anything else lets make sure we will not be
1011          * interrupted by the hardware.
1012          */
1013         sci_controller_disable_interrupts(ihost);
1014
1015         /* Enable the port task scheduler */
1016         sci_controller_enable_port_task_scheduler(ihost);
1017
1018         /* Assign all the task entries to ihost physical function */
1019         sci_controller_assign_task_entries(ihost);
1020
1021         /* Now initialize the completion queue */
1022         sci_controller_initialize_completion_queue(ihost);
1023
1024         /* Initialize the unsolicited frame queue for use */
1025         sci_controller_initialize_unsolicited_frame_queue(ihost);
1026
1027         /* Start all of the ports on this controller */
1028         for (index = 0; index < ihost->logical_port_entries; index++) {
1029                 struct isci_port *iport = &ihost->ports[index];
1030
1031                 result = sci_port_start(iport);
1032                 if (result)
1033                         return result;
1034         }
1035
1036         sci_controller_start_next_phy(ihost);
1037
1038         sci_mod_timer(&ihost->timer, timeout);
1039
1040         sci_change_state(&ihost->sm, SCIC_STARTING);
1041
1042         return SCI_SUCCESS;
1043 }
1044
1045 void isci_host_scan_start(struct Scsi_Host *shost)
1046 {
1047         struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
1048         unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost);
1049
1050         set_bit(IHOST_START_PENDING, &ihost->flags);
1051
1052         spin_lock_irq(&ihost->scic_lock);
1053         sci_controller_start(ihost, tmo);
1054         sci_controller_enable_interrupts(ihost);
1055         spin_unlock_irq(&ihost->scic_lock);
1056 }
1057
1058 static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
1059 {
1060         isci_host_change_state(ihost, isci_stopped);
1061         sci_controller_disable_interrupts(ihost);
1062         clear_bit(IHOST_STOP_PENDING, &ihost->flags);
1063         wake_up(&ihost->eventq);
1064 }
1065
1066 static void sci_controller_completion_handler(struct isci_host *ihost)
1067 {
1068         /* Empty out the completion queue */
1069         if (sci_controller_completion_queue_has_entries(ihost))
1070                 sci_controller_process_completions(ihost);
1071
1072         /* Clear the interrupt and enable all interrupts again */
1073         writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status);
1074         /* Could we write the value of SMU_ISR_COMPLETION? */
1075         writel(0xFF000000, &ihost->smu_registers->interrupt_mask);
1076         writel(0, &ihost->smu_registers->interrupt_mask);
1077 }
1078
1079 /**
1080  * isci_host_completion_routine() - This function is the delayed service
1081  *    routine that calls the sci core library's completion handler. It's
1082  *    scheduled as a tasklet from the interrupt service routine when interrupts
1083  *    in use, or set as the timeout function in polled mode.
1084  * @data: This parameter specifies the ISCI host object
1085  *
1086  */
1087 static void isci_host_completion_routine(unsigned long data)
1088 {
1089         struct isci_host *ihost = (struct isci_host *)data;
1090         struct list_head    completed_request_list;
1091         struct list_head    errored_request_list;
1092         struct list_head    *current_position;
1093         struct list_head    *next_position;
1094         struct isci_request *request;
1095         struct isci_request *next_request;
1096         struct sas_task     *task;
1097         u16 active;
1098
1099         INIT_LIST_HEAD(&completed_request_list);
1100         INIT_LIST_HEAD(&errored_request_list);
1101
1102         spin_lock_irq(&ihost->scic_lock);
1103
1104         sci_controller_completion_handler(ihost);
1105
1106         /* Take the lists of completed I/Os from the host. */
1107
1108         list_splice_init(&ihost->requests_to_complete,
1109                          &completed_request_list);
1110
1111         /* Take the list of errored I/Os from the host. */
1112         list_splice_init(&ihost->requests_to_errorback,
1113                          &errored_request_list);
1114
1115         spin_unlock_irq(&ihost->scic_lock);
1116
1117         /* Process any completions in the lists. */
1118         list_for_each_safe(current_position, next_position,
1119                            &completed_request_list) {
1120
1121                 request = list_entry(current_position, struct isci_request,
1122                                      completed_node);
1123                 task = isci_request_access_task(request);
1124
1125                 /* Normal notification (task_done) */
1126                 dev_dbg(&ihost->pdev->dev,
1127                         "%s: Normal - request/task = %p/%p\n",
1128                         __func__,
1129                         request,
1130                         task);
1131
1132                 /* Return the task to libsas */
1133                 if (task != NULL) {
1134
1135                         task->lldd_task = NULL;
1136                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
1137
1138                                 /* If the task is already in the abort path,
1139                                 * the task_done callback cannot be called.
1140                                 */
1141                                 task->task_done(task);
1142                         }
1143                 }
1144
1145                 spin_lock_irq(&ihost->scic_lock);
1146                 isci_free_tag(ihost, request->io_tag);
1147                 spin_unlock_irq(&ihost->scic_lock);
1148         }
1149         list_for_each_entry_safe(request, next_request, &errored_request_list,
1150                                  completed_node) {
1151
1152                 task = isci_request_access_task(request);
1153
1154                 /* Use sas_task_abort */
1155                 dev_warn(&ihost->pdev->dev,
1156                          "%s: Error - request/task = %p/%p\n",
1157                          __func__,
1158                          request,
1159                          task);
1160
1161                 if (task != NULL) {
1162
1163                         /* Put the task into the abort path if it's not there
1164                          * already.
1165                          */
1166                         if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
1167                                 sas_task_abort(task);
1168
1169                 } else {
1170                         /* This is a case where the request has completed with a
1171                          * status such that it needed further target servicing,
1172                          * but the sas_task reference has already been removed
1173                          * from the request.  Since it was errored, it was not
1174                          * being aborted, so there is nothing to do except free
1175                          * it.
1176                          */
1177
1178                         spin_lock_irq(&ihost->scic_lock);
1179                         /* Remove the request from the remote device's list
1180                         * of pending requests.
1181                         */
1182                         list_del_init(&request->dev_node);
1183                         isci_free_tag(ihost, request->io_tag);
1184                         spin_unlock_irq(&ihost->scic_lock);
1185                 }
1186         }
1187
1188         /* the coalesence timeout doubles at each encoding step, so
1189          * update it based on the ilog2 value of the outstanding requests
1190          */
1191         active = isci_tci_active(ihost);
1192         writel(SMU_ICC_GEN_VAL(NUMBER, active) |
1193                SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)),
1194                &ihost->smu_registers->interrupt_coalesce_control);
1195 }
1196
1197 /**
1198  * sci_controller_stop() - This method will stop an individual controller
1199  *    object.This method will invoke the associated user callback upon
1200  *    completion.  The completion callback is called when the following
1201  *    conditions are met: -# the method return status is SCI_SUCCESS. -# the
1202  *    controller has been quiesced. This method will ensure that all IO
1203  *    requests are quiesced, phys are stopped, and all additional operation by
1204  *    the hardware is halted.
1205  * @controller: the handle to the controller object to stop.
1206  * @timeout: This parameter specifies the number of milliseconds in which the
1207  *    stop operation should complete.
1208  *
1209  * The controller must be in the STARTED or STOPPED state. Indicate if the
1210  * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
1211  * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
1212  * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
1213  * controller is not either in the STARTED or STOPPED states.
1214  */
1215 static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout)
1216 {
1217         if (ihost->sm.current_state_id != SCIC_READY) {
1218                 dev_warn(&ihost->pdev->dev,
1219                          "SCIC Controller stop operation requested in "
1220                          "invalid state\n");
1221                 return SCI_FAILURE_INVALID_STATE;
1222         }
1223
1224         sci_mod_timer(&ihost->timer, timeout);
1225         sci_change_state(&ihost->sm, SCIC_STOPPING);
1226         return SCI_SUCCESS;
1227 }
1228
1229 /**
1230  * sci_controller_reset() - This method will reset the supplied core
1231  *    controller regardless of the state of said controller.  This operation is
1232  *    considered destructive.  In other words, all current operations are wiped
1233  *    out.  No IO completions for outstanding devices occur.  Outstanding IO
1234  *    requests are not aborted or completed at the actual remote device.
1235  * @controller: the handle to the controller object to reset.
