Merge branch 'x86-mrst-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
53
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.1-3"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
57
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
61
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
64
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68         HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
72
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76                 "Allow hpsa driver to access unknown HP Smart Array hardware");
77
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
88 #define PCI_DEVICE_ID_HP_CISSF 0x333f
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
90         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
91                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
92         {0,}
93 };
94
95 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
96
97 /*  board_id = Subsystem Device ID & Vendor ID
98  *  product = Marketing Name for the board
99  *  access = Address of the struct of function pointers
100  */
101 static struct board_type products[] = {
102         {0x3241103C, "Smart Array P212", &SA5_access},
103         {0x3243103C, "Smart Array P410", &SA5_access},
104         {0x3245103C, "Smart Array P410i", &SA5_access},
105         {0x3247103C, "Smart Array P411", &SA5_access},
106         {0x3249103C, "Smart Array P812", &SA5_access},
107         {0x324a103C, "Smart Array P712m", &SA5_access},
108         {0x324b103C, "Smart Array P711m", &SA5_access},
109         {0x3233103C, "StorageWorks P1210m", &SA5_access},
110         {0x333F103C, "StorageWorks P1210m", &SA5_access},
111         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
112 };
113
114 static int number_of_controllers;
115
116 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
117 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
118 static void start_io(struct ctlr_info *h);
119
120 #ifdef CONFIG_COMPAT
121 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
122 #endif
123
124 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
125 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
126 static struct CommandList *cmd_alloc(struct ctlr_info *h);
127 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
128 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
129         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
130         int cmd_type);
131
132 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
133                 void (*done)(struct scsi_cmnd *));
134 static void hpsa_scan_start(struct Scsi_Host *);
135 static int hpsa_scan_finished(struct Scsi_Host *sh,
136         unsigned long elapsed_time);
137
138 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
139 static int hpsa_slave_alloc(struct scsi_device *sdev);
140 static void hpsa_slave_destroy(struct scsi_device *sdev);
141
142 static ssize_t raid_level_show(struct device *dev,
143         struct device_attribute *attr, char *buf);
144 static ssize_t lunid_show(struct device *dev,
145         struct device_attribute *attr, char *buf);
146 static ssize_t unique_id_show(struct device *dev,
147         struct device_attribute *attr, char *buf);
148 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
149 static ssize_t host_store_rescan(struct device *dev,
150          struct device_attribute *attr, const char *buf, size_t count);
151 static int check_for_unit_attention(struct ctlr_info *h,
152         struct CommandList *c);
153 static void check_ioctl_unit_attention(struct ctlr_info *h,
154         struct CommandList *c);
155 /* performant mode helper functions */
156 static void calc_bucket_map(int *bucket, int num_buckets,
157         int nsgs, int *bucket_map);
158 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
159 static inline u32 next_command(struct ctlr_info *h);
160
161 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
162 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
163 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
164 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
165
166 static struct device_attribute *hpsa_sdev_attrs[] = {
167         &dev_attr_raid_level,
168         &dev_attr_lunid,
169         &dev_attr_unique_id,
170         NULL,
171 };
172
173 static struct device_attribute *hpsa_shost_attrs[] = {
174         &dev_attr_rescan,
175         NULL,
176 };
177
178 static struct scsi_host_template hpsa_driver_template = {
179         .module                 = THIS_MODULE,
180         .name                   = "hpsa",
181         .proc_name              = "hpsa",
182         .queuecommand           = hpsa_scsi_queue_command,
183         .scan_start             = hpsa_scan_start,
184         .scan_finished          = hpsa_scan_finished,
185         .this_id                = -1,
186         .sg_tablesize           = MAXSGENTRIES,
187         .use_clustering         = ENABLE_CLUSTERING,
188         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
189         .ioctl                  = hpsa_ioctl,
190         .slave_alloc            = hpsa_slave_alloc,
191         .slave_destroy          = hpsa_slave_destroy,
192 #ifdef CONFIG_COMPAT
193         .compat_ioctl           = hpsa_compat_ioctl,
194 #endif
195         .sdev_attrs = hpsa_sdev_attrs,
196         .shost_attrs = hpsa_shost_attrs,
197 };
198
199 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
200 {
201         unsigned long *priv = shost_priv(sdev->host);
202         return (struct ctlr_info *) *priv;
203 }
204
205 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
206 {
207         unsigned long *priv = shost_priv(sh);
208         return (struct ctlr_info *) *priv;
209 }
210
211 static struct task_struct *hpsa_scan_thread;
212 static DEFINE_MUTEX(hpsa_scan_mutex);
213 static LIST_HEAD(hpsa_scan_q);
214 static int hpsa_scan_func(void *data);
215
216 /**
217  * add_to_scan_list() - add controller to rescan queue
218  * @h:                Pointer to the controller.
219  *
220  * Adds the controller to the rescan queue if not already on the queue.
221  *
222  * returns 1 if added to the queue, 0 if skipped (could be on the
223  * queue already, or the controller could be initializing or shutting
224  * down).
225  **/
226 static int add_to_scan_list(struct ctlr_info *h)
227 {
228         struct ctlr_info *test_h;
229         int found = 0;
230         int ret = 0;
231
232         if (h->busy_initializing)
233                 return 0;
234
235         /*
236          * If we don't get the lock, it means the driver is unloading
237          * and there's no point in scheduling a new scan.
238          */
239         if (!mutex_trylock(&h->busy_shutting_down))
240                 return 0;
241
242         mutex_lock(&hpsa_scan_mutex);
243         list_for_each_entry(test_h, &hpsa_scan_q, scan_list) {
244                 if (test_h == h) {
245                         found = 1;
246                         break;
247                 }
248         }
249         if (!found && !h->busy_scanning) {
250                 INIT_COMPLETION(h->scan_wait);
251                 list_add_tail(&h->scan_list, &hpsa_scan_q);
252                 ret = 1;
253         }
254         mutex_unlock(&hpsa_scan_mutex);
255         mutex_unlock(&h->busy_shutting_down);
256
257         return ret;
258 }
259
260 /**
261  * remove_from_scan_list() - remove controller from rescan queue
262  * @h:                     Pointer to the controller.
263  *
264  * Removes the controller from the rescan queue if present. Blocks if
265  * the controller is currently conducting a rescan.  The controller
266  * can be in one of three states:
267  * 1. Doesn't need a scan
268  * 2. On the scan list, but not scanning yet (we remove it)
269  * 3. Busy scanning (and not on the list). In this case we want to wait for
270  *    the scan to complete to make sure the scanning thread for this
271  *    controller is completely idle.
272  **/
273 static void remove_from_scan_list(struct ctlr_info *h)
274 {
275         struct ctlr_info *test_h, *tmp_h;
276
277         mutex_lock(&hpsa_scan_mutex);
278         list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) {
279                 if (test_h == h) { /* state 2. */
280                         list_del(&h->scan_list);
281                         complete_all(&h->scan_wait);
282                         mutex_unlock(&hpsa_scan_mutex);
283                         return;
284                 }
285         }
286         if (h->busy_scanning) { /* state 3. */
287                 mutex_unlock(&hpsa_scan_mutex);
288                 wait_for_completion(&h->scan_wait);
289         } else { /* state 1, nothing to do. */
290                 mutex_unlock(&hpsa_scan_mutex);
291         }
292 }
293
294 /* hpsa_scan_func() - kernel thread used to rescan controllers
295  * @data:        Ignored.
296  *
297  * A kernel thread used scan for drive topology changes on
298  * controllers. The thread processes only one controller at a time
299  * using a queue.  Controllers are added to the queue using
300  * add_to_scan_list() and removed from the queue either after done
301  * processing or using remove_from_scan_list().
302  *
303  * returns 0.
304  **/
305 static int hpsa_scan_func(__attribute__((unused)) void *data)
306 {
307         struct ctlr_info *h;
308         int host_no;
309
310         while (1) {
311                 set_current_state(TASK_INTERRUPTIBLE);
312                 schedule();
313                 if (kthread_should_stop())
314                         break;
315
316                 while (1) {
317                         mutex_lock(&hpsa_scan_mutex);
318                         if (list_empty(&hpsa_scan_q)) {
319                                 mutex_unlock(&hpsa_scan_mutex);
320                                 break;
321                         }
322                         h = list_entry(hpsa_scan_q.next, struct ctlr_info,
323                                         scan_list);
324                         list_del(&h->scan_list);
325                         h->busy_scanning = 1;
326                         mutex_unlock(&hpsa_scan_mutex);
327                         host_no = h->scsi_host ?  h->scsi_host->host_no : -1;
328                         hpsa_scan_start(h->scsi_host);
329                         complete_all(&h->scan_wait);
330                         mutex_lock(&hpsa_scan_mutex);
331                         h->busy_scanning = 0;
332                         mutex_unlock(&hpsa_scan_mutex);
333                 }
334         }
335         return 0;
336 }
337
338 static int check_for_unit_attention(struct ctlr_info *h,
339         struct CommandList *c)
340 {
341         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
342                 return 0;
343
344         switch (c->err_info->SenseInfo[12]) {
345         case STATE_CHANGED:
346                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
347                         "detected, command retried\n", h->ctlr);
348                 break;
349         case LUN_FAILED:
350                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
351                         "detected, action required\n", h->ctlr);
352                 break;
353         case REPORT_LUNS_CHANGED:
354                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
355                         "changed\n", h->ctlr);
356         /*
357          * Here, we could call add_to_scan_list and wake up the scan thread,
358          * except that it's quite likely that we will get more than one
359          * REPORT_LUNS_CHANGED condition in quick succession, which means
360          * that those which occur after the first one will likely happen
361          * *during* the hpsa_scan_thread's rescan.  And the rescan code is not
362          * robust enough to restart in the middle, undoing what it has already
363          * done, and it's not clear that it's even possible to do this, since
364          * part of what it does is notify the SCSI mid layer, which starts
365          * doing it's own i/o to read partition tables and so on, and the
366          * driver doesn't have visibility to know what might need undoing.
367          * In any event, if possible, it is horribly complicated to get right
368          * so we just don't do it for now.
369          *
370          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
371          */
372                 break;
373         case POWER_OR_RESET:
374                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
375                         "or device reset detected\n", h->ctlr);
376                 break;
377         case UNIT_ATTENTION_CLEARED:
378                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
379                     "cleared by another initiator\n", h->ctlr);
380                 break;
381         default:
382                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
383                         "unit attention detected\n", h->ctlr);
384                 break;
385         }
386         return 1;
387 }
388
389 static ssize_t host_store_rescan(struct device *dev,
390                                  struct device_attribute *attr,
391                                  const char *buf, size_t count)
392 {
393         struct ctlr_info *h;
394         struct Scsi_Host *shost = class_to_shost(dev);
395         h = shost_to_hba(shost);
396         if (add_to_scan_list(h)) {
397                 wake_up_process(hpsa_scan_thread);
398                 wait_for_completion_interruptible(&h->scan_wait);
399         }
400         return count;
401 }
402
403 /* Enqueuing and dequeuing functions for cmdlists. */
404 static inline void addQ(struct hlist_head *list, struct CommandList *c)
405 {
406         hlist_add_head(&c->list, list);
407 }
408
409 static inline u32 next_command(struct ctlr_info *h)
410 {
411         u32 a;
412
413         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
414                 return h->access.command_completed(h);
415
416         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
417                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
418                 (h->reply_pool_head)++;
419                 h->commands_outstanding--;
420         } else {
421                 a = FIFO_EMPTY;
422         }
423         /* Check for wraparound */
424         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
425                 h->reply_pool_head = h->reply_pool;
426                 h->reply_pool_wraparound ^= 1;
427         }
428         return a;
429 }
430
431 /* set_performant_mode: Modify the tag for cciss performant
432  * set bit 0 for pull model, bits 3-1 for block fetch
433  * register number
434  */
435 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
436 {
437         if (likely(h->transMethod == CFGTBL_Trans_Performant))
438                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
439 }
440
441 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
442         struct CommandList *c)
443 {
444         unsigned long flags;
445
446         set_performant_mode(h, c);
447         spin_lock_irqsave(&h->lock, flags);
448         addQ(&h->reqQ, c);
449         h->Qdepth++;
450         start_io(h);
451         spin_unlock_irqrestore(&h->lock, flags);
452 }
453
454 static inline void removeQ(struct CommandList *c)
455 {
456         if (WARN_ON(hlist_unhashed(&c->list)))
457                 return;
458         hlist_del_init(&c->list);
459 }
460
461 static inline int is_hba_lunid(unsigned char scsi3addr[])
462 {
463         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
464 }
465
466 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
467 {
468         return (scsi3addr[3] & 0xC0) == 0x40;
469 }
470
471 static inline int is_scsi_rev_5(struct ctlr_info *h)
472 {
473         if (!h->hba_inquiry_data)
474                 return 0;
475         if ((h->hba_inquiry_data[2] & 0x07) == 5)
476                 return 1;
477         return 0;
478 }
479
480 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
481         "UNKNOWN"
482 };
483 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
484
485 static ssize_t raid_level_show(struct device *dev,
486              struct device_attribute *attr, char *buf)
487 {
488         ssize_t l = 0;
489         unsigned char rlevel;
490         struct ctlr_info *h;
491         struct scsi_device *sdev;
492         struct hpsa_scsi_dev_t *hdev;
493         unsigned long flags;
494
495         sdev = to_scsi_device(dev);
496         h = sdev_to_hba(sdev);
497         spin_lock_irqsave(&h->lock, flags);
498         hdev = sdev->hostdata;
499         if (!hdev) {
500                 spin_unlock_irqrestore(&h->lock, flags);
501                 return -ENODEV;
502         }
503
504         /* Is this even a logical drive? */
505         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
506                 spin_unlock_irqrestore(&h->lock, flags);
507                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
508                 return l;
509         }
510
511         rlevel = hdev->raid_level;
512         spin_unlock_irqrestore(&h->lock, flags);
513         if (rlevel > RAID_UNKNOWN)
514                 rlevel = RAID_UNKNOWN;
515         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
516         return l;
517 }
518
519 static ssize_t lunid_show(struct device *dev,
520              struct device_attribute *attr, char *buf)
521 {
522         struct ctlr_info *h;
523         struct scsi_device *sdev;
524         struct hpsa_scsi_dev_t *hdev;
525         unsigned long flags;
526         unsigned char lunid[8];
527
528         sdev = to_scsi_device(dev);
529         h = sdev_to_hba(sdev);
530         spin_lock_irqsave(&h->lock, flags);
531         hdev = sdev->hostdata;
532         if (!hdev) {
533                 spin_unlock_irqrestore(&h->lock, flags);
534                 return -ENODEV;
535         }
536         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
537         spin_unlock_irqrestore(&h->lock, flags);
538         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
539                 lunid[0], lunid[1], lunid[2], lunid[3],
540                 lunid[4], lunid[5], lunid[6], lunid[7]);
541 }
542
543 static ssize_t unique_id_show(struct device *dev,
544              struct device_attribute *attr, char *buf)
545 {
546         struct ctlr_info *h;
547         struct scsi_device *sdev;
548         struct hpsa_scsi_dev_t *hdev;
549         unsigned long flags;
550         unsigned char sn[16];
551
552         sdev = to_scsi_device(dev);
553         h = sdev_to_hba(sdev);
554         spin_lock_irqsave(&h->lock, flags);
555         hdev = sdev->hostdata;
556         if (!hdev) {
557                 spin_unlock_irqrestore(&h->lock, flags);
558                 return -ENODEV;
559         }
560         memcpy(sn, hdev->device_id, sizeof(sn));
561         spin_unlock_irqrestore(&h->lock, flags);
562         return snprintf(buf, 16 * 2 + 2,
563                         "%02X%02X%02X%02X%02X%02X%02X%02X"
564                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
565                         sn[0], sn[1], sn[2], sn[3],
566                         sn[4], sn[5], sn[6], sn[7],
567                         sn[8], sn[9], sn[10], sn[11],
568                         sn[12], sn[13], sn[14], sn[15]);
569 }
570
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572         unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574         /* finds an unused bus, target, lun for a new physical device
575          * assumes h->devlock is held
576          */
577         int i, found = 0;
578         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
579
580         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
581
582         for (i = 0; i < h->ndevices; i++) {
583                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584                         set_bit(h->dev[i]->target, lun_taken);
585         }
586
587         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
588                 if (!test_bit(i, lun_taken)) {
589                         /* *bus = 1; */
590                         *target = i;
591                         *lun = 0;
592                         found = 1;
593                         break;
594                 }
595         }
596         return !found;
597 }
598
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601                 struct hpsa_scsi_dev_t *device,
602                 struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604         /* assumes h->devlock is held */
605         int n = h->ndevices;
606         int i;
607         unsigned char addr1[8], addr2[8];
608         struct hpsa_scsi_dev_t *sd;
609
610         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
611                 dev_err(&h->pdev->dev, "too many devices, some will be "
612                         "inaccessible.\n");
613                 return -1;
614         }
615
616         /* physical devices do not have lun or target assigned until now. */
617         if (device->lun != -1)
618                 /* Logical device, lun is already assigned. */
619                 goto lun_assigned;
620
621         /* If this device a non-zero lun of a multi-lun device
622          * byte 4 of the 8-byte LUN addr will contain the logical
623          * unit no, zero otherise.
