Merge remote-tracking branch 'asoc/fix/cs42l52' into tmp
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1920},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x334d},
111         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
112                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113         {0,}
114 };
115
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117
118 /*  board_id = Subsystem Device ID & Vendor ID
119  *  product = Marketing Name for the board
120  *  access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123         {0x3241103C, "Smart Array P212", &SA5_access},
124         {0x3243103C, "Smart Array P410", &SA5_access},
125         {0x3245103C, "Smart Array P410i", &SA5_access},
126         {0x3247103C, "Smart Array P411", &SA5_access},
127         {0x3249103C, "Smart Array P812", &SA5_access},
128         {0x324a103C, "Smart Array P712m", &SA5_access},
129         {0x324b103C, "Smart Array P711m", &SA5_access},
130         {0x3350103C, "Smart Array P222", &SA5_access},
131         {0x3351103C, "Smart Array P420", &SA5_access},
132         {0x3352103C, "Smart Array P421", &SA5_access},
133         {0x3353103C, "Smart Array P822", &SA5_access},
134         {0x3354103C, "Smart Array P420i", &SA5_access},
135         {0x3355103C, "Smart Array P220i", &SA5_access},
136         {0x3356103C, "Smart Array P721m", &SA5_access},
137         {0x1920103C, "Smart Array", &SA5_access},
138         {0x1921103C, "Smart Array", &SA5_access},
139         {0x1922103C, "Smart Array", &SA5_access},
140         {0x1923103C, "Smart Array", &SA5_access},
141         {0x1924103C, "Smart Array", &SA5_access},
142         {0x1925103C, "Smart Array", &SA5_access},
143         {0x1926103C, "Smart Array", &SA5_access},
144         {0x1928103C, "Smart Array", &SA5_access},
145         {0x334d103C, "Smart Array P822se", &SA5_access},
146         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148
149 static int number_of_controllers;
150
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170         int cmd_type);
171
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175         unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177         int qdepth, int reason);
178
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186         struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188         struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191         int nsgs, int *bucket_map);
192 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
195                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196                                u64 *cfg_offset);
197 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198                                     unsigned long *memory_bar);
199 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
201                                      int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208         unsigned long *priv = shost_priv(sdev->host);
209         return (struct ctlr_info *) *priv;
210 }
211
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214         unsigned long *priv = shost_priv(sh);
215         return (struct ctlr_info *) *priv;
216 }
217
218 static int check_for_unit_attention(struct ctlr_info *h,
219         struct CommandList *c)
220 {
221         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222                 return 0;
223
224         switch (c->err_info->SenseInfo[12]) {
225         case STATE_CHANGED:
226                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227                         "detected, command retried\n", h->ctlr);
228                 break;
229         case LUN_FAILED:
230                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231                         "detected, action required\n", h->ctlr);
232                 break;
233         case REPORT_LUNS_CHANGED:
234                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235                         "changed, action required\n", h->ctlr);
236         /*
237          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238          * target (array) devices.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262                 return 0;
263         dev_warn(&h->pdev->dev, HPSA "device busy");
264         return 1;
265 }
266
267 static ssize_t host_store_rescan(struct device *dev,
268                                  struct device_attribute *attr,
269                                  const char *buf, size_t count)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         h = shost_to_hba(shost);
274         hpsa_scan_start(h->scsi_host);
275         return count;
276 }
277
278 static ssize_t host_show_firmware_revision(struct device *dev,
279              struct device_attribute *attr, char *buf)
280 {
281         struct ctlr_info *h;
282         struct Scsi_Host *shost = class_to_shost(dev);
283         unsigned char *fwrev;
284
285         h = shost_to_hba(shost);
286         if (!h->hba_inquiry_data)
287                 return 0;
288         fwrev = &h->hba_inquiry_data[32];
289         return snprintf(buf, 20, "%c%c%c%c\n",
290                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294              struct device_attribute *attr, char *buf)
295 {
296         struct Scsi_Host *shost = class_to_shost(dev);
297         struct ctlr_info *h = shost_to_hba(shost);
298
299         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301
302 static ssize_t host_show_transport_mode(struct device *dev,
303         struct device_attribute *attr, char *buf)
304 {
305         struct ctlr_info *h;
306         struct Scsi_Host *shost = class_to_shost(dev);
307
308         h = shost_to_hba(shost);
309         return snprintf(buf, 20, "%s\n",
310                 h->transMethod & CFGTBL_Trans_Performant ?
311                         "performant" : "simple");
312 }
313
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316         0x324a103C, /* Smart Array P712m */
317         0x324b103C, /* SmartArray P711m */
318         0x3223103C, /* Smart Array P800 */
319         0x3234103C, /* Smart Array P400 */
320         0x3235103C, /* Smart Array P400i */
321         0x3211103C, /* Smart Array E200i */
322         0x3212103C, /* Smart Array E200 */
323         0x3213103C, /* Smart Array E200i */
324         0x3214103C, /* Smart Array E200i */
325         0x3215103C, /* Smart Array E200i */
326         0x3237103C, /* Smart Array E500 */
327         0x323D103C, /* Smart Array P700m */
328         0x40800E11, /* Smart Array 5i */
329         0x409C0E11, /* Smart Array 6400 */
330         0x409D0E11, /* Smart Array 6400 EM */
331         0x40700E11, /* Smart Array 5300 */
332         0x40820E11, /* Smart Array 532 */
333         0x40830E11, /* Smart Array 5312 */
334         0x409A0E11, /* Smart Array 641 */
335         0x409B0E11, /* Smart Array 642 */
336         0x40910E11, /* Smart Array 6i */
337 };
338
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341         0x40800E11, /* Smart Array 5i */
342         0x40700E11, /* Smart Array 5300 */
343         0x40820E11, /* Smart Array 532 */
344         0x40830E11, /* Smart Array 5312 */
345         0x409A0E11, /* Smart Array 641 */
346         0x409B0E11, /* Smart Array 642 */
347         0x40910E11, /* Smart Array 6i */
348         /* Exclude 640x boards.  These are two pci devices in one slot
349          * which share a battery backed cache module.  One controls the
350          * cache, the other accesses the cache through the one that controls
351          * it.  If we reset the one controlling the cache, the other will
352          * likely not be happy.  Just forbid resetting this conjoined mess.
353          * The 640x isn't really supported by hpsa anyway.
354          */
355         0x409C0E11, /* Smart Array 6400 */
356         0x409D0E11, /* Smart Array 6400 EM */
357 };
358
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361         int i;
362
363         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364                 if (unresettable_controller[i] == board_id)
365                         return 0;
366         return 1;
367 }
368
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371         int i;
372
373         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374                 if (soft_unresettable_controller[i] == board_id)
375                         return 0;
376         return 1;
377 }
378
379 static int ctlr_is_resettable(u32 board_id)
380 {
381         return ctlr_is_hard_resettable(board_id) ||
382                 ctlr_is_soft_resettable(board_id);
383 }
384
385 static ssize_t host_show_resettable(struct device *dev,
386         struct device_attribute *attr, char *buf)
387 {
388         struct ctlr_info *h;
389         struct Scsi_Host *shost = class_to_shost(dev);
390
391         h = shost_to_hba(shost);
392         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397         return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401         "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404
405 static ssize_t raid_level_show(struct device *dev,
406              struct device_attribute *attr, char *buf)
407 {
408         ssize_t l = 0;
409         unsigned char rlevel;
410         struct ctlr_info *h;
411         struct scsi_device *sdev;
412         struct hpsa_scsi_dev_t *hdev;
413         unsigned long flags;
414
415         sdev = to_scsi_device(dev);
416         h = sdev_to_hba(sdev);
417         spin_lock_irqsave(&h->lock, flags);
418         hdev = sdev->hostdata;
419         if (!hdev) {
420                 spin_unlock_irqrestore(&h->lock, flags);
421                 return -ENODEV;
422         }
423
424         /* Is this even a logical drive? */
425         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426                 spin_unlock_irqrestore(&h->lock, flags);
427                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
428                 return l;
429         }
430
431         rlevel = hdev->raid_level;
432         spin_unlock_irqrestore(&h->lock, flags);
433         if (rlevel > RAID_UNKNOWN)
434                 rlevel = RAID_UNKNOWN;
435         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436         return l;
437 }
438
439 static ssize_t lunid_show(struct device *dev,
440              struct device_attribute *attr, char *buf)
441 {
442         struct ctlr_info *h;
443         struct scsi_device *sdev;
444         struct hpsa_scsi_dev_t *hdev;
445         unsigned long flags;
446         unsigned char lunid[8];
447
448         sdev = to_scsi_device(dev);
449         h = sdev_to_hba(sdev);
450         spin_lock_irqsave(&h->lock, flags);
451         hdev = sdev->hostdata;
452         if (!hdev) {
453                 spin_unlock_irqrestore(&h->lock, flags);
454                 return -ENODEV;
455         }
456         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457         spin_unlock_irqrestore(&h->lock, flags);
458         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459                 lunid[0], lunid[1], lunid[2], lunid[3],
460                 lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462
463 static ssize_t unique_id_show(struct device *dev,
464              struct device_attribute *attr, char *buf)
465 {
466         struct ctlr_info *h;
467         struct scsi_device *sdev;
468         struct hpsa_scsi_dev_t *hdev;
469         unsigned long flags;
470         unsigned char sn[16];
471
472         sdev = to_scsi_device(dev);
473         h = sdev_to_hba(sdev);
474         spin_lock_irqsave(&h->lock, flags);
475         hdev = sdev->hostdata;
476         if (!hdev) {
477                 spin_unlock_irqrestore(&h->lock, flags);
478                 return -ENODEV;
479         }
480         memcpy(sn, hdev->device_id, sizeof(sn));
481         spin_unlock_irqrestore(&h->lock, flags);
482         return snprintf(buf, 16 * 2 + 2,
483                         "%02X%02X%02X%02X%02X%02X%02X%02X"
484                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485                         sn[0], sn[1], sn[2], sn[3],
486                         sn[4], sn[5], sn[6], sn[7],
487                         sn[8], sn[9], sn[10], sn[11],
488                         sn[12], sn[13], sn[14], sn[15]);
489 }
490
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
495 static DEVICE_ATTR(firmware_revision, S_IRUGO,
496         host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498         host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500         host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502         host_show_resettable, NULL);
503
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505         &dev_attr_raid_level,
506         &dev_attr_lunid,
507         &dev_attr_unique_id,
508         NULL,
509 };
510
511 static struct device_attribute *hpsa_shost_attrs[] = {
512         &dev_attr_rescan,
513         &dev_attr_firmware_revision,
514         &dev_attr_commands_outstanding,
515         &dev_attr_transport_mode,
516         &dev_attr_resettable,
517         NULL,
518 };
519
520 static struct scsi_host_template hpsa_driver_template = {
521         .module                 = THIS_MODULE,
522         .name                   = HPSA,
523         .proc_name              = HPSA,
524         .queuecommand           = hpsa_scsi_queue_command,
525         .scan_start             = hpsa_scan_start,
526         .scan_finished          = hpsa_scan_finished,
527         .change_queue_depth     = hpsa_change_queue_depth,
528         .this_id                = -1,
529         .use_clustering         = ENABLE_CLUSTERING,
530         .eh_abort_handler       = hpsa_eh_abort_handler,
531         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532         .ioctl                  = hpsa_ioctl,
533         .slave_alloc            = hpsa_slave_alloc,
534         .slave_destroy          = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536         .compat_ioctl           = hpsa_compat_ioctl,
537 #endif
538         .sdev_attrs = hpsa_sdev_attrs,
539         .shost_attrs = hpsa_shost_attrs,
540         .max_sectors = 8192,
541 };
542
543
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547         list_add_tail(&c->list, list);
548 }
549
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552         u32 a;
553         struct reply_pool *rq = &h->reply_queue[q];
554         unsigned long flags;
555
556         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
557                 return h->access.command_completed(h, q);
558
559         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560                 a = rq->head[rq->current_entry];
561                 rq->current_entry++;
562                 spin_lock_irqsave(&h->lock, flags);
563                 h->commands_outstanding--;
564                 spin_unlock_irqrestore(&h->lock, flags);
565         } else {
566                 a = FIFO_EMPTY;
567         }
568         /* Check for wraparound */
569         if (rq->current_entry == h->max_commands) {
570                 rq->current_entry = 0;
571                 rq->wraparound ^= 1;
572         }
573         return a;
574 }
575
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
582         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
583                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584                 if (likely(h->msix_vector))
585                         c->Header.ReplyQueue =
586                                 smp_processor_id() % h->nreply_queues;
587         }
588 }
589
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should.  So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603                 struct CommandList *c)
604 {
605         if (!is_firmware_flash_cmd(c->Request.CDB))
606                 return;
607         atomic_inc(&h->firmware_flash_in_progress);
608         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
609 }
610
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612                 struct CommandList *c)
613 {
614         if (is_firmware_flash_cmd(c->Request.CDB) &&
615                 atomic_dec_and_test(&h->firmware_flash_in_progress))
616                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
617 }
618
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620         struct CommandList *c)
621 {
622         unsigned long flags;
623
624         set_performant_mode(h, c);
625         dial_down_lockup_detection_during_fw_flash(h, c);
626         spin_lock_irqsave(&h->lock, flags);
627         addQ(&h->reqQ, c);
628         h->Qdepth++;
629         spin_unlock_irqrestore(&h->lock, flags);
630         start_io(h);
631 }
632
633 static inline void removeQ(struct CommandList *c)
634 {
635         if (WARN_ON(list_empty(&c->list)))
636                 return;
637         list_del_init(&c->list);
638 }
639
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647         if (!h->hba_inquiry_data)
648                 return 0;
649         if ((h->hba_inquiry_data[2] & 0x07) == 5)
650                 return 1;
651         return 0;
652 }
653
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655         unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657         /* finds an unused bus, target, lun for a new physical device
658          * assumes h->devlock is held
659          */
660         int i, found = 0;
661         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662
663         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664
665         for (i = 0; i < h->ndevices; i++) {
666                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667                         __set_bit(h->dev[i]->target, lun_taken);
668         }
669
670         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671         if (i < HPSA_MAX_DEVICES) {
672                 /* *bus = 1; */
673                 *target = i;
674                 *lun = 0;
675                 found = 1;
676         }
677         return !found;
678 }
679
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682                 struct hpsa_scsi_dev_t *device,
683                 struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685         /* assumes h->devlock is held */
686         int n = h->ndevices;
687         int i;
688         unsigned char addr1[8], addr2[8];
689         struct hpsa_scsi_dev_t *sd;
690
691         if (n >= HPSA_MAX_DEVICES) {
692                 dev_err(&h->pdev->dev, "too many devices, some will be "
693                         "inaccessible.\n");
694                 return -1;
695         }
696
697         /* physical devices do not have lun or target assigned until now. */
698         if (device->lun != -1)
699                 /* Logical device, lun is already assigned. */
700                 goto lun_assigned;
701
702         /* If this device a non-zero lun of a multi-lun device
703          * byte 4 of the 8-byte LUN addr will contain the logical
704          * unit no, zero otherise.
705          */
706         if (device->scsi3addr[4] == 0) {
707                 /* This is not a non-zero lun of a multi-lun device */
708                 if (hpsa_find_target_lun(h, device->scsi3addr,
709                         device->bus, &device->target, &device->lun) != 0)
710                         return -1;
711                 goto lun_assigned;
712         }
713
714         /* This is a non-zero lun of a multi-lun device.
715          * Search through our list and find the device which
716          * has the same 8 byte LUN address, excepting byte 4.
717          * Assign the same bus and target for this new LUN.
718          * Use the logical unit number from the firmware.
719          */
720         memcpy(addr1, device->scsi3addr, 8);
721         addr1[4] = 0;
722         for (i = 0; i < n; i++) {
723                 sd = h->dev[i];
724                 memcpy(addr2, sd->scsi3addr, 8);
725                 addr2[4] = 0;
726                 /* differ only in byte 4? */
727                 if (memcmp(addr1, addr2, 8) == 0) {
728                         device->bus = sd->bus;
729                         device->target = sd->target;
730                         device->lun = device->scsi3addr[4];
731                         break;
732                 }
733         }
734         if (device->lun == -1) {
735                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736                         " suspect firmware bug or unsupported hardware "
737                         "configuration.\n");
738                         return -1;
739         }
740
741 lun_assigned:
742
743         h->dev[n] = device;
744         h->ndevices++;
745         added[*nadded] = device;
746         (*nadded)++;
747
748         /* initially, (before registering with scsi layer) we don't
749          * know our hostno and we don't want to print anything first
750          * time anyway (the scsi layer's inquiries will show that info)
751          */
752         /* if (hostno != -1) */
753                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754                         scsi_device_type(device->devtype), hostno,
755                         device->bus, device->target, device->lun);
756         return 0;
757 }
758
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761         int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763         /* assumes h->devlock is held */
764         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
765
766         /* Raid level changed. */
767         h->dev[entry]->raid_level = new_entry->raid_level;
768         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770                 new_entry->target, new_entry->lun);
771 }
772
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775         int entry, struct hpsa_scsi_dev_t *new_entry,
776         struct hpsa_scsi_dev_t *added[], int *nadded,
777         struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779         /* assumes h->devlock is held */
780         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
781         removed[*nremoved] = h->dev[entry];
782         (*nremoved)++;
783
784         /*
785          * New physical devices won't have target/lun assigned yet
786          * so we need to preserve the values in the slot we are replacing.
787          */
788         if (new_entry->target == -1) {
789                 new_entry->target = h->dev[entry]->target;
790                 new_entry->lun = h->dev[entry]->lun;
791         }
792
793         h->dev[entry] = new_entry;
794         added[*nadded] = new_entry;
795         (*nadded)++;
796         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798                         new_entry->target, new_entry->lun);
799 }
800
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803         struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805         /* assumes h->devlock is held */
806         int i;
807         struct hpsa_scsi_dev_t *sd;
808
809         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
810
811         sd = h->dev[entry];
812         removed[*nremoved] = h->dev[entry];
813         (*nremoved)++;
814
815         for (i = entry; i < h->ndevices-1; i++)
816                 h->dev[i] = h->dev[i+1];
817         h->ndevices--;
818         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820                 sd->lun);
821 }
822
823 #define SCSI3ADDR_EQ(a, b) ( \
824         (a)[7] == (b)[7] && \
825         (a)[6] == (b)[6] && \
826         (a)[5] == (b)[5] && \
827         (a)[4] == (b)[4] && \
828         (a)[3] == (b)[3] && \
829         (a)[2] == (b)[2] && \
830         (a)[1] == (b)[1] && \
831         (a)[0] == (b)[0])
832
833 static void fixup_botched_add(struct ctlr_info *h,
834         struct hpsa_scsi_dev_t *added)
835 {
836         /* called when scsi_add_device fails in order to re-adjust
837          * h->dev[] to match the mid layer's view.
