2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
31 #include <linux/timer.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu.h>
52 #include <asm/div64.h>
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.4-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
128 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
129 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
130 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
131 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
132 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
134 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
138 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
140 /* board_id = Subsystem Device ID & Vendor ID
141 * product = Marketing Name for the board
142 * access = Address of the struct of function pointers
144 static struct board_type products[] = {
145 {0x3241103C, "Smart Array P212", &SA5_access},
146 {0x3243103C, "Smart Array P410", &SA5_access},
147 {0x3245103C, "Smart Array P410i", &SA5_access},
148 {0x3247103C, "Smart Array P411", &SA5_access},
149 {0x3249103C, "Smart Array P812", &SA5_access},
150 {0x324A103C, "Smart Array P712m", &SA5_access},
151 {0x324B103C, "Smart Array P711m", &SA5_access},
152 {0x3350103C, "Smart Array P222", &SA5_access},
153 {0x3351103C, "Smart Array P420", &SA5_access},
154 {0x3352103C, "Smart Array P421", &SA5_access},
155 {0x3353103C, "Smart Array P822", &SA5_access},
156 {0x3354103C, "Smart Array P420i", &SA5_access},
157 {0x3355103C, "Smart Array P220i", &SA5_access},
158 {0x3356103C, "Smart Array P721m", &SA5_access},
159 {0x1921103C, "Smart Array P830i", &SA5_access},
160 {0x1922103C, "Smart Array P430", &SA5_access},
161 {0x1923103C, "Smart Array P431", &SA5_access},
162 {0x1924103C, "Smart Array P830", &SA5_access},
163 {0x1926103C, "Smart Array P731m", &SA5_access},
164 {0x1928103C, "Smart Array P230i", &SA5_access},
165 {0x1929103C, "Smart Array P530", &SA5_access},
166 {0x21BD103C, "Smart Array", &SA5_access},
167 {0x21BE103C, "Smart Array", &SA5_access},
168 {0x21BF103C, "Smart Array", &SA5_access},
169 {0x21C0103C, "Smart Array", &SA5_access},
170 {0x21C1103C, "Smart Array", &SA5_access},
171 {0x21C2103C, "Smart Array", &SA5_access},
172 {0x21C3103C, "Smart Array", &SA5_access},
173 {0x21C4103C, "Smart Array", &SA5_access},
174 {0x21C5103C, "Smart Array", &SA5_access},
175 {0x21C6103C, "Smart Array", &SA5_access},
176 {0x21C7103C, "Smart Array", &SA5_access},
177 {0x21C8103C, "Smart Array", &SA5_access},
178 {0x21C9103C, "Smart Array", &SA5_access},
179 {0x21CA103C, "Smart Array", &SA5_access},
180 {0x21CB103C, "Smart Array", &SA5_access},
181 {0x21CC103C, "Smart Array", &SA5_access},
182 {0x21CD103C, "Smart Array", &SA5_access},
183 {0x21CE103C, "Smart Array", &SA5_access},
184 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
185 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
186 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
187 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
188 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
189 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
192 static int number_of_controllers;
194 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
195 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
196 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
197 static void lock_and_start_io(struct ctlr_info *h);
198 static void start_io(struct ctlr_info *h, unsigned long *flags);
201 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
204 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
205 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
206 static struct CommandList *cmd_alloc(struct ctlr_info *h);
207 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
208 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
209 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
211 #define VPD_PAGE (1 << 8)
213 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
214 static void hpsa_scan_start(struct Scsi_Host *);
215 static int hpsa_scan_finished(struct Scsi_Host *sh,
216 unsigned long elapsed_time);
217 static int hpsa_change_queue_depth(struct scsi_device *sdev,
218 int qdepth, int reason);
220 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
221 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
222 static int hpsa_slave_alloc(struct scsi_device *sdev);
223 static void hpsa_slave_destroy(struct scsi_device *sdev);
225 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
226 static int check_for_unit_attention(struct ctlr_info *h,
227 struct CommandList *c);
228 static void check_ioctl_unit_attention(struct ctlr_info *h,
229 struct CommandList *c);
230 /* performant mode helper functions */
231 static void calc_bucket_map(int *bucket, int num_buckets,
232 int nsgs, int min_blocks, int *bucket_map);
233 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
234 static inline u32 next_command(struct ctlr_info *h, u8 q);
235 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
236 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
238 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
239 unsigned long *memory_bar);
240 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
241 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
243 static inline void finish_cmd(struct CommandList *c);
244 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
245 #define BOARD_NOT_READY 0
246 #define BOARD_READY 1
247 static void hpsa_drain_accel_commands(struct ctlr_info *h);
248 static void hpsa_flush_cache(struct ctlr_info *h);
249 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
250 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
253 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
255 unsigned long *priv = shost_priv(sdev->host);
256 return (struct ctlr_info *) *priv;
259 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
261 unsigned long *priv = shost_priv(sh);
262 return (struct ctlr_info *) *priv;
265 static int check_for_unit_attention(struct ctlr_info *h,
266 struct CommandList *c)
268 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
271 switch (c->err_info->SenseInfo[12]) {
273 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
274 "detected, command retried\n", h->ctlr);
277 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
278 "detected, action required\n", h->ctlr);
280 case REPORT_LUNS_CHANGED:
281 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
282 "changed, action required\n", h->ctlr);
284 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
285 * target (array) devices.
289 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
290 "or device reset detected\n", h->ctlr);
292 case UNIT_ATTENTION_CLEARED:
293 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
294 "cleared by another initiator\n", h->ctlr);
297 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
298 "unit attention detected\n", h->ctlr);
304 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
306 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
307 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
308 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
310 dev_warn(&h->pdev->dev, HPSA "device busy");
314 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
315 struct device_attribute *attr,
316 const char *buf, size_t count)
320 struct Scsi_Host *shost = class_to_shost(dev);
323 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
325 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
326 strncpy(tmpbuf, buf, len);
328 if (sscanf(tmpbuf, "%d", &status) != 1)
330 h = shost_to_hba(shost);
331 h->acciopath_status = !!status;
332 dev_warn(&h->pdev->dev,
333 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
334 h->acciopath_status ? "enabled" : "disabled");
338 static ssize_t host_store_raid_offload_debug(struct device *dev,
339 struct device_attribute *attr,
340 const char *buf, size_t count)
342 int debug_level, len;
344 struct Scsi_Host *shost = class_to_shost(dev);
347 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
349 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
350 strncpy(tmpbuf, buf, len);
352 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
356 h = shost_to_hba(shost);
357 h->raid_offload_debug = debug_level;
358 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
359 h->raid_offload_debug);
363 static ssize_t host_store_rescan(struct device *dev,
364 struct device_attribute *attr,
365 const char *buf, size_t count)
368 struct Scsi_Host *shost = class_to_shost(dev);
369 h = shost_to_hba(shost);
370 hpsa_scan_start(h->scsi_host);
374 static ssize_t host_show_firmware_revision(struct device *dev,
375 struct device_attribute *attr, char *buf)
378 struct Scsi_Host *shost = class_to_shost(dev);
379 unsigned char *fwrev;
381 h = shost_to_hba(shost);
382 if (!h->hba_inquiry_data)
384 fwrev = &h->hba_inquiry_data[32];
385 return snprintf(buf, 20, "%c%c%c%c\n",
386 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
389 static ssize_t host_show_commands_outstanding(struct device *dev,
390 struct device_attribute *attr, char *buf)
392 struct Scsi_Host *shost = class_to_shost(dev);
393 struct ctlr_info *h = shost_to_hba(shost);
395 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
398 static ssize_t host_show_transport_mode(struct device *dev,
399 struct device_attribute *attr, char *buf)
402 struct Scsi_Host *shost = class_to_shost(dev);
404 h = shost_to_hba(shost);
405 return snprintf(buf, 20, "%s\n",
406 h->transMethod & CFGTBL_Trans_Performant ?
407 "performant" : "simple");
410 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
411 struct device_attribute *attr, char *buf)
414 struct Scsi_Host *shost = class_to_shost(dev);
416 h = shost_to_hba(shost);
417 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
418 (h->acciopath_status == 1) ? "enabled" : "disabled");
421 /* List of controllers which cannot be hard reset on kexec with reset_devices */
422 static u32 unresettable_controller[] = {
423 0x324a103C, /* Smart Array P712m */
424 0x324b103C, /* SmartArray P711m */
425 0x3223103C, /* Smart Array P800 */
426 0x3234103C, /* Smart Array P400 */
427 0x3235103C, /* Smart Array P400i */
428 0x3211103C, /* Smart Array E200i */
429 0x3212103C, /* Smart Array E200 */
430 0x3213103C, /* Smart Array E200i */
431 0x3214103C, /* Smart Array E200i */
432 0x3215103C, /* Smart Array E200i */
433 0x3237103C, /* Smart Array E500 */
434 0x323D103C, /* Smart Array P700m */
435 0x40800E11, /* Smart Array 5i */
436 0x409C0E11, /* Smart Array 6400 */
437 0x409D0E11, /* Smart Array 6400 EM */
438 0x40700E11, /* Smart Array 5300 */
439 0x40820E11, /* Smart Array 532 */
440 0x40830E11, /* Smart Array 5312 */
441 0x409A0E11, /* Smart Array 641 */
442 0x409B0E11, /* Smart Array 642 */
443 0x40910E11, /* Smart Array 6i */
446 /* List of controllers which cannot even be soft reset */
447 static u32 soft_unresettable_controller[] = {
448 0x40800E11, /* Smart Array 5i */
449 0x40700E11, /* Smart Array 5300 */
450 0x40820E11, /* Smart Array 532 */
451 0x40830E11, /* Smart Array 5312 */
452 0x409A0E11, /* Smart Array 641 */
453 0x409B0E11, /* Smart Array 642 */
454 0x40910E11, /* Smart Array 6i */
455 /* Exclude 640x boards. These are two pci devices in one slot
456 * which share a battery backed cache module. One controls the
457 * cache, the other accesses the cache through the one that controls
458 * it. If we reset the one controlling the cache, the other will
459 * likely not be happy. Just forbid resetting this conjoined mess.
460 * The 640x isn't really supported by hpsa anyway.
462 0x409C0E11, /* Smart Array 6400 */
463 0x409D0E11, /* Smart Array 6400 EM */
466 static int ctlr_is_hard_resettable(u32 board_id)
470 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
471 if (unresettable_controller[i] == board_id)
476 static int ctlr_is_soft_resettable(u32 board_id)
480 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
481 if (soft_unresettable_controller[i] == board_id)
486 static int ctlr_is_resettable(u32 board_id)
488 return ctlr_is_hard_resettable(board_id) ||
489 ctlr_is_soft_resettable(board_id);
492 static ssize_t host_show_resettable(struct device *dev,
493 struct device_attribute *attr, char *buf)
496 struct Scsi_Host *shost = class_to_shost(dev);
498 h = shost_to_hba(shost);
499 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
502 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
504 return (scsi3addr[3] & 0xC0) == 0x40;
507 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
510 #define HPSA_RAID_0 0
511 #define HPSA_RAID_4 1
512 #define HPSA_RAID_1 2 /* also used for RAID 10 */
513 #define HPSA_RAID_5 3 /* also used for RAID 50 */
514 #define HPSA_RAID_51 4
515 #define HPSA_RAID_6 5 /* also used for RAID 60 */
516 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
517 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
519 static ssize_t raid_level_show(struct device *dev,
520 struct device_attribute *attr, char *buf)
523 unsigned char rlevel;
525 struct scsi_device *sdev;
526 struct hpsa_scsi_dev_t *hdev;
529 sdev = to_scsi_device(dev);
530 h = sdev_to_hba(sdev);
531 spin_lock_irqsave(&h->lock, flags);
532 hdev = sdev->hostdata;
534 spin_unlock_irqrestore(&h->lock, flags);
538 /* Is this even a logical drive? */
539 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
540 spin_unlock_irqrestore(&h->lock, flags);
541 l = snprintf(buf, PAGE_SIZE, "N/A\n");
545 rlevel = hdev->raid_level;
546 spin_unlock_irqrestore(&h->lock, flags);
547 if (rlevel > RAID_UNKNOWN)
548 rlevel = RAID_UNKNOWN;
549 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
553 static ssize_t lunid_show(struct device *dev,
554 struct device_attribute *attr, char *buf)
557 struct scsi_device *sdev;
558 struct hpsa_scsi_dev_t *hdev;
560 unsigned char lunid[8];
562 sdev = to_scsi_device(dev);
563 h = sdev_to_hba(sdev);
564 spin_lock_irqsave(&h->lock, flags);
565 hdev = sdev->hostdata;
567 spin_unlock_irqrestore(&h->lock, flags);
570 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
571 spin_unlock_irqrestore(&h->lock, flags);
572 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
573 lunid[0], lunid[1], lunid[2], lunid[3],
574 lunid[4], lunid[5], lunid[6], lunid[7]);
577 static ssize_t unique_id_show(struct device *dev,
578 struct device_attribute *attr, char *buf)
581 struct scsi_device *sdev;
582 struct hpsa_scsi_dev_t *hdev;
584 unsigned char sn[16];
586 sdev = to_scsi_device(dev);
587 h = sdev_to_hba(sdev);
588 spin_lock_irqsave(&h->lock, flags);
589 hdev = sdev->hostdata;
591 spin_unlock_irqrestore(&h->lock, flags);
594 memcpy(sn, hdev->device_id, sizeof(sn));
595 spin_unlock_irqrestore(&h->lock, flags);
596 return snprintf(buf, 16 * 2 + 2,
597 "%02X%02X%02X%02X%02X%02X%02X%02X"
598 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
599 sn[0], sn[1], sn[2], sn[3],
600 sn[4], sn[5], sn[6], sn[7],
601 sn[8], sn[9], sn[10], sn[11],
602 sn[12], sn[13], sn[14], sn[15]);
605 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
606 struct device_attribute *attr, char *buf)
609 struct scsi_device *sdev;
610 struct hpsa_scsi_dev_t *hdev;
614 sdev = to_scsi_device(dev);
615 h = sdev_to_hba(sdev);
616 spin_lock_irqsave(&h->lock, flags);
617 hdev = sdev->hostdata;
619 spin_unlock_irqrestore(&h->lock, flags);
622 offload_enabled = hdev->offload_enabled;
623 spin_unlock_irqrestore(&h->lock, flags);
624 return snprintf(buf, 20, "%d\n", offload_enabled);
627 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
628 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
629 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
630 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
631 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
632 host_show_hp_ssd_smart_path_enabled, NULL);
633 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
634 host_show_hp_ssd_smart_path_status,
635 host_store_hp_ssd_smart_path_status);
636 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
637 host_store_raid_offload_debug);
638 static DEVICE_ATTR(firmware_revision, S_IRUGO,
639 host_show_firmware_revision, NULL);
640 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
641 host_show_commands_outstanding, NULL);
642 static DEVICE_ATTR(transport_mode, S_IRUGO,
643 host_show_transport_mode, NULL);
644 static DEVICE_ATTR(resettable, S_IRUGO,
645 host_show_resettable, NULL);
647 static struct device_attribute *hpsa_sdev_attrs[] = {
648 &dev_attr_raid_level,
651 &dev_attr_hp_ssd_smart_path_enabled,
655 static struct device_attribute *hpsa_shost_attrs[] = {
657 &dev_attr_firmware_revision,
658 &dev_attr_commands_outstanding,
659 &dev_attr_transport_mode,
660 &dev_attr_resettable,
661 &dev_attr_hp_ssd_smart_path_status,
662 &dev_attr_raid_offload_debug,
666 static struct scsi_host_template hpsa_driver_template = {
667 .module = THIS_MODULE,
670 .queuecommand = hpsa_scsi_queue_command,
671 .scan_start = hpsa_scan_start,
672 .scan_finished = hpsa_scan_finished,
673 .change_queue_depth = hpsa_change_queue_depth,
675 .use_clustering = ENABLE_CLUSTERING,
676 .eh_abort_handler = hpsa_eh_abort_handler,
677 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
679 .slave_alloc = hpsa_slave_alloc,
680 .slave_destroy = hpsa_slave_destroy,
682 .compat_ioctl = hpsa_compat_ioctl,
684 .sdev_attrs = hpsa_sdev_attrs,
685 .shost_attrs = hpsa_shost_attrs,
691 /* Enqueuing and dequeuing functions for cmdlists. */
692 static inline void addQ(struct list_head *list, struct CommandList *c)
694 list_add_tail(&c->list, list);
697 static inline u32 next_command(struct ctlr_info *h, u8 q)
700 struct reply_queue_buffer *rq = &h->reply_queue[q];
703 if (h->transMethod & CFGTBL_Trans_io_accel1)
704 return h->access.command_completed(h, q);
706 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
707 return h->access.command_completed(h, q);
709 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
710 a = rq->head[rq->current_entry];
712 spin_lock_irqsave(&h->lock, flags);
713 h->commands_outstanding--;
714 spin_unlock_irqrestore(&h->lock, flags);
718 /* Check for wraparound */
719 if (rq->current_entry == h->max_commands) {
720 rq->current_entry = 0;
727 * There are some special bits in the bus address of the
728 * command that we have to set for the controller to know
729 * how to process the command:
731 * Normal performant mode:
732 * bit 0: 1 means performant mode, 0 means simple mode.