624          */
625         if (device->scsi3addr[4] == 0) {
626                 /* This is not a non-zero lun of a multi-lun device */
627                 if (hpsa_find_target_lun(h, device->scsi3addr,
628                         device->bus, &device->target, &device->lun) != 0)
629                         return -1;
630                 goto lun_assigned;
631         }
632
633         /* This is a non-zero lun of a multi-lun device.
634          * Search through our list and find the device which
635          * has the same 8 byte LUN address, excepting byte 4.
636          * Assign the same bus and target for this new LUN.
637          * Use the logical unit number from the firmware.
638          */
639         memcpy(addr1, device->scsi3addr, 8);
640         addr1[4] = 0;
641         for (i = 0; i < n; i++) {
642                 sd = h->dev[i];
643                 memcpy(addr2, sd->scsi3addr, 8);
644                 addr2[4] = 0;
645                 /* differ only in byte 4? */
646                 if (memcmp(addr1, addr2, 8) == 0) {
647                         device->bus = sd->bus;
648                         device->target = sd->target;
649                         device->lun = device->scsi3addr[4];
650                         break;
651                 }
652         }
653         if (device->lun == -1) {
654                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655                         " suspect firmware bug or unsupported hardware "
656                         "configuration.\n");
657                         return -1;
658         }
659
660 lun_assigned:
661
662         h->dev[n] = device;
663         h->ndevices++;
664         added[*nadded] = device;
665         (*nadded)++;
666
667         /* initially, (before registering with scsi layer) we don't
668          * know our hostno and we don't want to print anything first
669          * time anyway (the scsi layer's inquiries will show that info)
670          */
671         /* if (hostno != -1) */
672                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673                         scsi_device_type(device->devtype), hostno,
674                         device->bus, device->target, device->lun);
675         return 0;
676 }
677
678 /* Replace an entry from h->dev[] array. */
679 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
680         int entry, struct hpsa_scsi_dev_t *new_entry,
681         struct hpsa_scsi_dev_t *added[], int *nadded,
682         struct hpsa_scsi_dev_t *removed[], int *nremoved)
683 {
684         /* assumes h->devlock is held */
685         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
686         removed[*nremoved] = h->dev[entry];
687         (*nremoved)++;
688         h->dev[entry] = new_entry;
689         added[*nadded] = new_entry;
690         (*nadded)++;
691         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
692                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
693                         new_entry->target, new_entry->lun);
694 }
695
696 /* Remove an entry from h->dev[] array. */
697 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
698         struct hpsa_scsi_dev_t *removed[], int *nremoved)
699 {
700         /* assumes h->devlock is held */
701         int i;
702         struct hpsa_scsi_dev_t *sd;
703
704         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
705
706         sd = h->dev[entry];
707         removed[*nremoved] = h->dev[entry];
708         (*nremoved)++;
709
710         for (i = entry; i < h->ndevices-1; i++)
711                 h->dev[i] = h->dev[i+1];
712         h->ndevices--;
713         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
714                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
715                 sd->lun);
716 }
717
718 #define SCSI3ADDR_EQ(a, b) ( \
719         (a)[7] == (b)[7] && \
720         (a)[6] == (b)[6] && \
721         (a)[5] == (b)[5] && \
722         (a)[4] == (b)[4] && \
723         (a)[3] == (b)[3] && \
724         (a)[2] == (b)[2] && \
725         (a)[1] == (b)[1] && \
726         (a)[0] == (b)[0])
727
728 static void fixup_botched_add(struct ctlr_info *h,
729         struct hpsa_scsi_dev_t *added)
730 {
731         /* called when scsi_add_device fails in order to re-adjust
732          * h->dev[] to match the mid layer's view.
733          */
734         unsigned long flags;
735         int i, j;
736
737         spin_lock_irqsave(&h->lock, flags);
738         for (i = 0; i < h->ndevices; i++) {
739                 if (h->dev[i] == added) {
740                         for (j = i; j < h->ndevices-1; j++)
741                                 h->dev[j] = h->dev[j+1];
742                         h->ndevices--;
743                         break;
744                 }
745         }
746         spin_unlock_irqrestore(&h->lock, flags);
747         kfree(added);
748 }
749
750 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
751         struct hpsa_scsi_dev_t *dev2)
752 {
753         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
754                 (dev1->lun != -1 && dev2->lun != -1)) &&
755                 dev1->devtype != 0x0C)
756                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
757
758         /* we compare everything except lun and target as these
759          * are not yet assigned.  Compare parts likely
760          * to differ first
761          */
762         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
763                 sizeof(dev1->scsi3addr)) != 0)
764                 return 0;
765         if (memcmp(dev1->device_id, dev2->device_id,
766                 sizeof(dev1->device_id)) != 0)
767                 return 0;
768         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
769                 return 0;
770         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
771                 return 0;
772         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
773                 return 0;
774         if (dev1->devtype != dev2->devtype)
775                 return 0;
776         if (dev1->raid_level != dev2->raid_level)
777                 return 0;
778         if (dev1->bus != dev2->bus)
779                 return 0;
780         return 1;
781 }
782
783 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
784  * and return needle location in *index.  If scsi3addr matches, but not
785  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
786  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
787  */
788 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
789         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
790         int *index)
791 {
792         int i;
793 #define DEVICE_NOT_FOUND 0
794 #define DEVICE_CHANGED 1
795 #define DEVICE_SAME 2
796         for (i = 0; i < haystack_size; i++) {
797                 if (haystack[i] == NULL) /* previously removed. */
798                         continue;
799                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
800                         *index = i;
801                         if (device_is_the_same(needle, haystack[i]))
802                                 return DEVICE_SAME;
803                         else
804                                 return DEVICE_CHANGED;
805                 }
806         }
807         *index = -1;
808         return DEVICE_NOT_FOUND;
809 }
810
811 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
812         struct hpsa_scsi_dev_t *sd[], int nsds)
813 {
814         /* sd contains scsi3 addresses and devtypes, and inquiry
815          * data.  This function takes what's in sd to be the current
816          * reality and updates h->dev[] to reflect that reality.
817          */
818         int i, entry, device_change, changes = 0;
819         struct hpsa_scsi_dev_t *csd;
820         unsigned long flags;
821         struct hpsa_scsi_dev_t **added, **removed;
822         int nadded, nremoved;
823         struct Scsi_Host *sh = NULL;
824
825         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
826                 GFP_KERNEL);
827         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
828                 GFP_KERNEL);
829
830         if (!added || !removed) {
831                 dev_warn(&h->pdev->dev, "out of memory in "
832                         "adjust_hpsa_scsi_table\n");
833                 goto free_and_out;
834         }
835
836         spin_lock_irqsave(&h->devlock, flags);
837
838         /* find any devices in h->dev[] that are not in
839          * sd[] and remove them from h->dev[], and for any
840          * devices which have changed, remove the old device
841          * info and add the new device info.
842          */
843         i = 0;
844         nremoved = 0;
845         nadded = 0;
846         while (i < h->ndevices) {
847                 csd = h->dev[i];
848                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
849                 if (device_change == DEVICE_NOT_FOUND) {
850                         changes++;
851                         hpsa_scsi_remove_entry(h, hostno, i,
852                                 removed, &nremoved);
853                         continue; /* remove ^^^, hence i not incremented */
854                 } else if (device_change == DEVICE_CHANGED) {
855                         changes++;
856                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
857                                 added, &nadded, removed, &nremoved);
858                         /* Set it to NULL to prevent it from being freed
859                          * at the bottom of hpsa_update_scsi_devices()
860                          */
861                         sd[entry] = NULL;
862                 }
863                 i++;
864         }
865
866         /* Now, make sure every device listed in sd[] is also
867          * listed in h->dev[], adding them if they aren't found
868          */
869
870         for (i = 0; i < nsds; i++) {
871                 if (!sd[i]) /* if already added above. */
872                         continue;
873                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
874                                         h->ndevices, &entry);
875                 if (device_change == DEVICE_NOT_FOUND) {
876                         changes++;
877                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
878                                 added, &nadded) != 0)
879                                 break;
880                         sd[i] = NULL; /* prevent from being freed later. */
881                 } else if (device_change == DEVICE_CHANGED) {
882                         /* should never happen... */
883                         changes++;
884                         dev_warn(&h->pdev->dev,
885                                 "device unexpectedly changed.\n");
886                         /* but if it does happen, we just ignore that device */
887                 }
888         }
889         spin_unlock_irqrestore(&h->devlock, flags);
890
891         /* Don't notify scsi mid layer of any changes the first time through
892          * (or if there are no changes) scsi_scan_host will do it later the
893          * first time through.
894          */
895         if (hostno == -1 || !changes)
896                 goto free_and_out;
897
898         sh = h->scsi_host;
899         /* Notify scsi mid layer of any removed devices */
900         for (i = 0; i < nremoved; i++) {
901                 struct scsi_device *sdev =
902                         scsi_device_lookup(sh, removed[i]->bus,
903                                 removed[i]->target, removed[i]->lun);
904                 if (sdev != NULL) {
905                         scsi_remove_device(sdev);
906                         scsi_device_put(sdev);
907                 } else {
908                         /* We don't expect to get here.
909                          * future cmds to this device will get selection
910                          * timeout as if the device was gone.
911                          */
912                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
913                                 " for removal.", hostno, removed[i]->bus,
914                                 removed[i]->target, removed[i]->lun);
915                 }
916                 kfree(removed[i]);
917                 removed[i] = NULL;
918         }
919
920         /* Notify scsi mid layer of any added devices */
921         for (i = 0; i < nadded; i++) {
922                 if (scsi_add_device(sh, added[i]->bus,
923                         added[i]->target, added[i]->lun) == 0)
924                         continue;
925                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
926                         "device not added.\n", hostno, added[i]->bus,
927                         added[i]->target, added[i]->lun);
928                 /* now we have to remove it from h->dev,
929                  * since it didn't get added to scsi mid layer
930                  */
931                 fixup_botched_add(h, added[i]);
932         }
933
934 free_and_out:
935         kfree(added);
936         kfree(removed);
937 }
938
939 /*
940  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
941  * Assume's h->devlock is held.
942  */
943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
944         int bus, int target, int lun)
945 {
946         int i;
947         struct hpsa_scsi_dev_t *sd;
948
949         for (i = 0; i < h->ndevices; i++) {
950                 sd = h->dev[i];
951                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
952                         return sd;
953         }
954         return NULL;
955 }
956
957 /* link sdev->hostdata to our per-device structure. */
958 static int hpsa_slave_alloc(struct scsi_device *sdev)
959 {
960         struct hpsa_scsi_dev_t *sd;
961         unsigned long flags;
962         struct ctlr_info *h;
963
964         h = sdev_to_hba(sdev);
965         spin_lock_irqsave(&h->devlock, flags);
966         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
967                 sdev_id(sdev), sdev->lun);
968         if (sd != NULL)
969                 sdev->hostdata = sd;
970         spin_unlock_irqrestore(&h->devlock, flags);
971         return 0;
972 }
973
974 static void hpsa_slave_destroy(struct scsi_device *sdev)
975 {
976         /* nothing to do. */
977 }
978
979 static void hpsa_scsi_setup(struct ctlr_info *h)
980 {
981         h->ndevices = 0;
982         h->scsi_host = NULL;
983         spin_lock_init(&h->devlock);
984 }
985
986 static void complete_scsi_command(struct CommandList *cp,
987         int timeout, u32 tag)
988 {
989         struct scsi_cmnd *cmd;
990         struct ctlr_info *h;
991         struct ErrorInfo *ei;
992
993         unsigned char sense_key;
994         unsigned char asc;      /* additional sense code */
995         unsigned char ascq;     /* additional sense code qualifier */
996
997         ei = cp->err_info;
998         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
999         h = cp->h;
1000
1001         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1002
1003         cmd->result = (DID_OK << 16);           /* host byte */
1004         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1005         cmd->result |= (ei->ScsiStatus << 1);
1006
1007         /* copy the sense data whether we need to or not. */
1008         memcpy(cmd->sense_buffer, ei->SenseInfo,
1009                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
1010                         SCSI_SENSE_BUFFERSIZE :
1011                         ei->SenseLen);
1012         scsi_set_resid(cmd, ei->ResidualCnt);
1013
1014         if (ei->CommandStatus == 0) {
1015                 cmd->scsi_done(cmd);
1016                 cmd_free(h, cp);
1017                 return;
1018         }
1019
1020         /* an error has occurred */
1021         switch (ei->CommandStatus) {
1022
1023         case CMD_TARGET_STATUS:
1024                 if (ei->ScsiStatus) {
1025                         /* Get sense key */
1026                         sense_key = 0xf & ei->SenseInfo[2];
1027                         /* Get additional sense code */
1028                         asc = ei->SenseInfo[12];
1029                         /* Get addition sense code qualifier */
1030                         ascq = ei->SenseInfo[13];
1031                 }
1032
1033                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1034                         if (check_for_unit_attention(h, cp)) {
1035                                 cmd->result = DID_SOFT_ERROR << 16;
1036                                 break;
1037                         }
1038                         if (sense_key == ILLEGAL_REQUEST) {
1039                                 /*
1040                                  * SCSI REPORT_LUNS is commonly unsupported on
1041                                  * Smart Array.  Suppress noisy complaint.