1236  *
1237  * Indicate if the controller reset method succeeded or failed in some way.
1238  * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
1239  * the controller reset operation is unable to complete.
1240  */
1241 static enum sci_status sci_controller_reset(struct isci_host *ihost)
1242 {
1243         switch (ihost->sm.current_state_id) {
1244         case SCIC_RESET:
1245         case SCIC_READY:
1246         case SCIC_STOPPED:
1247         case SCIC_FAILED:
1248                 /*
1249                  * The reset operation is not a graceful cleanup, just
1250                  * perform the state transition.
1251                  */
1252                 sci_change_state(&ihost->sm, SCIC_RESETTING);
1253                 return SCI_SUCCESS;
1254         default:
1255                 dev_warn(&ihost->pdev->dev,
1256                          "SCIC Controller reset operation requested in "
1257                          "invalid state\n");
1258                 return SCI_FAILURE_INVALID_STATE;
1259         }
1260 }
1261
1262 void isci_host_deinit(struct isci_host *ihost)
1263 {
1264         int i;
1265
1266         /* disable output data selects */
1267         for (i = 0; i < isci_gpio_count(ihost); i++)
1268                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
1269
1270         isci_host_change_state(ihost, isci_stopping);
1271         for (i = 0; i < SCI_MAX_PORTS; i++) {
1272                 struct isci_port *iport = &ihost->ports[i];
1273                 struct isci_remote_device *idev, *d;
1274
1275                 list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
1276                         if (test_bit(IDEV_ALLOCATED, &idev->flags))
1277                                 isci_remote_device_stop(ihost, idev);
1278                 }
1279         }
1280
1281         set_bit(IHOST_STOP_PENDING, &ihost->flags);
1282
1283         spin_lock_irq(&ihost->scic_lock);
1284         sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT);
1285         spin_unlock_irq(&ihost->scic_lock);
1286
1287         wait_for_stop(ihost);
1288
1289         /* disable sgpio: where the above wait should give time for the
1290          * enclosure to sample the gpios going inactive
1291          */
1292         writel(0, &ihost->scu_registers->peg0.sgpio.interface_control);
1293
1294         sci_controller_reset(ihost);
1295
1296         /* Cancel any/all outstanding port timers */
1297         for (i = 0; i < ihost->logical_port_entries; i++) {
1298                 struct isci_port *iport = &ihost->ports[i];
1299                 del_timer_sync(&iport->timer.timer);
1300         }
1301
1302         /* Cancel any/all outstanding phy timers */
1303         for (i = 0; i < SCI_MAX_PHYS; i++) {
1304                 struct isci_phy *iphy = &ihost->phys[i];
1305                 del_timer_sync(&iphy->sata_timer.timer);
1306         }
1307
1308         del_timer_sync(&ihost->port_agent.timer.timer);
1309
1310         del_timer_sync(&ihost->power_control.timer.timer);
1311
1312         del_timer_sync(&ihost->timer.timer);
1313
1314         del_timer_sync(&ihost->phy_timer.timer);
1315 }
1316
1317 static void __iomem *scu_base(struct isci_host *isci_host)
1318 {
1319         struct pci_dev *pdev = isci_host->pdev;
1320         int id = isci_host->id;
1321
1322         return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
1323 }
1324
1325 static void __iomem *smu_base(struct isci_host *isci_host)
1326 {
1327         struct pci_dev *pdev = isci_host->pdev;
1328         int id = isci_host->id;
1329
1330         return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
1331 }
1332
1333 static void isci_user_parameters_get(struct sci_user_parameters *u)
1334 {
1335         int i;
1336
1337         for (i = 0; i < SCI_MAX_PHYS; i++) {
1338                 struct sci_phy_user_params *u_phy = &u->phys[i];
1339
1340                 u_phy->max_speed_generation = phy_gen;
1341
1342                 /* we are not exporting these for now */
1343                 u_phy->align_insertion_frequency = 0x7f;
1344                 u_phy->in_connection_align_insertion_frequency = 0xff;
1345                 u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
1346         }
1347
1348         u->stp_inactivity_timeout = stp_inactive_to;
1349         u->ssp_inactivity_timeout = ssp_inactive_to;
1350         u->stp_max_occupancy_timeout = stp_max_occ_to;
1351         u->ssp_max_occupancy_timeout = ssp_max_occ_to;
1352         u->no_outbound_task_timeout = no_outbound_task_to;
1353         u->max_number_concurrent_device_spin_up = max_concurr_spinup;
1354 }
1355
1356 static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm)
1357 {
1358         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1359
1360         sci_change_state(&ihost->sm, SCIC_RESET);
1361 }
1362
1363 static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm)
1364 {
1365         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1366
1367         sci_del_timer(&ihost->timer);
1368 }
1369
1370 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
1371 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
1372 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US                    2700000
1373 #define INTERRUPT_COALESCE_NUMBER_MAX                        256
1374 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN                7
1375 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX                28
1376
1377 /**
1378  * sci_controller_set_interrupt_coalescence() - This method allows the user to
1379  *    configure the interrupt coalescence.
1380  * @controller: This parameter represents the handle to the controller object
1381  *    for which its interrupt coalesce register is overridden.
1382  * @coalesce_number: Used to control the number of entries in the Completion
1383  *    Queue before an interrupt is generated. If the number of entries exceed
1384  *    this number, an interrupt will be generated. The valid range of the input
1385  *    is [0, 256]. A setting of 0 results in coalescing being disabled.
1386  * @coalesce_timeout: Timeout value in microseconds. The valid range of the
1387  *    input is [0, 2700000] . A setting of 0 is allowed and results in no
1388  *    interrupt coalescing timeout.
1389  *
1390  * Indicate if the user successfully set the interrupt coalesce parameters.
1391  * SCI_SUCCESS The user successfully updated the interrutp coalescence.