838          */
839         unsigned long flags;
840         int i, j;
841
842         spin_lock_irqsave(&h->lock, flags);
843         for (i = 0; i < h->ndevices; i++) {
844                 if (h->dev[i] == added) {
845                         for (j = i; j < h->ndevices-1; j++)
846                                 h->dev[j] = h->dev[j+1];
847                         h->ndevices--;
848                         break;
849                 }
850         }
851         spin_unlock_irqrestore(&h->lock, flags);
852         kfree(added);
853 }
854
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856         struct hpsa_scsi_dev_t *dev2)
857 {
858         /* we compare everything except lun and target as these
859          * are not yet assigned.  Compare parts likely
860          * to differ first
861          */
862         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863                 sizeof(dev1->scsi3addr)) != 0)
864                 return 0;
865         if (memcmp(dev1->device_id, dev2->device_id,
866                 sizeof(dev1->device_id)) != 0)
867                 return 0;
868         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869                 return 0;
870         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871                 return 0;
872         if (dev1->devtype != dev2->devtype)
873                 return 0;
874         if (dev1->bus != dev2->bus)
875                 return 0;
876         return 1;
877 }
878
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880         struct hpsa_scsi_dev_t *dev2)
881 {
882         /* Device attributes that can change, but don't mean
883          * that the device is a different device, nor that the OS
884          * needs to be told anything about the change.
885          */
886         if (dev1->raid_level != dev2->raid_level)
887                 return 1;
888         return 0;
889 }
890
891 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
892  * and return needle location in *index.  If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901         int *index)
902 {
903         int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908         for (i = 0; i < haystack_size; i++) {
909                 if (haystack[i] == NULL) /* previously removed. */
910                         continue;
911                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912                         *index = i;
913                         if (device_is_the_same(needle, haystack[i])) {
914                                 if (device_updated(needle, haystack[i]))
915                                         return DEVICE_UPDATED;
916                                 return DEVICE_SAME;
917                         } else {
918                                 return DEVICE_CHANGED;
919                         }
920                 }
921         }
922         *index = -1;
923         return DEVICE_NOT_FOUND;
924 }
925
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927         struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929         /* sd contains scsi3 addresses and devtypes, and inquiry
930          * data.  This function takes what's in sd to be the current
931          * reality and updates h->dev[] to reflect that reality.
932          */
933         int i, entry, device_change, changes = 0;
934         struct hpsa_scsi_dev_t *csd;
935         unsigned long flags;
936         struct hpsa_scsi_dev_t **added, **removed;
937         int nadded, nremoved;
938         struct Scsi_Host *sh = NULL;
939
940         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942
943         if (!added || !removed) {
944                 dev_warn(&h->pdev->dev, "out of memory in "
945                         "adjust_hpsa_scsi_table\n");
946                 goto free_and_out;
947         }
948
949         spin_lock_irqsave(&h->devlock, flags);
950
951         /* find any devices in h->dev[] that are not in
952          * sd[] and remove them from h->dev[], and for any
953          * devices which have changed, remove the old device
954          * info and add the new device info.
955          * If minor device attributes change, just update
956          * the existing device structure.
957          */
958         i = 0;
959         nremoved = 0;
960         nadded = 0;
961         while (i < h->ndevices) {
962                 csd = h->dev[i];
963                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964                 if (device_change == DEVICE_NOT_FOUND) {
965                         changes++;
966                         hpsa_scsi_remove_entry(h, hostno, i,
967                                 removed, &nremoved);
968                         continue; /* remove ^^^, hence i not incremented */
969                 } else if (device_change == DEVICE_CHANGED) {
970                         changes++;
971                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972                                 added, &nadded, removed, &nremoved);
973                         /* Set it to NULL to prevent it from being freed
974                          * at the bottom of hpsa_update_scsi_devices()
975                          */
976                         sd[entry] = NULL;
977                 } else if (device_change == DEVICE_UPDATED) {
978                         hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979                 }
980                 i++;
981         }
982
983         /* Now, make sure every device listed in sd[] is also
984          * listed in h->dev[], adding them if they aren't found
985          */
986
987         for (i = 0; i < nsds; i++) {
988                 if (!sd[i]) /* if already added above. */
989                         continue;
990                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991                                         h->ndevices, &entry);
992                 if (device_change == DEVICE_NOT_FOUND) {
993                         changes++;
994                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
995                                 added, &nadded) != 0)
996                                 break;
997                         sd[i] = NULL; /* prevent from being freed later. */
998                 } else if (device_change == DEVICE_CHANGED) {
999                         /* should never happen... */
1000                         changes++;
1001                         dev_warn(&h->pdev->dev,
1002                                 "device unexpectedly changed.\n");
1003                         /* but if it does happen, we just ignore that device */
1004                 }
1005         }
1006         spin_unlock_irqrestore(&h->devlock, flags);
1007
1008         /* Don't notify scsi mid layer of any changes the first time through
1009          * (or if there are no changes) scsi_scan_host will do it later the
1010          * first time through.
1011          */
1012         if (hostno == -1 || !changes)
1013                 goto free_and_out;
1014
1015         sh = h->scsi_host;
1016         /* Notify scsi mid layer of any removed devices */
1017         for (i = 0; i < nremoved; i++) {
1018                 struct scsi_device *sdev =
1019                         scsi_device_lookup(sh, removed[i]->bus,
1020                                 removed[i]->target, removed[i]->lun);
1021                 if (sdev != NULL) {
1022                         scsi_remove_device(sdev);
1023                         scsi_device_put(sdev);
1024                 } else {
1025                         /* We don't expect to get here.
1026                          * future cmds to this device will get selection
1027                          * timeout as if the device was gone.
1028                          */
1029                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030                                 " for removal.", hostno, removed[i]->bus,
1031                                 removed[i]->target, removed[i]->lun);
1032                 }
1033                 kfree(removed[i]);
1034                 removed[i] = NULL;
1035         }
1036
1037         /* Notify scsi mid layer of any added devices */
1038         for (i = 0; i < nadded; i++) {
1039                 if (scsi_add_device(sh, added[i]->bus,
1040                         added[i]->target, added[i]->lun) == 0)
1041                         continue;
1042                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043                         "device not added.\n", hostno, added[i]->bus,
1044                         added[i]->target, added[i]->lun);
1045                 /* now we have to remove it from h->dev,
1046                  * since it didn't get added to scsi mid layer
1047                  */
1048                 fixup_botched_add(h, added[i]);
1049         }
1050
1051 free_and_out:
1052         kfree(added);
1053         kfree(removed);
1054 }
1055
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061         int bus, int target, int lun)
1062 {
1063         int i;
1064         struct hpsa_scsi_dev_t *sd;
1065
1066         for (i = 0; i < h->ndevices; i++) {
1067                 sd = h->dev[i];
1068                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069                         return sd;
1070         }
1071         return NULL;
1072 }
1073
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077         struct hpsa_scsi_dev_t *sd;
1078         unsigned long flags;
1079         struct ctlr_info *h;
1080
1081         h = sdev_to_hba(sdev);
1082         spin_lock_irqsave(&h->devlock, flags);
1083         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084                 sdev_id(sdev), sdev->lun);
1085         if (sd != NULL)
1086                 sdev->hostdata = sd;
1087         spin_unlock_irqrestore(&h->devlock, flags);
1088         return 0;
1089 }
1090
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093         /* nothing to do. */
1094 }
1095
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098         int i;
1099
1100         if (!h->cmd_sg_list)
1101                 return;
1102         for (i = 0; i < h->nr_cmds; i++) {
1103                 kfree(h->cmd_sg_list[i]);
1104                 h->cmd_sg_list[i] = NULL;
1105         }
1106         kfree(h->cmd_sg_list);
1107         h->cmd_sg_list = NULL;
1108 }
1109
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112         int i;
1113
1114         if (h->chainsize <= 0)
1115                 return 0;
1116
1117         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118                                 GFP_KERNEL);
1119         if (!h->cmd_sg_list)
1120                 return -ENOMEM;
1121         for (i = 0; i < h->nr_cmds; i++) {
1122                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123                                                 h->chainsize, GFP_KERNEL);
1124                 if (!h->cmd_sg_list[i])
1125                         goto clean;
1126         }
1127         return 0;
1128
1129 clean:
1130         hpsa_free_sg_chain_blocks(h);
1131         return -ENOMEM;
1132 }
1133
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135         struct CommandList *c)
1136 {
1137         struct SGDescriptor *chain_sg, *chain_block;
1138         u64 temp64;
1139
1140         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141         chain_block = h->cmd_sg_list[c->cmdindex];
1142         chain_sg->Ext = HPSA_SG_CHAIN;
1143         chain_sg->Len = sizeof(*chain_sg) *
1144                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1145         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1146                                 PCI_DMA_TODEVICE);
1147         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1149 }
1150
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152         struct CommandList *c)
1153 {
1154         struct SGDescriptor *chain_sg;
1155         union u64bit temp64;
1156
1157         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158                 return;
1159
1160         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161         temp64.val32.lower = chain_sg->Addr.lower;
1162         temp64.val32.upper = chain_sg->Addr.upper;
1163         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1164 }
1165
1166 static void complete_scsi_command(struct CommandList *cp)
1167 {
1168         struct scsi_cmnd *cmd;
1169         struct ctlr_info *h;
1170         struct ErrorInfo *ei;
1171
1172         unsigned char sense_key;
1173         unsigned char asc;      /* additional sense code */
1174         unsigned char ascq;     /* additional sense code qualifier */
1175         unsigned long sense_data_size;
1176
1177         ei = cp->err_info;
1178         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179         h = cp->h;
1180
1181         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183                 hpsa_unmap_sg_chain_block(h, cp);
1184
1185         cmd->result = (DID_OK << 16);           /* host byte */
1186         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187         cmd->result |= ei->ScsiStatus;
1188
1189         /* copy the sense data whether we need to or not. */
1190         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192         else
1193                 sense_data_size = sizeof(ei->SenseInfo);
1194         if (ei->SenseLen < sense_data_size)
1195                 sense_data_size = ei->SenseLen;
1196
1197         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198         scsi_set_resid(cmd, ei->ResidualCnt);
1199
1200         if (ei->CommandStatus == 0) {
1201                 cmd->scsi_done(cmd);
1202                 cmd_free(h, cp);
1203                 return;
1204         }
1205
1206         /* an error has occurred */
1207         switch (ei->CommandStatus) {
1208
1209         case CMD_TARGET_STATUS:
1210                 if (ei->ScsiStatus) {
1211                         /* Get sense key */
1212                         sense_key = 0xf & ei->SenseInfo[2];
1213                         /* Get additional sense code */
1214                         asc = ei->SenseInfo[12];
1215                         /* Get addition sense code qualifier */
1216                         ascq = ei->SenseInfo[13];
1217                 }
1218
1219                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220                         if (check_for_unit_attention(h, cp)) {
1221                                 cmd->result = DID_SOFT_ERROR << 16;
1222                                 break;
1223                         }
1224                         if (sense_key == ILLEGAL_REQUEST) {
1225                                 /*
1226                                  * SCSI REPORT_LUNS is commonly unsupported on
1227                                  * Smart Array.  Suppress noisy complaint.
1228                                  */
1229                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1230                                         break;
1231
1232                                 /* If ASC/ASCQ indicate Logical Unit
1233                                  * Not Supported condition,
1234                                  */
1235                                 if ((asc == 0x25) && (ascq == 0x0)) {
1236                                         dev_warn(&h->pdev->dev, "cp %p "
1237                                                 "has check condition\n", cp);
1238                                         break;
1239                                 }
1240                         }
1241
1242                         if (sense_key == NOT_READY) {
1243                                 /* If Sense is Not Ready, Logical Unit
1244                                  * Not ready, Manual Intervention
1245                                  * required
1246                                  */
1247                                 if ((asc == 0x04) && (ascq == 0x03)) {
1248                                         dev_warn(&h->pdev->dev, "cp %p "
1249                                                 "has check condition: unit "
1250                                                 "not ready, manual "
1251                                                 "intervention required\n", cp);
1252                                         break;
1253                                 }
1254                         }
1255                         if (sense_key == ABORTED_COMMAND) {
1256                                 /* Aborted command is retryable */
1257                                 dev_warn(&h->pdev->dev, "cp %p "
1258                                         "has check condition: aborted command: "
1259                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1260                                         cp, asc, ascq);
1261                                 cmd->result = DID_SOFT_ERROR << 16;
1262                                 break;
1263                         }
1264                         /* Must be some other type of check condition */
1265                         dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266                                         "unknown type: "
1267                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268                                         "Returning result: 0x%x, "
1269                                         "cmd=[%02x %02x %02x %02x %02x "
1270                                         "%02x %02x %02x %02x %02x %02x "
1271                                         "%02x %02x %02x %02x %02x]\n",
1272                                         cp, sense_key, asc, ascq,
1273                                         cmd->result,
1274                                         cmd->cmnd[0], cmd->cmnd[1],
1275                                         cmd->cmnd[2], cmd->cmnd[3],
1276                                         cmd->cmnd[4], cmd->cmnd[5],
1277                                         cmd->cmnd[6], cmd->cmnd[7],
1278                                         cmd->cmnd[8], cmd->cmnd[9],
1279                                         cmd->cmnd[10], cmd->cmnd[11],
1280                                         cmd->cmnd[12], cmd->cmnd[13],
1281                                         cmd->cmnd[14], cmd->cmnd[15]);
1282                         break;
1283                 }
1284
1285
1286                 /* Problem was not a check condition
1287                  * Pass it up to the upper layers...
1288                  */
1289                 if (ei->ScsiStatus) {
1290                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292                                 "Returning result: 0x%x\n",
1293                                 cp, ei->ScsiStatus,
1294                                 sense_key, asc, ascq,
1295                                 cmd->result);
1296                 } else {  /* scsi status is zero??? How??? */
1297                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298                                 "Returning no connection.\n", cp),
1299
1300                         /* Ordinarily, this case should never happen,
1301                          * but there is a bug in some released firmware
1302                          * revisions that allows it to happen if, for
1303                          * example, a 4100 backplane loses power and
1304                          * the tape drive is in it.  We assume that
1305                          * it's a fatal error of some kind because we
1306                          * can't show that it wasn't. We will make it
1307                          * look like selection timeout since that is
1308                          * the most common reason for this to occur,
1309                          * and it's severe enough.
1310                          */
1311
1312                         cmd->result = DID_NO_CONNECT << 16;
1313                 }
1314                 break;
1315
1316         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317                 break;
1318         case CMD_DATA_OVERRUN:
1319                 dev_warn(&h->pdev->dev, "cp %p has"
1320                         " completed with data overrun "
1321                         "reported\n", cp);
1322                 break;
1323         case CMD_INVALID: {
1324                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1325                 print_cmd(cp); */
1326                 /* We get CMD_INVALID if you address a non-existent device
1327                  * instead of a selection timeout (no response).  You will
1328                  * see this if you yank out a drive, then try to access it.
1329                  * This is kind of a shame because it means that any other
1330                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331                  * missing target. */
1332                 cmd->result = DID_NO_CONNECT << 16;
1333         }
1334                 break;
1335         case CMD_PROTOCOL_ERR:
1336                 cmd->result = DID_ERROR << 16;
1337                 dev_warn(&h->pdev->dev, "cp %p has "
1338                         "protocol error\n", cp);
1339                 break;
1340         case CMD_HARDWARE_ERR:
1341                 cmd->result = DID_ERROR << 16;
1342                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1343                 break;
1344         case CMD_CONNECTION_LOST:
1345                 cmd->result = DID_ERROR << 16;
1346                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1347                 break;
1348         case CMD_ABORTED:
1349                 cmd->result = DID_ABORT << 16;
1350                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1351                                 cp, ei->ScsiStatus);
1352                 break;
1353         case CMD_ABORT_FAILED:
1354                 cmd->result = DID_ERROR << 16;
1355                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1356                 break;
1357         case CMD_UNSOLICITED_ABORT:
1358                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1359                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1360                         "abort\n", cp);
1361                 break;
1362         case CMD_TIMEOUT:
1363                 cmd->result = DID_TIME_OUT << 16;
1364                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1365                 break;
1366         case CMD_UNABORTABLE:
1367                 cmd->result = DID_ERROR << 16;
1368                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1369                 break;
1370         default:
1371                 cmd->result = DID_ERROR << 16;
1372                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1373                                 cp, ei->CommandStatus);
1374         }
1375         cmd->scsi_done(cmd);
1376         cmd_free(h, cp);
1377 }
1378
1379 static void hpsa_pci_unmap(struct pci_dev *pdev,
1380         struct CommandList *c, int sg_used, int data_direction)
1381 {
1382         int i;
1383         union u64bit addr64;
1384
1385         for (i = 0; i < sg_used; i++) {
1386                 addr64.val32.lower = c->SG[i].Addr.lower;
1387                 addr64.val32.upper = c->SG[i].Addr.upper;
1388                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1389                         data_direction);
1390         }
1391 }
1392
1393 static void hpsa_map_one(struct pci_dev *pdev,
1394                 struct CommandList *cp,
1395                 unsigned char *buf,
1396                 size_t buflen,
1397                 int data_direction)
1398 {
1399         u64 addr64;
1400
1401         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1402                 cp->Header.SGList = 0;
1403                 cp->Header.SGTotal = 0;
1404                 return;
1405         }
1406
1407         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1408         cp->SG[0].Addr.lower =
1409           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1410         cp->SG[0].Addr.upper =
1411           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1412         cp->SG[0].Len = buflen;
1413         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1414         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1415 }
1416
1417 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1418         struct CommandList *c)
1419 {
1420         DECLARE_COMPLETION_ONSTACK(wait);
1421
1422         c->waiting = &wait;
1423         enqueue_cmd_and_start_io(h, c);
1424         wait_for_completion(&wait);
1425 }
1426
1427 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1428         struct CommandList *c)
1429 {
1430         unsigned long flags;
1431
1432         /* If controller lockup detected, fake a hardware error. */
1433         spin_lock_irqsave(&h->lock, flags);
1434         if (unlikely(h->lockup_detected)) {
1435                 spin_unlock_irqrestore(&h->lock, flags);
1436                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1437         } else {
1438                 spin_unlock_irqrestore(&h->lock, flags);
1439                 hpsa_scsi_do_simple_cmd_core(h, c);
1440         }
1441 }
1442
1443 #define MAX_DRIVER_CMD_RETRIES 25
1444 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1445         struct CommandList *c, int data_direction)
1446 {
1447         int backoff_time = 10, retry_count = 0;
1448
1449         do {
1450                 memset(c->err_info, 0, sizeof(*c->err_info));
1451                 hpsa_scsi_do_simple_cmd_core(h, c);
1452                 retry_count++;
1453                 if (retry_count > 3) {
1454                         msleep(backoff_time);
1455                         if (backoff_time < 1000)
1456                                 backoff_time *= 2;
1457                 }
1458         } while ((check_for_unit_attention(h, c) ||
1459                         check_for_busy(h, c)) &&
1460                         retry_count <= MAX_DRIVER_CMD_RETRIES);
1461         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1462 }
1463
1464 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1465 {
1466         struct ErrorInfo *ei;
1467         struct device *d = &cp->h->pdev->dev;
1468
1469         ei = cp->err_info;
1470         switch (ei->CommandStatus) {
1471         case CMD_TARGET_STATUS:
1472                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1473                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1474                                 ei->ScsiStatus);
1475                 if (ei->ScsiStatus == 0)
1476                         dev_warn(d, "SCSI status is abnormally zero.  "
1477                         "(probably indicates selection timeout "
1478                         "reported incorrectly due to a known "
1479                         "firmware bug, circa July, 2001.)\n");
1480                 break;
1481         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1482                         dev_info(d, "UNDERRUN\n");
1483                 break;
1484         case CMD_DATA_OVERRUN:
1485                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1486                 break;
1487         case CMD_INVALID: {
1488                 /* controller unfortunately reports SCSI passthru's
1489                  * to non-existent targets as invalid commands.