1042                                  */
1043                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1044                                         break;
1045
1046                                 /* If ASC/ASCQ indicate Logical Unit
1047                                  * Not Supported condition,
1048                                  */
1049                                 if ((asc == 0x25) && (ascq == 0x0)) {
1050                                         dev_warn(&h->pdev->dev, "cp %p "
1051                                                 "has check condition\n", cp);
1052                                         break;
1053                                 }
1054                         }
1055
1056                         if (sense_key == NOT_READY) {
1057                                 /* If Sense is Not Ready, Logical Unit
1058                                  * Not ready, Manual Intervention
1059                                  * required
1060                                  */
1061                                 if ((asc == 0x04) && (ascq == 0x03)) {
1062                                         dev_warn(&h->pdev->dev, "cp %p "
1063                                                 "has check condition: unit "
1064                                                 "not ready, manual "
1065                                                 "intervention required\n", cp);
1066                                         break;
1067                                 }
1068                         }
1069                         if (sense_key == ABORTED_COMMAND) {
1070                                 /* Aborted command is retryable */
1071                                 dev_warn(&h->pdev->dev, "cp %p "
1072                                         "has check condition: aborted command: "
1073                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1074                                         cp, asc, ascq);
1075                                 cmd->result = DID_SOFT_ERROR << 16;
1076                                 break;
1077                         }
1078                         /* Must be some other type of check condition */
1079                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1080                                         "unknown type: "
1081                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1082                                         "Returning result: 0x%x, "
1083                                         "cmd=[%02x %02x %02x %02x %02x "
1084                                         "%02x %02x %02x %02x %02x %02x "
1085                                         "%02x %02x %02x %02x %02x]\n",
1086                                         cp, sense_key, asc, ascq,
1087                                         cmd->result,
1088                                         cmd->cmnd[0], cmd->cmnd[1],
1089                                         cmd->cmnd[2], cmd->cmnd[3],
1090                                         cmd->cmnd[4], cmd->cmnd[5],
1091                                         cmd->cmnd[6], cmd->cmnd[7],
1092                                         cmd->cmnd[8], cmd->cmnd[9],
1093                                         cmd->cmnd[10], cmd->cmnd[11],
1094                                         cmd->cmnd[12], cmd->cmnd[13],
1095                                         cmd->cmnd[14], cmd->cmnd[15]);
1096                         break;
1097                 }
1098
1099
1100                 /* Problem was not a check condition
1101                  * Pass it up to the upper layers...
1102                  */
1103                 if (ei->ScsiStatus) {
1104                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1105                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1106                                 "Returning result: 0x%x\n",
1107                                 cp, ei->ScsiStatus,
1108                                 sense_key, asc, ascq,
1109                                 cmd->result);
1110                 } else {  /* scsi status is zero??? How??? */
1111                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1112                                 "Returning no connection.\n", cp),
1113
1114                         /* Ordinarily, this case should never happen,
1115                          * but there is a bug in some released firmware
1116                          * revisions that allows it to happen if, for
1117                          * example, a 4100 backplane loses power and
1118                          * the tape drive is in it.  We assume that
1119                          * it's a fatal error of some kind because we
1120                          * can't show that it wasn't. We will make it
1121                          * look like selection timeout since that is
1122                          * the most common reason for this to occur,
1123                          * and it's severe enough.
1124                          */
1125
1126                         cmd->result = DID_NO_CONNECT << 16;
1127                 }
1128                 break;
1129
1130         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1131                 break;
1132         case CMD_DATA_OVERRUN:
1133                 dev_warn(&h->pdev->dev, "cp %p has"
1134                         " completed with data overrun "
1135                         "reported\n", cp);
1136                 break;
1137         case CMD_INVALID: {
1138                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1139                 print_cmd(cp); */
1140                 /* We get CMD_INVALID if you address a non-existent device
1141                  * instead of a selection timeout (no response).  You will
1142                  * see this if you yank out a drive, then try to access it.
1143                  * This is kind of a shame because it means that any other
1144                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1145                  * missing target. */
1146                 cmd->result = DID_NO_CONNECT << 16;
1147         }
1148                 break;
1149         case CMD_PROTOCOL_ERR:
1150                 dev_warn(&h->pdev->dev, "cp %p has "
1151                         "protocol error \n", cp);
1152                 break;
1153         case CMD_HARDWARE_ERR:
1154                 cmd->result = DID_ERROR << 16;
1155                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1156                 break;
1157         case CMD_CONNECTION_LOST:
1158                 cmd->result = DID_ERROR << 16;
1159                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1160                 break;
1161         case CMD_ABORTED:
1162                 cmd->result = DID_ABORT << 16;
1163                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1164                                 cp, ei->ScsiStatus);
1165                 break;
1166         case CMD_ABORT_FAILED:
1167                 cmd->result = DID_ERROR << 16;
1168                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1169                 break;
1170         case CMD_UNSOLICITED_ABORT:
1171                 cmd->result = DID_RESET << 16;
1172                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1173                         "abort\n", cp);
1174                 break;
1175         case CMD_TIMEOUT:
1176                 cmd->result = DID_TIME_OUT << 16;
1177                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1178                 break;
1179         default:
1180                 cmd->result = DID_ERROR << 16;
1181                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1182                                 cp, ei->CommandStatus);
1183         }
1184         cmd->scsi_done(cmd);
1185         cmd_free(h, cp);
1186 }
1187
1188 static int hpsa_scsi_detect(struct ctlr_info *h)
1189 {
1190         struct Scsi_Host *sh;
1191         int error;
1192
1193         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1194         if (sh == NULL)
1195                 goto fail;
1196
1197         sh->io_port = 0;
1198         sh->n_io_port = 0;
1199         sh->this_id = -1;
1200         sh->max_channel = 3;
1201         sh->max_cmd_len = MAX_COMMAND_SIZE;
1202         sh->max_lun = HPSA_MAX_LUN;
1203         sh->max_id = HPSA_MAX_LUN;
1204         sh->can_queue = h->nr_cmds;
1205         sh->cmd_per_lun = h->nr_cmds;
1206         h->scsi_host = sh;
1207         sh->hostdata[0] = (unsigned long) h;
1208         sh->irq = h->intr[PERF_MODE_INT];
1209         sh->unique_id = sh->irq;
1210         error = scsi_add_host(sh, &h->pdev->dev);
1211         if (error)
1212                 goto fail_host_put;
1213         scsi_scan_host(sh);
1214         return 0;
1215
1216  fail_host_put:
1217         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1218                 " failed for controller %d\n", h->ctlr);
1219         scsi_host_put(sh);
1220         return error;
1221  fail:
1222         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1223                 " failed for controller %d\n", h->ctlr);
1224         return -ENOMEM;
1225 }
1226
1227 static void hpsa_pci_unmap(struct pci_dev *pdev,
1228         struct CommandList *c, int sg_used, int data_direction)
1229 {
1230         int i;
1231         union u64bit addr64;
1232
1233         for (i = 0; i < sg_used; i++) {
1234                 addr64.val32.lower = c->SG[i].Addr.lower;
1235                 addr64.val32.upper = c->SG[i].Addr.upper;
1236                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1237                         data_direction);
1238         }
1239 }
1240
1241 static void hpsa_map_one(struct pci_dev *pdev,
1242                 struct CommandList *cp,
1243                 unsigned char *buf,
1244                 size_t buflen,
1245                 int data_direction)
1246 {
1247         u64 addr64;
1248
1249         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1250                 cp->Header.SGList = 0;
1251                 cp->Header.SGTotal = 0;
1252                 return;
1253         }
1254
1255         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1256         cp->SG[0].Addr.lower =
1257           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1258         cp->SG[0].Addr.upper =
1259           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1260         cp->SG[0].Len = buflen;
1261         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1262         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1263 }
1264
1265 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1266         struct CommandList *c)
1267 {
1268         DECLARE_COMPLETION_ONSTACK(wait);
1269
1270         c->waiting = &wait;
1271         enqueue_cmd_and_start_io(h, c);
1272         wait_for_completion(&wait);
1273 }
1274
1275 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1276         struct CommandList *c, int data_direction)
1277 {
1278         int retry_count = 0;
1279
1280         do {
1281                 memset(c->err_info, 0, sizeof(c->err_info));
1282                 hpsa_scsi_do_simple_cmd_core(h, c);
1283                 retry_count++;
1284         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1285         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1286 }
1287
1288 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1289 {
1290         struct ErrorInfo *ei;
1291         struct device *d = &cp->h->pdev->dev;
1292
1293         ei = cp->err_info;
1294         switch (ei->CommandStatus) {
1295         case CMD_TARGET_STATUS:
1296                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1297                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1298                                 ei->ScsiStatus);
1299                 if (ei->ScsiStatus == 0)
1300                         dev_warn(d, "SCSI status is abnormally zero.  "
1301                         "(probably indicates selection timeout "
1302                         "reported incorrectly due to a known "
1303                         "firmware bug, circa July, 2001.)\n");
1304                 break;
1305         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1306                         dev_info(d, "UNDERRUN\n");
1307                 break;
1308         case CMD_DATA_OVERRUN:
1309                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1310                 break;
1311         case CMD_INVALID: {
1312                 /* controller unfortunately reports SCSI passthru's
1313                  * to non-existent targets as invalid commands.
1314                  */
1315                 dev_warn(d, "cp %p is reported invalid (probably means "
1316                         "target device no longer present)\n", cp);
1317                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1318                 print_cmd(cp);  */
1319                 }
1320                 break;
1321         case CMD_PROTOCOL_ERR:
1322                 dev_warn(d, "cp %p has protocol error \n", cp);
1323                 break;
1324         case CMD_HARDWARE_ERR:
1325                 /* cmd->result = DID_ERROR << 16; */
1326                 dev_warn(d, "cp %p had hardware error\n", cp);
1327                 break;
1328         case CMD_CONNECTION_LOST:
1329                 dev_warn(d, "cp %p had connection lost\n", cp);
1330                 break;
1331         case CMD_ABORTED:
1332                 dev_warn(d, "cp %p was aborted\n", cp);
1333                 break;
1334         case CMD_ABORT_FAILED:
1335                 dev_warn(d, "cp %p reports abort failed\n", cp);
1336                 break;
1337         case CMD_UNSOLICITED_ABORT:
1338                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1339                 break;
1340         case CMD_TIMEOUT:
1341                 dev_warn(d, "cp %p timed out\n", cp);
1342                 break;
1343         default:
1344                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1345                                 ei->CommandStatus);
1346         }
1347 }
1348
1349 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1350                         unsigned char page, unsigned char *buf,
1351                         unsigned char bufsize)
1352 {
1353         int rc = IO_OK;
1354         struct CommandList *c;
1355         struct ErrorInfo *ei;
1356
1357         c = cmd_special_alloc(h);
1358
1359         if (c == NULL) {                        /* trouble... */
1360                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1361                 return -ENOMEM;
1362         }
1363
1364         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1365         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1366         ei = c->err_info;
1367         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1368                 hpsa_scsi_interpret_error(c);
1369                 rc = -1;
1370         }
1371         cmd_special_free(h, c);
1372         return rc;
1373 }
1374
1375 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1376 {
1377         int rc = IO_OK;
1378         struct CommandList *c;
1379         struct ErrorInfo *ei;
1380
1381         c = cmd_special_alloc(h);
1382
1383         if (c == NULL) {                        /* trouble... */
1384                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1385                 return -1;
1386         }
1387
1388         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1389         hpsa_scsi_do_simple_cmd_core(h, c);
1390         /* no unmap needed here because no data xfer. */
1391
1392         ei = c->err_info;
1393         if (ei->CommandStatus != 0) {
1394                 hpsa_scsi_interpret_error(c);
1395                 rc = -1;
1396         }
1397         cmd_special_free(h, c);
1398         return rc;
1399 }
1400
1401 static void hpsa_get_raid_level(struct ctlr_info *h,
1402         unsigned char *scsi3addr, unsigned char *raid_level)
1403 {
1404         int rc;
1405         unsigned char *buf;
1406
1407         *raid_level = RAID_UNKNOWN;
1408         buf = kzalloc(64, GFP_KERNEL);
1409         if (!buf)
1410                 return;
1411         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1412         if (rc == 0)
1413                 *raid_level = buf[8];
1414         if (*raid_level > RAID_UNKNOWN)
1415                 *raid_level = RAID_UNKNOWN;
1416         kfree(buf);
1417         return;
1418 }
1419
1420 /* Get the device id from inquiry page 0x83 */
1421 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1422         unsigned char *device_id, int buflen)
1423 {
1424         int rc;
1425         unsigned char *buf;
1426
1427         if (buflen > 16)
1428                 buflen = 16;
1429         buf = kzalloc(64, GFP_KERNEL);
1430         if (!buf)
1431                 return -1;
1432         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1433         if (rc == 0)
1434                 memcpy(device_id, &buf[8], buflen);
1435         kfree(buf);
1436         return rc != 0;
1437 }
1438
1439 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1440                 struct ReportLUNdata *buf, int bufsize,
1441                 int extended_response)
1442 {
1443         int rc = IO_OK;
1444         struct CommandList *c;
1445         unsigned char scsi3addr[8];
1446         struct ErrorInfo *ei;
1447
1448         c = cmd_special_alloc(h);
1449         if (c == NULL) {                        /* trouble... */
1450                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451                 return -1;
1452         }
1453         /* address the controller */
1454         memset(scsi3addr, 0, sizeof(scsi3addr));
1455         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1456                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1457         if (extended_response)
1458                 c->Request.CDB[1] = extended_response;
1459         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1460         ei = c->err_info;
1461         if (ei->CommandStatus != 0 &&
1462             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1463                 hpsa_scsi_interpret_error(c);
1464                 rc = -1;
1465         }
1466         cmd_special_free(h, c);
1467         return rc;
1468 }
1469
1470 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1471                 struct ReportLUNdata *buf,
1472                 int bufsize, int extended_response)
1473 {
1474         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1475 }
1476
1477 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1478                 struct ReportLUNdata *buf, int bufsize)
1479 {
1480         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1481 }
1482
1483 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1484         int bus, int target, int lun)
1485 {
1486         device->bus = bus;
1487         device->target = target;
1488         device->lun = lun;
1489 }
1490
1491 static int hpsa_update_device_info(struct ctlr_info *h,
1492         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1493 {
1494 #define OBDR_TAPE_INQ_SIZE 49
1495         unsigned char *inq_buff;
1496
1497         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1498         if (!inq_buff)
1499                 goto bail_out;
1500
1501         /* Do an inquiry to the device to see what it is. */
1502         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1503                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1504                 /* Inquiry failed (msg printed already) */
1505                 dev_err(&h->pdev->dev,
1506                         "hpsa_update_device_info: inquiry failed\n");
1507                 goto bail_out;
1508         }
1509
1510         /* As a side effect, record the firmware version number
1511          * if we happen to be talking to the RAID controller.
