[SCSI] hpsa: Fix problem with MSA2xxx devices
[pandora-kernel.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71         HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79                 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83         "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
102         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
103                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
108
109 /*  board_id = Subsystem Device ID & Vendor ID
110  *  product = Marketing Name for the board
111  *  access = Address of the struct of function pointers
112  */
113 static struct board_type products[] = {
114         {0x3241103C, "Smart Array P212", &SA5_access},
115         {0x3243103C, "Smart Array P410", &SA5_access},
116         {0x3245103C, "Smart Array P410i", &SA5_access},
117         {0x3247103C, "Smart Array P411", &SA5_access},
118         {0x3249103C, "Smart Array P812", &SA5_access},
119         {0x324a103C, "Smart Array P712m", &SA5_access},
120         {0x324b103C, "Smart Array P711m", &SA5_access},
121         {0x3350103C, "Smart Array", &SA5_access},
122         {0x3351103C, "Smart Array", &SA5_access},
123         {0x3352103C, "Smart Array", &SA5_access},
124         {0x3353103C, "Smart Array", &SA5_access},
125         {0x3354103C, "Smart Array", &SA5_access},
126         {0x3355103C, "Smart Array", &SA5_access},
127         {0x3356103C, "Smart Array", &SA5_access},
128         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
129 };
130
131 static int number_of_controllers;
132
133 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
134 static spinlock_t lockup_detector_lock;
135 static struct task_struct *hpsa_lockup_detector;
136
137 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
138 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
139 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
140 static void start_io(struct ctlr_info *h);
141
142 #ifdef CONFIG_COMPAT
143 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
144 #endif
145
146 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
147 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
148 static struct CommandList *cmd_alloc(struct ctlr_info *h);
149 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
150 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
151         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
152         int cmd_type);
153
154 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
155 static void hpsa_scan_start(struct Scsi_Host *);
156 static int hpsa_scan_finished(struct Scsi_Host *sh,
157         unsigned long elapsed_time);
158 static int hpsa_change_queue_depth(struct scsi_device *sdev,
159         int qdepth, int reason);
160
161 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
162 static int hpsa_slave_alloc(struct scsi_device *sdev);
163 static void hpsa_slave_destroy(struct scsi_device *sdev);
164
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static int check_for_unit_attention(struct ctlr_info *h,
167         struct CommandList *c);
168 static void check_ioctl_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 /* performant mode helper functions */
171 static void calc_bucket_map(int *bucket, int num_buckets,
172         int nsgs, int *bucket_map);
173 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
174 static inline u32 next_command(struct ctlr_info *h);
175 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
176         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
177         u64 *cfg_offset);
178 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
179         unsigned long *memory_bar);
180 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
181 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
182         void __iomem *vaddr, int wait_for_ready);
183 #define BOARD_NOT_READY 0
184 #define BOARD_READY 1
185
186 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
187 {
188         unsigned long *priv = shost_priv(sdev->host);
189         return (struct ctlr_info *) *priv;
190 }
191
192 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
193 {
194         unsigned long *priv = shost_priv(sh);
195         return (struct ctlr_info *) *priv;
196 }
197
198 static int check_for_unit_attention(struct ctlr_info *h,
199         struct CommandList *c)
200 {
201         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
202                 return 0;
203
204         switch (c->err_info->SenseInfo[12]) {
205         case STATE_CHANGED:
206                 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
207                         "detected, command retried\n", h->ctlr);
208                 break;
209         case LUN_FAILED:
210                 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
211                         "detected, action required\n", h->ctlr);
212                 break;
213         case REPORT_LUNS_CHANGED:
214                 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
215                         "changed, action required\n", h->ctlr);
216         /*
217          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
218          */
219                 break;
220         case POWER_OR_RESET:
221                 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
222                         "or device reset detected\n", h->ctlr);
223                 break;
224         case UNIT_ATTENTION_CLEARED:
225                 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
226                     "cleared by another initiator\n", h->ctlr);
227                 break;
228         default:
229                 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
230                         "unit attention detected\n", h->ctlr);
231                 break;
232         }
233         return 1;
234 }
235
236 static ssize_t host_store_rescan(struct device *dev,
237                                  struct device_attribute *attr,
238                                  const char *buf, size_t count)
239 {
240         struct ctlr_info *h;
241         struct Scsi_Host *shost = class_to_shost(dev);
242         h = shost_to_hba(shost);
243         hpsa_scan_start(h->scsi_host);
244         return count;
245 }
246
247 static ssize_t host_show_firmware_revision(struct device *dev,
248              struct device_attribute *attr, char *buf)
249 {
250         struct ctlr_info *h;
251         struct Scsi_Host *shost = class_to_shost(dev);
252         unsigned char *fwrev;
253
254         h = shost_to_hba(shost);
255         if (!h->hba_inquiry_data)
256                 return 0;
257         fwrev = &h->hba_inquiry_data[32];
258         return snprintf(buf, 20, "%c%c%c%c\n",
259                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
260 }
261
262 static ssize_t host_show_commands_outstanding(struct device *dev,
263              struct device_attribute *attr, char *buf)
264 {
265         struct Scsi_Host *shost = class_to_shost(dev);
266         struct ctlr_info *h = shost_to_hba(shost);
267
268         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
269 }
270
271 static ssize_t host_show_transport_mode(struct device *dev,
272         struct device_attribute *attr, char *buf)
273 {
274         struct ctlr_info *h;
275         struct Scsi_Host *shost = class_to_shost(dev);
276
277         h = shost_to_hba(shost);
278         return snprintf(buf, 20, "%s\n",
279                 h->transMethod & CFGTBL_Trans_Performant ?
280                         "performant" : "simple");
281 }
282
283 /* List of controllers which cannot be hard reset on kexec with reset_devices */
284 static u32 unresettable_controller[] = {
285         0x324a103C, /* Smart Array P712m */
286         0x324b103C, /* SmartArray P711m */
287         0x3223103C, /* Smart Array P800 */
288         0x3234103C, /* Smart Array P400 */
289         0x3235103C, /* Smart Array P400i */
290         0x3211103C, /* Smart Array E200i */
291         0x3212103C, /* Smart Array E200 */
292         0x3213103C, /* Smart Array E200i */
293         0x3214103C, /* Smart Array E200i */
294         0x3215103C, /* Smart Array E200i */
295         0x3237103C, /* Smart Array E500 */
296         0x323D103C, /* Smart Array P700m */
297         0x40800E11, /* Smart Array 5i */
298         0x409C0E11, /* Smart Array 6400 */
299         0x409D0E11, /* Smart Array 6400 EM */
300 };
301
302 /* List of controllers which cannot even be soft reset */
303 static u32 soft_unresettable_controller[] = {
304         0x40800E11, /* Smart Array 5i */
305         /* Exclude 640x boards.  These are two pci devices in one slot
306          * which share a battery backed cache module.  One controls the
307          * cache, the other accesses the cache through the one that controls
308          * it.  If we reset the one controlling the cache, the other will
309          * likely not be happy.  Just forbid resetting this conjoined mess.
310          * The 640x isn't really supported by hpsa anyway.
311          */
312         0x409C0E11, /* Smart Array 6400 */
313         0x409D0E11, /* Smart Array 6400 EM */
314 };
315
316 static int ctlr_is_hard_resettable(u32 board_id)
317 {
318         int i;
319
320         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
321                 if (unresettable_controller[i] == board_id)
322                         return 0;
323         return 1;
324 }
325
326 static int ctlr_is_soft_resettable(u32 board_id)
327 {
328         int i;
329
330         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
331                 if (soft_unresettable_controller[i] == board_id)
332                         return 0;
333         return 1;
334 }
335
336 static int ctlr_is_resettable(u32 board_id)
337 {
338         return ctlr_is_hard_resettable(board_id) ||
339                 ctlr_is_soft_resettable(board_id);
340 }
341
342 static ssize_t host_show_resettable(struct device *dev,
343         struct device_attribute *attr, char *buf)
344 {
345         struct ctlr_info *h;
346         struct Scsi_Host *shost = class_to_shost(dev);
347
348         h = shost_to_hba(shost);
349         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
350 }
351
352 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
353 {
354         return (scsi3addr[3] & 0xC0) == 0x40;
355 }
356
357 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
358         "UNKNOWN"
359 };
360 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
361
362 static ssize_t raid_level_show(struct device *dev,
363              struct device_attribute *attr, char *buf)
364 {
365         ssize_t l = 0;
366         unsigned char rlevel;
367         struct ctlr_info *h;
368         struct scsi_device *sdev;
369         struct hpsa_scsi_dev_t *hdev;
370         unsigned long flags;
371
372         sdev = to_scsi_device(dev);
373         h = sdev_to_hba(sdev);
374         spin_lock_irqsave(&h->lock, flags);
375         hdev = sdev->hostdata;
376         if (!hdev) {
377                 spin_unlock_irqrestore(&h->lock, flags);
378                 return -ENODEV;
379         }
380
381         /* Is this even a logical drive? */
382         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
383                 spin_unlock_irqrestore(&h->lock, flags);
384                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
385                 return l;
386         }
387
388         rlevel = hdev->raid_level;
389         spin_unlock_irqrestore(&h->lock, flags);
390         if (rlevel > RAID_UNKNOWN)
391                 rlevel = RAID_UNKNOWN;
392         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
393         return l;
394 }
395
396 static ssize_t lunid_show(struct device *dev,
397              struct device_attribute *attr, char *buf)
398 {
399         struct ctlr_info *h;
400         struct scsi_device *sdev;
401         struct hpsa_scsi_dev_t *hdev;
402         unsigned long flags;
403         unsigned char lunid[8];
404
405         sdev = to_scsi_device(dev);
406         h = sdev_to_hba(sdev);
407         spin_lock_irqsave(&h->lock, flags);
408         hdev = sdev->hostdata;
409         if (!hdev) {
410                 spin_unlock_irqrestore(&h->lock, flags);
411                 return -ENODEV;
412         }
413         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
414         spin_unlock_irqrestore(&h->lock, flags);
415         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
416                 lunid[0], lunid[1], lunid[2], lunid[3],
417                 lunid[4], lunid[5], lunid[6], lunid[7]);
418 }
419
420 static ssize_t unique_id_show(struct device *dev,
421              struct device_attribute *attr, char *buf)
422 {
423         struct ctlr_info *h;
424         struct scsi_device *sdev;
425         struct hpsa_scsi_dev_t *hdev;
426         unsigned long flags;
427         unsigned char sn[16];
428
429         sdev = to_scsi_device(dev);
430         h = sdev_to_hba(sdev);
431         spin_lock_irqsave(&h->lock, flags);
432         hdev = sdev->hostdata;
433         if (!hdev) {
434                 spin_unlock_irqrestore(&h->lock, flags);
435                 return -ENODEV;
436         }
437         memcpy(sn, hdev->device_id, sizeof(sn));
438         spin_unlock_irqrestore(&h->lock, flags);
439         return snprintf(buf, 16 * 2 + 2,
440                         "%02X%02X%02X%02X%02X%02X%02X%02X"
441                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
442                         sn[0], sn[1], sn[2], sn[3],
443                         sn[4], sn[5], sn[6], sn[7],
444                         sn[8], sn[9], sn[10], sn[11],
445                         sn[12], sn[13], sn[14], sn[15]);
446 }
447
448 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
449 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
450 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
451 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
452 static DEVICE_ATTR(firmware_revision, S_IRUGO,
453         host_show_firmware_revision, NULL);
454 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
455         host_show_commands_outstanding, NULL);
456 static DEVICE_ATTR(transport_mode, S_IRUGO,
457         host_show_transport_mode, NULL);
458 static DEVICE_ATTR(resettable, S_IRUGO,
459         host_show_resettable, NULL);
460
461 static struct device_attribute *hpsa_sdev_attrs[] = {
462         &dev_attr_raid_level,
463         &dev_attr_lunid,
464         &dev_attr_unique_id,
465         NULL,
466 };
467
468 static struct device_attribute *hpsa_shost_attrs[] = {
469         &dev_attr_rescan,
470         &dev_attr_firmware_revision,
471         &dev_attr_commands_outstanding,
472         &dev_attr_transport_mode,
473         &dev_attr_resettable,
474         NULL,
475 };
476
477 static struct scsi_host_template hpsa_driver_template = {
478         .module                 = THIS_MODULE,
479         .name                   = HPSA,
480         .proc_name              = HPSA,
481         .queuecommand           = hpsa_scsi_queue_command,
482         .scan_start             = hpsa_scan_start,
483         .scan_finished          = hpsa_scan_finished,
484         .change_queue_depth     = hpsa_change_queue_depth,
485         .this_id                = -1,
486         .use_clustering         = ENABLE_CLUSTERING,
487         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
488         .ioctl                  = hpsa_ioctl,
489         .slave_alloc            = hpsa_slave_alloc,
490         .slave_destroy          = hpsa_slave_destroy,
491 #ifdef CONFIG_COMPAT
492         .compat_ioctl           = hpsa_compat_ioctl,
493 #endif
494         .sdev_attrs = hpsa_sdev_attrs,
495         .shost_attrs = hpsa_shost_attrs,
496         .max_sectors = 8192,
497 };
498
499
500 /* Enqueuing and dequeuing functions for cmdlists. */
501 static inline void addQ(struct list_head *list, struct CommandList *c)
502 {
503         list_add_tail(&c->list, list);
504 }
505
506 static inline u32 next_command(struct ctlr_info *h)
507 {
508         u32 a;
509
510         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
511                 return h->access.command_completed(h);
512
513         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
514                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
515                 (h->reply_pool_head)++;
516                 h->commands_outstanding--;
517         } else {
518                 a = FIFO_EMPTY;
519         }
520         /* Check for wraparound */
521         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
522                 h->reply_pool_head = h->reply_pool;
523                 h->reply_pool_wraparound ^= 1;
524         }
525         return a;
526 }
527
528 /* set_performant_mode: Modify the tag for cciss performant
529  * set bit 0 for pull model, bits 3-1 for block fetch
530  * register number
531  */
532 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
533 {
534         if (likely(h->transMethod & CFGTBL_Trans_Performant))
535                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
536 }
537
538 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
539         struct CommandList *c)
540 {
541         unsigned long flags;
542
543         set_performant_mode(h, c);
544         spin_lock_irqsave(&h->lock, flags);
545         addQ(&h->reqQ, c);
546         h->Qdepth++;
547         start_io(h);
548         spin_unlock_irqrestore(&h->lock, flags);
549 }
550
551 static inline void removeQ(struct CommandList *c)
552 {
553         if (WARN_ON(list_empty(&c->list)))
554                 return;
555         list_del_init(&c->list);
556 }
557
558 static inline int is_hba_lunid(unsigned char scsi3addr[])
559 {
560         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
561 }
562
563 static inline int is_scsi_rev_5(struct ctlr_info *h)
564 {
565         if (!h->hba_inquiry_data)
566                 return 0;
567         if ((h->hba_inquiry_data[2] & 0x07) == 5)
568                 return 1;
569         return 0;
570 }
571
572 static int hpsa_find_target_lun(struct ctlr_info *h,
573         unsigned char scsi3addr[], int bus, int *target, int *lun)
574 {
575         /* finds an unused bus, target, lun for a new physical device
576          * assumes h->devlock is held
577          */
578         int i, found = 0;
579         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
580
581         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
582
583         for (i = 0; i < h->ndevices; i++) {
584                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
585                         set_bit(h->dev[i]->target, lun_taken);
586         }
587
588         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
589                 if (!test_bit(i, lun_taken)) {
590                         /* *bus = 1; */
591                         *target = i;
592                         *lun = 0;
593                         found = 1;
594                         break;
595                 }
596         }
597         return !found;
598 }
599
600 /* Add an entry into h->dev[] array. */
601 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
602                 struct hpsa_scsi_dev_t *device,
603                 struct hpsa_scsi_dev_t *added[], int *nadded)
604 {
605         /* assumes h->devlock is held */
606         int n = h->ndevices;
607         int i;
608         unsigned char addr1[8], addr2[8];
609         struct hpsa_scsi_dev_t *sd;
610
611         if (n >= HPSA_MAX_DEVICES) {
612                 dev_err(&h->pdev->dev, "too many devices, some will be "
613                         "inaccessible.\n");
614                 return -1;
615         }
616
617         /* physical devices do not have lun or target assigned until now. */
618         if (device->lun != -1)
619                 /* Logical device, lun is already assigned. */
620                 goto lun_assigned;
621
622         /* If this device a non-zero lun of a multi-lun device
623          * byte 4 of the 8-byte LUN addr will contain the logical
624          * unit no, zero otherise.
625          */
626         if (device->scsi3addr[4] == 0) {
627                 /* This is not a non-zero lun of a multi-lun device */
628                 if (hpsa_find_target_lun(h, device->scsi3addr,
629                         device->bus, &device->target, &device->lun) != 0)
630                         return -1;
631                 goto lun_assigned;
632         }
633
634         /* This is a non-zero lun of a multi-lun device.
635          * Search through our list and find the device which
636          * has the same 8 byte LUN address, excepting byte 4.
637          * Assign the same bus and target for this new LUN.
638          * Use the logical unit number from the firmware.
639          */
640         memcpy(addr1, device->scsi3addr, 8);
641         addr1[4] = 0;
642         for (i = 0; i < n; i++) {
643                 sd = h->dev[i];
644                 memcpy(addr2, sd->scsi3addr, 8);
645                 addr2[4] = 0;
646                 /* differ only in byte 4? */
647                 if (memcmp(addr1, addr2, 8) == 0) {
648                         device->bus = sd->bus;
649                         device->target = sd->target;
650                         device->lun = device->scsi3addr[4];
651                         break;
652                 }
653         }
654         if (device->lun == -1) {
655                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
656                         " suspect firmware bug or unsupported hardware "
657                         "configuration.\n");
658                         return -1;
659         }
660
661 lun_assigned:
662
663         h->dev[n] = device;
664         h->ndevices++;
665         added[*nadded] = device;
666         (*nadded)++;
667
668         /* initially, (before registering with scsi layer) we don't
669          * know our hostno and we don't want to print anything first
670          * time anyway (the scsi layer's inquiries will show that info)
671          */
672         /* if (hostno != -1) */
673                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
674                         scsi_device_type(device->devtype), hostno,
675                         device->bus, device->target, device->lun);
676         return 0;
677 }
678
679 /* Replace an entry from h->dev[] array. */
680 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
681         int entry, struct hpsa_scsi_dev_t *new_entry,
682         struct hpsa_scsi_dev_t *added[], int *nadded,
683         struct hpsa_scsi_dev_t *removed[], int *nremoved)
684 {
685         /* assumes h->devlock is held */
686         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
687         removed[*nremoved] = h->dev[entry];
688         (*nremoved)++;
689
690         /*
691          * New physical devices won't have target/lun assigned yet
692          * so we need to preserve the values in the slot we are replacing.
