Fix NULL dereferences in scsi_cmd_to_driver
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70         HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82         "Use 'simple mode' rather than 'performant mode'");
83
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
102                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103         {0,}
104 };
105
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
107
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers
111  */
112 static struct board_type products[] = {
113         {0x3241103C, "Smart Array P212", &SA5_access},
114         {0x3243103C, "Smart Array P410", &SA5_access},
115         {0x3245103C, "Smart Array P410i", &SA5_access},
116         {0x3247103C, "Smart Array P411", &SA5_access},
117         {0x3249103C, "Smart Array P812", &SA5_access},
118         {0x324a103C, "Smart Array P712m", &SA5_access},
119         {0x324b103C, "Smart Array P711m", &SA5_access},
120         {0x3350103C, "Smart Array", &SA5_access},
121         {0x3351103C, "Smart Array", &SA5_access},
122         {0x3352103C, "Smart Array", &SA5_access},
123         {0x3353103C, "Smart Array", &SA5_access},
124         {0x3354103C, "Smart Array", &SA5_access},
125         {0x3355103C, "Smart Array", &SA5_access},
126         {0x3356103C, "Smart Array", &SA5_access},
127         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 };
129
130 static int number_of_controllers;
131
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
135
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
140
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
144
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151         int cmd_type);
152
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156         unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158         int qdepth, int reason);
159
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
163
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166         struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171         int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176         u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178         unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181         void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
186 {
187         unsigned long *priv = shost_priv(sdev->host);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
192 {
193         unsigned long *priv = shost_priv(sh);
194         return (struct ctlr_info *) *priv;
195 }
196
197 static int check_for_unit_attention(struct ctlr_info *h,
198         struct CommandList *c)
199 {
200         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201                 return 0;
202
203         switch (c->err_info->SenseInfo[12]) {
204         case STATE_CHANGED:
205                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206                         "detected, command retried\n", h->ctlr);
207                 break;
208         case LUN_FAILED:
209                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210                         "detected, action required\n", h->ctlr);
211                 break;
212         case REPORT_LUNS_CHANGED:
213                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214                         "changed, action required\n", h->ctlr);
215         /*
216          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
217          */
218                 break;
219         case POWER_OR_RESET:
220                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221                         "or device reset detected\n", h->ctlr);
222                 break;
223         case UNIT_ATTENTION_CLEARED:
224                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225                     "cleared by another initiator\n", h->ctlr);
226                 break;
227         default:
228                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229                         "unit attention detected\n", h->ctlr);
230                 break;
231         }
232         return 1;
233 }
234
235 static ssize_t host_store_rescan(struct device *dev,
236                                  struct device_attribute *attr,
237                                  const char *buf, size_t count)
238 {
239         struct ctlr_info *h;
240         struct Scsi_Host *shost = class_to_shost(dev);
241         h = shost_to_hba(shost);
242         hpsa_scan_start(h->scsi_host);
243         return count;
244 }
245
246 static ssize_t host_show_firmware_revision(struct device *dev,
247              struct device_attribute *attr, char *buf)
248 {
249         struct ctlr_info *h;
250         struct Scsi_Host *shost = class_to_shost(dev);
251         unsigned char *fwrev;
252
253         h = shost_to_hba(shost);
254         if (!h->hba_inquiry_data)
255                 return 0;
256         fwrev = &h->hba_inquiry_data[32];
257         return snprintf(buf, 20, "%c%c%c%c\n",
258                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
259 }
260
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262              struct device_attribute *attr, char *buf)
263 {
264         struct Scsi_Host *shost = class_to_shost(dev);
265         struct ctlr_info *h = shost_to_hba(shost);
266
267         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
268 }
269
270 static ssize_t host_show_transport_mode(struct device *dev,
271         struct device_attribute *attr, char *buf)
272 {
273         struct ctlr_info *h;
274         struct Scsi_Host *shost = class_to_shost(dev);
275
276         h = shost_to_hba(shost);
277         return snprintf(buf, 20, "%s\n",
278                 h->transMethod & CFGTBL_Trans_Performant ?
279                         "performant" : "simple");
280 }
281
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284         0x324a103C, /* Smart Array P712m */
285         0x324b103C, /* SmartArray P711m */
286         0x3223103C, /* Smart Array P800 */
287         0x3234103C, /* Smart Array P400 */
288         0x3235103C, /* Smart Array P400i */
289         0x3211103C, /* Smart Array E200i */
290         0x3212103C, /* Smart Array E200 */
291         0x3213103C, /* Smart Array E200i */
292         0x3214103C, /* Smart Array E200i */
293         0x3215103C, /* Smart Array E200i */
294         0x3237103C, /* Smart Array E500 */
295         0x323D103C, /* Smart Array P700m */
296         0x409C0E11, /* Smart Array 6400 */
297         0x409D0E11, /* Smart Array 6400 EM */
298 };
299
300 /* List of controllers which cannot even be soft reset */
301 static u32 soft_unresettable_controller[] = {
302         /* Exclude 640x boards.  These are two pci devices in one slot
303          * which share a battery backed cache module.  One controls the
304          * cache, the other accesses the cache through the one that controls
305          * it.  If we reset the one controlling the cache, the other will
306          * likely not be happy.  Just forbid resetting this conjoined mess.
307          * The 640x isn't really supported by hpsa anyway.
308          */
309         0x409C0E11, /* Smart Array 6400 */
310         0x409D0E11, /* Smart Array 6400 EM */
311 };
312
313 static int ctlr_is_hard_resettable(u32 board_id)
314 {
315         int i;
316
317         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
318                 if (unresettable_controller[i] == board_id)
319                         return 0;
320         return 1;
321 }
322
323 static int ctlr_is_soft_resettable(u32 board_id)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
328                 if (soft_unresettable_controller[i] == board_id)
329                         return 0;
330         return 1;
331 }
332
333 static int ctlr_is_resettable(u32 board_id)
334 {
335         return ctlr_is_hard_resettable(board_id) ||
336                 ctlr_is_soft_resettable(board_id);
337 }
338
339 static ssize_t host_show_resettable(struct device *dev,
340         struct device_attribute *attr, char *buf)
341 {
342         struct ctlr_info *h;
343         struct Scsi_Host *shost = class_to_shost(dev);
344
345         h = shost_to_hba(shost);
346         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
347 }
348
349 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
350 {
351         return (scsi3addr[3] & 0xC0) == 0x40;
352 }
353
354 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
355         "UNKNOWN"
356 };
357 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
358
359 static ssize_t raid_level_show(struct device *dev,
360              struct device_attribute *attr, char *buf)
361 {
362         ssize_t l = 0;
363         unsigned char rlevel;
364         struct ctlr_info *h;
365         struct scsi_device *sdev;
366         struct hpsa_scsi_dev_t *hdev;
367         unsigned long flags;
368
369         sdev = to_scsi_device(dev);
370         h = sdev_to_hba(sdev);
371         spin_lock_irqsave(&h->lock, flags);
372         hdev = sdev->hostdata;
373         if (!hdev) {
374                 spin_unlock_irqrestore(&h->lock, flags);
375                 return -ENODEV;
376         }
377
378         /* Is this even a logical drive? */
379         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
380                 spin_unlock_irqrestore(&h->lock, flags);
381                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
382                 return l;
383         }
384
385         rlevel = hdev->raid_level;
386         spin_unlock_irqrestore(&h->lock, flags);
387         if (rlevel > RAID_UNKNOWN)
388                 rlevel = RAID_UNKNOWN;
389         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
390         return l;
391 }
392
393 static ssize_t lunid_show(struct device *dev,
394              struct device_attribute *attr, char *buf)
395 {
396         struct ctlr_info *h;
397         struct scsi_device *sdev;
398         struct hpsa_scsi_dev_t *hdev;
399         unsigned long flags;
400         unsigned char lunid[8];
401
402         sdev = to_scsi_device(dev);
403         h = sdev_to_hba(sdev);
404         spin_lock_irqsave(&h->lock, flags);
405         hdev = sdev->hostdata;
406         if (!hdev) {
407                 spin_unlock_irqrestore(&h->lock, flags);
408                 return -ENODEV;
409         }
410         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
411         spin_unlock_irqrestore(&h->lock, flags);
412         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
413                 lunid[0], lunid[1], lunid[2], lunid[3],
414                 lunid[4], lunid[5], lunid[6], lunid[7]);
415 }
416
417 static ssize_t unique_id_show(struct device *dev,
418              struct device_attribute *attr, char *buf)
419 {
420         struct ctlr_info *h;
421         struct scsi_device *sdev;
422         struct hpsa_scsi_dev_t *hdev;
423         unsigned long flags;
424         unsigned char sn[16];
425
426         sdev = to_scsi_device(dev);
427         h = sdev_to_hba(sdev);
428         spin_lock_irqsave(&h->lock, flags);
429         hdev = sdev->hostdata;
430         if (!hdev) {
431                 spin_unlock_irqrestore(&h->lock, flags);
432                 return -ENODEV;
433         }
434         memcpy(sn, hdev->device_id, sizeof(sn));
435         spin_unlock_irqrestore(&h->lock, flags);
436         return snprintf(buf, 16 * 2 + 2,
437                         "%02X%02X%02X%02X%02X%02X%02X%02X"
438                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
439                         sn[0], sn[1], sn[2], sn[3],
440                         sn[4], sn[5], sn[6], sn[7],
441                         sn[8], sn[9], sn[10], sn[11],
442                         sn[12], sn[13], sn[14], sn[15]);
443 }
444
445 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
446 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
447 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
448 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
449 static DEVICE_ATTR(firmware_revision, S_IRUGO,
450         host_show_firmware_revision, NULL);
451 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
452         host_show_commands_outstanding, NULL);
453 static DEVICE_ATTR(transport_mode, S_IRUGO,
454         host_show_transport_mode, NULL);
455 static DEVICE_ATTR(resettable, S_IRUGO,
456         host_show_resettable, NULL);
457
458 static struct device_attribute *hpsa_sdev_attrs[] = {
459         &dev_attr_raid_level,
460         &dev_attr_lunid,
461         &dev_attr_unique_id,
462         NULL,
463 };
464
465 static struct device_attribute *hpsa_shost_attrs[] = {
466         &dev_attr_rescan,
467         &dev_attr_firmware_revision,
468         &dev_attr_commands_outstanding,
469         &dev_attr_transport_mode,
470         &dev_attr_resettable,
471         NULL,
472 };
473
474 static struct scsi_host_template hpsa_driver_template = {
475         .module                 = THIS_MODULE,
476         .name                   = "hpsa",
477         .proc_name              = "hpsa",
478         .queuecommand           = hpsa_scsi_queue_command,
479         .scan_start             = hpsa_scan_start,
480         .scan_finished          = hpsa_scan_finished,
481         .change_queue_depth     = hpsa_change_queue_depth,
482         .this_id                = -1,
483         .use_clustering         = ENABLE_CLUSTERING,
484         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
485         .ioctl                  = hpsa_ioctl,
486         .slave_alloc            = hpsa_slave_alloc,
487         .slave_destroy          = hpsa_slave_destroy,
488 #ifdef CONFIG_COMPAT
489         .compat_ioctl           = hpsa_compat_ioctl,
490 #endif
491         .sdev_attrs = hpsa_sdev_attrs,
492         .shost_attrs = hpsa_shost_attrs,
493         .max_sectors = 8192,
494 };
495
496
497 /* Enqueuing and dequeuing functions for cmdlists. */
498 static inline void addQ(struct list_head *list, struct CommandList *c)
499 {
500         list_add_tail(&c->list, list);
501 }
502
503 static inline u32 next_command(struct ctlr_info *h)
504 {
505         u32 a;
506
507         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
508                 return h->access.command_completed(h);
509
510         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
511                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
512                 (h->reply_pool_head)++;
513                 h->commands_outstanding--;
514         } else {
515                 a = FIFO_EMPTY;
516         }
517         /* Check for wraparound */
518         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
519                 h->reply_pool_head = h->reply_pool;
520                 h->reply_pool_wraparound ^= 1;
521         }
522         return a;
523 }
524
525 /* set_performant_mode: Modify the tag for cciss performant
526  * set bit 0 for pull model, bits 3-1 for block fetch
527  * register number
528  */
529 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
530 {
531         if (likely(h->transMethod & CFGTBL_Trans_Performant))
532                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
533 }
534
535 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
536         struct CommandList *c)
537 {
538         unsigned long flags;
539
540         set_performant_mode(h, c);
541         spin_lock_irqsave(&h->lock, flags);
542         addQ(&h->reqQ, c);
543         h->Qdepth++;
544         start_io(h);
545         spin_unlock_irqrestore(&h->lock, flags);
546 }
547
548 static inline void removeQ(struct CommandList *c)
549 {
550         if (WARN_ON(list_empty(&c->list)))
551                 return;
552         list_del_init(&c->list);
553 }
554
555 static inline int is_hba_lunid(unsigned char scsi3addr[])
556 {
557         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
558 }
559
560 static inline int is_scsi_rev_5(struct ctlr_info *h)
561 {
562         if (!h->hba_inquiry_data)
563                 return 0;
564         if ((h->hba_inquiry_data[2] & 0x07) == 5)
565                 return 1;
566         return 0;
567 }
568
569 static int hpsa_find_target_lun(struct ctlr_info *h,
570         unsigned char scsi3addr[], int bus, int *target, int *lun)
571 {
572         /* finds an unused bus, target, lun for a new physical device
573          * assumes h->devlock is held
574          */
575         int i, found = 0;
576         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
577
578         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
579
580         for (i = 0; i < h->ndevices; i++) {
581                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
582                         set_bit(h->dev[i]->target, lun_taken);
583         }
584
585         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
586                 if (!test_bit(i, lun_taken)) {
587                         /* *bus = 1; */
588                         *target = i;
589                         *lun = 0;
590                         found = 1;
591                         break;
592                 }
593         }
594         return !found;
595 }
596
597 /* Add an entry into h->dev[] array. */
598 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
599                 struct hpsa_scsi_dev_t *device,
600                 struct hpsa_scsi_dev_t *added[], int *nadded)
601 {
602         /* assumes h->devlock is held */
603         int n = h->ndevices;
604         int i;
605         unsigned char addr1[8], addr2[8];
606         struct hpsa_scsi_dev_t *sd;
607
608         if (n >= HPSA_MAX_DEVICES) {
609                 dev_err(&h->pdev->dev, "too many devices, some will be "
610                         "inaccessible.\n");
611                 return -1;
612         }
613
614         /* physical devices do not have lun or target assigned until now. */
615         if (device->lun != -1)
616                 /* Logical device, lun is already assigned. */
617                 goto lun_assigned;
618
619         /* If this device a non-zero lun of a multi-lun device
620          * byte 4 of the 8-byte LUN addr will contain the logical
621          * unit no, zero otherise.
622          */
623         if (device->scsi3addr[4] == 0) {
624                 /* This is not a non-zero lun of a multi-lun device */
625                 if (hpsa_find_target_lun(h, device->scsi3addr,
626                         device->bus, &device->target, &device->lun) != 0)
627                         return -1;
628                 goto lun_assigned;
629         }
630
631         /* This is a non-zero lun of a multi-lun device.
632          * Search through our list and find the device which
633          * has the same 8 byte LUN address, excepting byte 4.
634          * Assign the same bus and target for this new LUN.
635          * Use the logical unit number from the firmware.
636          */
637         memcpy(addr1, device->scsi3addr, 8);
638         addr1[4] = 0;
639         for (i = 0; i < n; i++) {
640                 sd = h->dev[i];
641                 memcpy(addr2, sd->scsi3addr, 8);
642                 addr2[4] = 0;
643                 /* differ only in byte 4? */
644                 if (memcmp(addr1, addr2, 8) == 0) {
645                         device->bus = sd->bus;
646                         device->target = sd->target;
647                         device->lun = device->scsi3addr[4];
648                         break;
649                 }
650         }
651         if (device->lun == -1) {
652                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
653                         " suspect firmware bug or unsupported hardware "
654                         "configuration.\n");
655                         return -1;
656         }
657
658 lun_assigned:
659
660         h->dev[n] = device;
661         h->ndevices++;
662         added[*nadded] = device;
663         (*nadded)++;
664
665         /* initially, (before registering with scsi layer) we don't
666          * know our hostno and we don't want to print anything first
667          * time anyway (the scsi layer's inquiries will show that info)
668          */
669         /* if (hostno != -1) */
670                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
671                         scsi_device_type(device->devtype), hostno,
672                         device->bus, device->target, device->lun);
673         return 0;
674 }
675
676 /* Replace an entry from h->dev[] array. */
677 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
678         int entry, struct hpsa_scsi_dev_t *new_entry,
679         struct hpsa_scsi_dev_t *added[], int *nadded,
680         struct hpsa_scsi_dev_t *removed[], int *nremoved)
681 {
682         /* assumes h->devlock is held */
683         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
684         removed[*nremoved] = h->dev[entry];
685         (*nremoved)++;
686
687         /*
688          * New physical devices won't have target/lun assigned yet
689          * so we need to preserve the values in the slot we are replacing.
690          */
691         if (new_entry->target == -1) {
692                 new_entry->target = h->dev[entry]->target;
693                 new_entry->lun = h->dev[entry]->lun;
694         }
695
696         h->dev[entry] = new_entry;
697         added[*nadded] = new_entry;
698         (*nadded)++;
699         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
700                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
701                         new_entry->target, new_entry->lun);
702 }
703
704 /* Remove an entry from h->dev[] array. */
705 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
706         struct hpsa_scsi_dev_t *removed[], int *nremoved)
707 {
708         /* assumes h->devlock is held */
709         int i;
710         struct hpsa_scsi_dev_t *sd;
711
712         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
713
714         sd = h->dev[entry];
715         removed[*nremoved] = h->dev[entry];
716         (*nremoved)++;
717
718         for (i = entry; i < h->ndevices-1; i++)
719                 h->dev[i] = h->dev[i+1];
720         h->ndevices--;
721         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
722                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
723                 sd->lun);
724 }
725
726 #define SCSI3ADDR_EQ(a, b) ( \
727         (a)[7] == (b)[7] && \
728         (a)[6] == (b)[6] && \
729         (a)[5] == (b)[5] && \
730         (a)[4] == (b)[4] && \
731         (a)[3] == (b)[3] && \
732         (a)[2] == (b)[2] && \
733         (a)[1] == (b)[1] && \
734         (a)[0] == (b)[0])
735
736 static void fixup_botched_add(struct ctlr_info *h,
737         struct hpsa_scsi_dev_t *added)
738 {
739         /* called when scsi_add_device fails in order to re-adjust
740          * h->dev[] to match the mid layer's view.