1392  * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
1393  */
1394 static enum sci_status
1395 sci_controller_set_interrupt_coalescence(struct isci_host *ihost,
1396                                          u32 coalesce_number,
1397                                          u32 coalesce_timeout)
1398 {
1399         u8 timeout_encode = 0;
1400         u32 min = 0;
1401         u32 max = 0;
1402
1403         /* Check if the input parameters fall in the range. */
1404         if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
1405                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1406
1407         /*
1408          *  Defined encoding for interrupt coalescing timeout:
1409          *              Value   Min      Max     Units
1410          *              -----   ---      ---     -----
1411          *              0       -        -       Disabled
1412          *              1       13.3     20.0    ns
1413          *              2       26.7     40.0
1414          *              3       53.3     80.0
1415          *              4       106.7    160.0
1416          *              5       213.3    320.0
1417          *              6       426.7    640.0
1418          *              7       853.3    1280.0
1419          *              8       1.7      2.6     us
1420          *              9       3.4      5.1
1421          *              10      6.8      10.2
1422          *              11      13.7     20.5
1423          *              12      27.3     41.0
1424          *              13      54.6     81.9
1425          *              14      109.2    163.8
1426          *              15      218.5    327.7
1427          *              16      436.9    655.4
1428          *              17      873.8    1310.7
1429          *              18      1.7      2.6     ms
1430          *              19      3.5      5.2
1431          *              20      7.0      10.5
1432          *              21      14.0     21.0
1433          *              22      28.0     41.9
1434          *              23      55.9     83.9
1435          *              24      111.8    167.8
1436          *              25      223.7    335.5
1437          *              26      447.4    671.1
1438          *              27      894.8    1342.2
1439          *              28      1.8      2.7     s
1440          *              Others Undefined */
1441
1442         /*
1443          * Use the table above to decide the encode of interrupt coalescing timeout
1444          * value for register writing. */
1445         if (coalesce_timeout == 0)
1446                 timeout_encode = 0;
1447         else{
1448                 /* make the timeout value in unit of (10 ns). */
1449                 coalesce_timeout = coalesce_timeout * 100;
1450                 min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
1451                 max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
1452
1453                 /* get the encode of timeout for register writing. */
1454                 for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
1455                       timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
1456                       timeout_encode++) {
1457                         if (min <= coalesce_timeout &&  max > coalesce_timeout)
1458                                 break;
1459                         else if (coalesce_timeout >= max && coalesce_timeout < min * 2
1460                                  && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
1461                                 if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
1462                                         break;
1463                                 else{
1464                                         timeout_encode++;
1465                                         break;
1466                                 }
1467                         } else {
1468                                 max = max * 2;
1469                                 min = min * 2;
1470                         }
1471                 }
1472
1473                 if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
1474                         /* the value is out of range. */
1475                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1476         }
1477
1478         writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
1479                SMU_ICC_GEN_VAL(TIMER, timeout_encode),
1480                &ihost->smu_registers->interrupt_coalesce_control);
1481
1482
1483         ihost->interrupt_coalesce_number = (u16)coalesce_number;
1484         ihost->interrupt_coalesce_timeout = coalesce_timeout / 100;
1485
1486         return SCI_SUCCESS;
1487 }
1488
1489
1490 static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm)
1491 {
1492         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1493
1494         /* set the default interrupt coalescence number and timeout value. */
1495         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1496 }
1497
1498 static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm)
1499 {
1500         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1501
1502         /* disable interrupt coalescence. */
1503         sci_controller_set_interrupt_coalescence(ihost, 0, 0);
1504 }
1505
1506 static enum sci_status sci_controller_stop_phys(struct isci_host *ihost)
1507 {
1508         u32 index;
1509         enum sci_status status;
1510         enum sci_status phy_status;
1511
1512         status = SCI_SUCCESS;
1513
1514         for (index = 0; index < SCI_MAX_PHYS; index++) {
1515                 phy_status = sci_phy_stop(&ihost->phys[index]);
1516
1517                 if (phy_status != SCI_SUCCESS &&
1518                     phy_status != SCI_FAILURE_INVALID_STATE) {
1519                         status = SCI_FAILURE;
1520
1521                         dev_warn(&ihost->pdev->dev,
1522                                  "%s: Controller stop operation failed to stop "
1523                                  "phy %d because of status %d.\n",
1524                                  __func__,
1525                                  ihost->phys[index].phy_index, phy_status);
1526                 }
1527         }
1528
1529         return status;
1530 }
1531
1532 static enum sci_status sci_controller_stop_ports(struct isci_host *ihost)
1533 {
1534         u32 index;
1535         enum sci_status port_status;
1536         enum sci_status status = SCI_SUCCESS;
1537
1538         for (index = 0; index < ihost->logical_port_entries; index++) {
1539                 struct isci_port *iport = &ihost->ports[index];
1540
1541                 port_status = sci_port_stop(iport);
1542
1543                 if ((port_status != SCI_SUCCESS) &&
1544                     (port_status != SCI_FAILURE_INVALID_STATE)) {
1545                         status = SCI_FAILURE;
1546
1547                         dev_warn(&ihost->pdev->dev,
1548                                  "%s: Controller stop operation failed to "
1549                                  "stop port %d because of status %d.\n",
1550                                  __func__,
1551                                  iport->logical_port_index,
1552                                  port_status);
1553                 }
1554         }
1555
1556         return status;
1557 }
1558
1559 static enum sci_status sci_controller_stop_devices(struct isci_host *ihost)
1560 {
1561         u32 index;
1562         enum sci_status status;
1563         enum sci_status device_status;
1564
1565         status = SCI_SUCCESS;
1566
1567         for (index = 0; index < ihost->remote_node_entries; index++) {
1568                 if (ihost->device_table[index] != NULL) {
1569                         /* / @todo What timeout value do we want to provide to this request? */
1570                         device_status = sci_remote_device_stop(ihost->device_table[index], 0);
1571
1572                         if ((device_status != SCI_SUCCESS) &&
1573                             (device_status != SCI_FAILURE_INVALID_STATE)) {
1574                                 dev_warn(&ihost->pdev->dev,
1575                                          "%s: Controller stop operation failed "
1576                                          "to stop device 0x%p because of "
1577                                          "status %d.\n",
1578                                          __func__,
1579                                          ihost->device_table[index], device_status);
1580                         }
1581                 }
1582         }
1583
1584         return status;
1585 }
1586
1587 static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm)
1588 {
1589         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1590
1591         /* Stop all of the components for this controller */
1592         sci_controller_stop_phys(ihost);
1593         sci_controller_stop_ports(ihost);
1594         sci_controller_stop_devices(ihost);
1595 }
1596
1597 static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm)
1598 {
1599         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1600
1601         sci_del_timer(&ihost->timer);
1602 }
1603
1604 static void sci_controller_reset_hardware(struct isci_host *ihost)
1605 {
1606         /* Disable interrupts so we dont take any spurious interrupts */
1607         sci_controller_disable_interrupts(ihost);
1608
1609         /* Reset the SCU */
1610         writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control);
1611
1612         /* Delay for 1ms to before clearing the CQP and UFQPR. */
1613         udelay(1000);
1614
1615         /* The write to the CQGR clears the CQP */
1616         writel(0x00000000, &ihost->smu_registers->completion_queue_get);
1617
1618         /* The write to the UFQGP clears the UFQPR */
1619         writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
1620 }
1621
1622 static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm)
1623 {
1624         struct isci_host *ihost = container_of(sm, typeof(*ihost), sm);
1625
1626         sci_controller_reset_hardware(ihost);
1627         sci_change_state(&ihost->sm, SCIC_RESET);
1628 }
1629
1630 static const struct sci_base_state sci_controller_state_table[] = {
1631         [SCIC_INITIAL] = {
1632                 .enter_state = sci_controller_initial_state_enter,
1633         },
1634         [SCIC_RESET] = {},
1635         [SCIC_INITIALIZING] = {},
1636         [SCIC_INITIALIZED] = {},
1637         [SCIC_STARTING] = {
1638                 .exit_state  = sci_controller_starting_state_exit,
1639         },
1640         [SCIC_READY] = {
1641                 .enter_state = sci_controller_ready_state_enter,
1642                 .exit_state  = sci_controller_ready_state_exit,
1643         },
1644         [SCIC_RESETTING] = {
1645                 .enter_state = sci_controller_resetting_state_enter,
1646         },
1647         [SCIC_STOPPING] = {
1648                 .enter_state = sci_controller_stopping_state_enter,
1649                 .exit_state = sci_controller_stopping_state_exit,
1650         },
1651         [SCIC_STOPPED] = {},
1652         [SCIC_FAILED] = {}
1653 };
1654
1655 static void sci_controller_set_default_config_parameters(struct isci_host *ihost)
1656 {
1657         /* these defaults are overridden by the platform / firmware */
1658         u16 index;
1659
1660         /* Default to APC mode. */
1661         ihost->oem_parameters.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
1662
1663         /* Default to APC mode. */
1664         ihost->oem_parameters.controller.max_concurrent_dev_spin_up = 1;
1665
1666         /* Default to no SSC operation. */
1667         ihost->oem_parameters.controller.do_enable_ssc = false;
1668
1669         /* Initialize all of the port parameter information to narrow ports. */
1670         for (index = 0; index < SCI_MAX_PORTS; index++) {
1671                 ihost->oem_parameters.ports[index].phy_mask = 0;
1672         }
1673
1674         /* Initialize all of the phy parameter information. */
1675         for (index = 0; index < SCI_MAX_PHYS; index++) {
1676                 /* Default to 6G (i.e. Gen 3) for now. */
1677                 ihost->user_parameters.phys[index].max_speed_generation = 3;
1678
1679                 /* the frequencies cannot be 0 */
1680                 ihost->user_parameters.phys[index].align_insertion_frequency = 0x7f;
1681                 ihost->user_parameters.phys[index].in_connection_align_insertion_frequency = 0xff;
1682                 ihost->user_parameters.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
1683
1684                 /*
1685                  * Previous Vitesse based expanders had a arbitration issue that
1686                  * is worked around by having the upper 32-bits of SAS address
1687                  * with a value greater then the Vitesse company identifier.