693          */
694         if (new_entry->target == -1) {
695                 new_entry->target = h->dev[entry]->target;
696                 new_entry->lun = h->dev[entry]->lun;
697         }
698
699         h->dev[entry] = new_entry;
700         added[*nadded] = new_entry;
701         (*nadded)++;
702         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
703                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
704                         new_entry->target, new_entry->lun);
705 }
706
707 /* Remove an entry from h->dev[] array. */
708 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
709         struct hpsa_scsi_dev_t *removed[], int *nremoved)
710 {
711         /* assumes h->devlock is held */
712         int i;
713         struct hpsa_scsi_dev_t *sd;
714
715         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
716
717         sd = h->dev[entry];
718         removed[*nremoved] = h->dev[entry];
719         (*nremoved)++;
720
721         for (i = entry; i < h->ndevices-1; i++)
722                 h->dev[i] = h->dev[i+1];
723         h->ndevices--;
724         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
725                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
726                 sd->lun);
727 }
728
729 #define SCSI3ADDR_EQ(a, b) ( \
730         (a)[7] == (b)[7] && \
731         (a)[6] == (b)[6] && \
732         (a)[5] == (b)[5] && \
733         (a)[4] == (b)[4] && \
734         (a)[3] == (b)[3] && \
735         (a)[2] == (b)[2] && \
736         (a)[1] == (b)[1] && \
737         (a)[0] == (b)[0])
738
739 static void fixup_botched_add(struct ctlr_info *h,
740         struct hpsa_scsi_dev_t *added)
741 {
742         /* called when scsi_add_device fails in order to re-adjust
743          * h->dev[] to match the mid layer's view.
744          */
745         unsigned long flags;
746         int i, j;
747
748         spin_lock_irqsave(&h->lock, flags);
749         for (i = 0; i < h->ndevices; i++) {
750                 if (h->dev[i] == added) {
751                         for (j = i; j < h->ndevices-1; j++)
752                                 h->dev[j] = h->dev[j+1];
753                         h->ndevices--;
754                         break;
755                 }
756         }
757         spin_unlock_irqrestore(&h->lock, flags);
758         kfree(added);
759 }
760
761 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
762         struct hpsa_scsi_dev_t *dev2)
763 {
764         /* we compare everything except lun and target as these
765          * are not yet assigned.  Compare parts likely
766          * to differ first
767          */
768         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
769                 sizeof(dev1->scsi3addr)) != 0)
770                 return 0;
771         if (memcmp(dev1->device_id, dev2->device_id,
772                 sizeof(dev1->device_id)) != 0)
773                 return 0;
774         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
775                 return 0;
776         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
777                 return 0;
778         if (dev1->devtype != dev2->devtype)
779                 return 0;
780         if (dev1->bus != dev2->bus)
781                 return 0;
782         return 1;
783 }
784
785 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
786  * and return needle location in *index.  If scsi3addr matches, but not
787  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
788  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
789  */
790 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
791         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
792         int *index)
793 {
794         int i;
795 #define DEVICE_NOT_FOUND 0
796 #define DEVICE_CHANGED 1
797 #define DEVICE_SAME 2
798         for (i = 0; i < haystack_size; i++) {
799                 if (haystack[i] == NULL) /* previously removed. */
800                         continue;
801                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
802                         *index = i;
803                         if (device_is_the_same(needle, haystack[i]))
804                                 return DEVICE_SAME;
805                         else
806                                 return DEVICE_CHANGED;
807                 }
808         }
809         *index = -1;
810         return DEVICE_NOT_FOUND;
811 }
812
813 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
814         struct hpsa_scsi_dev_t *sd[], int nsds)
815 {
816         /* sd contains scsi3 addresses and devtypes, and inquiry
817          * data.  This function takes what's in sd to be the current
818          * reality and updates h->dev[] to reflect that reality.
819          */
820         int i, entry, device_change, changes = 0;
821         struct hpsa_scsi_dev_t *csd;
822         unsigned long flags;
823         struct hpsa_scsi_dev_t **added, **removed;
824         int nadded, nremoved;
825         struct Scsi_Host *sh = NULL;
826
827         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
828         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
829
830         if (!added || !removed) {
831                 dev_warn(&h->pdev->dev, "out of memory in "
832                         "adjust_hpsa_scsi_table\n");
833                 goto free_and_out;
834         }
835
836         spin_lock_irqsave(&h->devlock, flags);
837
838         /* find any devices in h->dev[] that are not in
839          * sd[] and remove them from h->dev[], and for any
840          * devices which have changed, remove the old device
841          * info and add the new device info.
842          */
843         i = 0;
844         nremoved = 0;
845         nadded = 0;
846         while (i < h->ndevices) {
847                 csd = h->dev[i];
848                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
849                 if (device_change == DEVICE_NOT_FOUND) {
850                         changes++;
851                         hpsa_scsi_remove_entry(h, hostno, i,
852                                 removed, &nremoved);
853                         continue; /* remove ^^^, hence i not incremented */
854                 } else if (device_change == DEVICE_CHANGED) {
855                         changes++;
856                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
857                                 added, &nadded, removed, &nremoved);
858                         /* Set it to NULL to prevent it from being freed
859                          * at the bottom of hpsa_update_scsi_devices()
860                          */
861                         sd[entry] = NULL;
862                 }
863                 i++;
864         }
865
866         /* Now, make sure every device listed in sd[] is also
867          * listed in h->dev[], adding them if they aren't found
868          */
869
870         for (i = 0; i < nsds; i++) {
871                 if (!sd[i]) /* if already added above. */
872                         continue;
873                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
874                                         h->ndevices, &entry);
875                 if (device_change == DEVICE_NOT_FOUND) {
876                         changes++;
877                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
878                                 added, &nadded) != 0)
879                                 break;
880                         sd[i] = NULL; /* prevent from being freed later. */
881                 } else if (device_change == DEVICE_CHANGED) {
882                         /* should never happen... */
883                         changes++;
884                         dev_warn(&h->pdev->dev,
885                                 "device unexpectedly changed.\n");
886                         /* but if it does happen, we just ignore that device */
887                 }
888         }
889         spin_unlock_irqrestore(&h->devlock, flags);
890
891         /* Don't notify scsi mid layer of any changes the first time through
892          * (or if there are no changes) scsi_scan_host will do it later the
893          * first time through.
894          */
895         if (hostno == -1 || !changes)
896                 goto free_and_out;
897
898         sh = h->scsi_host;
899         /* Notify scsi mid layer of any removed devices */
900         for (i = 0; i < nremoved; i++) {
901                 struct scsi_device *sdev =
902                         scsi_device_lookup(sh, removed[i]->bus,
903                                 removed[i]->target, removed[i]->lun);
904                 if (sdev != NULL) {
905                         scsi_remove_device(sdev);
906                         scsi_device_put(sdev);
907                 } else {
908                         /* We don't expect to get here.
909                          * future cmds to this device will get selection
910                          * timeout as if the device was gone.
911                          */
912                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
913                                 " for removal.", hostno, removed[i]->bus,
914                                 removed[i]->target, removed[i]->lun);
915                 }
916                 kfree(removed[i]);
917                 removed[i] = NULL;
918         }
919
920         /* Notify scsi mid layer of any added devices */
921         for (i = 0; i < nadded; i++) {
922                 if (scsi_add_device(sh, added[i]->bus,
923                         added[i]->target, added[i]->lun) == 0)
924                         continue;
925                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
926                         "device not added.\n", hostno, added[i]->bus,
927                         added[i]->target, added[i]->lun);
928                 /* now we have to remove it from h->dev,
929                  * since it didn't get added to scsi mid layer
930                  */
931                 fixup_botched_add(h, added[i]);
932         }
933
934 free_and_out:
935         kfree(added);
936         kfree(removed);
937 }
938
939 /*
940  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
941  * Assume's h->devlock is held.
942  */
943 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
944         int bus, int target, int lun)
945 {
946         int i;
947         struct hpsa_scsi_dev_t *sd;
948
949         for (i = 0; i < h->ndevices; i++) {
950                 sd = h->dev[i];
951                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
952                         return sd;
953         }
954         return NULL;
955 }
956
957 /* link sdev->hostdata to our per-device structure. */
958 static int hpsa_slave_alloc(struct scsi_device *sdev)
959 {
960         struct hpsa_scsi_dev_t *sd;
961         unsigned long flags;
962         struct ctlr_info *h;
963
964         h = sdev_to_hba(sdev);
965         spin_lock_irqsave(&h->devlock, flags);
966         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
967                 sdev_id(sdev), sdev->lun);
968         if (sd != NULL)
969                 sdev->hostdata = sd;
970         spin_unlock_irqrestore(&h->devlock, flags);
971         return 0;
972 }
973
974 static void hpsa_slave_destroy(struct scsi_device *sdev)
975 {
976         /* nothing to do. */
977 }
978
979 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
980 {
981         int i;
982
983         if (!h->cmd_sg_list)
984                 return;
985         for (i = 0; i < h->nr_cmds; i++) {
986                 kfree(h->cmd_sg_list[i]);
987                 h->cmd_sg_list[i] = NULL;
988         }
989         kfree(h->cmd_sg_list);
990         h->cmd_sg_list = NULL;
991 }
992
993 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
994 {
995         int i;
996
997         if (h->chainsize <= 0)
998                 return 0;
999
1000         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1001                                 GFP_KERNEL);
1002         if (!h->cmd_sg_list)
1003                 return -ENOMEM;
1004         for (i = 0; i < h->nr_cmds; i++) {
1005                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1006                                                 h->chainsize, GFP_KERNEL);
1007                 if (!h->cmd_sg_list[i])
1008                         goto clean;
1009         }
1010         return 0;
1011
1012 clean:
1013         hpsa_free_sg_chain_blocks(h);
1014         return -ENOMEM;
1015 }
1016
1017 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1018         struct CommandList *c)
1019 {
1020         struct SGDescriptor *chain_sg, *chain_block;
1021         u64 temp64;
1022
1023         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1024         chain_block = h->cmd_sg_list[c->cmdindex];
1025         chain_sg->Ext = HPSA_SG_CHAIN;
1026         chain_sg->Len = sizeof(*chain_sg) *
1027                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1028         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1029                                 PCI_DMA_TODEVICE);
1030         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1031         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1032 }
1033
1034 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1035         struct CommandList *c)
1036 {
1037         struct SGDescriptor *chain_sg;
1038         union u64bit temp64;
1039
1040         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1041                 return;
1042
1043         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1044         temp64.val32.lower = chain_sg->Addr.lower;
1045         temp64.val32.upper = chain_sg->Addr.upper;
1046         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1047 }
1048
1049 static void complete_scsi_command(struct CommandList *cp)
1050 {
1051         struct scsi_cmnd *cmd;
1052         struct ctlr_info *h;
1053         struct ErrorInfo *ei;
1054
1055         unsigned char sense_key;
1056         unsigned char asc;      /* additional sense code */
1057         unsigned char ascq;     /* additional sense code qualifier */
1058         unsigned long sense_data_size;
1059
1060         ei = cp->err_info;
1061         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1062         h = cp->h;
1063
1064         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1065         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1066                 hpsa_unmap_sg_chain_block(h, cp);
1067
1068         cmd->result = (DID_OK << 16);           /* host byte */
1069         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1070         cmd->result |= ei->ScsiStatus;
1071
1072         /* copy the sense data whether we need to or not. */
1073         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1074                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1075         else
1076                 sense_data_size = sizeof(ei->SenseInfo);
1077         if (ei->SenseLen < sense_data_size)
1078                 sense_data_size = ei->SenseLen;
1079
1080         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1081         scsi_set_resid(cmd, ei->ResidualCnt);
1082
1083         if (ei->CommandStatus == 0) {
1084                 cmd->scsi_done(cmd);
1085                 cmd_free(h, cp);
1086                 return;
1087         }
1088
1089         /* an error has occurred */
1090         switch (ei->CommandStatus) {
1091
1092         case CMD_TARGET_STATUS:
1093                 if (ei->ScsiStatus) {
1094                         /* Get sense key */
1095                         sense_key = 0xf & ei->SenseInfo[2];
1096                         /* Get additional sense code */
1097                         asc = ei->SenseInfo[12];
1098                         /* Get addition sense code qualifier */
1099                         ascq = ei->SenseInfo[13];
1100                 }
1101
1102                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1103                         if (check_for_unit_attention(h, cp)) {
1104                                 cmd->result = DID_SOFT_ERROR << 16;
1105                                 break;
1106                         }
1107                         if (sense_key == ILLEGAL_REQUEST) {
1108                                 /*
1109                                  * SCSI REPORT_LUNS is commonly unsupported on
1110                                  * Smart Array.  Suppress noisy complaint.
1111                                  */
1112                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1113                                         break;
1114
1115                                 /* If ASC/ASCQ indicate Logical Unit
1116                                  * Not Supported condition,
1117                                  */
1118                                 if ((asc == 0x25) && (ascq == 0x0)) {
1119                                         dev_warn(&h->pdev->dev, "cp %p "
1120                                                 "has check condition\n", cp);
1121                                         break;
1122                                 }
1123                         }
1124
1125                         if (sense_key == NOT_READY) {
1126                                 /* If Sense is Not Ready, Logical Unit
1127                                  * Not ready, Manual Intervention
1128                                  * required
1129                                  */
1130                                 if ((asc == 0x04) && (ascq == 0x03)) {
1131                                         dev_warn(&h->pdev->dev, "cp %p "
1132                                                 "has check condition: unit "
1133                                                 "not ready, manual "
1134                                                 "intervention required\n", cp);
1135                                         break;
1136                                 }
1137                         }
1138                         if (sense_key == ABORTED_COMMAND) {
1139                                 /* Aborted command is retryable */
1140                                 dev_warn(&h->pdev->dev, "cp %p "
1141                                         "has check condition: aborted command: "
1142                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1143                                         cp, asc, ascq);
1144                                 cmd->result = DID_SOFT_ERROR << 16;
1145                                 break;
1146                         }
1147                         /* Must be some other type of check condition */
1148                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1149                                         "unknown type: "
1150                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1151                                         "Returning result: 0x%x, "
1152                                         "cmd=[%02x %02x %02x %02x %02x "
1153                                         "%02x %02x %02x %02x %02x %02x "
1154                                         "%02x %02x %02x %02x %02x]\n",
1155                                         cp, sense_key, asc, ascq,
1156                                         cmd->result,
1157                                         cmd->cmnd[0], cmd->cmnd[1],
1158                                         cmd->cmnd[2], cmd->cmnd[3],
1159                                         cmd->cmnd[4], cmd->cmnd[5],
1160                                         cmd->cmnd[6], cmd->cmnd[7],
1161                                         cmd->cmnd[8], cmd->cmnd[9],
1162                                         cmd->cmnd[10], cmd->cmnd[11],
1163                                         cmd->cmnd[12], cmd->cmnd[13],
1164                                         cmd->cmnd[14], cmd->cmnd[15]);
1165                         break;
1166                 }
1167
1168
1169                 /* Problem was not a check condition
1170                  * Pass it up to the upper layers...
1171                  */
1172                 if (ei->ScsiStatus) {
1173                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1174                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1175                                 "Returning result: 0x%x\n",
1176                                 cp, ei->ScsiStatus,
1177                                 sense_key, asc, ascq,
1178                                 cmd->result);
1179                 } else {  /* scsi status is zero??? How??? */
1180                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1181                                 "Returning no connection.\n", cp),
1182
1183                         /* Ordinarily, this case should never happen,
1184                          * but there is a bug in some released firmware
1185                          * revisions that allows it to happen if, for
1186                          * example, a 4100 backplane loses power and
1187                          * the tape drive is in it.  We assume that
1188                          * it's a fatal error of some kind because we
1189                          * can't show that it wasn't. We will make it
1190                          * look like selection timeout since that is
1191                          * the most common reason for this to occur,
1192                          * and it's severe enough.
1193                          */
1194
1195                         cmd->result = DID_NO_CONNECT << 16;
1196                 }
1197                 break;
1198
1199         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1200                 break;
1201         case CMD_DATA_OVERRUN:
1202                 dev_warn(&h->pdev->dev, "cp %p has"
1203                         " completed with data overrun "
1204                         "reported\n", cp);
1205                 break;
1206         case CMD_INVALID: {
1207                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1208                 print_cmd(cp); */
1209                 /* We get CMD_INVALID if you address a non-existent device
1210                  * instead of a selection timeout (no response).  You will
1211                  * see this if you yank out a drive, then try to access it.