1512          */
1513         if (is_hba_lunid(scsi3addr))
1514                 memcpy(h->firm_ver, &inq_buff[32], 4);
1515
1516         this_device->devtype = (inq_buff[0] & 0x1f);
1517         memcpy(this_device->scsi3addr, scsi3addr, 8);
1518         memcpy(this_device->vendor, &inq_buff[8],
1519                 sizeof(this_device->vendor));
1520         memcpy(this_device->model, &inq_buff[16],
1521                 sizeof(this_device->model));
1522         memcpy(this_device->revision, &inq_buff[32],
1523                 sizeof(this_device->revision));
1524         memset(this_device->device_id, 0,
1525                 sizeof(this_device->device_id));
1526         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1527                 sizeof(this_device->device_id));
1528
1529         if (this_device->devtype == TYPE_DISK &&
1530                 is_logical_dev_addr_mode(scsi3addr))
1531                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1532         else
1533                 this_device->raid_level = RAID_UNKNOWN;
1534
1535         kfree(inq_buff);
1536         return 0;
1537
1538 bail_out:
1539         kfree(inq_buff);
1540         return 1;
1541 }
1542
1543 static unsigned char *msa2xxx_model[] = {
1544         "MSA2012",
1545         "MSA2024",
1546         "MSA2312",
1547         "MSA2324",
1548         NULL,
1549 };
1550
1551 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1552 {
1553         int i;
1554
1555         for (i = 0; msa2xxx_model[i]; i++)
1556                 if (strncmp(device->model, msa2xxx_model[i],
1557                         strlen(msa2xxx_model[i])) == 0)
1558                         return 1;
1559         return 0;
1560 }
1561
1562 /* Helper function to assign bus, target, lun mapping of devices.
1563  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1564  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1565  * Logical drive target and lun are assigned at this time, but
1566  * physical device lun and target assignment are deferred (assigned
1567  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1568  */
1569 static void figure_bus_target_lun(struct ctlr_info *h,
1570         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1571         struct hpsa_scsi_dev_t *device)
1572 {
1573         u32 lunid;
1574
1575         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1576                 /* logical device */
1577                 if (unlikely(is_scsi_rev_5(h))) {
1578                         /* p1210m, logical drives lun assignments
1579                          * match SCSI REPORT LUNS data.
1580                          */
1581                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1582                         *bus = 0;
1583                         *target = 0;
1584                         *lun = (lunid & 0x3fff) + 1;
1585                 } else {
1586                         /* not p1210m... */
1587                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1588                         if (is_msa2xxx(h, device)) {
1589                                 /* msa2xxx way, put logicals on bus 1
1590                                  * and match target/lun numbers box
1591                                  * reports.
1592                                  */
1593                                 *bus = 1;
1594                                 *target = (lunid >> 16) & 0x3fff;
1595                                 *lun = lunid & 0x00ff;
1596                         } else {
1597                                 /* Traditional smart array way. */
1598                                 *bus = 0;
1599                                 *lun = 0;
1600                                 *target = lunid & 0x3fff;
1601                         }
1602                 }
1603         } else {
1604                 /* physical device */
1605                 if (is_hba_lunid(lunaddrbytes))
1606                         if (unlikely(is_scsi_rev_5(h))) {
1607                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1608                                 *target = 0;
1609                                 *lun = 0;
1610                                 return;
1611                         } else
1612                                 *bus = 3; /* traditional smartarray */
1613                 else
1614                         *bus = 2; /* physical disk */
1615                 *target = -1;
1616                 *lun = -1; /* we will fill these in later. */
1617         }
1618 }
1619
1620 /*
1621  * If there is no lun 0 on a target, linux won't find any devices.
1622  * For the MSA2xxx boxes, we have to manually detect the enclosure
1623  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1624  * it for some reason.  *tmpdevice is the target we're adding,
1625  * this_device is a pointer into the current element of currentsd[]
1626  * that we're building up in update_scsi_devices(), below.
1627  * lunzerobits is a bitmap that tracks which targets already have a
1628  * lun 0 assigned.
1629  * Returns 1 if an enclosure was added, 0 if not.
1630  */
1631 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1632         struct hpsa_scsi_dev_t *tmpdevice,
1633         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1634         int bus, int target, int lun, unsigned long lunzerobits[],
1635         int *nmsa2xxx_enclosures)
1636 {
1637         unsigned char scsi3addr[8];
1638
1639         if (test_bit(target, lunzerobits))
1640                 return 0; /* There is already a lun 0 on this target. */
1641
1642         if (!is_logical_dev_addr_mode(lunaddrbytes))
1643                 return 0; /* It's the logical targets that may lack lun 0. */
1644
1645         if (!is_msa2xxx(h, tmpdevice))
1646                 return 0; /* It's only the MSA2xxx that have this problem. */
1647
1648         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1649                 return 0;
1650
1651         if (is_hba_lunid(scsi3addr))
1652                 return 0; /* Don't add the RAID controller here. */
1653
1654         if (is_scsi_rev_5(h))
1655                 return 0; /* p1210m doesn't need to do this. */
1656
1657 #define MAX_MSA2XXX_ENCLOSURES 32
1658         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1659                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1660                         "enclosures exceeded.  Check your hardware "
1661                         "configuration.");
1662                 return 0;
1663         }
1664
1665         memset(scsi3addr, 0, 8);
1666         scsi3addr[3] = target;
1667         if (hpsa_update_device_info(h, scsi3addr, this_device))
1668                 return 0;
1669         (*nmsa2xxx_enclosures)++;
1670         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1671         set_bit(target, lunzerobits);
1672         return 1;
1673 }
1674
1675 /*
1676  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1677  * logdev.  The number of luns in physdev and logdev are returned in
1678  * *nphysicals and *nlogicals, respectively.
1679  * Returns 0 on success, -1 otherwise.
1680  */
1681 static int hpsa_gather_lun_info(struct ctlr_info *h,
1682         int reportlunsize,
1683         struct ReportLUNdata *physdev, u32 *nphysicals,
1684         struct ReportLUNdata *logdev, u32 *nlogicals)
1685 {
1686         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1687                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1688                 return -1;
1689         }
1690         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1691         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1692                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1693                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1694                         *nphysicals - HPSA_MAX_PHYS_LUN);
1695                 *nphysicals = HPSA_MAX_PHYS_LUN;
1696         }
1697         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1698                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1699                 return -1;
1700         }
1701         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1702         /* Reject Logicals in excess of our max capability. */
1703         if (*nlogicals > HPSA_MAX_LUN) {
1704                 dev_warn(&h->pdev->dev,
1705                         "maximum logical LUNs (%d) exceeded.  "
1706                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1707                         *nlogicals - HPSA_MAX_LUN);
1708                         *nlogicals = HPSA_MAX_LUN;
1709         }
1710         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1711                 dev_warn(&h->pdev->dev,
1712                         "maximum logical + physical LUNs (%d) exceeded. "
1713                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1714                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1715                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1716         }
1717         return 0;
1718 }
1719
1720 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1721         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1722         struct ReportLUNdata *logdev_list)
1723 {
1724         /* Helper function, figure out where the LUN ID info is coming from
1725          * given index i, lists of physical and logical devices, where in
1726          * the list the raid controller is supposed to appear (first or last)
1727          */
1728
1729         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1730         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1731
1732         if (i == raid_ctlr_position)
1733                 return RAID_CTLR_LUNID;
1734
1735         if (i < logicals_start)
1736                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1737
1738         if (i < last_device)
1739                 return &logdev_list->LUN[i - nphysicals -
1740                         (raid_ctlr_position == 0)][0];
1741         BUG();
1742         return NULL;
1743 }
1744
1745 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1746 {
1747         /* the idea here is we could get notified
1748          * that some devices have changed, so we do a report
1749          * physical luns and report logical luns cmd, and adjust
1750          * our list of devices accordingly.
1751          *
1752          * The scsi3addr's of devices won't change so long as the
1753          * adapter is not reset.  That means we can rescan and
1754          * tell which devices we already know about, vs. new
1755          * devices, vs.  disappearing devices.
1756          */
1757         struct ReportLUNdata *physdev_list = NULL;
1758         struct ReportLUNdata *logdev_list = NULL;
1759         unsigned char *inq_buff = NULL;
1760         u32 nphysicals = 0;
1761         u32 nlogicals = 0;
1762         u32 ndev_allocated = 0;
1763         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1764         int ncurrent = 0;
1765         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1766         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1767         int bus, target, lun;
1768         int raid_ctlr_position;
1769         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1770
1771         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1772                 GFP_KERNEL);
1773         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1774         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1775         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1776         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1777
1778         if (!currentsd || !physdev_list || !logdev_list ||
1779                 !inq_buff || !tmpdevice) {
1780                 dev_err(&h->pdev->dev, "out of memory\n");
1781                 goto out;
1782         }
1783         memset(lunzerobits, 0, sizeof(lunzerobits));
1784
1785         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1786                         logdev_list, &nlogicals))
1787                 goto out;
1788
1789         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1790          * but each of them 4 times through different paths.  The plus 1
1791          * is for the RAID controller.
1792          */
1793         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1794
1795         /* Allocate the per device structures */
1796         for (i = 0; i < ndevs_to_allocate; i++) {
1797                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1798                 if (!currentsd[i]) {
1799                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1800                                 __FILE__, __LINE__);
1801                         goto out;
1802                 }
1803                 ndev_allocated++;
1804         }
1805
1806         if (unlikely(is_scsi_rev_5(h)))
1807                 raid_ctlr_position = 0;
1808         else
1809                 raid_ctlr_position = nphysicals + nlogicals;
1810
1811         /* adjust our table of devices */
1812         nmsa2xxx_enclosures = 0;
1813         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1814                 u8 *lunaddrbytes;
1815
1816                 /* Figure out where the LUN ID info is coming from */
1817                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1818                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1819                 /* skip masked physical devices. */
1820                 if (lunaddrbytes[3] & 0xC0 &&
1821                         i < nphysicals + (raid_ctlr_position == 0))
1822                         continue;
1823
1824                 /* Get device type, vendor, model, device id */
1825                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1826                         continue; /* skip it if we can't talk to it. */
1827                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1828                         tmpdevice);
1829                 this_device = currentsd[ncurrent];
1830
1831                 /*
1832                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1833                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1834                  * is nonetheless an enclosure device there.  We have to
1835                  * present that otherwise linux won't find anything if
1836                  * there is no lun 0.
1837                  */
1838                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1839                                 lunaddrbytes, bus, target, lun, lunzerobits,
1840                                 &nmsa2xxx_enclosures)) {
1841                         ncurrent++;
1842                         this_device = currentsd[ncurrent];
1843                 }
1844
1845                 *this_device = *tmpdevice;
1846                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1847
1848                 switch (this_device->devtype) {
1849                 case TYPE_ROM: {
1850                         /* We don't *really* support actual CD-ROM devices,
1851                          * just "One Button Disaster Recovery" tape drive
1852                          * which temporarily pretends to be a CD-ROM drive.
1853                          * So we check that the device is really an OBDR tape
1854                          * device by checking for "$DR-10" in bytes 43-48 of
1855                          * the inquiry data.
1856                          */
1857                                 char obdr_sig[7];
1858 #define OBDR_TAPE_SIG "$DR-10"
1859                                 strncpy(obdr_sig, &inq_buff[43], 6);
1860                                 obdr_sig[6] = '\0';
1861                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1862                                         /* Not OBDR device, ignore it. */
1863                                         break;
1864                         }
1865                         ncurrent++;
1866                         break;
1867                 case TYPE_DISK:
1868                         if (i < nphysicals)
1869                                 break;
1870                         ncurrent++;
1871                         break;
1872                 case TYPE_TAPE:
1873                 case TYPE_MEDIUM_CHANGER:
1874                         ncurrent++;
1875                         break;
1876                 case TYPE_RAID:
1877                         /* Only present the Smartarray HBA as a RAID controller.
1878                          * If it's a RAID controller other than the HBA itself
1879                          * (an external RAID controller, MSA500 or similar)
1880                          * don't present it.
1881                          */
1882                         if (!is_hba_lunid(lunaddrbytes))
1883                                 break;
1884                         ncurrent++;
1885                         break;
1886                 default:
1887                         break;
1888                 }
1889                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1890                         break;
1891         }
1892         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1893 out:
1894         kfree(tmpdevice);
1895         for (i = 0; i < ndev_allocated; i++)
1896                 kfree(currentsd[i]);
1897         kfree(currentsd);
1898         kfree(inq_buff);
1899         kfree(physdev_list);
1900         kfree(logdev_list);
1901 }
1902
1903 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1904  * dma mapping  and fills in the scatter gather entries of the
1905  * hpsa command, cp.
1906  */
1907 static int hpsa_scatter_gather(struct pci_dev *pdev,
1908                 struct CommandList *cp,
1909                 struct scsi_cmnd *cmd)
1910 {
1911         unsigned int len;
1912         struct scatterlist *sg;
1913         u64 addr64;
1914         int use_sg, i;
1915
1916         BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES);
1917
1918         use_sg = scsi_dma_map(cmd);
1919         if (use_sg < 0)
1920                 return use_sg;
1921
1922         if (!use_sg)
1923                 goto sglist_finished;
1924
1925         scsi_for_each_sg(cmd, sg, use_sg, i) {
1926                 addr64 = (u64) sg_dma_address(sg);
1927                 len  = sg_dma_len(sg);
1928                 cp->SG[i].Addr.lower =
1929                         (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1930                 cp->SG[i].Addr.upper =
1931                         (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1932                 cp->SG[i].Len = len;
1933                 cp->SG[i].Ext = 0;  /* we are not chaining */
1934         }
1935
1936 sglist_finished:
1937
1938         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1939         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1940         return 0;
1941 }
1942
1943
1944 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1945         void (*done)(struct scsi_cmnd *))
1946 {
1947         struct ctlr_info *h;
1948         struct hpsa_scsi_dev_t *dev;
1949         unsigned char scsi3addr[8];
1950         struct CommandList *c;
1951         unsigned long flags;
1952
1953         /* Get the ptr to our adapter structure out of cmd->host. */
1954         h = sdev_to_hba(cmd->device);
1955         dev = cmd->device->hostdata;
1956         if (!dev) {
1957                 cmd->result = DID_NO_CONNECT << 16;
1958                 done(cmd);
1959                 return 0;
1960         }
1961         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1962
1963         /* Need a lock as this is being allocated from the pool */
1964         spin_lock_irqsave(&h->lock, flags);
1965         c = cmd_alloc(h);
1966         spin_unlock_irqrestore(&h->lock, flags);
1967         if (c == NULL) {                        /* trouble... */
1968                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1969                 return SCSI_MLQUEUE_HOST_BUSY;
1970         }
1971
1972         /* Fill in the command list header */
1973
1974         cmd->scsi_done = done;    /* save this for use by completion code */
1975
1976         /* save c in case we have to abort it  */
1977         cmd->host_scribble = (unsigned char *) c;
1978
1979         c->cmd_type = CMD_SCSI;
1980         c->scsi_cmd = cmd;
1981         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1982         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1983         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1984         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1985
1986         /* Fill in the request block... */
1987
1988         c->Request.Timeout = 0;
1989         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1990         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1991         c->Request.CDBLen = cmd->cmd_len;
1992         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1993         c->Request.Type.Type = TYPE_CMD;
1994         c->Request.Type.Attribute = ATTR_SIMPLE;
1995         switch (cmd->sc_data_direction) {
1996         case DMA_TO_DEVICE:
1997                 c->Request.Type.Direction = XFER_WRITE;
1998                 break;
1999         case DMA_FROM_DEVICE:
2000                 c->Request.Type.Direction = XFER_READ;
2001                 break;
2002         case DMA_NONE:
2003                 c->Request.Type.Direction = XFER_NONE;
2004                 break;
2005         case DMA_BIDIRECTIONAL:
2006                 /* This can happen if a buggy application does a scsi passthru
2007                  * and sets both inlen and outlen to non-zero. ( see
2008                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2009                  */
2010
2011                 c->Request.Type.Direction = XFER_RSVD;
2012                 /* This is technically wrong, and hpsa controllers should
2013                  * reject it with CMD_INVALID, which is the most correct
2014                  * response, but non-fibre backends appear to let it
2015                  * slide by, and give the same results as if this field
2016                  * were set correctly.  Either way is acceptable for
2017                  * our purposes here.