1490                  */
1491                 dev_warn(d, "cp %p is reported invalid (probably means "
1492                         "target device no longer present)\n", cp);
1493                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1494                 print_cmd(cp);  */
1495                 }
1496                 break;
1497         case CMD_PROTOCOL_ERR:
1498                 dev_warn(d, "cp %p has protocol error \n", cp);
1499                 break;
1500         case CMD_HARDWARE_ERR:
1501                 /* cmd->result = DID_ERROR << 16; */
1502                 dev_warn(d, "cp %p had hardware error\n", cp);
1503                 break;
1504         case CMD_CONNECTION_LOST:
1505                 dev_warn(d, "cp %p had connection lost\n", cp);
1506                 break;
1507         case CMD_ABORTED:
1508                 dev_warn(d, "cp %p was aborted\n", cp);
1509                 break;
1510         case CMD_ABORT_FAILED:
1511                 dev_warn(d, "cp %p reports abort failed\n", cp);
1512                 break;
1513         case CMD_UNSOLICITED_ABORT:
1514                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1515                 break;
1516         case CMD_TIMEOUT:
1517                 dev_warn(d, "cp %p timed out\n", cp);
1518                 break;
1519         case CMD_UNABORTABLE:
1520                 dev_warn(d, "Command unabortable\n");
1521                 break;
1522         default:
1523                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1524                                 ei->CommandStatus);
1525         }
1526 }
1527
1528 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1529                         unsigned char page, unsigned char *buf,
1530                         unsigned char bufsize)
1531 {
1532         int rc = IO_OK;
1533         struct CommandList *c;
1534         struct ErrorInfo *ei;
1535
1536         c = cmd_special_alloc(h);
1537
1538         if (c == NULL) {                        /* trouble... */
1539                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1540                 return -ENOMEM;
1541         }
1542
1543         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1544         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1545         ei = c->err_info;
1546         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1547                 hpsa_scsi_interpret_error(c);
1548                 rc = -1;
1549         }
1550         cmd_special_free(h, c);
1551         return rc;
1552 }
1553
1554 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1555 {
1556         int rc = IO_OK;
1557         struct CommandList *c;
1558         struct ErrorInfo *ei;
1559
1560         c = cmd_special_alloc(h);
1561
1562         if (c == NULL) {                        /* trouble... */
1563                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1564                 return -ENOMEM;
1565         }
1566
1567         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1568         hpsa_scsi_do_simple_cmd_core(h, c);
1569         /* no unmap needed here because no data xfer. */
1570
1571         ei = c->err_info;
1572         if (ei->CommandStatus != 0) {
1573                 hpsa_scsi_interpret_error(c);
1574                 rc = -1;
1575         }
1576         cmd_special_free(h, c);
1577         return rc;
1578 }
1579
1580 static void hpsa_get_raid_level(struct ctlr_info *h,
1581         unsigned char *scsi3addr, unsigned char *raid_level)
1582 {
1583         int rc;
1584         unsigned char *buf;
1585
1586         *raid_level = RAID_UNKNOWN;
1587         buf = kzalloc(64, GFP_KERNEL);
1588         if (!buf)
1589                 return;
1590         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1591         if (rc == 0)
1592                 *raid_level = buf[8];
1593         if (*raid_level > RAID_UNKNOWN)
1594                 *raid_level = RAID_UNKNOWN;
1595         kfree(buf);
1596         return;
1597 }
1598
1599 /* Get the device id from inquiry page 0x83 */
1600 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1601         unsigned char *device_id, int buflen)
1602 {
1603         int rc;
1604         unsigned char *buf;
1605
1606         if (buflen > 16)
1607                 buflen = 16;
1608         buf = kzalloc(64, GFP_KERNEL);
1609         if (!buf)
1610                 return -1;
1611         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1612         if (rc == 0)
1613                 memcpy(device_id, &buf[8], buflen);
1614         kfree(buf);
1615         return rc != 0;
1616 }
1617
1618 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1619                 struct ReportLUNdata *buf, int bufsize,
1620                 int extended_response)
1621 {
1622         int rc = IO_OK;
1623         struct CommandList *c;
1624         unsigned char scsi3addr[8];
1625         struct ErrorInfo *ei;
1626
1627         c = cmd_special_alloc(h);
1628         if (c == NULL) {                        /* trouble... */
1629                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1630                 return -1;
1631         }
1632         /* address the controller */
1633         memset(scsi3addr, 0, sizeof(scsi3addr));
1634         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1635                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1636         if (extended_response)
1637                 c->Request.CDB[1] = extended_response;
1638         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1639         ei = c->err_info;
1640         if (ei->CommandStatus != 0 &&
1641             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1642                 hpsa_scsi_interpret_error(c);
1643                 rc = -1;
1644         }
1645         cmd_special_free(h, c);
1646         return rc;
1647 }
1648
1649 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1650                 struct ReportLUNdata *buf,
1651                 int bufsize, int extended_response)
1652 {
1653         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1654 }
1655
1656 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1657                 struct ReportLUNdata *buf, int bufsize)
1658 {
1659         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1660 }
1661
1662 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1663         int bus, int target, int lun)
1664 {
1665         device->bus = bus;
1666         device->target = target;
1667         device->lun = lun;
1668 }
1669
1670 static int hpsa_update_device_info(struct ctlr_info *h,
1671         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1672         unsigned char *is_OBDR_device)
1673 {
1674
1675 #define OBDR_SIG_OFFSET 43
1676 #define OBDR_TAPE_SIG "$DR-10"
1677 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1678 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1679
1680         unsigned char *inq_buff;
1681         unsigned char *obdr_sig;
1682
1683         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1684         if (!inq_buff)
1685                 goto bail_out;
1686
1687         /* Do an inquiry to the device to see what it is. */
1688         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1689                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1690                 /* Inquiry failed (msg printed already) */
1691                 dev_err(&h->pdev->dev,
1692                         "hpsa_update_device_info: inquiry failed\n");
1693                 goto bail_out;
1694         }
1695
1696         this_device->devtype = (inq_buff[0] & 0x1f);
1697         memcpy(this_device->scsi3addr, scsi3addr, 8);
1698         memcpy(this_device->vendor, &inq_buff[8],
1699                 sizeof(this_device->vendor));
1700         memcpy(this_device->model, &inq_buff[16],
1701                 sizeof(this_device->model));
1702         memset(this_device->device_id, 0,
1703                 sizeof(this_device->device_id));
1704         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1705                 sizeof(this_device->device_id));
1706
1707         if (this_device->devtype == TYPE_DISK &&
1708                 is_logical_dev_addr_mode(scsi3addr))
1709                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1710         else
1711                 this_device->raid_level = RAID_UNKNOWN;
1712
1713         if (is_OBDR_device) {
1714                 /* See if this is a One-Button-Disaster-Recovery device
1715                  * by looking for "$DR-10" at offset 43 in inquiry data.
1716                  */
1717                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1718                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1719                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1720                                                 OBDR_SIG_LEN) == 0);
1721         }
1722
1723         kfree(inq_buff);
1724         return 0;
1725
1726 bail_out:
1727         kfree(inq_buff);
1728         return 1;
1729 }
1730
1731 static unsigned char *ext_target_model[] = {
1732         "MSA2012",
1733         "MSA2024",
1734         "MSA2312",
1735         "MSA2324",
1736         "P2000 G3 SAS",
1737         NULL,
1738 };
1739
1740 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1741 {
1742         int i;
1743
1744         for (i = 0; ext_target_model[i]; i++)
1745                 if (strncmp(device->model, ext_target_model[i],
1746                         strlen(ext_target_model[i])) == 0)
1747                         return 1;
1748         return 0;
1749 }
1750
1751 /* Helper function to assign bus, target, lun mapping of devices.
1752  * Puts non-external target logical volumes on bus 0, external target logical
1753  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1754  * Logical drive target and lun are assigned at this time, but
1755  * physical device lun and target assignment are deferred (assigned
1756  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1757  */
1758 static void figure_bus_target_lun(struct ctlr_info *h,
1759         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1760 {
1761         u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1762
1763         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1764                 /* physical device, target and lun filled in later */
1765                 if (is_hba_lunid(lunaddrbytes))
1766                         hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1767                 else
1768                         /* defer target, lun assignment for physical devices */
1769                         hpsa_set_bus_target_lun(device, 2, -1, -1);
1770                 return;
1771         }
1772         /* It's a logical device */
1773         if (is_ext_target(h, device)) {
1774                 /* external target way, put logicals on bus 1
1775                  * and match target/lun numbers box
1776                  * reports, other smart array, bus 0, target 0, match lunid
1777                  */
1778                 hpsa_set_bus_target_lun(device,
1779                         1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1780                 return;
1781         }
1782         hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1783 }
1784
1785 /*
1786  * If there is no lun 0 on a target, linux won't find any devices.
1787  * For the external targets (arrays), we have to manually detect the enclosure
1788  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1789  * it for some reason.  *tmpdevice is the target we're adding,
1790  * this_device is a pointer into the current element of currentsd[]
1791  * that we're building up in update_scsi_devices(), below.
1792  * lunzerobits is a bitmap that tracks which targets already have a
1793  * lun 0 assigned.
1794  * Returns 1 if an enclosure was added, 0 if not.
1795  */
1796 static int add_ext_target_dev(struct ctlr_info *h,
1797         struct hpsa_scsi_dev_t *tmpdevice,
1798         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1799         unsigned long lunzerobits[], int *n_ext_target_devs)
1800 {
1801         unsigned char scsi3addr[8];
1802
1803         if (test_bit(tmpdevice->target, lunzerobits))
1804                 return 0; /* There is already a lun 0 on this target. */
1805
1806         if (!is_logical_dev_addr_mode(lunaddrbytes))
1807                 return 0; /* It's the logical targets that may lack lun 0. */
1808
1809         if (!is_ext_target(h, tmpdevice))
1810                 return 0; /* Only external target devices have this problem. */
1811
1812         if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1813                 return 0;
1814
1815         memset(scsi3addr, 0, 8);
1816         scsi3addr[3] = tmpdevice->target;
1817         if (is_hba_lunid(scsi3addr))
1818                 return 0; /* Don't add the RAID controller here. */
1819
1820         if (is_scsi_rev_5(h))
1821                 return 0; /* p1210m doesn't need to do this. */
1822
1823         if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1824                 dev_warn(&h->pdev->dev, "Maximum number of external "
1825                         "target devices exceeded.  Check your hardware "
1826                         "configuration.");
1827                 return 0;
1828         }
1829
1830         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1831                 return 0;
1832         (*n_ext_target_devs)++;
1833         hpsa_set_bus_target_lun(this_device,
1834                                 tmpdevice->bus, tmpdevice->target, 0);
1835         set_bit(tmpdevice->target, lunzerobits);
1836         return 1;
1837 }
1838
1839 /*
1840  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1841  * logdev.  The number of luns in physdev and logdev are returned in
1842  * *nphysicals and *nlogicals, respectively.
1843  * Returns 0 on success, -1 otherwise.
1844  */
1845 static int hpsa_gather_lun_info(struct ctlr_info *h,
1846         int reportlunsize,
1847         struct ReportLUNdata *physdev, u32 *nphysicals,
1848         struct ReportLUNdata *logdev, u32 *nlogicals)
1849 {
1850         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1851                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1852                 return -1;
1853         }
1854         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1855         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1856                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1857                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1858                         *nphysicals - HPSA_MAX_PHYS_LUN);
1859                 *nphysicals = HPSA_MAX_PHYS_LUN;
1860         }
1861         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1862                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1863                 return -1;
1864         }
1865         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1866         /* Reject Logicals in excess of our max capability. */
1867         if (*nlogicals > HPSA_MAX_LUN) {
1868                 dev_warn(&h->pdev->dev,
1869                         "maximum logical LUNs (%d) exceeded.  "
1870                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1871                         *nlogicals - HPSA_MAX_LUN);
1872                         *nlogicals = HPSA_MAX_LUN;
1873         }
1874         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1875                 dev_warn(&h->pdev->dev,
1876                         "maximum logical + physical LUNs (%d) exceeded. "
1877                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1878                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1879                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1880         }
1881         return 0;
1882 }
1883
1884 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1885         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1886         struct ReportLUNdata *logdev_list)
1887 {
1888         /* Helper function, figure out where the LUN ID info is coming from
1889          * given index i, lists of physical and logical devices, where in
1890          * the list the raid controller is supposed to appear (first or last)
1891          */
1892
1893         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1894         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1895
1896         if (i == raid_ctlr_position)
1897                 return RAID_CTLR_LUNID;
1898
1899         if (i < logicals_start)
1900                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1901
1902         if (i < last_device)
1903                 return &logdev_list->LUN[i - nphysicals -
1904                         (raid_ctlr_position == 0)][0];
1905         BUG();
1906         return NULL;
1907 }
1908
1909 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1910 {
1911         /* the idea here is we could get notified
1912          * that some devices have changed, so we do a report
1913          * physical luns and report logical luns cmd, and adjust
1914          * our list of devices accordingly.
1915          *
1916          * The scsi3addr's of devices won't change so long as the
1917          * adapter is not reset.  That means we can rescan and
1918          * tell which devices we already know about, vs. new
1919          * devices, vs.  disappearing devices.
1920          */
1921         struct ReportLUNdata *physdev_list = NULL;
1922         struct ReportLUNdata *logdev_list = NULL;
1923         u32 nphysicals = 0;
1924         u32 nlogicals = 0;
1925         u32 ndev_allocated = 0;
1926         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1927         int ncurrent = 0;
1928         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1929         int i, n_ext_target_devs, ndevs_to_allocate;
1930         int raid_ctlr_position;
1931         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1932
1933         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1934         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1935         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1936         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1937
1938         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1939                 dev_err(&h->pdev->dev, "out of memory\n");
1940                 goto out;
1941         }
1942         memset(lunzerobits, 0, sizeof(lunzerobits));
1943
1944         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1945                         logdev_list, &nlogicals))
1946                 goto out;
1947
1948         /* We might see up to the maximum number of logical and physical disks
1949          * plus external target devices, and a device for the local RAID
1950          * controller.
1951          */
1952         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1953
1954         /* Allocate the per device structures */
1955         for (i = 0; i < ndevs_to_allocate; i++) {
1956                 if (i >= HPSA_MAX_DEVICES) {
1957                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1958                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1959                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1960                         break;
1961                 }
1962
1963                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1964                 if (!currentsd[i]) {
1965                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1966                                 __FILE__, __LINE__);
1967                         goto out;
1968                 }
1969                 ndev_allocated++;
1970         }
1971
1972         if (unlikely(is_scsi_rev_5(h)))
1973                 raid_ctlr_position = 0;
1974         else
1975                 raid_ctlr_position = nphysicals + nlogicals;
1976
1977         /* adjust our table of devices */
1978         n_ext_target_devs = 0;
1979         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1980                 u8 *lunaddrbytes, is_OBDR = 0;
1981
1982                 /* Figure out where the LUN ID info is coming from */
1983                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1984                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1985                 /* skip masked physical devices. */
1986                 if (lunaddrbytes[3] & 0xC0 &&
1987                         i < nphysicals + (raid_ctlr_position == 0))
1988                         continue;
1989
1990                 /* Get device type, vendor, model, device id */
1991                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1992                                                         &is_OBDR))
1993                         continue; /* skip it if we can't talk to it. */
1994                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1995                 this_device = currentsd[ncurrent];
1996
1997                 /*
1998                  * For external target devices, we have to insert a LUN 0 which
1999                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2000                  * is nonetheless an enclosure device there.  We have to
2001                  * present that otherwise linux won't find anything if
2002                  * there is no lun 0.
2003                  */
2004                 if (add_ext_target_dev(h, tmpdevice, this_device,
2005                                 lunaddrbytes, lunzerobits,
2006                                 &n_ext_target_devs)) {
2007                         ncurrent++;
2008                         this_device = currentsd[ncurrent];
2009                 }
2010
2011                 *this_device = *tmpdevice;
2012
2013                 switch (this_device->devtype) {
2014                 case TYPE_ROM:
2015                         /* We don't *really* support actual CD-ROM devices,
2016                          * just "One Button Disaster Recovery" tape drive
2017                          * which temporarily pretends to be a CD-ROM drive.
2018                          * So we check that the device is really an OBDR tape
2019                          * device by checking for "$DR-10" in bytes 43-48 of
2020                          * the inquiry data.
2021                          */
2022                         if (is_OBDR)
2023                                 ncurrent++;
2024                         break;
2025                 case TYPE_DISK:
2026                         if (i < nphysicals)
2027                                 break;
2028                         ncurrent++;
2029                         break;
2030                 case TYPE_TAPE:
2031                 case TYPE_MEDIUM_CHANGER:
2032                         ncurrent++;
2033                         break;
2034                 case TYPE_RAID:
2035                         /* Only present the Smartarray HBA as a RAID controller.
2036                          * If it's a RAID controller other than the HBA itself
2037                          * (an external RAID controller, MSA500 or similar)
2038                          * don't present it.
2039                          */
2040                         if (!is_hba_lunid(lunaddrbytes))
2041                                 break;
2042                         ncurrent++;
2043                         break;
2044                 default:
2045                         break;
2046                 }
2047                 if (ncurrent >= HPSA_MAX_DEVICES)
2048                         break;
2049         }
2050         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2051 out:
2052         kfree(tmpdevice);
2053         for (i = 0; i < ndev_allocated; i++)
2054                 kfree(currentsd[i]);
2055         kfree(currentsd);
2056         kfree(physdev_list);
2057         kfree(logdev_list);
2058 }
2059
2060 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2061  * dma mapping  and fills in the scatter gather entries of the
2062  * hpsa command, cp.