1212                  * This is kind of a shame because it means that any other
1213                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1214                  * missing target. */
1215                 cmd->result = DID_NO_CONNECT << 16;
1216         }
1217                 break;
1218         case CMD_PROTOCOL_ERR:
1219                 dev_warn(&h->pdev->dev, "cp %p has "
1220                         "protocol error \n", cp);
1221                 break;
1222         case CMD_HARDWARE_ERR:
1223                 cmd->result = DID_ERROR << 16;
1224                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1225                 break;
1226         case CMD_CONNECTION_LOST:
1227                 cmd->result = DID_ERROR << 16;
1228                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1229                 break;
1230         case CMD_ABORTED:
1231                 cmd->result = DID_ABORT << 16;
1232                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1233                                 cp, ei->ScsiStatus);
1234                 break;
1235         case CMD_ABORT_FAILED:
1236                 cmd->result = DID_ERROR << 16;
1237                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1238                 break;
1239         case CMD_UNSOLICITED_ABORT:
1240                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1241                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1242                         "abort\n", cp);
1243                 break;
1244         case CMD_TIMEOUT:
1245                 cmd->result = DID_TIME_OUT << 16;
1246                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1247                 break;
1248         case CMD_UNABORTABLE:
1249                 cmd->result = DID_ERROR << 16;
1250                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1251                 break;
1252         default:
1253                 cmd->result = DID_ERROR << 16;
1254                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1255                                 cp, ei->CommandStatus);
1256         }
1257         cmd->scsi_done(cmd);
1258         cmd_free(h, cp);
1259 }
1260
1261 static void hpsa_pci_unmap(struct pci_dev *pdev,
1262         struct CommandList *c, int sg_used, int data_direction)
1263 {
1264         int i;
1265         union u64bit addr64;
1266
1267         for (i = 0; i < sg_used; i++) {
1268                 addr64.val32.lower = c->SG[i].Addr.lower;
1269                 addr64.val32.upper = c->SG[i].Addr.upper;
1270                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1271                         data_direction);
1272         }
1273 }
1274
1275 static void hpsa_map_one(struct pci_dev *pdev,
1276                 struct CommandList *cp,
1277                 unsigned char *buf,
1278                 size_t buflen,
1279                 int data_direction)
1280 {
1281         u64 addr64;
1282
1283         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1284                 cp->Header.SGList = 0;
1285                 cp->Header.SGTotal = 0;
1286                 return;
1287         }
1288
1289         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1290         cp->SG[0].Addr.lower =
1291           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1292         cp->SG[0].Addr.upper =
1293           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1294         cp->SG[0].Len = buflen;
1295         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1296         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1297 }
1298
1299 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1300         struct CommandList *c)
1301 {
1302         DECLARE_COMPLETION_ONSTACK(wait);
1303
1304         c->waiting = &wait;
1305         enqueue_cmd_and_start_io(h, c);
1306         wait_for_completion(&wait);
1307 }
1308
1309 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1310         struct CommandList *c)
1311 {
1312         unsigned long flags;
1313
1314         /* If controller lockup detected, fake a hardware error. */
1315         spin_lock_irqsave(&h->lock, flags);
1316         if (unlikely(h->lockup_detected)) {
1317                 spin_unlock_irqrestore(&h->lock, flags);
1318                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1319         } else {
1320                 spin_unlock_irqrestore(&h->lock, flags);
1321                 hpsa_scsi_do_simple_cmd_core(h, c);
1322         }
1323 }
1324
1325 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1326         struct CommandList *c, int data_direction)
1327 {
1328         int retry_count = 0;
1329
1330         do {
1331                 memset(c->err_info, 0, sizeof(*c->err_info));
1332                 hpsa_scsi_do_simple_cmd_core(h, c);
1333                 retry_count++;
1334         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1335         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1336 }
1337
1338 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1339 {
1340         struct ErrorInfo *ei;
1341         struct device *d = &cp->h->pdev->dev;
1342
1343         ei = cp->err_info;
1344         switch (ei->CommandStatus) {
1345         case CMD_TARGET_STATUS:
1346                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1347                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1348                                 ei->ScsiStatus);
1349                 if (ei->ScsiStatus == 0)
1350                         dev_warn(d, "SCSI status is abnormally zero.  "
1351                         "(probably indicates selection timeout "
1352                         "reported incorrectly due to a known "
1353                         "firmware bug, circa July, 2001.)\n");
1354                 break;
1355         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1356                         dev_info(d, "UNDERRUN\n");
1357                 break;
1358         case CMD_DATA_OVERRUN:
1359                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1360                 break;
1361         case CMD_INVALID: {
1362                 /* controller unfortunately reports SCSI passthru's
1363                  * to non-existent targets as invalid commands.
1364                  */
1365                 dev_warn(d, "cp %p is reported invalid (probably means "
1366                         "target device no longer present)\n", cp);
1367                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1368                 print_cmd(cp);  */
1369                 }
1370                 break;
1371         case CMD_PROTOCOL_ERR:
1372                 dev_warn(d, "cp %p has protocol error \n", cp);
1373                 break;
1374         case CMD_HARDWARE_ERR:
1375                 /* cmd->result = DID_ERROR << 16; */
1376                 dev_warn(d, "cp %p had hardware error\n", cp);
1377                 break;
1378         case CMD_CONNECTION_LOST:
1379                 dev_warn(d, "cp %p had connection lost\n", cp);
1380                 break;
1381         case CMD_ABORTED:
1382                 dev_warn(d, "cp %p was aborted\n", cp);
1383                 break;
1384         case CMD_ABORT_FAILED:
1385                 dev_warn(d, "cp %p reports abort failed\n", cp);
1386                 break;
1387         case CMD_UNSOLICITED_ABORT:
1388                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1389                 break;
1390         case CMD_TIMEOUT:
1391                 dev_warn(d, "cp %p timed out\n", cp);
1392                 break;
1393         case CMD_UNABORTABLE:
1394                 dev_warn(d, "Command unabortable\n");
1395                 break;
1396         default:
1397                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1398                                 ei->CommandStatus);
1399         }
1400 }
1401
1402 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1403                         unsigned char page, unsigned char *buf,
1404                         unsigned char bufsize)
1405 {
1406         int rc = IO_OK;
1407         struct CommandList *c;
1408         struct ErrorInfo *ei;
1409
1410         c = cmd_special_alloc(h);
1411
1412         if (c == NULL) {                        /* trouble... */
1413                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1414                 return -ENOMEM;
1415         }
1416
1417         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1418         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1419         ei = c->err_info;
1420         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1421                 hpsa_scsi_interpret_error(c);
1422                 rc = -1;
1423         }
1424         cmd_special_free(h, c);
1425         return rc;
1426 }
1427
1428 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1429 {
1430         int rc = IO_OK;
1431         struct CommandList *c;
1432         struct ErrorInfo *ei;
1433
1434         c = cmd_special_alloc(h);
1435
1436         if (c == NULL) {                        /* trouble... */
1437                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1438                 return -ENOMEM;
1439         }
1440
1441         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1442         hpsa_scsi_do_simple_cmd_core(h, c);
1443         /* no unmap needed here because no data xfer. */
1444
1445         ei = c->err_info;
1446         if (ei->CommandStatus != 0) {
1447                 hpsa_scsi_interpret_error(c);
1448                 rc = -1;
1449         }
1450         cmd_special_free(h, c);
1451         return rc;
1452 }
1453
1454 static void hpsa_get_raid_level(struct ctlr_info *h,
1455         unsigned char *scsi3addr, unsigned char *raid_level)
1456 {
1457         int rc;
1458         unsigned char *buf;
1459
1460         *raid_level = RAID_UNKNOWN;
1461         buf = kzalloc(64, GFP_KERNEL);
1462         if (!buf)
1463                 return;
1464         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1465         if (rc == 0)
1466                 *raid_level = buf[8];
1467         if (*raid_level > RAID_UNKNOWN)
1468                 *raid_level = RAID_UNKNOWN;
1469         kfree(buf);
1470         return;
1471 }
1472
1473 /* Get the device id from inquiry page 0x83 */
1474 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1475         unsigned char *device_id, int buflen)
1476 {
1477         int rc;
1478         unsigned char *buf;
1479
1480         if (buflen > 16)
1481                 buflen = 16;
1482         buf = kzalloc(64, GFP_KERNEL);
1483         if (!buf)
1484                 return -1;
1485         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1486         if (rc == 0)
1487                 memcpy(device_id, &buf[8], buflen);
1488         kfree(buf);
1489         return rc != 0;
1490 }
1491
1492 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1493                 struct ReportLUNdata *buf, int bufsize,
1494                 int extended_response)
1495 {
1496         int rc = IO_OK;
1497         struct CommandList *c;
1498         unsigned char scsi3addr[8];
1499         struct ErrorInfo *ei;
1500
1501         c = cmd_special_alloc(h);
1502         if (c == NULL) {                        /* trouble... */
1503                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1504                 return -1;
1505         }
1506         /* address the controller */
1507         memset(scsi3addr, 0, sizeof(scsi3addr));
1508         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1509                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1510         if (extended_response)
1511                 c->Request.CDB[1] = extended_response;
1512         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1513         ei = c->err_info;
1514         if (ei->CommandStatus != 0 &&
1515             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1516                 hpsa_scsi_interpret_error(c);
1517                 rc = -1;
1518         }
1519         cmd_special_free(h, c);
1520         return rc;
1521 }
1522
1523 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1524                 struct ReportLUNdata *buf,
1525                 int bufsize, int extended_response)
1526 {
1527         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1528 }
1529
1530 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1531                 struct ReportLUNdata *buf, int bufsize)
1532 {
1533         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1534 }
1535
1536 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1537         int bus, int target, int lun)
1538 {
1539         device->bus = bus;
1540         device->target = target;
1541         device->lun = lun;
1542 }
1543
1544 static int hpsa_update_device_info(struct ctlr_info *h,
1545         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1546         unsigned char *is_OBDR_device)
1547 {
1548
1549 #define OBDR_SIG_OFFSET 43
1550 #define OBDR_TAPE_SIG "$DR-10"
1551 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1552 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1553
1554         unsigned char *inq_buff;
1555         unsigned char *obdr_sig;
1556
1557         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1558         if (!inq_buff)
1559                 goto bail_out;
1560
1561         /* Do an inquiry to the device to see what it is. */
1562         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1563                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1564                 /* Inquiry failed (msg printed already) */
1565                 dev_err(&h->pdev->dev,
1566                         "hpsa_update_device_info: inquiry failed\n");
1567                 goto bail_out;
1568         }
1569
1570         this_device->devtype = (inq_buff[0] & 0x1f);
1571         memcpy(this_device->scsi3addr, scsi3addr, 8);
1572         memcpy(this_device->vendor, &inq_buff[8],
1573                 sizeof(this_device->vendor));
1574         memcpy(this_device->model, &inq_buff[16],
1575                 sizeof(this_device->model));
1576         memset(this_device->device_id, 0,
1577                 sizeof(this_device->device_id));
1578         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1579                 sizeof(this_device->device_id));
1580
1581         if (this_device->devtype == TYPE_DISK &&
1582                 is_logical_dev_addr_mode(scsi3addr))
1583                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1584         else
1585                 this_device->raid_level = RAID_UNKNOWN;
1586
1587         if (is_OBDR_device) {
1588                 /* See if this is a One-Button-Disaster-Recovery device
1589                  * by looking for "$DR-10" at offset 43 in inquiry data.
1590                  */
1591                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1592                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1593                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1594                                                 OBDR_SIG_LEN) == 0);
1595         }
1596
1597         kfree(inq_buff);
1598         return 0;
1599
1600 bail_out:
1601         kfree(inq_buff);
1602         return 1;
1603 }
1604
1605 static unsigned char *msa2xxx_model[] = {
1606         "MSA2012",
1607         "MSA2024",
1608         "MSA2312",
1609         "MSA2324",
1610         "P2000 G3 SAS",
1611         NULL,
1612 };
1613
1614 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1615 {
1616         int i;
1617
1618         for (i = 0; msa2xxx_model[i]; i++)
1619                 if (strncmp(device->model, msa2xxx_model[i],
1620                         strlen(msa2xxx_model[i])) == 0)
1621                         return 1;
1622         return 0;
1623 }
1624
1625 /* Helper function to assign bus, target, lun mapping of devices.
1626  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1627  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1628  * Logical drive target and lun are assigned at this time, but
1629  * physical device lun and target assignment are deferred (assigned
1630  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1631  */
1632 static void figure_bus_target_lun(struct ctlr_info *h,
1633         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1634         struct hpsa_scsi_dev_t *device)
1635 {
1636         u32 lunid;
1637
1638         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1639                 /* logical device */
1640                 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1641                 if (is_msa2xxx(h, device)) {
1642                         /* msa2xxx way, put logicals on bus 1
1643                          * and match target/lun numbers box
1644                          * reports.
1645                          */
1646                         *bus = 1;
1647                         *target = (lunid >> 16) & 0x3fff;
1648                         *lun = lunid & 0x00ff;
1649                 } else {
1650                         if (likely(is_scsi_rev_5(h))) {
1651                                 /* All current smart arrays (circa 2011) */
1652                                 *bus = 0;
1653                                 *target = 0;
1654                                 *lun = (lunid & 0x3fff) + 1;
1655                         } else {
1656                                 /* Traditional old smart array way. */
1657                                 *bus = 0;
1658                                 *target = lunid & 0x3fff;
1659                                 *lun = 0;
1660                         }
1661                 }
1662         } else {
1663                 /* physical device */
1664                 if (is_hba_lunid(lunaddrbytes))
1665                         if (unlikely(is_scsi_rev_5(h))) {
1666                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1667                                 *target = 0;
1668                                 *lun = 0;
1669                                 return;
1670                         } else
1671                                 *bus = 3; /* traditional smartarray */
1672                 else
1673                         *bus = 2; /* physical disk */
1674                 *target = -1;
1675                 *lun = -1; /* we will fill these in later. */
1676         }
1677 }
1678
1679 /*
1680  * If there is no lun 0 on a target, linux won't find any devices.
1681  * For the MSA2xxx boxes, we have to manually detect the enclosure
1682  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1683  * it for some reason.  *tmpdevice is the target we're adding,
1684  * this_device is a pointer into the current element of currentsd[]
1685  * that we're building up in update_scsi_devices(), below.
1686  * lunzerobits is a bitmap that tracks which targets already have a
1687  * lun 0 assigned.
1688  * Returns 1 if an enclosure was added, 0 if not.
1689  */
1690 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1691         struct hpsa_scsi_dev_t *tmpdevice,
1692         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1693         int bus, int target, int lun, unsigned long lunzerobits[],
1694         int *nmsa2xxx_enclosures)
1695 {
1696         unsigned char scsi3addr[8];
1697
1698         if (test_bit(target, lunzerobits))
1699                 return 0; /* There is already a lun 0 on this target. */
1700
1701         if (!is_logical_dev_addr_mode(lunaddrbytes))
1702                 return 0; /* It's the logical targets that may lack lun 0. */
1703
1704         if (!is_msa2xxx(h, tmpdevice))
1705                 return 0; /* It's only the MSA2xxx that have this problem. */
1706
1707         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1708                 return 0;
1709
1710         memset(scsi3addr, 0, 8);
1711         scsi3addr[3] = target;
1712         if (is_hba_lunid(scsi3addr))
1713                 return 0; /* Don't add the RAID controller here. */
1714
1715         if (is_scsi_rev_5(h))
1716                 return 0; /* p1210m doesn't need to do this. */
1717
1718         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1719                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1720                         "enclosures exceeded.  Check your hardware "
1721                         "configuration.");
1722                 return 0;
1723         }
1724
1725         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1726                 return 0;
1727         (*nmsa2xxx_enclosures)++;
1728         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1729         set_bit(target, lunzerobits);
1730         return 1;
1731 }
1732
1733 /*
1734  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1735  * logdev.  The number of luns in physdev and logdev are returned in
1736  * *nphysicals and *nlogicals, respectively.
1737  * Returns 0 on success, -1 otherwise.
1738  */
1739 static int hpsa_gather_lun_info(struct ctlr_info *h,
1740         int reportlunsize,
1741         struct ReportLUNdata *physdev, u32 *nphysicals,
1742         struct ReportLUNdata *logdev, u32 *nlogicals)
1743 {
1744         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1745                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1746                 return -1;
1747         }
1748         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1749         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1750                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1751                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1752                         *nphysicals - HPSA_MAX_PHYS_LUN);
1753                 *nphysicals = HPSA_MAX_PHYS_LUN;
1754         }
1755         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1756                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1757                 return -1;
1758         }
1759         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1760         /* Reject Logicals in excess of our max capability. */
1761         if (*nlogicals > HPSA_MAX_LUN) {
1762                 dev_warn(&h->pdev->dev,
1763                         "maximum logical LUNs (%d) exceeded.  "
1764                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1765                         *nlogicals - HPSA_MAX_LUN);
1766                         *nlogicals = HPSA_MAX_LUN;
1767         }
1768         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1769                 dev_warn(&h->pdev->dev,
1770                         "maximum logical + physical LUNs (%d) exceeded. "
1771                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1772                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1773                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1774         }
1775         return 0;
1776 }
1777
1778 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1779         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1780         struct ReportLUNdata *logdev_list)
1781 {
1782         /* Helper function, figure out where the LUN ID info is coming from
1783          * given index i, lists of physical and logical devices, where in
1784          * the list the raid controller is supposed to appear (first or last)
1785          */
1786
1787         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1788         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1789
1790         if (i == raid_ctlr_position)
1791                 return RAID_CTLR_LUNID;
1792
1793         if (i < logicals_start)
1794                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1795
1796         if (i < last_device)
1797                 return &logdev_list->LUN[i - nphysicals -
1798                         (raid_ctlr_position == 0)][0];
1799         BUG();
1800         return NULL;
1801 }
1802
1803 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1804 {
1805         /* the idea here is we could get notified
1806          * that some devices have changed, so we do a report
1807          * physical luns and report logical luns cmd, and adjust
1808          * our list of devices accordingly.
1809          *
1810          * The scsi3addr's of devices won't change so long as the
1811          * adapter is not reset.  That means we can rescan and
1812          * tell which devices we already know about, vs. new
1813          * devices, vs.  disappearing devices.
1814          */
1815         struct ReportLUNdata *physdev_list = NULL;
1816         struct ReportLUNdata *logdev_list = NULL;
1817         u32 nphysicals = 0;
1818         u32 nlogicals = 0;
1819         u32 ndev_allocated = 0;
1820         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1821         int ncurrent = 0;
1822         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1823         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1824         int bus, target, lun;
1825         int raid_ctlr_position;
1826         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1827
1828         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1829         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1830         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1831         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1832
1833         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1834                 dev_err(&h->pdev->dev, "out of memory\n");
1835                 goto out;
1836         }
1837         memset(lunzerobits, 0, sizeof(lunzerobits));
1838
1839         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1840                         logdev_list, &nlogicals))
1841                 goto out;
1842
1843         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1844          * but each of them 4 times through different paths.  The plus 1
1845          * is for the RAID controller.