741          */
742         unsigned long flags;
743         int i, j;
744
745         spin_lock_irqsave(&h->lock, flags);
746         for (i = 0; i < h->ndevices; i++) {
747                 if (h->dev[i] == added) {
748                         for (j = i; j < h->ndevices-1; j++)
749                                 h->dev[j] = h->dev[j+1];
750                         h->ndevices--;
751                         break;
752                 }
753         }
754         spin_unlock_irqrestore(&h->lock, flags);
755         kfree(added);
756 }
757
758 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
759         struct hpsa_scsi_dev_t *dev2)
760 {
761         /* we compare everything except lun and target as these
762          * are not yet assigned.  Compare parts likely
763          * to differ first
764          */
765         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
766                 sizeof(dev1->scsi3addr)) != 0)
767                 return 0;
768         if (memcmp(dev1->device_id, dev2->device_id,
769                 sizeof(dev1->device_id)) != 0)
770                 return 0;
771         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
772                 return 0;
773         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
774                 return 0;
775         if (dev1->devtype != dev2->devtype)
776                 return 0;
777         if (dev1->bus != dev2->bus)
778                 return 0;
779         return 1;
780 }
781
782 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
783  * and return needle location in *index.  If scsi3addr matches, but not
784  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
785  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
786  */
787 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
788         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
789         int *index)
790 {
791         int i;
792 #define DEVICE_NOT_FOUND 0
793 #define DEVICE_CHANGED 1
794 #define DEVICE_SAME 2
795         for (i = 0; i < haystack_size; i++) {
796                 if (haystack[i] == NULL) /* previously removed. */
797                         continue;
798                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
799                         *index = i;
800                         if (device_is_the_same(needle, haystack[i]))
801                                 return DEVICE_SAME;
802                         else
803                                 return DEVICE_CHANGED;
804                 }
805         }
806         *index = -1;
807         return DEVICE_NOT_FOUND;
808 }
809
810 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
811         struct hpsa_scsi_dev_t *sd[], int nsds)
812 {
813         /* sd contains scsi3 addresses and devtypes, and inquiry
814          * data.  This function takes what's in sd to be the current
815          * reality and updates h->dev[] to reflect that reality.
816          */
817         int i, entry, device_change, changes = 0;
818         struct hpsa_scsi_dev_t *csd;
819         unsigned long flags;
820         struct hpsa_scsi_dev_t **added, **removed;
821         int nadded, nremoved;
822         struct Scsi_Host *sh = NULL;
823
824         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
825         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
826
827         if (!added || !removed) {
828                 dev_warn(&h->pdev->dev, "out of memory in "
829                         "adjust_hpsa_scsi_table\n");
830                 goto free_and_out;
831         }
832
833         spin_lock_irqsave(&h->devlock, flags);
834
835         /* find any devices in h->dev[] that are not in
836          * sd[] and remove them from h->dev[], and for any
837          * devices which have changed, remove the old device
838          * info and add the new device info.
839          */
840         i = 0;
841         nremoved = 0;
842         nadded = 0;
843         while (i < h->ndevices) {
844                 csd = h->dev[i];
845                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
846                 if (device_change == DEVICE_NOT_FOUND) {
847                         changes++;
848                         hpsa_scsi_remove_entry(h, hostno, i,
849                                 removed, &nremoved);
850                         continue; /* remove ^^^, hence i not incremented */
851                 } else if (device_change == DEVICE_CHANGED) {
852                         changes++;
853                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
854                                 added, &nadded, removed, &nremoved);
855                         /* Set it to NULL to prevent it from being freed
856                          * at the bottom of hpsa_update_scsi_devices()
857                          */
858                         sd[entry] = NULL;
859                 }
860                 i++;
861         }
862
863         /* Now, make sure every device listed in sd[] is also
864          * listed in h->dev[], adding them if they aren't found
865          */
866
867         for (i = 0; i < nsds; i++) {
868                 if (!sd[i]) /* if already added above. */
869                         continue;
870                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
871                                         h->ndevices, &entry);
872                 if (device_change == DEVICE_NOT_FOUND) {
873                         changes++;
874                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
875                                 added, &nadded) != 0)
876                                 break;
877                         sd[i] = NULL; /* prevent from being freed later. */
878                 } else if (device_change == DEVICE_CHANGED) {
879                         /* should never happen... */
880                         changes++;
881                         dev_warn(&h->pdev->dev,
882                                 "device unexpectedly changed.\n");
883                         /* but if it does happen, we just ignore that device */
884                 }
885         }
886         spin_unlock_irqrestore(&h->devlock, flags);
887
888         /* Don't notify scsi mid layer of any changes the first time through
889          * (or if there are no changes) scsi_scan_host will do it later the
890          * first time through.
891          */
892         if (hostno == -1 || !changes)
893                 goto free_and_out;
894
895         sh = h->scsi_host;
896         /* Notify scsi mid layer of any removed devices */
897         for (i = 0; i < nremoved; i++) {
898                 struct scsi_device *sdev =
899                         scsi_device_lookup(sh, removed[i]->bus,
900                                 removed[i]->target, removed[i]->lun);
901                 if (sdev != NULL) {
902                         scsi_remove_device(sdev);
903                         scsi_device_put(sdev);
904                 } else {
905                         /* We don't expect to get here.
906                          * future cmds to this device will get selection
907                          * timeout as if the device was gone.
908                          */
909                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
910                                 " for removal.", hostno, removed[i]->bus,
911                                 removed[i]->target, removed[i]->lun);
912                 }
913                 kfree(removed[i]);
914                 removed[i] = NULL;
915         }
916
917         /* Notify scsi mid layer of any added devices */
918         for (i = 0; i < nadded; i++) {
919                 if (scsi_add_device(sh, added[i]->bus,
920                         added[i]->target, added[i]->lun) == 0)
921                         continue;
922                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
923                         "device not added.\n", hostno, added[i]->bus,
924                         added[i]->target, added[i]->lun);
925                 /* now we have to remove it from h->dev,
926                  * since it didn't get added to scsi mid layer
927                  */
928                 fixup_botched_add(h, added[i]);
929         }
930
931 free_and_out:
932         kfree(added);
933         kfree(removed);
934 }
935
936 /*
937  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
938  * Assume's h->devlock is held.
939  */
940 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
941         int bus, int target, int lun)
942 {
943         int i;
944         struct hpsa_scsi_dev_t *sd;
945
946         for (i = 0; i < h->ndevices; i++) {
947                 sd = h->dev[i];
948                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
949                         return sd;
950         }
951         return NULL;
952 }
953
954 /* link sdev->hostdata to our per-device structure. */
955 static int hpsa_slave_alloc(struct scsi_device *sdev)
956 {
957         struct hpsa_scsi_dev_t *sd;
958         unsigned long flags;
959         struct ctlr_info *h;
960
961         h = sdev_to_hba(sdev);
962         spin_lock_irqsave(&h->devlock, flags);
963         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
964                 sdev_id(sdev), sdev->lun);
965         if (sd != NULL)
966                 sdev->hostdata = sd;
967         spin_unlock_irqrestore(&h->devlock, flags);
968         return 0;
969 }
970
971 static void hpsa_slave_destroy(struct scsi_device *sdev)
972 {
973         /* nothing to do. */
974 }
975
976 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
977 {
978         int i;
979
980         if (!h->cmd_sg_list)
981                 return;
982         for (i = 0; i < h->nr_cmds; i++) {
983                 kfree(h->cmd_sg_list[i]);
984                 h->cmd_sg_list[i] = NULL;
985         }
986         kfree(h->cmd_sg_list);
987         h->cmd_sg_list = NULL;
988 }
989
990 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
991 {
992         int i;
993
994         if (h->chainsize <= 0)
995                 return 0;
996
997         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
998                                 GFP_KERNEL);
999         if (!h->cmd_sg_list)
1000                 return -ENOMEM;
1001         for (i = 0; i < h->nr_cmds; i++) {
1002                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1003                                                 h->chainsize, GFP_KERNEL);
1004                 if (!h->cmd_sg_list[i])
1005                         goto clean;
1006         }
1007         return 0;
1008
1009 clean:
1010         hpsa_free_sg_chain_blocks(h);
1011         return -ENOMEM;
1012 }
1013
1014 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1015         struct CommandList *c)
1016 {
1017         struct SGDescriptor *chain_sg, *chain_block;
1018         u64 temp64;
1019
1020         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1021         chain_block = h->cmd_sg_list[c->cmdindex];
1022         chain_sg->Ext = HPSA_SG_CHAIN;
1023         chain_sg->Len = sizeof(*chain_sg) *
1024                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1025         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1026                                 PCI_DMA_TODEVICE);
1027         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1028         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1029 }
1030
1031 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1032         struct CommandList *c)
1033 {
1034         struct SGDescriptor *chain_sg;
1035         union u64bit temp64;
1036
1037         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1038                 return;
1039
1040         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1041         temp64.val32.lower = chain_sg->Addr.lower;
1042         temp64.val32.upper = chain_sg->Addr.upper;
1043         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1044 }
1045
1046 static void complete_scsi_command(struct CommandList *cp)
1047 {
1048         struct scsi_cmnd *cmd;
1049         struct ctlr_info *h;
1050         struct ErrorInfo *ei;
1051
1052         unsigned char sense_key;
1053         unsigned char asc;      /* additional sense code */
1054         unsigned char ascq;     /* additional sense code qualifier */
1055         unsigned long sense_data_size;
1056
1057         ei = cp->err_info;
1058         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1059         h = cp->h;
1060
1061         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1062         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1063                 hpsa_unmap_sg_chain_block(h, cp);
1064
1065         cmd->result = (DID_OK << 16);           /* host byte */
1066         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1067         cmd->result |= ei->ScsiStatus;
1068
1069         /* copy the sense data whether we need to or not. */
1070         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1071                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1072         else
1073                 sense_data_size = sizeof(ei->SenseInfo);
1074         if (ei->SenseLen < sense_data_size)
1075                 sense_data_size = ei->SenseLen;
1076
1077         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1078         scsi_set_resid(cmd, ei->ResidualCnt);
1079
1080         if (ei->CommandStatus == 0) {
1081                 cmd->scsi_done(cmd);
1082                 cmd_free(h, cp);
1083                 return;
1084         }
1085
1086         /* an error has occurred */
1087         switch (ei->CommandStatus) {
1088
1089         case CMD_TARGET_STATUS:
1090                 if (ei->ScsiStatus) {
1091                         /* Get sense key */
1092                         sense_key = 0xf & ei->SenseInfo[2];
1093                         /* Get additional sense code */
1094                         asc = ei->SenseInfo[12];
1095                         /* Get addition sense code qualifier */
1096                         ascq = ei->SenseInfo[13];
1097                 }
1098
1099                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1100                         if (check_for_unit_attention(h, cp)) {
1101                                 cmd->result = DID_SOFT_ERROR << 16;
1102                                 break;
1103                         }
1104                         if (sense_key == ILLEGAL_REQUEST) {
1105                                 /*
1106                                  * SCSI REPORT_LUNS is commonly unsupported on
1107                                  * Smart Array.  Suppress noisy complaint.
1108                                  */
1109                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1110                                         break;
1111
1112                                 /* If ASC/ASCQ indicate Logical Unit
1113                                  * Not Supported condition,
1114                                  */
1115                                 if ((asc == 0x25) && (ascq == 0x0)) {
1116                                         dev_warn(&h->pdev->dev, "cp %p "
1117                                                 "has check condition\n", cp);
1118                                         break;
1119                                 }
1120                         }
1121
1122                         if (sense_key == NOT_READY) {
1123                                 /* If Sense is Not Ready, Logical Unit
1124                                  * Not ready, Manual Intervention
1125                                  * required
1126                                  */
1127                                 if ((asc == 0x04) && (ascq == 0x03)) {
1128                                         dev_warn(&h->pdev->dev, "cp %p "
1129                                                 "has check condition: unit "
1130                                                 "not ready, manual "
1131                                                 "intervention required\n", cp);
1132                                         break;
1133                                 }
1134                         }
1135                         if (sense_key == ABORTED_COMMAND) {
1136                                 /* Aborted command is retryable */
1137                                 dev_warn(&h->pdev->dev, "cp %p "
1138                                         "has check condition: aborted command: "
1139                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1140                                         cp, asc, ascq);
1141                                 cmd->result = DID_SOFT_ERROR << 16;
1142                                 break;
1143                         }
1144                         /* Must be some other type of check condition */
1145                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1146                                         "unknown type: "
1147                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1148                                         "Returning result: 0x%x, "
1149                                         "cmd=[%02x %02x %02x %02x %02x "
1150                                         "%02x %02x %02x %02x %02x %02x "
1151                                         "%02x %02x %02x %02x %02x]\n",
1152                                         cp, sense_key, asc, ascq,
1153                                         cmd->result,
1154                                         cmd->cmnd[0], cmd->cmnd[1],
1155                                         cmd->cmnd[2], cmd->cmnd[3],
1156                                         cmd->cmnd[4], cmd->cmnd[5],
1157                                         cmd->cmnd[6], cmd->cmnd[7],
1158                                         cmd->cmnd[8], cmd->cmnd[9],
1159                                         cmd->cmnd[10], cmd->cmnd[11],
1160                                         cmd->cmnd[12], cmd->cmnd[13],
1161                                         cmd->cmnd[14], cmd->cmnd[15]);
1162                         break;
1163                 }
1164
1165
1166                 /* Problem was not a check condition
1167                  * Pass it up to the upper layers...
1168                  */
1169                 if (ei->ScsiStatus) {
1170                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1171                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1172                                 "Returning result: 0x%x\n",
1173                                 cp, ei->ScsiStatus,
1174                                 sense_key, asc, ascq,
1175                                 cmd->result);
1176                 } else {  /* scsi status is zero??? How??? */
1177                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1178                                 "Returning no connection.\n", cp),
1179
1180                         /* Ordinarily, this case should never happen,
1181                          * but there is a bug in some released firmware
1182                          * revisions that allows it to happen if, for
1183                          * example, a 4100 backplane loses power and
1184                          * the tape drive is in it.  We assume that
1185                          * it's a fatal error of some kind because we
1186                          * can't show that it wasn't. We will make it
1187                          * look like selection timeout since that is
1188                          * the most common reason for this to occur,
1189                          * and it's severe enough.
1190                          */
1191
1192                         cmd->result = DID_NO_CONNECT << 16;
1193                 }
1194                 break;
1195
1196         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1197                 break;
1198         case CMD_DATA_OVERRUN:
1199                 dev_warn(&h->pdev->dev, "cp %p has"
1200                         " completed with data overrun "
1201                         "reported\n", cp);
1202                 break;
1203         case CMD_INVALID: {
1204                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1205                 print_cmd(cp); */
1206                 /* We get CMD_INVALID if you address a non-existent device
1207                  * instead of a selection timeout (no response).  You will
1208                  * see this if you yank out a drive, then try to access it.