2063  */
2064 static int hpsa_scatter_gather(struct ctlr_info *h,
2065                 struct CommandList *cp,
2066                 struct scsi_cmnd *cmd)
2067 {
2068         unsigned int len;
2069         struct scatterlist *sg;
2070         u64 addr64;
2071         int use_sg, i, sg_index, chained;
2072         struct SGDescriptor *curr_sg;
2073
2074         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2075
2076         use_sg = scsi_dma_map(cmd);
2077         if (use_sg < 0)
2078                 return use_sg;
2079
2080         if (!use_sg)
2081                 goto sglist_finished;
2082
2083         curr_sg = cp->SG;
2084         chained = 0;
2085         sg_index = 0;
2086         scsi_for_each_sg(cmd, sg, use_sg, i) {
2087                 if (i == h->max_cmd_sg_entries - 1 &&
2088                         use_sg > h->max_cmd_sg_entries) {
2089                         chained = 1;
2090                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2091                         sg_index = 0;
2092                 }
2093                 addr64 = (u64) sg_dma_address(sg);
2094                 len  = sg_dma_len(sg);
2095                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2096                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2097                 curr_sg->Len = len;
2098                 curr_sg->Ext = 0;  /* we are not chaining */
2099                 curr_sg++;
2100         }
2101
2102         if (use_sg + chained > h->maxSG)
2103                 h->maxSG = use_sg + chained;
2104
2105         if (chained) {
2106                 cp->Header.SGList = h->max_cmd_sg_entries;
2107                 cp->Header.SGTotal = (u16) (use_sg + 1);
2108                 hpsa_map_sg_chain_block(h, cp);
2109                 return 0;
2110         }
2111
2112 sglist_finished:
2113
2114         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2115         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2116         return 0;
2117 }
2118
2119
2120 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2121         void (*done)(struct scsi_cmnd *))
2122 {
2123         struct ctlr_info *h;
2124         struct hpsa_scsi_dev_t *dev;
2125         unsigned char scsi3addr[8];
2126         struct CommandList *c;
2127         unsigned long flags;
2128
2129         /* Get the ptr to our adapter structure out of cmd->host. */
2130         h = sdev_to_hba(cmd->device);
2131         dev = cmd->device->hostdata;
2132         if (!dev) {
2133                 cmd->result = DID_NO_CONNECT << 16;
2134                 done(cmd);
2135                 return 0;
2136         }
2137         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2138
2139         spin_lock_irqsave(&h->lock, flags);
2140         if (unlikely(h->lockup_detected)) {
2141                 spin_unlock_irqrestore(&h->lock, flags);
2142                 cmd->result = DID_ERROR << 16;
2143                 done(cmd);
2144                 return 0;
2145         }
2146         spin_unlock_irqrestore(&h->lock, flags);
2147         c = cmd_alloc(h);
2148         if (c == NULL) {                        /* trouble... */
2149                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2150                 return SCSI_MLQUEUE_HOST_BUSY;
2151         }
2152
2153         /* Fill in the command list header */
2154
2155         cmd->scsi_done = done;    /* save this for use by completion code */
2156
2157         /* save c in case we have to abort it  */
2158         cmd->host_scribble = (unsigned char *) c;
2159
2160         c->cmd_type = CMD_SCSI;
2161         c->scsi_cmd = cmd;
2162         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2163         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2164         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2165         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2166
2167         /* Fill in the request block... */
2168
2169         c->Request.Timeout = 0;
2170         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2171         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2172         c->Request.CDBLen = cmd->cmd_len;
2173         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2174         c->Request.Type.Type = TYPE_CMD;
2175         c->Request.Type.Attribute = ATTR_SIMPLE;
2176         switch (cmd->sc_data_direction) {
2177         case DMA_TO_DEVICE:
2178                 c->Request.Type.Direction = XFER_WRITE;
2179                 break;
2180         case DMA_FROM_DEVICE:
2181                 c->Request.Type.Direction = XFER_READ;
2182                 break;
2183         case DMA_NONE:
2184                 c->Request.Type.Direction = XFER_NONE;
2185                 break;
2186         case DMA_BIDIRECTIONAL:
2187                 /* This can happen if a buggy application does a scsi passthru
2188                  * and sets both inlen and outlen to non-zero. ( see
2189                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2190                  */
2191
2192                 c->Request.Type.Direction = XFER_RSVD;
2193                 /* This is technically wrong, and hpsa controllers should
2194                  * reject it with CMD_INVALID, which is the most correct
2195                  * response, but non-fibre backends appear to let it
2196                  * slide by, and give the same results as if this field
2197                  * were set correctly.  Either way is acceptable for
2198                  * our purposes here.
2199                  */
2200
2201                 break;
2202
2203         default:
2204                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2205                         cmd->sc_data_direction);
2206                 BUG();
2207                 break;
2208         }
2209
2210         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2211                 cmd_free(h, c);
2212                 return SCSI_MLQUEUE_HOST_BUSY;
2213         }
2214         enqueue_cmd_and_start_io(h, c);
2215         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2216         return 0;
2217 }
2218
2219 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2220
2221 static void hpsa_scan_start(struct Scsi_Host *sh)
2222 {
2223         struct ctlr_info *h = shost_to_hba(sh);
2224         unsigned long flags;
2225
2226         /* wait until any scan already in progress is finished. */
2227         while (1) {
2228                 spin_lock_irqsave(&h->scan_lock, flags);
2229                 if (h->scan_finished)
2230                         break;
2231                 spin_unlock_irqrestore(&h->scan_lock, flags);
2232                 wait_event(h->scan_wait_queue, h->scan_finished);
2233                 /* Note: We don't need to worry about a race between this
2234                  * thread and driver unload because the midlayer will
2235                  * have incremented the reference count, so unload won't
2236                  * happen if we're in here.
2237                  */
2238         }
2239         h->scan_finished = 0; /* mark scan as in progress */
2240         spin_unlock_irqrestore(&h->scan_lock, flags);
2241
2242         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2243
2244         spin_lock_irqsave(&h->scan_lock, flags);
2245         h->scan_finished = 1; /* mark scan as finished. */
2246         wake_up_all(&h->scan_wait_queue);
2247         spin_unlock_irqrestore(&h->scan_lock, flags);
2248 }
2249
2250 static int hpsa_scan_finished(struct Scsi_Host *sh,
2251         unsigned long elapsed_time)
2252 {
2253         struct ctlr_info *h = shost_to_hba(sh);
2254         unsigned long flags;
2255         int finished;
2256
2257         spin_lock_irqsave(&h->scan_lock, flags);
2258         finished = h->scan_finished;
2259         spin_unlock_irqrestore(&h->scan_lock, flags);
2260         return finished;
2261 }
2262
2263 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2264         int qdepth, int reason)
2265 {
2266         struct ctlr_info *h = sdev_to_hba(sdev);
2267
2268         if (reason != SCSI_QDEPTH_DEFAULT)
2269                 return -ENOTSUPP;
2270
2271         if (qdepth < 1)
2272                 qdepth = 1;
2273         else
2274                 if (qdepth > h->nr_cmds)
2275                         qdepth = h->nr_cmds;
2276         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2277         return sdev->queue_depth;
2278 }
2279
2280 static void hpsa_unregister_scsi(struct ctlr_info *h)
2281 {
2282         /* we are being forcibly unloaded, and may not refuse. */
2283         scsi_remove_host(h->scsi_host);
2284         scsi_host_put(h->scsi_host);
2285         h->scsi_host = NULL;
2286 }
2287
2288 static int hpsa_register_scsi(struct ctlr_info *h)
2289 {
2290         struct Scsi_Host *sh;
2291         int error;
2292
2293         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2294         if (sh == NULL)
2295                 goto fail;
2296
2297         sh->io_port = 0;
2298         sh->n_io_port = 0;
2299         sh->this_id = -1;
2300         sh->max_channel = 3;
2301         sh->max_cmd_len = MAX_COMMAND_SIZE;
2302         sh->max_lun = HPSA_MAX_LUN;
2303         sh->max_id = HPSA_MAX_LUN;
2304         sh->can_queue = h->nr_cmds;
2305         sh->cmd_per_lun = h->nr_cmds;
2306         sh->sg_tablesize = h->maxsgentries;
2307         h->scsi_host = sh;
2308         sh->hostdata[0] = (unsigned long) h;
2309         sh->irq = h->intr[h->intr_mode];
2310         sh->unique_id = sh->irq;
2311         error = scsi_add_host(sh, &h->pdev->dev);
2312         if (error)
2313                 goto fail_host_put;
2314         scsi_scan_host(sh);
2315         return 0;
2316
2317  fail_host_put:
2318         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2319                 " failed for controller %d\n", __func__, h->ctlr);
2320         scsi_host_put(sh);
2321         return error;
2322  fail:
2323         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2324                 " failed for controller %d\n", __func__, h->ctlr);
2325         return -ENOMEM;
2326 }
2327
2328 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2329         unsigned char lunaddr[])
2330 {
2331         int rc = 0;
2332         int count = 0;
2333         int waittime = 1; /* seconds */
2334         struct CommandList *c;
2335
2336         c = cmd_special_alloc(h);
2337         if (!c) {
2338                 dev_warn(&h->pdev->dev, "out of memory in "
2339                         "wait_for_device_to_become_ready.\n");
2340                 return IO_ERROR;
2341         }
2342
2343         /* Send test unit ready until device ready, or give up. */
2344         while (count < HPSA_TUR_RETRY_LIMIT) {
2345
2346                 /* Wait for a bit.  do this first, because if we send
2347                  * the TUR right away, the reset will just abort it.
2348                  */
2349                 msleep(1000 * waittime);
2350                 count++;
2351
2352                 /* Increase wait time with each try, up to a point. */
2353                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2354                         waittime = waittime * 2;
2355
2356                 /* Send the Test Unit Ready */
2357                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2358                 hpsa_scsi_do_simple_cmd_core(h, c);
2359                 /* no unmap needed here because no data xfer. */
2360
2361                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2362                         break;
2363
2364                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2365                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2366                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2367                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2368                         break;
2369
2370                 dev_warn(&h->pdev->dev, "waiting %d secs "
2371                         "for device to become ready.\n", waittime);
2372                 rc = 1; /* device not ready. */
2373         }
2374
2375         if (rc)
2376                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2377         else
2378                 dev_warn(&h->pdev->dev, "device is ready.\n");
2379
2380         cmd_special_free(h, c);
2381         return rc;
2382 }
2383
2384 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2385  * complaining.  Doing a host- or bus-reset can't do anything good here.
2386  */
2387 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2388 {
2389         int rc;
2390         struct ctlr_info *h;
2391         struct hpsa_scsi_dev_t *dev;
2392
2393         /* find the controller to which the command to be aborted was sent */
2394         h = sdev_to_hba(scsicmd->device);
2395         if (h == NULL) /* paranoia */
2396                 return FAILED;
2397         dev = scsicmd->device->hostdata;
2398         if (!dev) {
2399                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2400                         "device lookup failed.\n");
2401                 return FAILED;
2402         }
2403         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2404                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2405         /* send a reset to the SCSI LUN which the command was sent to */
2406         rc = hpsa_send_reset(h, dev->scsi3addr);
2407         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2408                 return SUCCESS;
2409
2410         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2411         return FAILED;
2412 }
2413
2414 static void swizzle_abort_tag(u8 *tag)
2415 {
2416         u8 original_tag[8];
2417
2418         memcpy(original_tag, tag, 8);
2419         tag[0] = original_tag[3];
2420         tag[1] = original_tag[2];
2421         tag[2] = original_tag[1];
2422         tag[3] = original_tag[0];
2423         tag[4] = original_tag[7];
2424         tag[5] = original_tag[6];
2425         tag[6] = original_tag[5];
2426         tag[7] = original_tag[4];
2427 }
2428
2429 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2430         struct CommandList *abort, int swizzle)
2431 {
2432         int rc = IO_OK;
2433         struct CommandList *c;
2434         struct ErrorInfo *ei;
2435
2436         c = cmd_special_alloc(h);
2437         if (c == NULL) {        /* trouble... */
2438                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2439                 return -ENOMEM;
2440         }
2441
2442         fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2443         if (swizzle)
2444                 swizzle_abort_tag(&c->Request.CDB[4]);
2445         hpsa_scsi_do_simple_cmd_core(h, c);
2446         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2447                 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2448         /* no unmap needed here because no data xfer. */
2449
2450         ei = c->err_info;
2451         switch (ei->CommandStatus) {
2452         case CMD_SUCCESS:
2453                 break;
2454         case CMD_UNABORTABLE: /* Very common, don't make noise. */
2455                 rc = -1;
2456                 break;
2457         default:
2458                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2459                         __func__, abort->Header.Tag.upper,
2460                         abort->Header.Tag.lower);
2461                 hpsa_scsi_interpret_error(c);
2462                 rc = -1;
2463                 break;
2464         }
2465         cmd_special_free(h, c);
2466         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2467                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2468         return rc;
2469 }
2470
2471 /*
2472  * hpsa_find_cmd_in_queue
2473  *
2474  * Used to determine whether a command (find) is still present
2475  * in queue_head.   Optionally excludes the last element of queue_head.
2476  *
2477  * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
2478  * not yet been submitted, and so can be aborted by the driver without
2479  * sending an abort to the hardware.
2480  *
2481  * Returns pointer to command if found in queue, NULL otherwise.
2482  */
2483 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2484                         struct scsi_cmnd *find, struct list_head *queue_head)
2485 {
2486         unsigned long flags;
2487         struct CommandList *c = NULL;   /* ptr into cmpQ */
2488
2489         if (!find)
2490                 return 0;
2491         spin_lock_irqsave(&h->lock, flags);
2492         list_for_each_entry(c, queue_head, list) {
2493                 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2494                         continue;
2495                 if (c->scsi_cmd == find) {
2496                         spin_unlock_irqrestore(&h->lock, flags);
2497                         return c;
2498                 }
2499         }
2500         spin_unlock_irqrestore(&h->lock, flags);
2501         return NULL;
2502 }
2503
2504 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2505                                         u8 *tag, struct list_head *queue_head)
2506 {
2507         unsigned long flags;
2508         struct CommandList *c;
2509
2510         spin_lock_irqsave(&h->lock, flags);
2511         list_for_each_entry(c, queue_head, list) {
2512                 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2513                         continue;
2514                 spin_unlock_irqrestore(&h->lock, flags);
2515                 return c;
2516         }
2517         spin_unlock_irqrestore(&h->lock, flags);
2518         return NULL;
2519 }
2520
2521 /* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
2522  * tell which kind we're dealing with, so we send the abort both ways.  There
2523  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2524  * way we construct our tags but we check anyway in case the assumptions which
2525  * make this true someday become false.
2526  */
2527 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2528         unsigned char *scsi3addr, struct CommandList *abort)
2529 {
2530         u8 swizzled_tag[8];
2531         struct CommandList *c;
2532         int rc = 0, rc2 = 0;
2533
2534         /* we do not expect to find the swizzled tag in our queue, but
2535          * check anyway just to be sure the assumptions which make this
2536          * the case haven't become wrong.
2537          */
2538         memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2539         swizzle_abort_tag(swizzled_tag);
2540         c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2541         if (c != NULL) {
2542                 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2543                 return hpsa_send_abort(h, scsi3addr, abort, 0);
2544         }
2545         rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2546
2547         /* if the command is still in our queue, we can't conclude that it was
2548          * aborted (it might have just completed normally) but in any case
2549          * we don't need to try to abort it another way.
2550          */
2551         c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2552         if (c)
2553                 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2554         return rc && rc2;
2555 }
2556
2557 /* Send an abort for the specified command.
2558  *      If the device and controller support it,
2559  *              send a task abort request.
2560  */
2561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2562 {
2563
2564         int i, rc;
2565         struct ctlr_info *h;
2566         struct hpsa_scsi_dev_t *dev;
2567         struct CommandList *abort; /* pointer to command to be aborted */
2568         struct CommandList *found;
2569         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
2570         char msg[256];          /* For debug messaging. */
2571         int ml = 0;
2572
2573         /* Find the controller of the command to be aborted */
2574         h = sdev_to_hba(sc->device);
2575         if (WARN(h == NULL,
2576                         "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2577                 return FAILED;
2578
2579         /* Check that controller supports some kind of task abort */
2580         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2581                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2582                 return FAILED;
2583
2584         memset(msg, 0, sizeof(msg));
2585         ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2586                 h->scsi_host->host_no, sc->device->channel,
2587                 sc->device->id, sc->device->lun);
2588
2589         /* Find the device of the command to be aborted */
2590         dev = sc->device->hostdata;
2591         if (!dev) {
2592                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2593                                 msg);
2594                 return FAILED;
2595         }
2596
2597         /* Get SCSI command to be aborted */
2598         abort = (struct CommandList *) sc->host_scribble;
2599         if (abort == NULL) {
2600                 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2601                                 msg);
2602                 return FAILED;
2603         }
2604
2605         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2606                 abort->Header.Tag.upper, abort->Header.Tag.lower);
2607         as  = (struct scsi_cmnd *) abort->scsi_cmd;
2608         if (as != NULL)
2609                 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2610                         as->cmnd[0], as->serial_number);
2611         dev_dbg(&h->pdev->dev, "%s\n", msg);
2612         dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2613                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2614
2615         /* Search reqQ to See if command is queued but not submitted,
2616          * if so, complete the command with aborted status and remove
2617          * it from the reqQ.
2618          */
2619         found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2620         if (found) {
2621                 found->err_info->CommandStatus = CMD_ABORTED;
2622                 finish_cmd(found);
2623                 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2624                                 msg);
2625                 return SUCCESS;
2626         }
2627
2628         /* not in reqQ, if also not in cmpQ, must have already completed */
2629         found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2630         if (!found)  {
2631                 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2632                                 msg);
2633                 return SUCCESS;
2634         }
2635
2636         /*
2637          * Command is in flight, or possibly already completed
2638          * by the firmware (but not to the scsi mid layer) but we can't
2639          * distinguish which.  Send the abort down.
2640          */
2641         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2642         if (rc != 0) {
2643                 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2644                 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2645                         h->scsi_host->host_no,
2646                         dev->bus, dev->target, dev->lun);
2647                 return FAILED;
2648         }
2649         dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2650
2651         /* If the abort(s) above completed and actually aborted the
2652          * command, then the command to be aborted should already be
2653          * completed.  If not, wait around a bit more to see if they
2654          * manage to complete normally.
2655          */
2656 #define ABORT_COMPLETE_WAIT_SECS 30
2657         for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2658                 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2659                 if (!found)
2660                         return SUCCESS;
2661                 msleep(100);
2662         }
2663         dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2664                 msg, ABORT_COMPLETE_WAIT_SECS);
2665         return FAILED;
2666 }
2667
2668
2669 /*
2670  * For operations that cannot sleep, a command block is allocated at init,
2671  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2672  * which ones are free or in use.  Lock must be held when calling this.
2673  * cmd_free() is the complement.
2674  */
2675 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2676 {
2677         struct CommandList *c;
2678         int i;
2679         union u64bit temp64;
2680         dma_addr_t cmd_dma_handle, err_dma_handle;
2681         unsigned long flags;
2682
2683         spin_lock_irqsave(&h->lock, flags);
2684         do {
2685                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2686                 if (i == h->nr_cmds) {
2687                         spin_unlock_irqrestore(&h->lock, flags);
2688                         return NULL;
2689                 }
2690         } while (test_and_set_bit
2691                  (i & (BITS_PER_LONG - 1),
2692                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2693         h->nr_allocs++;
2694         spin_unlock_irqrestore(&h->lock, flags);
2695
2696         c = h->cmd_pool + i;
2697         memset(c, 0, sizeof(*c));
2698         cmd_dma_handle = h->cmd_pool_dhandle
2699             + i * sizeof(*c);
2700         c->err_info = h->errinfo_pool + i;
2701         memset(c->err_info, 0, sizeof(*c->err_info));
2702         err_dma_handle = h->errinfo_pool_dhandle
2703             + i * sizeof(*c->err_info);
2704
2705         c->cmdindex = i;
2706
2707         INIT_LIST_HEAD(&c->list);
2708         c->busaddr = (u32) cmd_dma_handle;
2709         temp64.val = (u64) err_dma_handle;
2710         c->ErrDesc.Addr.lower = temp64.val32.lower;
2711         c->ErrDesc.Addr.upper = temp64.val32.upper;
2712         c->ErrDesc.Len = sizeof(*c->err_info);
2713
2714         c->h = h;
2715         return c;
2716 }
2717
2718 /* For operations that can wait for kmalloc to possibly sleep,
2719  * this routine can be called. Lock need not be held to call
2720  * cmd_special_alloc. cmd_special_free() is the complement.