1688                  * Hence, usage of 0x5FCFFFFF. */
1689                 ihost->oem_parameters.phys[index].sas_address.low = 0x1 + ihost->id;
1690                 ihost->oem_parameters.phys[index].sas_address.high = 0x5FCFFFFF;
1691         }
1692
1693         ihost->user_parameters.stp_inactivity_timeout = 5;
1694         ihost->user_parameters.ssp_inactivity_timeout = 5;
1695         ihost->user_parameters.stp_max_occupancy_timeout = 5;
1696         ihost->user_parameters.ssp_max_occupancy_timeout = 20;
1697         ihost->user_parameters.no_outbound_task_timeout = 20;
1698 }
1699
1700 static void controller_timeout(unsigned long data)
1701 {
1702         struct sci_timer *tmr = (struct sci_timer *)data;
1703         struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer);
1704         struct sci_base_state_machine *sm = &ihost->sm;
1705         unsigned long flags;
1706
1707         spin_lock_irqsave(&ihost->scic_lock, flags);
1708
1709         if (tmr->cancel)
1710                 goto done;
1711
1712         if (sm->current_state_id == SCIC_STARTING)
1713                 sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT);
1714         else if (sm->current_state_id == SCIC_STOPPING) {
1715                 sci_change_state(sm, SCIC_FAILED);
1716                 isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
1717         } else  /* / @todo Now what do we want to do in this case? */
1718                 dev_err(&ihost->pdev->dev,
1719                         "%s: Controller timer fired when controller was not "
1720                         "in a state being timed.\n",
1721                         __func__);
1722
1723 done:
1724         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1725 }
1726
1727 static enum sci_status sci_controller_construct(struct isci_host *ihost,
1728                                                 void __iomem *scu_base,
1729                                                 void __iomem *smu_base)
1730 {
1731         u8 i;
1732
1733         sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL);
1734
1735         ihost->scu_registers = scu_base;
1736         ihost->smu_registers = smu_base;
1737
1738         sci_port_configuration_agent_construct(&ihost->port_agent);
1739
1740         /* Construct the ports for this controller */
1741         for (i = 0; i < SCI_MAX_PORTS; i++)
1742                 sci_port_construct(&ihost->ports[i], i, ihost);
1743         sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost);
1744
1745         /* Construct the phys for this controller */
1746         for (i = 0; i < SCI_MAX_PHYS; i++) {
1747                 /* Add all the PHYs to the dummy port */
1748                 sci_phy_construct(&ihost->phys[i],
1749                                   &ihost->ports[SCI_MAX_PORTS], i);
1750         }
1751
1752         ihost->invalid_phy_mask = 0;
1753
1754         sci_init_timer(&ihost->timer, controller_timeout);
1755
1756         /* Initialize the User and OEM parameters to default values. */
1757         sci_controller_set_default_config_parameters(ihost);
1758
1759         return sci_controller_reset(ihost);
1760 }
1761
1762 int sci_oem_parameters_validate(struct sci_oem_params *oem)
1763 {
1764         int i;
1765
1766         for (i = 0; i < SCI_MAX_PORTS; i++)
1767                 if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
1768                         return -EINVAL;
1769
1770         for (i = 0; i < SCI_MAX_PHYS; i++)
1771                 if (oem->phys[i].sas_address.high == 0 &&
1772                     oem->phys[i].sas_address.low == 0)
1773                         return -EINVAL;
1774
1775         if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
1776                 for (i = 0; i < SCI_MAX_PHYS; i++)
1777                         if (oem->ports[i].phy_mask != 0)
1778                                 return -EINVAL;
1779         } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
1780                 u8 phy_mask = 0;
1781
1782                 for (i = 0; i < SCI_MAX_PHYS; i++)
1783                         phy_mask |= oem->ports[i].phy_mask;
1784
1785                 if (phy_mask == 0)
1786                         return -EINVAL;
1787         } else
1788                 return -EINVAL;
1789
1790         if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
1791                 return -EINVAL;
1792
1793         return 0;
1794 }
1795
1796 static enum sci_status sci_oem_parameters_set(struct isci_host *ihost)
1797 {
1798         u32 state = ihost->sm.current_state_id;
1799
1800         if (state == SCIC_RESET ||
1801             state == SCIC_INITIALIZING ||
1802             state == SCIC_INITIALIZED) {
1803
1804                 if (sci_oem_parameters_validate(&ihost->oem_parameters))
1805                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
1806
1807                 return SCI_SUCCESS;
1808         }
1809
1810         return SCI_FAILURE_INVALID_STATE;
1811 }
1812
1813 static void power_control_timeout(unsigned long data)
1814 {
1815         struct sci_timer *tmr = (struct sci_timer *)data;
1816         struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer);
1817         struct isci_phy *iphy;
1818         unsigned long flags;
1819         u8 i;
1820
1821         spin_lock_irqsave(&ihost->scic_lock, flags);
1822
1823         if (tmr->cancel)
1824                 goto done;
1825
1826         ihost->power_control.phys_granted_power = 0;
1827
1828         if (ihost->power_control.phys_waiting == 0) {
1829                 ihost->power_control.timer_started = false;
1830                 goto done;
1831         }
1832
1833         for (i = 0; i < SCI_MAX_PHYS; i++) {
1834
1835                 if (ihost->power_control.phys_waiting == 0)
1836                         break;
1837
1838                 iphy = ihost->power_control.requesters[i];
1839                 if (iphy == NULL)
1840                         continue;
1841
1842                 if (ihost->power_control.phys_granted_power >=
1843                     ihost->oem_parameters.controller.max_concurrent_dev_spin_up)
1844                         break;
1845
1846                 ihost->power_control.requesters[i] = NULL;
1847                 ihost->power_control.phys_waiting--;
1848                 ihost->power_control.phys_granted_power++;
1849                 sci_phy_consume_power_handler(iphy);
1850         }
1851
1852         /*
1853          * It doesn't matter if the power list is empty, we need to start the
1854          * timer in case another phy becomes ready.
1855          */
1856         sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1857         ihost->power_control.timer_started = true;
1858
1859 done:
1860         spin_unlock_irqrestore(&ihost->scic_lock, flags);
1861 }
1862
1863 void sci_controller_power_control_queue_insert(struct isci_host *ihost,
1864                                                struct isci_phy *iphy)
1865 {
1866         BUG_ON(iphy == NULL);
1867
1868         if (ihost->power_control.phys_granted_power <
1869             ihost->oem_parameters.controller.max_concurrent_dev_spin_up) {
1870                 ihost->power_control.phys_granted_power++;
1871                 sci_phy_consume_power_handler(iphy);
1872
1873                 /*
1874                  * stop and start the power_control timer. When the timer fires, the
1875                  * no_of_phys_granted_power will be set to 0
1876                  */
1877                 if (ihost->power_control.timer_started)
1878                         sci_del_timer(&ihost->power_control.timer);
1879
1880                 sci_mod_timer(&ihost->power_control.timer,
1881                                  SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
1882                 ihost->power_control.timer_started = true;
1883
1884         } else {
1885                 /* Add the phy in the waiting list */
1886                 ihost->power_control.requesters[iphy->phy_index] = iphy;
1887                 ihost->power_control.phys_waiting++;
1888         }
1889 }
1890
1891 void sci_controller_power_control_queue_remove(struct isci_host *ihost,
1892                                                struct isci_phy *iphy)
1893 {
1894         BUG_ON(iphy == NULL);
1895
1896         if (ihost->power_control.requesters[iphy->phy_index])
1897                 ihost->power_control.phys_waiting--;
1898
1899         ihost->power_control.requesters[iphy->phy_index] = NULL;
1900 }
1901
1902 #define AFE_REGISTER_WRITE_DELAY 10
1903
1904 /* Initialize the AFE for this phy index. We need to read the AFE setup from
1905  * the OEM parameters
1906  */
1907 static void sci_controller_afe_initialization(struct isci_host *ihost)
1908 {
1909         const struct sci_oem_params *oem = &ihost->oem_parameters;
1910         struct pci_dev *pdev = ihost->pdev;
1911         u32 afe_status;
1912         u32 phy_id;
1913
1914         /* Clear DFX Status registers */
1915         writel(0x0081000f, &ihost->scu_registers->afe.afe_dfx_master_control0);
1916         udelay(AFE_REGISTER_WRITE_DELAY);
1917
1918         if (is_b0(pdev)) {
1919                 /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
1920                  * Timer, PM Stagger Timer */
1921                 writel(0x0007BFFF, &ihost->scu_registers->afe.afe_pmsn_master_control2);
1922                 udelay(AFE_REGISTER_WRITE_DELAY);
1923         }
1924
1925         /* Configure bias currents to normal */
1926         if (is_a2(pdev))
1927                 writel(0x00005A00, &ihost->scu_registers->afe.afe_bias_control);
1928         else if (is_b0(pdev) || is_c0(pdev))
1929                 writel(0x00005F00, &ihost->scu_registers->afe.afe_bias_control);
1930
1931         udelay(AFE_REGISTER_WRITE_DELAY);
1932
1933         /* Enable PLL */
1934         if (is_b0(pdev) || is_c0(pdev))
1935                 writel(0x80040A08, &ihost->scu_registers->afe.afe_pll_control0);
1936         else
1937                 writel(0x80040908, &ihost->scu_registers->afe.afe_pll_control0);
1938
1939         udelay(AFE_REGISTER_WRITE_DELAY);
1940
1941         /* Wait for the PLL to lock */
1942         do {
1943                 afe_status = readl(&ihost->scu_registers->afe.afe_common_block_status);