1209                  * This is kind of a shame because it means that any other
1210                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1211                  * missing target. */
1212                 cmd->result = DID_NO_CONNECT << 16;
1213         }
1214                 break;
1215         case CMD_PROTOCOL_ERR:
1216                 dev_warn(&h->pdev->dev, "cp %p has "
1217                         "protocol error \n", cp);
1218                 break;
1219         case CMD_HARDWARE_ERR:
1220                 cmd->result = DID_ERROR << 16;
1221                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1222                 break;
1223         case CMD_CONNECTION_LOST:
1224                 cmd->result = DID_ERROR << 16;
1225                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1226                 break;
1227         case CMD_ABORTED:
1228                 cmd->result = DID_ABORT << 16;
1229                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1230                                 cp, ei->ScsiStatus);
1231                 break;
1232         case CMD_ABORT_FAILED:
1233                 cmd->result = DID_ERROR << 16;
1234                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1235                 break;
1236         case CMD_UNSOLICITED_ABORT:
1237                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1238                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1239                         "abort\n", cp);
1240                 break;
1241         case CMD_TIMEOUT:
1242                 cmd->result = DID_TIME_OUT << 16;
1243                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1244                 break;
1245         case CMD_UNABORTABLE:
1246                 cmd->result = DID_ERROR << 16;
1247                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1248                 break;
1249         default:
1250                 cmd->result = DID_ERROR << 16;
1251                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1252                                 cp, ei->CommandStatus);
1253         }
1254         cmd->scsi_done(cmd);
1255         cmd_free(h, cp);
1256 }
1257
1258 static int hpsa_scsi_detect(struct ctlr_info *h)
1259 {
1260         struct Scsi_Host *sh;
1261         int error;
1262
1263         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1264         if (sh == NULL)
1265                 goto fail;
1266
1267         sh->io_port = 0;
1268         sh->n_io_port = 0;
1269         sh->this_id = -1;
1270         sh->max_channel = 3;
1271         sh->max_cmd_len = MAX_COMMAND_SIZE;
1272         sh->max_lun = HPSA_MAX_LUN;
1273         sh->max_id = HPSA_MAX_LUN;
1274         sh->can_queue = h->nr_cmds;
1275         sh->cmd_per_lun = h->nr_cmds;
1276         sh->sg_tablesize = h->maxsgentries;
1277         h->scsi_host = sh;
1278         sh->hostdata[0] = (unsigned long) h;
1279         sh->irq = h->intr[h->intr_mode];
1280         sh->unique_id = sh->irq;
1281         error = scsi_add_host(sh, &h->pdev->dev);
1282         if (error)
1283                 goto fail_host_put;
1284         scsi_scan_host(sh);
1285         return 0;
1286
1287  fail_host_put:
1288         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1289                 " failed for controller %d\n", h->ctlr);
1290         scsi_host_put(sh);
1291         return error;
1292  fail:
1293         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1294                 " failed for controller %d\n", h->ctlr);
1295         return -ENOMEM;
1296 }
1297
1298 static void hpsa_pci_unmap(struct pci_dev *pdev,
1299         struct CommandList *c, int sg_used, int data_direction)
1300 {
1301         int i;
1302         union u64bit addr64;
1303
1304         for (i = 0; i < sg_used; i++) {
1305                 addr64.val32.lower = c->SG[i].Addr.lower;
1306                 addr64.val32.upper = c->SG[i].Addr.upper;
1307                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1308                         data_direction);
1309         }
1310 }
1311
1312 static void hpsa_map_one(struct pci_dev *pdev,
1313                 struct CommandList *cp,
1314                 unsigned char *buf,
1315                 size_t buflen,
1316                 int data_direction)
1317 {
1318         u64 addr64;
1319
1320         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1321                 cp->Header.SGList = 0;
1322                 cp->Header.SGTotal = 0;
1323                 return;
1324         }
1325
1326         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1327         cp->SG[0].Addr.lower =
1328           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1329         cp->SG[0].Addr.upper =
1330           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1331         cp->SG[0].Len = buflen;
1332         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1333         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1334 }
1335
1336 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1337         struct CommandList *c)
1338 {
1339         DECLARE_COMPLETION_ONSTACK(wait);
1340
1341         c->waiting = &wait;
1342         enqueue_cmd_and_start_io(h, c);
1343         wait_for_completion(&wait);
1344 }
1345
1346 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1347         struct CommandList *c)
1348 {
1349         unsigned long flags;
1350
1351         /* If controller lockup detected, fake a hardware error. */
1352         spin_lock_irqsave(&h->lock, flags);
1353         if (unlikely(h->lockup_detected)) {
1354                 spin_unlock_irqrestore(&h->lock, flags);
1355                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1356         } else {
1357                 spin_unlock_irqrestore(&h->lock, flags);
1358                 hpsa_scsi_do_simple_cmd_core(h, c);
1359         }
1360 }
1361
1362 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1363         struct CommandList *c, int data_direction)
1364 {
1365         int retry_count = 0;
1366
1367         do {
1368                 memset(c->err_info, 0, sizeof(*c->err_info));
1369                 hpsa_scsi_do_simple_cmd_core(h, c);
1370                 retry_count++;
1371         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1372         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1373 }
1374
1375 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1376 {
1377         struct ErrorInfo *ei;
1378         struct device *d = &cp->h->pdev->dev;
1379
1380         ei = cp->err_info;
1381         switch (ei->CommandStatus) {
1382         case CMD_TARGET_STATUS:
1383                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1384                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1385                                 ei->ScsiStatus);
1386                 if (ei->ScsiStatus == 0)
1387                         dev_warn(d, "SCSI status is abnormally zero.  "
1388                         "(probably indicates selection timeout "
1389                         "reported incorrectly due to a known "
1390                         "firmware bug, circa July, 2001.)\n");
1391                 break;
1392         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1393                         dev_info(d, "UNDERRUN\n");
1394                 break;
1395         case CMD_DATA_OVERRUN:
1396                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1397                 break;
1398         case CMD_INVALID: {
1399                 /* controller unfortunately reports SCSI passthru's
1400                  * to non-existent targets as invalid commands.
1401                  */
1402                 dev_warn(d, "cp %p is reported invalid (probably means "
1403                         "target device no longer present)\n", cp);
1404                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1405                 print_cmd(cp);  */
1406                 }
1407                 break;
1408         case CMD_PROTOCOL_ERR:
1409                 dev_warn(d, "cp %p has protocol error \n", cp);
1410                 break;
1411         case CMD_HARDWARE_ERR:
1412                 /* cmd->result = DID_ERROR << 16; */
1413                 dev_warn(d, "cp %p had hardware error\n", cp);
1414                 break;
1415         case CMD_CONNECTION_LOST:
1416                 dev_warn(d, "cp %p had connection lost\n", cp);
1417                 break;
1418         case CMD_ABORTED:
1419                 dev_warn(d, "cp %p was aborted\n", cp);
1420                 break;
1421         case CMD_ABORT_FAILED:
1422                 dev_warn(d, "cp %p reports abort failed\n", cp);
1423                 break;
1424         case CMD_UNSOLICITED_ABORT:
1425                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1426                 break;
1427         case CMD_TIMEOUT:
1428                 dev_warn(d, "cp %p timed out\n", cp);
1429                 break;
1430         case CMD_UNABORTABLE:
1431                 dev_warn(d, "Command unabortable\n");
1432                 break;
1433         default:
1434                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1435                                 ei->CommandStatus);
1436         }
1437 }
1438
1439 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1440                         unsigned char page, unsigned char *buf,
1441                         unsigned char bufsize)
1442 {
1443         int rc = IO_OK;
1444         struct CommandList *c;
1445         struct ErrorInfo *ei;
1446
1447         c = cmd_special_alloc(h);
1448
1449         if (c == NULL) {                        /* trouble... */
1450                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1451                 return -ENOMEM;
1452         }
1453
1454         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1455         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1456         ei = c->err_info;
1457         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1458                 hpsa_scsi_interpret_error(c);
1459                 rc = -1;
1460         }
1461         cmd_special_free(h, c);
1462         return rc;
1463 }
1464
1465 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1466 {
1467         int rc = IO_OK;
1468         struct CommandList *c;
1469         struct ErrorInfo *ei;
1470
1471         c = cmd_special_alloc(h);
1472
1473         if (c == NULL) {                        /* trouble... */
1474                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1475                 return -ENOMEM;
1476         }
1477
1478         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1479         hpsa_scsi_do_simple_cmd_core(h, c);
1480         /* no unmap needed here because no data xfer. */
1481
1482         ei = c->err_info;
1483         if (ei->CommandStatus != 0) {
1484                 hpsa_scsi_interpret_error(c);
1485                 rc = -1;
1486         }
1487         cmd_special_free(h, c);
1488         return rc;
1489 }
1490
1491 static void hpsa_get_raid_level(struct ctlr_info *h,
1492         unsigned char *scsi3addr, unsigned char *raid_level)
1493 {
1494         int rc;
1495         unsigned char *buf;
1496
1497         *raid_level = RAID_UNKNOWN;
1498         buf = kzalloc(64, GFP_KERNEL);
1499         if (!buf)
1500                 return;
1501         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1502         if (rc == 0)
1503                 *raid_level = buf[8];
1504         if (*raid_level > RAID_UNKNOWN)
1505                 *raid_level = RAID_UNKNOWN;
1506         kfree(buf);
1507         return;
1508 }
1509
1510 /* Get the device id from inquiry page 0x83 */
1511 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1512         unsigned char *device_id, int buflen)
1513 {
1514         int rc;
1515         unsigned char *buf;
1516
1517         if (buflen > 16)
1518                 buflen = 16;
1519         buf = kzalloc(64, GFP_KERNEL);
1520         if (!buf)
1521                 return -1;
1522         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1523         if (rc == 0)
1524                 memcpy(device_id, &buf[8], buflen);
1525         kfree(buf);
1526         return rc != 0;
1527 }
1528
1529 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1530                 struct ReportLUNdata *buf, int bufsize,
1531                 int extended_response)
1532 {
1533         int rc = IO_OK;
1534         struct CommandList *c;
1535         unsigned char scsi3addr[8];
1536         struct ErrorInfo *ei;
1537
1538         c = cmd_special_alloc(h);
1539         if (c == NULL) {                        /* trouble... */
1540                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1541                 return -1;
1542         }
1543         /* address the controller */
1544         memset(scsi3addr, 0, sizeof(scsi3addr));
1545         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1546                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1547         if (extended_response)
1548                 c->Request.CDB[1] = extended_response;
1549         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1550         ei = c->err_info;
1551         if (ei->CommandStatus != 0 &&
1552             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1553                 hpsa_scsi_interpret_error(c);
1554                 rc = -1;
1555         }
1556         cmd_special_free(h, c);
1557         return rc;
1558 }
1559
1560 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1561                 struct ReportLUNdata *buf,
1562                 int bufsize, int extended_response)
1563 {
1564         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1565 }
1566
1567 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1568                 struct ReportLUNdata *buf, int bufsize)
1569 {
1570         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1571 }
1572
1573 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1574         int bus, int target, int lun)
1575 {
1576         device->bus = bus;
1577         device->target = target;
1578         device->lun = lun;
1579 }
1580
1581 static int hpsa_update_device_info(struct ctlr_info *h,
1582         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1583         unsigned char *is_OBDR_device)
1584 {
1585
1586 #define OBDR_SIG_OFFSET 43
1587 #define OBDR_TAPE_SIG "$DR-10"
1588 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1589 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1590
1591         unsigned char *inq_buff;
1592         unsigned char *obdr_sig;
1593
1594         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1595         if (!inq_buff)
1596                 goto bail_out;
1597
1598         /* Do an inquiry to the device to see what it is. */
1599         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1600                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1601                 /* Inquiry failed (msg printed already) */
1602                 dev_err(&h->pdev->dev,
1603                         "hpsa_update_device_info: inquiry failed\n");
1604                 goto bail_out;
1605         }
1606
1607         this_device->devtype = (inq_buff[0] & 0x1f);
1608         memcpy(this_device->scsi3addr, scsi3addr, 8);
1609         memcpy(this_device->vendor, &inq_buff[8],
1610                 sizeof(this_device->vendor));
1611         memcpy(this_device->model, &inq_buff[16],
1612                 sizeof(this_device->model));
1613         memset(this_device->device_id, 0,
1614                 sizeof(this_device->device_id));
1615         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1616                 sizeof(this_device->device_id));
1617
1618         if (this_device->devtype == TYPE_DISK &&
1619                 is_logical_dev_addr_mode(scsi3addr))
1620                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1621         else
1622                 this_device->raid_level = RAID_UNKNOWN;
1623
1624         if (is_OBDR_device) {
1625                 /* See if this is a One-Button-Disaster-Recovery device
1626                  * by looking for "$DR-10" at offset 43 in inquiry data.
1627                  */
1628                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1629                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1630                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1631                                                 OBDR_SIG_LEN) == 0);
1632         }
1633
1634         kfree(inq_buff);
1635         return 0;
1636
1637 bail_out:
1638         kfree(inq_buff);
1639         return 1;
1640 }
1641
1642 static unsigned char *msa2xxx_model[] = {
1643         "MSA2012",
1644         "MSA2024",
1645         "MSA2312",
1646         "MSA2324",
1647         "P2000 G3 SAS",
1648         NULL,
1649 };
1650
1651 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1652 {
1653         int i;
1654
1655         for (i = 0; msa2xxx_model[i]; i++)
1656                 if (strncmp(device->model, msa2xxx_model[i],
1657                         strlen(msa2xxx_model[i])) == 0)
1658                         return 1;
1659         return 0;
1660 }
1661
1662 /* Helper function to assign bus, target, lun mapping of devices.
1663  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1664  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1665  * Logical drive target and lun are assigned at this time, but
1666  * physical device lun and target assignment are deferred (assigned
1667  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1668  */
1669 static void figure_bus_target_lun(struct ctlr_info *h,
1670         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1671         struct hpsa_scsi_dev_t *device)
1672 {
1673         u32 lunid;
1674
1675         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1676                 /* logical device */
1677                 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1678                 if (is_msa2xxx(h, device)) {
1679                         /* msa2xxx way, put logicals on bus 1
1680                          * and match target/lun numbers box
1681                          * reports.
1682                          */
1683                         *bus = 1;
1684                         *target = (lunid >> 16) & 0x3fff;
1685                         *lun = lunid & 0x00ff;
1686                 } else {
1687                         if (likely(is_scsi_rev_5(h))) {
1688                                 /* All current smart arrays (circa 2011) */
1689                                 *bus = 0;
1690                                 *target = 0;
1691                                 *lun = (lunid & 0x3fff) + 1;
1692                         } else {
1693                                 /* Traditional old smart array way. */
1694                                 *bus = 0;
1695                                 *target = lunid & 0x3fff;
1696                                 *lun = 0;
1697                         }
1698                 }
1699         } else {
1700                 /* physical device */
1701                 if (is_hba_lunid(lunaddrbytes))
1702                         if (unlikely(is_scsi_rev_5(h))) {
1703                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1704                                 *target = 0;
1705                                 *lun = 0;
1706                                 return;
1707                         } else
1708                                 *bus = 3; /* traditional smartarray */
1709                 else
1710                         *bus = 2; /* physical disk */
1711                 *target = -1;
1712                 *lun = -1; /* we will fill these in later. */
1713         }
1714 }
1715
1716 /*
1717  * If there is no lun 0 on a target, linux won't find any devices.
1718  * For the MSA2xxx boxes, we have to manually detect the enclosure
1719  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1720  * it for some reason.  *tmpdevice is the target we're adding,
1721  * this_device is a pointer into the current element of currentsd[]
1722  * that we're building up in update_scsi_devices(), below.
1723  * lunzerobits is a bitmap that tracks which targets already have a
1724  * lun 0 assigned.
1725  * Returns 1 if an enclosure was added, 0 if not.
1726  */
1727 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1728         struct hpsa_scsi_dev_t *tmpdevice,
1729         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1730         int bus, int target, int lun, unsigned long lunzerobits[],
1731         int *nmsa2xxx_enclosures)
1732 {
1733         unsigned char scsi3addr[8];
1734
1735         if (test_bit(target, lunzerobits))
1736                 return 0; /* There is already a lun 0 on this target. */
1737
1738         if (!is_logical_dev_addr_mode(lunaddrbytes))
1739                 return 0; /* It's the logical targets that may lack lun 0. */
1740
1741         if (!is_msa2xxx(h, tmpdevice))
1742                 return 0; /* It's only the MSA2xxx that have this problem. */
1743
1744         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1745                 return 0;
1746
1747         memset(scsi3addr, 0, 8);
1748         scsi3addr[3] = target;
1749         if (is_hba_lunid(scsi3addr))
1750                 return 0; /* Don't add the RAID controller here. */
1751
1752         if (is_scsi_rev_5(h))
1753                 return 0; /* p1210m doesn't need to do this. */
1754
1755         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1756                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1757                         "enclosures exceeded.  Check your hardware "
1758                         "configuration.");
1759                 return 0;
1760         }
1761
1762         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1763                 return 0;
1764         (*nmsa2xxx_enclosures)++;
1765         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1766         set_bit(target, lunzerobits);
1767         return 1;
1768 }
1769
1770 /*
1771  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1772  * logdev.  The number of luns in physdev and logdev are returned in
1773  * *nphysicals and *nlogicals, respectively.
1774  * Returns 0 on success, -1 otherwise.
1775  */
1776 static int hpsa_gather_lun_info(struct ctlr_info *h,
1777         int reportlunsize,
1778         struct ReportLUNdata *physdev, u32 *nphysicals,
1779         struct ReportLUNdata *logdev, u32 *nlogicals)
1780 {
1781         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1782                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1783                 return -1;
1784         }
1785         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1786         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1787                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1788                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1789                         *nphysicals - HPSA_MAX_PHYS_LUN);
1790                 *nphysicals = HPSA_MAX_PHYS_LUN;
1791         }
1792         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1793                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1794                 return -1;
1795         }
1796         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1797         /* Reject Logicals in excess of our max capability. */
1798         if (*nlogicals > HPSA_MAX_LUN) {
1799                 dev_warn(&h->pdev->dev,
1800                         "maximum logical LUNs (%d) exceeded.  "
1801                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1802                         *nlogicals - HPSA_MAX_LUN);
1803                         *nlogicals = HPSA_MAX_LUN;
1804         }
1805         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1806                 dev_warn(&h->pdev->dev,
1807                         "maximum logical + physical LUNs (%d) exceeded. "
1808                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1809                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1810                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1811         }
1812         return 0;
1813 }
1814
1815 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1816         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1817         struct ReportLUNdata *logdev_list)
1818 {
1819         /* Helper function, figure out where the LUN ID info is coming from
1820          * given index i, lists of physical and logical devices, where in
1821          * the list the raid controller is supposed to appear (first or last)
1822          */
1823
1824         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1825         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1826
1827         if (i == raid_ctlr_position)
1828                 return RAID_CTLR_LUNID;
1829
1830         if (i < logicals_start)
1831                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1832
1833         if (i < last_device)
1834                 return &logdev_list->LUN[i - nphysicals -
1835                         (raid_ctlr_position == 0)][0];
1836         BUG();
1837         return NULL;
1838 }
1839
1840 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1841 {
1842         /* the idea here is we could get notified
1843          * that some devices have changed, so we do a report
1844          * physical luns and report logical luns cmd, and adjust
1845          * our list of devices accordingly.
1846          *
1847          * The scsi3addr's of devices won't change so long as the
1848          * adapter is not reset.  That means we can rescan and
1849          * tell which devices we already know about, vs. new
1850          * devices, vs.  disappearing devices.
1851          */
1852         struct ReportLUNdata *physdev_list = NULL;
1853         struct ReportLUNdata *logdev_list = NULL;
1854         u32 nphysicals = 0;
1855         u32 nlogicals = 0;
1856         u32 ndev_allocated = 0;
1857         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1858         int ncurrent = 0;
1859         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1860         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1861         int bus, target, lun;
1862         int raid_ctlr_position;
1863         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1864
1865         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1866         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1867         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1868         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1869
1870         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1871                 dev_err(&h->pdev->dev, "out of memory\n");
1872                 goto out;
1873         }
1874         memset(lunzerobits, 0, sizeof(lunzerobits));
1875
1876         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1877                         logdev_list, &nlogicals))
1878                 goto out;
1879
1880         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1881          * but each of them 4 times through different paths.  The plus 1
1882          * is for the RAID controller.