2721  */
2722 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2723 {
2724         struct CommandList *c;
2725         union u64bit temp64;
2726         dma_addr_t cmd_dma_handle, err_dma_handle;
2727
2728         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2729         if (c == NULL)
2730                 return NULL;
2731         memset(c, 0, sizeof(*c));
2732
2733         c->cmdindex = -1;
2734
2735         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2736                     &err_dma_handle);
2737
2738         if (c->err_info == NULL) {
2739                 pci_free_consistent(h->pdev,
2740                         sizeof(*c), c, cmd_dma_handle);
2741                 return NULL;
2742         }
2743         memset(c->err_info, 0, sizeof(*c->err_info));
2744
2745         INIT_LIST_HEAD(&c->list);
2746         c->busaddr = (u32) cmd_dma_handle;
2747         temp64.val = (u64) err_dma_handle;
2748         c->ErrDesc.Addr.lower = temp64.val32.lower;
2749         c->ErrDesc.Addr.upper = temp64.val32.upper;
2750         c->ErrDesc.Len = sizeof(*c->err_info);
2751
2752         c->h = h;
2753         return c;
2754 }
2755
2756 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2757 {
2758         int i;
2759         unsigned long flags;
2760
2761         i = c - h->cmd_pool;
2762         spin_lock_irqsave(&h->lock, flags);
2763         clear_bit(i & (BITS_PER_LONG - 1),
2764                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2765         h->nr_frees++;
2766         spin_unlock_irqrestore(&h->lock, flags);
2767 }
2768
2769 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2770 {
2771         union u64bit temp64;
2772
2773         temp64.val32.lower = c->ErrDesc.Addr.lower;
2774         temp64.val32.upper = c->ErrDesc.Addr.upper;
2775         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2776                             c->err_info, (dma_addr_t) temp64.val);
2777         pci_free_consistent(h->pdev, sizeof(*c),
2778                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2779 }
2780
2781 #ifdef CONFIG_COMPAT
2782
2783 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2784 {
2785         IOCTL32_Command_struct __user *arg32 =
2786             (IOCTL32_Command_struct __user *) arg;
2787         IOCTL_Command_struct arg64;
2788         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2789         int err;
2790         u32 cp;
2791
2792         memset(&arg64, 0, sizeof(arg64));
2793         err = 0;
2794         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2795                            sizeof(arg64.LUN_info));
2796         err |= copy_from_user(&arg64.Request, &arg32->Request,
2797                            sizeof(arg64.Request));
2798         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2799                            sizeof(arg64.error_info));
2800         err |= get_user(arg64.buf_size, &arg32->buf_size);
2801         err |= get_user(cp, &arg32->buf);
2802         arg64.buf = compat_ptr(cp);
2803         err |= copy_to_user(p, &arg64, sizeof(arg64));
2804
2805         if (err)
2806                 return -EFAULT;
2807
2808         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2809         if (err)
2810                 return err;
2811         err |= copy_in_user(&arg32->error_info, &p->error_info,
2812                          sizeof(arg32->error_info));
2813         if (err)
2814                 return -EFAULT;
2815         return err;
2816 }
2817
2818 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2819         int cmd, void *arg)
2820 {
2821         BIG_IOCTL32_Command_struct __user *arg32 =
2822             (BIG_IOCTL32_Command_struct __user *) arg;
2823         BIG_IOCTL_Command_struct arg64;
2824         BIG_IOCTL_Command_struct __user *p =
2825             compat_alloc_user_space(sizeof(arg64));
2826         int err;
2827         u32 cp;
2828
2829         memset(&arg64, 0, sizeof(arg64));
2830         err = 0;
2831         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2832                            sizeof(arg64.LUN_info));
2833         err |= copy_from_user(&arg64.Request, &arg32->Request,
2834                            sizeof(arg64.Request));
2835         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2836                            sizeof(arg64.error_info));
2837         err |= get_user(arg64.buf_size, &arg32->buf_size);
2838         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2839         err |= get_user(cp, &arg32->buf);
2840         arg64.buf = compat_ptr(cp);
2841         err |= copy_to_user(p, &arg64, sizeof(arg64));
2842
2843         if (err)
2844                 return -EFAULT;
2845
2846         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2847         if (err)
2848                 return err;
2849         err |= copy_in_user(&arg32->error_info, &p->error_info,
2850                          sizeof(arg32->error_info));
2851         if (err)
2852                 return -EFAULT;
2853         return err;
2854 }
2855
2856 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2857 {
2858         switch (cmd) {
2859         case CCISS_GETPCIINFO:
2860         case CCISS_GETINTINFO:
2861         case CCISS_SETINTINFO:
2862         case CCISS_GETNODENAME:
2863         case CCISS_SETNODENAME:
2864         case CCISS_GETHEARTBEAT:
2865         case CCISS_GETBUSTYPES:
2866         case CCISS_GETFIRMVER:
2867         case CCISS_GETDRIVVER:
2868         case CCISS_REVALIDVOLS:
2869         case CCISS_DEREGDISK:
2870         case CCISS_REGNEWDISK:
2871         case CCISS_REGNEWD:
2872         case CCISS_RESCANDISK:
2873         case CCISS_GETLUNINFO:
2874                 return hpsa_ioctl(dev, cmd, arg);
2875
2876         case CCISS_PASSTHRU32:
2877                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2878         case CCISS_BIG_PASSTHRU32:
2879                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2880
2881         default:
2882                 return -ENOIOCTLCMD;
2883         }
2884 }
2885 #endif
2886
2887 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2888 {
2889         struct hpsa_pci_info pciinfo;
2890
2891         if (!argp)
2892                 return -EINVAL;
2893         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2894         pciinfo.bus = h->pdev->bus->number;
2895         pciinfo.dev_fn = h->pdev->devfn;
2896         pciinfo.board_id = h->board_id;
2897         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2898                 return -EFAULT;
2899         return 0;
2900 }
2901
2902 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2903 {
2904         DriverVer_type DriverVer;
2905         unsigned char vmaj, vmin, vsubmin;
2906         int rc;
2907
2908         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2909                 &vmaj, &vmin, &vsubmin);
2910         if (rc != 3) {
2911                 dev_info(&h->pdev->dev, "driver version string '%s' "
2912                         "unrecognized.", HPSA_DRIVER_VERSION);
2913                 vmaj = 0;
2914                 vmin = 0;
2915                 vsubmin = 0;
2916         }
2917         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2918         if (!argp)
2919                 return -EINVAL;
2920         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2921                 return -EFAULT;
2922         return 0;
2923 }
2924
2925 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2926 {
2927         IOCTL_Command_struct iocommand;
2928         struct CommandList *c;
2929         char *buff = NULL;
2930         union u64bit temp64;
2931
2932         if (!argp)
2933                 return -EINVAL;
2934         if (!capable(CAP_SYS_RAWIO))
2935                 return -EPERM;
2936         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2937                 return -EFAULT;
2938         if ((iocommand.buf_size < 1) &&
2939             (iocommand.Request.Type.Direction != XFER_NONE)) {
2940                 return -EINVAL;
2941         }
2942         if (iocommand.buf_size > 0) {
2943                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2944                 if (buff == NULL)
2945                         return -EFAULT;
2946                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2947                         /* Copy the data into the buffer we created */
2948                         if (copy_from_user(buff, iocommand.buf,
2949                                 iocommand.buf_size)) {
2950                                 kfree(buff);
2951                                 return -EFAULT;
2952                         }
2953                 } else {
2954                         memset(buff, 0, iocommand.buf_size);
2955                 }
2956         }
2957         c = cmd_special_alloc(h);
2958         if (c == NULL) {
2959                 kfree(buff);
2960                 return -ENOMEM;
2961         }
2962         /* Fill in the command type */
2963         c->cmd_type = CMD_IOCTL_PEND;
2964         /* Fill in Command Header */
2965         c->Header.ReplyQueue = 0; /* unused in simple mode */
2966         if (iocommand.buf_size > 0) {   /* buffer to fill */
2967                 c->Header.SGList = 1;
2968                 c->Header.SGTotal = 1;
2969         } else  { /* no buffers to fill */
2970                 c->Header.SGList = 0;
2971                 c->Header.SGTotal = 0;
2972         }
2973         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2974         /* use the kernel address the cmd block for tag */
2975         c->Header.Tag.lower = c->busaddr;
2976
2977         /* Fill in Request block */
2978         memcpy(&c->Request, &iocommand.Request,
2979                 sizeof(c->Request));
2980
2981         /* Fill in the scatter gather information */
2982         if (iocommand.buf_size > 0) {
2983                 temp64.val = pci_map_single(h->pdev, buff,
2984                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2985                 c->SG[0].Addr.lower = temp64.val32.lower;
2986                 c->SG[0].Addr.upper = temp64.val32.upper;
2987                 c->SG[0].Len = iocommand.buf_size;
2988                 c->SG[0].Ext = 0; /* we are not chaining*/
2989         }
2990         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2991         if (iocommand.buf_size > 0)
2992                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2993         check_ioctl_unit_attention(h, c);
2994
2995         /* Copy the error information out */
2996         memcpy(&iocommand.error_info, c->err_info,
2997                 sizeof(iocommand.error_info));
2998         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2999                 kfree(buff);
3000                 cmd_special_free(h, c);
3001                 return -EFAULT;
3002         }
3003         if (iocommand.Request.Type.Direction == XFER_READ &&
3004                 iocommand.buf_size > 0) {
3005                 /* Copy the data out of the buffer we created */
3006                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3007                         kfree(buff);
3008                         cmd_special_free(h, c);
3009                         return -EFAULT;
3010                 }
3011         }
3012         kfree(buff);
3013         cmd_special_free(h, c);
3014         return 0;
3015 }
3016
3017 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3018 {
3019         BIG_IOCTL_Command_struct *ioc;
3020         struct CommandList *c;
3021         unsigned char **buff = NULL;
3022         int *buff_size = NULL;
3023         union u64bit temp64;
3024         BYTE sg_used = 0;
3025         int status = 0;
3026         int i;
3027         u32 left;
3028         u32 sz;
3029         BYTE __user *data_ptr;
3030
3031         if (!argp)
3032                 return -EINVAL;
3033         if (!capable(CAP_SYS_RAWIO))
3034                 return -EPERM;
3035         ioc = (BIG_IOCTL_Command_struct *)
3036             kmalloc(sizeof(*ioc), GFP_KERNEL);
3037         if (!ioc) {
3038                 status = -ENOMEM;
3039                 goto cleanup1;
3040         }
3041         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3042                 status = -EFAULT;
3043                 goto cleanup1;
3044         }
3045         if ((ioc->buf_size < 1) &&
3046             (ioc->Request.Type.Direction != XFER_NONE)) {
3047                 status = -EINVAL;
3048                 goto cleanup1;
3049         }
3050         /* Check kmalloc limits  using all SGs */
3051         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3052                 status = -EINVAL;
3053                 goto cleanup1;
3054         }
3055         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3056                 status = -EINVAL;
3057                 goto cleanup1;
3058         }
3059         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3060         if (!buff) {
3061                 status = -ENOMEM;
3062                 goto cleanup1;
3063         }
3064         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3065         if (!buff_size) {
3066                 status = -ENOMEM;
3067                 goto cleanup1;
3068         }
3069         left = ioc->buf_size;
3070         data_ptr = ioc->buf;
3071         while (left) {
3072                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3073                 buff_size[sg_used] = sz;
3074                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3075                 if (buff[sg_used] == NULL) {
3076                         status = -ENOMEM;
3077                         goto cleanup1;
3078                 }
3079                 if (ioc->Request.Type.Direction == XFER_WRITE) {
3080                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3081                                 status = -ENOMEM;
3082                                 goto cleanup1;
3083                         }
3084                 } else
3085                         memset(buff[sg_used], 0, sz);
3086                 left -= sz;
3087                 data_ptr += sz;
3088                 sg_used++;
3089         }
3090         c = cmd_special_alloc(h);
3091         if (c == NULL) {
3092                 status = -ENOMEM;
3093                 goto cleanup1;
3094         }
3095         c->cmd_type = CMD_IOCTL_PEND;
3096         c->Header.ReplyQueue = 0;
3097         c->Header.SGList = c->Header.SGTotal = sg_used;
3098         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3099         c->Header.Tag.lower = c->busaddr;
3100         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3101         if (ioc->buf_size > 0) {
3102                 int i;
3103                 for (i = 0; i < sg_used; i++) {
3104                         temp64.val = pci_map_single(h->pdev, buff[i],
3105                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
3106                         c->SG[i].Addr.lower = temp64.val32.lower;
3107                         c->SG[i].Addr.upper = temp64.val32.upper;
3108                         c->SG[i].Len = buff_size[i];
3109                         /* we are not chaining */
3110                         c->SG[i].Ext = 0;
3111                 }
3112         }
3113         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3114         if (sg_used)
3115                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3116         check_ioctl_unit_attention(h, c);
3117         /* Copy the error information out */
3118         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3119         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3120                 cmd_special_free(h, c);
3121                 status = -EFAULT;
3122                 goto cleanup1;
3123         }
3124         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3125                 /* Copy the data out of the buffer we created */
3126                 BYTE __user *ptr = ioc->buf;
3127                 for (i = 0; i < sg_used; i++) {
3128                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
3129                                 cmd_special_free(h, c);
3130                                 status = -EFAULT;
3131                                 goto cleanup1;
3132                         }
3133                         ptr += buff_size[i];
3134                 }
3135         }
3136         cmd_special_free(h, c);
3137         status = 0;
3138 cleanup1:
3139         if (buff) {
3140                 for (i = 0; i < sg_used; i++)
3141                         kfree(buff[i]);
3142                 kfree(buff);
3143         }
3144         kfree(buff_size);
3145         kfree(ioc);
3146         return status;
3147 }
3148
3149 static void check_ioctl_unit_attention(struct ctlr_info *h,
3150         struct CommandList *c)
3151 {
3152         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3153                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3154                 (void) check_for_unit_attention(h, c);
3155 }
3156 /*
3157  * ioctl
3158  */
3159 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3160 {
3161         struct ctlr_info *h;
3162         void __user *argp = (void __user *)arg;
3163
3164         h = sdev_to_hba(dev);
3165
3166         switch (cmd) {
3167         case CCISS_DEREGDISK:
3168         case CCISS_REGNEWDISK:
3169         case CCISS_REGNEWD:
3170                 hpsa_scan_start(h->scsi_host);
3171                 return 0;
3172         case CCISS_GETPCIINFO:
3173                 return hpsa_getpciinfo_ioctl(h, argp);
3174         case CCISS_GETDRIVVER:
3175                 return hpsa_getdrivver_ioctl(h, argp);
3176         case CCISS_PASSTHRU:
3177                 return hpsa_passthru_ioctl(h, argp);
3178         case CCISS_BIG_PASSTHRU:
3179                 return hpsa_big_passthru_ioctl(h, argp);
3180         default:
3181                 return -ENOTTY;
3182         }
3183 }
3184
3185 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3186                                 u8 reset_type)
3187 {
3188         struct CommandList *c;
3189
3190         c = cmd_alloc(h);
3191         if (!c)
3192                 return -ENOMEM;
3193         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3194                 RAID_CTLR_LUNID, TYPE_MSG);
3195         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3196         c->waiting = NULL;
3197         enqueue_cmd_and_start_io(h, c);
3198         /* Don't wait for completion, the reset won't complete.  Don't free
3199          * the command either.  This is the last command we will send before
3200          * re-initializing everything, so it doesn't matter and won't leak.
3201          */
3202         return 0;
3203 }
3204
3205 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3206         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3207         int cmd_type)
3208 {
3209         int pci_dir = XFER_NONE;
3210         struct CommandList *a; /* for commands to be aborted */
3211
3212         c->cmd_type = CMD_IOCTL_PEND;
3213         c->Header.ReplyQueue = 0;
3214         if (buff != NULL && size > 0) {
3215                 c->Header.SGList = 1;
3216                 c->Header.SGTotal = 1;
3217         } else {
3218                 c->Header.SGList = 0;
3219                 c->Header.SGTotal = 0;
3220         }
3221         c->Header.Tag.lower = c->busaddr;
3222         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3223
3224         c->Request.Type.Type = cmd_type;
3225         if (cmd_type == TYPE_CMD) {
3226                 switch (cmd) {
3227                 case HPSA_INQUIRY:
3228                         /* are we trying to read a vital product page */
3229                         if (page_code != 0) {
3230                                 c->Request.CDB[1] = 0x01;
3231                                 c->Request.CDB[2] = page_code;
3232                         }
3233                         c->Request.CDBLen = 6;
3234                         c->Request.Type.Attribute = ATTR_SIMPLE;
3235                         c->Request.Type.Direction = XFER_READ;
3236                         c->Request.Timeout = 0;
3237                         c->Request.CDB[0] = HPSA_INQUIRY;
3238                         c->Request.CDB[4] = size & 0xFF;
3239                         break;
3240                 case HPSA_REPORT_LOG:
3241                 case HPSA_REPORT_PHYS:
3242                         /* Talking to controller so It's a physical command
3243                            mode = 00 target = 0.  Nothing to write.
3244                          */
3245                         c->Request.CDBLen = 12;
3246                         c->Request.Type.Attribute = ATTR_SIMPLE;
3247                         c->Request.Type.Direction = XFER_READ;
3248                         c->Request.Timeout = 0;
3249                         c->Request.CDB[0] = cmd;
3250                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3251                         c->Request.CDB[7] = (size >> 16) & 0xFF;
3252                         c->Request.CDB[8] = (size >> 8) & 0xFF;
3253                         c->Request.CDB[9] = size & 0xFF;
3254                         break;
3255                 case HPSA_CACHE_FLUSH:
3256                         c->Request.CDBLen = 12;
3257                         c->Request.Type.Attribute = ATTR_SIMPLE;
3258                         c->Request.Type.Direction = XFER_WRITE;
3259                         c->Request.Timeout = 0;
3260                         c->Request.CDB[0] = BMIC_WRITE;
3261                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3262                         c->Request.CDB[7] = (size >> 8) & 0xFF;
3263                         c->Request.CDB[8] = size & 0xFF;
3264                         break;
3265                 case TEST_UNIT_READY:
3266                         c->Request.CDBLen = 6;
3267                         c->Request.Type.Attribute = ATTR_SIMPLE;
3268                         c->Request.Type.Direction = XFER_NONE;
3269                         c->Request.Timeout = 0;
3270                         break;
3271                 default:
3272                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3273                         BUG();
3274                         return;
3275                 }
3276         } else if (cmd_type == TYPE_MSG) {
3277                 switch (cmd) {
3278
3279                 case  HPSA_DEVICE_RESET_MSG:
3280                         c->Request.CDBLen = 16;
3281                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
3282                         c->Request.Type.Attribute = ATTR_SIMPLE;
3283                         c->Request.Type.Direction = XFER_NONE;
3284                         c->Request.Timeout = 0; /* Don't time out */
3285                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3286                         c->Request.CDB[0] =  cmd;
3287                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3288                         /* If bytes 4-7 are zero, it means reset the */
3289                         /* LunID device */
3290                         c->Request.CDB[4] = 0x00;
3291                         c->Request.CDB[5] = 0x00;
3292                         c->Request.CDB[6] = 0x00;
3293                         c->Request.CDB[7] = 0x00;
3294                         break;
3295                 case  HPSA_ABORT_MSG:
3296                         a = buff;       /* point to command to be aborted */
3297                         dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3298                                 a->Header.Tag.upper, a->Header.Tag.lower,
3299                                 c->Header.Tag.upper, c->Header.Tag.lower);
3300                         c->Request.CDBLen = 16;
3301                         c->Request.Type.Type = TYPE_MSG;
3302                         c->Request.Type.Attribute = ATTR_SIMPLE;
3303                         c->Request.Type.Direction = XFER_WRITE;
3304                         c->Request.Timeout = 0; /* Don't time out */
3305                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3306                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3307                         c->Request.CDB[2] = 0x00; /* reserved */
3308                         c->Request.CDB[3] = 0x00; /* reserved */
3309                         /* Tag to abort goes in CDB[4]-CDB[11] */
3310                         c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3311                         c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3312                         c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3313                         c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3314                         c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3315                         c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3316                         c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3317                         c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3318                         c->Request.CDB[12] = 0x00; /* reserved */
3319                         c->Request.CDB[13] = 0x00; /* reserved */
3320                         c->Request.CDB[14] = 0x00; /* reserved */
3321                         c->Request.CDB[15] = 0x00; /* reserved */
3322                 break;
3323                 default:
3324                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
3325                                 cmd);
3326                         BUG();
3327                 }
3328         } else {
3329                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3330                 BUG();
3331         }
3332
3333         switch (c->Request.Type.Direction) {
3334         case XFER_READ:
3335                 pci_dir = PCI_DMA_FROMDEVICE;
3336                 break;
3337         case XFER_WRITE:
3338                 pci_dir = PCI_DMA_TODEVICE;
3339                 break;
3340         case XFER_NONE:
3341                 pci_dir = PCI_DMA_NONE;
3342                 break;
3343         default:
3344                 pci_dir = PCI_DMA_BIDIRECTIONAL;
3345         }
3346
3347         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3348
3349         return;
3350 }
3351
3352 /*
3353  * Map (physical) PCI mem into (virtual) kernel space
3354  */
3355 static void __iomem *remap_pci_mem(ulong base, ulong size)
3356 {
3357         ulong page_base = ((ulong) base) & PAGE_MASK;
3358         ulong page_offs = ((ulong) base) - page_base;
3359         void __iomem *page_remapped = ioremap_nocache(page_base,
3360                 page_offs + size);
3361
3362         return page_remapped ? (page_remapped + page_offs) : NULL;
3363 }
3364
3365 /* Takes cmds off the submission queue and sends them to the hardware,
3366  * then puts them on the queue of cmds waiting for completion.