1944                 udelay(AFE_REGISTER_WRITE_DELAY);
1945         } while ((afe_status & 0x00001000) == 0);
1946
1947         if (is_a2(pdev)) {
1948                 /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
1949                 writel(0x7bcc96ad, &ihost->scu_registers->afe.afe_pmsn_master_control0);
1950                 udelay(AFE_REGISTER_WRITE_DELAY);
1951         }
1952
1953         for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
1954                 const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
1955
1956                 if (is_b0(pdev)) {
1957                          /* Configure transmitter SSC parameters */
1958                         writel(0x00030000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1959                         udelay(AFE_REGISTER_WRITE_DELAY);
1960                 } else if (is_c0(pdev)) {
1961                          /* Configure transmitter SSC parameters */
1962                         writel(0x0003000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
1963                         udelay(AFE_REGISTER_WRITE_DELAY);
1964
1965                         /*
1966                          * All defaults, except the Receive Word Alignament/Comma Detect
1967                          * Enable....(0xe800) */
1968                         writel(0x00004500, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1969                         udelay(AFE_REGISTER_WRITE_DELAY);
1970                 } else {
1971                         /*
1972                          * All defaults, except the Receive Word Alignament/Comma Detect
1973                          * Enable....(0xe800) */
1974                         writel(0x00004512, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
1975                         udelay(AFE_REGISTER_WRITE_DELAY);
1976
1977                         writel(0x0050100F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
1978                         udelay(AFE_REGISTER_WRITE_DELAY);
1979                 }
1980
1981                 /*
1982                  * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1983                  * & increase TX int & ext bias 20%....(0xe85c) */
1984                 if (is_a2(pdev))
1985                         writel(0x000003F0, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1986                 else if (is_b0(pdev)) {
1987                          /* Power down TX and RX (PWRDNTX and PWRDNRX) */
1988                         writel(0x000003D7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1989                         udelay(AFE_REGISTER_WRITE_DELAY);
1990
1991                         /*
1992                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
1993                          * & increase TX int & ext bias 20%....(0xe85c) */
1994                         writel(0x000003D4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1995                 } else {
1996                         writel(0x000001E7, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
1997                         udelay(AFE_REGISTER_WRITE_DELAY);
1998
1999                         /*
2000                          * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
2001                          * & increase TX int & ext bias 20%....(0xe85c) */
2002                         writel(0x000001E4, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
2003                 }
2004                 udelay(AFE_REGISTER_WRITE_DELAY);
2005
2006                 if (is_a2(pdev)) {
2007                         /* Enable TX equalization (0xe824) */
2008                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2009                         udelay(AFE_REGISTER_WRITE_DELAY);
2010                 }
2011
2012                 /*
2013                  * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
2014                  * RDD=0x0(RX Detect Enabled) ....(0xe800) */
2015                 writel(0x00004100, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
2016                 udelay(AFE_REGISTER_WRITE_DELAY);
2017
2018                 /* Leave DFE/FFE on */
2019                 if (is_a2(pdev))
2020                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2021                 else if (is_b0(pdev)) {
2022                         writel(0x3F11103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2023                         udelay(AFE_REGISTER_WRITE_DELAY);
2024                         /* Enable TX equalization (0xe824) */
2025                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2026                 } else {
2027                         writel(0x0140DF0F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
2028                         udelay(AFE_REGISTER_WRITE_DELAY);
2029
2030                         writel(0x3F6F103F, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
2031                         udelay(AFE_REGISTER_WRITE_DELAY);
2032
2033                         /* Enable TX equalization (0xe824) */
2034                         writel(0x00040000, &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
2035                 }
2036
2037                 udelay(AFE_REGISTER_WRITE_DELAY);
2038
2039                 writel(oem_phy->afe_tx_amp_control0,
2040                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
2041                 udelay(AFE_REGISTER_WRITE_DELAY);
2042
2043                 writel(oem_phy->afe_tx_amp_control1,
2044                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
2045                 udelay(AFE_REGISTER_WRITE_DELAY);
2046
2047                 writel(oem_phy->afe_tx_amp_control2,
2048                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
2049                 udelay(AFE_REGISTER_WRITE_DELAY);
2050
2051                 writel(oem_phy->afe_tx_amp_control3,
2052                         &ihost->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
2053                 udelay(AFE_REGISTER_WRITE_DELAY);
2054         }
2055
2056         /* Transfer control to the PEs */
2057         writel(0x00010f00, &ihost->scu_registers->afe.afe_dfx_master_control0);
2058         udelay(AFE_REGISTER_WRITE_DELAY);
2059 }
2060
2061 static void sci_controller_initialize_power_control(struct isci_host *ihost)
2062 {
2063         sci_init_timer(&ihost->power_control.timer, power_control_timeout);
2064
2065         memset(ihost->power_control.requesters, 0,
2066                sizeof(ihost->power_control.requesters));
2067
2068         ihost->power_control.phys_waiting = 0;
2069         ihost->power_control.phys_granted_power = 0;
2070 }
2071
2072 static enum sci_status sci_controller_initialize(struct isci_host *ihost)
2073 {
2074         struct sci_base_state_machine *sm = &ihost->sm;
2075         enum sci_status result = SCI_FAILURE;
2076         unsigned long i, state, val;
2077
2078         if (ihost->sm.current_state_id != SCIC_RESET) {
2079                 dev_warn(&ihost->pdev->dev,
2080                          "SCIC Controller initialize operation requested "
2081                          "in invalid state\n");
2082                 return SCI_FAILURE_INVALID_STATE;
2083         }
2084
2085         sci_change_state(sm, SCIC_INITIALIZING);
2086
2087         sci_init_timer(&ihost->phy_timer, phy_startup_timeout);
2088
2089         ihost->next_phy_to_start = 0;
2090         ihost->phy_startup_timer_pending = false;
2091
2092         sci_controller_initialize_power_control(ihost);
2093
2094         /*
2095          * There is nothing to do here for B0 since we do not have to
2096          * program the AFE registers.
2097          * / @todo The AFE settings are supposed to be correct for the B0 but
2098          * /       presently they seem to be wrong. */
2099         sci_controller_afe_initialization(ihost);
2100
2101
2102         /* Take the hardware out of reset */
2103         writel(0, &ihost->smu_registers->soft_reset_control);
2104
2105         /*
2106          * / @todo Provide meaningfull error code for hardware failure
2107          * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
2108         for (i = 100; i >= 1; i--) {
2109                 u32 status;
2110
2111                 /* Loop until the hardware reports success */
2112                 udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
2113                 status = readl(&ihost->smu_registers->control_status);
2114
2115                 if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
2116                         break;
2117         }
2118         if (i == 0)
2119                 goto out;
2120
2121         /*
2122          * Determine what are the actaul device capacities that the
2123          * hardware will support */
2124         val = readl(&ihost->smu_registers->device_context_capacity);
2125
2126         /* Record the smaller of the two capacity values */
2127         ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
2128         ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
2129         ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
2130
2131         /*
2132          * Make all PEs that are unassigned match up with the
2133          * logical ports
2134          */
2135         for (i = 0; i < ihost->logical_port_entries; i++) {
2136                 struct scu_port_task_scheduler_group_registers __iomem
2137                         *ptsg = &ihost->scu_registers->peg0.ptsg;
2138
2139                 writel(i, &ptsg->protocol_engine[i]);
2140         }
2141
2142         /* Initialize hardware PCI Relaxed ordering in DMA engines */
2143         val = readl(&ihost->scu_registers->sdma.pdma_configuration);
2144         val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2145         writel(val, &ihost->scu_registers->sdma.pdma_configuration);
2146
2147         val = readl(&ihost->scu_registers->sdma.cdma_configuration);
2148         val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
2149         writel(val, &ihost->scu_registers->sdma.cdma_configuration);
2150
2151         /*
2152          * Initialize the PHYs before the PORTs because the PHY registers
2153          * are accessed during the port initialization.