2018                  */
2019
2020                 break;
2021
2022         default:
2023                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2024                         cmd->sc_data_direction);
2025                 BUG();
2026                 break;
2027         }
2028
2029         if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */
2030                 cmd_free(h, c);
2031                 return SCSI_MLQUEUE_HOST_BUSY;
2032         }
2033         enqueue_cmd_and_start_io(h, c);
2034         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2035         return 0;
2036 }
2037
2038 static void hpsa_scan_start(struct Scsi_Host *sh)
2039 {
2040         struct ctlr_info *h = shost_to_hba(sh);
2041         unsigned long flags;
2042
2043         /* wait until any scan already in progress is finished. */
2044         while (1) {
2045                 spin_lock_irqsave(&h->scan_lock, flags);
2046                 if (h->scan_finished)
2047                         break;
2048                 spin_unlock_irqrestore(&h->scan_lock, flags);
2049                 wait_event(h->scan_wait_queue, h->scan_finished);
2050                 /* Note: We don't need to worry about a race between this
2051                  * thread and driver unload because the midlayer will
2052                  * have incremented the reference count, so unload won't
2053                  * happen if we're in here.
2054                  */
2055         }
2056         h->scan_finished = 0; /* mark scan as in progress */
2057         spin_unlock_irqrestore(&h->scan_lock, flags);
2058
2059         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2060
2061         spin_lock_irqsave(&h->scan_lock, flags);
2062         h->scan_finished = 1; /* mark scan as finished. */
2063         wake_up_all(&h->scan_wait_queue);
2064         spin_unlock_irqrestore(&h->scan_lock, flags);
2065 }
2066
2067 static int hpsa_scan_finished(struct Scsi_Host *sh,
2068         unsigned long elapsed_time)
2069 {
2070         struct ctlr_info *h = shost_to_hba(sh);
2071         unsigned long flags;
2072         int finished;
2073
2074         spin_lock_irqsave(&h->scan_lock, flags);
2075         finished = h->scan_finished;
2076         spin_unlock_irqrestore(&h->scan_lock, flags);
2077         return finished;
2078 }
2079
2080 static void hpsa_unregister_scsi(struct ctlr_info *h)
2081 {
2082         /* we are being forcibly unloaded, and may not refuse. */
2083         scsi_remove_host(h->scsi_host);
2084         scsi_host_put(h->scsi_host);
2085         h->scsi_host = NULL;
2086 }
2087
2088 static int hpsa_register_scsi(struct ctlr_info *h)
2089 {
2090         int rc;
2091
2092         rc = hpsa_scsi_detect(h);
2093         if (rc != 0)
2094                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2095                         " hpsa_scsi_detect(), rc is %d\n", rc);
2096         return rc;
2097 }
2098
2099 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2100         unsigned char lunaddr[])
2101 {
2102         int rc = 0;
2103         int count = 0;
2104         int waittime = 1; /* seconds */
2105         struct CommandList *c;
2106
2107         c = cmd_special_alloc(h);
2108         if (!c) {
2109                 dev_warn(&h->pdev->dev, "out of memory in "
2110                         "wait_for_device_to_become_ready.\n");
2111                 return IO_ERROR;
2112         }
2113
2114         /* Send test unit ready until device ready, or give up. */
2115         while (count < HPSA_TUR_RETRY_LIMIT) {
2116
2117                 /* Wait for a bit.  do this first, because if we send
2118                  * the TUR right away, the reset will just abort it.
2119                  */
2120                 msleep(1000 * waittime);
2121                 count++;
2122
2123                 /* Increase wait time with each try, up to a point. */
2124                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2125                         waittime = waittime * 2;
2126
2127                 /* Send the Test Unit Ready */
2128                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2129                 hpsa_scsi_do_simple_cmd_core(h, c);
2130                 /* no unmap needed here because no data xfer. */
2131
2132                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2133                         break;
2134
2135                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2136                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2137                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2138                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2139                         break;
2140
2141                 dev_warn(&h->pdev->dev, "waiting %d secs "
2142                         "for device to become ready.\n", waittime);
2143                 rc = 1; /* device not ready. */
2144         }
2145
2146         if (rc)
2147                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2148         else
2149                 dev_warn(&h->pdev->dev, "device is ready.\n");
2150
2151         cmd_special_free(h, c);
2152         return rc;
2153 }
2154
2155 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2156  * complaining.  Doing a host- or bus-reset can't do anything good here.
2157  */
2158 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2159 {
2160         int rc;
2161         struct ctlr_info *h;
2162         struct hpsa_scsi_dev_t *dev;
2163
2164         /* find the controller to which the command to be aborted was sent */
2165         h = sdev_to_hba(scsicmd->device);
2166         if (h == NULL) /* paranoia */
2167                 return FAILED;
2168         dev = scsicmd->device->hostdata;
2169         if (!dev) {
2170                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2171                         "device lookup failed.\n");
2172                 return FAILED;
2173         }
2174         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2175                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2176         /* send a reset to the SCSI LUN which the command was sent to */
2177         rc = hpsa_send_reset(h, dev->scsi3addr);
2178         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2179                 return SUCCESS;
2180
2181         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2182         return FAILED;
2183 }
2184
2185 /*
2186  * For operations that cannot sleep, a command block is allocated at init,
2187  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2188  * which ones are free or in use.  Lock must be held when calling this.
2189  * cmd_free() is the complement.
2190  */
2191 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2192 {
2193         struct CommandList *c;
2194         int i;
2195         union u64bit temp64;
2196         dma_addr_t cmd_dma_handle, err_dma_handle;
2197
2198         do {
2199                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2200                 if (i == h->nr_cmds)
2201                         return NULL;
2202         } while (test_and_set_bit
2203                  (i & (BITS_PER_LONG - 1),
2204                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2205         c = h->cmd_pool + i;
2206         memset(c, 0, sizeof(*c));
2207         cmd_dma_handle = h->cmd_pool_dhandle
2208             + i * sizeof(*c);
2209         c->err_info = h->errinfo_pool + i;
2210         memset(c->err_info, 0, sizeof(*c->err_info));
2211         err_dma_handle = h->errinfo_pool_dhandle
2212             + i * sizeof(*c->err_info);
2213         h->nr_allocs++;
2214
2215         c->cmdindex = i;
2216
2217         INIT_HLIST_NODE(&c->list);
2218         c->busaddr = (u32) cmd_dma_handle;
2219         temp64.val = (u64) err_dma_handle;
2220         c->ErrDesc.Addr.lower = temp64.val32.lower;
2221         c->ErrDesc.Addr.upper = temp64.val32.upper;
2222         c->ErrDesc.Len = sizeof(*c->err_info);
2223
2224         c->h = h;
2225         return c;
2226 }
2227
2228 /* For operations that can wait for kmalloc to possibly sleep,
2229  * this routine can be called. Lock need not be held to call
2230  * cmd_special_alloc. cmd_special_free() is the complement.
2231  */
2232 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2233 {
2234         struct CommandList *c;
2235         union u64bit temp64;
2236         dma_addr_t cmd_dma_handle, err_dma_handle;
2237
2238         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2239         if (c == NULL)
2240                 return NULL;
2241         memset(c, 0, sizeof(*c));
2242
2243         c->cmdindex = -1;
2244
2245         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2246                     &err_dma_handle);
2247
2248         if (c->err_info == NULL) {
2249                 pci_free_consistent(h->pdev,
2250                         sizeof(*c), c, cmd_dma_handle);
2251                 return NULL;
2252         }
2253         memset(c->err_info, 0, sizeof(*c->err_info));
2254
2255         INIT_HLIST_NODE(&c->list);
2256         c->busaddr = (u32) cmd_dma_handle;
2257         temp64.val = (u64) err_dma_handle;
2258         c->ErrDesc.Addr.lower = temp64.val32.lower;
2259         c->ErrDesc.Addr.upper = temp64.val32.upper;
2260         c->ErrDesc.Len = sizeof(*c->err_info);
2261
2262         c->h = h;
2263         return c;
2264 }
2265
2266 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2267 {
2268         int i;
2269
2270         i = c - h->cmd_pool;
2271         clear_bit(i & (BITS_PER_LONG - 1),
2272                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2273         h->nr_frees++;
2274 }
2275
2276 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2277 {
2278         union u64bit temp64;
2279
2280         temp64.val32.lower = c->ErrDesc.Addr.lower;
2281         temp64.val32.upper = c->ErrDesc.Addr.upper;
2282         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2283                             c->err_info, (dma_addr_t) temp64.val);
2284         pci_free_consistent(h->pdev, sizeof(*c),
2285                             c, (dma_addr_t) c->busaddr);
2286 }
2287
2288 #ifdef CONFIG_COMPAT
2289
2290 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2291 {
2292         IOCTL32_Command_struct __user *arg32 =
2293             (IOCTL32_Command_struct __user *) arg;
2294         IOCTL_Command_struct arg64;
2295         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2296         int err;
2297         u32 cp;
2298
2299         err = 0;
2300         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2301                            sizeof(arg64.LUN_info));
2302         err |= copy_from_user(&arg64.Request, &arg32->Request,
2303                            sizeof(arg64.Request));
2304         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2305                            sizeof(arg64.error_info));
2306         err |= get_user(arg64.buf_size, &arg32->buf_size);
2307         err |= get_user(cp, &arg32->buf);
2308         arg64.buf = compat_ptr(cp);
2309         err |= copy_to_user(p, &arg64, sizeof(arg64));
2310
2311         if (err)
2312                 return -EFAULT;
2313
2314         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2315         if (err)
2316                 return err;
2317         err |= copy_in_user(&arg32->error_info, &p->error_info,
2318                          sizeof(arg32->error_info));
2319         if (err)
2320                 return -EFAULT;
2321         return err;
2322 }
2323
2324 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2325         int cmd, void *arg)
2326 {
2327         BIG_IOCTL32_Command_struct __user *arg32 =
2328             (BIG_IOCTL32_Command_struct __user *) arg;
2329         BIG_IOCTL_Command_struct arg64;
2330         BIG_IOCTL_Command_struct __user *p =
2331             compat_alloc_user_space(sizeof(arg64));
2332         int err;
2333         u32 cp;
2334
2335         err = 0;
2336         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2337                            sizeof(arg64.LUN_info));
2338         err |= copy_from_user(&arg64.Request, &arg32->Request,
2339                            sizeof(arg64.Request));
2340         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2341                            sizeof(arg64.error_info));
2342         err |= get_user(arg64.buf_size, &arg32->buf_size);
2343         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2344         err |= get_user(cp, &arg32->buf);
2345         arg64.buf = compat_ptr(cp);
2346         err |= copy_to_user(p, &arg64, sizeof(arg64));
2347
2348         if (err)
2349                 return -EFAULT;
2350
2351         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2352         if (err)
2353                 return err;
2354         err |= copy_in_user(&arg32->error_info, &p->error_info,
2355                          sizeof(arg32->error_info));
2356         if (err)
2357                 return -EFAULT;
2358         return err;
2359 }
2360
2361 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2362 {
2363         switch (cmd) {
2364         case CCISS_GETPCIINFO:
2365         case CCISS_GETINTINFO:
2366         case CCISS_SETINTINFO:
2367         case CCISS_GETNODENAME:
2368         case CCISS_SETNODENAME:
2369         case CCISS_GETHEARTBEAT:
2370         case CCISS_GETBUSTYPES:
2371         case CCISS_GETFIRMVER:
2372         case CCISS_GETDRIVVER:
2373         case CCISS_REVALIDVOLS:
2374         case CCISS_DEREGDISK:
2375         case CCISS_REGNEWDISK:
2376         case CCISS_REGNEWD:
2377         case CCISS_RESCANDISK:
2378         case CCISS_GETLUNINFO:
2379                 return hpsa_ioctl(dev, cmd, arg);
2380
2381         case CCISS_PASSTHRU32:
2382                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2383         case CCISS_BIG_PASSTHRU32:
2384                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2385
2386         default:
2387                 return -ENOIOCTLCMD;
2388         }
2389 }
2390 #endif
2391
2392 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2393 {
2394         struct hpsa_pci_info pciinfo;
2395
2396         if (!argp)
2397                 return -EINVAL;
2398         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2399         pciinfo.bus = h->pdev->bus->number;
2400         pciinfo.dev_fn = h->pdev->devfn;
2401         pciinfo.board_id = h->board_id;
2402         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2403                 return -EFAULT;
2404         return 0;
2405 }
2406
2407 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2408 {
2409         DriverVer_type DriverVer;
2410         unsigned char vmaj, vmin, vsubmin;
2411         int rc;
2412
2413         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2414                 &vmaj, &vmin, &vsubmin);
2415         if (rc != 3) {
2416                 dev_info(&h->pdev->dev, "driver version string '%s' "
2417                         "unrecognized.", HPSA_DRIVER_VERSION);
2418                 vmaj = 0;
2419                 vmin = 0;
2420                 vsubmin = 0;
2421         }
2422         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2423         if (!argp)
2424                 return -EINVAL;
2425         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2426                 return -EFAULT;
2427         return 0;
2428 }
2429
2430 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2431 {
2432         IOCTL_Command_struct iocommand;
2433         struct CommandList *c;
2434         char *buff = NULL;
2435         union u64bit temp64;
2436
2437         if (!argp)
2438                 return -EINVAL;
2439         if (!capable(CAP_SYS_RAWIO))
2440                 return -EPERM;
2441         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2442                 return -EFAULT;
2443         if ((iocommand.buf_size < 1) &&
2444             (iocommand.Request.Type.Direction != XFER_NONE)) {
2445                 return -EINVAL;
2446         }
2447         if (iocommand.buf_size > 0) {
2448                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2449                 if (buff == NULL)
2450                         return -EFAULT;
2451         }
2452         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2453                 /* Copy the data into the buffer we created */
2454                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2455                         kfree(buff);
2456                         return -EFAULT;
2457                 }
2458         } else
2459                 memset(buff, 0, iocommand.buf_size);
2460         c = cmd_special_alloc(h);
2461         if (c == NULL) {
2462                 kfree(buff);
2463                 return -ENOMEM;
2464         }
2465         /* Fill in the command type */
2466         c->cmd_type = CMD_IOCTL_PEND;
2467         /* Fill in Command Header */
2468         c->Header.ReplyQueue = 0; /* unused in simple mode */
2469         if (iocommand.buf_size > 0) {   /* buffer to fill */
2470                 c->Header.SGList = 1;
2471                 c->Header.SGTotal = 1;
2472         } else  { /* no buffers to fill */
2473                 c->Header.SGList = 0;
2474                 c->Header.SGTotal = 0;
2475         }
2476         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2477         /* use the kernel address the cmd block for tag */
2478         c->Header.Tag.lower = c->busaddr;
2479
2480         /* Fill in Request block */
2481         memcpy(&c->Request, &iocommand.Request,
2482                 sizeof(c->Request));
2483
2484         /* Fill in the scatter gather information */
2485         if (iocommand.buf_size > 0) {
2486                 temp64.val = pci_map_single(h->pdev, buff,
2487                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2488                 c->SG[0].Addr.lower = temp64.val32.lower;
2489                 c->SG[0].Addr.upper = temp64.val32.upper;
2490                 c->SG[0].Len = iocommand.buf_size;
2491                 c->SG[0].Ext = 0; /* we are not chaining*/
2492         }
2493         hpsa_scsi_do_simple_cmd_core(h, c);
2494         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2495         check_ioctl_unit_attention(h, c);
2496
2497         /* Copy the error information out */
2498         memcpy(&iocommand.error_info, c->err_info,
2499                 sizeof(iocommand.error_info));
2500         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2501                 kfree(buff);
2502                 cmd_special_free(h, c);
2503                 return -EFAULT;
2504         }
2505
2506         if (iocommand.Request.Type.Direction == XFER_READ) {