733 * bits 1-3 = block fetch table entry
734 * bits 4-6 = command type (== 0)
737 * bit 0 = "performant mode" bit.
738 * bits 1-3 = block fetch table entry
739 * bits 4-6 = command type (== 110)
740 * (command type is needed because ioaccel1 mode
741 * commands are submitted through the same register as normal
742 * mode commands, so this is how the controller knows whether
743 * the command is normal mode or ioaccel1 mode.)
746 * bit 0 = "performant mode" bit.
747 * bits 1-4 = block fetch table entry (note extra bit)
748 * bits 4-6 = not needed, because ioaccel2 mode has
749 * a separate special register for submitting commands.
752 /* set_performant_mode: Modify the tag for cciss performant
753 * set bit 0 for pull model, bits 3-1 for block fetch
756 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
758 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
759 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
760 if (likely(h->msix_vector > 0))
761 c->Header.ReplyQueue =
762 raw_smp_processor_id() % h->nreply_queues;
766 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
767 struct CommandList *c)
769 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
771 /* Tell the controller to post the reply to the queue for this
772 * processor. This seems to give the best I/O throughput.
774 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
775 /* Set the bits in the address sent down to include:
776 * - performant mode bit (bit 0)
777 * - pull count (bits 1-3)
778 * - command type (bits 4-6)
780 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
781 IOACCEL1_BUSADDR_CMDTYPE;
784 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
785 struct CommandList *c)
787 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
789 /* Tell the controller to post the reply to the queue for this
790 * processor. This seems to give the best I/O throughput.
792 cp->reply_queue = smp_processor_id() % h->nreply_queues;
793 /* Set the bits in the address sent down to include:
794 * - performant mode bit not used in ioaccel mode 2
795 * - pull count (bits 0-3)
796 * - command type isn't needed for ioaccel2
798 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
801 static int is_firmware_flash_cmd(u8 *cdb)
803 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
807 * During firmware flash, the heartbeat register may not update as frequently
808 * as it should. So we dial down lockup detection during firmware flash. and
809 * dial it back up when firmware flash completes.
811 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
812 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
813 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
814 struct CommandList *c)
816 if (!is_firmware_flash_cmd(c->Request.CDB))
818 atomic_inc(&h->firmware_flash_in_progress);
819 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
822 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
823 struct CommandList *c)
825 if (is_firmware_flash_cmd(c->Request.CDB) &&
826 atomic_dec_and_test(&h->firmware_flash_in_progress))
827 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
830 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
831 struct CommandList *c)
835 switch (c->cmd_type) {
837 set_ioaccel1_performant_mode(h, c);
840 set_ioaccel2_performant_mode(h, c);
843 set_performant_mode(h, c);
845 dial_down_lockup_detection_during_fw_flash(h, c);
846 spin_lock_irqsave(&h->lock, flags);
850 spin_unlock_irqrestore(&h->lock, flags);
853 static inline void removeQ(struct CommandList *c)
855 if (WARN_ON(list_empty(&c->list)))
857 list_del_init(&c->list);
860 static inline int is_hba_lunid(unsigned char scsi3addr[])
862 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
865 static inline int is_scsi_rev_5(struct ctlr_info *h)
867 if (!h->hba_inquiry_data)
869 if ((h->hba_inquiry_data[2] & 0x07) == 5)
874 static int hpsa_find_target_lun(struct ctlr_info *h,
875 unsigned char scsi3addr[], int bus, int *target, int *lun)
877 /* finds an unused bus, target, lun for a new physical device
878 * assumes h->devlock is held
881 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
883 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
885 for (i = 0; i < h->ndevices; i++) {
886 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
887 __set_bit(h->dev[i]->target, lun_taken);
890 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
891 if (i < HPSA_MAX_DEVICES) {
900 /* Add an entry into h->dev[] array. */
901 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
902 struct hpsa_scsi_dev_t *device,
903 struct hpsa_scsi_dev_t *added[], int *nadded)
905 /* assumes h->devlock is held */
908 unsigned char addr1[8], addr2[8];
909 struct hpsa_scsi_dev_t *sd;
911 if (n >= HPSA_MAX_DEVICES) {
912 dev_err(&h->pdev->dev, "too many devices, some will be "
917 /* physical devices do not have lun or target assigned until now. */
918 if (device->lun != -1)
919 /* Logical device, lun is already assigned. */
922 /* If this device a non-zero lun of a multi-lun device
923 * byte 4 of the 8-byte LUN addr will contain the logical
924 * unit no, zero otherise.
926 if (device->scsi3addr[4] == 0) {
927 /* This is not a non-zero lun of a multi-lun device */
928 if (hpsa_find_target_lun(h, device->scsi3addr,
929 device->bus, &device->target, &device->lun) != 0)
934 /* This is a non-zero lun of a multi-lun device.
935 * Search through our list and find the device which
936 * has the same 8 byte LUN address, excepting byte 4.
937 * Assign the same bus and target for this new LUN.
938 * Use the logical unit number from the firmware.
940 memcpy(addr1, device->scsi3addr, 8);
942 for (i = 0; i < n; i++) {
944 memcpy(addr2, sd->scsi3addr, 8);
946 /* differ only in byte 4? */
947 if (memcmp(addr1, addr2, 8) == 0) {
948 device->bus = sd->bus;
949 device->target = sd->target;
950 device->lun = device->scsi3addr[4];
954 if (device->lun == -1) {
955 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
956 " suspect firmware bug or unsupported hardware "
965 added[*nadded] = device;
968 /* initially, (before registering with scsi layer) we don't
969 * know our hostno and we don't want to print anything first
970 * time anyway (the scsi layer's inquiries will show that info)
972 /* if (hostno != -1) */
973 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
974 scsi_device_type(device->devtype), hostno,
975 device->bus, device->target, device->lun);
979 /* Update an entry in h->dev[] array. */
980 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
981 int entry, struct hpsa_scsi_dev_t *new_entry)
983 /* assumes h->devlock is held */
984 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
986 /* Raid level changed. */
987 h->dev[entry]->raid_level = new_entry->raid_level;
989 /* Raid offload parameters changed. */
990 h->dev[entry]->offload_config = new_entry->offload_config;
991 h->dev[entry]->offload_enabled = new_entry->offload_enabled;
992 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
993 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
994 h->dev[entry]->raid_map = new_entry->raid_map;
996 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
997 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
998 new_entry->target, new_entry->lun);
1001 /* Replace an entry from h->dev[] array. */
1002 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
1003 int entry, struct hpsa_scsi_dev_t *new_entry,
1004 struct hpsa_scsi_dev_t *added[], int *nadded,
1005 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1007 /* assumes h->devlock is held */
1008 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1009 removed[*nremoved] = h->dev[entry];
1013 * New physical devices won't have target/lun assigned yet
1014 * so we need to preserve the values in the slot we are replacing.
1016 if (new_entry->target == -1) {
1017 new_entry->target = h->dev[entry]->target;
1018 new_entry->lun = h->dev[entry]->lun;
1021 h->dev[entry] = new_entry;
1022 added[*nadded] = new_entry;
1024 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
1025 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
1026 new_entry->target, new_entry->lun);
1029 /* Remove an entry from h->dev[] array. */
1030 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
1031 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1033 /* assumes h->devlock is held */
1035 struct hpsa_scsi_dev_t *sd;
1037 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1040 removed[*nremoved] = h->dev[entry];
1043 for (i = entry; i < h->ndevices-1; i++)
1044 h->dev[i] = h->dev[i+1];
1046 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
1047 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
1051 #define SCSI3ADDR_EQ(a, b) ( \
1052 (a)[7] == (b)[7] && \
1053 (a)[6] == (b)[6] && \
1054 (a)[5] == (b)[5] && \
1055 (a)[4] == (b)[4] && \
1056 (a)[3] == (b)[3] && \
1057 (a)[2] == (b)[2] && \
1058 (a)[1] == (b)[1] && \
1061 static void fixup_botched_add(struct ctlr_info *h,
1062 struct hpsa_scsi_dev_t *added)
1064 /* called when scsi_add_device fails in order to re-adjust
1065 * h->dev[] to match the mid layer's view.
1067 unsigned long flags;
1070 spin_lock_irqsave(&h->lock, flags);
1071 for (i = 0; i < h->ndevices; i++) {
1072 if (h->dev[i] == added) {
1073 for (j = i; j < h->ndevices-1; j++)
1074 h->dev[j] = h->dev[j+1];
1079 spin_unlock_irqrestore(&h->lock, flags);
1083 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1084 struct hpsa_scsi_dev_t *dev2)
1086 /* we compare everything except lun and target as these
1087 * are not yet assigned. Compare parts likely
1090 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1091 sizeof(dev1->scsi3addr)) != 0)
1093 if (memcmp(dev1->device_id, dev2->device_id,
1094 sizeof(dev1->device_id)) != 0)
1096 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1098 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1100 if (dev1->devtype != dev2->devtype)
1102 if (dev1->bus != dev2->bus)
1107 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1108 struct hpsa_scsi_dev_t *dev2)
1110 /* Device attributes that can change, but don't mean
1111 * that the device is a different device, nor that the OS
1112 * needs to be told anything about the change.
1114 if (dev1->raid_level != dev2->raid_level)
1116 if (dev1->offload_config != dev2->offload_config)
1118 if (dev1->offload_enabled != dev2->offload_enabled)
1123 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1124 * and return needle location in *index. If scsi3addr matches, but not
1125 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1126 * location in *index.
1127 * In the case of a minor device attribute change, such as RAID level, just
1128 * return DEVICE_UPDATED, along with the updated device's location in index.
1129 * If needle not found, return DEVICE_NOT_FOUND.
1131 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1132 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1136 #define DEVICE_NOT_FOUND 0
1137 #define DEVICE_CHANGED 1
1138 #define DEVICE_SAME 2
1139 #define DEVICE_UPDATED 3
1140 for (i = 0; i < haystack_size; i++) {
1141 if (haystack[i] == NULL) /* previously removed. */
1143 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1145 if (device_is_the_same(needle, haystack[i])) {
1146 if (device_updated(needle, haystack[i]))
1147 return DEVICE_UPDATED;
1150 /* Keep offline devices offline */
1151 if (needle->volume_offline)
1152 return DEVICE_NOT_FOUND;
1153 return DEVICE_CHANGED;
1158 return DEVICE_NOT_FOUND;
1161 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1162 unsigned char scsi3addr[])
1164 struct offline_device_entry *device;
1165 unsigned long flags;
1167 /* Check to see if device is already on the list */
1168 spin_lock_irqsave(&h->offline_device_lock, flags);
1169 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1170 if (memcmp(device->scsi3addr, scsi3addr,
1171 sizeof(device->scsi3addr)) == 0) {
1172 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1176 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1178 /* Device is not on the list, add it. */
1179 device = kmalloc(sizeof(*device), GFP_KERNEL);
1181 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1184 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1185 spin_lock_irqsave(&h->offline_device_lock, flags);
1186 list_add_tail(&device->offline_list, &h->offline_device_list);
1187 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1190 /* Print a message explaining various offline volume states */
1191 static void hpsa_show_volume_status(struct ctlr_info *h,
1192 struct hpsa_scsi_dev_t *sd)
1194 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1195 dev_info(&h->pdev->dev,
1196 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1197 h->scsi_host->host_no,
1198 sd->bus, sd->target, sd->lun);
1199 switch (sd->volume_offline) {
1202 case HPSA_LV_UNDERGOING_ERASE:
1203 dev_info(&h->pdev->dev,
1204 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1205 h->scsi_host->host_no,
1206 sd->bus, sd->target, sd->lun);
1208 case HPSA_LV_UNDERGOING_RPI:
1209 dev_info(&h->pdev->dev,
1210 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
1211 h->scsi_host->host_no,
1212 sd->bus, sd->target, sd->lun);
1214 case HPSA_LV_PENDING_RPI:
1215 dev_info(&h->pdev->dev,
1216 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1217 h->scsi_host->host_no,
1218 sd->bus, sd->target, sd->lun);
1220 case HPSA_LV_ENCRYPTED_NO_KEY:
1221 dev_info(&h->pdev->dev,
1222 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1223 h->scsi_host->host_no,
1224 sd->bus, sd->target, sd->lun);
1226 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1227 dev_info(&h->pdev->dev,
1228 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1229 h->scsi_host->host_no,
1230 sd->bus, sd->target, sd->lun);
1232 case HPSA_LV_UNDERGOING_ENCRYPTION:
1233 dev_info(&h->pdev->dev,
1234 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1235 h->scsi_host->host_no,
1236 sd->bus, sd->target, sd->lun);
1238 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1239 dev_info(&h->pdev->dev,
1240 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1241 h->scsi_host->host_no,
1242 sd->bus, sd->target, sd->lun);
1244 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1245 dev_info(&h->pdev->dev,
1246 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1247 h->scsi_host->host_no,
1248 sd->bus, sd->target, sd->lun);
1250 case HPSA_LV_PENDING_ENCRYPTION:
1251 dev_info(&h->pdev->dev,
1252 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1253 h->scsi_host->host_no,
1254 sd->bus, sd->target, sd->lun);
1256 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1257 dev_info(&h->pdev->dev,
1258 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1259 h->scsi_host->host_no,
1260 sd->bus, sd->target, sd->lun);
1265 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1266 struct hpsa_scsi_dev_t *sd[], int nsds)
1268 /* sd contains scsi3 addresses and devtypes, and inquiry
1269 * data. This function takes what's in sd to be the current
1270 * reality and updates h->dev[] to reflect that reality.