2154          */
2155         for (i = 0; i < SCI_MAX_PHYS; i++) {
2156                 result = sci_phy_initialize(&ihost->phys[i],
2157                                             &ihost->scu_registers->peg0.pe[i].tl,
2158                                             &ihost->scu_registers->peg0.pe[i].ll);
2159                 if (result != SCI_SUCCESS)
2160                         goto out;
2161         }
2162
2163         for (i = 0; i < ihost->logical_port_entries; i++) {
2164                 struct isci_port *iport = &ihost->ports[i];
2165
2166                 iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i];
2167                 iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0];
2168                 iport->viit_registers = &ihost->scu_registers->peg0.viit[i];
2169         }
2170
2171         result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent);
2172
2173  out:
2174         /* Advance the controller state machine */
2175         if (result == SCI_SUCCESS)
2176                 state = SCIC_INITIALIZED;
2177         else
2178                 state = SCIC_FAILED;
2179         sci_change_state(sm, state);
2180
2181         return result;
2182 }
2183
2184 static enum sci_status sci_user_parameters_set(struct isci_host *ihost,
2185                                                struct sci_user_parameters *sci_parms)
2186 {
2187         u32 state = ihost->sm.current_state_id;
2188
2189         if (state == SCIC_RESET ||
2190             state == SCIC_INITIALIZING ||
2191             state == SCIC_INITIALIZED) {
2192                 u16 index;
2193
2194                 /*
2195                  * Validate the user parameters.  If they are not legal, then
2196                  * return a failure.
2197                  */
2198                 for (index = 0; index < SCI_MAX_PHYS; index++) {
2199                         struct sci_phy_user_params *user_phy;
2200
2201                         user_phy = &sci_parms->phys[index];
2202
2203                         if (!((user_phy->max_speed_generation <=
2204                                                 SCIC_SDS_PARM_MAX_SPEED) &&
2205                               (user_phy->max_speed_generation >
2206                                                 SCIC_SDS_PARM_NO_SPEED)))
2207                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2208
2209                         if (user_phy->in_connection_align_insertion_frequency <
2210                                         3)
2211                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2212
2213                         if ((user_phy->in_connection_align_insertion_frequency <
2214                                                 3) ||
2215                             (user_phy->align_insertion_frequency == 0) ||
2216                             (user_phy->
2217                                 notify_enable_spin_up_insertion_frequency ==
2218                                                 0))
2219                                 return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2220                 }
2221
2222                 if ((sci_parms->stp_inactivity_timeout == 0) ||
2223                     (sci_parms->ssp_inactivity_timeout == 0) ||
2224                     (sci_parms->stp_max_occupancy_timeout == 0) ||
2225                     (sci_parms->ssp_max_occupancy_timeout == 0) ||
2226                     (sci_parms->no_outbound_task_timeout == 0))
2227                         return SCI_FAILURE_INVALID_PARAMETER_VALUE;
2228
2229                 memcpy(&ihost->user_parameters, sci_parms, sizeof(*sci_parms));
2230
2231                 return SCI_SUCCESS;
2232         }
2233
2234         return SCI_FAILURE_INVALID_STATE;
2235 }
2236
2237 static int sci_controller_mem_init(struct isci_host *ihost)
2238 {
2239         struct device *dev = &ihost->pdev->dev;
2240         dma_addr_t dma;
2241         size_t size;
2242         int err;
2243
2244         size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
2245         ihost->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2246         if (!ihost->completion_queue)
2247                 return -ENOMEM;
2248
2249         writel(lower_32_bits(dma), &ihost->smu_registers->completion_queue_lower);
2250         writel(upper_32_bits(dma), &ihost->smu_registers->completion_queue_upper);
2251
2252         size = ihost->remote_node_entries * sizeof(union scu_remote_node_context);
2253         ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
2254                                                                GFP_KERNEL);
2255         if (!ihost->remote_node_context_table)
2256                 return -ENOMEM;
2257
2258         writel(lower_32_bits(dma), &ihost->smu_registers->remote_node_context_lower);
2259         writel(upper_32_bits(dma), &ihost->smu_registers->remote_node_context_upper);
2260
2261         size = ihost->task_context_entries * sizeof(struct scu_task_context),
2262         ihost->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
2263         if (!ihost->task_context_table)
2264                 return -ENOMEM;
2265
2266         ihost->task_context_dma = dma;
2267         writel(lower_32_bits(dma), &ihost->smu_registers->host_task_table_lower);
2268         writel(upper_32_bits(dma), &ihost->smu_registers->host_task_table_upper);
2269
2270         err = sci_unsolicited_frame_control_construct(ihost);
2271         if (err)
2272                 return err;
2273
2274         /*
2275          * Inform the silicon as to the location of the UF headers and
2276          * address table.
2277          */
2278         writel(lower_32_bits(ihost->uf_control.headers.physical_address),
2279                 &ihost->scu_registers->sdma.uf_header_base_address_lower);
2280         writel(upper_32_bits(ihost->uf_control.headers.physical_address),
2281                 &ihost->scu_registers->sdma.uf_header_base_address_upper);
2282
2283         writel(lower_32_bits(ihost->uf_control.address_table.physical_address),
2284                 &ihost->scu_registers->sdma.uf_address_table_lower);
2285         writel(upper_32_bits(ihost->uf_control.address_table.physical_address),
2286                 &ihost->scu_registers->sdma.uf_address_table_upper);
2287
2288         return 0;
2289 }
2290
2291 int isci_host_init(struct isci_host *ihost)
2292 {
2293         int err = 0, i;
2294         enum sci_status status;
2295         struct sci_user_parameters sci_user_params;
2296         struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
2297
2298         spin_lock_init(&ihost->state_lock);
2299         spin_lock_init(&ihost->scic_lock);
2300         init_waitqueue_head(&ihost->eventq);
2301
2302         isci_host_change_state(ihost, isci_starting);
2303
2304         status = sci_controller_construct(ihost, scu_base(ihost),
2305                                           smu_base(ihost));
2306
2307         if (status != SCI_SUCCESS) {
2308                 dev_err(&ihost->pdev->dev,
2309                         "%s: sci_controller_construct failed - status = %x\n",
2310                         __func__,
2311                         status);
2312                 return -ENODEV;
2313         }
2314
2315         ihost->sas_ha.dev = &ihost->pdev->dev;
2316         ihost->sas_ha.lldd_ha = ihost;
2317
2318         /*
2319          * grab initial values stored in the controller object for OEM and USER
2320          * parameters
2321          */
2322         isci_user_parameters_get(&sci_user_params);
2323         status = sci_user_parameters_set(ihost, &sci_user_params);
2324         if (status != SCI_SUCCESS) {
2325                 dev_warn(&ihost->pdev->dev,
2326                          "%s: sci_user_parameters_set failed\n",
2327                          __func__);
2328                 return -ENODEV;
2329         }
2330
2331         /* grab any OEM parameters specified in orom */
2332         if (pci_info->orom) {