2507                 /* Copy the data out of the buffer we created */
2508                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2509                         kfree(buff);
2510                         cmd_special_free(h, c);
2511                         return -EFAULT;
2512                 }
2513         }
2514         kfree(buff);
2515         cmd_special_free(h, c);
2516         return 0;
2517 }
2518
2519 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2520 {
2521         BIG_IOCTL_Command_struct *ioc;
2522         struct CommandList *c;
2523         unsigned char **buff = NULL;
2524         int *buff_size = NULL;
2525         union u64bit temp64;
2526         BYTE sg_used = 0;
2527         int status = 0;
2528         int i;
2529         u32 left;
2530         u32 sz;
2531         BYTE __user *data_ptr;
2532
2533         if (!argp)
2534                 return -EINVAL;
2535         if (!capable(CAP_SYS_RAWIO))
2536                 return -EPERM;
2537         ioc = (BIG_IOCTL_Command_struct *)
2538             kmalloc(sizeof(*ioc), GFP_KERNEL);
2539         if (!ioc) {
2540                 status = -ENOMEM;
2541                 goto cleanup1;
2542         }
2543         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2544                 status = -EFAULT;
2545                 goto cleanup1;
2546         }
2547         if ((ioc->buf_size < 1) &&
2548             (ioc->Request.Type.Direction != XFER_NONE)) {
2549                 status = -EINVAL;
2550                 goto cleanup1;
2551         }
2552         /* Check kmalloc limits  using all SGs */
2553         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2554                 status = -EINVAL;
2555                 goto cleanup1;
2556         }
2557         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2558                 status = -EINVAL;
2559                 goto cleanup1;
2560         }
2561         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2562         if (!buff) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2567         if (!buff_size) {
2568                 status = -ENOMEM;
2569                 goto cleanup1;
2570         }
2571         left = ioc->buf_size;
2572         data_ptr = ioc->buf;
2573         while (left) {
2574                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2575                 buff_size[sg_used] = sz;
2576                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2577                 if (buff[sg_used] == NULL) {
2578                         status = -ENOMEM;
2579                         goto cleanup1;
2580                 }
2581                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2582                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2583                                 status = -ENOMEM;
2584                                 goto cleanup1;
2585                         }
2586                 } else
2587                         memset(buff[sg_used], 0, sz);
2588                 left -= sz;
2589                 data_ptr += sz;
2590                 sg_used++;
2591         }
2592         c = cmd_special_alloc(h);
2593         if (c == NULL) {
2594                 status = -ENOMEM;
2595                 goto cleanup1;
2596         }
2597         c->cmd_type = CMD_IOCTL_PEND;
2598         c->Header.ReplyQueue = 0;
2599
2600         if (ioc->buf_size > 0) {
2601                 c->Header.SGList = sg_used;
2602                 c->Header.SGTotal = sg_used;
2603         } else {
2604                 c->Header.SGList = 0;
2605                 c->Header.SGTotal = 0;
2606         }
2607         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2608         c->Header.Tag.lower = c->busaddr;
2609         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2610         if (ioc->buf_size > 0) {
2611                 int i;
2612                 for (i = 0; i < sg_used; i++) {
2613                         temp64.val = pci_map_single(h->pdev, buff[i],
2614                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2615                         c->SG[i].Addr.lower = temp64.val32.lower;
2616                         c->SG[i].Addr.upper = temp64.val32.upper;
2617                         c->SG[i].Len = buff_size[i];
2618                         /* we are not chaining */
2619                         c->SG[i].Ext = 0;
2620                 }
2621         }
2622         hpsa_scsi_do_simple_cmd_core(h, c);
2623         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2624         check_ioctl_unit_attention(h, c);
2625         /* Copy the error information out */
2626         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2627         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2628                 cmd_special_free(h, c);
2629                 status = -EFAULT;
2630                 goto cleanup1;
2631         }
2632         if (ioc->Request.Type.Direction == XFER_READ) {
2633                 /* Copy the data out of the buffer we created */
2634                 BYTE __user *ptr = ioc->buf;
2635                 for (i = 0; i < sg_used; i++) {
2636                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2637                                 cmd_special_free(h, c);
2638                                 status = -EFAULT;
2639                                 goto cleanup1;
2640                         }
2641                         ptr += buff_size[i];
2642                 }
2643         }
2644         cmd_special_free(h, c);
2645         status = 0;
2646 cleanup1:
2647         if (buff) {
2648                 for (i = 0; i < sg_used; i++)
2649                         kfree(buff[i]);
2650                 kfree(buff);
2651         }
2652         kfree(buff_size);
2653         kfree(ioc);
2654         return status;
2655 }
2656
2657 static void check_ioctl_unit_attention(struct ctlr_info *h,
2658         struct CommandList *c)
2659 {
2660         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2661                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2662                 (void) check_for_unit_attention(h, c);
2663 }
2664 /*
2665  * ioctl
2666  */
2667 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2668 {
2669         struct ctlr_info *h;
2670         void __user *argp = (void __user *)arg;
2671
2672         h = sdev_to_hba(dev);
2673
2674         switch (cmd) {
2675         case CCISS_DEREGDISK:
2676         case CCISS_REGNEWDISK:
2677         case CCISS_REGNEWD:
2678                 hpsa_scan_start(h->scsi_host);
2679                 return 0;
2680         case CCISS_GETPCIINFO:
2681                 return hpsa_getpciinfo_ioctl(h, argp);
2682         case CCISS_GETDRIVVER:
2683                 return hpsa_getdrivver_ioctl(h, argp);
2684         case CCISS_PASSTHRU:
2685                 return hpsa_passthru_ioctl(h, argp);
2686         case CCISS_BIG_PASSTHRU:
2687                 return hpsa_big_passthru_ioctl(h, argp);
2688         default:
2689                 return -ENOTTY;
2690         }
2691 }
2692
2693 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2694         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2695         int cmd_type)
2696 {
2697         int pci_dir = XFER_NONE;
2698
2699         c->cmd_type = CMD_IOCTL_PEND;
2700         c->Header.ReplyQueue = 0;
2701         if (buff != NULL && size > 0) {
2702                 c->Header.SGList = 1;
2703                 c->Header.SGTotal = 1;
2704         } else {
2705                 c->Header.SGList = 0;
2706                 c->Header.SGTotal = 0;
2707         }
2708         c->Header.Tag.lower = c->busaddr;
2709         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2710
2711         c->Request.Type.Type = cmd_type;
2712         if (cmd_type == TYPE_CMD) {
2713                 switch (cmd) {
2714                 case HPSA_INQUIRY:
2715                         /* are we trying to read a vital product page */
2716                         if (page_code != 0) {
2717                                 c->Request.CDB[1] = 0x01;
2718                                 c->Request.CDB[2] = page_code;
2719                         }
2720                         c->Request.CDBLen = 6;
2721                         c->Request.Type.Attribute = ATTR_SIMPLE;
2722                         c->Request.Type.Direction = XFER_READ;
2723                         c->Request.Timeout = 0;
2724                         c->Request.CDB[0] = HPSA_INQUIRY;
2725                         c->Request.CDB[4] = size & 0xFF;
2726                         break;
2727                 case HPSA_REPORT_LOG:
2728                 case HPSA_REPORT_PHYS:
2729                         /* Talking to controller so It's a physical command
2730                            mode = 00 target = 0.  Nothing to write.
2731                          */
2732                         c->Request.CDBLen = 12;
2733                         c->Request.Type.Attribute = ATTR_SIMPLE;
2734                         c->Request.Type.Direction = XFER_READ;
2735                         c->Request.Timeout = 0;
2736                         c->Request.CDB[0] = cmd;
2737                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2738                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2739                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2740                         c->Request.CDB[9] = size & 0xFF;
2741                         break;
2742
2743                 case HPSA_READ_CAPACITY:
2744                         c->Request.CDBLen = 10;
2745                         c->Request.Type.Attribute = ATTR_SIMPLE;
2746                         c->Request.Type.Direction = XFER_READ;
2747                         c->Request.Timeout = 0;
2748                         c->Request.CDB[0] = cmd;
2749                         break;
2750                 case HPSA_CACHE_FLUSH:
2751                         c->Request.CDBLen = 12;
2752                         c->Request.Type.Attribute = ATTR_SIMPLE;
2753                         c->Request.Type.Direction = XFER_WRITE;
2754                         c->Request.Timeout = 0;
2755                         c->Request.CDB[0] = BMIC_WRITE;
2756                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2757                         break;
2758                 case TEST_UNIT_READY:
2759                         c->Request.CDBLen = 6;
2760                         c->Request.Type.Attribute = ATTR_SIMPLE;
2761                         c->Request.Type.Direction = XFER_NONE;
2762                         c->Request.Timeout = 0;
2763                         break;
2764                 default:
2765                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2766                         BUG();
2767                         return;
2768                 }
2769         } else if (cmd_type == TYPE_MSG) {
2770                 switch (cmd) {
2771
2772                 case  HPSA_DEVICE_RESET_MSG:
2773                         c->Request.CDBLen = 16;
2774                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2775                         c->Request.Type.Attribute = ATTR_SIMPLE;
2776                         c->Request.Type.Direction = XFER_NONE;
2777                         c->Request.Timeout = 0; /* Don't time out */
2778                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2779                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2780                         /* If bytes 4-7 are zero, it means reset the */
2781                         /* LunID device */
2782                         c->Request.CDB[4] = 0x00;
2783                         c->Request.CDB[5] = 0x00;
2784                         c->Request.CDB[6] = 0x00;
2785                         c->Request.CDB[7] = 0x00;
2786                 break;
2787
2788                 default:
2789                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2790                                 cmd);
2791                         BUG();
2792                 }
2793         } else {
2794                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2795                 BUG();
2796         }
2797
2798         switch (c->Request.Type.Direction) {
2799         case XFER_READ:
2800                 pci_dir = PCI_DMA_FROMDEVICE;
2801                 break;
2802         case XFER_WRITE:
2803                 pci_dir = PCI_DMA_TODEVICE;
2804                 break;
2805         case XFER_NONE:
2806                 pci_dir = PCI_DMA_NONE;
2807                 break;
2808         default:
2809                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2810         }
2811
2812         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2813
2814         return;
2815 }
2816
2817 /*
2818  * Map (physical) PCI mem into (virtual) kernel space
2819  */
2820 static void __iomem *remap_pci_mem(ulong base, ulong size)
2821 {
2822         ulong page_base = ((ulong) base) & PAGE_MASK;
2823         ulong page_offs = ((ulong) base) - page_base;
2824         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2825
2826         return page_remapped ? (page_remapped + page_offs) : NULL;
2827 }
2828
2829 /* Takes cmds off the submission queue and sends them to the hardware,
2830  * then puts them on the queue of cmds waiting for completion.
2831  */
2832 static void start_io(struct ctlr_info *h)
2833 {
2834         struct CommandList *c;
2835
2836         while (!hlist_empty(&h->reqQ)) {
2837                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2838                 /* can't do anything if fifo is full */
2839                 if ((h->access.fifo_full(h))) {
2840                         dev_warn(&h->pdev->dev, "fifo full\n");
2841                         break;
2842                 }
2843
2844                 /* Get the first entry from the Request Q */
2845                 removeQ(c);
2846                 h->Qdepth--;
2847
2848                 /* Tell the controller execute command */
2849                 h->access.submit_command(h, c);
2850
2851                 /* Put job onto the completed Q */
2852                 addQ(&h->cmpQ, c);
2853         }
2854 }
2855
2856 static inline unsigned long get_next_completion(struct ctlr_info *h)
2857 {
2858         return h->access.command_completed(h);
2859 }
2860
2861 static inline bool interrupt_pending(struct ctlr_info *h)
2862 {
2863         return h->access.intr_pending(h);
2864 }
2865
2866 static inline long interrupt_not_for_us(struct ctlr_info *h)
2867 {
2868         return !(h->msi_vector || h->msix_vector) &&
2869                 ((h->access.intr_pending(h) == 0) ||
2870                 (h->interrupts_enabled == 0));
2871 }
2872
2873 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2874         u32 raw_tag)
2875 {
2876         if (unlikely(tag_index >= h->nr_cmds)) {
2877                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2878                 return 1;
2879         }
2880         return 0;
2881 }
2882
2883 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2884 {
2885         removeQ(c);
2886         if (likely(c->cmd_type == CMD_SCSI))
2887                 complete_scsi_command(c, 0, raw_tag);
2888         else if (c->cmd_type == CMD_IOCTL_PEND)
2889                 complete(c->waiting);
2890 }
2891
2892 static inline u32 hpsa_tag_contains_index(u32 tag)
2893 {
2894 #define DIRECT_LOOKUP_BIT 0x10
2895         return tag & DIRECT_LOOKUP_BIT;
2896 }
2897
2898 static inline u32 hpsa_tag_to_index(u32 tag)
2899 {
2900 #define DIRECT_LOOKUP_SHIFT 5
2901         return tag >> DIRECT_LOOKUP_SHIFT;
2902 }
2903
2904 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2905 {
2906 #define HPSA_ERROR_BITS 0x03
2907         return tag & ~HPSA_ERROR_BITS;
2908 }
2909
2910 /* process completion of an indexed ("direct lookup") command */
2911 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2912         u32 raw_tag)
2913 {
2914         u32 tag_index;
2915         struct CommandList *c;
2916
2917         tag_index = hpsa_tag_to_index(raw_tag);
2918         if (bad_tag(h, tag_index, raw_tag))
2919                 return next_command(h);
2920         c = h->cmd_pool + tag_index;
2921         finish_cmd(c, raw_tag);
2922         return next_command(h);
2923 }
2924
2925 /* process completion of a non-indexed command */
2926 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2927         u32 raw_tag)
2928 {
2929         u32 tag;
2930         struct CommandList *c = NULL;
2931         struct hlist_node *tmp;
2932
2933         tag = hpsa_tag_discard_error_bits(raw_tag);
2934         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2935                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2936                         finish_cmd(c, raw_tag);
2937                         return next_command(h);
2938                 }
2939         }
2940         bad_tag(h, h->nr_cmds + 1, raw_tag);
2941         return next_command(h);
2942 }
2943
2944 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2945 {
2946         struct ctlr_info *h = dev_id;
2947         unsigned long flags;
2948         u32 raw_tag;
2949
2950         if (interrupt_not_for_us(h))
2951                 return IRQ_NONE;
2952         spin_lock_irqsave(&h->lock, flags);
2953         raw_tag = get_next_completion(h);
2954         while (raw_tag != FIFO_EMPTY) {
2955                 if (hpsa_tag_contains_index(raw_tag))
2956                         raw_tag = process_indexed_cmd(h, raw_tag);
2957                 else
2958                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2959         }
2960         spin_unlock_irqrestore(&h->lock, flags);
2961         return IRQ_HANDLED;
2962 }
2963
2964 /* Send a message CDB to the firmwart. */
2965 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2966                                                 unsigned char type)
2967 {
2968         struct Command {
2969                 struct CommandListHeader CommandHeader;
2970                 struct RequestBlock Request;
2971                 struct ErrDescriptor ErrorDescriptor;
2972         };
2973         struct Command *cmd;
2974         static const size_t cmd_sz = sizeof(*cmd) +
2975                                         sizeof(cmd->ErrorDescriptor);
2976         dma_addr_t paddr64;
2977         uint32_t paddr32, tag;
2978         void __iomem *vaddr;
2979         int i, err;
2980
2981         vaddr = pci_ioremap_bar(pdev, 0);
2982         if (vaddr == NULL)
2983                 return -ENOMEM;
2984
2985         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2986          * CCISS commands, so they must be allocated from the lower 4GiB of
2987          * memory.