1272 int i, entry, device_change, changes = 0;
1273 struct hpsa_scsi_dev_t *csd;
1274 unsigned long flags;
1275 struct hpsa_scsi_dev_t **added, **removed;
1276 int nadded, nremoved;
1277 struct Scsi_Host *sh = NULL;
1279 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1280 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1282 if (!added || !removed) {
1283 dev_warn(&h->pdev->dev, "out of memory in "
1284 "adjust_hpsa_scsi_table\n");
1288 spin_lock_irqsave(&h->devlock, flags);
1290 /* find any devices in h->dev[] that are not in
1291 * sd[] and remove them from h->dev[], and for any
1292 * devices which have changed, remove the old device
1293 * info and add the new device info.
1294 * If minor device attributes change, just update
1295 * the existing device structure.
1300 while (i < h->ndevices) {
1302 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1303 if (device_change == DEVICE_NOT_FOUND) {
1305 hpsa_scsi_remove_entry(h, hostno, i,
1306 removed, &nremoved);
1307 continue; /* remove ^^^, hence i not incremented */
1308 } else if (device_change == DEVICE_CHANGED) {
1310 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
1311 added, &nadded, removed, &nremoved);
1312 /* Set it to NULL to prevent it from being freed
1313 * at the bottom of hpsa_update_scsi_devices()
1316 } else if (device_change == DEVICE_UPDATED) {
1317 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1322 /* Now, make sure every device listed in sd[] is also
1323 * listed in h->dev[], adding them if they aren't found
1326 for (i = 0; i < nsds; i++) {
1327 if (!sd[i]) /* if already added above. */
1330 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1331 * as the SCSI mid-layer does not handle such devices well.
1332 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1333 * at 160Hz, and prevents the system from coming up.
1335 if (sd[i]->volume_offline) {
1336 hpsa_show_volume_status(h, sd[i]);
1337 dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
1338 h->scsi_host->host_no,
1339 sd[i]->bus, sd[i]->target, sd[i]->lun);
1343 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1344 h->ndevices, &entry);
1345 if (device_change == DEVICE_NOT_FOUND) {
1347 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1348 added, &nadded) != 0)
1350 sd[i] = NULL; /* prevent from being freed later. */
1351 } else if (device_change == DEVICE_CHANGED) {
1352 /* should never happen... */
1354 dev_warn(&h->pdev->dev,
1355 "device unexpectedly changed.\n");
1356 /* but if it does happen, we just ignore that device */
1359 spin_unlock_irqrestore(&h->devlock, flags);
1361 /* Monitor devices which are in one of several NOT READY states to be
1362 * brought online later. This must be done without holding h->devlock,
1363 * so don't touch h->dev[]
1365 for (i = 0; i < nsds; i++) {
1366 if (!sd[i]) /* if already added above. */
1368 if (sd[i]->volume_offline)
1369 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1372 /* Don't notify scsi mid layer of any changes the first time through
1373 * (or if there are no changes) scsi_scan_host will do it later the
1374 * first time through.
1376 if (hostno == -1 || !changes)
1380 /* Notify scsi mid layer of any removed devices */
1381 for (i = 0; i < nremoved; i++) {
1382 struct scsi_device *sdev =
1383 scsi_device_lookup(sh, removed[i]->bus,
1384 removed[i]->target, removed[i]->lun);
1386 scsi_remove_device(sdev);
1387 scsi_device_put(sdev);
1389 /* We don't expect to get here.
1390 * future cmds to this device will get selection
1391 * timeout as if the device was gone.
1393 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1394 " for removal.", hostno, removed[i]->bus,
1395 removed[i]->target, removed[i]->lun);
1401 /* Notify scsi mid layer of any added devices */
1402 for (i = 0; i < nadded; i++) {
1403 if (scsi_add_device(sh, added[i]->bus,
1404 added[i]->target, added[i]->lun) == 0)
1406 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1407 "device not added.\n", hostno, added[i]->bus,
1408 added[i]->target, added[i]->lun);
1409 /* now we have to remove it from h->dev,
1410 * since it didn't get added to scsi mid layer
1412 fixup_botched_add(h, added[i]);
1421 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1422 * Assume's h->devlock is held.
1424 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1425 int bus, int target, int lun)
1428 struct hpsa_scsi_dev_t *sd;
1430 for (i = 0; i < h->ndevices; i++) {
1432 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1438 /* link sdev->hostdata to our per-device structure. */
1439 static int hpsa_slave_alloc(struct scsi_device *sdev)
1441 struct hpsa_scsi_dev_t *sd;
1442 unsigned long flags;
1443 struct ctlr_info *h;
1445 h = sdev_to_hba(sdev);
1446 spin_lock_irqsave(&h->devlock, flags);
1447 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1448 sdev_id(sdev), sdev->lun);
1450 sdev->hostdata = sd;
1451 spin_unlock_irqrestore(&h->devlock, flags);
1455 static void hpsa_slave_destroy(struct scsi_device *sdev)
1457 /* nothing to do. */
1460 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1464 if (!h->cmd_sg_list)
1466 for (i = 0; i < h->nr_cmds; i++) {
1467 kfree(h->cmd_sg_list[i]);
1468 h->cmd_sg_list[i] = NULL;
1470 kfree(h->cmd_sg_list);
1471 h->cmd_sg_list = NULL;
1474 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1478 if (h->chainsize <= 0)
1481 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1483 if (!h->cmd_sg_list)
1485 for (i = 0; i < h->nr_cmds; i++) {
1486 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1487 h->chainsize, GFP_KERNEL);
1488 if (!h->cmd_sg_list[i])
1494 hpsa_free_sg_chain_blocks(h);
1498 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1499 struct CommandList *c)
1501 struct SGDescriptor *chain_sg, *chain_block;
1504 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1505 chain_block = h->cmd_sg_list[c->cmdindex];
1506 chain_sg->Ext = HPSA_SG_CHAIN;
1507 chain_sg->Len = sizeof(*chain_sg) *
1508 (c->Header.SGTotal - h->max_cmd_sg_entries);
1509 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1511 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1512 /* prevent subsequent unmapping */
1513 chain_sg->Addr.lower = 0;
1514 chain_sg->Addr.upper = 0;
1517 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1518 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1522 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1523 struct CommandList *c)
1525 struct SGDescriptor *chain_sg;
1526 union u64bit temp64;
1528 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1531 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1532 temp64.val32.lower = chain_sg->Addr.lower;
1533 temp64.val32.upper = chain_sg->Addr.upper;
1534 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1538 /* Decode the various types of errors on ioaccel2 path.
1539 * Return 1 for any error that should generate a RAID path retry.
1540 * Return 0 for errors that don't require a RAID path retry.
1542 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1543 struct CommandList *c,
1544 struct scsi_cmnd *cmd,
1545 struct io_accel2_cmd *c2)
1550 switch (c2->error_data.serv_response) {
1551 case IOACCEL2_SERV_RESPONSE_COMPLETE:
1552 switch (c2->error_data.status) {
1553 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
1555 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
1556 dev_warn(&h->pdev->dev,
1557 "%s: task complete with check condition.\n",
1558 "HP SSD Smart Path");
1559 cmd->result |= SAM_STAT_CHECK_CONDITION;
1560 if (c2->error_data.data_present !=
1561 IOACCEL2_SENSE_DATA_PRESENT) {
1562 memset(cmd->sense_buffer, 0,
1563 SCSI_SENSE_BUFFERSIZE);
1566 /* copy the sense data */
1567 data_len = c2->error_data.sense_data_len;
1568 if (data_len > SCSI_SENSE_BUFFERSIZE)
1569 data_len = SCSI_SENSE_BUFFERSIZE;
1570 if (data_len > sizeof(c2->error_data.sense_data_buff))
1572 sizeof(c2->error_data.sense_data_buff);
1573 memcpy(cmd->sense_buffer,
1574 c2->error_data.sense_data_buff, data_len);
1577 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
1578 dev_warn(&h->pdev->dev,
1579 "%s: task complete with BUSY status.\n",
1580 "HP SSD Smart Path");
1583 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
1584 dev_warn(&h->pdev->dev,
1585 "%s: task complete with reservation conflict.\n",
1586 "HP SSD Smart Path");
1589 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
1590 /* Make scsi midlayer do unlimited retries */
1591 cmd->result = DID_IMM_RETRY << 16;
1593 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
1594 dev_warn(&h->pdev->dev,
1595 "%s: task complete with aborted status.\n",
1596 "HP SSD Smart Path");
1600 dev_warn(&h->pdev->dev,
1601 "%s: task complete with unrecognized status: 0x%02x\n",
1602 "HP SSD Smart Path", c2->error_data.status);
1607 case IOACCEL2_SERV_RESPONSE_FAILURE:
1608 /* don't expect to get here. */
1609 dev_warn(&h->pdev->dev,
1610 "unexpected delivery or target failure, status = 0x%02x\n",
1611 c2->error_data.status);
1614 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
1616 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
1618 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
1619 dev_warn(&h->pdev->dev, "task management function rejected.\n");
1622 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
1623 dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
1626 dev_warn(&h->pdev->dev,
1627 "%s: Unrecognized server response: 0x%02x\n",
1628 "HP SSD Smart Path",
1629 c2->error_data.serv_response);
1634 return retry; /* retry on raid path? */
1637 static void process_ioaccel2_completion(struct ctlr_info *h,
1638 struct CommandList *c, struct scsi_cmnd *cmd,
1639 struct hpsa_scsi_dev_t *dev)
1641 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1644 /* check for good status */
1645 if (likely(c2->error_data.serv_response == 0 &&
1646 c2->error_data.status == 0)) {
1648 cmd->scsi_done(cmd);
1652 /* Any RAID offload error results in retry which will use
1653 * the normal I/O path so the controller can handle whatever's
1656 if (is_logical_dev_addr_mode(dev->scsi3addr) &&
1657 c2->error_data.serv_response ==
1658 IOACCEL2_SERV_RESPONSE_FAILURE) {
1659 dev->offload_enabled = 0;
1660 h->drv_req_rescan = 1; /* schedule controller for a rescan */
1661 cmd->result = DID_SOFT_ERROR << 16;
1663 cmd->scsi_done(cmd);
1666 raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
1667 /* If error found, disable Smart Path, schedule a rescan,
1668 * and force a retry on the standard path.
1671 dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
1672 "HP SSD Smart Path");
1673 dev->offload_enabled = 0; /* Disable Smart Path */
1674 h->drv_req_rescan = 1; /* schedule controller rescan */
1675 cmd->result = DID_SOFT_ERROR << 16;
1678 cmd->scsi_done(cmd);
1681 static void complete_scsi_command(struct CommandList *cp)
1683 struct scsi_cmnd *cmd;
1684 struct ctlr_info *h;
1685 struct ErrorInfo *ei;
1686 struct hpsa_scsi_dev_t *dev;
1688 unsigned char sense_key;
1689 unsigned char asc; /* additional sense code */
1690 unsigned char ascq; /* additional sense code qualifier */
1691 unsigned long sense_data_size;
1694 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1696 dev = cmd->device->hostdata;
1698 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1699 if ((cp->cmd_type == CMD_SCSI) &&
1700 (cp->Header.SGTotal > h->max_cmd_sg_entries))
1701 hpsa_unmap_sg_chain_block(h, cp);
1703 cmd->result = (DID_OK << 16); /* host byte */
1704 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1706 if (cp->cmd_type == CMD_IOACCEL2)
1707 return process_ioaccel2_completion(h, cp, cmd, dev);
1709 cmd->result |= ei->ScsiStatus;
1711 /* copy the sense data whether we need to or not. */
1712 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1713 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1715 sense_data_size = sizeof(ei->SenseInfo);
1716 if (ei->SenseLen < sense_data_size)
1717 sense_data_size = ei->SenseLen;
1719 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1720 scsi_set_resid(cmd, ei->ResidualCnt);
1722 if (ei->CommandStatus == 0) {
1724 cmd->scsi_done(cmd);
1728 /* For I/O accelerator commands, copy over some fields to the normal
1729 * CISS header used below for error handling.
1731 if (cp->cmd_type == CMD_IOACCEL1) {
1732 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
1733 cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
1734 cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
1735 cp->Header.Tag.lower = c->Tag.lower;
1736 cp->Header.Tag.upper = c->Tag.upper;
1737 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
1738 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1740 /* Any RAID offload error results in retry which will use
1741 * the normal I/O path so the controller can handle whatever's
1744 if (is_logical_dev_addr_mode(dev->scsi3addr)) {
1745 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
1746 dev->offload_enabled = 0;
1747 cmd->result = DID_SOFT_ERROR << 16;
1749 cmd->scsi_done(cmd);
1754 /* an error has occurred */
1755 switch (ei->CommandStatus) {
1757 case CMD_TARGET_STATUS:
1758 if (ei->ScsiStatus) {
1760 sense_key = 0xf & ei->SenseInfo[2];
1761 /* Get additional sense code */
1762 asc = ei->SenseInfo[12];
1763 /* Get addition sense code qualifier */
1764 ascq = ei->SenseInfo[13];
1767 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1768 if (check_for_unit_attention(h, cp))
1770 if (sense_key == ILLEGAL_REQUEST) {
1772 * SCSI REPORT_LUNS is commonly unsupported on
1773 * Smart Array. Suppress noisy complaint.