1883          */
1884         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1885
1886         /* Allocate the per device structures */
1887         for (i = 0; i < ndevs_to_allocate; i++) {
1888                 if (i >= HPSA_MAX_DEVICES) {
1889                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1890                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1891                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1892                         break;
1893                 }
1894
1895                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1896                 if (!currentsd[i]) {
1897                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1898                                 __FILE__, __LINE__);
1899                         goto out;
1900                 }
1901                 ndev_allocated++;
1902         }
1903
1904         if (unlikely(is_scsi_rev_5(h)))
1905                 raid_ctlr_position = 0;
1906         else
1907                 raid_ctlr_position = nphysicals + nlogicals;
1908
1909         /* adjust our table of devices */
1910         nmsa2xxx_enclosures = 0;
1911         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1912                 u8 *lunaddrbytes, is_OBDR = 0;
1913
1914                 /* Figure out where the LUN ID info is coming from */
1915                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1916                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1917                 /* skip masked physical devices. */
1918                 if (lunaddrbytes[3] & 0xC0 &&
1919                         i < nphysicals + (raid_ctlr_position == 0))
1920                         continue;
1921
1922                 /* Get device type, vendor, model, device id */
1923                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1924                                                         &is_OBDR))
1925                         continue; /* skip it if we can't talk to it. */
1926                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1927                         tmpdevice);
1928                 this_device = currentsd[ncurrent];
1929
1930                 /*
1931                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1932                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1933                  * is nonetheless an enclosure device there.  We have to
1934                  * present that otherwise linux won't find anything if
1935                  * there is no lun 0.
1936                  */
1937                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1938                                 lunaddrbytes, bus, target, lun, lunzerobits,
1939                                 &nmsa2xxx_enclosures)) {
1940                         ncurrent++;
1941                         this_device = currentsd[ncurrent];
1942                 }
1943
1944                 *this_device = *tmpdevice;
1945                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1946
1947                 switch (this_device->devtype) {
1948                 case TYPE_ROM:
1949                         /* We don't *really* support actual CD-ROM devices,
1950                          * just "One Button Disaster Recovery" tape drive
1951                          * which temporarily pretends to be a CD-ROM drive.
1952                          * So we check that the device is really an OBDR tape
1953                          * device by checking for "$DR-10" in bytes 43-48 of
1954                          * the inquiry data.
1955                          */
1956                         if (is_OBDR)
1957                                 ncurrent++;
1958                         break;
1959                 case TYPE_DISK:
1960                         if (i < nphysicals)
1961                                 break;
1962                         ncurrent++;
1963                         break;
1964                 case TYPE_TAPE:
1965                 case TYPE_MEDIUM_CHANGER:
1966                         ncurrent++;
1967                         break;
1968                 case TYPE_RAID:
1969                         /* Only present the Smartarray HBA as a RAID controller.
1970                          * If it's a RAID controller other than the HBA itself
1971                          * (an external RAID controller, MSA500 or similar)
1972                          * don't present it.
1973                          */
1974                         if (!is_hba_lunid(lunaddrbytes))
1975                                 break;
1976                         ncurrent++;
1977                         break;
1978                 default:
1979                         break;
1980                 }
1981                 if (ncurrent >= HPSA_MAX_DEVICES)
1982                         break;
1983         }
1984         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1985 out:
1986         kfree(tmpdevice);
1987         for (i = 0; i < ndev_allocated; i++)
1988                 kfree(currentsd[i]);
1989         kfree(currentsd);
1990         kfree(physdev_list);
1991         kfree(logdev_list);
1992 }
1993
1994 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1995  * dma mapping  and fills in the scatter gather entries of the
1996  * hpsa command, cp.
1997  */
1998 static int hpsa_scatter_gather(struct ctlr_info *h,
1999                 struct CommandList *cp,
2000                 struct scsi_cmnd *cmd)
2001 {
2002         unsigned int len;
2003         struct scatterlist *sg;
2004         u64 addr64;
2005         int use_sg, i, sg_index, chained;
2006         struct SGDescriptor *curr_sg;
2007
2008         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2009
2010         use_sg = scsi_dma_map(cmd);
2011         if (use_sg < 0)
2012                 return use_sg;
2013
2014         if (!use_sg)
2015                 goto sglist_finished;
2016
2017         curr_sg = cp->SG;
2018         chained = 0;
2019         sg_index = 0;
2020         scsi_for_each_sg(cmd, sg, use_sg, i) {
2021                 if (i == h->max_cmd_sg_entries - 1 &&
2022                         use_sg > h->max_cmd_sg_entries) {
2023                         chained = 1;
2024                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2025                         sg_index = 0;
2026                 }
2027                 addr64 = (u64) sg_dma_address(sg);
2028                 len  = sg_dma_len(sg);
2029                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2030                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2031                 curr_sg->Len = len;
2032                 curr_sg->Ext = 0;  /* we are not chaining */
2033                 curr_sg++;
2034         }
2035
2036         if (use_sg + chained > h->maxSG)
2037                 h->maxSG = use_sg + chained;
2038
2039         if (chained) {
2040                 cp->Header.SGList = h->max_cmd_sg_entries;
2041                 cp->Header.SGTotal = (u16) (use_sg + 1);
2042                 hpsa_map_sg_chain_block(h, cp);
2043                 return 0;
2044         }
2045
2046 sglist_finished:
2047
2048         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2049         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2050         return 0;
2051 }
2052
2053
2054 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2055         void (*done)(struct scsi_cmnd *))
2056 {
2057         struct ctlr_info *h;
2058         struct hpsa_scsi_dev_t *dev;
2059         unsigned char scsi3addr[8];
2060         struct CommandList *c;
2061         unsigned long flags;
2062
2063         /* Get the ptr to our adapter structure out of cmd->host. */
2064         h = sdev_to_hba(cmd->device);
2065         dev = cmd->device->hostdata;
2066         if (!dev) {
2067                 cmd->result = DID_NO_CONNECT << 16;
2068                 done(cmd);
2069                 return 0;
2070         }
2071         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2072
2073         spin_lock_irqsave(&h->lock, flags);
2074         if (unlikely(h->lockup_detected)) {
2075                 spin_unlock_irqrestore(&h->lock, flags);
2076                 cmd->result = DID_ERROR << 16;
2077                 done(cmd);
2078                 return 0;
2079         }
2080         /* Need a lock as this is being allocated from the pool */
2081         c = cmd_alloc(h);
2082         spin_unlock_irqrestore(&h->lock, flags);
2083         if (c == NULL) {                        /* trouble... */
2084                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2085                 return SCSI_MLQUEUE_HOST_BUSY;
2086         }
2087
2088         /* Fill in the command list header */
2089
2090         cmd->scsi_done = done;    /* save this for use by completion code */
2091
2092         /* save c in case we have to abort it  */
2093         cmd->host_scribble = (unsigned char *) c;
2094
2095         c->cmd_type = CMD_SCSI;
2096         c->scsi_cmd = cmd;
2097         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2098         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2099         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2100         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2101
2102         /* Fill in the request block... */
2103
2104         c->Request.Timeout = 0;
2105         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2106         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2107         c->Request.CDBLen = cmd->cmd_len;
2108         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2109         c->Request.Type.Type = TYPE_CMD;
2110         c->Request.Type.Attribute = ATTR_SIMPLE;
2111         switch (cmd->sc_data_direction) {
2112         case DMA_TO_DEVICE:
2113                 c->Request.Type.Direction = XFER_WRITE;
2114                 break;
2115         case DMA_FROM_DEVICE:
2116                 c->Request.Type.Direction = XFER_READ;
2117                 break;
2118         case DMA_NONE:
2119                 c->Request.Type.Direction = XFER_NONE;
2120                 break;
2121         case DMA_BIDIRECTIONAL:
2122                 /* This can happen if a buggy application does a scsi passthru
2123                  * and sets both inlen and outlen to non-zero. ( see
2124                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2125                  */
2126
2127                 c->Request.Type.Direction = XFER_RSVD;
2128                 /* This is technically wrong, and hpsa controllers should
2129                  * reject it with CMD_INVALID, which is the most correct
2130                  * response, but non-fibre backends appear to let it
2131                  * slide by, and give the same results as if this field
2132                  * were set correctly.  Either way is acceptable for
2133                  * our purposes here.
2134                  */
2135
2136                 break;
2137
2138         default:
2139                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2140                         cmd->sc_data_direction);
2141                 BUG();
2142                 break;
2143         }
2144
2145         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2146                 cmd_free(h, c);
2147                 return SCSI_MLQUEUE_HOST_BUSY;
2148         }
2149         enqueue_cmd_and_start_io(h, c);
2150         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2151         return 0;
2152 }
2153
2154 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2155
2156 static void hpsa_scan_start(struct Scsi_Host *sh)
2157 {
2158         struct ctlr_info *h = shost_to_hba(sh);
2159         unsigned long flags;
2160
2161         /* wait until any scan already in progress is finished. */
2162         while (1) {
2163                 spin_lock_irqsave(&h->scan_lock, flags);
2164                 if (h->scan_finished)
2165                         break;
2166                 spin_unlock_irqrestore(&h->scan_lock, flags);
2167                 wait_event(h->scan_wait_queue, h->scan_finished);
2168                 /* Note: We don't need to worry about a race between this
2169                  * thread and driver unload because the midlayer will
2170                  * have incremented the reference count, so unload won't
2171                  * happen if we're in here.
2172                  */
2173         }
2174         h->scan_finished = 0; /* mark scan as in progress */
2175         spin_unlock_irqrestore(&h->scan_lock, flags);
2176
2177         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2178
2179         spin_lock_irqsave(&h->scan_lock, flags);
2180         h->scan_finished = 1; /* mark scan as finished. */
2181         wake_up_all(&h->scan_wait_queue);
2182         spin_unlock_irqrestore(&h->scan_lock, flags);
2183 }
2184
2185 static int hpsa_scan_finished(struct Scsi_Host *sh,
2186         unsigned long elapsed_time)
2187 {
2188         struct ctlr_info *h = shost_to_hba(sh);
2189         unsigned long flags;
2190         int finished;
2191
2192         spin_lock_irqsave(&h->scan_lock, flags);
2193         finished = h->scan_finished;
2194         spin_unlock_irqrestore(&h->scan_lock, flags);
2195         return finished;
2196 }
2197
2198 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2199         int qdepth, int reason)
2200 {
2201         struct ctlr_info *h = sdev_to_hba(sdev);
2202
2203         if (reason != SCSI_QDEPTH_DEFAULT)
2204                 return -ENOTSUPP;
2205
2206         if (qdepth < 1)
2207                 qdepth = 1;
2208         else
2209                 if (qdepth > h->nr_cmds)
2210                         qdepth = h->nr_cmds;
2211         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2212         return sdev->queue_depth;
2213 }
2214
2215 static void hpsa_unregister_scsi(struct ctlr_info *h)
2216 {
2217         /* we are being forcibly unloaded, and may not refuse. */
2218         scsi_remove_host(h->scsi_host);
2219         scsi_host_put(h->scsi_host);
2220         h->scsi_host = NULL;
2221 }
2222
2223 static int hpsa_register_scsi(struct ctlr_info *h)
2224 {
2225         int rc;
2226
2227         rc = hpsa_scsi_detect(h);
2228         if (rc != 0)
2229                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2230                         " hpsa_scsi_detect(), rc is %d\n", rc);
2231         return rc;
2232 }
2233
2234 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2235         unsigned char lunaddr[])
2236 {
2237         int rc = 0;
2238         int count = 0;
2239         int waittime = 1; /* seconds */
2240         struct CommandList *c;
2241
2242         c = cmd_special_alloc(h);
2243         if (!c) {
2244                 dev_warn(&h->pdev->dev, "out of memory in "
2245                         "wait_for_device_to_become_ready.\n");
2246                 return IO_ERROR;
2247         }
2248
2249         /* Send test unit ready until device ready, or give up. */
2250         while (count < HPSA_TUR_RETRY_LIMIT) {
2251
2252                 /* Wait for a bit.  do this first, because if we send
2253                  * the TUR right away, the reset will just abort it.
2254                  */
2255                 msleep(1000 * waittime);
2256                 count++;
2257
2258                 /* Increase wait time with each try, up to a point. */
2259                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2260                         waittime = waittime * 2;
2261
2262                 /* Send the Test Unit Ready */
2263                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2264                 hpsa_scsi_do_simple_cmd_core(h, c);
2265                 /* no unmap needed here because no data xfer. */
2266
2267                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2268                         break;
2269
2270                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2271                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2272                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2273                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2274                         break;
2275
2276                 dev_warn(&h->pdev->dev, "waiting %d secs "
2277                         "for device to become ready.\n", waittime);
2278                 rc = 1; /* device not ready. */
2279         }
2280
2281         if (rc)
2282                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2283         else
2284                 dev_warn(&h->pdev->dev, "device is ready.\n");
2285
2286         cmd_special_free(h, c);
2287         return rc;
2288 }
2289
2290 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2291  * complaining.  Doing a host- or bus-reset can't do anything good here.
2292  */
2293 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2294 {
2295         int rc;
2296         struct ctlr_info *h;
2297         struct hpsa_scsi_dev_t *dev;
2298
2299         /* find the controller to which the command to be aborted was sent */
2300         h = sdev_to_hba(scsicmd->device);
2301         if (h == NULL) /* paranoia */
2302                 return FAILED;
2303         dev = scsicmd->device->hostdata;
2304         if (!dev) {
2305                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2306                         "device lookup failed.\n");
2307                 return FAILED;
2308         }
2309         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2310                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2311         /* send a reset to the SCSI LUN which the command was sent to */
2312         rc = hpsa_send_reset(h, dev->scsi3addr);
2313         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2314                 return SUCCESS;
2315
2316         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2317         return FAILED;
2318 }
2319
2320 /*
2321  * For operations that cannot sleep, a command block is allocated at init,
2322  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2323  * which ones are free or in use.  Lock must be held when calling this.
2324  * cmd_free() is the complement.
2325  */
2326 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2327 {
2328         struct CommandList *c;
2329         int i;
2330         union u64bit temp64;
2331         dma_addr_t cmd_dma_handle, err_dma_handle;
2332
2333         do {
2334                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2335                 if (i == h->nr_cmds)
2336                         return NULL;
2337         } while (test_and_set_bit
2338                  (i & (BITS_PER_LONG - 1),
2339                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2340         c = h->cmd_pool + i;
2341         memset(c, 0, sizeof(*c));
2342         cmd_dma_handle = h->cmd_pool_dhandle
2343             + i * sizeof(*c);
2344         c->err_info = h->errinfo_pool + i;
2345         memset(c->err_info, 0, sizeof(*c->err_info));
2346         err_dma_handle = h->errinfo_pool_dhandle
2347             + i * sizeof(*c->err_info);
2348         h->nr_allocs++;
2349
2350         c->cmdindex = i;
2351
2352         INIT_LIST_HEAD(&c->list);
2353         c->busaddr = (u32) cmd_dma_handle;
2354         temp64.val = (u64) err_dma_handle;
2355         c->ErrDesc.Addr.lower = temp64.val32.lower;
2356         c->ErrDesc.Addr.upper = temp64.val32.upper;
2357         c->ErrDesc.Len = sizeof(*c->err_info);
2358
2359         c->h = h;
2360         return c;
2361 }
2362
2363 /* For operations that can wait for kmalloc to possibly sleep,
2364  * this routine can be called. Lock need not be held to call
2365  * cmd_special_alloc. cmd_special_free() is the complement.