1846          */
1847         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1848
1849         /* Allocate the per device structures */
1850         for (i = 0; i < ndevs_to_allocate; i++) {
1851                 if (i >= HPSA_MAX_DEVICES) {
1852                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1853                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1854                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1855                         break;
1856                 }
1857
1858                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1859                 if (!currentsd[i]) {
1860                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1861                                 __FILE__, __LINE__);
1862                         goto out;
1863                 }
1864                 ndev_allocated++;
1865         }
1866
1867         if (unlikely(is_scsi_rev_5(h)))
1868                 raid_ctlr_position = 0;
1869         else
1870                 raid_ctlr_position = nphysicals + nlogicals;
1871
1872         /* adjust our table of devices */
1873         nmsa2xxx_enclosures = 0;
1874         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1875                 u8 *lunaddrbytes, is_OBDR = 0;
1876
1877                 /* Figure out where the LUN ID info is coming from */
1878                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1879                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1880                 /* skip masked physical devices. */
1881                 if (lunaddrbytes[3] & 0xC0 &&
1882                         i < nphysicals + (raid_ctlr_position == 0))
1883                         continue;
1884
1885                 /* Get device type, vendor, model, device id */
1886                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1887                                                         &is_OBDR))
1888                         continue; /* skip it if we can't talk to it. */
1889                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1890                         tmpdevice);
1891                 this_device = currentsd[ncurrent];
1892
1893                 /*
1894                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1895                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1896                  * is nonetheless an enclosure device there.  We have to
1897                  * present that otherwise linux won't find anything if
1898                  * there is no lun 0.
1899                  */
1900                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1901                                 lunaddrbytes, bus, target, lun, lunzerobits,
1902                                 &nmsa2xxx_enclosures)) {
1903                         ncurrent++;
1904                         this_device = currentsd[ncurrent];
1905                 }
1906
1907                 *this_device = *tmpdevice;
1908                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1909
1910                 switch (this_device->devtype) {
1911                 case TYPE_ROM:
1912                         /* We don't *really* support actual CD-ROM devices,
1913                          * just "One Button Disaster Recovery" tape drive
1914                          * which temporarily pretends to be a CD-ROM drive.
1915                          * So we check that the device is really an OBDR tape
1916                          * device by checking for "$DR-10" in bytes 43-48 of
1917                          * the inquiry data.
1918                          */
1919                         if (is_OBDR)
1920                                 ncurrent++;
1921                         break;
1922                 case TYPE_DISK:
1923                         if (i < nphysicals)
1924                                 break;
1925                         ncurrent++;
1926                         break;
1927                 case TYPE_TAPE:
1928                 case TYPE_MEDIUM_CHANGER:
1929                         ncurrent++;
1930                         break;
1931                 case TYPE_RAID:
1932                         /* Only present the Smartarray HBA as a RAID controller.
1933                          * If it's a RAID controller other than the HBA itself
1934                          * (an external RAID controller, MSA500 or similar)
1935                          * don't present it.
1936                          */
1937                         if (!is_hba_lunid(lunaddrbytes))
1938                                 break;
1939                         ncurrent++;
1940                         break;
1941                 default:
1942                         break;
1943                 }
1944                 if (ncurrent >= HPSA_MAX_DEVICES)
1945                         break;
1946         }
1947         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1948 out:
1949         kfree(tmpdevice);
1950         for (i = 0; i < ndev_allocated; i++)
1951                 kfree(currentsd[i]);
1952         kfree(currentsd);
1953         kfree(physdev_list);
1954         kfree(logdev_list);
1955 }
1956
1957 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1958  * dma mapping  and fills in the scatter gather entries of the
1959  * hpsa command, cp.
1960  */
1961 static int hpsa_scatter_gather(struct ctlr_info *h,
1962                 struct CommandList *cp,
1963                 struct scsi_cmnd *cmd)
1964 {
1965         unsigned int len;
1966         struct scatterlist *sg;
1967         u64 addr64;
1968         int use_sg, i, sg_index, chained;
1969         struct SGDescriptor *curr_sg;
1970
1971         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1972
1973         use_sg = scsi_dma_map(cmd);
1974         if (use_sg < 0)
1975                 return use_sg;
1976
1977         if (!use_sg)
1978                 goto sglist_finished;
1979
1980         curr_sg = cp->SG;
1981         chained = 0;
1982         sg_index = 0;
1983         scsi_for_each_sg(cmd, sg, use_sg, i) {
1984                 if (i == h->max_cmd_sg_entries - 1 &&
1985                         use_sg > h->max_cmd_sg_entries) {
1986                         chained = 1;
1987                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1988                         sg_index = 0;
1989                 }
1990                 addr64 = (u64) sg_dma_address(sg);
1991                 len  = sg_dma_len(sg);
1992                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1993                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1994                 curr_sg->Len = len;
1995                 curr_sg->Ext = 0;  /* we are not chaining */
1996                 curr_sg++;
1997         }
1998
1999         if (use_sg + chained > h->maxSG)
2000                 h->maxSG = use_sg + chained;
2001
2002         if (chained) {
2003                 cp->Header.SGList = h->max_cmd_sg_entries;
2004                 cp->Header.SGTotal = (u16) (use_sg + 1);
2005                 hpsa_map_sg_chain_block(h, cp);
2006                 return 0;
2007         }
2008
2009 sglist_finished:
2010
2011         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2012         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2013         return 0;
2014 }
2015
2016
2017 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2018         void (*done)(struct scsi_cmnd *))
2019 {
2020         struct ctlr_info *h;
2021         struct hpsa_scsi_dev_t *dev;
2022         unsigned char scsi3addr[8];
2023         struct CommandList *c;
2024         unsigned long flags;
2025
2026         /* Get the ptr to our adapter structure out of cmd->host. */
2027         h = sdev_to_hba(cmd->device);
2028         dev = cmd->device->hostdata;
2029         if (!dev) {
2030                 cmd->result = DID_NO_CONNECT << 16;
2031                 done(cmd);
2032                 return 0;
2033         }
2034         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2035
2036         spin_lock_irqsave(&h->lock, flags);
2037         if (unlikely(h->lockup_detected)) {
2038                 spin_unlock_irqrestore(&h->lock, flags);
2039                 cmd->result = DID_ERROR << 16;
2040                 done(cmd);
2041                 return 0;
2042         }
2043         /* Need a lock as this is being allocated from the pool */
2044         c = cmd_alloc(h);
2045         spin_unlock_irqrestore(&h->lock, flags);
2046         if (c == NULL) {                        /* trouble... */
2047                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2048                 return SCSI_MLQUEUE_HOST_BUSY;
2049         }
2050
2051         /* Fill in the command list header */
2052
2053         cmd->scsi_done = done;    /* save this for use by completion code */
2054
2055         /* save c in case we have to abort it  */
2056         cmd->host_scribble = (unsigned char *) c;
2057
2058         c->cmd_type = CMD_SCSI;
2059         c->scsi_cmd = cmd;
2060         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2061         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2062         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2063         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2064
2065         /* Fill in the request block... */
2066
2067         c->Request.Timeout = 0;
2068         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2069         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2070         c->Request.CDBLen = cmd->cmd_len;
2071         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2072         c->Request.Type.Type = TYPE_CMD;
2073         c->Request.Type.Attribute = ATTR_SIMPLE;
2074         switch (cmd->sc_data_direction) {
2075         case DMA_TO_DEVICE:
2076                 c->Request.Type.Direction = XFER_WRITE;
2077                 break;
2078         case DMA_FROM_DEVICE:
2079                 c->Request.Type.Direction = XFER_READ;
2080                 break;
2081         case DMA_NONE:
2082                 c->Request.Type.Direction = XFER_NONE;
2083                 break;
2084         case DMA_BIDIRECTIONAL:
2085                 /* This can happen if a buggy application does a scsi passthru
2086                  * and sets both inlen and outlen to non-zero. ( see
2087                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2088                  */
2089
2090                 c->Request.Type.Direction = XFER_RSVD;
2091                 /* This is technically wrong, and hpsa controllers should
2092                  * reject it with CMD_INVALID, which is the most correct
2093                  * response, but non-fibre backends appear to let it
2094                  * slide by, and give the same results as if this field
2095                  * were set correctly.  Either way is acceptable for
2096                  * our purposes here.
2097                  */
2098
2099                 break;
2100
2101         default:
2102                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2103                         cmd->sc_data_direction);
2104                 BUG();
2105                 break;
2106         }
2107
2108         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2109                 cmd_free(h, c);
2110                 return SCSI_MLQUEUE_HOST_BUSY;
2111         }
2112         enqueue_cmd_and_start_io(h, c);
2113         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2114         return 0;
2115 }
2116
2117 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2118
2119 static void hpsa_scan_start(struct Scsi_Host *sh)
2120 {
2121         struct ctlr_info *h = shost_to_hba(sh);
2122         unsigned long flags;
2123
2124         /* wait until any scan already in progress is finished. */
2125         while (1) {
2126                 spin_lock_irqsave(&h->scan_lock, flags);
2127                 if (h->scan_finished)
2128                         break;
2129                 spin_unlock_irqrestore(&h->scan_lock, flags);
2130                 wait_event(h->scan_wait_queue, h->scan_finished);
2131                 /* Note: We don't need to worry about a race between this
2132                  * thread and driver unload because the midlayer will
2133                  * have incremented the reference count, so unload won't
2134                  * happen if we're in here.
2135                  */
2136         }
2137         h->scan_finished = 0; /* mark scan as in progress */
2138         spin_unlock_irqrestore(&h->scan_lock, flags);
2139
2140         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2141
2142         spin_lock_irqsave(&h->scan_lock, flags);
2143         h->scan_finished = 1; /* mark scan as finished. */
2144         wake_up_all(&h->scan_wait_queue);
2145         spin_unlock_irqrestore(&h->scan_lock, flags);
2146 }
2147
2148 static int hpsa_scan_finished(struct Scsi_Host *sh,
2149         unsigned long elapsed_time)
2150 {
2151         struct ctlr_info *h = shost_to_hba(sh);
2152         unsigned long flags;
2153         int finished;
2154
2155         spin_lock_irqsave(&h->scan_lock, flags);
2156         finished = h->scan_finished;
2157         spin_unlock_irqrestore(&h->scan_lock, flags);
2158         return finished;
2159 }
2160
2161 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2162         int qdepth, int reason)
2163 {
2164         struct ctlr_info *h = sdev_to_hba(sdev);
2165
2166         if (reason != SCSI_QDEPTH_DEFAULT)
2167                 return -ENOTSUPP;
2168
2169         if (qdepth < 1)
2170                 qdepth = 1;
2171         else
2172                 if (qdepth > h->nr_cmds)
2173                         qdepth = h->nr_cmds;
2174         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2175         return sdev->queue_depth;
2176 }
2177
2178 static void hpsa_unregister_scsi(struct ctlr_info *h)
2179 {
2180         /* we are being forcibly unloaded, and may not refuse. */
2181         scsi_remove_host(h->scsi_host);
2182         scsi_host_put(h->scsi_host);
2183         h->scsi_host = NULL;
2184 }
2185
2186 static int hpsa_register_scsi(struct ctlr_info *h)
2187 {
2188         struct Scsi_Host *sh;
2189         int error;
2190
2191         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2192         if (sh == NULL)
2193                 goto fail;
2194
2195         sh->io_port = 0;
2196         sh->n_io_port = 0;
2197         sh->this_id = -1;
2198         sh->max_channel = 3;
2199         sh->max_cmd_len = MAX_COMMAND_SIZE;
2200         sh->max_lun = HPSA_MAX_LUN;
2201         sh->max_id = HPSA_MAX_LUN;
2202         sh->can_queue = h->nr_cmds;
2203         sh->cmd_per_lun = h->nr_cmds;
2204         sh->sg_tablesize = h->maxsgentries;
2205         h->scsi_host = sh;
2206         sh->hostdata[0] = (unsigned long) h;
2207         sh->irq = h->intr[h->intr_mode];
2208         sh->unique_id = sh->irq;
2209         error = scsi_add_host(sh, &h->pdev->dev);
2210         if (error)
2211                 goto fail_host_put;
2212         scsi_scan_host(sh);
2213         return 0;
2214
2215  fail_host_put:
2216         dev_err(&h->pdev->dev, "%s: scsi_add_host"
2217                 " failed for controller %d\n", __func__, h->ctlr);
2218         scsi_host_put(sh);
2219         return error;
2220  fail:
2221         dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2222                 " failed for controller %d\n", __func__, h->ctlr);
2223         return -ENOMEM;
2224 }
2225
2226 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2227         unsigned char lunaddr[])
2228 {
2229         int rc = 0;
2230         int count = 0;
2231         int waittime = 1; /* seconds */
2232         struct CommandList *c;
2233
2234         c = cmd_special_alloc(h);
2235         if (!c) {
2236                 dev_warn(&h->pdev->dev, "out of memory in "
2237                         "wait_for_device_to_become_ready.\n");
2238                 return IO_ERROR;
2239         }
2240
2241         /* Send test unit ready until device ready, or give up. */
2242         while (count < HPSA_TUR_RETRY_LIMIT) {
2243
2244                 /* Wait for a bit.  do this first, because if we send
2245                  * the TUR right away, the reset will just abort it.
2246                  */
2247                 msleep(1000 * waittime);
2248                 count++;
2249
2250                 /* Increase wait time with each try, up to a point. */
2251                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2252                         waittime = waittime * 2;
2253
2254                 /* Send the Test Unit Ready */
2255                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2256                 hpsa_scsi_do_simple_cmd_core(h, c);
2257                 /* no unmap needed here because no data xfer. */
2258
2259                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2260                         break;
2261
2262                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2263                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2264                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2265                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2266                         break;
2267
2268                 dev_warn(&h->pdev->dev, "waiting %d secs "
2269                         "for device to become ready.\n", waittime);
2270                 rc = 1; /* device not ready. */
2271         }
2272
2273         if (rc)
2274                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2275         else
2276                 dev_warn(&h->pdev->dev, "device is ready.\n");
2277
2278         cmd_special_free(h, c);
2279         return rc;
2280 }
2281
2282 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2283  * complaining.  Doing a host- or bus-reset can't do anything good here.
2284  */
2285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2286 {
2287         int rc;
2288         struct ctlr_info *h;
2289         struct hpsa_scsi_dev_t *dev;
2290
2291         /* find the controller to which the command to be aborted was sent */
2292         h = sdev_to_hba(scsicmd->device);
2293         if (h == NULL) /* paranoia */
2294                 return FAILED;
2295         dev = scsicmd->device->hostdata;
2296         if (!dev) {
2297                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2298                         "device lookup failed.\n");
2299                 return FAILED;
2300         }
2301         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2302                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2303         /* send a reset to the SCSI LUN which the command was sent to */
2304         rc = hpsa_send_reset(h, dev->scsi3addr);
2305         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2306                 return SUCCESS;
2307
2308         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2309         return FAILED;
2310 }
2311
2312 /*
2313  * For operations that cannot sleep, a command block is allocated at init,
2314  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2315  * which ones are free or in use.  Lock must be held when calling this.
2316  * cmd_free() is the complement.
2317  */
2318 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2319 {
2320         struct CommandList *c;
2321         int i;
2322         union u64bit temp64;
2323         dma_addr_t cmd_dma_handle, err_dma_handle;
2324
2325         do {
2326                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2327                 if (i == h->nr_cmds)
2328                         return NULL;
2329         } while (test_and_set_bit
2330                  (i & (BITS_PER_LONG - 1),
2331                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2332         c = h->cmd_pool + i;
2333         memset(c, 0, sizeof(*c));
2334         cmd_dma_handle = h->cmd_pool_dhandle
2335             + i * sizeof(*c);
2336         c->err_info = h->errinfo_pool + i;
2337         memset(c->err_info, 0, sizeof(*c->err_info));
2338         err_dma_handle = h->errinfo_pool_dhandle
2339             + i * sizeof(*c->err_info);
2340         h->nr_allocs++;
2341
2342         c->cmdindex = i;
2343
2344         INIT_LIST_HEAD(&c->list);
2345         c->busaddr = (u32) cmd_dma_handle;
2346         temp64.val = (u64) err_dma_handle;
2347         c->ErrDesc.Addr.lower = temp64.val32.lower;
2348         c->ErrDesc.Addr.upper = temp64.val32.upper;
2349         c->ErrDesc.Len = sizeof(*c->err_info);
2350
2351         c->h = h;
2352         return c;
2353 }
2354
2355 /* For operations that can wait for kmalloc to possibly sleep,
2356  * this routine can be called. Lock need not be held to call
2357  * cmd_special_alloc. cmd_special_free() is the complement.