2988          */
2989         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2990         if (err) {
2991                 iounmap(vaddr);
2992                 return -ENOMEM;
2993         }
2994
2995         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2996         if (cmd == NULL) {
2997                 iounmap(vaddr);
2998                 return -ENOMEM;
2999         }
3000
3001         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3002          * although there's no guarantee, we assume that the address is at
3003          * least 4-byte aligned (most likely, it's page-aligned).
3004          */
3005         paddr32 = paddr64;
3006
3007         cmd->CommandHeader.ReplyQueue = 0;
3008         cmd->CommandHeader.SGList = 0;
3009         cmd->CommandHeader.SGTotal = 0;
3010         cmd->CommandHeader.Tag.lower = paddr32;
3011         cmd->CommandHeader.Tag.upper = 0;
3012         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3013
3014         cmd->Request.CDBLen = 16;
3015         cmd->Request.Type.Type = TYPE_MSG;
3016         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3017         cmd->Request.Type.Direction = XFER_NONE;
3018         cmd->Request.Timeout = 0; /* Don't time out */
3019         cmd->Request.CDB[0] = opcode;
3020         cmd->Request.CDB[1] = type;
3021         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3022         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3023         cmd->ErrorDescriptor.Addr.upper = 0;
3024         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3025
3026         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3027
3028         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3029                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3030                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3031                         break;
3032                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3033         }
3034
3035         iounmap(vaddr);
3036
3037         /* we leak the DMA buffer here ... no choice since the controller could
3038          *  still complete the command.
3039          */
3040         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3041                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3042                         opcode, type);
3043                 return -ETIMEDOUT;
3044         }
3045
3046         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3047
3048         if (tag & HPSA_ERROR_BIT) {
3049                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3050                         opcode, type);
3051                 return -EIO;
3052         }
3053
3054         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3055                 opcode, type);
3056         return 0;
3057 }
3058
3059 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3060 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3061
3062 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3063 {
3064 /* the #defines are stolen from drivers/pci/msi.h. */
3065 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3066 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3067
3068         int pos;
3069         u16 control = 0;
3070
3071         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3072         if (pos) {
3073                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3074                 if (control & PCI_MSI_FLAGS_ENABLE) {
3075                         dev_info(&pdev->dev, "resetting MSI\n");
3076                         pci_write_config_word(pdev, msi_control_reg(pos),
3077                                         control & ~PCI_MSI_FLAGS_ENABLE);
3078                 }
3079         }
3080
3081         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3082         if (pos) {
3083                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3084                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3085                         dev_info(&pdev->dev, "resetting MSI-X\n");
3086                         pci_write_config_word(pdev, msi_control_reg(pos),
3087                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3088                 }
3089         }
3090
3091         return 0;
3092 }
3093
3094 /* This does a hard reset of the controller using PCI power management
3095  * states.
3096  */
3097 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3098 {
3099         u16 pmcsr, saved_config_space[32];
3100         int i, pos;
3101
3102         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3103
3104         /* This is very nearly the same thing as
3105          *
3106          * pci_save_state(pci_dev);
3107          * pci_set_power_state(pci_dev, PCI_D3hot);
3108          * pci_set_power_state(pci_dev, PCI_D0);
3109          * pci_restore_state(pci_dev);
3110          *
3111          * but we can't use these nice canned kernel routines on
3112          * kexec, because they also check the MSI/MSI-X state in PCI
3113          * configuration space and do the wrong thing when it is
3114          * set/cleared.  Also, the pci_save/restore_state functions
3115          * violate the ordering requirements for restoring the
3116          * configuration space from the CCISS document (see the
3117          * comment below).  So we roll our own ....
3118          */
3119
3120         for (i = 0; i < 32; i++)
3121                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3122
3123         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3124         if (pos == 0) {
3125                 dev_err(&pdev->dev,
3126                         "hpsa_reset_controller: PCI PM not supported\n");
3127                 return -ENODEV;
3128         }
3129
3130         /* Quoting from the Open CISS Specification: "The Power
3131          * Management Control/Status Register (CSR) controls the power
3132          * state of the device.  The normal operating state is D0,
3133          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3134          * the controller, place the interface device in D3 then to
3135          * D0, this causes a secondary PCI reset which will reset the
3136          * controller."
3137          */
3138
3139         /* enter the D3hot power management state */
3140         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3141         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3142         pmcsr |= PCI_D3hot;
3143         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3144
3145         msleep(500);
3146
3147         /* enter the D0 power management state */
3148         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3149         pmcsr |= PCI_D0;
3150         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3151
3152         msleep(500);
3153
3154         /* Restore the PCI configuration space.  The Open CISS
3155          * Specification says, "Restore the PCI Configuration
3156          * Registers, offsets 00h through 60h. It is important to
3157          * restore the command register, 16-bits at offset 04h,
3158          * last. Do not restore the configuration status register,
3159          * 16-bits at offset 06h."  Note that the offset is 2*i.
3160          */
3161         for (i = 0; i < 32; i++) {
3162                 if (i == 2 || i == 3)
3163                         continue;
3164                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3165         }
3166         wmb();
3167         pci_write_config_word(pdev, 4, saved_config_space[2]);
3168
3169         return 0;
3170 }
3171
3172 /*
3173  *  We cannot read the structure directly, for portability we must use
3174  *   the io functions.
3175  *   This is for debug only.
3176  */
3177 #ifdef HPSA_DEBUG
3178 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3179 {
3180         int i;
3181         char temp_name[17];
3182
3183         dev_info(dev, "Controller Configuration information\n");
3184         dev_info(dev, "------------------------------------\n");
3185         for (i = 0; i < 4; i++)
3186                 temp_name[i] = readb(&(tb->Signature[i]));
3187         temp_name[4] = '\0';
3188         dev_info(dev, "   Signature = %s\n", temp_name);
3189         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3190         dev_info(dev, "   Transport methods supported = 0x%x\n",
3191                readl(&(tb->TransportSupport)));
3192         dev_info(dev, "   Transport methods active = 0x%x\n",
3193                readl(&(tb->TransportActive)));
3194         dev_info(dev, "   Requested transport Method = 0x%x\n",
3195                readl(&(tb->HostWrite.TransportRequest)));
3196         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3197                readl(&(tb->HostWrite.CoalIntDelay)));
3198         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3199                readl(&(tb->HostWrite.CoalIntCount)));
3200         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3201                readl(&(tb->CmdsOutMax)));
3202         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3203         for (i = 0; i < 16; i++)
3204                 temp_name[i] = readb(&(tb->ServerName[i]));
3205         temp_name[16] = '\0';
3206         dev_info(dev, "   Server Name = %s\n", temp_name);
3207         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3208                 readl(&(tb->HeartBeat)));
3209 }
3210 #endif                          /* HPSA_DEBUG */
3211
3212 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3213 {
3214         int i, offset, mem_type, bar_type;
3215
3216         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3217                 return 0;
3218         offset = 0;
3219         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3220                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3221                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3222                         offset += 4;
3223                 else {
3224                         mem_type = pci_resource_flags(pdev, i) &
3225                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3226                         switch (mem_type) {
3227                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3228                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3229                                 offset += 4;    /* 32 bit */
3230                                 break;
3231                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3232                                 offset += 8;
3233                                 break;
3234                         default:        /* reserved in PCI 2.2 */
3235                                 dev_warn(&pdev->dev,
3236                                        "base address is invalid\n");
3237                                 return -1;
3238                                 break;
3239                         }
3240                 }
3241                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3242                         return i + 1;
3243         }
3244         return -1;
3245 }
3246
3247 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3248  * controllers that are capable. If not, we use IO-APIC mode.
3249  */
3250
3251 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h,
3252                                            struct pci_dev *pdev, u32 board_id)
3253 {
3254 #ifdef CONFIG_PCI_MSI
3255         int err;
3256         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3257         {0, 2}, {0, 3}
3258         };
3259
3260         /* Some boards advertise MSI but don't really support it */
3261         if ((board_id == 0x40700E11) ||
3262             (board_id == 0x40800E11) ||
3263             (board_id == 0x40820E11) || (board_id == 0x40830E11))
3264                 goto default_int_mode;
3265         if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3266                 dev_info(&pdev->dev, "MSIX\n");
3267                 err = pci_enable_msix(pdev, hpsa_msix_entries, 4);
3268                 if (!err) {
3269                         h->intr[0] = hpsa_msix_entries[0].vector;
3270                         h->intr[1] = hpsa_msix_entries[1].vector;
3271                         h->intr[2] = hpsa_msix_entries[2].vector;
3272                         h->intr[3] = hpsa_msix_entries[3].vector;
3273                         h->msix_vector = 1;
3274                         return;
3275                 }
3276                 if (err > 0) {
3277                         dev_warn(&pdev->dev, "only %d MSI-X vectors "
3278                                "available\n", err);
3279                         goto default_int_mode;
3280                 } else {
3281                         dev_warn(&pdev->dev, "MSI-X init failed %d\n",
3282                                err);
3283                         goto default_int_mode;
3284                 }
3285         }
3286         if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3287                 dev_info(&pdev->dev, "MSI\n");
3288                 if (!pci_enable_msi(pdev))
3289                         h->msi_vector = 1;
3290                 else
3291                         dev_warn(&pdev->dev, "MSI init failed\n");
3292         }
3293 default_int_mode:
3294 #endif                          /* CONFIG_PCI_MSI */
3295         /* if we get here we're going to use the default interrupt mode */
3296         h->intr[PERF_MODE_INT] = pdev->irq;
3297 }
3298
3299 static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev)
3300 {
3301         ushort subsystem_vendor_id, subsystem_device_id, command;
3302         u32 board_id, scratchpad = 0;
3303         u64 cfg_offset;
3304         u32 cfg_base_addr;
3305         u64 cfg_base_addr_index;
3306         u32 trans_offset;
3307         int i, prod_index, err;
3308
3309         subsystem_vendor_id = pdev->subsystem_vendor;
3310         subsystem_device_id = pdev->subsystem_device;
3311         board_id = (((u32) (subsystem_device_id << 16) & 0xffff0000) |
3312                     subsystem_vendor_id);
3313
3314         for (i = 0; i < ARRAY_SIZE(products); i++)
3315                 if (board_id == products[i].board_id)
3316                         break;
3317
3318         prod_index = i;
3319
3320         if (prod_index == ARRAY_SIZE(products)) {
3321                 prod_index--;
3322                 if (subsystem_vendor_id != PCI_VENDOR_ID_HP ||
3323                                 !hpsa_allow_any) {
3324                         dev_warn(&pdev->dev, "unrecognized board ID:"
3325                                 " 0x%08lx, ignoring.\n",
3326                                 (unsigned long) board_id);
3327                         return -ENODEV;
3328                 }
3329         }
3330         /* check to see if controller has been disabled
3331          * BEFORE trying to enable it
3332          */
3333         (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3334         if (!(command & 0x02)) {
3335                 dev_warn(&pdev->dev, "controller appears to be disabled\n");
3336                 return -ENODEV;
3337         }
3338
3339         err = pci_enable_device(pdev);
3340         if (err) {
3341                 dev_warn(&pdev->dev, "unable to enable PCI device\n");
3342                 return err;
3343         }
3344
3345         err = pci_request_regions(pdev, "hpsa");
3346         if (err) {
3347                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
3348                 return err;
3349         }
3350
3351         /* If the kernel supports MSI/MSI-X we will try to enable that,
3352          * else we use the IO-APIC interrupt assigned to us by system ROM.
3353          */
3354         hpsa_interrupt_mode(h, pdev, board_id);
3355
3356         /* find the memory BAR */
3357         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3358                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3359                         break;
3360         }
3361         if (i == DEVICE_COUNT_RESOURCE) {
3362                 dev_warn(&pdev->dev, "no memory BAR found\n");
3363                 err = -ENODEV;
3364                 goto err_out_free_res;
3365         }
3366
3367         h->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3368                                                  * already removed
3369                                                  */
3370
3371         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3372
3373         /* Wait for the board to become ready.  */
3374         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3375                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3376                 if (scratchpad == HPSA_FIRMWARE_READY)
3377                         break;
3378                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3379         }
3380         if (scratchpad != HPSA_FIRMWARE_READY) {
3381                 dev_warn(&pdev->dev, "board not ready, timed out.\n");
3382                 err = -ENODEV;
3383                 goto err_out_free_res;
3384         }
3385
3386         /* get the address index number */
3387         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3388         cfg_base_addr &= (u32) 0x0000ffff;
3389         cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3390         if (cfg_base_addr_index == -1) {
3391                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3392                 err = -ENODEV;
3393                 goto err_out_free_res;
3394         }
3395
3396         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3397         h->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3398                                cfg_base_addr_index) + cfg_offset,
3399                                 sizeof(h->cfgtable));
3400         /* Find performant mode table. */
3401         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3402         h->transtable = remap_pci_mem(pci_resource_start(pdev,
3403                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3404                                 sizeof(*h->transtable));
3405
3406         h->board_id = board_id;
3407         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3408         h->product_name = products[prod_index].product_name;
3409         h->access = *(products[prod_index].access);
3410         /* Allow room for some ioctls */
3411         h->nr_cmds = h->max_commands - 4;
3412
3413         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3414             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3415             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3416             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3417                 dev_warn(&pdev->dev, "not a valid CISS config table\n");
3418                 err = -ENODEV;
3419                 goto err_out_free_res;
3420         }
3421 #ifdef CONFIG_X86
3422         {
3423                 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3424                 u32 prefetch;
3425                 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3426                 prefetch |= 0x100;
3427                 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3428         }
3429 #endif
3430
3431         /* Disabling DMA prefetch for the P600
3432          * An ASIC bug may result in a prefetch beyond
3433          * physical memory.
3434          */
3435         if (board_id == 0x3225103C) {
3436                 u32 dma_prefetch;
3437                 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3438                 dma_prefetch |= 0x8000;
3439                 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3440         }
3441
3442         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3443         /* Update the field, and then ring the doorbell */
3444         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3445         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3446
3447         /* under certain very rare conditions, this can take awhile.