2366  */
2367 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2368 {
2369         struct CommandList *c;
2370         union u64bit temp64;
2371         dma_addr_t cmd_dma_handle, err_dma_handle;
2372
2373         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2374         if (c == NULL)
2375                 return NULL;
2376         memset(c, 0, sizeof(*c));
2377
2378         c->cmdindex = -1;
2379
2380         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2381                     &err_dma_handle);
2382
2383         if (c->err_info == NULL) {
2384                 pci_free_consistent(h->pdev,
2385                         sizeof(*c), c, cmd_dma_handle);
2386                 return NULL;
2387         }
2388         memset(c->err_info, 0, sizeof(*c->err_info));
2389
2390         INIT_LIST_HEAD(&c->list);
2391         c->busaddr = (u32) cmd_dma_handle;
2392         temp64.val = (u64) err_dma_handle;
2393         c->ErrDesc.Addr.lower = temp64.val32.lower;
2394         c->ErrDesc.Addr.upper = temp64.val32.upper;
2395         c->ErrDesc.Len = sizeof(*c->err_info);
2396
2397         c->h = h;
2398         return c;
2399 }
2400
2401 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2402 {
2403         int i;
2404
2405         i = c - h->cmd_pool;
2406         clear_bit(i & (BITS_PER_LONG - 1),
2407                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2408         h->nr_frees++;
2409 }
2410
2411 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2412 {
2413         union u64bit temp64;
2414
2415         temp64.val32.lower = c->ErrDesc.Addr.lower;
2416         temp64.val32.upper = c->ErrDesc.Addr.upper;
2417         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2418                             c->err_info, (dma_addr_t) temp64.val);
2419         pci_free_consistent(h->pdev, sizeof(*c),
2420                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2421 }
2422
2423 #ifdef CONFIG_COMPAT
2424
2425 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2426 {
2427         IOCTL32_Command_struct __user *arg32 =
2428             (IOCTL32_Command_struct __user *) arg;
2429         IOCTL_Command_struct arg64;
2430         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2431         int err;
2432         u32 cp;
2433
2434         memset(&arg64, 0, sizeof(arg64));
2435         err = 0;
2436         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2437                            sizeof(arg64.LUN_info));
2438         err |= copy_from_user(&arg64.Request, &arg32->Request,
2439                            sizeof(arg64.Request));
2440         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2441                            sizeof(arg64.error_info));
2442         err |= get_user(arg64.buf_size, &arg32->buf_size);
2443         err |= get_user(cp, &arg32->buf);
2444         arg64.buf = compat_ptr(cp);
2445         err |= copy_to_user(p, &arg64, sizeof(arg64));
2446
2447         if (err)
2448                 return -EFAULT;
2449
2450         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2451         if (err)
2452                 return err;
2453         err |= copy_in_user(&arg32->error_info, &p->error_info,
2454                          sizeof(arg32->error_info));
2455         if (err)
2456                 return -EFAULT;
2457         return err;
2458 }
2459
2460 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2461         int cmd, void *arg)
2462 {
2463         BIG_IOCTL32_Command_struct __user *arg32 =
2464             (BIG_IOCTL32_Command_struct __user *) arg;
2465         BIG_IOCTL_Command_struct arg64;
2466         BIG_IOCTL_Command_struct __user *p =
2467             compat_alloc_user_space(sizeof(arg64));
2468         int err;
2469         u32 cp;
2470
2471         memset(&arg64, 0, sizeof(arg64));
2472         err = 0;
2473         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2474                            sizeof(arg64.LUN_info));
2475         err |= copy_from_user(&arg64.Request, &arg32->Request,
2476                            sizeof(arg64.Request));
2477         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2478                            sizeof(arg64.error_info));
2479         err |= get_user(arg64.buf_size, &arg32->buf_size);
2480         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2481         err |= get_user(cp, &arg32->buf);
2482         arg64.buf = compat_ptr(cp);
2483         err |= copy_to_user(p, &arg64, sizeof(arg64));
2484
2485         if (err)
2486                 return -EFAULT;
2487
2488         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2489         if (err)
2490                 return err;
2491         err |= copy_in_user(&arg32->error_info, &p->error_info,
2492                          sizeof(arg32->error_info));
2493         if (err)
2494                 return -EFAULT;
2495         return err;
2496 }
2497
2498 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2499 {
2500         switch (cmd) {
2501         case CCISS_GETPCIINFO:
2502         case CCISS_GETINTINFO:
2503         case CCISS_SETINTINFO:
2504         case CCISS_GETNODENAME:
2505         case CCISS_SETNODENAME:
2506         case CCISS_GETHEARTBEAT:
2507         case CCISS_GETBUSTYPES:
2508         case CCISS_GETFIRMVER:
2509         case CCISS_GETDRIVVER:
2510         case CCISS_REVALIDVOLS:
2511         case CCISS_DEREGDISK:
2512         case CCISS_REGNEWDISK:
2513         case CCISS_REGNEWD:
2514         case CCISS_RESCANDISK:
2515         case CCISS_GETLUNINFO:
2516                 return hpsa_ioctl(dev, cmd, arg);
2517
2518         case CCISS_PASSTHRU32:
2519                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2520         case CCISS_BIG_PASSTHRU32:
2521                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2522
2523         default:
2524                 return -ENOIOCTLCMD;
2525         }
2526 }
2527 #endif
2528
2529 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2530 {
2531         struct hpsa_pci_info pciinfo;
2532
2533         if (!argp)
2534                 return -EINVAL;
2535         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2536         pciinfo.bus = h->pdev->bus->number;
2537         pciinfo.dev_fn = h->pdev->devfn;
2538         pciinfo.board_id = h->board_id;
2539         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2540                 return -EFAULT;
2541         return 0;
2542 }
2543
2544 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2545 {
2546         DriverVer_type DriverVer;
2547         unsigned char vmaj, vmin, vsubmin;
2548         int rc;
2549
2550         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2551                 &vmaj, &vmin, &vsubmin);
2552         if (rc != 3) {
2553                 dev_info(&h->pdev->dev, "driver version string '%s' "
2554                         "unrecognized.", HPSA_DRIVER_VERSION);
2555                 vmaj = 0;
2556                 vmin = 0;
2557                 vsubmin = 0;
2558         }
2559         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2560         if (!argp)
2561                 return -EINVAL;
2562         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2563                 return -EFAULT;
2564         return 0;
2565 }
2566
2567 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2568 {
2569         IOCTL_Command_struct iocommand;
2570         struct CommandList *c;
2571         char *buff = NULL;
2572         union u64bit temp64;
2573
2574         if (!argp)
2575                 return -EINVAL;
2576         if (!capable(CAP_SYS_RAWIO))
2577                 return -EPERM;
2578         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2579                 return -EFAULT;
2580         if ((iocommand.buf_size < 1) &&
2581             (iocommand.Request.Type.Direction != XFER_NONE)) {
2582                 return -EINVAL;
2583         }
2584         if (iocommand.buf_size > 0) {
2585                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2586                 if (buff == NULL)
2587                         return -EFAULT;
2588                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2589                         /* Copy the data into the buffer we created */
2590                         if (copy_from_user(buff, iocommand.buf,
2591                                 iocommand.buf_size)) {
2592                                 kfree(buff);
2593                                 return -EFAULT;
2594                         }
2595                 } else {
2596                         memset(buff, 0, iocommand.buf_size);
2597                 }
2598         }
2599         c = cmd_special_alloc(h);
2600         if (c == NULL) {
2601                 kfree(buff);
2602                 return -ENOMEM;
2603         }
2604         /* Fill in the command type */
2605         c->cmd_type = CMD_IOCTL_PEND;
2606         /* Fill in Command Header */
2607         c->Header.ReplyQueue = 0; /* unused in simple mode */
2608         if (iocommand.buf_size > 0) {   /* buffer to fill */
2609                 c->Header.SGList = 1;
2610                 c->Header.SGTotal = 1;
2611         } else  { /* no buffers to fill */
2612                 c->Header.SGList = 0;
2613                 c->Header.SGTotal = 0;
2614         }
2615         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2616         /* use the kernel address the cmd block for tag */
2617         c->Header.Tag.lower = c->busaddr;
2618
2619         /* Fill in Request block */
2620         memcpy(&c->Request, &iocommand.Request,
2621                 sizeof(c->Request));
2622
2623         /* Fill in the scatter gather information */
2624         if (iocommand.buf_size > 0) {
2625                 temp64.val = pci_map_single(h->pdev, buff,
2626                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2627                 c->SG[0].Addr.lower = temp64.val32.lower;
2628                 c->SG[0].Addr.upper = temp64.val32.upper;
2629                 c->SG[0].Len = iocommand.buf_size;
2630                 c->SG[0].Ext = 0; /* we are not chaining*/
2631         }
2632         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2633         if (iocommand.buf_size > 0)
2634                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2635         check_ioctl_unit_attention(h, c);
2636
2637         /* Copy the error information out */
2638         memcpy(&iocommand.error_info, c->err_info,
2639                 sizeof(iocommand.error_info));
2640         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2641                 kfree(buff);
2642                 cmd_special_free(h, c);
2643                 return -EFAULT;
2644         }
2645         if (iocommand.Request.Type.Direction == XFER_READ &&
2646                 iocommand.buf_size > 0) {
2647                 /* Copy the data out of the buffer we created */
2648                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2649                         kfree(buff);
2650                         cmd_special_free(h, c);
2651                         return -EFAULT;
2652                 }
2653         }
2654         kfree(buff);
2655         cmd_special_free(h, c);
2656         return 0;
2657 }
2658
2659 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2660 {
2661         BIG_IOCTL_Command_struct *ioc;
2662         struct CommandList *c;
2663         unsigned char **buff = NULL;
2664         int *buff_size = NULL;
2665         union u64bit temp64;
2666         BYTE sg_used = 0;
2667         int status = 0;
2668         int i;
2669         u32 left;
2670         u32 sz;
2671         BYTE __user *data_ptr;
2672
2673         if (!argp)
2674                 return -EINVAL;
2675         if (!capable(CAP_SYS_RAWIO))
2676                 return -EPERM;
2677         ioc = (BIG_IOCTL_Command_struct *)
2678             kmalloc(sizeof(*ioc), GFP_KERNEL);
2679         if (!ioc) {
2680                 status = -ENOMEM;
2681                 goto cleanup1;
2682         }
2683         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2684                 status = -EFAULT;
2685                 goto cleanup1;
2686         }
2687         if ((ioc->buf_size < 1) &&
2688             (ioc->Request.Type.Direction != XFER_NONE)) {
2689                 status = -EINVAL;
2690                 goto cleanup1;
2691         }
2692         /* Check kmalloc limits  using all SGs */
2693         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2694                 status = -EINVAL;
2695                 goto cleanup1;
2696         }
2697         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2698                 status = -EINVAL;
2699                 goto cleanup1;
2700         }
2701         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2702         if (!buff) {
2703                 status = -ENOMEM;
2704                 goto cleanup1;
2705         }
2706         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2707         if (!buff_size) {
2708                 status = -ENOMEM;
2709                 goto cleanup1;
2710         }
2711         left = ioc->buf_size;
2712         data_ptr = ioc->buf;
2713         while (left) {
2714                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2715                 buff_size[sg_used] = sz;
2716                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2717                 if (buff[sg_used] == NULL) {
2718                         status = -ENOMEM;
2719                         goto cleanup1;
2720                 }
2721                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2722                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2723                                 status = -ENOMEM;
2724                                 goto cleanup1;
2725                         }
2726                 } else
2727                         memset(buff[sg_used], 0, sz);
2728                 left -= sz;
2729                 data_ptr += sz;
2730                 sg_used++;
2731         }
2732         c = cmd_special_alloc(h);
2733         if (c == NULL) {
2734                 status = -ENOMEM;
2735                 goto cleanup1;
2736         }
2737         c->cmd_type = CMD_IOCTL_PEND;
2738         c->Header.ReplyQueue = 0;
2739         c->Header.SGList = c->Header.SGTotal = sg_used;
2740         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2741         c->Header.Tag.lower = c->busaddr;
2742         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2743         if (ioc->buf_size > 0) {
2744                 int i;
2745                 for (i = 0; i < sg_used; i++) {
2746                         temp64.val = pci_map_single(h->pdev, buff[i],
2747                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2748                         c->SG[i].Addr.lower = temp64.val32.lower;
2749                         c->SG[i].Addr.upper = temp64.val32.upper;
2750                         c->SG[i].Len = buff_size[i];
2751                         /* we are not chaining */
2752                         c->SG[i].Ext = 0;
2753                 }
2754         }
2755         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2756         if (sg_used)
2757                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2758         check_ioctl_unit_attention(h, c);
2759         /* Copy the error information out */
2760         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2761         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2762                 cmd_special_free(h, c);
2763                 status = -EFAULT;
2764                 goto cleanup1;
2765         }
2766         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2767                 /* Copy the data out of the buffer we created */
2768                 BYTE __user *ptr = ioc->buf;
2769                 for (i = 0; i < sg_used; i++) {
2770                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2771                                 cmd_special_free(h, c);
2772                                 status = -EFAULT;
2773                                 goto cleanup1;
2774                         }
2775                         ptr += buff_size[i];
2776                 }
2777         }
2778         cmd_special_free(h, c);
2779         status = 0;
2780 cleanup1:
2781         if (buff) {
2782                 for (i = 0; i < sg_used; i++)
2783                         kfree(buff[i]);
2784                 kfree(buff);
2785         }
2786         kfree(buff_size);
2787         kfree(ioc);
2788         return status;
2789 }
2790
2791 static void check_ioctl_unit_attention(struct ctlr_info *h,
2792         struct CommandList *c)
2793 {
2794         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2795                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2796                 (void) check_for_unit_attention(h, c);
2797 }
2798 /*
2799  * ioctl
2800  */
2801 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2802 {
2803         struct ctlr_info *h;
2804         void __user *argp = (void __user *)arg;
2805
2806         h = sdev_to_hba(dev);
2807
2808         switch (cmd) {
2809         case CCISS_DEREGDISK:
2810         case CCISS_REGNEWDISK:
2811         case CCISS_REGNEWD:
2812                 hpsa_scan_start(h->scsi_host);
2813                 return 0;
2814         case CCISS_GETPCIINFO:
2815                 return hpsa_getpciinfo_ioctl(h, argp);
2816         case CCISS_GETDRIVVER:
2817                 return hpsa_getdrivver_ioctl(h, argp);
2818         case CCISS_PASSTHRU:
2819                 return hpsa_passthru_ioctl(h, argp);
2820         case CCISS_BIG_PASSTHRU:
2821                 return hpsa_big_passthru_ioctl(h, argp);
2822         default:
2823                 return -ENOTTY;
2824         }
2825 }
2826
2827 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2828         unsigned char *scsi3addr, u8 reset_type)
2829 {
2830         struct CommandList *c;
2831
2832         c = cmd_alloc(h);
2833         if (!c)
2834                 return -ENOMEM;
2835         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2836                 RAID_CTLR_LUNID, TYPE_MSG);
2837         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2838         c->waiting = NULL;
2839         enqueue_cmd_and_start_io(h, c);
2840         /* Don't wait for completion, the reset won't complete.  Don't free
2841          * the command either.  This is the last command we will send before
2842          * re-initializing everything, so it doesn't matter and won't leak.
2843          */
2844         return 0;
2845 }
2846
2847 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2848         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2849         int cmd_type)
2850 {
2851         int pci_dir = XFER_NONE;
2852
2853         c->cmd_type = CMD_IOCTL_PEND;
2854         c->Header.ReplyQueue = 0;
2855         if (buff != NULL && size > 0) {
2856                 c->Header.SGList = 1;
2857                 c->Header.SGTotal = 1;
2858         } else {
2859                 c->Header.SGList = 0;
2860                 c->Header.SGTotal = 0;
2861         }
2862         c->Header.Tag.lower = c->busaddr;
2863         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2864
2865         c->Request.Type.Type = cmd_type;
2866         if (cmd_type == TYPE_CMD) {
2867                 switch (cmd) {
2868                 case HPSA_INQUIRY:
2869                         /* are we trying to read a vital product page */
2870                         if (page_code != 0) {
2871                                 c->Request.CDB[1] = 0x01;
2872                                 c->Request.CDB[2] = page_code;
2873                         }
2874                         c->Request.CDBLen = 6;
2875                         c->Request.Type.Attribute = ATTR_SIMPLE;
2876                         c->Request.Type.Direction = XFER_READ;
2877                         c->Request.Timeout = 0;
2878                         c->Request.CDB[0] = HPSA_INQUIRY;
2879                         c->Request.CDB[4] = size & 0xFF;
2880                         break;
2881                 case HPSA_REPORT_LOG:
2882                 case HPSA_REPORT_PHYS:
2883                         /* Talking to controller so It's a physical command
2884                            mode = 00 target = 0.  Nothing to write.
2885                          */
2886                         c->Request.CDBLen = 12;
2887                         c->Request.Type.Attribute = ATTR_SIMPLE;
2888                         c->Request.Type.Direction = XFER_READ;
2889                         c->Request.Timeout = 0;
2890                         c->Request.CDB[0] = cmd;
2891                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2892                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2893                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2894                         c->Request.CDB[9] = size & 0xFF;
2895                         break;
2896                 case HPSA_CACHE_FLUSH:
2897                         c->Request.CDBLen = 12;
2898                         c->Request.Type.Attribute = ATTR_SIMPLE;
2899                         c->Request.Type.Direction = XFER_WRITE;
2900                         c->Request.Timeout = 0;
2901                         c->Request.CDB[0] = BMIC_WRITE;
2902                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2903                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2904                         c->Request.CDB[8] = size & 0xFF;
2905                         break;
2906                 case TEST_UNIT_READY:
2907                         c->Request.CDBLen = 6;
2908                         c->Request.Type.Attribute = ATTR_SIMPLE;
2909                         c->Request.Type.Direction = XFER_NONE;
2910                         c->Request.Timeout = 0;
2911                         break;
2912                 default:
2913                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2914                         BUG();
2915                         return;
2916                 }
2917         } else if (cmd_type == TYPE_MSG) {
2918                 switch (cmd) {
2919
2920                 case  HPSA_DEVICE_RESET_MSG:
2921                         c->Request.CDBLen = 16;
2922                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2923                         c->Request.Type.Attribute = ATTR_SIMPLE;
2924                         c->Request.Type.Direction = XFER_NONE;
2925                         c->Request.Timeout = 0; /* Don't time out */
2926                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2927                         c->Request.CDB[0] =  cmd;
2928                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2929                         /* If bytes 4-7 are zero, it means reset the */
2930                         /* LunID device */
2931                         c->Request.CDB[4] = 0x00;
2932                         c->Request.CDB[5] = 0x00;
2933                         c->Request.CDB[6] = 0x00;
2934                         c->Request.CDB[7] = 0x00;
2935                 break;
2936
2937                 default:
2938                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2939                                 cmd);
2940                         BUG();
2941                 }
2942         } else {
2943                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2944                 BUG();
2945         }
2946
2947         switch (c->Request.Type.Direction) {
2948         case XFER_READ:
2949                 pci_dir = PCI_DMA_FROMDEVICE;
2950                 break;
2951         case XFER_WRITE:
2952                 pci_dir = PCI_DMA_TODEVICE;
2953                 break;
2954         case XFER_NONE:
2955                 pci_dir = PCI_DMA_NONE;
2956                 break;
2957         default:
2958                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2959         }
2960
2961         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2962
2963         return;
2964 }
2965
2966 /*
2967  * Map (physical) PCI mem into (virtual) kernel space
2968  */
2969 static void __iomem *remap_pci_mem(ulong base, ulong size)
2970 {
2971         ulong page_base = ((ulong) base) & PAGE_MASK;
2972         ulong page_offs = ((ulong) base) - page_base;
2973         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2974
2975         return page_remapped ? (page_remapped + page_offs) : NULL;
2976 }
2977
2978 /* Takes cmds off the submission queue and sends them to the hardware,
2979  * then puts them on the queue of cmds waiting for completion.