2358  */
2359 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2360 {
2361         struct CommandList *c;
2362         union u64bit temp64;
2363         dma_addr_t cmd_dma_handle, err_dma_handle;
2364
2365         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2366         if (c == NULL)
2367                 return NULL;
2368         memset(c, 0, sizeof(*c));
2369
2370         c->cmdindex = -1;
2371
2372         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2373                     &err_dma_handle);
2374
2375         if (c->err_info == NULL) {
2376                 pci_free_consistent(h->pdev,
2377                         sizeof(*c), c, cmd_dma_handle);
2378                 return NULL;
2379         }
2380         memset(c->err_info, 0, sizeof(*c->err_info));
2381
2382         INIT_LIST_HEAD(&c->list);
2383         c->busaddr = (u32) cmd_dma_handle;
2384         temp64.val = (u64) err_dma_handle;
2385         c->ErrDesc.Addr.lower = temp64.val32.lower;
2386         c->ErrDesc.Addr.upper = temp64.val32.upper;
2387         c->ErrDesc.Len = sizeof(*c->err_info);
2388
2389         c->h = h;
2390         return c;
2391 }
2392
2393 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2394 {
2395         int i;
2396
2397         i = c - h->cmd_pool;
2398         clear_bit(i & (BITS_PER_LONG - 1),
2399                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2400         h->nr_frees++;
2401 }
2402
2403 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2404 {
2405         union u64bit temp64;
2406
2407         temp64.val32.lower = c->ErrDesc.Addr.lower;
2408         temp64.val32.upper = c->ErrDesc.Addr.upper;
2409         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2410                             c->err_info, (dma_addr_t) temp64.val);
2411         pci_free_consistent(h->pdev, sizeof(*c),
2412                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2413 }
2414
2415 #ifdef CONFIG_COMPAT
2416
2417 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2418 {
2419         IOCTL32_Command_struct __user *arg32 =
2420             (IOCTL32_Command_struct __user *) arg;
2421         IOCTL_Command_struct arg64;
2422         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2423         int err;
2424         u32 cp;
2425
2426         memset(&arg64, 0, sizeof(arg64));
2427         err = 0;
2428         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2429                            sizeof(arg64.LUN_info));
2430         err |= copy_from_user(&arg64.Request, &arg32->Request,
2431                            sizeof(arg64.Request));
2432         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2433                            sizeof(arg64.error_info));
2434         err |= get_user(arg64.buf_size, &arg32->buf_size);
2435         err |= get_user(cp, &arg32->buf);
2436         arg64.buf = compat_ptr(cp);
2437         err |= copy_to_user(p, &arg64, sizeof(arg64));
2438
2439         if (err)
2440                 return -EFAULT;
2441
2442         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2443         if (err)
2444                 return err;
2445         err |= copy_in_user(&arg32->error_info, &p->error_info,
2446                          sizeof(arg32->error_info));
2447         if (err)
2448                 return -EFAULT;
2449         return err;
2450 }
2451
2452 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2453         int cmd, void *arg)
2454 {
2455         BIG_IOCTL32_Command_struct __user *arg32 =
2456             (BIG_IOCTL32_Command_struct __user *) arg;
2457         BIG_IOCTL_Command_struct arg64;
2458         BIG_IOCTL_Command_struct __user *p =
2459             compat_alloc_user_space(sizeof(arg64));
2460         int err;
2461         u32 cp;
2462
2463         memset(&arg64, 0, sizeof(arg64));
2464         err = 0;
2465         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2466                            sizeof(arg64.LUN_info));
2467         err |= copy_from_user(&arg64.Request, &arg32->Request,
2468                            sizeof(arg64.Request));
2469         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2470                            sizeof(arg64.error_info));
2471         err |= get_user(arg64.buf_size, &arg32->buf_size);
2472         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2473         err |= get_user(cp, &arg32->buf);
2474         arg64.buf = compat_ptr(cp);
2475         err |= copy_to_user(p, &arg64, sizeof(arg64));
2476
2477         if (err)
2478                 return -EFAULT;
2479
2480         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2481         if (err)
2482                 return err;
2483         err |= copy_in_user(&arg32->error_info, &p->error_info,
2484                          sizeof(arg32->error_info));
2485         if (err)
2486                 return -EFAULT;
2487         return err;
2488 }
2489
2490 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2491 {
2492         switch (cmd) {
2493         case CCISS_GETPCIINFO:
2494         case CCISS_GETINTINFO:
2495         case CCISS_SETINTINFO:
2496         case CCISS_GETNODENAME:
2497         case CCISS_SETNODENAME:
2498         case CCISS_GETHEARTBEAT:
2499         case CCISS_GETBUSTYPES:
2500         case CCISS_GETFIRMVER:
2501         case CCISS_GETDRIVVER:
2502         case CCISS_REVALIDVOLS:
2503         case CCISS_DEREGDISK:
2504         case CCISS_REGNEWDISK:
2505         case CCISS_REGNEWD:
2506         case CCISS_RESCANDISK:
2507         case CCISS_GETLUNINFO:
2508                 return hpsa_ioctl(dev, cmd, arg);
2509
2510         case CCISS_PASSTHRU32:
2511                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2512         case CCISS_BIG_PASSTHRU32:
2513                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2514
2515         default:
2516                 return -ENOIOCTLCMD;
2517         }
2518 }
2519 #endif
2520
2521 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2522 {
2523         struct hpsa_pci_info pciinfo;
2524
2525         if (!argp)
2526                 return -EINVAL;
2527         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2528         pciinfo.bus = h->pdev->bus->number;
2529         pciinfo.dev_fn = h->pdev->devfn;
2530         pciinfo.board_id = h->board_id;
2531         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2532                 return -EFAULT;
2533         return 0;
2534 }
2535
2536 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2537 {
2538         DriverVer_type DriverVer;
2539         unsigned char vmaj, vmin, vsubmin;
2540         int rc;
2541
2542         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2543                 &vmaj, &vmin, &vsubmin);
2544         if (rc != 3) {
2545                 dev_info(&h->pdev->dev, "driver version string '%s' "
2546                         "unrecognized.", HPSA_DRIVER_VERSION);
2547                 vmaj = 0;
2548                 vmin = 0;
2549                 vsubmin = 0;
2550         }
2551         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2552         if (!argp)
2553                 return -EINVAL;
2554         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2555                 return -EFAULT;
2556         return 0;
2557 }
2558
2559 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2560 {
2561         IOCTL_Command_struct iocommand;
2562         struct CommandList *c;
2563         char *buff = NULL;
2564         union u64bit temp64;
2565
2566         if (!argp)
2567                 return -EINVAL;
2568         if (!capable(CAP_SYS_RAWIO))
2569                 return -EPERM;
2570         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2571                 return -EFAULT;
2572         if ((iocommand.buf_size < 1) &&
2573             (iocommand.Request.Type.Direction != XFER_NONE)) {
2574                 return -EINVAL;
2575         }
2576         if (iocommand.buf_size > 0) {
2577                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2578                 if (buff == NULL)
2579                         return -EFAULT;
2580                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2581                         /* Copy the data into the buffer we created */
2582                         if (copy_from_user(buff, iocommand.buf,
2583                                 iocommand.buf_size)) {
2584                                 kfree(buff);
2585                                 return -EFAULT;
2586                         }
2587                 } else {
2588                         memset(buff, 0, iocommand.buf_size);
2589                 }
2590         }
2591         c = cmd_special_alloc(h);
2592         if (c == NULL) {
2593                 kfree(buff);
2594                 return -ENOMEM;
2595         }
2596         /* Fill in the command type */
2597         c->cmd_type = CMD_IOCTL_PEND;
2598         /* Fill in Command Header */
2599         c->Header.ReplyQueue = 0; /* unused in simple mode */
2600         if (iocommand.buf_size > 0) {   /* buffer to fill */
2601                 c->Header.SGList = 1;
2602                 c->Header.SGTotal = 1;
2603         } else  { /* no buffers to fill */
2604                 c->Header.SGList = 0;
2605                 c->Header.SGTotal = 0;
2606         }
2607         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2608         /* use the kernel address the cmd block for tag */
2609         c->Header.Tag.lower = c->busaddr;
2610
2611         /* Fill in Request block */
2612         memcpy(&c->Request, &iocommand.Request,
2613                 sizeof(c->Request));
2614
2615         /* Fill in the scatter gather information */
2616         if (iocommand.buf_size > 0) {
2617                 temp64.val = pci_map_single(h->pdev, buff,
2618                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2619                 c->SG[0].Addr.lower = temp64.val32.lower;
2620                 c->SG[0].Addr.upper = temp64.val32.upper;
2621                 c->SG[0].Len = iocommand.buf_size;
2622                 c->SG[0].Ext = 0; /* we are not chaining*/
2623         }
2624         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2625         if (iocommand.buf_size > 0)
2626                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2627         check_ioctl_unit_attention(h, c);
2628
2629         /* Copy the error information out */
2630         memcpy(&iocommand.error_info, c->err_info,
2631                 sizeof(iocommand.error_info));
2632         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2633                 kfree(buff);
2634                 cmd_special_free(h, c);
2635                 return -EFAULT;
2636         }
2637         if (iocommand.Request.Type.Direction == XFER_READ &&
2638                 iocommand.buf_size > 0) {
2639                 /* Copy the data out of the buffer we created */
2640                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2641                         kfree(buff);
2642                         cmd_special_free(h, c);
2643                         return -EFAULT;
2644                 }
2645         }
2646         kfree(buff);
2647         cmd_special_free(h, c);
2648         return 0;
2649 }
2650
2651 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2652 {
2653         BIG_IOCTL_Command_struct *ioc;
2654         struct CommandList *c;
2655         unsigned char **buff = NULL;
2656         int *buff_size = NULL;
2657         union u64bit temp64;
2658         BYTE sg_used = 0;
2659         int status = 0;
2660         int i;
2661         u32 left;
2662         u32 sz;
2663         BYTE __user *data_ptr;
2664
2665         if (!argp)
2666                 return -EINVAL;
2667         if (!capable(CAP_SYS_RAWIO))
2668                 return -EPERM;
2669         ioc = (BIG_IOCTL_Command_struct *)
2670             kmalloc(sizeof(*ioc), GFP_KERNEL);
2671         if (!ioc) {
2672                 status = -ENOMEM;
2673                 goto cleanup1;
2674         }
2675         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2676                 status = -EFAULT;
2677                 goto cleanup1;
2678         }
2679         if ((ioc->buf_size < 1) &&
2680             (ioc->Request.Type.Direction != XFER_NONE)) {
2681                 status = -EINVAL;
2682                 goto cleanup1;
2683         }
2684         /* Check kmalloc limits  using all SGs */
2685         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2686                 status = -EINVAL;
2687                 goto cleanup1;
2688         }
2689         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
2690                 status = -EINVAL;
2691                 goto cleanup1;
2692         }
2693         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
2694         if (!buff) {
2695                 status = -ENOMEM;
2696                 goto cleanup1;
2697         }
2698         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
2699         if (!buff_size) {
2700                 status = -ENOMEM;
2701                 goto cleanup1;
2702         }
2703         left = ioc->buf_size;
2704         data_ptr = ioc->buf;
2705         while (left) {
2706                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2707                 buff_size[sg_used] = sz;
2708                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2709                 if (buff[sg_used] == NULL) {
2710                         status = -ENOMEM;
2711                         goto cleanup1;
2712                 }
2713                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2714                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2715                                 status = -ENOMEM;
2716                                 goto cleanup1;
2717                         }
2718                 } else
2719                         memset(buff[sg_used], 0, sz);
2720                 left -= sz;
2721                 data_ptr += sz;
2722                 sg_used++;
2723         }
2724         c = cmd_special_alloc(h);
2725         if (c == NULL) {
2726                 status = -ENOMEM;
2727                 goto cleanup1;
2728         }
2729         c->cmd_type = CMD_IOCTL_PEND;
2730         c->Header.ReplyQueue = 0;
2731         c->Header.SGList = c->Header.SGTotal = sg_used;
2732         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2733         c->Header.Tag.lower = c->busaddr;
2734         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2735         if (ioc->buf_size > 0) {
2736                 int i;
2737                 for (i = 0; i < sg_used; i++) {
2738                         temp64.val = pci_map_single(h->pdev, buff[i],
2739                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2740                         c->SG[i].Addr.lower = temp64.val32.lower;
2741                         c->SG[i].Addr.upper = temp64.val32.upper;
2742                         c->SG[i].Len = buff_size[i];
2743                         /* we are not chaining */
2744                         c->SG[i].Ext = 0;
2745                 }
2746         }
2747         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2748         if (sg_used)
2749                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2750         check_ioctl_unit_attention(h, c);
2751         /* Copy the error information out */
2752         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2753         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2754                 cmd_special_free(h, c);
2755                 status = -EFAULT;
2756                 goto cleanup1;
2757         }
2758         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2759                 /* Copy the data out of the buffer we created */
2760                 BYTE __user *ptr = ioc->buf;
2761                 for (i = 0; i < sg_used; i++) {
2762                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2763                                 cmd_special_free(h, c);
2764                                 status = -EFAULT;
2765                                 goto cleanup1;
2766                         }
2767                         ptr += buff_size[i];
2768                 }
2769         }
2770         cmd_special_free(h, c);
2771         status = 0;
2772 cleanup1:
2773         if (buff) {
2774                 for (i = 0; i < sg_used; i++)
2775                         kfree(buff[i]);
2776                 kfree(buff);
2777         }
2778         kfree(buff_size);
2779         kfree(ioc);
2780         return status;
2781 }
2782
2783 static void check_ioctl_unit_attention(struct ctlr_info *h,
2784         struct CommandList *c)
2785 {
2786         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2787                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2788                 (void) check_for_unit_attention(h, c);
2789 }
2790 /*
2791  * ioctl
2792  */
2793 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2794 {
2795         struct ctlr_info *h;
2796         void __user *argp = (void __user *)arg;
2797
2798         h = sdev_to_hba(dev);
2799
2800         switch (cmd) {
2801         case CCISS_DEREGDISK:
2802         case CCISS_REGNEWDISK:
2803         case CCISS_REGNEWD:
2804                 hpsa_scan_start(h->scsi_host);
2805                 return 0;
2806         case CCISS_GETPCIINFO:
2807                 return hpsa_getpciinfo_ioctl(h, argp);
2808         case CCISS_GETDRIVVER:
2809                 return hpsa_getdrivver_ioctl(h, argp);
2810         case CCISS_PASSTHRU:
2811                 return hpsa_passthru_ioctl(h, argp);
2812         case CCISS_BIG_PASSTHRU:
2813                 return hpsa_big_passthru_ioctl(h, argp);
2814         default:
2815                 return -ENOTTY;
2816         }
2817 }
2818
2819 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2820         unsigned char *scsi3addr, u8 reset_type)
2821 {
2822         struct CommandList *c;
2823
2824         c = cmd_alloc(h);
2825         if (!c)
2826                 return -ENOMEM;
2827         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2828                 RAID_CTLR_LUNID, TYPE_MSG);
2829         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2830         c->waiting = NULL;
2831         enqueue_cmd_and_start_io(h, c);
2832         /* Don't wait for completion, the reset won't complete.  Don't free
2833          * the command either.  This is the last command we will send before
2834          * re-initializing everything, so it doesn't matter and won't leak.
2835          */
2836         return 0;
2837 }
2838
2839 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2840         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2841         int cmd_type)
2842 {
2843         int pci_dir = XFER_NONE;
2844
2845         c->cmd_type = CMD_IOCTL_PEND;
2846         c->Header.ReplyQueue = 0;
2847         if (buff != NULL && size > 0) {
2848                 c->Header.SGList = 1;
2849                 c->Header.SGTotal = 1;
2850         } else {
2851                 c->Header.SGList = 0;
2852                 c->Header.SGTotal = 0;
2853         }
2854         c->Header.Tag.lower = c->busaddr;
2855         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2856
2857         c->Request.Type.Type = cmd_type;
2858         if (cmd_type == TYPE_CMD) {
2859                 switch (cmd) {
2860                 case HPSA_INQUIRY:
2861                         /* are we trying to read a vital product page */
2862                         if (page_code != 0) {
2863                                 c->Request.CDB[1] = 0x01;
2864                                 c->Request.CDB[2] = page_code;
2865                         }
2866                         c->Request.CDBLen = 6;
2867                         c->Request.Type.Attribute = ATTR_SIMPLE;
2868                         c->Request.Type.Direction = XFER_READ;
2869                         c->Request.Timeout = 0;
2870                         c->Request.CDB[0] = HPSA_INQUIRY;
2871                         c->Request.CDB[4] = size & 0xFF;
2872                         break;
2873                 case HPSA_REPORT_LOG:
2874                 case HPSA_REPORT_PHYS:
2875                         /* Talking to controller so It's a physical command
2876                            mode = 00 target = 0.  Nothing to write.
2877                          */
2878                         c->Request.CDBLen = 12;
2879                         c->Request.Type.Attribute = ATTR_SIMPLE;
2880                         c->Request.Type.Direction = XFER_READ;
2881                         c->Request.Timeout = 0;
2882                         c->Request.CDB[0] = cmd;
2883                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2884                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2885                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2886                         c->Request.CDB[9] = size & 0xFF;
2887                         break;
2888                 case HPSA_CACHE_FLUSH:
2889                         c->Request.CDBLen = 12;
2890                         c->Request.Type.Attribute = ATTR_SIMPLE;
2891                         c->Request.Type.Direction = XFER_WRITE;
2892                         c->Request.Timeout = 0;
2893                         c->Request.CDB[0] = BMIC_WRITE;
2894                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2895                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2896                         c->Request.CDB[8] = size & 0xFF;
2897                         break;
2898                 case TEST_UNIT_READY:
2899                         c->Request.CDBLen = 6;
2900                         c->Request.Type.Attribute = ATTR_SIMPLE;
2901                         c->Request.Type.Direction = XFER_NONE;
2902                         c->Request.Timeout = 0;
2903                         break;
2904                 default:
2905                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2906                         BUG();
2907                         return;
2908                 }
2909         } else if (cmd_type == TYPE_MSG) {
2910                 switch (cmd) {
2911
2912                 case  HPSA_DEVICE_RESET_MSG:
2913                         c->Request.CDBLen = 16;
2914                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2915                         c->Request.Type.Attribute = ATTR_SIMPLE;
2916                         c->Request.Type.Direction = XFER_NONE;
2917                         c->Request.Timeout = 0; /* Don't time out */
2918                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2919                         c->Request.CDB[0] =  cmd;
2920                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2921                         /* If bytes 4-7 are zero, it means reset the */
2922                         /* LunID device */
2923                         c->Request.CDB[4] = 0x00;
2924                         c->Request.CDB[5] = 0x00;
2925                         c->Request.CDB[6] = 0x00;
2926                         c->Request.CDB[7] = 0x00;
2927                 break;
2928
2929                 default:
2930                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2931                                 cmd);
2932                         BUG();
2933                 }
2934         } else {
2935                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2936                 BUG();
2937         }
2938
2939         switch (c->Request.Type.Direction) {
2940         case XFER_READ:
2941                 pci_dir = PCI_DMA_FROMDEVICE;
2942                 break;
2943         case XFER_WRITE:
2944                 pci_dir = PCI_DMA_TODEVICE;
2945                 break;
2946         case XFER_NONE:
2947                 pci_dir = PCI_DMA_NONE;
2948                 break;
2949         default:
2950                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2951         }
2952
2953         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2954
2955         return;
2956 }
2957
2958 /*
2959  * Map (physical) PCI mem into (virtual) kernel space
2960  */
2961 static void __iomem *remap_pci_mem(ulong base, ulong size)
2962 {
2963         ulong page_base = ((ulong) base) & PAGE_MASK;
2964         ulong page_offs = ((ulong) base) - page_base;
2965         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2966
2967         return page_remapped ? (page_remapped + page_offs) : NULL;
2968 }
2969
2970 /* Takes cmds off the submission queue and sends them to the hardware,
2971  * then puts them on the queue of cmds waiting for completion.