3448          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3449          * as we enter this code.)
3450          */
3451         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3452                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3453                         break;
3454                 /* delay and try again */
3455                 msleep(10);
3456         }
3457
3458 #ifdef HPSA_DEBUG
3459         print_cfg_table(&pdev->dev, h->cfgtable);
3460 #endif                          /* HPSA_DEBUG */
3461
3462         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3463                 dev_warn(&pdev->dev, "unable to get board into simple mode\n");
3464                 err = -ENODEV;
3465                 goto err_out_free_res;
3466         }
3467         return 0;
3468
3469 err_out_free_res:
3470         /*
3471          * Deliberately omit pci_disable_device(): it does something nasty to
3472          * Smart Array controllers that pci_enable_device does not undo
3473          */
3474         pci_release_regions(pdev);
3475         return err;
3476 }
3477
3478 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3479 {
3480         int rc;
3481
3482 #define HBA_INQUIRY_BYTE_COUNT 64
3483         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3484         if (!h->hba_inquiry_data)
3485                 return;
3486         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3487                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3488         if (rc != 0) {
3489                 kfree(h->hba_inquiry_data);
3490                 h->hba_inquiry_data = NULL;
3491         }
3492 }
3493
3494 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3495                                     const struct pci_device_id *ent)
3496 {
3497         int i, rc;
3498         int dac;
3499         struct ctlr_info *h;
3500
3501         if (number_of_controllers == 0)
3502                 printk(KERN_INFO DRIVER_NAME "\n");
3503         if (reset_devices) {
3504                 /* Reset the controller with a PCI power-cycle */
3505                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3506                         return -ENODEV;
3507
3508                 /* Some devices (notably the HP Smart Array 5i Controller)
3509                    need a little pause here */
3510                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3511
3512                 /* Now try to get the controller to respond to a no-op */
3513                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3514                         if (hpsa_noop(pdev) == 0)
3515                                 break;
3516                         else
3517                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3518                                                 (i < 11 ? "; re-trying" : ""));
3519                 }
3520         }
3521
3522         /* Command structures must be aligned on a 32-byte boundary because
3523          * the 5 lower bits of the address are used by the hardware. and by
3524          * the driver.  See comments in hpsa.h for more info.
3525          */
3526 #define COMMANDLIST_ALIGNMENT 32
3527         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3528         h = kzalloc(sizeof(*h), GFP_KERNEL);
3529         if (!h)
3530                 return -ENOMEM;
3531
3532         h->busy_initializing = 1;
3533         INIT_HLIST_HEAD(&h->cmpQ);
3534         INIT_HLIST_HEAD(&h->reqQ);
3535         mutex_init(&h->busy_shutting_down);
3536         init_completion(&h->scan_wait);
3537         rc = hpsa_pci_init(h, pdev);
3538         if (rc != 0)
3539                 goto clean1;
3540
3541         sprintf(h->devname, "hpsa%d", number_of_controllers);
3542         h->ctlr = number_of_controllers;
3543         number_of_controllers++;
3544         h->pdev = pdev;
3545
3546         /* configure PCI DMA stuff */
3547         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3548         if (rc == 0) {
3549                 dac = 1;
3550         } else {
3551                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3552                 if (rc == 0) {
3553                         dac = 0;
3554                 } else {
3555                         dev_err(&pdev->dev, "no suitable DMA available\n");
3556                         goto clean1;
3557                 }
3558         }
3559
3560         /* make sure the board interrupts are off */
3561         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3562         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3563                         IRQF_DISABLED, h->devname, h);
3564         if (rc) {
3565                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3566                        h->intr[PERF_MODE_INT], h->devname);
3567                 goto clean2;
3568         }
3569
3570         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3571                h->devname, pdev->device,
3572                h->intr[PERF_MODE_INT], dac ? "" : " not");
3573
3574         h->cmd_pool_bits =
3575             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3576                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3577         h->cmd_pool = pci_alloc_consistent(h->pdev,
3578                     h->nr_cmds * sizeof(*h->cmd_pool),
3579                     &(h->cmd_pool_dhandle));
3580         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3581                     h->nr_cmds * sizeof(*h->errinfo_pool),
3582                     &(h->errinfo_pool_dhandle));
3583         if ((h->cmd_pool_bits == NULL)
3584             || (h->cmd_pool == NULL)
3585             || (h->errinfo_pool == NULL)) {
3586                 dev_err(&pdev->dev, "out of memory");
3587                 rc = -ENOMEM;
3588                 goto clean4;
3589         }
3590         spin_lock_init(&h->lock);
3591         spin_lock_init(&h->scan_lock);
3592         init_waitqueue_head(&h->scan_wait_queue);
3593         h->scan_finished = 1; /* no scan currently in progress */
3594
3595         pci_set_drvdata(pdev, h);
3596         memset(h->cmd_pool_bits, 0,
3597                ((h->nr_cmds + BITS_PER_LONG -
3598                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3599
3600         hpsa_scsi_setup(h);
3601
3602         /* Turn the interrupts on so we can service requests */
3603         h->access.set_intr_mask(h, HPSA_INTR_ON);
3604
3605         hpsa_put_ctlr_into_performant_mode(h);
3606         hpsa_hba_inquiry(h);
3607         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3608         h->busy_initializing = 0;
3609         return 1;
3610
3611 clean4:
3612         kfree(h->cmd_pool_bits);
3613         if (h->cmd_pool)
3614                 pci_free_consistent(h->pdev,
3615                             h->nr_cmds * sizeof(struct CommandList),
3616                             h->cmd_pool, h->cmd_pool_dhandle);
3617         if (h->errinfo_pool)
3618                 pci_free_consistent(h->pdev,
3619                             h->nr_cmds * sizeof(struct ErrorInfo),
3620                             h->errinfo_pool,
3621                             h->errinfo_pool_dhandle);
3622         free_irq(h->intr[PERF_MODE_INT], h);
3623 clean2:
3624 clean1:
3625         h->busy_initializing = 0;
3626         kfree(h);
3627         return rc;
3628 }
3629
3630 static void hpsa_flush_cache(struct ctlr_info *h)
3631 {
3632         char *flush_buf;
3633         struct CommandList *c;
3634
3635         flush_buf = kzalloc(4, GFP_KERNEL);
3636         if (!flush_buf)
3637                 return;
3638
3639         c = cmd_special_alloc(h);
3640         if (!c) {
3641                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3642                 goto out_of_memory;
3643         }
3644         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3645                 RAID_CTLR_LUNID, TYPE_CMD);
3646         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3647         if (c->err_info->CommandStatus != 0)
3648                 dev_warn(&h->pdev->dev,
3649                         "error flushing cache on controller\n");
3650         cmd_special_free(h, c);
3651 out_of_memory:
3652         kfree(flush_buf);
3653 }
3654
3655 static void hpsa_shutdown(struct pci_dev *pdev)
3656 {
3657         struct ctlr_info *h;
3658
3659         h = pci_get_drvdata(pdev);
3660         /* Turn board interrupts off  and send the flush cache command
3661          * sendcmd will turn off interrupt, and send the flush...
3662          * To write all data in the battery backed cache to disks
3663          */
3664         hpsa_flush_cache(h);
3665         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3666         free_irq(h->intr[PERF_MODE_INT], h);
3667 #ifdef CONFIG_PCI_MSI
3668         if (h->msix_vector)
3669                 pci_disable_msix(h->pdev);
3670         else if (h->msi_vector)
3671                 pci_disable_msi(h->pdev);
3672 #endif                          /* CONFIG_PCI_MSI */
3673 }
3674
3675 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3676 {
3677         struct ctlr_info *h;
3678
3679         if (pci_get_drvdata(pdev) == NULL) {
3680                 dev_err(&pdev->dev, "unable to remove device \n");
3681                 return;
3682         }
3683         h = pci_get_drvdata(pdev);
3684         mutex_lock(&h->busy_shutting_down);
3685         remove_from_scan_list(h);
3686         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3687         hpsa_shutdown(pdev);
3688         iounmap(h->vaddr);
3689         pci_free_consistent(h->pdev,
3690                 h->nr_cmds * sizeof(struct CommandList),
3691                 h->cmd_pool, h->cmd_pool_dhandle);
3692         pci_free_consistent(h->pdev,
3693                 h->nr_cmds * sizeof(struct ErrorInfo),
3694                 h->errinfo_pool, h->errinfo_pool_dhandle);
3695         pci_free_consistent(h->pdev, h->reply_pool_size,
3696                 h->reply_pool, h->reply_pool_dhandle);
3697         kfree(h->cmd_pool_bits);
3698         kfree(h->blockFetchTable);
3699         kfree(h->hba_inquiry_data);
3700         /*
3701          * Deliberately omit pci_disable_device(): it does something nasty to
3702          * Smart Array controllers that pci_enable_device does not undo
3703          */
3704         pci_release_regions(pdev);
3705         pci_set_drvdata(pdev, NULL);
3706         mutex_unlock(&h->busy_shutting_down);
3707         kfree(h);
3708 }
3709
3710 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3711         __attribute__((unused)) pm_message_t state)
3712 {
3713         return -ENOSYS;
3714 }
3715
3716 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3717 {
3718         return -ENOSYS;
3719 }
3720
3721 static struct pci_driver hpsa_pci_driver = {
3722         .name = "hpsa",
3723         .probe = hpsa_init_one,
3724         .remove = __devexit_p(hpsa_remove_one),
3725         .id_table = hpsa_pci_device_id, /* id_table */
3726         .shutdown = hpsa_shutdown,
3727         .suspend = hpsa_suspend,
3728         .resume = hpsa_resume,
3729 };
3730
3731 /* Fill in bucket_map[], given nsgs (the max number of
3732  * scatter gather elements supported) and bucket[],
3733  * which is an array of 8 integers.  The bucket[] array
3734  * contains 8 different DMA transfer sizes (in 16
3735  * byte increments) which the controller uses to fetch
3736  * commands.  This function fills in bucket_map[], which
3737  * maps a given number of scatter gather elements to one of
3738  * the 8 DMA transfer sizes.  The point of it is to allow the
3739  * controller to only do as much DMA as needed to fetch the
3740  * command, with the DMA transfer size encoded in the lower
3741  * bits of the command address.
3742  */
3743 static void  calc_bucket_map(int bucket[], int num_buckets,
3744         int nsgs, int *bucket_map)
3745 {
3746         int i, j, b, size;
3747
3748         /* even a command with 0 SGs requires 4 blocks */
3749 #define MINIMUM_TRANSFER_BLOCKS 4
3750 #define NUM_BUCKETS 8
3751         /* Note, bucket_map must have nsgs+1 entries. */
3752         for (i = 0; i <= nsgs; i++) {
3753                 /* Compute size of a command with i SG entries */
3754                 size = i + MINIMUM_TRANSFER_BLOCKS;
3755                 b = num_buckets; /* Assume the biggest bucket */
3756                 /* Find the bucket that is just big enough */
3757                 for (j = 0; j < 8; j++) {
3758                         if (bucket[j] >= size) {
3759                                 b = j;
3760                                 break;
3761                         }
3762                 }
3763                 /* for a command with i SG entries, use bucket b. */
3764                 bucket_map[i] = b;
3765         }
3766 }
3767
3768 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3769 {
3770         u32 trans_support;
3771         u64 trans_offset;
3772         /*  5 = 1 s/g entry or 4k
3773          *  6 = 2 s/g entry or 8k
3774          *  8 = 4 s/g entry or 16k
3775          * 10 = 6 s/g entry or 24k
3776          */
3777         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3778         int i = 0;
3779         int l = 0;
3780         unsigned long register_value;
3781
3782         trans_support = readl(&(h->cfgtable->TransportSupport));
3783         if (!(trans_support & PERFORMANT_MODE))
3784                 return;
3785
3786         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3787         h->max_sg_entries = 32;
3788         /* Performant mode ring buffer and supporting data structures */
3789         h->reply_pool_size = h->max_commands * sizeof(u64);
3790         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3791                                 &(h->reply_pool_dhandle));
3792
3793         /* Need a block fetch table for performant mode */
3794         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3795                                 sizeof(u32)), GFP_KERNEL);
3796
3797         if ((h->reply_pool == NULL)
3798                 || (h->blockFetchTable == NULL))
3799                 goto clean_up;
3800
3801         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3802
3803         /* Controller spec: zero out this buffer. */
3804         memset(h->reply_pool, 0, h->reply_pool_size);
3805         h->reply_pool_head = h->reply_pool;
3806
3807         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3808         bft[7] = h->max_sg_entries + 4;
3809         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3810         for (i = 0; i < 8; i++)
3811                 writel(bft[i], &h->transtable->BlockFetch[i]);
3812
3813         /* size of controller ring buffer */
3814         writel(h->max_commands, &h->transtable->RepQSize);
3815         writel(1, &h->transtable->RepQCount);
3816         writel(0, &h->transtable->RepQCtrAddrLow32);
3817         writel(0, &h->transtable->RepQCtrAddrHigh32);
3818         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3819         writel(0, &h->transtable->RepQAddr0High32);
3820         writel(CFGTBL_Trans_Performant,
3821                 &(h->cfgtable->HostWrite.TransportRequest));
3822         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3823         /* under certain very rare conditions, this can take awhile.
3824          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3825          * as we enter this code.) */
3826         for (l = 0; l < MAX_CONFIG_WAIT; l++) {
3827                 register_value = readl(h->vaddr + SA5_DOORBELL);
3828                 if (!(register_value & CFGTBL_ChangeReq))
3829                         break;
3830                 /* delay and try again */
3831                 set_current_state(TASK_INTERRUPTIBLE);
3832                 schedule_timeout(10);
3833         }
3834         register_value = readl(&(h->cfgtable->TransportActive));
3835         if (!(register_value & CFGTBL_Trans_Performant)) {
3836                 dev_warn(&h->pdev->dev, "unable to get board into"
3837                                         " performant mode\n");
3838                 return;
3839         }
3840
3841         /* Change the access methods to the performant access methods */
3842         h->access = SA5_performant_access;
3843         h->transMethod = CFGTBL_Trans_Performant;
3844
3845         return;
3846
3847 clean_up:
3848         if (h->reply_pool)
3849                 pci_free_consistent(h->pdev, h->reply_pool_size,
3850                         h->reply_pool, h->reply_pool_dhandle);
3851         kfree(h->blockFetchTable);
3852 }
3853
3854 /*
3855  *  This is it.  Register the PCI driver information for the cards we control
3856  *  the OS will call our registered routines when it finds one of our cards.
3857  */
3858 static int __init hpsa_init(void)
3859 {
3860         int err;
3861         /* Start the scan thread */
3862         hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan");
3863         if (IS_ERR(hpsa_scan_thread)) {
3864                 err = PTR_ERR(hpsa_scan_thread);
3865                 return -ENODEV;
3866         }
3867         err = pci_register_driver(&hpsa_pci_driver);
3868         if (err)
3869                 kthread_stop(hpsa_scan_thread);
3870         return err;
3871 }
3872
3873 static void __exit hpsa_cleanup(void)
3874 {
3875         pci_unregister_driver(&hpsa_pci_driver);
3876         kthread_stop(hpsa_scan_thread);
3877 }
3878
3879 module_init(hpsa_init);
3880 module_exit(hpsa_cleanup);