2980  */
2981 static void start_io(struct ctlr_info *h)
2982 {
2983         struct CommandList *c;
2984
2985         while (!list_empty(&h->reqQ)) {
2986                 c = list_entry(h->reqQ.next, struct CommandList, list);
2987                 /* can't do anything if fifo is full */
2988                 if ((h->access.fifo_full(h))) {
2989                         dev_warn(&h->pdev->dev, "fifo full\n");
2990                         break;
2991                 }
2992
2993                 /* Get the first entry from the Request Q */
2994                 removeQ(c);
2995                 h->Qdepth--;
2996
2997                 /* Tell the controller execute command */
2998                 h->access.submit_command(h, c);
2999
3000                 /* Put job onto the completed Q */
3001                 addQ(&h->cmpQ, c);
3002         }
3003 }
3004
3005 static inline unsigned long get_next_completion(struct ctlr_info *h)
3006 {
3007         return h->access.command_completed(h);
3008 }
3009
3010 static inline bool interrupt_pending(struct ctlr_info *h)
3011 {
3012         return h->access.intr_pending(h);
3013 }
3014
3015 static inline long interrupt_not_for_us(struct ctlr_info *h)
3016 {
3017         return (h->access.intr_pending(h) == 0) ||
3018                 (h->interrupts_enabled == 0);
3019 }
3020
3021 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3022         u32 raw_tag)
3023 {
3024         if (unlikely(tag_index >= h->nr_cmds)) {
3025                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3026                 return 1;
3027         }
3028         return 0;
3029 }
3030
3031 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3032 {
3033         removeQ(c);
3034         if (likely(c->cmd_type == CMD_SCSI))
3035                 complete_scsi_command(c);
3036         else if (c->cmd_type == CMD_IOCTL_PEND)
3037                 complete(c->waiting);
3038 }
3039
3040 static inline u32 hpsa_tag_contains_index(u32 tag)
3041 {
3042         return tag & DIRECT_LOOKUP_BIT;
3043 }
3044
3045 static inline u32 hpsa_tag_to_index(u32 tag)
3046 {
3047         return tag >> DIRECT_LOOKUP_SHIFT;
3048 }
3049
3050
3051 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3052 {
3053 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3054 #define HPSA_SIMPLE_ERROR_BITS 0x03
3055         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3056                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3057         return tag & ~HPSA_PERF_ERROR_BITS;
3058 }
3059
3060 /* process completion of an indexed ("direct lookup") command */
3061 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3062         u32 raw_tag)
3063 {
3064         u32 tag_index;
3065         struct CommandList *c;
3066
3067         tag_index = hpsa_tag_to_index(raw_tag);
3068         if (bad_tag(h, tag_index, raw_tag))
3069                 return next_command(h);
3070         c = h->cmd_pool + tag_index;
3071         finish_cmd(c, raw_tag);
3072         return next_command(h);
3073 }
3074
3075 /* process completion of a non-indexed command */
3076 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3077         u32 raw_tag)
3078 {
3079         u32 tag;
3080         struct CommandList *c = NULL;
3081
3082         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3083         list_for_each_entry(c, &h->cmpQ, list) {
3084                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3085                         finish_cmd(c, raw_tag);
3086                         return next_command(h);
3087                 }
3088         }
3089         bad_tag(h, h->nr_cmds + 1, raw_tag);
3090         return next_command(h);
3091 }
3092
3093 /* Some controllers, like p400, will give us one interrupt
3094  * after a soft reset, even if we turned interrupts off.
3095  * Only need to check for this in the hpsa_xxx_discard_completions
3096  * functions.
3097  */
3098 static int ignore_bogus_interrupt(struct ctlr_info *h)
3099 {
3100         if (likely(!reset_devices))
3101                 return 0;
3102
3103         if (likely(h->interrupts_enabled))
3104                 return 0;
3105
3106         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3107                 "(known firmware bug.)  Ignoring.\n");
3108
3109         return 1;
3110 }
3111
3112 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3113 {
3114         struct ctlr_info *h = dev_id;
3115         unsigned long flags;
3116         u32 raw_tag;
3117
3118         if (ignore_bogus_interrupt(h))
3119                 return IRQ_NONE;
3120
3121         if (interrupt_not_for_us(h))
3122                 return IRQ_NONE;
3123         spin_lock_irqsave(&h->lock, flags);
3124         h->last_intr_timestamp = get_jiffies_64();
3125         while (interrupt_pending(h)) {
3126                 raw_tag = get_next_completion(h);
3127                 while (raw_tag != FIFO_EMPTY)
3128                         raw_tag = next_command(h);
3129         }
3130         spin_unlock_irqrestore(&h->lock, flags);
3131         return IRQ_HANDLED;
3132 }
3133
3134 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3135 {
3136         struct ctlr_info *h = dev_id;
3137         unsigned long flags;
3138         u32 raw_tag;
3139
3140         if (ignore_bogus_interrupt(h))
3141                 return IRQ_NONE;
3142
3143         spin_lock_irqsave(&h->lock, flags);
3144         h->last_intr_timestamp = get_jiffies_64();
3145         raw_tag = get_next_completion(h);
3146         while (raw_tag != FIFO_EMPTY)
3147                 raw_tag = next_command(h);
3148         spin_unlock_irqrestore(&h->lock, flags);
3149         return IRQ_HANDLED;
3150 }
3151
3152 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3153 {
3154         struct ctlr_info *h = dev_id;
3155         unsigned long flags;
3156         u32 raw_tag;
3157
3158         if (interrupt_not_for_us(h))
3159                 return IRQ_NONE;
3160         spin_lock_irqsave(&h->lock, flags);
3161         h->last_intr_timestamp = get_jiffies_64();
3162         while (interrupt_pending(h)) {
3163                 raw_tag = get_next_completion(h);
3164                 while (raw_tag != FIFO_EMPTY) {
3165                         if (hpsa_tag_contains_index(raw_tag))
3166                                 raw_tag = process_indexed_cmd(h, raw_tag);
3167                         else
3168                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3169                 }
3170         }
3171         spin_unlock_irqrestore(&h->lock, flags);
3172         return IRQ_HANDLED;
3173 }
3174
3175 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3176 {
3177         struct ctlr_info *h = dev_id;
3178         unsigned long flags;
3179         u32 raw_tag;
3180
3181         spin_lock_irqsave(&h->lock, flags);
3182         h->last_intr_timestamp = get_jiffies_64();
3183         raw_tag = get_next_completion(h);
3184         while (raw_tag != FIFO_EMPTY) {
3185                 if (hpsa_tag_contains_index(raw_tag))
3186                         raw_tag = process_indexed_cmd(h, raw_tag);
3187                 else
3188                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3189         }
3190         spin_unlock_irqrestore(&h->lock, flags);
3191         return IRQ_HANDLED;
3192 }
3193
3194 /* Send a message CDB to the firmware. Careful, this only works
3195  * in simple mode, not performant mode due to the tag lookup.
3196  * We only ever use this immediately after a controller reset.
3197  */
3198 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3199                                                 unsigned char type)
3200 {
3201         struct Command {
3202                 struct CommandListHeader CommandHeader;
3203                 struct RequestBlock Request;
3204                 struct ErrDescriptor ErrorDescriptor;
3205         };
3206         struct Command *cmd;
3207         static const size_t cmd_sz = sizeof(*cmd) +
3208                                         sizeof(cmd->ErrorDescriptor);
3209         dma_addr_t paddr64;
3210         uint32_t paddr32, tag;
3211         void __iomem *vaddr;
3212         int i, err;
3213
3214         vaddr = pci_ioremap_bar(pdev, 0);
3215         if (vaddr == NULL)
3216                 return -ENOMEM;
3217
3218         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3219          * CCISS commands, so they must be allocated from the lower 4GiB of
3220          * memory.
3221          */
3222         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3223         if (err) {
3224                 iounmap(vaddr);
3225                 return -ENOMEM;
3226         }
3227
3228         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3229         if (cmd == NULL) {
3230                 iounmap(vaddr);
3231                 return -ENOMEM;
3232         }
3233
3234         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3235          * although there's no guarantee, we assume that the address is at
3236          * least 4-byte aligned (most likely, it's page-aligned).
3237          */
3238         paddr32 = paddr64;
3239
3240         cmd->CommandHeader.ReplyQueue = 0;
3241         cmd->CommandHeader.SGList = 0;
3242         cmd->CommandHeader.SGTotal = 0;
3243         cmd->CommandHeader.Tag.lower = paddr32;
3244         cmd->CommandHeader.Tag.upper = 0;
3245         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3246
3247         cmd->Request.CDBLen = 16;
3248         cmd->Request.Type.Type = TYPE_MSG;
3249         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3250         cmd->Request.Type.Direction = XFER_NONE;
3251         cmd->Request.Timeout = 0; /* Don't time out */
3252         cmd->Request.CDB[0] = opcode;
3253         cmd->Request.CDB[1] = type;
3254         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3255         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3256         cmd->ErrorDescriptor.Addr.upper = 0;
3257         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3258
3259         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3260
3261         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3262                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3263                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3264                         break;
3265                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3266         }
3267
3268         iounmap(vaddr);
3269
3270         /* we leak the DMA buffer here ... no choice since the controller could
3271          *  still complete the command.
3272          */
3273         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3274                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3275                         opcode, type);
3276                 return -ETIMEDOUT;
3277         }
3278
3279         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3280
3281         if (tag & HPSA_ERROR_BIT) {
3282                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3283                         opcode, type);
3284                 return -EIO;
3285         }
3286
3287         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3288                 opcode, type);
3289         return 0;
3290 }
3291
3292 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3293
3294 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3295         void * __iomem vaddr, u32 use_doorbell)
3296 {
3297         u16 pmcsr;
3298         int pos;
3299
3300         if (use_doorbell) {
3301                 /* For everything after the P600, the PCI power state method
3302                  * of resetting the controller doesn't work, so we have this
3303                  * other way using the doorbell register.
3304                  */
3305                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3306                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3307         } else { /* Try to do it the PCI power state way */
3308
3309                 /* Quoting from the Open CISS Specification: "The Power
3310                  * Management Control/Status Register (CSR) controls the power
3311                  * state of the device.  The normal operating state is D0,
3312                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3313                  * the controller, place the interface device in D3 then to D0,
3314                  * this causes a secondary PCI reset which will reset the
3315                  * controller." */
3316
3317                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3318                 if (pos == 0) {
3319                         dev_err(&pdev->dev,
3320                                 "hpsa_reset_controller: "
3321                                 "PCI PM not supported\n");
3322                         return -ENODEV;
3323                 }
3324                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3325                 /* enter the D3hot power management state */
3326                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3327                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3328                 pmcsr |= PCI_D3hot;
3329                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3330
3331                 msleep(500);
3332
3333                 /* enter the D0 power management state */
3334                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3335                 pmcsr |= PCI_D0;
3336                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3337
3338                 /*
3339                  * The P600 requires a small delay when changing states.
3340                  * Otherwise we may think the board did not reset and we bail.
3341                  * This for kdump only and is particular to the P600.
3342                  */
3343                 msleep(500);
3344         }
3345         return 0;
3346 }
3347
3348 static __devinit void init_driver_version(char *driver_version, int len)
3349 {
3350         memset(driver_version, 0, len);
3351         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3352 }
3353
3354 static __devinit int write_driver_ver_to_cfgtable(
3355         struct CfgTable __iomem *cfgtable)
3356 {
3357         char *driver_version;
3358         int i, size = sizeof(cfgtable->driver_version);
3359
3360         driver_version = kmalloc(size, GFP_KERNEL);
3361         if (!driver_version)
3362                 return -ENOMEM;
3363
3364         init_driver_version(driver_version, size);
3365         for (i = 0; i < size; i++)
3366                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3367         kfree(driver_version);
3368         return 0;
3369 }
3370
3371 static __devinit void read_driver_ver_from_cfgtable(
3372         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3373 {
3374         int i;
3375
3376         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3377                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3378 }
3379
3380 static __devinit int controller_reset_failed(
3381         struct CfgTable __iomem *cfgtable)
3382 {
3383
3384         char *driver_ver, *old_driver_ver;
3385         int rc, size = sizeof(cfgtable->driver_version);
3386
3387         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3388         if (!old_driver_ver)
3389                 return -ENOMEM;
3390         driver_ver = old_driver_ver + size;
3391
3392         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3393          * should have been changed, otherwise we know the reset failed.
3394          */
3395         init_driver_version(old_driver_ver, size);
3396         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3397         rc = !memcmp(driver_ver, old_driver_ver, size);
3398         kfree(old_driver_ver);
3399         return rc;
3400 }
3401 /* This does a hard reset of the controller using PCI power management
3402  * states or the using the doorbell register.
3403  */
3404 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3405 {
3406         u64 cfg_offset;
3407         u32 cfg_base_addr;
3408         u64 cfg_base_addr_index;
3409         void __iomem *vaddr;
3410         unsigned long paddr;
3411         u32 misc_fw_support;
3412         int rc;
3413         struct CfgTable __iomem *cfgtable;
3414         u32 use_doorbell;
3415         u32 board_id;
3416         u16 command_register;
3417
3418         /* For controllers as old as the P600, this is very nearly
3419          * the same thing as
3420          *
3421          * pci_save_state(pci_dev);
3422          * pci_set_power_state(pci_dev, PCI_D3hot);
3423          * pci_set_power_state(pci_dev, PCI_D0);
3424          * pci_restore_state(pci_dev);
3425          *
3426          * For controllers newer than the P600, the pci power state
3427          * method of resetting doesn't work so we have another way
3428          * using the doorbell register.
3429          */
3430
3431         rc = hpsa_lookup_board_id(pdev, &board_id);
3432         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3433                 dev_warn(&pdev->dev, "Not resetting device.\n");
3434                 return -ENODEV;
3435         }
3436
3437         /* if controller is soft- but not hard resettable... */
3438         if (!ctlr_is_hard_resettable(board_id))
3439                 return -ENOTSUPP; /* try soft reset later. */
3440
3441         /* Save the PCI command register */
3442         pci_read_config_word(pdev, 4, &command_register);
3443         /* Turn the board off.  This is so that later pci_restore_state()
3444          * won't turn the board on before the rest of config space is ready.
3445          */
3446         pci_disable_device(pdev);
3447         pci_save_state(pdev);
3448
3449         /* find the first memory BAR, so we can find the cfg table */
3450         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3451         if (rc)
3452                 return rc;
3453         vaddr = remap_pci_mem(paddr, 0x250);
3454         if (!vaddr)
3455                 return -ENOMEM;
3456
3457         /* find cfgtable in order to check if reset via doorbell is supported */
3458         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3459                                         &cfg_base_addr_index, &cfg_offset);
3460         if (rc)
3461                 goto unmap_vaddr;
3462         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3463                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3464         if (!cfgtable) {
3465                 rc = -ENOMEM;
3466                 goto unmap_vaddr;
3467         }
3468         rc = write_driver_ver_to_cfgtable(cfgtable);
3469         if (rc)
3470                 goto unmap_vaddr;
3471
3472         /* If reset via doorbell register is supported, use that.
3473          * There are two such methods.  Favor the newest method.
3474          */
3475         misc_fw_support = readl(&cfgtable->misc_fw_support);
3476         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3477         if (use_doorbell) {
3478                 use_doorbell = DOORBELL_CTLR_RESET2;
3479         } else {
3480                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3481                 if (use_doorbell) {
3482                         dev_warn(&pdev->dev, "Soft reset not supported. "
3483                                 "Firmware update is required.\n");
3484                         rc = -ENOTSUPP; /* try soft reset */
3485                         goto unmap_cfgtable;
3486                 }
3487         }
3488
3489         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3490         if (rc)
3491                 goto unmap_cfgtable;
3492
3493         pci_restore_state(pdev);
3494         rc = pci_enable_device(pdev);
3495         if (rc) {
3496                 dev_warn(&pdev->dev, "failed to enable device.\n");
3497                 goto unmap_cfgtable;
3498         }
3499         pci_write_config_word(pdev, 4, command_register);
3500
3501         /* Some devices (notably the HP Smart Array 5i Controller)
3502            need a little pause here */
3503         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3504
3505         /* Wait for board to become not ready, then ready. */
3506         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3507         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3508         if (rc) {
3509                 dev_warn(&pdev->dev,
3510                         "failed waiting for board to reset."
3511                         " Will try soft reset.\n");
3512                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3513                 goto unmap_cfgtable;
3514         }
3515         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3516         if (rc) {
3517                 dev_warn(&pdev->dev,
3518                         "failed waiting for board to become ready "
3519                         "after hard reset\n");
3520                 goto unmap_cfgtable;
3521         }
3522
3523         rc = controller_reset_failed(vaddr);
3524         if (rc < 0)
3525                 goto unmap_cfgtable;
3526         if (rc) {
3527                 dev_warn(&pdev->dev, "Unable to successfully reset "
3528                         "controller. Will try soft reset.\n");
3529                 rc = -ENOTSUPP;
3530         } else {
3531                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3532         }
3533
3534 unmap_cfgtable:
3535         iounmap(cfgtable);
3536
3537 unmap_vaddr:
3538         iounmap(vaddr);
3539         return rc;
3540 }
3541
3542 /*
3543  *  We cannot read the structure directly, for portability we must use
3544  *   the io functions.
3545  *   This is for debug only.