1775 if (cp->Request.CDB[0] == REPORT_LUNS)
1778 /* If ASC/ASCQ indicate Logical Unit
1779 * Not Supported condition,
1781 if ((asc == 0x25) && (ascq == 0x0)) {
1782 dev_warn(&h->pdev->dev, "cp %p "
1783 "has check condition\n", cp);
1788 if (sense_key == NOT_READY) {
1789 /* If Sense is Not Ready, Logical Unit
1790 * Not ready, Manual Intervention
1793 if ((asc == 0x04) && (ascq == 0x03)) {
1794 dev_warn(&h->pdev->dev, "cp %p "
1795 "has check condition: unit "
1796 "not ready, manual "
1797 "intervention required\n", cp);
1801 if (sense_key == ABORTED_COMMAND) {
1802 /* Aborted command is retryable */
1803 dev_warn(&h->pdev->dev, "cp %p "
1804 "has check condition: aborted command: "
1805 "ASC: 0x%x, ASCQ: 0x%x\n",
1807 cmd->result |= DID_SOFT_ERROR << 16;
1810 /* Must be some other type of check condition */
1811 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1813 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1814 "Returning result: 0x%x, "
1815 "cmd=[%02x %02x %02x %02x %02x "
1816 "%02x %02x %02x %02x %02x %02x "
1817 "%02x %02x %02x %02x %02x]\n",
1818 cp, sense_key, asc, ascq,
1820 cmd->cmnd[0], cmd->cmnd[1],
1821 cmd->cmnd[2], cmd->cmnd[3],
1822 cmd->cmnd[4], cmd->cmnd[5],
1823 cmd->cmnd[6], cmd->cmnd[7],
1824 cmd->cmnd[8], cmd->cmnd[9],
1825 cmd->cmnd[10], cmd->cmnd[11],
1826 cmd->cmnd[12], cmd->cmnd[13],
1827 cmd->cmnd[14], cmd->cmnd[15]);
1832 /* Problem was not a check condition
1833 * Pass it up to the upper layers...
1835 if (ei->ScsiStatus) {
1836 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1837 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1838 "Returning result: 0x%x\n",
1840 sense_key, asc, ascq,
1842 } else { /* scsi status is zero??? How??? */
1843 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1844 "Returning no connection.\n", cp),
1846 /* Ordinarily, this case should never happen,
1847 * but there is a bug in some released firmware
1848 * revisions that allows it to happen if, for
1849 * example, a 4100 backplane loses power and
1850 * the tape drive is in it. We assume that
1851 * it's a fatal error of some kind because we
1852 * can't show that it wasn't. We will make it
1853 * look like selection timeout since that is
1854 * the most common reason for this to occur,
1855 * and it's severe enough.
1858 cmd->result = DID_NO_CONNECT << 16;
1862 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1864 case CMD_DATA_OVERRUN:
1865 dev_warn(&h->pdev->dev, "cp %p has"
1866 " completed with data overrun "
1870 /* print_bytes(cp, sizeof(*cp), 1, 0);
1872 /* We get CMD_INVALID if you address a non-existent device
1873 * instead of a selection timeout (no response). You will
1874 * see this if you yank out a drive, then try to access it.
1875 * This is kind of a shame because it means that any other
1876 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1877 * missing target. */
1878 cmd->result = DID_NO_CONNECT << 16;
1881 case CMD_PROTOCOL_ERR:
1882 cmd->result = DID_ERROR << 16;
1883 dev_warn(&h->pdev->dev, "cp %p has "
1884 "protocol error\n", cp);
1886 case CMD_HARDWARE_ERR:
1887 cmd->result = DID_ERROR << 16;
1888 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1890 case CMD_CONNECTION_LOST:
1891 cmd->result = DID_ERROR << 16;
1892 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1895 cmd->result = DID_ABORT << 16;
1896 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1897 cp, ei->ScsiStatus);
1899 case CMD_ABORT_FAILED:
1900 cmd->result = DID_ERROR << 16;
1901 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1903 case CMD_UNSOLICITED_ABORT:
1904 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1905 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1909 cmd->result = DID_TIME_OUT << 16;
1910 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1912 case CMD_UNABORTABLE:
1913 cmd->result = DID_ERROR << 16;
1914 dev_warn(&h->pdev->dev, "Command unabortable\n");
1916 case CMD_IOACCEL_DISABLED:
1917 /* This only handles the direct pass-through case since RAID
1918 * offload is handled above. Just attempt a retry.
1920 cmd->result = DID_SOFT_ERROR << 16;
1921 dev_warn(&h->pdev->dev,
1922 "cp %p had HP SSD Smart Path error\n", cp);
1925 cmd->result = DID_ERROR << 16;
1926 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1927 cp, ei->CommandStatus);
1930 cmd->scsi_done(cmd);
1933 static void hpsa_pci_unmap(struct pci_dev *pdev,
1934 struct CommandList *c, int sg_used, int data_direction)
1937 union u64bit addr64;
1939 for (i = 0; i < sg_used; i++) {
1940 addr64.val32.lower = c->SG[i].Addr.lower;
1941 addr64.val32.upper = c->SG[i].Addr.upper;
1942 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1947 static int hpsa_map_one(struct pci_dev *pdev,
1948 struct CommandList *cp,
1955 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1956 cp->Header.SGList = 0;
1957 cp->Header.SGTotal = 0;
1961 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1962 if (dma_mapping_error(&pdev->dev, addr64)) {
1963 /* Prevent subsequent unmap of something never mapped */
1964 cp->Header.SGList = 0;
1965 cp->Header.SGTotal = 0;
1968 cp->SG[0].Addr.lower =
1969 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1970 cp->SG[0].Addr.upper =
1971 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1972 cp->SG[0].Len = buflen;
1973 cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1974 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1975 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1979 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1980 struct CommandList *c)
1982 DECLARE_COMPLETION_ONSTACK(wait);
1985 enqueue_cmd_and_start_io(h, c);
1986 wait_for_completion(&wait);
1989 static u32 lockup_detected(struct ctlr_info *h)
1992 u32 rc, *lockup_detected;
1995 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
1996 rc = *lockup_detected;
2001 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
2002 struct CommandList *c)
2004 /* If controller lockup detected, fake a hardware error. */
2005 if (unlikely(lockup_detected(h)))
2006 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2008 hpsa_scsi_do_simple_cmd_core(h, c);
2011 #define MAX_DRIVER_CMD_RETRIES 25
2012 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2013 struct CommandList *c, int data_direction)
2015 int backoff_time = 10, retry_count = 0;
2018 memset(c->err_info, 0, sizeof(*c->err_info));
2019 hpsa_scsi_do_simple_cmd_core(h, c);
2021 if (retry_count > 3) {
2022 msleep(backoff_time);
2023 if (backoff_time < 1000)
2026 } while ((check_for_unit_attention(h, c) ||
2027 check_for_busy(h, c)) &&
2028 retry_count <= MAX_DRIVER_CMD_RETRIES);
2029 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2032 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2033 struct CommandList *c)
2035 const u8 *cdb = c->Request.CDB;
2036 const u8 *lun = c->Header.LUN.LunAddrBytes;
2038 dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2039 " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2040 txt, lun[0], lun[1], lun[2], lun[3],
2041 lun[4], lun[5], lun[6], lun[7],
2042 cdb[0], cdb[1], cdb[2], cdb[3],
2043 cdb[4], cdb[5], cdb[6], cdb[7],
2044 cdb[8], cdb[9], cdb[10], cdb[11],
2045 cdb[12], cdb[13], cdb[14], cdb[15]);
2048 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2049 struct CommandList *cp)
2051 const struct ErrorInfo *ei = cp->err_info;
2052 struct device *d = &cp->h->pdev->dev;
2053 const u8 *sd = ei->SenseInfo;
2055 switch (ei->CommandStatus) {
2056 case CMD_TARGET_STATUS:
2057 hpsa_print_cmd(h, "SCSI status", cp);
2058 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2059 dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
2060 sd[2] & 0x0f, sd[12], sd[13]);
2062 dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2063 if (ei->ScsiStatus == 0)
2064 dev_warn(d, "SCSI status is abnormally zero. "
2065 "(probably indicates selection timeout "
2066 "reported incorrectly due to a known "
2067 "firmware bug, circa July, 2001.)\n");
2069 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2071 case CMD_DATA_OVERRUN:
2072 hpsa_print_cmd(h, "overrun condition", cp);
2075 /* controller unfortunately reports SCSI passthru's
2076 * to non-existent targets as invalid commands.
2078 hpsa_print_cmd(h, "invalid command", cp);
2079 dev_warn(d, "probably means device no longer present\n");
2082 case CMD_PROTOCOL_ERR:
2083 hpsa_print_cmd(h, "protocol error", cp);
2085 case CMD_HARDWARE_ERR:
2086 hpsa_print_cmd(h, "hardware error", cp);
2088 case CMD_CONNECTION_LOST:
2089 hpsa_print_cmd(h, "connection lost", cp);
2092 hpsa_print_cmd(h, "aborted", cp);
2094 case CMD_ABORT_FAILED:
2095 hpsa_print_cmd(h, "abort failed", cp);
2097 case CMD_UNSOLICITED_ABORT:
2098 hpsa_print_cmd(h, "unsolicited abort", cp);
2101 hpsa_print_cmd(h, "timed out", cp);
2103 case CMD_UNABORTABLE:
2104 hpsa_print_cmd(h, "unabortable", cp);
2107 hpsa_print_cmd(h, "unknown status", cp);
2108 dev_warn(d, "Unknown command status %x\n",
2113 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2114 u16 page, unsigned char *buf,
2115 unsigned char bufsize)
2118 struct CommandList *c;
2119 struct ErrorInfo *ei;
2121 c = cmd_special_alloc(h);
2123 if (c == NULL) { /* trouble... */
2124 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2128 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2129 page, scsi3addr, TYPE_CMD)) {
2133 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2135 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2136 hpsa_scsi_interpret_error(h, c);
2140 cmd_special_free(h, c);
2144 static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
2145 unsigned char *scsi3addr, unsigned char page,
2146 struct bmic_controller_parameters *buf, size_t bufsize)
2149 struct CommandList *c;
2150 struct ErrorInfo *ei;
2152 c = cmd_special_alloc(h);
2154 if (c == NULL) { /* trouble... */
2155 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2159 if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
2160 page, scsi3addr, TYPE_CMD)) {
2164 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2166 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2167 hpsa_scsi_interpret_error(h, c);
2171 cmd_special_free(h, c);
2175 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2179 struct CommandList *c;
2180 struct ErrorInfo *ei;
2182 c = cmd_special_alloc(h);
2184 if (c == NULL) { /* trouble... */
2185 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2189 /* fill_cmd can't fail here, no data buffer to map. */
2190 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2191 scsi3addr, TYPE_MSG);
2192 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2193 hpsa_scsi_do_simple_cmd_core(h, c);
2194 /* no unmap needed here because no data xfer. */
2197 if (ei->CommandStatus != 0) {
2198 hpsa_scsi_interpret_error(h, c);
2201 cmd_special_free(h, c);
2205 static void hpsa_get_raid_level(struct ctlr_info *h,
2206 unsigned char *scsi3addr, unsigned char *raid_level)
2211 *raid_level = RAID_UNKNOWN;
2212 buf = kzalloc(64, GFP_KERNEL);
2215 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2217 *raid_level = buf[8];
2218 if (*raid_level > RAID_UNKNOWN)
2219 *raid_level = RAID_UNKNOWN;
2224 #define HPSA_MAP_DEBUG
2225 #ifdef HPSA_MAP_DEBUG
2226 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2227 struct raid_map_data *map_buff)
2229 struct raid_map_disk_data *dd = &map_buff->data[0];
2231 u16 map_cnt, row_cnt, disks_per_row;
2236 /* Show details only if debugging has been activated. */
2237 if (h->raid_offload_debug < 2)
2240 dev_info(&h->pdev->dev, "structure_size = %u\n",
2241 le32_to_cpu(map_buff->structure_size));
2242 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
2243 le32_to_cpu(map_buff->volume_blk_size));
2244 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
2245 le64_to_cpu(map_buff->volume_blk_cnt));
2246 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
2247 map_buff->phys_blk_shift);
2248 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
2249 map_buff->parity_rotation_shift);
2250 dev_info(&h->pdev->dev, "strip_size = %u\n",
2251 le16_to_cpu(map_buff->strip_size));
2252 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
2253 le64_to_cpu(map_buff->disk_starting_blk));
2254 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
2255 le64_to_cpu(map_buff->disk_blk_cnt));
2256 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
2257 le16_to_cpu(map_buff->data_disks_per_row));
2258 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
2259 le16_to_cpu(map_buff->metadata_disks_per_row));
2260 dev_info(&h->pdev->dev, "row_cnt = %u\n",
2261 le16_to_cpu(map_buff->row_cnt));
2262 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
2263 le16_to_cpu(map_buff->layout_map_count));
2264 dev_info(&h->pdev->dev, "flags = %u\n",
2265 le16_to_cpu(map_buff->flags));
2266 if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
2267 dev_info(&h->pdev->dev, "encrypytion = ON\n");
2269 dev_info(&h->pdev->dev, "encrypytion = OFF\n");
2270 dev_info(&h->pdev->dev, "dekindex = %u\n",
2271 le16_to_cpu(map_buff->dekindex));
2273 map_cnt = le16_to_cpu(map_buff->layout_map_count);
2274 for (map = 0; map < map_cnt; map++) {
2275 dev_info(&h->pdev->dev, "Map%u:\n", map);
2276 row_cnt = le16_to_cpu(map_buff->row_cnt);
2277 for (row = 0; row < row_cnt; row++) {
2278 dev_info(&h->pdev->dev, " Row%u:\n", row);
2280 le16_to_cpu(map_buff->data_disks_per_row);
2281 for (col = 0; col < disks_per_row; col++, dd++)
2282 dev_info(&h->pdev->dev,
2283 " D%02u: h=0x%04x xor=%u,%u\n",
2284 col, dd->ioaccel_handle,
2285 dd->xor_mult[0], dd->xor_mult[1]);
2287 le16_to_cpu(map_buff->metadata_disks_per_row);
2288 for (col = 0; col < disks_per_row; col++, dd++)
2289 dev_info(&h->pdev->dev,
2290 " M%02u: h=0x%04x xor=%u,%u\n",
2291 col, dd->ioaccel_handle,
2292 dd->xor_mult[0], dd->xor_mult[1]);
2297 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
2298 __attribute__((unused)) int rc,
2299 __attribute__((unused)) struct raid_map_data *map_buff)
2304 static int hpsa_get_raid_map(struct ctlr_info *h,
2305 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2308 struct CommandList *c;
2309 struct ErrorInfo *ei;
2311 c = cmd_special_alloc(h);
2313 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2316 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
2317 sizeof(this_device->raid_map), 0,
2318 scsi3addr, TYPE_CMD)) {
2319 dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2320 cmd_special_free(h, c);
2323 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2325 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2326 hpsa_scsi_interpret_error(h, c);
2327 cmd_special_free(h, c);
2330 cmd_special_free(h, c);
2332 /* @todo in the future, dynamically allocate RAID map memory */
2333 if (le32_to_cpu(this_device->raid_map.structure_size) >
2334 sizeof(this_device->raid_map)) {
2335 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