2972  */
2973 static void start_io(struct ctlr_info *h)
2974 {
2975         struct CommandList *c;
2976
2977         while (!list_empty(&h->reqQ)) {
2978                 c = list_entry(h->reqQ.next, struct CommandList, list);
2979                 /* can't do anything if fifo is full */
2980                 if ((h->access.fifo_full(h))) {
2981                         dev_warn(&h->pdev->dev, "fifo full\n");
2982                         break;
2983                 }
2984
2985                 /* Get the first entry from the Request Q */
2986                 removeQ(c);
2987                 h->Qdepth--;
2988
2989                 /* Tell the controller execute command */
2990                 h->access.submit_command(h, c);
2991
2992                 /* Put job onto the completed Q */
2993                 addQ(&h->cmpQ, c);
2994         }
2995 }
2996
2997 static inline unsigned long get_next_completion(struct ctlr_info *h)
2998 {
2999         return h->access.command_completed(h);
3000 }
3001
3002 static inline bool interrupt_pending(struct ctlr_info *h)
3003 {
3004         return h->access.intr_pending(h);
3005 }
3006
3007 static inline long interrupt_not_for_us(struct ctlr_info *h)
3008 {
3009         return (h->access.intr_pending(h) == 0) ||
3010                 (h->interrupts_enabled == 0);
3011 }
3012
3013 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3014         u32 raw_tag)
3015 {
3016         if (unlikely(tag_index >= h->nr_cmds)) {
3017                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3018                 return 1;
3019         }
3020         return 0;
3021 }
3022
3023 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3024 {
3025         removeQ(c);
3026         if (likely(c->cmd_type == CMD_SCSI))
3027                 complete_scsi_command(c);
3028         else if (c->cmd_type == CMD_IOCTL_PEND)
3029                 complete(c->waiting);
3030 }
3031
3032 static inline u32 hpsa_tag_contains_index(u32 tag)
3033 {
3034         return tag & DIRECT_LOOKUP_BIT;
3035 }
3036
3037 static inline u32 hpsa_tag_to_index(u32 tag)
3038 {
3039         return tag >> DIRECT_LOOKUP_SHIFT;
3040 }
3041
3042
3043 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3044 {
3045 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3046 #define HPSA_SIMPLE_ERROR_BITS 0x03
3047         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3048                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3049         return tag & ~HPSA_PERF_ERROR_BITS;
3050 }
3051
3052 /* process completion of an indexed ("direct lookup") command */
3053 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3054         u32 raw_tag)
3055 {
3056         u32 tag_index;
3057         struct CommandList *c;
3058
3059         tag_index = hpsa_tag_to_index(raw_tag);
3060         if (bad_tag(h, tag_index, raw_tag))
3061                 return next_command(h);
3062         c = h->cmd_pool + tag_index;
3063         finish_cmd(c, raw_tag);
3064         return next_command(h);
3065 }
3066
3067 /* process completion of a non-indexed command */
3068 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3069         u32 raw_tag)
3070 {
3071         u32 tag;
3072         struct CommandList *c = NULL;
3073
3074         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3075         list_for_each_entry(c, &h->cmpQ, list) {
3076                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3077                         finish_cmd(c, raw_tag);
3078                         return next_command(h);
3079                 }
3080         }
3081         bad_tag(h, h->nr_cmds + 1, raw_tag);
3082         return next_command(h);
3083 }
3084
3085 /* Some controllers, like p400, will give us one interrupt
3086  * after a soft reset, even if we turned interrupts off.
3087  * Only need to check for this in the hpsa_xxx_discard_completions
3088  * functions.
3089  */
3090 static int ignore_bogus_interrupt(struct ctlr_info *h)
3091 {
3092         if (likely(!reset_devices))
3093                 return 0;
3094
3095         if (likely(h->interrupts_enabled))
3096                 return 0;
3097
3098         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3099                 "(known firmware bug.)  Ignoring.\n");
3100
3101         return 1;
3102 }
3103
3104 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3105 {
3106         struct ctlr_info *h = dev_id;
3107         unsigned long flags;
3108         u32 raw_tag;
3109
3110         if (ignore_bogus_interrupt(h))
3111                 return IRQ_NONE;
3112
3113         if (interrupt_not_for_us(h))
3114                 return IRQ_NONE;
3115         spin_lock_irqsave(&h->lock, flags);
3116         h->last_intr_timestamp = get_jiffies_64();
3117         while (interrupt_pending(h)) {
3118                 raw_tag = get_next_completion(h);
3119                 while (raw_tag != FIFO_EMPTY)
3120                         raw_tag = next_command(h);
3121         }
3122         spin_unlock_irqrestore(&h->lock, flags);
3123         return IRQ_HANDLED;
3124 }
3125
3126 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3127 {
3128         struct ctlr_info *h = dev_id;
3129         unsigned long flags;
3130         u32 raw_tag;
3131
3132         if (ignore_bogus_interrupt(h))
3133                 return IRQ_NONE;
3134
3135         spin_lock_irqsave(&h->lock, flags);
3136         h->last_intr_timestamp = get_jiffies_64();
3137         raw_tag = get_next_completion(h);
3138         while (raw_tag != FIFO_EMPTY)
3139                 raw_tag = next_command(h);
3140         spin_unlock_irqrestore(&h->lock, flags);
3141         return IRQ_HANDLED;
3142 }
3143
3144 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3145 {
3146         struct ctlr_info *h = dev_id;
3147         unsigned long flags;
3148         u32 raw_tag;
3149
3150         if (interrupt_not_for_us(h))
3151                 return IRQ_NONE;
3152         spin_lock_irqsave(&h->lock, flags);
3153         h->last_intr_timestamp = get_jiffies_64();
3154         while (interrupt_pending(h)) {
3155                 raw_tag = get_next_completion(h);
3156                 while (raw_tag != FIFO_EMPTY) {
3157                         if (hpsa_tag_contains_index(raw_tag))
3158                                 raw_tag = process_indexed_cmd(h, raw_tag);
3159                         else
3160                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3161                 }
3162         }
3163         spin_unlock_irqrestore(&h->lock, flags);
3164         return IRQ_HANDLED;
3165 }
3166
3167 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3168 {
3169         struct ctlr_info *h = dev_id;
3170         unsigned long flags;
3171         u32 raw_tag;
3172
3173         spin_lock_irqsave(&h->lock, flags);
3174         h->last_intr_timestamp = get_jiffies_64();
3175         raw_tag = get_next_completion(h);
3176         while (raw_tag != FIFO_EMPTY) {
3177                 if (hpsa_tag_contains_index(raw_tag))
3178                         raw_tag = process_indexed_cmd(h, raw_tag);
3179                 else
3180                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3181         }
3182         spin_unlock_irqrestore(&h->lock, flags);
3183         return IRQ_HANDLED;
3184 }
3185
3186 /* Send a message CDB to the firmware. Careful, this only works
3187  * in simple mode, not performant mode due to the tag lookup.
3188  * We only ever use this immediately after a controller reset.
3189  */
3190 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3191                                                 unsigned char type)
3192 {
3193         struct Command {
3194                 struct CommandListHeader CommandHeader;
3195                 struct RequestBlock Request;
3196                 struct ErrDescriptor ErrorDescriptor;
3197         };
3198         struct Command *cmd;
3199         static const size_t cmd_sz = sizeof(*cmd) +
3200                                         sizeof(cmd->ErrorDescriptor);
3201         dma_addr_t paddr64;
3202         uint32_t paddr32, tag;
3203         void __iomem *vaddr;
3204         int i, err;
3205
3206         vaddr = pci_ioremap_bar(pdev, 0);
3207         if (vaddr == NULL)
3208                 return -ENOMEM;
3209
3210         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3211          * CCISS commands, so they must be allocated from the lower 4GiB of
3212          * memory.
3213          */
3214         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3215         if (err) {
3216                 iounmap(vaddr);
3217                 return -ENOMEM;
3218         }
3219
3220         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3221         if (cmd == NULL) {
3222                 iounmap(vaddr);
3223                 return -ENOMEM;
3224         }
3225
3226         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3227          * although there's no guarantee, we assume that the address is at
3228          * least 4-byte aligned (most likely, it's page-aligned).
3229          */
3230         paddr32 = paddr64;
3231
3232         cmd->CommandHeader.ReplyQueue = 0;
3233         cmd->CommandHeader.SGList = 0;
3234         cmd->CommandHeader.SGTotal = 0;
3235         cmd->CommandHeader.Tag.lower = paddr32;
3236         cmd->CommandHeader.Tag.upper = 0;
3237         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3238
3239         cmd->Request.CDBLen = 16;
3240         cmd->Request.Type.Type = TYPE_MSG;
3241         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3242         cmd->Request.Type.Direction = XFER_NONE;
3243         cmd->Request.Timeout = 0; /* Don't time out */
3244         cmd->Request.CDB[0] = opcode;
3245         cmd->Request.CDB[1] = type;
3246         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3247         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3248         cmd->ErrorDescriptor.Addr.upper = 0;
3249         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3250
3251         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3252
3253         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3254                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3255                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3256                         break;
3257                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3258         }
3259
3260         iounmap(vaddr);
3261
3262         /* we leak the DMA buffer here ... no choice since the controller could
3263          *  still complete the command.
3264          */
3265         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3266                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3267                         opcode, type);
3268                 return -ETIMEDOUT;
3269         }
3270
3271         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3272
3273         if (tag & HPSA_ERROR_BIT) {
3274                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3275                         opcode, type);
3276                 return -EIO;
3277         }
3278
3279         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3280                 opcode, type);
3281         return 0;
3282 }
3283
3284 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3285
3286 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3287         void * __iomem vaddr, u32 use_doorbell)
3288 {
3289         u16 pmcsr;
3290         int pos;
3291
3292         if (use_doorbell) {
3293                 /* For everything after the P600, the PCI power state method
3294                  * of resetting the controller doesn't work, so we have this
3295                  * other way using the doorbell register.
3296                  */
3297                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3298                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3299         } else { /* Try to do it the PCI power state way */
3300
3301                 /* Quoting from the Open CISS Specification: "The Power
3302                  * Management Control/Status Register (CSR) controls the power
3303                  * state of the device.  The normal operating state is D0,
3304                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3305                  * the controller, place the interface device in D3 then to D0,
3306                  * this causes a secondary PCI reset which will reset the
3307                  * controller." */
3308
3309                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3310                 if (pos == 0) {
3311                         dev_err(&pdev->dev,
3312                                 "hpsa_reset_controller: "
3313                                 "PCI PM not supported\n");
3314                         return -ENODEV;
3315                 }
3316                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3317                 /* enter the D3hot power management state */
3318                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3319                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3320                 pmcsr |= PCI_D3hot;
3321                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3322
3323                 msleep(500);
3324
3325                 /* enter the D0 power management state */
3326                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3327                 pmcsr |= PCI_D0;
3328                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3329
3330                 /*
3331                  * The P600 requires a small delay when changing states.
3332                  * Otherwise we may think the board did not reset and we bail.
3333                  * This for kdump only and is particular to the P600.
3334                  */
3335                 msleep(500);
3336         }
3337         return 0;
3338 }
3339
3340 static __devinit void init_driver_version(char *driver_version, int len)
3341 {
3342         memset(driver_version, 0, len);
3343         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3344 }
3345
3346 static __devinit int write_driver_ver_to_cfgtable(
3347         struct CfgTable __iomem *cfgtable)
3348 {
3349         char *driver_version;
3350         int i, size = sizeof(cfgtable->driver_version);
3351
3352         driver_version = kmalloc(size, GFP_KERNEL);
3353         if (!driver_version)
3354                 return -ENOMEM;
3355
3356         init_driver_version(driver_version, size);
3357         for (i = 0; i < size; i++)
3358                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3359         kfree(driver_version);
3360         return 0;
3361 }
3362
3363 static __devinit void read_driver_ver_from_cfgtable(
3364         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3365 {
3366         int i;
3367
3368         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3369                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3370 }
3371
3372 static __devinit int controller_reset_failed(
3373         struct CfgTable __iomem *cfgtable)
3374 {
3375
3376         char *driver_ver, *old_driver_ver;
3377         int rc, size = sizeof(cfgtable->driver_version);
3378
3379         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3380         if (!old_driver_ver)
3381                 return -ENOMEM;
3382         driver_ver = old_driver_ver + size;
3383
3384         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3385          * should have been changed, otherwise we know the reset failed.
3386          */
3387         init_driver_version(old_driver_ver, size);
3388         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3389         rc = !memcmp(driver_ver, old_driver_ver, size);
3390         kfree(old_driver_ver);
3391         return rc;
3392 }
3393 /* This does a hard reset of the controller using PCI power management
3394  * states or the using the doorbell register.
3395  */
3396 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3397 {
3398         u64 cfg_offset;
3399         u32 cfg_base_addr;
3400         u64 cfg_base_addr_index;
3401         void __iomem *vaddr;
3402         unsigned long paddr;
3403         u32 misc_fw_support;
3404         int rc;
3405         struct CfgTable __iomem *cfgtable;
3406         u32 use_doorbell;
3407         u32 board_id;
3408         u16 command_register;
3409
3410         /* For controllers as old as the P600, this is very nearly
3411          * the same thing as
3412          *
3413          * pci_save_state(pci_dev);
3414          * pci_set_power_state(pci_dev, PCI_D3hot);
3415          * pci_set_power_state(pci_dev, PCI_D0);
3416          * pci_restore_state(pci_dev);
3417          *
3418          * For controllers newer than the P600, the pci power state
3419          * method of resetting doesn't work so we have another way
3420          * using the doorbell register.
3421          */
3422
3423         rc = hpsa_lookup_board_id(pdev, &board_id);
3424         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3425                 dev_warn(&pdev->dev, "Not resetting device.\n");
3426                 return -ENODEV;
3427         }
3428
3429         /* if controller is soft- but not hard resettable... */
3430         if (!ctlr_is_hard_resettable(board_id))
3431                 return -ENOTSUPP; /* try soft reset later. */
3432
3433         /* Save the PCI command register */
3434         pci_read_config_word(pdev, 4, &command_register);
3435         /* Turn the board off.  This is so that later pci_restore_state()
3436          * won't turn the board on before the rest of config space is ready.
3437          */
3438         pci_disable_device(pdev);
3439         pci_save_state(pdev);
3440
3441         /* find the first memory BAR, so we can find the cfg table */
3442         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3443         if (rc)
3444                 return rc;
3445         vaddr = remap_pci_mem(paddr, 0x250);
3446         if (!vaddr)
3447                 return -ENOMEM;
3448
3449         /* find cfgtable in order to check if reset via doorbell is supported */
3450         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3451                                         &cfg_base_addr_index, &cfg_offset);
3452         if (rc)
3453                 goto unmap_vaddr;
3454         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3455                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3456         if (!cfgtable) {
3457                 rc = -ENOMEM;
3458                 goto unmap_vaddr;
3459         }
3460         rc = write_driver_ver_to_cfgtable(cfgtable);
3461         if (rc)
3462                 goto unmap_vaddr;
3463
3464         /* If reset via doorbell register is supported, use that.
3465          * There are two such methods.  Favor the newest method.
3466          */
3467         misc_fw_support = readl(&cfgtable->misc_fw_support);
3468         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3469         if (use_doorbell) {
3470                 use_doorbell = DOORBELL_CTLR_RESET2;
3471         } else {
3472                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3473                 if (use_doorbell) {
3474                         dev_warn(&pdev->dev, "Soft reset not supported. "
3475                                 "Firmware update is required.\n");
3476                         rc = -ENOTSUPP; /* try soft reset */
3477                         goto unmap_cfgtable;
3478                 }
3479         }
3480
3481         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3482         if (rc)
3483                 goto unmap_cfgtable;
3484
3485         pci_restore_state(pdev);
3486         rc = pci_enable_device(pdev);
3487         if (rc) {
3488                 dev_warn(&pdev->dev, "failed to enable device.\n");
3489                 goto unmap_cfgtable;
3490         }
3491         pci_write_config_word(pdev, 4, command_register);
3492
3493         /* Some devices (notably the HP Smart Array 5i Controller)
3494            need a little pause here */
3495         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3496
3497         /* Wait for board to become not ready, then ready. */
3498         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3499         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3500         if (rc) {
3501                 dev_warn(&pdev->dev,
3502                         "failed waiting for board to reset."
3503                         " Will try soft reset.\n");
3504                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3505                 goto unmap_cfgtable;
3506         }
3507         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3508         if (rc) {
3509                 dev_warn(&pdev->dev,
3510                         "failed waiting for board to become ready "
3511                         "after hard reset\n");
3512                 goto unmap_cfgtable;
3513         }
3514
3515         rc = controller_reset_failed(vaddr);
3516         if (rc < 0)
3517                 goto unmap_cfgtable;
3518         if (rc) {
3519                 dev_warn(&pdev->dev, "Unable to successfully reset "
3520                         "controller. Will try soft reset.\n");
3521                 rc = -ENOTSUPP;
3522         } else {
3523                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3524         }
3525
3526 unmap_cfgtable:
3527         iounmap(cfgtable);
3528
3529 unmap_vaddr:
3530         iounmap(vaddr);
3531         return rc;
3532 }
3533
3534 /*
3535  *  We cannot read the structure directly, for portability we must use
3536  *   the io functions.
3537  *   This is for debug only.