3546  */
3547 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3548 {
3549 #ifdef HPSA_DEBUG
3550         int i;
3551         char temp_name[17];
3552
3553         dev_info(dev, "Controller Configuration information\n");
3554         dev_info(dev, "------------------------------------\n");
3555         for (i = 0; i < 4; i++)
3556                 temp_name[i] = readb(&(tb->Signature[i]));
3557         temp_name[4] = '\0';
3558         dev_info(dev, "   Signature = %s\n", temp_name);
3559         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3560         dev_info(dev, "   Transport methods supported = 0x%x\n",
3561                readl(&(tb->TransportSupport)));
3562         dev_info(dev, "   Transport methods active = 0x%x\n",
3563                readl(&(tb->TransportActive)));
3564         dev_info(dev, "   Requested transport Method = 0x%x\n",
3565                readl(&(tb->HostWrite.TransportRequest)));
3566         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3567                readl(&(tb->HostWrite.CoalIntDelay)));
3568         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3569                readl(&(tb->HostWrite.CoalIntCount)));
3570         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3571                readl(&(tb->CmdsOutMax)));
3572         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3573         for (i = 0; i < 16; i++)
3574                 temp_name[i] = readb(&(tb->ServerName[i]));
3575         temp_name[16] = '\0';
3576         dev_info(dev, "   Server Name = %s\n", temp_name);
3577         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3578                 readl(&(tb->HeartBeat)));
3579 #endif                          /* HPSA_DEBUG */
3580 }
3581
3582 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3583 {
3584         int i, offset, mem_type, bar_type;
3585
3586         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3587                 return 0;
3588         offset = 0;
3589         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3590                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3591                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3592                         offset += 4;
3593                 else {
3594                         mem_type = pci_resource_flags(pdev, i) &
3595                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3596                         switch (mem_type) {
3597                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3598                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3599                                 offset += 4;    /* 32 bit */
3600                                 break;
3601                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3602                                 offset += 8;
3603                                 break;
3604                         default:        /* reserved in PCI 2.2 */
3605                                 dev_warn(&pdev->dev,
3606                                        "base address is invalid\n");
3607                                 return -1;
3608                                 break;
3609                         }
3610                 }
3611                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3612                         return i + 1;
3613         }
3614         return -1;
3615 }
3616
3617 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3618  * controllers that are capable. If not, we use IO-APIC mode.
3619  */
3620
3621 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3622 {
3623 #ifdef CONFIG_PCI_MSI
3624         int err;
3625         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3626         {0, 2}, {0, 3}
3627         };
3628
3629         /* Some boards advertise MSI but don't really support it */
3630         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3631             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3632                 goto default_int_mode;
3633         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3634                 dev_info(&h->pdev->dev, "MSIX\n");
3635                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3636                 if (!err) {
3637                         h->intr[0] = hpsa_msix_entries[0].vector;
3638                         h->intr[1] = hpsa_msix_entries[1].vector;
3639                         h->intr[2] = hpsa_msix_entries[2].vector;
3640                         h->intr[3] = hpsa_msix_entries[3].vector;
3641                         h->msix_vector = 1;
3642                         return;
3643                 }
3644                 if (err > 0) {
3645                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3646                                "available\n", err);
3647                         goto default_int_mode;
3648                 } else {
3649                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3650                                err);
3651                         goto default_int_mode;
3652                 }
3653         }
3654         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3655                 dev_info(&h->pdev->dev, "MSI\n");
3656                 if (!pci_enable_msi(h->pdev))
3657                         h->msi_vector = 1;
3658                 else
3659                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3660         }
3661 default_int_mode:
3662 #endif                          /* CONFIG_PCI_MSI */
3663         /* if we get here we're going to use the default interrupt mode */
3664         h->intr[h->intr_mode] = h->pdev->irq;
3665 }
3666
3667 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3668 {
3669         int i;
3670         u32 subsystem_vendor_id, subsystem_device_id;
3671
3672         subsystem_vendor_id = pdev->subsystem_vendor;
3673         subsystem_device_id = pdev->subsystem_device;
3674         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3675                     subsystem_vendor_id;
3676
3677         for (i = 0; i < ARRAY_SIZE(products); i++)
3678                 if (*board_id == products[i].board_id)
3679                         return i;
3680
3681         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3682                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3683                 !hpsa_allow_any) {
3684                 dev_warn(&pdev->dev, "unrecognized board ID: "
3685                         "0x%08x, ignoring.\n", *board_id);
3686                         return -ENODEV;
3687         }
3688         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3689 }
3690
3691 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3692 {
3693         u16 command;
3694
3695         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3696         return ((command & PCI_COMMAND_MEMORY) == 0);
3697 }
3698
3699 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3700         unsigned long *memory_bar)
3701 {
3702         int i;
3703
3704         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3705                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3706                         /* addressing mode bits already removed */
3707                         *memory_bar = pci_resource_start(pdev, i);
3708                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3709                                 *memory_bar);
3710                         return 0;
3711                 }
3712         dev_warn(&pdev->dev, "no memory BAR found\n");
3713         return -ENODEV;
3714 }
3715
3716 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3717         void __iomem *vaddr, int wait_for_ready)
3718 {
3719         int i, iterations;
3720         u32 scratchpad;
3721         if (wait_for_ready)
3722                 iterations = HPSA_BOARD_READY_ITERATIONS;
3723         else
3724                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3725
3726         for (i = 0; i < iterations; i++) {
3727                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3728                 if (wait_for_ready) {
3729                         if (scratchpad == HPSA_FIRMWARE_READY)
3730                                 return 0;
3731                 } else {
3732                         if (scratchpad != HPSA_FIRMWARE_READY)
3733                                 return 0;
3734                 }
3735                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3736         }
3737         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3738         return -ENODEV;
3739 }
3740
3741 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3742         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3743         u64 *cfg_offset)
3744 {
3745         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3746         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3747         *cfg_base_addr &= (u32) 0x0000ffff;
3748         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3749         if (*cfg_base_addr_index == -1) {
3750                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3751                 return -ENODEV;
3752         }
3753         return 0;
3754 }
3755
3756 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3757 {
3758         u64 cfg_offset;
3759         u32 cfg_base_addr;
3760         u64 cfg_base_addr_index;
3761         u32 trans_offset;
3762         int rc;
3763
3764         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3765                 &cfg_base_addr_index, &cfg_offset);
3766         if (rc)
3767                 return rc;
3768         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3769                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3770         if (!h->cfgtable)
3771                 return -ENOMEM;
3772         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3773         if (rc)
3774                 return rc;
3775         /* Find performant mode table. */
3776         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3777         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3778                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3779                                 sizeof(*h->transtable));
3780         if (!h->transtable)
3781                 return -ENOMEM;
3782         return 0;
3783 }
3784
3785 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3786 {
3787         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3788
3789         /* Limit commands in memory limited kdump scenario. */
3790         if (reset_devices && h->max_commands > 32)
3791                 h->max_commands = 32;
3792
3793         if (h->max_commands < 16) {
3794                 dev_warn(&h->pdev->dev, "Controller reports "
3795                         "max supported commands of %d, an obvious lie. "
3796                         "Using 16.  Ensure that firmware is up to date.\n",
3797                         h->max_commands);
3798                 h->max_commands = 16;
3799         }
3800 }
3801
3802 /* Interrogate the hardware for some limits:
3803  * max commands, max SG elements without chaining, and with chaining,
3804  * SG chain block size, etc.
3805  */
3806 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3807 {
3808         hpsa_get_max_perf_mode_cmds(h);
3809         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3810         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3811         /*
3812          * Limit in-command s/g elements to 32 save dma'able memory.
3813          * Howvever spec says if 0, use 31
3814          */
3815         h->max_cmd_sg_entries = 31;
3816         if (h->maxsgentries > 512) {
3817                 h->max_cmd_sg_entries = 32;
3818                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3819                 h->maxsgentries--; /* save one for chain pointer */
3820         } else {
3821                 h->maxsgentries = 31; /* default to traditional values */
3822                 h->chainsize = 0;
3823         }
3824 }
3825
3826 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3827 {
3828         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3829             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3830             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3831             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3832                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3833                 return false;
3834         }
3835         return true;
3836 }
3837
3838 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3839 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3840 {
3841 #ifdef CONFIG_X86
3842         u32 prefetch;
3843
3844         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3845         prefetch |= 0x100;
3846         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3847 #endif
3848 }
3849
3850 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3851  * in a prefetch beyond physical memory.
3852  */
3853 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3854 {
3855         u32 dma_prefetch;
3856
3857         if (h->board_id != 0x3225103C)
3858                 return;
3859         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3860         dma_prefetch |= 0x8000;
3861         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3862 }
3863
3864 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3865 {
3866         int i;
3867         u32 doorbell_value;
3868         unsigned long flags;
3869
3870         /* under certain very rare conditions, this can take awhile.
3871          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3872          * as we enter this code.)
3873          */
3874         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3875                 spin_lock_irqsave(&h->lock, flags);
3876                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3877                 spin_unlock_irqrestore(&h->lock, flags);
3878                 if (!(doorbell_value & CFGTBL_ChangeReq))
3879                         break;
3880                 /* delay and try again */
3881                 usleep_range(10000, 20000);
3882         }
3883 }
3884
3885 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3886 {
3887         u32 trans_support;
3888
3889         trans_support = readl(&(h->cfgtable->TransportSupport));
3890         if (!(trans_support & SIMPLE_MODE))
3891                 return -ENOTSUPP;
3892
3893         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3894         /* Update the field, and then ring the doorbell */
3895         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3896         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3897         hpsa_wait_for_mode_change_ack(h);
3898         print_cfg_table(&h->pdev->dev, h->cfgtable);
3899         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3900                 dev_warn(&h->pdev->dev,
3901                         "unable to get board into simple mode\n");
3902                 return -ENODEV;
3903         }
3904         h->transMethod = CFGTBL_Trans_Simple;
3905         return 0;
3906 }
3907
3908 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3909 {
3910         int prod_index, err;
3911
3912         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3913         if (prod_index < 0)
3914                 return -ENODEV;
3915         h->product_name = products[prod_index].product_name;
3916         h->access = *(products[prod_index].access);
3917
3918         if (hpsa_board_disabled(h->pdev)) {
3919                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3920                 return -ENODEV;
3921         }
3922
3923         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3924                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3925
3926         err = pci_enable_device(h->pdev);
3927         if (err) {
3928                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3929                 return err;
3930         }
3931
3932         err = pci_request_regions(h->pdev, "hpsa");
3933         if (err) {
3934                 dev_err(&h->pdev->dev,
3935                         "cannot obtain PCI resources, aborting\n");
3936                 return err;
3937         }
3938         hpsa_interrupt_mode(h);
3939         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3940         if (err)
3941                 goto err_out_free_res;
3942         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3943         if (!h->vaddr) {
3944                 err = -ENOMEM;
3945                 goto err_out_free_res;
3946         }
3947         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3948         if (err)
3949                 goto err_out_free_res;
3950         err = hpsa_find_cfgtables(h);
3951         if (err)
3952                 goto err_out_free_res;
3953         hpsa_find_board_params(h);
3954
3955         if (!hpsa_CISS_signature_present(h)) {
3956                 err = -ENODEV;
3957                 goto err_out_free_res;
3958         }
3959         hpsa_enable_scsi_prefetch(h);
3960         hpsa_p600_dma_prefetch_quirk(h);
3961         err = hpsa_enter_simple_mode(h);
3962         if (err)
3963                 goto err_out_free_res;
3964         return 0;
3965
3966 err_out_free_res:
3967         if (h->transtable)
3968                 iounmap(h->transtable);
3969         if (h->cfgtable)
3970                 iounmap(h->cfgtable);
3971         if (h->vaddr)
3972                 iounmap(h->vaddr);
3973         /*
3974          * Deliberately omit pci_disable_device(): it does something nasty to
3975          * Smart Array controllers that pci_enable_device does not undo
3976          */
3977         pci_release_regions(h->pdev);
3978         return err;
3979 }
3980
3981 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3982 {
3983         int rc;
3984
3985 #define HBA_INQUIRY_BYTE_COUNT 64
3986         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3987         if (!h->hba_inquiry_data)
3988                 return;
3989         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3990                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3991         if (rc != 0) {
3992                 kfree(h->hba_inquiry_data);
3993                 h->hba_inquiry_data = NULL;
3994         }
3995 }
3996
3997 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3998 {
3999         int rc, i;
4000
4001         if (!reset_devices)
4002                 return 0;
4003
4004         /* Reset the controller with a PCI power-cycle or via doorbell */
4005         rc = hpsa_kdump_hard_reset_controller(pdev);
4006
4007         /* -ENOTSUPP here means we cannot reset the controller
4008          * but it's already (and still) up and running in
4009          * "performant mode".  Or, it might be 640x, which can't reset
4010          * due to concerns about shared bbwc between 6402/6404 pair.
4011          */
4012         if (rc == -ENOTSUPP)
4013                 return rc; /* just try to do the kdump anyhow. */
4014         if (rc)
4015                 return -ENODEV;
4016
4017         /* Now try to get the controller to respond to a no-op */
4018         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4019         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4020                 if (hpsa_noop(pdev) == 0)
4021                         break;
4022                 else
4023                         dev_warn(&pdev->dev, "no-op failed%s\n",
4024                                         (i < 11 ? "; re-trying" : ""));
4025         }
4026         return 0;
4027 }
4028
4029 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4030 {
4031         h->cmd_pool_bits = kzalloc(
4032                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4033                 sizeof(unsigned long), GFP_KERNEL);
4034         h->cmd_pool = pci_alloc_consistent(h->pdev,
4035                     h->nr_cmds * sizeof(*h->cmd_pool),
4036                     &(h->cmd_pool_dhandle));
4037         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4038                     h->nr_cmds * sizeof(*h->errinfo_pool),
4039                     &(h->errinfo_pool_dhandle));
4040         if ((h->cmd_pool_bits == NULL)
4041             || (h->cmd_pool == NULL)
4042             || (h->errinfo_pool == NULL)) {
4043                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4044                 return -ENOMEM;
4045         }
4046         return 0;
4047 }
4048
4049 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4050 {
4051         kfree(h->cmd_pool_bits);
4052         if (h->cmd_pool)
4053                 pci_free_consistent(h->pdev,
4054                             h->nr_cmds * sizeof(struct CommandList),
4055                             h->cmd_pool, h->cmd_pool_dhandle);
4056         if (h->errinfo_pool)
4057                 pci_free_consistent(h->pdev,
4058                             h->nr_cmds * sizeof(struct ErrorInfo),
4059                             h->errinfo_pool,
4060                             h->errinfo_pool_dhandle);
4061 }
4062
4063 static int hpsa_request_irq(struct ctlr_info *h,
4064         irqreturn_t (*msixhandler)(int, void *),
4065         irqreturn_t (*intxhandler)(int, void *))
4066 {
4067         int rc;
4068
4069         if (h->msix_vector || h->msi_vector)
4070                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4071                                 0, h->devname, h);
4072         else
4073                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4074                                 IRQF_SHARED, h->devname, h);
4075         if (rc) {
4076                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4077                        h->intr[h->intr_mode], h->devname);
4078                 return -ENODEV;
4079         }
4080         return 0;
4081 }
4082
4083 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4084 {
4085         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4086                 HPSA_RESET_TYPE_CONTROLLER)) {
4087                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4088                 return -EIO;
4089         }
4090
4091         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4092         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4093                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4094                 return -1;
4095         }
4096
4097         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4098         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4099                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4100                         "after soft reset.\n");
4101                 return -1;
4102         }
4103
4104         return 0;
4105 }
4106
4107 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4108 {
4109         free_irq(h->intr[h->intr_mode], h);
4110 #ifdef CONFIG_PCI_MSI
4111         if (h->msix_vector)
4112                 pci_disable_msix(h->pdev);
4113         else if (h->msi_vector)
4114                 pci_disable_msi(h->pdev);
4115 #endif /* CONFIG_PCI_MSI */
4116         hpsa_free_sg_chain_blocks(h);
4117         hpsa_free_cmd_pool(h);
4118         kfree(h->blockFetchTable);
4119         pci_free_consistent(h->pdev, h->reply_pool_size,
4120                 h->reply_pool, h->reply_pool_dhandle);
4121         if (h->vaddr)
4122                 iounmap(h->vaddr);
4123         if (h->transtable)
4124                 iounmap(h->transtable);
4125         if (h->cfgtable)
4126                 iounmap(h->cfgtable);
4127         pci_release_regions(h->pdev);
4128         kfree(h);
4129 }
4130
4131 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4132 {
4133         assert_spin_locked(&lockup_detector_lock);
4134         if (!hpsa_lockup_detector)
4135                 return;
4136         if (h->lockup_detected)
4137                 return; /* already stopped the lockup detector */
4138         list_del(&h->lockup_list);
4139 }
4140
4141 /* Called when controller lockup detected. */
4142 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4143 {
4144         struct CommandList *c = NULL;
4145
4146         assert_spin_locked(&h->lock);
4147         /* Mark all outstanding commands as failed and complete them. */
4148         while (!list_empty(list)) {
4149                 c = list_entry(list->next, struct CommandList, list);
4150                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4151                 finish_cmd(c, c->Header.Tag.lower);
4152         }
4153 }
4154
4155 static void controller_lockup_detected(struct ctlr_info *h)
4156 {
4157         unsigned long flags;
4158
4159         assert_spin_locked(&lockup_detector_lock);
4160         remove_ctlr_from_lockup_detector_list(h);
4161         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4162         spin_lock_irqsave(&h->lock, flags);
4163         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4164         spin_unlock_irqrestore(&h->lock, flags);
4165         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4166                         h->lockup_detected);
4167         pci_disable_device(h->pdev);
4168         spin_lock_irqsave(&h->lock, flags);
4169         fail_all_cmds_on_list(h, &h->cmpQ);
4170         fail_all_cmds_on_list(h, &h->reqQ);
4171         spin_unlock_irqrestore(&h->lock, flags);
4172 }
4173
4174 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4175 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4176
4177 static void detect_controller_lockup(struct ctlr_info *h)
4178 {
4179         u64 now;
4180         u32 heartbeat;
4181         unsigned long flags;
4182
4183         assert_spin_locked(&lockup_detector_lock);
4184         now = get_jiffies_64();
4185         /* If we've received an interrupt recently, we're ok. */
4186         if (time_after64(h->last_intr_timestamp +
4187                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4188                 return;
4189
4190         /*
4191          * If we've already checked the heartbeat recently, we're ok.