3367  */
3368 static void start_io(struct ctlr_info *h)
3369 {
3370         struct CommandList *c;
3371         unsigned long flags;
3372
3373         spin_lock_irqsave(&h->lock, flags);
3374         while (!list_empty(&h->reqQ)) {
3375                 c = list_entry(h->reqQ.next, struct CommandList, list);
3376                 /* can't do anything if fifo is full */
3377                 if ((h->access.fifo_full(h))) {
3378                         dev_warn(&h->pdev->dev, "fifo full\n");
3379                         break;
3380                 }
3381
3382                 /* Get the first entry from the Request Q */
3383                 removeQ(c);
3384                 h->Qdepth--;
3385
3386                 /* Put job onto the completed Q */
3387                 addQ(&h->cmpQ, c);
3388
3389                 /* Must increment commands_outstanding before unlocking
3390                  * and submitting to avoid race checking for fifo full
3391                  * condition.
3392                  */
3393                 h->commands_outstanding++;
3394                 if (h->commands_outstanding > h->max_outstanding)
3395                         h->max_outstanding = h->commands_outstanding;
3396
3397                 /* Tell the controller execute command */
3398                 spin_unlock_irqrestore(&h->lock, flags);
3399                 h->access.submit_command(h, c);
3400                 spin_lock_irqsave(&h->lock, flags);
3401         }
3402         spin_unlock_irqrestore(&h->lock, flags);
3403 }
3404
3405 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3406 {
3407         return h->access.command_completed(h, q);
3408 }
3409
3410 static inline bool interrupt_pending(struct ctlr_info *h)
3411 {
3412         return h->access.intr_pending(h);
3413 }
3414
3415 static inline long interrupt_not_for_us(struct ctlr_info *h)
3416 {
3417         return (h->access.intr_pending(h) == 0) ||
3418                 (h->interrupts_enabled == 0);
3419 }
3420
3421 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3422         u32 raw_tag)
3423 {
3424         if (unlikely(tag_index >= h->nr_cmds)) {
3425                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3426                 return 1;
3427         }
3428         return 0;
3429 }
3430
3431 static inline void finish_cmd(struct CommandList *c)
3432 {
3433         unsigned long flags;
3434
3435         spin_lock_irqsave(&c->h->lock, flags);
3436         removeQ(c);
3437         spin_unlock_irqrestore(&c->h->lock, flags);
3438         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3439         if (likely(c->cmd_type == CMD_SCSI))
3440                 complete_scsi_command(c);
3441         else if (c->cmd_type == CMD_IOCTL_PEND)
3442                 complete(c->waiting);
3443 }
3444
3445 static inline u32 hpsa_tag_contains_index(u32 tag)
3446 {
3447         return tag & DIRECT_LOOKUP_BIT;
3448 }
3449
3450 static inline u32 hpsa_tag_to_index(u32 tag)
3451 {
3452         return tag >> DIRECT_LOOKUP_SHIFT;
3453 }
3454
3455
3456 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3457 {
3458 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3459 #define HPSA_SIMPLE_ERROR_BITS 0x03
3460         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3461                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3462         return tag & ~HPSA_PERF_ERROR_BITS;
3463 }
3464
3465 /* process completion of an indexed ("direct lookup") command */
3466 static inline void process_indexed_cmd(struct ctlr_info *h,
3467         u32 raw_tag)
3468 {
3469         u32 tag_index;
3470         struct CommandList *c;
3471
3472         tag_index = hpsa_tag_to_index(raw_tag);
3473         if (!bad_tag(h, tag_index, raw_tag)) {
3474                 c = h->cmd_pool + tag_index;
3475                 finish_cmd(c);
3476         }
3477 }
3478
3479 /* process completion of a non-indexed command */
3480 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3481         u32 raw_tag)
3482 {
3483         u32 tag;
3484         struct CommandList *c = NULL;
3485         unsigned long flags;
3486
3487         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3488         spin_lock_irqsave(&h->lock, flags);
3489         list_for_each_entry(c, &h->cmpQ, list) {
3490                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3491                         spin_unlock_irqrestore(&h->lock, flags);
3492                         finish_cmd(c);
3493                         return;
3494                 }
3495         }
3496         spin_unlock_irqrestore(&h->lock, flags);
3497         bad_tag(h, h->nr_cmds + 1, raw_tag);
3498 }
3499
3500 /* Some controllers, like p400, will give us one interrupt
3501  * after a soft reset, even if we turned interrupts off.
3502  * Only need to check for this in the hpsa_xxx_discard_completions
3503  * functions.
3504  */
3505 static int ignore_bogus_interrupt(struct ctlr_info *h)
3506 {
3507         if (likely(!reset_devices))
3508                 return 0;
3509
3510         if (likely(h->interrupts_enabled))
3511                 return 0;
3512
3513         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3514                 "(known firmware bug.)  Ignoring.\n");
3515
3516         return 1;
3517 }
3518
3519 /*
3520  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3521  * Relies on (h-q[x] == x) being true for x such that
3522  * 0 <= x < MAX_REPLY_QUEUES.
3523  */
3524 static struct ctlr_info *queue_to_hba(u8 *queue)
3525 {
3526         return container_of((queue - *queue), struct ctlr_info, q[0]);
3527 }
3528
3529 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3530 {
3531         struct ctlr_info *h = queue_to_hba(queue);
3532         u8 q = *(u8 *) queue;
3533         u32 raw_tag;
3534
3535         if (ignore_bogus_interrupt(h))
3536                 return IRQ_NONE;
3537
3538         if (interrupt_not_for_us(h))
3539                 return IRQ_NONE;
3540         h->last_intr_timestamp = get_jiffies_64();
3541         while (interrupt_pending(h)) {
3542                 raw_tag = get_next_completion(h, q);
3543                 while (raw_tag != FIFO_EMPTY)
3544                         raw_tag = next_command(h, q);
3545         }
3546         return IRQ_HANDLED;
3547 }
3548
3549 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3550 {
3551         struct ctlr_info *h = queue_to_hba(queue);
3552         u32 raw_tag;
3553         u8 q = *(u8 *) queue;
3554
3555         if (ignore_bogus_interrupt(h))
3556                 return IRQ_NONE;
3557
3558         h->last_intr_timestamp = get_jiffies_64();
3559         raw_tag = get_next_completion(h, q);
3560         while (raw_tag != FIFO_EMPTY)
3561                 raw_tag = next_command(h, q);
3562         return IRQ_HANDLED;
3563 }
3564
3565 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3566 {
3567         struct ctlr_info *h = queue_to_hba((u8 *) queue);
3568         u32 raw_tag;
3569         u8 q = *(u8 *) queue;
3570
3571         if (interrupt_not_for_us(h))
3572                 return IRQ_NONE;
3573         h->last_intr_timestamp = get_jiffies_64();
3574         while (interrupt_pending(h)) {
3575                 raw_tag = get_next_completion(h, q);
3576                 while (raw_tag != FIFO_EMPTY) {
3577                         if (likely(hpsa_tag_contains_index(raw_tag)))
3578                                 process_indexed_cmd(h, raw_tag);
3579                         else
3580                                 process_nonindexed_cmd(h, raw_tag);
3581                         raw_tag = next_command(h, q);
3582                 }
3583         }
3584         return IRQ_HANDLED;
3585 }
3586
3587 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3588 {
3589         struct ctlr_info *h = queue_to_hba(queue);
3590         u32 raw_tag;
3591         u8 q = *(u8 *) queue;
3592
3593         h->last_intr_timestamp = get_jiffies_64();
3594         raw_tag = get_next_completion(h, q);
3595         while (raw_tag != FIFO_EMPTY) {
3596                 if (likely(hpsa_tag_contains_index(raw_tag)))
3597                         process_indexed_cmd(h, raw_tag);
3598                 else
3599                         process_nonindexed_cmd(h, raw_tag);
3600                 raw_tag = next_command(h, q);
3601         }
3602         return IRQ_HANDLED;
3603 }
3604
3605 /* Send a message CDB to the firmware. Careful, this only works
3606  * in simple mode, not performant mode due to the tag lookup.
3607  * We only ever use this immediately after a controller reset.
3608  */
3609 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3610                         unsigned char type)
3611 {
3612         struct Command {
3613                 struct CommandListHeader CommandHeader;
3614                 struct RequestBlock Request;
3615                 struct ErrDescriptor ErrorDescriptor;
3616         };
3617         struct Command *cmd;
3618         static const size_t cmd_sz = sizeof(*cmd) +
3619                                         sizeof(cmd->ErrorDescriptor);
3620         dma_addr_t paddr64;
3621         uint32_t paddr32, tag;
3622         void __iomem *vaddr;
3623         int i, err;
3624
3625         vaddr = pci_ioremap_bar(pdev, 0);
3626         if (vaddr == NULL)
3627                 return -ENOMEM;
3628
3629         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3630          * CCISS commands, so they must be allocated from the lower 4GiB of
3631          * memory.
3632          */
3633         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3634         if (err) {
3635                 iounmap(vaddr);
3636                 return -ENOMEM;
3637         }
3638
3639         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3640         if (cmd == NULL) {
3641                 iounmap(vaddr);
3642                 return -ENOMEM;
3643         }
3644
3645         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3646          * although there's no guarantee, we assume that the address is at
3647          * least 4-byte aligned (most likely, it's page-aligned).
3648          */
3649         paddr32 = paddr64;
3650
3651         cmd->CommandHeader.ReplyQueue = 0;
3652         cmd->CommandHeader.SGList = 0;
3653         cmd->CommandHeader.SGTotal = 0;
3654         cmd->CommandHeader.Tag.lower = paddr32;
3655         cmd->CommandHeader.Tag.upper = 0;
3656         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3657
3658         cmd->Request.CDBLen = 16;
3659         cmd->Request.Type.Type = TYPE_MSG;
3660         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3661         cmd->Request.Type.Direction = XFER_NONE;
3662         cmd->Request.Timeout = 0; /* Don't time out */
3663         cmd->Request.CDB[0] = opcode;
3664         cmd->Request.CDB[1] = type;
3665         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3666         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3667         cmd->ErrorDescriptor.Addr.upper = 0;
3668         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3669
3670         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3671
3672         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3673                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3674                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3675                         break;
3676                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3677         }
3678
3679         iounmap(vaddr);
3680
3681         /* we leak the DMA buffer here ... no choice since the controller could
3682          *  still complete the command.
3683          */
3684         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3685                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3686                         opcode, type);
3687                 return -ETIMEDOUT;
3688         }
3689
3690         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3691
3692         if (tag & HPSA_ERROR_BIT) {
3693                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3694                         opcode, type);
3695                 return -EIO;
3696         }
3697
3698         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3699                 opcode, type);
3700         return 0;
3701 }
3702
3703 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3704
3705 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3706         void * __iomem vaddr, u32 use_doorbell)
3707 {
3708         u16 pmcsr;
3709         int pos;
3710
3711         if (use_doorbell) {
3712                 /* For everything after the P600, the PCI power state method
3713                  * of resetting the controller doesn't work, so we have this
3714                  * other way using the doorbell register.
3715                  */
3716                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3717                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3718         } else { /* Try to do it the PCI power state way */
3719
3720                 /* Quoting from the Open CISS Specification: "The Power
3721                  * Management Control/Status Register (CSR) controls the power
3722                  * state of the device.  The normal operating state is D0,
3723                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3724                  * the controller, place the interface device in D3 then to D0,
3725                  * this causes a secondary PCI reset which will reset the
3726                  * controller." */
3727
3728                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3729                 if (pos == 0) {
3730                         dev_err(&pdev->dev,
3731                                 "hpsa_reset_controller: "
3732                                 "PCI PM not supported\n");
3733                         return -ENODEV;
3734                 }
3735                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3736                 /* enter the D3hot power management state */
3737                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3738                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3739                 pmcsr |= PCI_D3hot;
3740                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3741
3742                 msleep(500);
3743
3744                 /* enter the D0 power management state */
3745                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3746                 pmcsr |= PCI_D0;
3747                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3748
3749                 /*
3750                  * The P600 requires a small delay when changing states.
3751                  * Otherwise we may think the board did not reset and we bail.
3752                  * This for kdump only and is particular to the P600.
3753                  */
3754                 msleep(500);
3755         }
3756         return 0;
3757 }
3758
3759 static void init_driver_version(char *driver_version, int len)
3760 {
3761         memset(driver_version, 0, len);
3762         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3763 }
3764
3765 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3766 {
3767         char *driver_version;
3768         int i, size = sizeof(cfgtable->driver_version);
3769
3770         driver_version = kmalloc(size, GFP_KERNEL);
3771         if (!driver_version)
3772                 return -ENOMEM;
3773
3774         init_driver_version(driver_version, size);
3775         for (i = 0; i < size; i++)
3776                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3777         kfree(driver_version);
3778         return 0;
3779 }
3780
3781 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3782                                           unsigned char *driver_ver)
3783 {
3784         int i;
3785
3786         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3787                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3788 }
3789
3790 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3791 {
3792
3793         char *driver_ver, *old_driver_ver;
3794         int rc, size = sizeof(cfgtable->driver_version);
3795
3796         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3797         if (!old_driver_ver)
3798                 return -ENOMEM;
3799         driver_ver = old_driver_ver + size;
3800
3801         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3802          * should have been changed, otherwise we know the reset failed.
3803          */
3804         init_driver_version(old_driver_ver, size);
3805         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3806         rc = !memcmp(driver_ver, old_driver_ver, size);
3807         kfree(old_driver_ver);
3808         return rc;
3809 }
3810 /* This does a hard reset of the controller using PCI power management
3811  * states or the using the doorbell register.
3812  */
3813 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3814 {
3815         u64 cfg_offset;
3816         u32 cfg_base_addr;
3817         u64 cfg_base_addr_index;
3818         void __iomem *vaddr;
3819         unsigned long paddr;
3820         u32 misc_fw_support;
3821         int rc;
3822         struct CfgTable __iomem *cfgtable;
3823         u32 use_doorbell;
3824         u32 board_id;
3825         u16 command_register;
3826
3827         /* For controllers as old as the P600, this is very nearly
3828          * the same thing as
3829          *
3830          * pci_save_state(pci_dev);
3831          * pci_set_power_state(pci_dev, PCI_D3hot);
3832          * pci_set_power_state(pci_dev, PCI_D0);
3833          * pci_restore_state(pci_dev);
3834          *
3835          * For controllers newer than the P600, the pci power state
3836          * method of resetting doesn't work so we have another way
3837          * using the doorbell register.
3838          */
3839
3840         rc = hpsa_lookup_board_id(pdev, &board_id);
3841         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3842                 dev_warn(&pdev->dev, "Not resetting device.\n");
3843                 return -ENODEV;
3844         }
3845
3846         /* if controller is soft- but not hard resettable... */
3847         if (!ctlr_is_hard_resettable(board_id))
3848                 return -ENOTSUPP; /* try soft reset later. */
3849
3850         /* Save the PCI command register */
3851         pci_read_config_word(pdev, 4, &command_register);
3852         /* Turn the board off.  This is so that later pci_restore_state()
3853          * won't turn the board on before the rest of config space is ready.
3854          */
3855         pci_disable_device(pdev);
3856         pci_save_state(pdev);
3857
3858         /* find the first memory BAR, so we can find the cfg table */
3859         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3860         if (rc)
3861                 return rc;
3862         vaddr = remap_pci_mem(paddr, 0x250);
3863         if (!vaddr)
3864                 return -ENOMEM;
3865
3866         /* find cfgtable in order to check if reset via doorbell is supported */
3867         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3868                                         &cfg_base_addr_index, &cfg_offset);
3869         if (rc)
3870                 goto unmap_vaddr;
3871         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3872                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3873         if (!cfgtable) {
3874                 rc = -ENOMEM;
3875                 goto unmap_vaddr;
3876         }
3877         rc = write_driver_ver_to_cfgtable(cfgtable);
3878         if (rc)
3879                 goto unmap_vaddr;
3880
3881         /* If reset via doorbell register is supported, use that.
3882          * There are two such methods.  Favor the newest method.
3883          */
3884         misc_fw_support = readl(&cfgtable->misc_fw_support);
3885         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3886         if (use_doorbell) {
3887                 use_doorbell = DOORBELL_CTLR_RESET2;
3888         } else {
3889                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3890                 if (use_doorbell) {
3891                         dev_warn(&pdev->dev, "Soft reset not supported. "
3892                                 "Firmware update is required.\n");
3893                         rc = -ENOTSUPP; /* try soft reset */
3894                         goto unmap_cfgtable;
3895                 }
3896         }
3897
3898         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3899         if (rc)
3900                 goto unmap_cfgtable;
3901
3902         pci_restore_state(pdev);
3903         rc = pci_enable_device(pdev);
3904         if (rc) {
3905                 dev_warn(&pdev->dev, "failed to enable device.\n");
3906                 goto unmap_cfgtable;
3907         }
3908         pci_write_config_word(pdev, 4, command_register);
3909
3910         /* Some devices (notably the HP Smart Array 5i Controller)
3911            need a little pause here */
3912         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3913
3914         /* Wait for board to become not ready, then ready. */
3915         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3916         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3917         if (rc) {
3918                 dev_warn(&pdev->dev,
3919                         "failed waiting for board to reset."