3538  */
3539 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3540 {
3541 #ifdef HPSA_DEBUG
3542         int i;
3543         char temp_name[17];
3544
3545         dev_info(dev, "Controller Configuration information\n");
3546         dev_info(dev, "------------------------------------\n");
3547         for (i = 0; i < 4; i++)
3548                 temp_name[i] = readb(&(tb->Signature[i]));
3549         temp_name[4] = '\0';
3550         dev_info(dev, "   Signature = %s\n", temp_name);
3551         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3552         dev_info(dev, "   Transport methods supported = 0x%x\n",
3553                readl(&(tb->TransportSupport)));
3554         dev_info(dev, "   Transport methods active = 0x%x\n",
3555                readl(&(tb->TransportActive)));
3556         dev_info(dev, "   Requested transport Method = 0x%x\n",
3557                readl(&(tb->HostWrite.TransportRequest)));
3558         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3559                readl(&(tb->HostWrite.CoalIntDelay)));
3560         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3561                readl(&(tb->HostWrite.CoalIntCount)));
3562         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3563                readl(&(tb->CmdsOutMax)));
3564         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3565         for (i = 0; i < 16; i++)
3566                 temp_name[i] = readb(&(tb->ServerName[i]));
3567         temp_name[16] = '\0';
3568         dev_info(dev, "   Server Name = %s\n", temp_name);
3569         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3570                 readl(&(tb->HeartBeat)));
3571 #endif                          /* HPSA_DEBUG */
3572 }
3573
3574 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3575 {
3576         int i, offset, mem_type, bar_type;
3577
3578         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3579                 return 0;
3580         offset = 0;
3581         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3582                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3583                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3584                         offset += 4;
3585                 else {
3586                         mem_type = pci_resource_flags(pdev, i) &
3587                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3588                         switch (mem_type) {
3589                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3590                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3591                                 offset += 4;    /* 32 bit */
3592                                 break;
3593                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3594                                 offset += 8;
3595                                 break;
3596                         default:        /* reserved in PCI 2.2 */
3597                                 dev_warn(&pdev->dev,
3598                                        "base address is invalid\n");
3599                                 return -1;
3600                                 break;
3601                         }
3602                 }
3603                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3604                         return i + 1;
3605         }
3606         return -1;
3607 }
3608
3609 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3610  * controllers that are capable. If not, we use IO-APIC mode.
3611  */
3612
3613 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3614 {
3615 #ifdef CONFIG_PCI_MSI
3616         int err;
3617         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3618         {0, 2}, {0, 3}
3619         };
3620
3621         /* Some boards advertise MSI but don't really support it */
3622         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3623             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3624                 goto default_int_mode;
3625         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3626                 dev_info(&h->pdev->dev, "MSIX\n");
3627                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3628                 if (!err) {
3629                         h->intr[0] = hpsa_msix_entries[0].vector;
3630                         h->intr[1] = hpsa_msix_entries[1].vector;
3631                         h->intr[2] = hpsa_msix_entries[2].vector;
3632                         h->intr[3] = hpsa_msix_entries[3].vector;
3633                         h->msix_vector = 1;
3634                         return;
3635                 }
3636                 if (err > 0) {
3637                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3638                                "available\n", err);
3639                         goto default_int_mode;
3640                 } else {
3641                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3642                                err);
3643                         goto default_int_mode;
3644                 }
3645         }
3646         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3647                 dev_info(&h->pdev->dev, "MSI\n");
3648                 if (!pci_enable_msi(h->pdev))
3649                         h->msi_vector = 1;
3650                 else
3651                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3652         }
3653 default_int_mode:
3654 #endif                          /* CONFIG_PCI_MSI */
3655         /* if we get here we're going to use the default interrupt mode */
3656         h->intr[h->intr_mode] = h->pdev->irq;
3657 }
3658
3659 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3660 {
3661         int i;
3662         u32 subsystem_vendor_id, subsystem_device_id;
3663
3664         subsystem_vendor_id = pdev->subsystem_vendor;
3665         subsystem_device_id = pdev->subsystem_device;
3666         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3667                     subsystem_vendor_id;
3668
3669         for (i = 0; i < ARRAY_SIZE(products); i++)
3670                 if (*board_id == products[i].board_id)
3671                         return i;
3672
3673         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3674                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3675                 !hpsa_allow_any) {
3676                 dev_warn(&pdev->dev, "unrecognized board ID: "
3677                         "0x%08x, ignoring.\n", *board_id);
3678                         return -ENODEV;
3679         }
3680         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3681 }
3682
3683 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3684 {
3685         u16 command;
3686
3687         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3688         return ((command & PCI_COMMAND_MEMORY) == 0);
3689 }
3690
3691 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3692         unsigned long *memory_bar)
3693 {
3694         int i;
3695
3696         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3697                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3698                         /* addressing mode bits already removed */
3699                         *memory_bar = pci_resource_start(pdev, i);
3700                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3701                                 *memory_bar);
3702                         return 0;
3703                 }
3704         dev_warn(&pdev->dev, "no memory BAR found\n");
3705         return -ENODEV;
3706 }
3707
3708 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3709         void __iomem *vaddr, int wait_for_ready)
3710 {
3711         int i, iterations;
3712         u32 scratchpad;
3713         if (wait_for_ready)
3714                 iterations = HPSA_BOARD_READY_ITERATIONS;
3715         else
3716                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3717
3718         for (i = 0; i < iterations; i++) {
3719                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3720                 if (wait_for_ready) {
3721                         if (scratchpad == HPSA_FIRMWARE_READY)
3722                                 return 0;
3723                 } else {
3724                         if (scratchpad != HPSA_FIRMWARE_READY)
3725                                 return 0;
3726                 }
3727                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3728         }
3729         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3730         return -ENODEV;
3731 }
3732
3733 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3734         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3735         u64 *cfg_offset)
3736 {
3737         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3738         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3739         *cfg_base_addr &= (u32) 0x0000ffff;
3740         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3741         if (*cfg_base_addr_index == -1) {
3742                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3743                 return -ENODEV;
3744         }
3745         return 0;
3746 }
3747
3748 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3749 {
3750         u64 cfg_offset;
3751         u32 cfg_base_addr;
3752         u64 cfg_base_addr_index;
3753         u32 trans_offset;
3754         int rc;
3755
3756         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3757                 &cfg_base_addr_index, &cfg_offset);
3758         if (rc)
3759                 return rc;
3760         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3761                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3762         if (!h->cfgtable)
3763                 return -ENOMEM;
3764         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3765         if (rc)
3766                 return rc;
3767         /* Find performant mode table. */
3768         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3769         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3770                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3771                                 sizeof(*h->transtable));
3772         if (!h->transtable)
3773                 return -ENOMEM;
3774         return 0;
3775 }
3776
3777 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3778 {
3779         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3780
3781         /* Limit commands in memory limited kdump scenario. */
3782         if (reset_devices && h->max_commands > 32)
3783                 h->max_commands = 32;
3784
3785         if (h->max_commands < 16) {
3786                 dev_warn(&h->pdev->dev, "Controller reports "
3787                         "max supported commands of %d, an obvious lie. "
3788                         "Using 16.  Ensure that firmware is up to date.\n",
3789                         h->max_commands);
3790                 h->max_commands = 16;
3791         }
3792 }
3793
3794 /* Interrogate the hardware for some limits:
3795  * max commands, max SG elements without chaining, and with chaining,
3796  * SG chain block size, etc.
3797  */
3798 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3799 {
3800         hpsa_get_max_perf_mode_cmds(h);
3801         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3802         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3803         /*
3804          * Limit in-command s/g elements to 32 save dma'able memory.
3805          * Howvever spec says if 0, use 31
3806          */
3807         h->max_cmd_sg_entries = 31;
3808         if (h->maxsgentries > 512) {
3809                 h->max_cmd_sg_entries = 32;
3810                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3811                 h->maxsgentries--; /* save one for chain pointer */
3812         } else {
3813                 h->maxsgentries = 31; /* default to traditional values */
3814                 h->chainsize = 0;
3815         }
3816 }
3817
3818 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3819 {
3820         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3821             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3822             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3823             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3824                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3825                 return false;
3826         }
3827         return true;
3828 }
3829
3830 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3831 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3832 {
3833 #ifdef CONFIG_X86
3834         u32 prefetch;
3835
3836         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3837         prefetch |= 0x100;
3838         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3839 #endif
3840 }
3841
3842 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3843  * in a prefetch beyond physical memory.
3844  */
3845 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3846 {
3847         u32 dma_prefetch;
3848
3849         if (h->board_id != 0x3225103C)
3850                 return;
3851         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3852         dma_prefetch |= 0x8000;
3853         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3854 }
3855
3856 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3857 {
3858         int i;
3859         u32 doorbell_value;
3860         unsigned long flags;
3861
3862         /* under certain very rare conditions, this can take awhile.
3863          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3864          * as we enter this code.)
3865          */
3866         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3867                 spin_lock_irqsave(&h->lock, flags);
3868                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3869                 spin_unlock_irqrestore(&h->lock, flags);
3870                 if (!(doorbell_value & CFGTBL_ChangeReq))
3871                         break;
3872                 /* delay and try again */
3873                 usleep_range(10000, 20000);
3874         }
3875 }
3876
3877 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3878 {
3879         u32 trans_support;
3880
3881         trans_support = readl(&(h->cfgtable->TransportSupport));
3882         if (!(trans_support & SIMPLE_MODE))
3883                 return -ENOTSUPP;
3884
3885         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3886         /* Update the field, and then ring the doorbell */
3887         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3888         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3889         hpsa_wait_for_mode_change_ack(h);
3890         print_cfg_table(&h->pdev->dev, h->cfgtable);
3891         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3892                 dev_warn(&h->pdev->dev,
3893                         "unable to get board into simple mode\n");
3894                 return -ENODEV;
3895         }
3896         h->transMethod = CFGTBL_Trans_Simple;
3897         return 0;
3898 }
3899
3900 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3901 {
3902         int prod_index, err;
3903
3904         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3905         if (prod_index < 0)
3906                 return -ENODEV;
3907         h->product_name = products[prod_index].product_name;
3908         h->access = *(products[prod_index].access);
3909
3910         if (hpsa_board_disabled(h->pdev)) {
3911                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3912                 return -ENODEV;
3913         }
3914
3915         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3916                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3917
3918         err = pci_enable_device(h->pdev);
3919         if (err) {
3920                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3921                 return err;
3922         }
3923
3924         err = pci_request_regions(h->pdev, HPSA);
3925         if (err) {
3926                 dev_err(&h->pdev->dev,
3927                         "cannot obtain PCI resources, aborting\n");
3928                 return err;
3929         }
3930         hpsa_interrupt_mode(h);
3931         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3932         if (err)
3933                 goto err_out_free_res;
3934         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3935         if (!h->vaddr) {
3936                 err = -ENOMEM;
3937                 goto err_out_free_res;
3938         }
3939         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3940         if (err)
3941                 goto err_out_free_res;
3942         err = hpsa_find_cfgtables(h);
3943         if (err)
3944                 goto err_out_free_res;
3945         hpsa_find_board_params(h);
3946
3947         if (!hpsa_CISS_signature_present(h)) {
3948                 err = -ENODEV;
3949                 goto err_out_free_res;
3950         }
3951         hpsa_enable_scsi_prefetch(h);
3952         hpsa_p600_dma_prefetch_quirk(h);
3953         err = hpsa_enter_simple_mode(h);
3954         if (err)
3955                 goto err_out_free_res;
3956         return 0;
3957
3958 err_out_free_res:
3959         if (h->transtable)
3960                 iounmap(h->transtable);
3961         if (h->cfgtable)
3962                 iounmap(h->cfgtable);
3963         if (h->vaddr)
3964                 iounmap(h->vaddr);
3965         /*
3966          * Deliberately omit pci_disable_device(): it does something nasty to
3967          * Smart Array controllers that pci_enable_device does not undo
3968          */
3969         pci_release_regions(h->pdev);
3970         return err;
3971 }
3972
3973 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3974 {
3975         int rc;
3976
3977 #define HBA_INQUIRY_BYTE_COUNT 64
3978         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3979         if (!h->hba_inquiry_data)
3980                 return;
3981         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3982                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3983         if (rc != 0) {
3984                 kfree(h->hba_inquiry_data);
3985                 h->hba_inquiry_data = NULL;
3986         }
3987 }
3988
3989 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3990 {
3991         int rc, i;
3992
3993         if (!reset_devices)
3994                 return 0;
3995
3996         /* Reset the controller with a PCI power-cycle or via doorbell */
3997         rc = hpsa_kdump_hard_reset_controller(pdev);
3998
3999         /* -ENOTSUPP here means we cannot reset the controller
4000          * but it's already (and still) up and running in
4001          * "performant mode".  Or, it might be 640x, which can't reset
4002          * due to concerns about shared bbwc between 6402/6404 pair.
4003          */
4004         if (rc == -ENOTSUPP)
4005                 return rc; /* just try to do the kdump anyhow. */
4006         if (rc)
4007                 return -ENODEV;
4008
4009         /* Now try to get the controller to respond to a no-op */
4010         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4011         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4012                 if (hpsa_noop(pdev) == 0)
4013                         break;
4014                 else
4015                         dev_warn(&pdev->dev, "no-op failed%s\n",
4016                                         (i < 11 ? "; re-trying" : ""));
4017         }
4018         return 0;
4019 }
4020
4021 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4022 {
4023         h->cmd_pool_bits = kzalloc(
4024                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4025                 sizeof(unsigned long), GFP_KERNEL);
4026         h->cmd_pool = pci_alloc_consistent(h->pdev,
4027                     h->nr_cmds * sizeof(*h->cmd_pool),
4028                     &(h->cmd_pool_dhandle));
4029         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4030                     h->nr_cmds * sizeof(*h->errinfo_pool),
4031                     &(h->errinfo_pool_dhandle));
4032         if ((h->cmd_pool_bits == NULL)
4033             || (h->cmd_pool == NULL)
4034             || (h->errinfo_pool == NULL)) {
4035                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4036                 return -ENOMEM;
4037         }
4038         return 0;
4039 }
4040
4041 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4042 {
4043         kfree(h->cmd_pool_bits);
4044         if (h->cmd_pool)
4045                 pci_free_consistent(h->pdev,
4046                             h->nr_cmds * sizeof(struct CommandList),
4047                             h->cmd_pool, h->cmd_pool_dhandle);
4048         if (h->errinfo_pool)
4049                 pci_free_consistent(h->pdev,
4050                             h->nr_cmds * sizeof(struct ErrorInfo),
4051                             h->errinfo_pool,
4052                             h->errinfo_pool_dhandle);
4053 }
4054
4055 static int hpsa_request_irq(struct ctlr_info *h,
4056         irqreturn_t (*msixhandler)(int, void *),
4057         irqreturn_t (*intxhandler)(int, void *))
4058 {
4059         int rc;
4060
4061         if (h->msix_vector || h->msi_vector)
4062                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4063                                 0, h->devname, h);
4064         else
4065                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4066                                 IRQF_SHARED, h->devname, h);
4067         if (rc) {
4068                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4069                        h->intr[h->intr_mode], h->devname);
4070                 return -ENODEV;
4071         }
4072         return 0;
4073 }
4074
4075 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4076 {
4077         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4078                 HPSA_RESET_TYPE_CONTROLLER)) {
4079                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4080                 return -EIO;
4081         }
4082
4083         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4084         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4085                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4086                 return -1;
4087         }
4088
4089         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4090         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4091                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4092                         "after soft reset.\n");
4093                 return -1;
4094         }
4095
4096         return 0;
4097 }
4098
4099 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4100 {
4101         free_irq(h->intr[h->intr_mode], h);
4102 #ifdef CONFIG_PCI_MSI
4103         if (h->msix_vector)
4104                 pci_disable_msix(h->pdev);
4105         else if (h->msi_vector)
4106                 pci_disable_msi(h->pdev);
4107 #endif /* CONFIG_PCI_MSI */
4108         hpsa_free_sg_chain_blocks(h);
4109         hpsa_free_cmd_pool(h);
4110         kfree(h->blockFetchTable);
4111         pci_free_consistent(h->pdev, h->reply_pool_size,
4112                 h->reply_pool, h->reply_pool_dhandle);
4113         if (h->vaddr)
4114                 iounmap(h->vaddr);
4115         if (h->transtable)
4116                 iounmap(h->transtable);
4117         if (h->cfgtable)
4118                 iounmap(h->cfgtable);
4119         pci_release_regions(h->pdev);
4120         kfree(h);
4121 }
4122
4123 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4124 {
4125         assert_spin_locked(&lockup_detector_lock);
4126         if (!hpsa_lockup_detector)
4127                 return;
4128         if (h->lockup_detected)
4129                 return; /* already stopped the lockup detector */
4130         list_del(&h->lockup_list);
4131 }
4132
4133 /* Called when controller lockup detected. */
4134 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4135 {
4136         struct CommandList *c = NULL;
4137
4138         assert_spin_locked(&h->lock);
4139         /* Mark all outstanding commands as failed and complete them. */
4140         while (!list_empty(list)) {
4141                 c = list_entry(list->next, struct CommandList, list);
4142                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4143                 finish_cmd(c, c->Header.Tag.lower);
4144         }
4145 }
4146
4147 static void controller_lockup_detected(struct ctlr_info *h)
4148 {
4149         unsigned long flags;
4150
4151         assert_spin_locked(&lockup_detector_lock);
4152         remove_ctlr_from_lockup_detector_list(h);
4153         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4154         spin_lock_irqsave(&h->lock, flags);
4155         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4156         spin_unlock_irqrestore(&h->lock, flags);
4157         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4158                         h->lockup_detected);
4159         pci_disable_device(h->pdev);
4160         spin_lock_irqsave(&h->lock, flags);
4161         fail_all_cmds_on_list(h, &h->cmpQ);
4162         fail_all_cmds_on_list(h, &h->reqQ);
4163         spin_unlock_irqrestore(&h->lock, flags);
4164 }
4165
4166 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4167 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4168
4169 static void detect_controller_lockup(struct ctlr_info *h)
4170 {
4171         u64 now;
4172         u32 heartbeat;
4173         unsigned long flags;
4174
4175         assert_spin_locked(&lockup_detector_lock);
4176         now = get_jiffies_64();
4177         /* If we've received an interrupt recently, we're ok. */
4178         if (time_after64(h->last_intr_timestamp +
4179                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4180                 return;
4181
4182         /*
4183          * If we've already checked the heartbeat recently, we're ok.