2338 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
2342 static int hpsa_vpd_page_supported(struct ctlr_info *h,
2343 unsigned char scsi3addr[], u8 page)
2348 unsigned char *buf, bufsize;
2350 buf = kzalloc(256, GFP_KERNEL);
2354 /* Get the size of the page list first */
2355 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2356 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2357 buf, HPSA_VPD_HEADER_SZ);
2359 goto exit_unsupported;
2361 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
2362 bufsize = pages + HPSA_VPD_HEADER_SZ;
2366 /* Get the whole VPD page list */
2367 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2368 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
2371 goto exit_unsupported;
2374 for (i = 1; i <= pages; i++)
2375 if (buf[3 + i] == page)
2376 goto exit_supported;
2385 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
2386 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
2392 this_device->offload_config = 0;
2393 this_device->offload_enabled = 0;
2395 buf = kzalloc(64, GFP_KERNEL);
2398 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
2400 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2401 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2405 #define IOACCEL_STATUS_BYTE 4
2406 #define OFFLOAD_CONFIGURED_BIT 0x01
2407 #define OFFLOAD_ENABLED_BIT 0x02
2408 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
2409 this_device->offload_config =
2410 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
2411 if (this_device->offload_config) {
2412 this_device->offload_enabled =
2413 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
2414 if (hpsa_get_raid_map(h, scsi3addr, this_device))
2415 this_device->offload_enabled = 0;
2422 /* Get the device id from inquiry page 0x83 */
2423 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
2424 unsigned char *device_id, int buflen)
2431 buf = kzalloc(64, GFP_KERNEL);
2434 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2436 memcpy(device_id, &buf[8], buflen);
2441 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2442 struct ReportLUNdata *buf, int bufsize,
2443 int extended_response)
2446 struct CommandList *c;
2447 unsigned char scsi3addr[8];
2448 struct ErrorInfo *ei;
2450 c = cmd_special_alloc(h);
2451 if (c == NULL) { /* trouble... */
2452 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2455 /* address the controller */
2456 memset(scsi3addr, 0, sizeof(scsi3addr));
2457 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
2458 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
2462 if (extended_response)
2463 c->Request.CDB[1] = extended_response;
2464 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
2466 if (ei->CommandStatus != 0 &&
2467 ei->CommandStatus != CMD_DATA_UNDERRUN) {
2468 hpsa_scsi_interpret_error(h, c);
2471 if (buf->extended_response_flag != extended_response) {
2472 dev_err(&h->pdev->dev,
2473 "report luns requested format %u, got %u\n",
2475 buf->extended_response_flag);
2480 cmd_special_free(h, c);
2484 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2485 struct ReportLUNdata *buf,
2486 int bufsize, int extended_response)
2488 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
2491 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
2492 struct ReportLUNdata *buf, int bufsize)
2494 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
2497 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
2498 int bus, int target, int lun)
2501 device->target = target;
2505 /* Use VPD inquiry to get details of volume status */
2506 static int hpsa_get_volume_status(struct ctlr_info *h,
2507 unsigned char scsi3addr[])
2514 buf = kzalloc(64, GFP_KERNEL);
2516 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2518 /* Does controller have VPD for logical volume status? */
2519 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2522 /* Get the size of the VPD return buffer */
2523 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2524 buf, HPSA_VPD_HEADER_SZ);
2529 /* Now get the whole VPD buffer */
2530 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
2531 buf, size + HPSA_VPD_HEADER_SZ);
2534 status = buf[4]; /* status byte */
2540 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
2543 /* Determine offline status of a volume.
2546 * 0xff (offline for unknown reasons)
2547 * # (integer code indicating one of several NOT READY states
2548 * describing why a volume is to be kept offline)
2550 static int hpsa_volume_offline(struct ctlr_info *h,
2551 unsigned char scsi3addr[])
2553 struct CommandList *c;
2554 unsigned char *sense, sense_key, asc, ascq;
2558 #define ASC_LUN_NOT_READY 0x04
2559 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
2560 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
2565 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2566 hpsa_scsi_do_simple_cmd_core(h, c);
2567 sense = c->err_info->SenseInfo;
2568 sense_key = sense[2];
2571 cmd_status = c->err_info->CommandStatus;
2572 scsi_status = c->err_info->ScsiStatus;
2574 /* Is the volume 'not ready'? */
2575 if (cmd_status != CMD_TARGET_STATUS ||
2576 scsi_status != SAM_STAT_CHECK_CONDITION ||
2577 sense_key != NOT_READY ||
2578 asc != ASC_LUN_NOT_READY) {
2582 /* Determine the reason for not ready state */
2583 ldstat = hpsa_get_volume_status(h, scsi3addr);
2585 /* Keep volume offline in certain cases: */
2587 case HPSA_LV_UNDERGOING_ERASE:
2588 case HPSA_LV_UNDERGOING_RPI:
2589 case HPSA_LV_PENDING_RPI:
2590 case HPSA_LV_ENCRYPTED_NO_KEY:
2591 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
2592 case HPSA_LV_UNDERGOING_ENCRYPTION:
2593 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
2594 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
2596 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
2597 /* If VPD status page isn't available,
2598 * use ASC/ASCQ to determine state
2600 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
2601 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
2610 static int hpsa_update_device_info(struct ctlr_info *h,
2611 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
2612 unsigned char *is_OBDR_device)
2615 #define OBDR_SIG_OFFSET 43
2616 #define OBDR_TAPE_SIG "$DR-10"
2617 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
2618 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
2620 unsigned char *inq_buff;
2621 unsigned char *obdr_sig;
2623 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2627 /* Do an inquiry to the device to see what it is. */
2628 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
2629 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
2630 /* Inquiry failed (msg printed already) */
2631 dev_err(&h->pdev->dev,
2632 "hpsa_update_device_info: inquiry failed\n");
2636 this_device->devtype = (inq_buff[0] & 0x1f);
2637 memcpy(this_device->scsi3addr, scsi3addr, 8);
2638 memcpy(this_device->vendor, &inq_buff[8],
2639 sizeof(this_device->vendor));
2640 memcpy(this_device->model, &inq_buff[16],
2641 sizeof(this_device->model));
2642 memset(this_device->device_id, 0,
2643 sizeof(this_device->device_id));
2644 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
2645 sizeof(this_device->device_id));
2647 if (this_device->devtype == TYPE_DISK &&
2648 is_logical_dev_addr_mode(scsi3addr)) {
2651 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2652 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
2653 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2654 volume_offline = hpsa_volume_offline(h, scsi3addr);
2655 if (volume_offline < 0 || volume_offline > 0xff)
2656 volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
2657 this_device->volume_offline = volume_offline & 0xff;
2659 this_device->raid_level = RAID_UNKNOWN;
2660 this_device->offload_config = 0;
2661 this_device->offload_enabled = 0;
2662 this_device->volume_offline = 0;
2665 if (is_OBDR_device) {
2666 /* See if this is a One-Button-Disaster-Recovery device
2667 * by looking for "$DR-10" at offset 43 in inquiry data.
2669 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
2670 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
2671 strncmp(obdr_sig, OBDR_TAPE_SIG,
2672 OBDR_SIG_LEN) == 0);
2683 static unsigned char *ext_target_model[] = {
2693 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2697 for (i = 0; ext_target_model[i]; i++)
2698 if (strncmp(device->model, ext_target_model[i],
2699 strlen(ext_target_model[i])) == 0)
2704 /* Helper function to assign bus, target, lun mapping of devices.
2705 * Puts non-external target logical volumes on bus 0, external target logical
2706 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
2707 * Logical drive target and lun are assigned at this time, but
2708 * physical device lun and target assignment are deferred (assigned
2709 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
2711 static void figure_bus_target_lun(struct ctlr_info *h,
2712 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2714 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
2716 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
2717 /* physical device, target and lun filled in later */
2718 if (is_hba_lunid(lunaddrbytes))
2719 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2721 /* defer target, lun assignment for physical devices */
2722 hpsa_set_bus_target_lun(device, 2, -1, -1);
2725 /* It's a logical device */
2726 if (is_ext_target(h, device)) {
2727 /* external target way, put logicals on bus 1
2728 * and match target/lun numbers box
2729 * reports, other smart array, bus 0, target 0, match lunid
2731 hpsa_set_bus_target_lun(device,
2732 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
2735 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2739 * If there is no lun 0 on a target, linux won't find any devices.
2740 * For the external targets (arrays), we have to manually detect the enclosure
2741 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
2742 * it for some reason. *tmpdevice is the target we're adding,
2743 * this_device is a pointer into the current element of currentsd[]
2744 * that we're building up in update_scsi_devices(), below.
2745 * lunzerobits is a bitmap that tracks which targets already have a
2747 * Returns 1 if an enclosure was added, 0 if not.
2749 static int add_ext_target_dev(struct ctlr_info *h,
2750 struct hpsa_scsi_dev_t *tmpdevice,
2751 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2752 unsigned long lunzerobits[], int *n_ext_target_devs)
2754 unsigned char scsi3addr[8];
2756 if (test_bit(tmpdevice->target, lunzerobits))
2757 return 0; /* There is already a lun 0 on this target. */
2759 if (!is_logical_dev_addr_mode(lunaddrbytes))
2760 return 0; /* It's the logical targets that may lack lun 0. */
2762 if (!is_ext_target(h, tmpdevice))
2763 return 0; /* Only external target devices have this problem. */
2765 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2768 memset(scsi3addr, 0, 8);
2769 scsi3addr[3] = tmpdevice->target;
2770 if (is_hba_lunid(scsi3addr))
2771 return 0; /* Don't add the RAID controller here. */
2773 if (is_scsi_rev_5(h))
2774 return 0; /* p1210m doesn't need to do this. */
2776 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2777 dev_warn(&h->pdev->dev, "Maximum number of external "
2778 "target devices exceeded. Check your hardware "
2783 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2785 (*n_ext_target_devs)++;
2786 hpsa_set_bus_target_lun(this_device,
2787 tmpdevice->bus, tmpdevice->target, 0);
2788 set_bit(tmpdevice->target, lunzerobits);
2793 * Get address of physical disk used for an ioaccel2 mode command:
2794 * 1. Extract ioaccel2 handle from the command.
2795 * 2. Find a matching ioaccel2 handle from list of physical disks.
2797 * 1 and set scsi3addr to address of matching physical
2798 * 0 if no matching physical disk was found.
2800 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
2801 struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
2803 struct ReportExtendedLUNdata *physicals = NULL;
2804 int responsesize = 24; /* size of physical extended response */
2805 int extended = 2; /* flag forces reporting 'other dev info'. */
2806 int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
2807 u32 nphysicals = 0; /* number of reported physical devs */
2808 int found = 0; /* found match (1) or not (0) */
2809 u32 find; /* handle we need to match */
2811 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
2812 struct hpsa_scsi_dev_t *d; /* device of request being aborted */
2813 struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
2814 u32 it_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2815 u32 scsi_nexus; /* 4 byte device handle for the ioaccel2 cmd */
2817 if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
2818 return 0; /* no match */
2820 /* point to the ioaccel2 device handle */
2821 c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
2823 return 0; /* no match */
2825 scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
2827 return 0; /* no match */
2829 d = scmd->device->hostdata;
2831 return 0; /* no match */
2833 it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
2834 scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
2835 find = c2a->scsi_nexus;
2837 if (h->raid_offload_debug > 0)
2838 dev_info(&h->pdev->dev,
2839 "%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
2840 __func__, scsi_nexus,
2841 d->device_id[0], d->device_id[1], d->device_id[2],
2842 d->device_id[3], d->device_id[4], d->device_id[5],
2843 d->device_id[6], d->device_id[7], d->device_id[8],
2844 d->device_id[9], d->device_id[10], d->device_id[11],
2845 d->device_id[12], d->device_id[13], d->device_id[14],
2848 /* Get the list of physical devices */
2849 physicals = kzalloc(reportsize, GFP_KERNEL);
2850 if (physicals == NULL)
2852 if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
2853 reportsize, extended)) {
2854 dev_err(&h->pdev->dev,
2855 "Can't lookup %s device handle: report physical LUNs failed.\n",
2856 "HP SSD Smart Path");
2860 nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
2863 /* find ioaccel2 handle in list of physicals: */
2864 for (i = 0; i < nphysicals; i++) {
2865 struct ext_report_lun_entry *entry = &physicals->LUN[i];
2867 /* handle is in bytes 28-31 of each lun */
2868 if (entry->ioaccel_handle != find)
2869 continue; /* didn't match */
2871 memcpy(scsi3addr, entry->lunid, 8);
2872 if (h->raid_offload_debug > 0)
2873 dev_info(&h->pdev->dev,
2874 "%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2876 entry->ioaccel_handle, scsi3addr);
2877 break; /* found it */
2888 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
2889 * logdev. The number of luns in physdev and logdev are returned in
2890 * *nphysicals and *nlogicals, respectively.
2891 * Returns 0 on success, -1 otherwise.