3920                         " Will try soft reset.\n");
3921                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3922                 goto unmap_cfgtable;
3923         }
3924         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3925         if (rc) {
3926                 dev_warn(&pdev->dev,
3927                         "failed waiting for board to become ready "
3928                         "after hard reset\n");
3929                 goto unmap_cfgtable;
3930         }
3931
3932         rc = controller_reset_failed(vaddr);
3933         if (rc < 0)
3934                 goto unmap_cfgtable;
3935         if (rc) {
3936                 dev_warn(&pdev->dev, "Unable to successfully reset "
3937                         "controller. Will try soft reset.\n");
3938                 rc = -ENOTSUPP;
3939         } else {
3940                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3941         }
3942
3943 unmap_cfgtable:
3944         iounmap(cfgtable);
3945
3946 unmap_vaddr:
3947         iounmap(vaddr);
3948         return rc;
3949 }
3950
3951 /*
3952  *  We cannot read the structure directly, for portability we must use
3953  *   the io functions.
3954  *   This is for debug only.
3955  */
3956 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3957 {
3958 #ifdef HPSA_DEBUG
3959         int i;
3960         char temp_name[17];
3961
3962         dev_info(dev, "Controller Configuration information\n");
3963         dev_info(dev, "------------------------------------\n");
3964         for (i = 0; i < 4; i++)
3965                 temp_name[i] = readb(&(tb->Signature[i]));
3966         temp_name[4] = '\0';
3967         dev_info(dev, "   Signature = %s\n", temp_name);
3968         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3969         dev_info(dev, "   Transport methods supported = 0x%x\n",
3970                readl(&(tb->TransportSupport)));
3971         dev_info(dev, "   Transport methods active = 0x%x\n",
3972                readl(&(tb->TransportActive)));
3973         dev_info(dev, "   Requested transport Method = 0x%x\n",
3974                readl(&(tb->HostWrite.TransportRequest)));
3975         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3976                readl(&(tb->HostWrite.CoalIntDelay)));
3977         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3978                readl(&(tb->HostWrite.CoalIntCount)));
3979         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3980                readl(&(tb->CmdsOutMax)));
3981         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3982         for (i = 0; i < 16; i++)
3983                 temp_name[i] = readb(&(tb->ServerName[i]));
3984         temp_name[16] = '\0';
3985         dev_info(dev, "   Server Name = %s\n", temp_name);
3986         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3987                 readl(&(tb->HeartBeat)));
3988 #endif                          /* HPSA_DEBUG */
3989 }
3990
3991 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3992 {
3993         int i, offset, mem_type, bar_type;
3994
3995         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3996                 return 0;
3997         offset = 0;
3998         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3999                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4000                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4001                         offset += 4;
4002                 else {
4003                         mem_type = pci_resource_flags(pdev, i) &
4004                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4005                         switch (mem_type) {
4006                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
4007                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4008                                 offset += 4;    /* 32 bit */
4009                                 break;
4010                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
4011                                 offset += 8;
4012                                 break;
4013                         default:        /* reserved in PCI 2.2 */
4014                                 dev_warn(&pdev->dev,
4015                                        "base address is invalid\n");
4016                                 return -1;
4017                                 break;
4018                         }
4019                 }
4020                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4021                         return i + 1;
4022         }
4023         return -1;
4024 }
4025
4026 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4027  * controllers that are capable. If not, we use IO-APIC mode.
4028  */
4029
4030 static void hpsa_interrupt_mode(struct ctlr_info *h)
4031 {
4032 #ifdef CONFIG_PCI_MSI
4033         int err, i;
4034         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4035
4036         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4037                 hpsa_msix_entries[i].vector = 0;
4038                 hpsa_msix_entries[i].entry = i;
4039         }
4040
4041         /* Some boards advertise MSI but don't really support it */
4042         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4043             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4044                 goto default_int_mode;
4045         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4046                 dev_info(&h->pdev->dev, "MSIX\n");
4047                 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4048                                                 MAX_REPLY_QUEUES);
4049                 if (!err) {
4050                         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4051                                 h->intr[i] = hpsa_msix_entries[i].vector;
4052                         h->msix_vector = 1;
4053                         return;
4054                 }
4055                 if (err > 0) {
4056                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4057                                "available\n", err);
4058                         goto default_int_mode;
4059                 } else {
4060                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4061                                err);
4062                         goto default_int_mode;
4063                 }
4064         }
4065         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4066                 dev_info(&h->pdev->dev, "MSI\n");
4067                 if (!pci_enable_msi(h->pdev))
4068                         h->msi_vector = 1;
4069                 else
4070                         dev_warn(&h->pdev->dev, "MSI init failed\n");
4071         }
4072 default_int_mode:
4073 #endif                          /* CONFIG_PCI_MSI */
4074         /* if we get here we're going to use the default interrupt mode */
4075         h->intr[h->intr_mode] = h->pdev->irq;
4076 }
4077
4078 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4079 {
4080         int i;
4081         u32 subsystem_vendor_id, subsystem_device_id;
4082
4083         subsystem_vendor_id = pdev->subsystem_vendor;
4084         subsystem_device_id = pdev->subsystem_device;
4085         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4086                     subsystem_vendor_id;
4087
4088         for (i = 0; i < ARRAY_SIZE(products); i++)
4089                 if (*board_id == products[i].board_id)
4090                         return i;
4091
4092         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4093                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4094                 !hpsa_allow_any) {
4095                 dev_warn(&pdev->dev, "unrecognized board ID: "
4096                         "0x%08x, ignoring.\n", *board_id);
4097                         return -ENODEV;
4098         }
4099         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4100 }
4101
4102 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4103                                     unsigned long *memory_bar)
4104 {
4105         int i;
4106
4107         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4108                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4109                         /* addressing mode bits already removed */
4110                         *memory_bar = pci_resource_start(pdev, i);
4111                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4112                                 *memory_bar);
4113                         return 0;
4114                 }
4115         dev_warn(&pdev->dev, "no memory BAR found\n");
4116         return -ENODEV;
4117 }
4118
4119 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4120                                      int wait_for_ready)
4121 {
4122         int i, iterations;
4123         u32 scratchpad;
4124         if (wait_for_ready)
4125                 iterations = HPSA_BOARD_READY_ITERATIONS;
4126         else
4127                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4128
4129         for (i = 0; i < iterations; i++) {
4130                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4131                 if (wait_for_ready) {
4132                         if (scratchpad == HPSA_FIRMWARE_READY)
4133                                 return 0;
4134                 } else {
4135                         if (scratchpad != HPSA_FIRMWARE_READY)
4136                                 return 0;
4137                 }
4138                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4139         }
4140         dev_warn(&pdev->dev, "board not ready, timed out.\n");
4141         return -ENODEV;
4142 }
4143
4144 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4145                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4146                                u64 *cfg_offset)
4147 {
4148         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4149         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4150         *cfg_base_addr &= (u32) 0x0000ffff;
4151         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4152         if (*cfg_base_addr_index == -1) {
4153                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4154                 return -ENODEV;
4155         }
4156         return 0;
4157 }
4158
4159 static int hpsa_find_cfgtables(struct ctlr_info *h)
4160 {
4161         u64 cfg_offset;
4162         u32 cfg_base_addr;
4163         u64 cfg_base_addr_index;
4164         u32 trans_offset;
4165         int rc;
4166
4167         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4168                 &cfg_base_addr_index, &cfg_offset);
4169         if (rc)
4170                 return rc;
4171         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4172                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4173         if (!h->cfgtable)
4174                 return -ENOMEM;
4175         rc = write_driver_ver_to_cfgtable(h->cfgtable);
4176         if (rc)
4177                 return rc;
4178         /* Find performant mode table. */
4179         trans_offset = readl(&h->cfgtable->TransMethodOffset);
4180         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4181                                 cfg_base_addr_index)+cfg_offset+trans_offset,
4182                                 sizeof(*h->transtable));
4183         if (!h->transtable)
4184                 return -ENOMEM;
4185         return 0;
4186 }
4187
4188 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4189 {
4190         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4191
4192         /* Limit commands in memory limited kdump scenario. */
4193         if (reset_devices && h->max_commands > 32)
4194                 h->max_commands = 32;
4195
4196         if (h->max_commands < 16) {
4197                 dev_warn(&h->pdev->dev, "Controller reports "
4198                         "max supported commands of %d, an obvious lie. "
4199                         "Using 16.  Ensure that firmware is up to date.\n",
4200                         h->max_commands);
4201                 h->max_commands = 16;
4202         }
4203 }
4204
4205 /* Interrogate the hardware for some limits:
4206  * max commands, max SG elements without chaining, and with chaining,
4207  * SG chain block size, etc.
4208  */
4209 static void hpsa_find_board_params(struct ctlr_info *h)
4210 {
4211         hpsa_get_max_perf_mode_cmds(h);
4212         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4213         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4214         /*
4215          * Limit in-command s/g elements to 32 save dma'able memory.
4216          * Howvever spec says if 0, use 31
4217          */
4218         h->max_cmd_sg_entries = 31;
4219         if (h->maxsgentries > 512) {
4220                 h->max_cmd_sg_entries = 32;
4221                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4222                 h->maxsgentries--; /* save one for chain pointer */
4223         } else {
4224                 h->maxsgentries = 31; /* default to traditional values */
4225                 h->chainsize = 0;
4226         }
4227
4228         /* Find out what task management functions are supported and cache */
4229         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4230 }
4231
4232 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4233 {
4234         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4235                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4236                 return false;
4237         }
4238         return true;
4239 }
4240
4241 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4242 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4243 {
4244 #ifdef CONFIG_X86
4245         u32 prefetch;
4246
4247         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4248         prefetch |= 0x100;
4249         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4250 #endif
4251 }
4252
4253 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4254  * in a prefetch beyond physical memory.
4255  */
4256 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4257 {
4258         u32 dma_prefetch;
4259
4260         if (h->board_id != 0x3225103C)
4261                 return;
4262         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4263         dma_prefetch |= 0x8000;
4264         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4265 }
4266
4267 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4268 {
4269         int i;
4270         u32 doorbell_value;
4271         unsigned long flags;
4272
4273         /* under certain very rare conditions, this can take awhile.
4274          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4275          * as we enter this code.)
4276          */
4277         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4278                 spin_lock_irqsave(&h->lock, flags);
4279                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4280                 spin_unlock_irqrestore(&h->lock, flags);
4281                 if (!(doorbell_value & CFGTBL_ChangeReq))
4282                         break;
4283                 /* delay and try again */
4284                 usleep_range(10000, 20000);
4285         }
4286 }
4287
4288 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4289 {
4290         u32 trans_support;
4291
4292         trans_support = readl(&(h->cfgtable->TransportSupport));
4293         if (!(trans_support & SIMPLE_MODE))
4294                 return -ENOTSUPP;
4295
4296         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4297         /* Update the field, and then ring the doorbell */
4298         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4299         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4300         hpsa_wait_for_mode_change_ack(h);
4301         print_cfg_table(&h->pdev->dev, h->cfgtable);
4302         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4303                 dev_warn(&h->pdev->dev,
4304                         "unable to get board into simple mode\n");
4305                 return -ENODEV;
4306         }
4307         h->transMethod = CFGTBL_Trans_Simple;
4308         return 0;
4309 }
4310
4311 static int hpsa_pci_init(struct ctlr_info *h)
4312 {
4313         int prod_index, err;
4314
4315         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4316         if (prod_index < 0)
4317                 return -ENODEV;
4318         h->product_name = products[prod_index].product_name;
4319         h->access = *(products[prod_index].access);
4320
4321         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4322                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4323
4324         err = pci_enable_device(h->pdev);
4325         if (err) {
4326                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4327                 return err;
4328         }
4329
4330         /* Enable bus mastering (pci_disable_device may disable this) */
4331         pci_set_master(h->pdev);
4332
4333         err = pci_request_regions(h->pdev, HPSA);
4334         if (err) {
4335                 dev_err(&h->pdev->dev,
4336                         "cannot obtain PCI resources, aborting\n");
4337                 return err;
4338         }
4339         hpsa_interrupt_mode(h);
4340         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4341         if (err)
4342                 goto err_out_free_res;
4343         h->vaddr = remap_pci_mem(h->paddr, 0x250);
4344         if (!h->vaddr) {
4345                 err = -ENOMEM;
4346                 goto err_out_free_res;
4347         }
4348         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4349         if (err)
4350                 goto err_out_free_res;
4351         err = hpsa_find_cfgtables(h);
4352         if (err)
4353                 goto err_out_free_res;
4354         hpsa_find_board_params(h);
4355
4356         if (!hpsa_CISS_signature_present(h)) {
4357                 err = -ENODEV;
4358                 goto err_out_free_res;
4359         }
4360         hpsa_enable_scsi_prefetch(h);
4361         hpsa_p600_dma_prefetch_quirk(h);
4362         err = hpsa_enter_simple_mode(h);
4363         if (err)
4364                 goto err_out_free_res;
4365         return 0;
4366
4367 err_out_free_res:
4368         if (h->transtable)
4369                 iounmap(h->transtable);
4370         if (h->cfgtable)
4371                 iounmap(h->cfgtable);
4372         if (h->vaddr)
4373                 iounmap(h->vaddr);
4374         pci_disable_device(h->pdev);
4375         pci_release_regions(h->pdev);
4376         return err;
4377 }
4378
4379 static void hpsa_hba_inquiry(struct ctlr_info *h)
4380 {
4381         int rc;
4382
4383 #define HBA_INQUIRY_BYTE_COUNT 64
4384         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4385         if (!h->hba_inquiry_data)
4386                 return;
4387         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4388                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4389         if (rc != 0) {
4390                 kfree(h->hba_inquiry_data);
4391                 h->hba_inquiry_data = NULL;
4392         }
4393 }
4394
4395 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4396 {
4397         int rc, i;
4398
4399         if (!reset_devices)
4400                 return 0;
4401
4402         /* Reset the controller with a PCI power-cycle or via doorbell */
4403         rc = hpsa_kdump_hard_reset_controller(pdev);
4404
4405         /* -ENOTSUPP here means we cannot reset the controller
4406          * but it's already (and still) up and running in
4407          * "performant mode".  Or, it might be 640x, which can't reset
4408          * due to concerns about shared bbwc between 6402/6404 pair.
4409          */
4410         if (rc == -ENOTSUPP)
4411                 return rc; /* just try to do the kdump anyhow. */
4412         if (rc)
4413                 return -ENODEV;
4414
4415         /* Now try to get the controller to respond to a no-op */
4416         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4417         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4418                 if (hpsa_noop(pdev) == 0)
4419                         break;
4420                 else
4421                         dev_warn(&pdev->dev, "no-op failed%s\n",
4422                                         (i < 11 ? "; re-trying" : ""));
4423         }
4424         return 0;
4425 }
4426
4427 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4428 {
4429         h->cmd_pool_bits = kzalloc(
4430                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4431                 sizeof(unsigned long), GFP_KERNEL);
4432         h->cmd_pool = pci_alloc_consistent(h->pdev,
4433                     h->nr_cmds * sizeof(*h->cmd_pool),
4434                     &(h->cmd_pool_dhandle));
4435         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4436                     h->nr_cmds * sizeof(*h->errinfo_pool),
4437                     &(h->errinfo_pool_dhandle));
4438         if ((h->cmd_pool_bits == NULL)
4439             || (h->cmd_pool == NULL)
4440             || (h->errinfo_pool == NULL)) {
4441                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4442                 return -ENOMEM;
4443         }
4444         return 0;
4445 }
4446
4447 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4448 {
4449         kfree(h->cmd_pool_bits);
4450         if (h->cmd_pool)
4451                 pci_free_consistent(h->pdev,
4452                             h->nr_cmds * sizeof(struct CommandList),
4453                             h->cmd_pool, h->cmd_pool_dhandle);
4454         if (h->errinfo_pool)
4455                 pci_free_consistent(h->pdev,
4456                             h->nr_cmds * sizeof(struct ErrorInfo),
4457                             h->errinfo_pool,
4458                             h->errinfo_pool_dhandle);
4459 }
4460
4461 static int hpsa_request_irq(struct ctlr_info *h,
4462         irqreturn_t (*msixhandler)(int, void *),
4463         irqreturn_t (*intxhandler)(int, void *))
4464 {
4465         int rc, i;
4466
4467         /*
4468          * initialize h->q[x] = x so that interrupt handlers know which
4469          * queue to process.
4470          */
4471         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4472                 h->q[i] = (u8) i;
4473
4474         if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4475                 /* If performant mode and MSI-X, use multiple reply queues */
4476                 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4477                         rc = request_irq(h->intr[i], msixhandler,
4478                                         0, h->devname,
4479                                         &h->q[i]);
4480         } else {
4481                 /* Use single reply pool */
4482                 if (h->msix_vector || h->msi_vector) {
4483                         rc = request_irq(h->intr[h->intr_mode],
4484                                 msixhandler, 0, h->devname,
4485                                 &h->q[h->intr_mode]);
4486                 } else {
4487                         rc = request_irq(h->intr[h->intr_mode],
4488                                 intxhandler, IRQF_SHARED, h->devname,
4489                                 &h->q[h->intr_mode]);
4490                 }
4491         }
4492         if (rc) {
4493                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4494                        h->intr[h->intr_mode], h->devname);
4495                 return -ENODEV;
4496         }
4497         return 0;
4498 }
4499
4500 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4501 {
4502         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4503                 HPSA_RESET_TYPE_CONTROLLER)) {
4504                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4505                 return -EIO;
4506         }
4507
4508         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4509         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4510                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4511                 return -1;
4512         }
4513
4514         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4515         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4516                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4517                         "after soft reset.\n");
4518                 return -1;
4519         }
4520
4521         return 0;
4522 }
4523
4524 static void free_irqs(struct ctlr_info *h)
4525 {
4526         int i;
4527
4528         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4529                 /* Single reply queue, only one irq to free */
4530                 i = h->intr_mode;
4531                 free_irq(h->intr[i], &h->q[i]);
4532                 return;
4533         }
4534
4535         for (i = 0; i < MAX_REPLY_QUEUES; i++)
4536                 free_irq(h->intr[i], &h->q[i]);
4537 }
4538
4539 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4540 {
4541         free_irqs(h);
4542 #ifdef CONFIG_PCI_MSI
4543         if (h->msix_vector) {
4544                 if (h->pdev->msix_enabled)
4545                         pci_disable_msix(h->pdev);
4546         } else if (h->msi_vector) {
4547                 if (h->pdev->msi_enabled)
4548                         pci_disable_msi(h->pdev);
4549         }
4550 #endif /* CONFIG_PCI_MSI */
4551 }
4552
4553 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4554 {
4555         hpsa_free_irqs_and_disable_msix(h);
4556         hpsa_free_sg_chain_blocks(h);
4557         hpsa_free_cmd_pool(h);
4558         kfree(h->blockFetchTable);
4559         pci_free_consistent(h->pdev, h->reply_pool_size,
4560                 h->reply_pool, h->reply_pool_dhandle);
4561         if (h->vaddr)
4562                 iounmap(h->vaddr);
4563         if (h->transtable)
4564                 iounmap(h->transtable);
4565         if (h->cfgtable)
4566                 iounmap(h->cfgtable);
4567         pci_release_regions(h->pdev);
4568         kfree(h);
4569 }
4570
4571 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4572 {
4573         assert_spin_locked(&lockup_detector_lock);
4574         if (!hpsa_lockup_detector)
4575                 return;
4576         if (h->lockup_detected)
4577                 return; /* already stopped the lockup detector */
4578         list_del(&h->lockup_list);
4579 }
4580
4581 /* Called when controller lockup detected. */
4582 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4583 {
4584         struct CommandList *c = NULL;
4585
4586         assert_spin_locked(&h->lock);
4587         /* Mark all outstanding commands as failed and complete them. */
4588         while (!list_empty(list)) {
4589                 c = list_entry(list->next, struct CommandList, list);
4590                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4591                 finish_cmd(c);
4592         }
4593 }
4594
4595 static void controller_lockup_detected(struct ctlr_info *h)
4596 {
4597         unsigned long flags;
4598
4599         assert_spin_locked(&lockup_detector_lock);
4600         remove_ctlr_from_lockup_detector_list(h);
4601         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4602         spin_lock_irqsave(&h->lock, flags);
4603         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4604         spin_unlock_irqrestore(&h->lock, flags);
4605         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4606                         h->lockup_detected);
4607         pci_disable_device(h->pdev);
4608         spin_lock_irqsave(&h->lock, flags);
4609         fail_all_cmds_on_list(h, &h->cmpQ);
4610         fail_all_cmds_on_list(h, &h->reqQ);
4611         spin_unlock_irqrestore(&h->lock, flags);
4612 }
4613
4614 static void detect_controller_lockup(struct ctlr_info *h)
4615 {
4616         u64 now;
4617         u32 heartbeat;
4618         unsigned long flags;
4619
4620         assert_spin_locked(&lockup_detector_lock);
4621         now = get_jiffies_64();
4622         /* If we've received an interrupt recently, we're ok. */
4623         if (time_after64(h->last_intr_timestamp +
4624                                 (h->heartbeat_sample_interval), now))
4625                 return;
4626
4627         /*
4628          * If we've already checked the heartbeat recently, we're ok.