4184          * This could happen if someone sends us a signal. We
4185          * otherwise don't care about signals in this thread.
4186          */
4187         if (time_after64(h->last_heartbeat_timestamp +
4188                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4189                 return;
4190
4191         /* If heartbeat has not changed since we last looked, we're not ok. */
4192         spin_lock_irqsave(&h->lock, flags);
4193         heartbeat = readl(&h->cfgtable->HeartBeat);
4194         spin_unlock_irqrestore(&h->lock, flags);
4195         if (h->last_heartbeat == heartbeat) {
4196                 controller_lockup_detected(h);
4197                 return;
4198         }
4199
4200         /* We're ok. */
4201         h->last_heartbeat = heartbeat;
4202         h->last_heartbeat_timestamp = now;
4203 }
4204
4205 static int detect_controller_lockup_thread(void *notused)
4206 {
4207         struct ctlr_info *h;
4208         unsigned long flags;
4209
4210         while (1) {
4211                 struct list_head *this, *tmp;
4212
4213                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4214                 if (kthread_should_stop())
4215                         break;
4216                 spin_lock_irqsave(&lockup_detector_lock, flags);
4217                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4218                         h = list_entry(this, struct ctlr_info, lockup_list);
4219                         detect_controller_lockup(h);
4220                 }
4221                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4222         }
4223         return 0;
4224 }
4225
4226 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4227 {
4228         unsigned long flags;
4229
4230         spin_lock_irqsave(&lockup_detector_lock, flags);
4231         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4232         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4233 }
4234
4235 static void start_controller_lockup_detector(struct ctlr_info *h)
4236 {
4237         /* Start the lockup detector thread if not already started */
4238         if (!hpsa_lockup_detector) {
4239                 spin_lock_init(&lockup_detector_lock);
4240                 hpsa_lockup_detector =
4241                         kthread_run(detect_controller_lockup_thread,
4242                                                 NULL, HPSA);
4243         }
4244         if (!hpsa_lockup_detector) {
4245                 dev_warn(&h->pdev->dev,
4246                         "Could not start lockup detector thread\n");
4247                 return;
4248         }
4249         add_ctlr_to_lockup_detector_list(h);
4250 }
4251
4252 static void stop_controller_lockup_detector(struct ctlr_info *h)
4253 {
4254         unsigned long flags;
4255
4256         spin_lock_irqsave(&lockup_detector_lock, flags);
4257         remove_ctlr_from_lockup_detector_list(h);
4258         /* If the list of ctlr's to monitor is empty, stop the thread */
4259         if (list_empty(&hpsa_ctlr_list)) {
4260                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4261                 kthread_stop(hpsa_lockup_detector);
4262                 spin_lock_irqsave(&lockup_detector_lock, flags);
4263                 hpsa_lockup_detector = NULL;
4264         }
4265         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4266 }
4267
4268 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4269                                     const struct pci_device_id *ent)
4270 {
4271         int dac, rc;
4272         struct ctlr_info *h;
4273         int try_soft_reset = 0;
4274         unsigned long flags;
4275
4276         if (number_of_controllers == 0)
4277                 printk(KERN_INFO DRIVER_NAME "\n");
4278
4279         rc = hpsa_init_reset_devices(pdev);
4280         if (rc) {
4281                 if (rc != -ENOTSUPP)
4282                         return rc;
4283                 /* If the reset fails in a particular way (it has no way to do
4284                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4285                  * a soft reset once we get the controller configured up to the
4286                  * point that it can accept a command.
4287                  */
4288                 try_soft_reset = 1;
4289                 rc = 0;
4290         }
4291
4292 reinit_after_soft_reset:
4293
4294         /* Command structures must be aligned on a 32-byte boundary because
4295          * the 5 lower bits of the address are used by the hardware. and by
4296          * the driver.  See comments in hpsa.h for more info.
4297          */
4298 #define COMMANDLIST_ALIGNMENT 32
4299         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4300         h = kzalloc(sizeof(*h), GFP_KERNEL);
4301         if (!h)
4302                 return -ENOMEM;
4303
4304         h->pdev = pdev;
4305         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4306         INIT_LIST_HEAD(&h->cmpQ);
4307         INIT_LIST_HEAD(&h->reqQ);
4308         spin_lock_init(&h->lock);
4309         spin_lock_init(&h->scan_lock);
4310         rc = hpsa_pci_init(h);
4311         if (rc != 0)
4312                 goto clean1;
4313
4314         sprintf(h->devname, HPSA "%d", number_of_controllers);
4315         h->ctlr = number_of_controllers;
4316         number_of_controllers++;
4317
4318         /* configure PCI DMA stuff */
4319         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4320         if (rc == 0) {
4321                 dac = 1;
4322         } else {
4323                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4324                 if (rc == 0) {
4325                         dac = 0;
4326                 } else {
4327                         dev_err(&pdev->dev, "no suitable DMA available\n");
4328                         goto clean1;
4329                 }
4330         }
4331
4332         /* make sure the board interrupts are off */
4333         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4334
4335         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4336                 goto clean2;
4337         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4338                h->devname, pdev->device,
4339                h->intr[h->intr_mode], dac ? "" : " not");
4340         if (hpsa_allocate_cmd_pool(h))
4341                 goto clean4;
4342         if (hpsa_allocate_sg_chain_blocks(h))
4343                 goto clean4;
4344         init_waitqueue_head(&h->scan_wait_queue);
4345         h->scan_finished = 1; /* no scan currently in progress */
4346
4347         pci_set_drvdata(pdev, h);
4348         h->ndevices = 0;
4349         h->scsi_host = NULL;
4350         spin_lock_init(&h->devlock);
4351         hpsa_put_ctlr_into_performant_mode(h);
4352
4353         /* At this point, the controller is ready to take commands.
4354          * Now, if reset_devices and the hard reset didn't work, try
4355          * the soft reset and see if that works.
4356          */
4357         if (try_soft_reset) {
4358
4359                 /* This is kind of gross.  We may or may not get a completion
4360                  * from the soft reset command, and if we do, then the value
4361                  * from the fifo may or may not be valid.  So, we wait 10 secs
4362                  * after the reset throwing away any completions we get during
4363                  * that time.  Unregister the interrupt handler and register
4364                  * fake ones to scoop up any residual completions.
4365                  */
4366                 spin_lock_irqsave(&h->lock, flags);
4367                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4368                 spin_unlock_irqrestore(&h->lock, flags);
4369                 free_irq(h->intr[h->intr_mode], h);
4370                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4371                                         hpsa_intx_discard_completions);
4372                 if (rc) {
4373                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4374                                 "soft reset.\n");
4375                         goto clean4;
4376                 }
4377
4378                 rc = hpsa_kdump_soft_reset(h);
4379                 if (rc)
4380                         /* Neither hard nor soft reset worked, we're hosed. */
4381                         goto clean4;
4382
4383                 dev_info(&h->pdev->dev, "Board READY.\n");
4384                 dev_info(&h->pdev->dev,
4385                         "Waiting for stale completions to drain.\n");
4386                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4387                 msleep(10000);
4388                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4389
4390                 rc = controller_reset_failed(h->cfgtable);
4391                 if (rc)
4392                         dev_info(&h->pdev->dev,
4393                                 "Soft reset appears to have failed.\n");
4394
4395                 /* since the controller's reset, we have to go back and re-init
4396                  * everything.  Easiest to just forget what we've done and do it
4397                  * all over again.
4398                  */
4399                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4400                 try_soft_reset = 0;
4401                 if (rc)
4402                         /* don't go to clean4, we already unallocated */
4403                         return -ENODEV;
4404
4405                 goto reinit_after_soft_reset;
4406         }
4407
4408         /* Turn the interrupts on so we can service requests */
4409         h->access.set_intr_mask(h, HPSA_INTR_ON);
4410
4411         hpsa_hba_inquiry(h);
4412         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4413         start_controller_lockup_detector(h);
4414         return 1;
4415
4416 clean4:
4417         hpsa_free_sg_chain_blocks(h);
4418         hpsa_free_cmd_pool(h);
4419         free_irq(h->intr[h->intr_mode], h);
4420 clean2:
4421 clean1:
4422         kfree(h);
4423         return rc;
4424 }
4425
4426 static void hpsa_flush_cache(struct ctlr_info *h)
4427 {
4428         char *flush_buf;
4429         struct CommandList *c;
4430
4431         flush_buf = kzalloc(4, GFP_KERNEL);
4432         if (!flush_buf)
4433                 return;
4434
4435         c = cmd_special_alloc(h);
4436         if (!c) {
4437                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4438                 goto out_of_memory;
4439         }
4440         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4441                 RAID_CTLR_LUNID, TYPE_CMD);
4442         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4443         if (c->err_info->CommandStatus != 0)
4444                 dev_warn(&h->pdev->dev,
4445                         "error flushing cache on controller\n");
4446         cmd_special_free(h, c);
4447 out_of_memory:
4448         kfree(flush_buf);
4449 }
4450
4451 static void hpsa_shutdown(struct pci_dev *pdev)
4452 {
4453         struct ctlr_info *h;
4454
4455         h = pci_get_drvdata(pdev);
4456         /* Turn board interrupts off  and send the flush cache command
4457          * sendcmd will turn off interrupt, and send the flush...
4458          * To write all data in the battery backed cache to disks
4459          */
4460         hpsa_flush_cache(h);
4461         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4462         free_irq(h->intr[h->intr_mode], h);
4463 #ifdef CONFIG_PCI_MSI
4464         if (h->msix_vector)
4465                 pci_disable_msix(h->pdev);
4466         else if (h->msi_vector)
4467                 pci_disable_msi(h->pdev);
4468 #endif                          /* CONFIG_PCI_MSI */
4469 }
4470
4471 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4472 {
4473         int i;
4474
4475         for (i = 0; i < h->ndevices; i++)
4476                 kfree(h->dev[i]);
4477 }
4478
4479 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4480 {
4481         struct ctlr_info *h;
4482
4483         if (pci_get_drvdata(pdev) == NULL) {
4484                 dev_err(&pdev->dev, "unable to remove device\n");
4485                 return;
4486         }
4487         h = pci_get_drvdata(pdev);
4488         stop_controller_lockup_detector(h);
4489         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4490         hpsa_shutdown(pdev);
4491         iounmap(h->vaddr);
4492         iounmap(h->transtable);
4493         iounmap(h->cfgtable);
4494         hpsa_free_device_info(h);
4495         hpsa_free_sg_chain_blocks(h);
4496         pci_free_consistent(h->pdev,
4497                 h->nr_cmds * sizeof(struct CommandList),
4498                 h->cmd_pool, h->cmd_pool_dhandle);
4499         pci_free_consistent(h->pdev,
4500                 h->nr_cmds * sizeof(struct ErrorInfo),
4501                 h->errinfo_pool, h->errinfo_pool_dhandle);
4502         pci_free_consistent(h->pdev, h->reply_pool_size,
4503                 h->reply_pool, h->reply_pool_dhandle);
4504         kfree(h->cmd_pool_bits);
4505         kfree(h->blockFetchTable);
4506         kfree(h->hba_inquiry_data);
4507         /*
4508          * Deliberately omit pci_disable_device(): it does something nasty to
4509          * Smart Array controllers that pci_enable_device does not undo
4510          */
4511         pci_release_regions(pdev);
4512         pci_set_drvdata(pdev, NULL);
4513         kfree(h);
4514 }
4515
4516 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4517         __attribute__((unused)) pm_message_t state)
4518 {
4519         return -ENOSYS;
4520 }
4521
4522 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4523 {
4524         return -ENOSYS;
4525 }
4526
4527 static struct pci_driver hpsa_pci_driver = {
4528         .name = HPSA,
4529         .probe = hpsa_init_one,
4530         .remove = __devexit_p(hpsa_remove_one),
4531         .id_table = hpsa_pci_device_id, /* id_table */
4532         .shutdown = hpsa_shutdown,
4533         .suspend = hpsa_suspend,
4534         .resume = hpsa_resume,
4535 };
4536
4537 /* Fill in bucket_map[], given nsgs (the max number of
4538  * scatter gather elements supported) and bucket[],
4539  * which is an array of 8 integers.  The bucket[] array
4540  * contains 8 different DMA transfer sizes (in 16
4541  * byte increments) which the controller uses to fetch
4542  * commands.  This function fills in bucket_map[], which
4543  * maps a given number of scatter gather elements to one of
4544  * the 8 DMA transfer sizes.  The point of it is to allow the
4545  * controller to only do as much DMA as needed to fetch the
4546  * command, with the DMA transfer size encoded in the lower
4547  * bits of the command address.
4548  */
4549 static void  calc_bucket_map(int bucket[], int num_buckets,
4550         int nsgs, int *bucket_map)
4551 {
4552         int i, j, b, size;
4553
4554         /* even a command with 0 SGs requires 4 blocks */
4555 #define MINIMUM_TRANSFER_BLOCKS 4
4556 #define NUM_BUCKETS 8
4557         /* Note, bucket_map must have nsgs+1 entries. */
4558         for (i = 0; i <= nsgs; i++) {
4559                 /* Compute size of a command with i SG entries */
4560                 size = i + MINIMUM_TRANSFER_BLOCKS;
4561                 b = num_buckets; /* Assume the biggest bucket */
4562                 /* Find the bucket that is just big enough */
4563                 for (j = 0; j < 8; j++) {
4564                         if (bucket[j] >= size) {
4565                                 b = j;
4566                                 break;
4567                         }
4568                 }
4569                 /* for a command with i SG entries, use bucket b. */
4570                 bucket_map[i] = b;
4571         }
4572 }
4573
4574 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4575         u32 use_short_tags)
4576 {
4577         int i;
4578         unsigned long register_value;
4579
4580         /* This is a bit complicated.  There are 8 registers on
4581          * the controller which we write to to tell it 8 different
4582          * sizes of commands which there may be.  It's a way of
4583          * reducing the DMA done to fetch each command.  Encoded into
4584          * each command's tag are 3 bits which communicate to the controller
4585          * which of the eight sizes that command fits within.  The size of
4586          * each command depends on how many scatter gather entries there are.
4587          * Each SG entry requires 16 bytes.  The eight registers are programmed
4588          * with the number of 16-byte blocks a command of that size requires.
4589          * The smallest command possible requires 5 such 16 byte blocks.
4590          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
4591          * blocks.  Note, this only extends to the SG entries contained
4592          * within the command block, and does not extend to chained blocks
4593          * of SG elements.   bft[] contains the eight values we write to
4594          * the registers.  They are not evenly distributed, but have more
4595          * sizes for small commands, and fewer sizes for larger commands.
4596          */
4597         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
4598         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
4599         /*  5 = 1 s/g entry or 4k
4600          *  6 = 2 s/g entry or 8k
4601          *  8 = 4 s/g entry or 16k
4602          * 10 = 6 s/g entry or 24k
4603          */
4604
4605         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4606
4607         /* Controller spec: zero out this buffer. */
4608         memset(h->reply_pool, 0, h->reply_pool_size);
4609         h->reply_pool_head = h->reply_pool;
4610
4611         bft[7] = SG_ENTRIES_IN_CMD + 4;
4612         calc_bucket_map(bft, ARRAY_SIZE(bft),
4613                                 SG_ENTRIES_IN_CMD, h->blockFetchTable);
4614         for (i = 0; i < 8; i++)
4615                 writel(bft[i], &h->transtable->BlockFetch[i]);
4616
4617         /* size of controller ring buffer */
4618         writel(h->max_commands, &h->transtable->RepQSize);
4619         writel(1, &h->transtable->RepQCount);
4620         writel(0, &h->transtable->RepQCtrAddrLow32);
4621         writel(0, &h->transtable->RepQCtrAddrHigh32);
4622         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4623         writel(0, &h->transtable->RepQAddr0High32);
4624         writel(CFGTBL_Trans_Performant | use_short_tags,
4625                 &(h->cfgtable->HostWrite.TransportRequest));
4626         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4627         hpsa_wait_for_mode_change_ack(h);
4628         register_value = readl(&(h->cfgtable->TransportActive));
4629         if (!(register_value & CFGTBL_Trans_Performant)) {
4630                 dev_warn(&h->pdev->dev, "unable to get board into"
4631                                         " performant mode\n");
4632                 return;
4633         }
4634         /* Change the access methods to the performant access methods */
4635         h->access = SA5_performant_access;
4636         h->transMethod = CFGTBL_Trans_Performant;
4637 }
4638
4639 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4640 {
4641         u32 trans_support;
4642
4643         if (hpsa_simple_mode)
4644                 return;
4645
4646         trans_support = readl(&(h->cfgtable->TransportSupport));
4647         if (!(trans_support & PERFORMANT_MODE))
4648                 return;
4649
4650         hpsa_get_max_perf_mode_cmds(h);
4651         /* Performant mode ring buffer and supporting data structures */
4652         h->reply_pool_size = h->max_commands * sizeof(u64);
4653         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4654                                 &(h->reply_pool_dhandle));
4655
4656         /* Need a block fetch table for performant mode */
4657         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
4658                                 sizeof(u32)), GFP_KERNEL);
4659
4660         if ((h->reply_pool == NULL)
4661                 || (h->blockFetchTable == NULL))
4662                 goto clean_up;
4663
4664         hpsa_enter_performant_mode(h,
4665                 trans_support & CFGTBL_Trans_use_short_tags);
4666
4667         return;
4668
4669 clean_up:
4670         if (h->reply_pool)
4671                 pci_free_consistent(h->pdev, h->reply_pool_size,
4672                         h->reply_pool, h->reply_pool_dhandle);
4673         kfree(h->blockFetchTable);
4674 }
4675
4676 /*
4677  *  This is it.  Register the PCI driver information for the cards we control
4678  *  the OS will call our registered routines when it finds one of our cards.
4679  */
4680 static int __init hpsa_init(void)
4681 {
4682         return pci_register_driver(&hpsa_pci_driver);
4683 }
4684
4685 static void __exit hpsa_cleanup(void)
4686 {
4687         pci_unregister_driver(&hpsa_pci_driver);
4688 }
4689
4690 module_init(hpsa_init);
4691 module_exit(hpsa_cleanup);