2333                 status = isci_parse_oem_parameters(&ihost->oem_parameters,
2334                                                    pci_info->orom,
2335                                                    ihost->id);
2336                 if (status != SCI_SUCCESS) {
2337                         dev_warn(&ihost->pdev->dev,
2338                                  "parsing firmware oem parameters failed\n");
2339                         return -EINVAL;
2340                 }
2341         }
2342
2343         status = sci_oem_parameters_set(ihost);
2344         if (status != SCI_SUCCESS) {
2345                 dev_warn(&ihost->pdev->dev,
2346                                 "%s: sci_oem_parameters_set failed\n",
2347                                 __func__);
2348                 return -ENODEV;
2349         }
2350
2351         tasklet_init(&ihost->completion_tasklet,
2352                      isci_host_completion_routine, (unsigned long)ihost);
2353
2354         INIT_LIST_HEAD(&ihost->requests_to_complete);
2355         INIT_LIST_HEAD(&ihost->requests_to_errorback);
2356
2357         spin_lock_irq(&ihost->scic_lock);
2358         status = sci_controller_initialize(ihost);
2359         spin_unlock_irq(&ihost->scic_lock);
2360         if (status != SCI_SUCCESS) {
2361                 dev_warn(&ihost->pdev->dev,
2362                          "%s: sci_controller_initialize failed -"
2363                          " status = 0x%x\n",
2364                          __func__, status);
2365                 return -ENODEV;
2366         }
2367
2368         err = sci_controller_mem_init(ihost);
2369         if (err)
2370                 return err;
2371
2372         for (i = 0; i < SCI_MAX_PORTS; i++)
2373                 isci_port_init(&ihost->ports[i], ihost, i);
2374
2375         for (i = 0; i < SCI_MAX_PHYS; i++)
2376                 isci_phy_init(&ihost->phys[i], ihost, i);
2377
2378         /* enable sgpio */
2379         writel(1, &ihost->scu_registers->peg0.sgpio.interface_control);
2380         for (i = 0; i < isci_gpio_count(ihost); i++)
2381                 writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]);
2382         writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code);
2383
2384         for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
2385                 struct isci_remote_device *idev = &ihost->devices[i];
2386
2387                 INIT_LIST_HEAD(&idev->reqs_in_process);
2388                 INIT_LIST_HEAD(&idev->node);
2389         }
2390
2391         for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) {
2392                 struct isci_request *ireq;
2393                 dma_addr_t dma;
2394
2395                 ireq = dmam_alloc_coherent(&ihost->pdev->dev,
2396                                            sizeof(struct isci_request), &dma,
2397                                            GFP_KERNEL);
2398                 if (!ireq)
2399                         return -ENOMEM;
2400
2401                 ireq->tc = &ihost->task_context_table[i];
2402                 ireq->owning_controller = ihost;
2403                 spin_lock_init(&ireq->state_lock);
2404                 ireq->request_daddr = dma;
2405                 ireq->isci_host = ihost;
2406                 ihost->reqs[i] = ireq;
2407         }
2408
2409         return 0;
2410 }
2411
2412 void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport,
2413                             struct isci_phy *iphy)
2414 {
2415         switch (ihost->sm.current_state_id) {
2416         case SCIC_STARTING:
2417                 sci_del_timer(&ihost->phy_timer);
2418                 ihost->phy_startup_timer_pending = false;
2419                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2420                                                   iport, iphy);
2421                 sci_controller_start_next_phy(ihost);
2422                 break;
2423         case SCIC_READY:
2424                 ihost->port_agent.link_up_handler(ihost, &ihost->port_agent,
2425                                                   iport, iphy);
2426                 break;
2427         default:
2428                 dev_dbg(&ihost->pdev->dev,
2429                         "%s: SCIC Controller linkup event from phy %d in "
2430                         "unexpected state %d\n", __func__, iphy->phy_index,
2431                         ihost->sm.current_state_id);
2432         }
2433 }
2434
2435 void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport,
2436                               struct isci_phy *iphy)
2437 {
2438         switch (ihost->sm.current_state_id) {
2439         case SCIC_STARTING:
2440         case SCIC_READY:
2441                 ihost->port_agent.link_down_handler(ihost, &ihost->port_agent,
2442                                                    iport, iphy);
2443                 break;
2444         default:
2445                 dev_dbg(&ihost->pdev->dev,
2446                         "%s: SCIC Controller linkdown event from phy %d in "
2447                         "unexpected state %d\n",
2448                         __func__,
2449                         iphy->phy_index,
2450                         ihost->sm.current_state_id);
2451         }
2452 }
2453
2454 static bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost)
2455 {
2456         u32 index;
2457
2458         for (index = 0; index < ihost->remote_node_entries; index++) {
2459                 if ((ihost->device_table[index] != NULL) &&
2460                    (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
2461                         return true;
2462         }
2463
2464         return false;
2465 }
2466
2467 void sci_controller_remote_device_stopped(struct isci_host *ihost,
2468                                           struct isci_remote_device *idev)
2469 {
2470         if (ihost->sm.current_state_id != SCIC_STOPPING) {
2471                 dev_dbg(&ihost->pdev->dev,
2472                         "SCIC Controller 0x%p remote device stopped event "
2473                         "from device 0x%p in unexpected state %d\n",
2474                         ihost, idev,
2475                         ihost->sm.current_state_id);
2476                 return;
2477         }
2478
2479         if (!sci_controller_has_remote_devices_stopping(ihost))
2480                 sci_change_state(&ihost->sm, SCIC_STOPPED);
2481 }
2482
2483 void sci_controller_post_request(struct isci_host *ihost, u32 request)
2484 {
2485         dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n",
2486                 __func__, ihost->id, request);
2487
2488         writel(request, &ihost->smu_registers->post_context_port);
2489 }
2490
2491 struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag)
2492 {
2493         u16 task_index;
2494         u16 task_sequence;
2495
2496         task_index = ISCI_TAG_TCI(io_tag);
2497
2498         if (task_index < ihost->task_context_entries) {
2499                 struct isci_request *ireq = ihost->reqs[task_index];
2500
2501                 if (test_bit(IREQ_ACTIVE, &ireq->flags)) {
2502                         task_sequence = ISCI_TAG_SEQ(io_tag);
2503
2504                         if (task_sequence == ihost->io_request_sequence[task_index])
2505                                 return ireq;
2506                 }
2507         }
2508
2509         return NULL;
2510 }
2511
2512 /**
2513  * This method allocates remote node index and the reserves the remote node
2514  *    context space for use. This method can fail if there are no more remote
2515  *    node index available.
2516  * @scic: This is the controller object which contains the set of
2517  *    free remote node ids
2518  * @sci_dev: This is the device object which is requesting the a remote node
2519  *    id
2520  * @node_id: This is the remote node id that is assinged to the device if one
2521  *    is available
2522  *
2523  * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
2524  * node index available.