4192          * This could happen if someone sends us a signal. We
4193          * otherwise don't care about signals in this thread.
4194          */
4195         if (time_after64(h->last_heartbeat_timestamp +
4196                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4197                 return;
4198
4199         /* If heartbeat has not changed since we last looked, we're not ok. */
4200         spin_lock_irqsave(&h->lock, flags);
4201         heartbeat = readl(&h->cfgtable->HeartBeat);
4202         spin_unlock_irqrestore(&h->lock, flags);
4203         if (h->last_heartbeat == heartbeat) {
4204                 controller_lockup_detected(h);
4205                 return;
4206         }
4207
4208         /* We're ok. */
4209         h->last_heartbeat = heartbeat;
4210         h->last_heartbeat_timestamp = now;
4211 }
4212
4213 static int detect_controller_lockup_thread(void *notused)
4214 {
4215         struct ctlr_info *h;
4216         unsigned long flags;
4217
4218         while (1) {
4219                 struct list_head *this, *tmp;
4220
4221                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4222                 if (kthread_should_stop())
4223                         break;
4224                 spin_lock_irqsave(&lockup_detector_lock, flags);
4225                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4226                         h = list_entry(this, struct ctlr_info, lockup_list);
4227                         detect_controller_lockup(h);
4228                 }
4229                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4230         }
4231         return 0;
4232 }
4233
4234 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4235 {
4236         unsigned long flags;
4237
4238         spin_lock_irqsave(&lockup_detector_lock, flags);
4239         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4240         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4241 }
4242
4243 static void start_controller_lockup_detector(struct ctlr_info *h)
4244 {
4245         /* Start the lockup detector thread if not already started */
4246         if (!hpsa_lockup_detector) {
4247                 spin_lock_init(&lockup_detector_lock);
4248                 hpsa_lockup_detector =
4249                         kthread_run(detect_controller_lockup_thread,
4250                                                 NULL, "hpsa");
4251         }
4252         if (!hpsa_lockup_detector) {
4253                 dev_warn(&h->pdev->dev,
4254                         "Could not start lockup detector thread\n");
4255                 return;
4256         }
4257         add_ctlr_to_lockup_detector_list(h);
4258 }
4259
4260 static void stop_controller_lockup_detector(struct ctlr_info *h)
4261 {
4262         unsigned long flags;
4263
4264         spin_lock_irqsave(&lockup_detector_lock, flags);
4265         remove_ctlr_from_lockup_detector_list(h);
4266         /* If the list of ctlr's to monitor is empty, stop the thread */
4267         if (list_empty(&hpsa_ctlr_list)) {
4268                 kthread_stop(hpsa_lockup_detector);
4269                 hpsa_lockup_detector = NULL;
4270         }
4271         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4272 }
4273
4274 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4275                                     const struct pci_device_id *ent)
4276 {
4277         int dac, rc;
4278         struct ctlr_info *h;
4279         int try_soft_reset = 0;
4280         unsigned long flags;
4281
4282         if (number_of_controllers == 0)
4283                 printk(KERN_INFO DRIVER_NAME "\n");
4284
4285         rc = hpsa_init_reset_devices(pdev);
4286         if (rc) {
4287                 if (rc != -ENOTSUPP)
4288                         return rc;
4289                 /* If the reset fails in a particular way (it has no way to do
4290                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4291                  * a soft reset once we get the controller configured up to the
4292                  * point that it can accept a command.
4293                  */
4294                 try_soft_reset = 1;
4295                 rc = 0;
4296         }
4297
4298 reinit_after_soft_reset:
4299
4300         /* Command structures must be aligned on a 32-byte boundary because
4301          * the 5 lower bits of the address are used by the hardware. and by
4302          * the driver.  See comments in hpsa.h for more info.
4303          */
4304 #define COMMANDLIST_ALIGNMENT 32
4305         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4306         h = kzalloc(sizeof(*h), GFP_KERNEL);
4307         if (!h)
4308                 return -ENOMEM;
4309
4310         h->pdev = pdev;
4311         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4312         INIT_LIST_HEAD(&h->cmpQ);
4313         INIT_LIST_HEAD(&h->reqQ);
4314         spin_lock_init(&h->lock);
4315         spin_lock_init(&h->scan_lock);
4316         rc = hpsa_pci_init(h);
4317         if (rc != 0)
4318                 goto clean1;
4319
4320         sprintf(h->devname, "hpsa%d", number_of_controllers);
4321         h->ctlr = number_of_controllers;
4322         number_of_controllers++;
4323
4324         /* configure PCI DMA stuff */
4325         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4326         if (rc == 0) {
4327                 dac = 1;
4328         } else {
4329                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4330                 if (rc == 0) {
4331                         dac = 0;
4332                 } else {
4333                         dev_err(&pdev->dev, "no suitable DMA available\n");
4334                         goto clean1;
4335                 }
4336         }
4337
4338         /* make sure the board interrupts are off */
4339         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4340
4341         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4342                 goto clean2;
4343         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4344                h->devname, pdev->device,
4345                h->intr[h->intr_mode], dac ? "" : " not");
4346         if (hpsa_allocate_cmd_pool(h))
4347                 goto clean4;
4348         if (hpsa_allocate_sg_chain_blocks(h))
4349                 goto clean4;
4350         init_waitqueue_head(&h->scan_wait_queue);
4351         h->scan_finished = 1; /* no scan currently in progress */
4352
4353         pci_set_drvdata(pdev, h);
4354         h->ndevices = 0;
4355         h->scsi_host = NULL;
4356         spin_lock_init(&h->devlock);
4357         hpsa_put_ctlr_into_performant_mode(h);
4358
4359         /* At this point, the controller is ready to take commands.
4360          * Now, if reset_devices and the hard reset didn't work, try
4361          * the soft reset and see if that works.
4362          */
4363         if (try_soft_reset) {
4364
4365                 /* This is kind of gross.  We may or may not get a completion
4366                  * from the soft reset command, and if we do, then the value
4367                  * from the fifo may or may not be valid.  So, we wait 10 secs
4368                  * after the reset throwing away any completions we get during
4369                  * that time.  Unregister the interrupt handler and register
4370                  * fake ones to scoop up any residual completions.
4371                  */
4372                 spin_lock_irqsave(&h->lock, flags);
4373                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4374                 spin_unlock_irqrestore(&h->lock, flags);
4375                 free_irq(h->intr[h->intr_mode], h);
4376                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4377                                         hpsa_intx_discard_completions);
4378                 if (rc) {
4379                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4380                                 "soft reset.\n");
4381                         goto clean4;
4382                 }
4383
4384                 rc = hpsa_kdump_soft_reset(h);
4385                 if (rc)
4386                         /* Neither hard nor soft reset worked, we're hosed. */
4387                         goto clean4;
4388
4389                 dev_info(&h->pdev->dev, "Board READY.\n");
4390                 dev_info(&h->pdev->dev,
4391                         "Waiting for stale completions to drain.\n");
4392                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4393                 msleep(10000);
4394                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4395
4396                 rc = controller_reset_failed(h->cfgtable);
4397                 if (rc)
4398                         dev_info(&h->pdev->dev,
4399                                 "Soft reset appears to have failed.\n");
4400
4401                 /* since the controller's reset, we have to go back and re-init
4402                  * everything.  Easiest to just forget what we've done and do it
4403                  * all over again.
4404                  */
4405                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4406                 try_soft_reset = 0;
4407                 if (rc)
4408                         /* don't go to clean4, we already unallocated */
4409                         return -ENODEV;
4410
4411                 goto reinit_after_soft_reset;
4412         }
4413
4414         /* Turn the interrupts on so we can service requests */
4415         h->access.set_intr_mask(h, HPSA_INTR_ON);
4416
4417         hpsa_hba_inquiry(h);
4418         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4419         start_controller_lockup_detector(h);
4420         return 1;
4421
4422 clean4:
4423         hpsa_free_sg_chain_blocks(h);
4424         hpsa_free_cmd_pool(h);
4425         free_irq(h->intr[h->intr_mode], h);
4426 clean2:
4427 clean1:
4428         kfree(h);
4429         return rc;
4430 }
4431
4432 static void hpsa_flush_cache(struct ctlr_info *h)
4433 {
4434         char *flush_buf;
4435         struct CommandList *c;
4436
4437         flush_buf = kzalloc(4, GFP_KERNEL);
4438         if (!flush_buf)
4439                 return;
4440
4441         c = cmd_special_alloc(h);
4442         if (!c) {
4443                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4444                 goto out_of_memory;
4445         }
4446         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4447                 RAID_CTLR_LUNID, TYPE_CMD);
4448         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4449         if (c->err_info->CommandStatus != 0)
4450                 dev_warn(&h->pdev->dev,
4451                         "error flushing cache on controller\n");
4452         cmd_special_free(h, c);
4453 out_of_memory:
4454         kfree(flush_buf);
4455 }
4456
4457 static void hpsa_shutdown(struct pci_dev *pdev)
4458 {
4459         struct ctlr_info *h;
4460
4461         h = pci_get_drvdata(pdev);
4462         /* Turn board interrupts off  and send the flush cache command
4463          * sendcmd will turn off interrupt, and send the flush...
4464          * To write all data in the battery backed cache to disks
4465          */
4466         hpsa_flush_cache(h);
4467         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4468         free_irq(h->intr[h->intr_mode], h);
4469 #ifdef CONFIG_PCI_MSI
4470         if (h->msix_vector)
4471                 pci_disable_msix(h->pdev);
4472         else if (h->msi_vector)
4473                 pci_disable_msi(h->pdev);
4474 #endif                          /* CONFIG_PCI_MSI */
4475 }
4476
4477 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4478 {
4479         struct ctlr_info *h;
4480
4481         if (pci_get_drvdata(pdev) == NULL) {
4482                 dev_err(&pdev->dev, "unable to remove device\n");
4483                 return;
4484         }
4485         h = pci_get_drvdata(pdev);
4486         stop_controller_lockup_detector(h);
4487         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4488         hpsa_shutdown(pdev);
4489         iounmap(h->vaddr);
4490         iounmap(h->transtable);
4491         iounmap(h->cfgtable);
4492         hpsa_free_sg_chain_blocks(h);
4493         pci_free_consistent(h->pdev,
4494                 h->nr_cmds * sizeof(struct CommandList),
4495                 h->cmd_pool, h->cmd_pool_dhandle);
4496         pci_free_consistent(h->pdev,
4497                 h->nr_cmds * sizeof(struct ErrorInfo),
4498                 h->errinfo_pool, h->errinfo_pool_dhandle);
4499         pci_free_consistent(h->pdev, h->reply_pool_size,
4500                 h->reply_pool, h->reply_pool_dhandle);
4501         kfree(h->cmd_pool_bits);
4502         kfree(h->blockFetchTable);
4503         kfree(h->hba_inquiry_data);
4504         /*
4505          * Deliberately omit pci_disable_device(): it does something nasty to
4506          * Smart Array controllers that pci_enable_device does not undo
4507          */
4508         pci_release_regions(pdev);
4509         pci_set_drvdata(pdev, NULL);
4510         kfree(h);
4511 }
4512
4513 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4514         __attribute__((unused)) pm_message_t state)
4515 {
4516         return -ENOSYS;
4517 }
4518
4519 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4520 {
4521         return -ENOSYS;
4522 }
4523
4524 static struct pci_driver hpsa_pci_driver = {
4525         .name = "hpsa",
4526         .probe = hpsa_init_one,
4527         .remove = __devexit_p(hpsa_remove_one),
4528         .id_table = hpsa_pci_device_id, /* id_table */
4529         .shutdown = hpsa_shutdown,
4530         .suspend = hpsa_suspend,
4531         .resume = hpsa_resume,
4532 };
4533
4534 /* Fill in bucket_map[], given nsgs (the max number of
4535  * scatter gather elements supported) and bucket[],
4536  * which is an array of 8 integers.  The bucket[] array
4537  * contains 8 different DMA transfer sizes (in 16
4538  * byte increments) which the controller uses to fetch
4539  * commands.  This function fills in bucket_map[], which
4540  * maps a given number of scatter gather elements to one of
4541  * the 8 DMA transfer sizes.  The point of it is to allow the
4542  * controller to only do as much DMA as needed to fetch the
4543  * command, with the DMA transfer size encoded in the lower
4544  * bits of the command address.
4545  */
4546 static void  calc_bucket_map(int bucket[], int num_buckets,
4547         int nsgs, int *bucket_map)
4548 {
4549         int i, j, b, size;
4550
4551         /* even a command with 0 SGs requires 4 blocks */
4552 #define MINIMUM_TRANSFER_BLOCKS 4
4553 #define NUM_BUCKETS 8
4554         /* Note, bucket_map must have nsgs+1 entries. */
4555         for (i = 0; i <= nsgs; i++) {
4556                 /* Compute size of a command with i SG entries */
4557                 size = i + MINIMUM_TRANSFER_BLOCKS;
4558                 b = num_buckets; /* Assume the biggest bucket */
4559                 /* Find the bucket that is just big enough */
4560                 for (j = 0; j < 8; j++) {
4561                         if (bucket[j] >= size) {
4562                                 b = j;
4563                                 break;
4564                         }
4565                 }
4566                 /* for a command with i SG entries, use bucket b. */
4567                 bucket_map[i] = b;
4568         }
4569 }
4570
4571 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4572         u32 use_short_tags)
4573 {
4574         int i;
4575         unsigned long register_value;
4576
4577         /* This is a bit complicated.  There are 8 registers on
4578          * the controller which we write to to tell it 8 different
4579          * sizes of commands which there may be.  It's a way of
4580          * reducing the DMA done to fetch each command.  Encoded into
4581          * each command's tag are 3 bits which communicate to the controller
4582          * which of the eight sizes that command fits within.  The size of
4583          * each command depends on how many scatter gather entries there are.
4584          * Each SG entry requires 16 bytes.  The eight registers are programmed
4585          * with the number of 16-byte blocks a command of that size requires.
4586          * The smallest command possible requires 5 such 16 byte blocks.
4587          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4588          * blocks.  Note, this only extends to the SG entries contained
4589          * within the command block, and does not extend to chained blocks
4590          * of SG elements.   bft[] contains the eight values we write to
4591          * the registers.  They are not evenly distributed, but have more
4592          * sizes for small commands, and fewer sizes for larger commands.
4593          */
4594         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4595         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4596         /*  5 = 1 s/g entry or 4k
4597          *  6 = 2 s/g entry or 8k
4598          *  8 = 4 s/g entry or 16k
4599          * 10 = 6 s/g entry or 24k
4600          */
4601
4602         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4603
4604         /* Controller spec: zero out this buffer. */
4605         memset(h->reply_pool, 0, h->reply_pool_size);
4606         h->reply_pool_head = h->reply_pool;
4607
4608         bft[7] = h->max_sg_entries + 4;
4609         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4610         for (i = 0; i < 8; i++)
4611                 writel(bft[i], &h->transtable->BlockFetch[i]);
4612
4613         /* size of controller ring buffer */
4614         writel(h->max_commands, &h->transtable->RepQSize);
4615         writel(1, &h->transtable->RepQCount);
4616         writel(0, &h->transtable->RepQCtrAddrLow32);
4617         writel(0, &h->transtable->RepQCtrAddrHigh32);
4618         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4619         writel(0, &h->transtable->RepQAddr0High32);
4620         writel(CFGTBL_Trans_Performant | use_short_tags,
4621                 &(h->cfgtable->HostWrite.TransportRequest));
4622         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4623         hpsa_wait_for_mode_change_ack(h);
4624         register_value = readl(&(h->cfgtable->TransportActive));
4625         if (!(register_value & CFGTBL_Trans_Performant)) {
4626                 dev_warn(&h->pdev->dev, "unable to get board into"
4627                                         " performant mode\n");
4628                 return;
4629         }
4630         /* Change the access methods to the performant access methods */
4631         h->access = SA5_performant_access;
4632         h->transMethod = CFGTBL_Trans_Performant;
4633 }
4634
4635 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4636 {
4637         u32 trans_support;
4638
4639         if (hpsa_simple_mode)
4640                 return;
4641
4642         trans_support = readl(&(h->cfgtable->TransportSupport));
4643         if (!(trans_support & PERFORMANT_MODE))
4644                 return;
4645
4646         hpsa_get_max_perf_mode_cmds(h);
4647         h->max_sg_entries = 32;
4648         /* Performant mode ring buffer and supporting data structures */
4649         h->reply_pool_size = h->max_commands * sizeof(u64);
4650         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4651                                 &(h->reply_pool_dhandle));
4652
4653         /* Need a block fetch table for performant mode */
4654         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4655                                 sizeof(u32)), GFP_KERNEL);
4656
4657         if ((h->reply_pool == NULL)
4658                 || (h->blockFetchTable == NULL))
4659                 goto clean_up;
4660
4661         hpsa_enter_performant_mode(h,
4662                 trans_support & CFGTBL_Trans_use_short_tags);
4663
4664         return;
4665
4666 clean_up:
4667         if (h->reply_pool)
4668                 pci_free_consistent(h->pdev, h->reply_pool_size,
4669                         h->reply_pool, h->reply_pool_dhandle);
4670         kfree(h->blockFetchTable);
4671 }
4672
4673 /*
4674  *  This is it.  Register the PCI driver information for the cards we control
4675  *  the OS will call our registered routines when it finds one of our cards.
4676  */
4677 static int __init hpsa_init(void)
4678 {
4679         return pci_register_driver(&hpsa_pci_driver);
4680 }
4681
4682 static void __exit hpsa_cleanup(void)
4683 {
4684         pci_unregister_driver(&hpsa_pci_driver);
4685 }
4686
4687 module_init(hpsa_init);
4688 module_exit(hpsa_cleanup);