2893 static int hpsa_gather_lun_info(struct ctlr_info *h,
2895 struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2896 struct ReportLUNdata *logdev, u32 *nlogicals)
2898 int physical_entry_size = 8;
2902 /* For I/O accelerator mode we need to read physical device handles */
2903 if (h->transMethod & CFGTBL_Trans_io_accel1 ||
2904 h->transMethod & CFGTBL_Trans_io_accel2) {
2905 *physical_mode = HPSA_REPORT_PHYS_EXTENDED;
2906 physical_entry_size = 24;
2908 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2910 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
2913 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
2914 physical_entry_size;
2915 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
2916 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
2917 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2918 *nphysicals - HPSA_MAX_PHYS_LUN);
2919 *nphysicals = HPSA_MAX_PHYS_LUN;
2921 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
2922 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
2925 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2926 /* Reject Logicals in excess of our max capability. */
2927 if (*nlogicals > HPSA_MAX_LUN) {
2928 dev_warn(&h->pdev->dev,
2929 "maximum logical LUNs (%d) exceeded. "
2930 "%d LUNs ignored.\n", HPSA_MAX_LUN,
2931 *nlogicals - HPSA_MAX_LUN);
2932 *nlogicals = HPSA_MAX_LUN;
2934 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
2935 dev_warn(&h->pdev->dev,
2936 "maximum logical + physical LUNs (%d) exceeded. "
2937 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
2938 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
2939 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
2944 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
2945 int nphysicals, int nlogicals,
2946 struct ReportExtendedLUNdata *physdev_list,
2947 struct ReportLUNdata *logdev_list)
2949 /* Helper function, figure out where the LUN ID info is coming from
2950 * given index i, lists of physical and logical devices, where in
2951 * the list the raid controller is supposed to appear (first or last)
2954 int logicals_start = nphysicals + (raid_ctlr_position == 0);
2955 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
2957 if (i == raid_ctlr_position)
2958 return RAID_CTLR_LUNID;
2960 if (i < logicals_start)
2961 return &physdev_list->LUN[i -
2962 (raid_ctlr_position == 0)].lunid[0];
2964 if (i < last_device)
2965 return &logdev_list->LUN[i - nphysicals -
2966 (raid_ctlr_position == 0)][0];
2971 static int hpsa_hba_mode_enabled(struct ctlr_info *h)
2974 int hba_mode_enabled;
2975 struct bmic_controller_parameters *ctlr_params;
2976 ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
2981 rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
2982 sizeof(struct bmic_controller_parameters));
2989 ((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
2991 return hba_mode_enabled;
2994 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
2996 /* the idea here is we could get notified
2997 * that some devices have changed, so we do a report
2998 * physical luns and report logical luns cmd, and adjust
2999 * our list of devices accordingly.
3001 * The scsi3addr's of devices won't change so long as the
3002 * adapter is not reset. That means we can rescan and
3003 * tell which devices we already know about, vs. new
3004 * devices, vs. disappearing devices.
3006 struct ReportExtendedLUNdata *physdev_list = NULL;
3007 struct ReportLUNdata *logdev_list = NULL;
3010 int physical_mode = 0;
3011 u32 ndev_allocated = 0;
3012 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
3014 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3015 int i, n_ext_target_devs, ndevs_to_allocate;
3016 int raid_ctlr_position;
3017 int rescan_hba_mode;
3018 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3020 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3021 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3022 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
3023 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3025 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3026 dev_err(&h->pdev->dev, "out of memory\n");
3029 memset(lunzerobits, 0, sizeof(lunzerobits));
3031 rescan_hba_mode = hpsa_hba_mode_enabled(h);
3032 if (rescan_hba_mode < 0)
3035 if (!h->hba_mode_enabled && rescan_hba_mode)
3036 dev_warn(&h->pdev->dev, "HBA mode enabled\n");
3037 else if (h->hba_mode_enabled && !rescan_hba_mode)
3038 dev_warn(&h->pdev->dev, "HBA mode disabled\n");
3040 h->hba_mode_enabled = rescan_hba_mode;
3042 if (hpsa_gather_lun_info(h, reportlunsize,
3043 (struct ReportLUNdata *) physdev_list, &nphysicals,
3044 &physical_mode, logdev_list, &nlogicals))
3047 /* We might see up to the maximum number of logical and physical disks
3048 * plus external target devices, and a device for the local RAID
3051 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3053 /* Allocate the per device structures */
3054 for (i = 0; i < ndevs_to_allocate; i++) {
3055 if (i >= HPSA_MAX_DEVICES) {
3056 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
3057 " %d devices ignored.\n", HPSA_MAX_DEVICES,
3058 ndevs_to_allocate - HPSA_MAX_DEVICES);
3062 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
3063 if (!currentsd[i]) {
3064 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
3065 __FILE__, __LINE__);
3071 if (is_scsi_rev_5(h))
3072 raid_ctlr_position = 0;
3074 raid_ctlr_position = nphysicals + nlogicals;
3076 /* adjust our table of devices */
3077 n_ext_target_devs = 0;
3078 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3079 u8 *lunaddrbytes, is_OBDR = 0;
3081 /* Figure out where the LUN ID info is coming from */
3082 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
3083 i, nphysicals, nlogicals, physdev_list, logdev_list);
3084 /* skip masked physical devices. */
3085 if (lunaddrbytes[3] & 0xC0 &&
3086 i < nphysicals + (raid_ctlr_position == 0))
3089 /* Get device type, vendor, model, device id */
3090 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
3092 continue; /* skip it if we can't talk to it. */
3093 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3094 this_device = currentsd[ncurrent];
3097 * For external target devices, we have to insert a LUN 0 which
3098 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
3099 * is nonetheless an enclosure device there. We have to
3100 * present that otherwise linux won't find anything if
3101 * there is no lun 0.
3103 if (add_ext_target_dev(h, tmpdevice, this_device,
3104 lunaddrbytes, lunzerobits,
3105 &n_ext_target_devs)) {
3107 this_device = currentsd[ncurrent];
3110 *this_device = *tmpdevice;
3112 switch (this_device->devtype) {
3114 /* We don't *really* support actual CD-ROM devices,
3115 * just "One Button Disaster Recovery" tape drive
3116 * which temporarily pretends to be a CD-ROM drive.
3117 * So we check that the device is really an OBDR tape
3118 * device by checking for "$DR-10" in bytes 43-48 of
3125 if (h->hba_mode_enabled) {
3126 /* never use raid mapper in HBA mode */
3127 this_device->offload_enabled = 0;
3130 } else if (h->acciopath_status) {
3131 if (i >= nphysicals) {
3141 if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
3142 memcpy(&this_device->ioaccel_handle,
3144 sizeof(this_device->ioaccel_handle));
3149 case TYPE_MEDIUM_CHANGER:
3153 /* Only present the Smartarray HBA as a RAID controller.
3154 * If it's a RAID controller other than the HBA itself
3155 * (an external RAID controller, MSA500 or similar)
3158 if (!is_hba_lunid(lunaddrbytes))
3165 if (ncurrent >= HPSA_MAX_DEVICES)
3168 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
3171 for (i = 0; i < ndev_allocated; i++)
3172 kfree(currentsd[i]);
3174 kfree(physdev_list);
3178 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3179 * dma mapping and fills in the scatter gather entries of the
3182 static int hpsa_scatter_gather(struct ctlr_info *h,
3183 struct CommandList *cp,
3184 struct scsi_cmnd *cmd)
3187 struct scatterlist *sg;
3189 int use_sg, i, sg_index, chained;
3190 struct SGDescriptor *curr_sg;
3192 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3194 use_sg = scsi_dma_map(cmd);
3199 goto sglist_finished;
3204 scsi_for_each_sg(cmd, sg, use_sg, i) {
3205 if (i == h->max_cmd_sg_entries - 1 &&
3206 use_sg > h->max_cmd_sg_entries) {
3208 curr_sg = h->cmd_sg_list[cp->cmdindex];
3211 addr64 = (u64) sg_dma_address(sg);
3212 len = sg_dma_len(sg);
3213 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3214 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3216 curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3220 if (use_sg + chained > h->maxSG)
3221 h->maxSG = use_sg + chained;
3224 cp->Header.SGList = h->max_cmd_sg_entries;
3225 cp->Header.SGTotal = (u16) (use_sg + 1);
3226 if (hpsa_map_sg_chain_block(h, cp)) {
3227 scsi_dma_unmap(cmd);
3235 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
3236 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3240 #define IO_ACCEL_INELIGIBLE (1)
3241 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
3247 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
3254 if (*cdb_len == 6) {
3255 block = (((u32) cdb[2]) << 8) | cdb[3];
3258 BUG_ON(*cdb_len != 12);
3259 block = (((u32) cdb[2]) << 24) |
3260 (((u32) cdb[3]) << 16) |
3261 (((u32) cdb[4]) << 8) |
3264 (((u32) cdb[6]) << 24) |
3265 (((u32) cdb[7]) << 16) |
3266 (((u32) cdb[8]) << 8) |
3269 if (block_cnt > 0xffff)
3270 return IO_ACCEL_INELIGIBLE;
3272 cdb[0] = is_write ? WRITE_10 : READ_10;
3274 cdb[2] = (u8) (block >> 24);
3275 cdb[3] = (u8) (block >> 16);
3276 cdb[4] = (u8) (block >> 8);
3277 cdb[5] = (u8) (block);
3279 cdb[7] = (u8) (block_cnt >> 8);
3280 cdb[8] = (u8) (block_cnt);
3288 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3289 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3292 struct scsi_cmnd *cmd = c->scsi_cmd;
3293 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
3295 unsigned int total_len = 0;
3296 struct scatterlist *sg;
3299 struct SGDescriptor *curr_sg;
3300 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
3302 /* TODO: implement chaining support */
3303 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3304 return IO_ACCEL_INELIGIBLE;
3306 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
3308 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3309 return IO_ACCEL_INELIGIBLE;
3311 c->cmd_type = CMD_IOACCEL1;
3313 /* Adjust the DMA address to point to the accelerated command buffer */
3314 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
3315 (c->cmdindex * sizeof(*cp));
3316 BUG_ON(c->busaddr & 0x0000007F);
3318 use_sg = scsi_dma_map(cmd);
3324 scsi_for_each_sg(cmd, sg, use_sg, i) {
3325 addr64 = (u64) sg_dma_address(sg);
3326 len = sg_dma_len(sg);
3328 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
3329 curr_sg->Addr.upper =
3330 (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
3333 if (i == (scsi_sg_count(cmd) - 1))
3334 curr_sg->Ext = HPSA_SG_LAST;
3336 curr_sg->Ext = 0; /* we are not chaining */
3340 switch (cmd->sc_data_direction) {
3342 control |= IOACCEL1_CONTROL_DATA_OUT;
3344 case DMA_FROM_DEVICE:
3345 control |= IOACCEL1_CONTROL_DATA_IN;
3348 control |= IOACCEL1_CONTROL_NODATAXFER;
3351 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3352 cmd->sc_data_direction);
3357 control |= IOACCEL1_CONTROL_NODATAXFER;
3360 c->Header.SGList = use_sg;
3361 /* Fill out the command structure to submit */
3362 cp->dev_handle = ioaccel_handle & 0xFFFF;
3363 cp->transfer_len = total_len;
3364 cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3365 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3366 cp->control = control;
3367 memcpy(cp->CDB, cdb, cdb_len);
3368 memcpy(cp->CISS_LUN, scsi3addr, 8);
3369 /* Tag was already set at init time. */
3370 enqueue_cmd_and_start_io(h, c);
3375 * Queue a command directly to a device behind the controller using the
3376 * I/O accelerator path.
3378 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
3379 struct CommandList *c)
3381 struct scsi_cmnd *cmd = c->scsi_cmd;
3382 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3384 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3385 cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
3389 * Set encryption parameters for the ioaccel2 request
3391 static void set_encrypt_ioaccel2(struct ctlr_info *h,
3392 struct CommandList *c, struct io_accel2_cmd *cp)
3394 struct scsi_cmnd *cmd = c->scsi_cmd;
3395 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3396 struct raid_map_data *map = &dev->raid_map;
3399 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3401 /* Are we doing encryption on this device */
3402 if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
3404 /* Set the data encryption key index. */
3405 cp->dekindex = map->dekindex;
3407 /* Set the encryption enable flag, encoded into direction field. */
3408 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
3410 /* Set encryption tweak values based on logical block address
3411 * If block size is 512, tweak value is LBA.
3412 * For other block sizes, tweak is (LBA * block size)/ 512)
3414 switch (cmd->cmnd[0]) {
3415 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
3418 if (map->volume_blk_size == 512) {
3420 (((u32) cmd->cmnd[2]) << 8) |
3422 cp->tweak_upper = 0;
3425 (((u64) cmd->cmnd[2]) << 8) |
3427 first_block = (first_block * map->volume_blk_size)/512;
3428 cp->tweak_lower = (u32)first_block;
3429 cp->tweak_upper = (u32)(first_block >> 32);
3434 if (map->volume_blk_size == 512) {
3436 (((u32) cmd->cmnd[2]) << 24) |
3437 (((u32) cmd->cmnd[3]) << 16) |
3438 (((u32) cmd->cmnd[4]) << 8) |
3440 cp->tweak_upper = 0;
3443 (((u64) cmd->cmnd[2]) << 24) |
3444 (((u64) cmd->cmnd[3]) << 16) |
3445 (((u64) cmd->cmnd[4]) << 8) |
3447 first_block = (first_block * map->volume_blk_size)/512;
3448 cp->tweak_lower = (u32)first_block;
3449 cp->tweak_upper = (u32)(first_block >> 32);
3452 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
3455 if (map->volume_blk_size == 512) {
3457 (((u32) cmd->cmnd[2]) << 24) |
3458 (((u32) cmd->cmnd[3]) << 16) |
3459 (((u32) cmd->cmnd[4]) << 8) |
3461 cp->tweak_upper = 0;
3464 (((u64) cmd->cmnd[2]) << 24) |
3465 (((u64) cmd->cmnd[3]) << 16) |
3466 (((u64) cmd->cmnd[4]) << 8) |
3468 first_block = (first_block * map->volume_blk_size)/512;
3469 cp->tweak_lower = (u32)first_block;
3470 cp->tweak_upper = (u32)(first_block >> 32);
3475 if (map->volume_blk_size == 512) {
3477 (((u32) cmd->cmnd[6]) << 24) |
3478 (((u32) cmd->cmnd[7]) << 16) |
3479 (((u32) cmd->cmnd[8]) << 8) |
3482 (((u32) cmd->cmnd[2]) << 24) |
3483 (((u32) cmd->cmnd[3]) << 16) |
3484 (((u32) cmd->cmnd[4]) << 8) |
3488 (((u64) cmd->cmnd[2]) << 56) |
3489 (((u64) cmd->cmnd[3]) << 48) |
3490 (((u64) cmd->cmnd[4]) << 40) |
3491 (((u64) cmd->cmnd[5]) << 32) |
3492 (((u64) cmd->cmnd[6]) << 24) |
3493 (((u64) cmd->cmnd[7]) << 16) |
3494 (((u64) cmd->cmnd[8]) << 8) |
3496 first_block = (first_block * map->volume_blk_size)/512;
3497 cp->tweak_lower = (u32)first_block;
3498 cp->tweak_upper = (u32)(first_block >> 32);
3502 dev_err(&h->pdev->dev,
3503 "ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
3510 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
3511 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3514 struct scsi_cmnd *cmd = c->scsi_cmd;
3515 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
3516 struct ioaccel2_sg_element *curr_sg;
3518 struct scatterlist *sg;
3523 if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
3524 return IO_ACCEL_INELIGIBLE;
3526 if (fixup_ioaccel_cdb(cdb, &cdb_len))
3527 return IO_ACCEL_INELIGIBLE;
3528 c->cmd_type = CMD_IOACCEL2;
3529 /* Adjust the DMA address to point to the accelerated command buffer */
3530 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
3531 (c->cmdindex * sizeof(*cp));
3532 BUG_ON(c->busaddr & 0x0000007F);
3534 memset(cp, 0, sizeof(*cp));
3535 cp->IU_type = IOACCEL2_IU_TYPE;
3537 use_sg = scsi_dma_map(cmd);
3542 BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
3544 scsi_for_each_sg(cmd, sg, use_sg, i) {
3545 addr64 = (u64) sg_dma_address(sg);
3546 len = sg_dma_len(sg);
3548 curr_sg->address = cpu_to_le64(addr64);
3549 curr_sg->length = cpu_to_le32(len);
3550 curr_sg->reserved[0] = 0;
3551 curr_sg->reserved[1] = 0;
3552 curr_sg->reserved[2] = 0;
3553 curr_sg->chain_indicator = 0;
3557 switch (cmd->sc_data_direction) {
3559 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3560 cp->direction |= IOACCEL2_DIR_DATA_OUT;
3562 case DMA_FROM_DEVICE:
3563 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3564 cp->direction |= IOACCEL2_DIR_DATA_IN;
3567 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3568 cp->direction |= IOACCEL2_DIR_NO_DATA;
3571 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
3572 cmd->sc_data_direction);
3577 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
3578 cp->direction |= IOACCEL2_DIR_NO_DATA;
3581 /* Set encryption parameters, if necessary */
3582 set_encrypt_ioaccel2(h, c, cp);
3584 cp->scsi_nexus = ioaccel_handle;
3585 cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3587 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
3589 /* fill in sg elements */
3590 cp->sg_count = (u8) use_sg;
3592 cp->data_len = cpu_to_le32(total_len);
3593 cp->err_ptr = cpu_to_le64(c->busaddr +
3594 offsetof(struct io_accel2_cmd, error_data));
3595 cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));
3597 enqueue_cmd_and_start_io(h, c);
3602 * Queue a command to the correct I/O accelerator path.