2525  */
2526 enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost,
2527                                                             struct isci_remote_device *idev,
2528                                                             u16 *node_id)
2529 {
2530         u16 node_index;
2531         u32 remote_node_count = sci_remote_device_node_count(idev);
2532
2533         node_index = sci_remote_node_table_allocate_remote_node(
2534                 &ihost->available_remote_nodes, remote_node_count
2535                 );
2536
2537         if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
2538                 ihost->device_table[node_index] = idev;
2539
2540                 *node_id = node_index;
2541
2542                 return SCI_SUCCESS;
2543         }
2544
2545         return SCI_FAILURE_INSUFFICIENT_RESOURCES;
2546 }
2547
2548 void sci_controller_free_remote_node_context(struct isci_host *ihost,
2549                                              struct isci_remote_device *idev,
2550                                              u16 node_id)
2551 {
2552         u32 remote_node_count = sci_remote_device_node_count(idev);
2553
2554         if (ihost->device_table[node_id] == idev) {
2555                 ihost->device_table[node_id] = NULL;
2556
2557                 sci_remote_node_table_release_remote_node_index(
2558                         &ihost->available_remote_nodes, remote_node_count, node_id
2559                         );
2560         }
2561 }
2562
2563 void sci_controller_copy_sata_response(void *response_buffer,
2564                                        void *frame_header,
2565                                        void *frame_buffer)
2566 {
2567         /* XXX type safety? */
2568         memcpy(response_buffer, frame_header, sizeof(u32));
2569
2570         memcpy(response_buffer + sizeof(u32),
2571                frame_buffer,
2572                sizeof(struct dev_to_host_fis) - sizeof(u32));
2573 }
2574
2575 void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index)
2576 {
2577         if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index))
2578                 writel(ihost->uf_control.get,
2579                         &ihost->scu_registers->sdma.unsolicited_frame_get_pointer);
2580 }
2581
2582 void isci_tci_free(struct isci_host *ihost, u16 tci)
2583 {
2584         u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
2585
2586         ihost->tci_pool[tail] = tci;
2587         ihost->tci_tail = tail + 1;
2588 }
2589
2590 static u16 isci_tci_alloc(struct isci_host *ihost)
2591 {
2592         u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
2593         u16 tci = ihost->tci_pool[head];
2594
2595         ihost->tci_head = head + 1;
2596         return tci;
2597 }
2598
2599 static u16 isci_tci_space(struct isci_host *ihost)
2600 {
2601         return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
2602 }
2603
2604 u16 isci_alloc_tag(struct isci_host *ihost)
2605 {
2606         if (isci_tci_space(ihost)) {
2607                 u16 tci = isci_tci_alloc(ihost);
2608                 u8 seq = ihost->io_request_sequence[tci];
2609
2610                 return ISCI_TAG(seq, tci);
2611         }
2612
2613         return SCI_CONTROLLER_INVALID_IO_TAG;
2614 }
2615
2616 enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag)
2617 {
2618         u16 tci = ISCI_TAG_TCI(io_tag);
2619         u16 seq = ISCI_TAG_SEQ(io_tag);
2620
2621         /* prevent tail from passing head */
2622         if (isci_tci_active(ihost) == 0)
2623                 return SCI_FAILURE_INVALID_IO_TAG;
2624
2625         if (seq == ihost->io_request_sequence[tci]) {
2626                 ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
2627
2628                 isci_tci_free(ihost, tci);
2629
2630                 return SCI_SUCCESS;
2631         }
2632         return SCI_FAILURE_INVALID_IO_TAG;
2633 }
2634
2635 enum sci_status sci_controller_start_io(struct isci_host *ihost,
2636                                         struct isci_remote_device *idev,
2637                                         struct isci_request *ireq)
2638 {
2639         enum sci_status status;
2640
2641         if (ihost->sm.current_state_id != SCIC_READY) {
2642                 dev_warn(&ihost->pdev->dev, "invalid state to start I/O");
2643                 return SCI_FAILURE_INVALID_STATE;
2644         }
2645
2646         status = sci_remote_device_start_io(ihost, idev, ireq);
2647         if (status != SCI_SUCCESS)
2648                 return status;
2649
2650         set_bit(IREQ_ACTIVE, &ireq->flags);
2651         sci_controller_post_request(ihost, ireq->post_context);
2652         return SCI_SUCCESS;
2653 }
2654
2655 enum sci_status sci_controller_terminate_request(struct isci_host *ihost,
2656                                                  struct isci_remote_device *idev,
2657                                                  struct isci_request *ireq)
2658 {
2659         /* terminate an ongoing (i.e. started) core IO request.  This does not
2660          * abort the IO request at the target, but rather removes the IO
2661          * request from the host controller.
2662          */
2663         enum sci_status status;
2664
2665         if (ihost->sm.current_state_id != SCIC_READY) {
2666                 dev_warn(&ihost->pdev->dev,
2667                          "invalid state to terminate request\n");
2668                 return SCI_FAILURE_INVALID_STATE;
2669         }
2670
2671         status = sci_io_request_terminate(ireq);
2672         if (status != SCI_SUCCESS)
2673                 return status;
2674
2675         /*
2676          * Utilize the original post context command and or in the POST_TC_ABORT
2677          * request sub-type.
2678          */
2679         sci_controller_post_request(ihost,
2680                                     ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
2681         return SCI_SUCCESS;
2682 }
2683
2684 /**
2685  * sci_controller_complete_io() - This method will perform core specific
2686  *    completion operations for an IO request.  After this method is invoked,
2687  *    the user should consider the IO request as invalid until it is properly
2688  *    reused (i.e. re-constructed).
2689  * @ihost: The handle to the controller object for which to complete the
2690  *    IO request.
2691  * @idev: The handle to the remote device object for which to complete
2692  *    the IO request.
2693  * @ireq: the handle to the io request object to complete.
2694  */
2695 enum sci_status sci_controller_complete_io(struct isci_host *ihost,
2696                                            struct isci_remote_device *idev,
2697                                            struct isci_request *ireq)
2698 {
2699         enum sci_status status;
2700         u16 index;
2701
2702         switch (ihost->sm.current_state_id) {
2703         case SCIC_STOPPING:
2704                 /* XXX: Implement this function */
2705                 return SCI_FAILURE;
2706         case SCIC_READY:
2707                 status = sci_remote_device_complete_io(ihost, idev, ireq);
2708                 if (status != SCI_SUCCESS)
2709                         return status;
2710
2711                 index = ISCI_TAG_TCI(ireq->io_tag);
2712                 clear_bit(IREQ_ACTIVE, &ireq->flags);
2713                 return SCI_SUCCESS;
2714         default:
2715                 dev_warn(&ihost->pdev->dev, "invalid state to complete I/O");
2716                 return SCI_FAILURE_INVALID_STATE;
2717         }
2718
2719 }
2720
2721 enum sci_status sci_controller_continue_io(struct isci_request *ireq)
2722 {
2723         struct isci_host *ihost = ireq->owning_controller;
2724
2725         if (ihost->sm.current_state_id != SCIC_READY) {
2726                 dev_warn(&ihost->pdev->dev, "invalid state to continue I/O");
2727                 return SCI_FAILURE_INVALID_STATE;
2728         }
2729
2730         set_bit(IREQ_ACTIVE, &ireq->flags);
2731         sci_controller_post_request(ihost, ireq->post_context);
2732         return SCI_SUCCESS;
2733 }
2734
2735 /**
2736  * sci_controller_start_task() - This method is called by the SCIC user to
2737  *    send/start a framework task management request.
2738  * @controller: the handle to the controller object for which to start the task
2739  *    management request.
2740  * @remote_device: the handle to the remote device object for which to start
2741  *    the task management request.
2742  * @task_request: the handle to the task request object to start.
2743  */
2744 enum sci_task_status sci_controller_start_task(struct isci_host *ihost,
2745                                                struct isci_remote_device *idev,
2746                                                struct isci_request *ireq)
2747 {
2748         enum sci_status status;
2749
2750         if (ihost->sm.current_state_id != SCIC_READY) {
2751                 dev_warn(&ihost->pdev->dev,
2752                          "%s: SCIC Controller starting task from invalid "
2753                          "state\n",
2754                          __func__);
2755                 return SCI_TASK_FAILURE_INVALID_STATE;
2756         }
2757
2758         status = sci_remote_device_start_task(ihost, idev, ireq);
2759         switch (status) {
2760         case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
2761                 set_bit(IREQ_ACTIVE, &ireq->flags);
2762
2763                 /*
2764                  * We will let framework know this task request started successfully,
2765                  * although core is still woring on starting the request (to post tc when
2766                  * RNC is resumed.)
2767                  */
2768                 return SCI_SUCCESS;
2769         case SCI_SUCCESS:
2770                 set_bit(IREQ_ACTIVE, &ireq->flags);
2771                 sci_controller_post_request(ihost, ireq->post_context);
2772                 break;
2773         default:
2774                 break;
2775         }
2776
2777         return status;
2778 }
2779
2780 static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data)
2781 {
2782         int d;
2783
2784         /* no support for TX_GP_CFG */
2785         if (reg_index == 0)
2786                 return -EINVAL;
2787
2788         for (d = 0; d < isci_gpio_count(ihost); d++) {
2789                 u32 val = 0x444; /* all ODx.n clear */
2790                 int i;
2791
2792                 for (i = 0; i < 3; i++) {
2793                         int bit = (i << 2) + 2;
2794
2795                         bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i),
2796                                                        write_data, reg_index,
2797                                                        reg_count);
2798                         if (bit < 0)
2799                                 break;
2800
2801                         /* if od is set, clear the 'invert' bit */
2802                         val &= ~(bit << ((i << 2) + 2));
2803                 }
2804
2805                 if (i < 3)
2806                         break;
2807                 writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]);
2808         }
2809
2810         /* unless reg_index is > 1, we should always be able to write at
2811          * least one register
2812          */
2813         return d > 0;
2814 }
2815
2816 int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index,
2817                     u8 reg_count, u8 *write_data)
2818 {
2819         struct isci_host *ihost = sas_ha->lldd_ha;
2820         int written;
2821
2822         switch (reg_type) {
2823         case SAS_GPIO_REG_TX_GP:
2824                 written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data);
2825                 break;
2826         default:
2827                 written = -EINVAL;
2828         }
2829
2830         return written;
2831 }