4629          * This could happen if someone sends us a signal. We
4630          * otherwise don't care about signals in this thread.
4631          */
4632         if (time_after64(h->last_heartbeat_timestamp +
4633                                 (h->heartbeat_sample_interval), now))
4634                 return;
4635
4636         /* If heartbeat has not changed since we last looked, we're not ok. */
4637         spin_lock_irqsave(&h->lock, flags);
4638         heartbeat = readl(&h->cfgtable->HeartBeat);
4639         spin_unlock_irqrestore(&h->lock, flags);
4640         if (h->last_heartbeat == heartbeat) {
4641                 controller_lockup_detected(h);
4642                 return;
4643         }
4644
4645         /* We're ok. */
4646         h->last_heartbeat = heartbeat;
4647         h->last_heartbeat_timestamp = now;
4648 }
4649
4650 static int detect_controller_lockup_thread(void *notused)
4651 {
4652         struct ctlr_info *h;
4653         unsigned long flags;
4654
4655         while (1) {
4656                 struct list_head *this, *tmp;
4657
4658                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4659                 if (kthread_should_stop())
4660                         break;
4661                 spin_lock_irqsave(&lockup_detector_lock, flags);
4662                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4663                         h = list_entry(this, struct ctlr_info, lockup_list);
4664                         detect_controller_lockup(h);
4665                 }
4666                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4667         }
4668         return 0;
4669 }
4670
4671 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4672 {
4673         unsigned long flags;
4674
4675         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4676         spin_lock_irqsave(&lockup_detector_lock, flags);
4677         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4678         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4679 }
4680
4681 static void start_controller_lockup_detector(struct ctlr_info *h)
4682 {
4683         /* Start the lockup detector thread if not already started */
4684         if (!hpsa_lockup_detector) {
4685                 spin_lock_init(&lockup_detector_lock);
4686                 hpsa_lockup_detector =
4687                         kthread_run(detect_controller_lockup_thread,
4688                                                 NULL, HPSA);
4689         }
4690         if (!hpsa_lockup_detector) {
4691                 dev_warn(&h->pdev->dev,
4692                         "Could not start lockup detector thread\n");
4693                 return;
4694         }
4695         add_ctlr_to_lockup_detector_list(h);
4696 }
4697
4698 static void stop_controller_lockup_detector(struct ctlr_info *h)
4699 {
4700         unsigned long flags;
4701
4702         spin_lock_irqsave(&lockup_detector_lock, flags);
4703         remove_ctlr_from_lockup_detector_list(h);
4704         /* If the list of ctlr's to monitor is empty, stop the thread */
4705         if (list_empty(&hpsa_ctlr_list)) {
4706                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4707                 kthread_stop(hpsa_lockup_detector);
4708                 spin_lock_irqsave(&lockup_detector_lock, flags);
4709                 hpsa_lockup_detector = NULL;
4710         }
4711         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4712 }
4713
4714 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4715 {
4716         int dac, rc;
4717         struct ctlr_info *h;
4718         int try_soft_reset = 0;
4719         unsigned long flags;
4720
4721         if (number_of_controllers == 0)
4722                 printk(KERN_INFO DRIVER_NAME "\n");
4723
4724         rc = hpsa_init_reset_devices(pdev);
4725         if (rc) {
4726                 if (rc != -ENOTSUPP)
4727                         return rc;
4728                 /* If the reset fails in a particular way (it has no way to do
4729                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4730                  * a soft reset once we get the controller configured up to the
4731                  * point that it can accept a command.
4732                  */
4733                 try_soft_reset = 1;
4734                 rc = 0;
4735         }
4736
4737 reinit_after_soft_reset:
4738
4739         /* Command structures must be aligned on a 32-byte boundary because
4740          * the 5 lower bits of the address are used by the hardware. and by
4741          * the driver.  See comments in hpsa.h for more info.
4742          */
4743 #define COMMANDLIST_ALIGNMENT 32
4744         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4745         h = kzalloc(sizeof(*h), GFP_KERNEL);
4746         if (!h)
4747                 return -ENOMEM;
4748
4749         h->pdev = pdev;
4750         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4751         INIT_LIST_HEAD(&h->cmpQ);
4752         INIT_LIST_HEAD(&h->reqQ);
4753         spin_lock_init(&h->lock);
4754         spin_lock_init(&h->scan_lock);
4755         rc = hpsa_pci_init(h);
4756         if (rc != 0)
4757                 goto clean1;
4758
4759         sprintf(h->devname, HPSA "%d", number_of_controllers);
4760         h->ctlr = number_of_controllers;
4761         number_of_controllers++;
4762
4763         /* configure PCI DMA stuff */
4764         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4765         if (rc == 0) {
4766                 dac = 1;
4767         } else {
4768                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4769                 if (rc == 0) {
4770                         dac = 0;
4771                 } else {
4772                         dev_err(&pdev->dev, "no suitable DMA available\n");
4773                         goto clean1;
4774                 }
4775         }
4776
4777         /* make sure the board interrupts are off */
4778         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4779
4780         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4781                 goto clean2;
4782         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4783                h->devname, pdev->device,
4784                h->intr[h->intr_mode], dac ? "" : " not");
4785         if (hpsa_allocate_cmd_pool(h))
4786                 goto clean4;
4787         if (hpsa_allocate_sg_chain_blocks(h))
4788                 goto clean4;
4789         init_waitqueue_head(&h->scan_wait_queue);
4790         h->scan_finished = 1; /* no scan currently in progress */
4791
4792         pci_set_drvdata(pdev, h);
4793         h->ndevices = 0;
4794         h->scsi_host = NULL;
4795         spin_lock_init(&h->devlock);
4796         hpsa_put_ctlr_into_performant_mode(h);
4797
4798         /* At this point, the controller is ready to take commands.
4799          * Now, if reset_devices and the hard reset didn't work, try
4800          * the soft reset and see if that works.
4801          */
4802         if (try_soft_reset) {
4803
4804                 /* This is kind of gross.  We may or may not get a completion
4805                  * from the soft reset command, and if we do, then the value
4806                  * from the fifo may or may not be valid.  So, we wait 10 secs
4807                  * after the reset throwing away any completions we get during
4808                  * that time.  Unregister the interrupt handler and register
4809                  * fake ones to scoop up any residual completions.
4810                  */
4811                 spin_lock_irqsave(&h->lock, flags);
4812                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4813                 spin_unlock_irqrestore(&h->lock, flags);
4814                 free_irqs(h);
4815                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4816                                         hpsa_intx_discard_completions);
4817                 if (rc) {
4818                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4819                                 "soft reset.\n");
4820                         goto clean4;
4821                 }
4822
4823                 rc = hpsa_kdump_soft_reset(h);
4824                 if (rc)
4825                         /* Neither hard nor soft reset worked, we're hosed. */
4826                         goto clean4;
4827
4828                 dev_info(&h->pdev->dev, "Board READY.\n");
4829                 dev_info(&h->pdev->dev,
4830                         "Waiting for stale completions to drain.\n");
4831                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4832                 msleep(10000);
4833                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4834
4835                 rc = controller_reset_failed(h->cfgtable);
4836                 if (rc)
4837                         dev_info(&h->pdev->dev,
4838                                 "Soft reset appears to have failed.\n");
4839
4840                 /* since the controller's reset, we have to go back and re-init
4841                  * everything.  Easiest to just forget what we've done and do it
4842                  * all over again.
4843                  */
4844                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4845                 try_soft_reset = 0;
4846                 if (rc)
4847                         /* don't go to clean4, we already unallocated */
4848                         return -ENODEV;
4849
4850                 goto reinit_after_soft_reset;
4851         }
4852
4853         /* Turn the interrupts on so we can service requests */
4854         h->access.set_intr_mask(h, HPSA_INTR_ON);
4855
4856         hpsa_hba_inquiry(h);
4857         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4858         start_controller_lockup_detector(h);
4859         return 1;
4860
4861 clean4:
4862         hpsa_free_sg_chain_blocks(h);
4863         hpsa_free_cmd_pool(h);
4864         free_irqs(h);
4865 clean2:
4866 clean1:
4867         kfree(h);
4868         return rc;
4869 }
4870
4871 static void hpsa_flush_cache(struct ctlr_info *h)
4872 {
4873         char *flush_buf;
4874         struct CommandList *c;
4875
4876         flush_buf = kzalloc(4, GFP_KERNEL);
4877         if (!flush_buf)
4878                 return;
4879
4880         c = cmd_special_alloc(h);
4881         if (!c) {
4882                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4883                 goto out_of_memory;
4884         }
4885         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4886                 RAID_CTLR_LUNID, TYPE_CMD);
4887         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4888         if (c->err_info->CommandStatus != 0)
4889                 dev_warn(&h->pdev->dev,
4890                         "error flushing cache on controller\n");
4891         cmd_special_free(h, c);
4892 out_of_memory:
4893         kfree(flush_buf);
4894 }
4895
4896 static void hpsa_shutdown(struct pci_dev *pdev)
4897 {
4898         struct ctlr_info *h;
4899
4900         h = pci_get_drvdata(pdev);
4901         /* Turn board interrupts off  and send the flush cache command
4902          * sendcmd will turn off interrupt, and send the flush...
4903          * To write all data in the battery backed cache to disks
4904          */
4905         hpsa_flush_cache(h);
4906         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4907         hpsa_free_irqs_and_disable_msix(h);
4908 }
4909
4910 static void hpsa_free_device_info(struct ctlr_info *h)
4911 {
4912         int i;
4913
4914         for (i = 0; i < h->ndevices; i++)
4915                 kfree(h->dev[i]);
4916 }
4917
4918 static void hpsa_remove_one(struct pci_dev *pdev)
4919 {
4920         struct ctlr_info *h;
4921
4922         if (pci_get_drvdata(pdev) == NULL) {
4923                 dev_err(&pdev->dev, "unable to remove device\n");
4924                 return;
4925         }
4926         h = pci_get_drvdata(pdev);
4927         stop_controller_lockup_detector(h);
4928         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4929         hpsa_shutdown(pdev);
4930         iounmap(h->vaddr);
4931         iounmap(h->transtable);
4932         iounmap(h->cfgtable);
4933         hpsa_free_device_info(h);
4934         hpsa_free_sg_chain_blocks(h);
4935         pci_free_consistent(h->pdev,
4936                 h->nr_cmds * sizeof(struct CommandList),
4937                 h->cmd_pool, h->cmd_pool_dhandle);
4938         pci_free_consistent(h->pdev,
4939                 h->nr_cmds * sizeof(struct ErrorInfo),
4940                 h->errinfo_pool, h->errinfo_pool_dhandle);
4941         pci_free_consistent(h->pdev, h->reply_pool_size,
4942                 h->reply_pool, h->reply_pool_dhandle);
4943         kfree(h->cmd_pool_bits);
4944         kfree(h->blockFetchTable);
4945         kfree(h->hba_inquiry_data);
4946         pci_disable_device(pdev);
4947         pci_release_regions(pdev);
4948         pci_set_drvdata(pdev, NULL);
4949         kfree(h);
4950 }
4951
4952 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4953         __attribute__((unused)) pm_message_t state)
4954 {
4955         return -ENOSYS;
4956 }
4957
4958 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4959 {
4960         return -ENOSYS;
4961 }
4962
4963 static struct pci_driver hpsa_pci_driver = {
4964         .name = HPSA,
4965         .probe = hpsa_init_one,
4966         .remove = hpsa_remove_one,
4967         .id_table = hpsa_pci_device_id, /* id_table */
4968         .shutdown = hpsa_shutdown,
4969         .suspend = hpsa_suspend,
4970         .resume = hpsa_resume,
4971 };
4972
4973 /* Fill in bucket_map[], given nsgs (the max number of
4974  * scatter gather elements supported) and bucket[],
4975  * which is an array of 8 integers.  The bucket[] array
4976  * contains 8 different DMA transfer sizes (in 16
4977  * byte increments) which the controller uses to fetch
4978  * commands.  This function fills in bucket_map[], which
4979  * maps a given number of scatter gather elements to one of
4980  * the 8 DMA transfer sizes.  The point of it is to allow the
4981  * controller to only do as much DMA as needed to fetch the
4982  * command, with the DMA transfer size encoded in the lower
4983  * bits of the command address.
4984  */
4985 static void  calc_bucket_map(int bucket[], int num_buckets,
4986         int nsgs, int *bucket_map)
4987 {
4988         int i, j, b, size;
4989
4990         /* even a command with 0 SGs requires 4 blocks */
4991 #define MINIMUM_TRANSFER_BLOCKS 4
4992 #define NUM_BUCKETS 8
4993         /* Note, bucket_map must have nsgs+1 entries. */
4994         for (i = 0; i <= nsgs; i++) {
4995                 /* Compute size of a command with i SG entries */
4996                 size = i + MINIMUM_TRANSFER_BLOCKS;
4997                 b = num_buckets; /* Assume the biggest bucket */
4998                 /* Find the bucket that is just big enough */
4999                 for (j = 0; j < 8; j++) {
5000                         if (bucket[j] >= size) {
5001                                 b = j;
5002                                 break;
5003                         }
5004                 }
5005                 /* for a command with i SG entries, use bucket b. */
5006                 bucket_map[i] = b;
5007         }
5008 }
5009
5010 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5011 {
5012         int i;
5013         unsigned long register_value;
5014
5015         /* This is a bit complicated.  There are 8 registers on
5016          * the controller which we write to to tell it 8 different
5017          * sizes of commands which there may be.  It's a way of
5018          * reducing the DMA done to fetch each command.  Encoded into
5019          * each command's tag are 3 bits which communicate to the controller
5020          * which of the eight sizes that command fits within.  The size of
5021          * each command depends on how many scatter gather entries there are.
5022          * Each SG entry requires 16 bytes.  The eight registers are programmed
5023          * with the number of 16-byte blocks a command of that size requires.
5024          * The smallest command possible requires 5 such 16 byte blocks.
5025          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5026          * blocks.  Note, this only extends to the SG entries contained
5027          * within the command block, and does not extend to chained blocks
5028          * of SG elements.   bft[] contains the eight values we write to
5029          * the registers.  They are not evenly distributed, but have more
5030          * sizes for small commands, and fewer sizes for larger commands.
5031          */
5032         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5033         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5034         /*  5 = 1 s/g entry or 4k
5035          *  6 = 2 s/g entry or 8k
5036          *  8 = 4 s/g entry or 16k
5037          * 10 = 6 s/g entry or 24k
5038          */
5039
5040         /* Controller spec: zero out this buffer. */
5041         memset(h->reply_pool, 0, h->reply_pool_size);
5042
5043         bft[7] = SG_ENTRIES_IN_CMD + 4;
5044         calc_bucket_map(bft, ARRAY_SIZE(bft),
5045                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5046         for (i = 0; i < 8; i++)
5047                 writel(bft[i], &h->transtable->BlockFetch[i]);
5048
5049         /* size of controller ring buffer */
5050         writel(h->max_commands, &h->transtable->RepQSize);
5051         writel(h->nreply_queues, &h->transtable->RepQCount);
5052         writel(0, &h->transtable->RepQCtrAddrLow32);
5053         writel(0, &h->transtable->RepQCtrAddrHigh32);
5054
5055         for (i = 0; i < h->nreply_queues; i++) {
5056                 writel(0, &h->transtable->RepQAddr[i].upper);
5057                 writel(h->reply_pool_dhandle +
5058                         (h->max_commands * sizeof(u64) * i),
5059                         &h->transtable->RepQAddr[i].lower);
5060         }
5061
5062         writel(CFGTBL_Trans_Performant | use_short_tags |
5063                 CFGTBL_Trans_enable_directed_msix,
5064                 &(h->cfgtable->HostWrite.TransportRequest));
5065         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5066         hpsa_wait_for_mode_change_ack(h);
5067         register_value = readl(&(h->cfgtable->TransportActive));
5068         if (!(register_value & CFGTBL_Trans_Performant)) {
5069                 dev_warn(&h->pdev->dev, "unable to get board into"
5070                                         " performant mode\n");
5071                 return;
5072         }
5073         /* Change the access methods to the performant access methods */
5074         h->access = SA5_performant_access;
5075         h->transMethod = CFGTBL_Trans_Performant;
5076 }
5077
5078 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5079 {
5080         u32 trans_support;
5081         int i;
5082
5083         if (hpsa_simple_mode)
5084                 return;
5085
5086         trans_support = readl(&(h->cfgtable->TransportSupport));
5087         if (!(trans_support & PERFORMANT_MODE))
5088                 return;
5089
5090         h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5091         hpsa_get_max_perf_mode_cmds(h);
5092         /* Performant mode ring buffer and supporting data structures */
5093         h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5094         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5095                                 &(h->reply_pool_dhandle));
5096
5097         for (i = 0; i < h->nreply_queues; i++) {
5098                 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5099                 h->reply_queue[i].size = h->max_commands;
5100                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
5101                 h->reply_queue[i].current_entry = 0;
5102         }
5103
5104         /* Need a block fetch table for performant mode */
5105         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5106                                 sizeof(u32)), GFP_KERNEL);
5107
5108         if ((h->reply_pool == NULL)
5109                 || (h->blockFetchTable == NULL))
5110                 goto clean_up;
5111
5112         hpsa_enter_performant_mode(h,
5113                 trans_support & CFGTBL_Trans_use_short_tags);
5114
5115         return;
5116
5117 clean_up:
5118         if (h->reply_pool)
5119                 pci_free_consistent(h->pdev, h->reply_pool_size,
5120                         h->reply_pool, h->reply_pool_dhandle);
5121         kfree(h->blockFetchTable);
5122 }
5123
5124 /*
5125  *  This is it.  Register the PCI driver information for the cards we control
5126  *  the OS will call our registered routines when it finds one of our cards.
5127  */
5128 static int __init hpsa_init(void)
5129 {
5130         return pci_register_driver(&hpsa_pci_driver);
5131 }
5132
5133 static void __exit hpsa_cleanup(void)
5134 {
5135         pci_unregister_driver(&hpsa_pci_driver);
5136 }
5137
5138 module_init(hpsa_init);
5139 module_exit(hpsa_cleanup);