3604 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
3605 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3608 if (h->transMethod & CFGTBL_Trans_io_accel1)
3609 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3610 cdb, cdb_len, scsi3addr);
3612 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3613 cdb, cdb_len, scsi3addr);
3616 static void raid_map_helper(struct raid_map_data *map,
3617 int offload_to_mirror, u32 *map_index, u32 *current_group)
3619 if (offload_to_mirror == 0) {
3620 /* use physical disk in the first mirrored group. */
3621 *map_index %= map->data_disks_per_row;
3625 /* determine mirror group that *map_index indicates */
3626 *current_group = *map_index / map->data_disks_per_row;
3627 if (offload_to_mirror == *current_group)
3629 if (*current_group < (map->layout_map_count - 1)) {
3630 /* select map index from next group */
3631 *map_index += map->data_disks_per_row;
3634 /* select map index from first group */
3635 *map_index %= map->data_disks_per_row;
3638 } while (offload_to_mirror != *current_group);
3642 * Attempt to perform offload RAID mapping for a logical volume I/O.
3644 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
3645 struct CommandList *c)
3647 struct scsi_cmnd *cmd = c->scsi_cmd;
3648 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
3649 struct raid_map_data *map = &dev->raid_map;
3650 struct raid_map_disk_data *dd = &map->data[0];
3653 u64 first_block, last_block;
3656 u64 first_row, last_row;
3657 u32 first_row_offset, last_row_offset;
3658 u32 first_column, last_column;
3659 u64 r0_first_row, r0_last_row;
3660 u32 r5or6_blocks_per_row;
3661 u64 r5or6_first_row, r5or6_last_row;
3662 u32 r5or6_first_row_offset, r5or6_last_row_offset;
3663 u32 r5or6_first_column, r5or6_last_column;
3664 u32 total_disks_per_row;
3666 u32 first_group, last_group, current_group;
3673 #if BITS_PER_LONG == 32
3676 int offload_to_mirror;
3678 BUG_ON(!(dev->offload_config && dev->offload_enabled));
3680 /* check for valid opcode, get LBA and block count */
3681 switch (cmd->cmnd[0]) {
3686 (((u64) cmd->cmnd[2]) << 8) |
3688 block_cnt = cmd->cmnd[4];
3694 (((u64) cmd->cmnd[2]) << 24) |
3695 (((u64) cmd->cmnd[3]) << 16) |
3696 (((u64) cmd->cmnd[4]) << 8) |
3699 (((u32) cmd->cmnd[7]) << 8) |
3706 (((u64) cmd->cmnd[2]) << 24) |
3707 (((u64) cmd->cmnd[3]) << 16) |
3708 (((u64) cmd->cmnd[4]) << 8) |
3711 (((u32) cmd->cmnd[6]) << 24) |
3712 (((u32) cmd->cmnd[7]) << 16) |
3713 (((u32) cmd->cmnd[8]) << 8) |
3720 (((u64) cmd->cmnd[2]) << 56) |
3721 (((u64) cmd->cmnd[3]) << 48) |
3722 (((u64) cmd->cmnd[4]) << 40) |
3723 (((u64) cmd->cmnd[5]) << 32) |
3724 (((u64) cmd->cmnd[6]) << 24) |
3725 (((u64) cmd->cmnd[7]) << 16) |
3726 (((u64) cmd->cmnd[8]) << 8) |
3729 (((u32) cmd->cmnd[10]) << 24) |
3730 (((u32) cmd->cmnd[11]) << 16) |
3731 (((u32) cmd->cmnd[12]) << 8) |
3735 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
3737 BUG_ON(block_cnt == 0);
3738 last_block = first_block + block_cnt - 1;
3740 /* check for write to non-RAID-0 */
3741 if (is_write && dev->raid_level != 0)
3742 return IO_ACCEL_INELIGIBLE;
3744 /* check for invalid block or wraparound */
3745 if (last_block >= map->volume_blk_cnt || last_block < first_block)
3746 return IO_ACCEL_INELIGIBLE;
3748 /* calculate stripe information for the request */
3749 blocks_per_row = map->data_disks_per_row * map->strip_size;
3750 #if BITS_PER_LONG == 32
3751 tmpdiv = first_block;
3752 (void) do_div(tmpdiv, blocks_per_row);
3754 tmpdiv = last_block;
3755 (void) do_div(tmpdiv, blocks_per_row);
3757 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3758 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3759 tmpdiv = first_row_offset;
3760 (void) do_div(tmpdiv, map->strip_size);
3761 first_column = tmpdiv;
3762 tmpdiv = last_row_offset;
3763 (void) do_div(tmpdiv, map->strip_size);
3764 last_column = tmpdiv;
3766 first_row = first_block / blocks_per_row;
3767 last_row = last_block / blocks_per_row;
3768 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
3769 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
3770 first_column = first_row_offset / map->strip_size;
3771 last_column = last_row_offset / map->strip_size;
3774 /* if this isn't a single row/column then give to the controller */
3775 if ((first_row != last_row) || (first_column != last_column))
3776 return IO_ACCEL_INELIGIBLE;
3778 /* proceeding with driver mapping */
3779 total_disks_per_row = map->data_disks_per_row +
3780 map->metadata_disks_per_row;
3781 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3783 map_index = (map_row * total_disks_per_row) + first_column;
3785 switch (dev->raid_level) {
3787 break; /* nothing special to do */
3789 /* Handles load balance across RAID 1 members.
3790 * (2-drive R1 and R10 with even # of drives.)
3791 * Appropriate for SSDs, not optimal for HDDs
3793 BUG_ON(map->layout_map_count != 2);
3794 if (dev->offload_to_mirror)
3795 map_index += map->data_disks_per_row;
3796 dev->offload_to_mirror = !dev->offload_to_mirror;
3799 /* Handles N-way mirrors (R1-ADM)
3800 * and R10 with # of drives divisible by 3.)
3802 BUG_ON(map->layout_map_count != 3);
3804 offload_to_mirror = dev->offload_to_mirror;
3805 raid_map_helper(map, offload_to_mirror,
3806 &map_index, ¤t_group);
3807 /* set mirror group to use next time */
3809 (offload_to_mirror >= map->layout_map_count - 1)
3810 ? 0 : offload_to_mirror + 1;
3811 /* FIXME: remove after debug/dev */
3812 BUG_ON(offload_to_mirror >= map->layout_map_count);
3813 dev_warn(&h->pdev->dev,
3814 "DEBUG: Using physical disk map index %d from mirror group %d\n",
3815 map_index, offload_to_mirror);
3816 dev->offload_to_mirror = offload_to_mirror;
3817 /* Avoid direct use of dev->offload_to_mirror within this
3818 * function since multiple threads might simultaneously
3819 * increment it beyond the range of dev->layout_map_count -1.
3824 if (map->layout_map_count <= 1)
3827 /* Verify first and last block are in same RAID group */
3828 r5or6_blocks_per_row =
3829 map->strip_size * map->data_disks_per_row;
3830 BUG_ON(r5or6_blocks_per_row == 0);
3831 stripesize = r5or6_blocks_per_row * map->layout_map_count;
3832 #if BITS_PER_LONG == 32
3833 tmpdiv = first_block;
3834 first_group = do_div(tmpdiv, stripesize);
3835 tmpdiv = first_group;
3836 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3837 first_group = tmpdiv;
3838 tmpdiv = last_block;
3839 last_group = do_div(tmpdiv, stripesize);
3840 tmpdiv = last_group;
3841 (void) do_div(tmpdiv, r5or6_blocks_per_row);
3842 last_group = tmpdiv;
3844 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
3845 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
3847 if (first_group != last_group)
3848 return IO_ACCEL_INELIGIBLE;
3850 /* Verify request is in a single row of RAID 5/6 */
3851 #if BITS_PER_LONG == 32
3852 tmpdiv = first_block;
3853 (void) do_div(tmpdiv, stripesize);
3854 first_row = r5or6_first_row = r0_first_row = tmpdiv;
3855 tmpdiv = last_block;
3856 (void) do_div(tmpdiv, stripesize);
3857 r5or6_last_row = r0_last_row = tmpdiv;
3859 first_row = r5or6_first_row = r0_first_row =
3860 first_block / stripesize;
3861 r5or6_last_row = r0_last_row = last_block / stripesize;
3863 if (r5or6_first_row != r5or6_last_row)
3864 return IO_ACCEL_INELIGIBLE;
3867 /* Verify request is in a single column */
3868 #if BITS_PER_LONG == 32
3869 tmpdiv = first_block;
3870 first_row_offset = do_div(tmpdiv, stripesize);
3871 tmpdiv = first_row_offset;
3872 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
3873 r5or6_first_row_offset = first_row_offset;
3874 tmpdiv = last_block;
3875 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
3876 tmpdiv = r5or6_last_row_offset;
3877 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
3878 tmpdiv = r5or6_first_row_offset;
3879 (void) do_div(tmpdiv, map->strip_size);
3880 first_column = r5or6_first_column = tmpdiv;
3881 tmpdiv = r5or6_last_row_offset;
3882 (void) do_div(tmpdiv, map->strip_size);
3883 r5or6_last_column = tmpdiv;
3885 first_row_offset = r5or6_first_row_offset =
3886 (u32)((first_block % stripesize) %
3887 r5or6_blocks_per_row);
3889 r5or6_last_row_offset =
3890 (u32)((last_block % stripesize) %
3891 r5or6_blocks_per_row);
3893 first_column = r5or6_first_column =
3894 r5or6_first_row_offset / map->strip_size;
3896 r5or6_last_row_offset / map->strip_size;
3898 if (r5or6_first_column != r5or6_last_column)
3899 return IO_ACCEL_INELIGIBLE;
3901 /* Request is eligible */
3902 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
3905 map_index = (first_group *
3906 (map->row_cnt * total_disks_per_row)) +
3907 (map_row * total_disks_per_row) + first_column;
3910 return IO_ACCEL_INELIGIBLE;
3913 disk_handle = dd[map_index].ioaccel_handle;
3914 disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
3915 (first_row_offset - (first_column * map->strip_size));
3916 disk_block_cnt = block_cnt;
3918 /* handle differing logical/physical block sizes */
3919 if (map->phys_blk_shift) {
3920 disk_block <<= map->phys_blk_shift;
3921 disk_block_cnt <<= map->phys_blk_shift;
3923 BUG_ON(disk_block_cnt > 0xffff);
3925 /* build the new CDB for the physical disk I/O */
3926 if (disk_block > 0xffffffff) {
3927 cdb[0] = is_write ? WRITE_16 : READ_16;
3929 cdb[2] = (u8) (disk_block >> 56);
3930 cdb[3] = (u8) (disk_block >> 48);
3931 cdb[4] = (u8) (disk_block >> 40);
3932 cdb[5] = (u8) (disk_block >> 32);
3933 cdb[6] = (u8) (disk_block >> 24);
3934 cdb[7] = (u8) (disk_block >> 16);
3935 cdb[8] = (u8) (disk_block >> 8);
3936 cdb[9] = (u8) (disk_block);
3937 cdb[10] = (u8) (disk_block_cnt >> 24);
3938 cdb[11] = (u8) (disk_block_cnt >> 16);
3939 cdb[12] = (u8) (disk_block_cnt >> 8);
3940 cdb[13] = (u8) (disk_block_cnt);
3945 cdb[0] = is_write ? WRITE_10 : READ_10;
3947 cdb[2] = (u8) (disk_block >> 24);
3948 cdb[3] = (u8) (disk_block >> 16);
3949 cdb[4] = (u8) (disk_block >> 8);
3950 cdb[5] = (u8) (disk_block);
3952 cdb[7] = (u8) (disk_block_cnt >> 8);
3953 cdb[8] = (u8) (disk_block_cnt);
3957 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
3961 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3962 void (*done)(struct scsi_cmnd *))
3964 struct ctlr_info *h;
3965 struct hpsa_scsi_dev_t *dev;
3966 unsigned char scsi3addr[8];
3967 struct CommandList *c;
3970 /* Get the ptr to our adapter structure out of cmd->host. */
3971 h = sdev_to_hba(cmd->device);
3972 dev = cmd->device->hostdata;
3974 cmd->result = DID_NO_CONNECT << 16;
3978 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
3980 if (unlikely(lockup_detected(h))) {
3981 cmd->result = DID_ERROR << 16;
3986 if (c == NULL) { /* trouble... */
3987 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
3988 return SCSI_MLQUEUE_HOST_BUSY;
3991 /* Fill in the command list header */
3993 cmd->scsi_done = done; /* save this for use by completion code */
3995 /* save c in case we have to abort it */
3996 cmd->host_scribble = (unsigned char *) c;
3998 c->cmd_type = CMD_SCSI;
4001 /* Call alternate submit routine for I/O accelerated commands.
4002 * Retries always go down the normal I/O path.
4004 if (likely(cmd->retries == 0 &&
4005 cmd->request->cmd_type == REQ_TYPE_FS &&
4006 h->acciopath_status)) {
4007 if (dev->offload_enabled) {
4008 rc = hpsa_scsi_ioaccel_raid_map(h, c);
4010 return 0; /* Sent on ioaccel path */
4011 if (rc < 0) { /* scsi_dma_map failed. */
4013 return SCSI_MLQUEUE_HOST_BUSY;
4015 } else if (dev->ioaccel_handle) {
4016 rc = hpsa_scsi_ioaccel_direct_map(h, c);
4018 return 0; /* Sent on direct map path */
4019 if (rc < 0) { /* scsi_dma_map failed. */
4021 return SCSI_MLQUEUE_HOST_BUSY;
4026 c->Header.ReplyQueue = 0; /* unused in simple mode */
4027 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4028 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
4029 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4031 /* Fill in the request block... */
4033 c->Request.Timeout = 0;
4034 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
4035 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
4036 c->Request.CDBLen = cmd->cmd_len;
4037 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
4038 c->Request.Type.Type = TYPE_CMD;
4039 c->Request.Type.Attribute = ATTR_SIMPLE;
4040 switch (cmd->sc_data_direction) {
4042 c->Request.Type.Direction = XFER_WRITE;
4044 case DMA_FROM_DEVICE:
4045 c->Request.Type.Direction = XFER_READ;
4048 c->Request.Type.Direction = XFER_NONE;
4050 case DMA_BIDIRECTIONAL:
4051 /* This can happen if a buggy application does a scsi passthru
4052 * and sets both inlen and outlen to non-zero. ( see
4053 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
4056 c->Request.Type.Direction = XFER_RSVD;
4057 /* This is technically wrong, and hpsa controllers should
4058 * reject it with CMD_INVALID, which is the most correct
4059 * response, but non-fibre backends appear to let it
4060 * slide by, and give the same results as if this field
4061 * were set correctly. Either way is acceptable for
4062 * our purposes here.
4068 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4069 cmd->sc_data_direction);
4074 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4076 return SCSI_MLQUEUE_HOST_BUSY;
4078 enqueue_cmd_and_start_io(h, c);
4079 /* the cmd'll come back via intr handler in complete_scsi_command() */
4083 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
4085 static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
4087 unsigned long flags;
4090 * Don't let rescans be initiated on a controller known
4091 * to be locked up. If the controller locks up *during*
4092 * a rescan, that thread is probably hosed, but at least
4093 * we can prevent new rescan threads from piling up on a
4094 * locked up controller.
4096 if (unlikely(lockup_detected(h))) {
4097 spin_lock_irqsave(&h->scan_lock, flags);
4098 h->scan_finished = 1;
4099 wake_up_all(&h->scan_wait_queue);
4100 spin_unlock_irqrestore(&h->scan_lock, flags);
4106 static void hpsa_scan_start(struct Scsi_Host *sh)
4108 struct ctlr_info *h = shost_to_hba(sh);
4109 unsigned long flags;
4111 if (do_not_scan_if_controller_locked_up(h))
4114 /* wait until any scan already in progress is finished. */
4116 spin_lock_irqsave(&h->scan_lock, flags);
4117 if (h->scan_finished)
4119 spin_unlock_irqrestore(&h->scan_lock, flags);
4120 wait_event(h->scan_wait_queue, h->scan_finished);
4121 /* Note: We don't need to worry about a race between this
4122 * thread and driver unload because the midlayer will
4123 * have incremented the reference count, so unload won't
4124 * happen if we're in here.
4127 h->scan_finished = 0; /* mark scan as in progress */
4128 spin_unlock_irqrestore(&h->scan_lock, flags);
4130 if (do_not_scan_if_controller_locked_up(h))
4133 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
4135 spin_lock_irqsave(&h->scan_lock, flags);
4136 h->scan_finished = 1; /* mark scan as finished. */
4137 wake_up_all(&h->scan_wait_queue);
4138 spin_unlock_irqrestore(&h->scan_lock, flags);
4141 static int hpsa_scan_finished(struct Scsi_Host *sh,
4142 unsigned long elapsed_time)
4144 struct ctlr_info *h = shost_to_hba(sh);
4145 unsigned long flags;
4148 spin_lock_irqsave(&h->scan_lock, flags);
4149 finished = h->scan_finished;
4150 spin_unlock_irqrestore(&h->scan_lock, flags);
4154 static int hpsa_change_queue_depth(struct scsi_device *sdev,
4155 int qdepth, int reason)
4157 struct ctlr_info *h = sdev_to_hba(sdev);
4159 if (reason != SCSI_QDEPTH_DEFAULT)
4165 if (qdepth > h->nr_cmds)
4166 qdepth = h->nr_cmds;
4167 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
4168 return sdev->queue_depth;
4171 static void hpsa_unregister_scsi(struct ctlr_info *h)
4173 /* we are being forcibly unloaded, and may not refuse. */
4174 scsi_remove_host(h->scsi_host);
4175 scsi_host_put(h->scsi_host);
4176 h->scsi_host = NULL;
4179 static int hpsa_register_scsi(struct ctlr_info *h)
4181 struct Scsi_Host *sh;
4184 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
4191 sh->max_channel = 3;
4192 sh->max_cmd_len = MAX_COMMAND_SIZE;
4193 sh->max_lun = HPSA_MAX_LUN;
4194 sh->max_id = HPSA_MAX_LUN;
4195 sh->can_queue = h->nr_cmds;
4196 if (h->hba_mode_enabled)
4197 sh->cmd_per_lun = 7;
4199 sh->cmd_per_lun = h->nr_cmds;
4200 sh->sg_tablesize = h->maxsgentries;
4202 sh->hostdata[0] = (unsigned long) h;
4203 sh->irq = h->intr[h->intr_mode];
4204 sh->unique_id = sh->irq;
4205 error = scsi_add_host(sh, &h->pdev->dev);
4212 dev_err(&h->pdev->dev, "%s: scsi_add_host"
4213 " failed for controller %d\n", __func__, h->ctlr);
4217 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
4218 " failed for controller %d\n", __func__, h->ctlr);
4222 static int wait_for_device_to_become_ready(struct ctlr_info *h,
4223 unsigned char lunaddr[])
4227 int waittime = 1; /* seconds */
4228 struct CommandList *c;
4230 c = cmd_special_alloc(h);
4232 dev_warn(&h->pdev->dev, "out of memory in "
4233 "wait_for_device_to_become_ready.\n");
4237 /* Send test unit ready until device ready, or give up. */
4238 while (count < HPSA_TUR_RETRY_LIMIT) {
4240 /* Wait for a bit. do this first, because if we send
4241 * the TUR right away, the reset will just abort it.
4243 msleep(1000 * waittime);
4245 rc = 0; /* Device ready. */
4247 /* Increase wait time with each try, up to a point. */
4248 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
4249 waittime = waittime * 2;
4251 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
4252 (void) fill_cmd(c, TEST_UNIT_READY, h,
4253 NULL, 0, 0, lunaddr, TYPE_CMD);
4254 hpsa_scsi_do_simple_cmd_core(h, c);
4255 /* no unmap needed here because no data xfer. */
4257 if (c->err_info->CommandStatus == CMD_SUCCESS)
4260 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
4261 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
4262 (c->err_info->SenseInfo[2] == NO_SENSE ||
4263 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
4266 dev_warn(&h->pdev->dev, "waiting %d secs "
4267 "for device to become ready.\n", waittime);
4268 rc = 1; /* device not ready. */
4272 dev_warn(&h->pdev->dev, "giving up on device.\n");
4274 dev_warn(&h->pdev->dev, "device is ready.\n");
4276 cmd_special_free(h, c);
4280 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
4281 * complaining. Doing a host- or bus-reset can't do anything good here.
4283 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
4286 struct ctlr_info *h;
4287 struct hpsa_scsi_dev_t *dev;
4289 /* find the controller to which the command to be aborted was sent */
4290 h = sdev_to_hba(scsicmd->device);
4291 if (h == NULL) /* paranoia */
4293 dev = scsicmd->device->hostdata;
4295 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
4296 "device lookup failed.\n");
4299 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
4300 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4301 /* send a reset to the SCSI LUN which the command was sent to */
4302 rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4303 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
4306 dev_warn(&h->pdev->dev, "resetting device failed.\n");
4310 static void swizzle_abort_tag(u8 *tag)
4314 memcpy(original_tag, tag, 8);
4315 tag[0] = original_tag[3];
4316 tag[1] = original_tag[2];
4317 tag[2] = original_tag[1];
4318 tag[3] = original_tag[0];
4319 tag[4] = original_tag[7];
4320 tag[5] = original_tag[6];
4321 tag[6] = original_tag[5];
4322 tag[7] = original_tag[4];
4325 static void hpsa_get_tag(struct ctlr_info *h,
4326 struct CommandList *c, u32 *taglower, u32 *tagupper)
4328 if (c->cmd_type == CMD_IOACCEL1) {
4329 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
4330 &h->ioaccel_cmd_pool[c->cmdindex];
4331 *tagupper = cm1->Tag.upper;
4332 *taglower = cm1->Tag.lower;
4335 if (c->cmd_type == CMD_IOACCEL2) {
4336 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
4337 &h->ioaccel2_cmd_pool[c->cmdindex];
4338 /* upper tag not used in ioaccel2 mode */
4339 memset(tagupper, 0, sizeof(*tagupper));
4340 *taglower = cm2->Tag;
4343 *tagupper = c->Header.Tag.upper;
4344 *taglower = c->Header.Tag.lower;
4348 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4349 struct CommandList *abort, int swizzle)
4352 struct CommandList *c;
4353 struct ErrorInfo *ei;
4354 u32 tagupper, taglower;
4356 c = cmd_special_alloc(h);
4357 if (c == NULL) { /* trouble... */
4358 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4362 /* fill_cmd can't fail here, no buffer to map */
4363 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
4364 0, 0, scsi3addr, TYPE_MSG);
4366 swizzle_abort_tag(&c->Request.CDB[4]);
4367 hpsa_scsi_do_simple_cmd_core(h, c);
4368 hpsa_get_tag(h, abort, &taglower, &tagupper);
4369 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4370 __func__, tagupper, taglower);
4371 /* no unmap needed here because no data xfer. */
4374 switch (ei->CommandStatus) {
4377 case CMD_UNABORTABLE: /* Very common, don't make noise. */
4381 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4382 __func__, tagupper, taglower);
4383 hpsa_scsi_interpret_error(h, c);
4387 cmd_special_free(h, c);
4388 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
4389 __func__, tagupper, taglower);
4394 * hpsa_find_cmd_in_queue
4396 * Used to determine whether a command (find) is still present
4397 * in queue_head. Optionally excludes the last element of queue_head.
4399 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
4400 * not yet been submitted, and so can be aborted by the driver without
4401 * sending an abort to the hardware.
4403 * Returns pointer to command if found in queue, NULL otherwise.
4405 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
4406 struct scsi_cmnd *find, struct list_head *queue_head)
4408 unsigned long flags;
4409 struct CommandList *c = NULL; /* ptr into cmpQ */
4413 spin_lock_irqsave(&h->lock, flags);
4414 list_for_each_entry(c, queue_head, list) {
4415 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
4417 if (c->scsi_cmd == find) {
4418 spin_unlock_irqrestore(&h->lock, flags);
4422 spin_unlock_irqrestore(&h->lock, flags);
4426 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
4427 u8 *tag, struct list_head *queue_head)
4429 unsigned long flags;
4430 struct CommandList *c;
4432 spin_lock_irqsave(&h->lock, flags);
4433 list_for_each_entry(c, queue_head, list) {
4434 if (memcmp(&c->Header.Tag, tag, 8) != 0)
4436 spin_unlock_irqrestore(&h->lock, flags);
4439 spin_unlock_irqrestore(&h->lock, flags);
4443 /* ioaccel2 path firmware cannot handle abort task requests.
4444 * Change abort requests to physical target reset, and send to the
4445 * address of the physical disk used for the ioaccel 2 command.
4446 * Return 0 on success (IO_OK)
4450 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4451 unsigned char *scsi3addr, struct CommandList *abort)
4454 struct scsi_cmnd *scmd; /* scsi command within request being aborted */
4455 struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
4456 unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
4457 unsigned char *psa = &phys_scsi3addr[0];
4459 /* Get a pointer to the hpsa logical device. */
4460 scmd = (struct scsi_cmnd *) abort->scsi_cmd;
4461 dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
4463 dev_warn(&h->pdev->dev,
4464 "Cannot abort: no device pointer for command.\n");
4465 return -1; /* not abortable */
4468 if (h->raid_offload_debug > 0)
4469 dev_info(&h->pdev->dev,
4470 "Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4471 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4472 scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
4473 scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
4475 if (!dev->offload_enabled) {
4476 dev_warn(&h->pdev->dev,
4477 "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
4478 return -1; /* not abortable */
4481 /* Incoming scsi3addr is logical addr. We need physical disk addr. */
4482 if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
4483 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
4484 return -1; /* not abortable */
4487 /* send the reset */
4488 if (h->raid_offload_debug > 0)
4489 dev_info(&h->pdev->dev,
4490 "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4491 psa[0], psa[1], psa[2], psa[3],
4492 psa[4], psa[5], psa[6], psa[7]);
4493 rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
4495 dev_warn(&h->pdev->dev,
4496 "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4497 psa[0], psa[1], psa[2], psa[3],
4498 psa[4], psa[5], psa[6], psa[7]);
4499 return rc; /* failed to reset */
4502 /* wait for device to recover */
4503 if (wait_for_device_to_become_ready(h, psa) != 0) {
4504 dev_warn(&h->pdev->dev,
4505 "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4506 psa[0], psa[1], psa[2], psa[3],
4507 psa[4], psa[5], psa[6], psa[7]);
4508 return -1; /* failed to recover */
4511 /* device recovered */
4512 dev_info(&h->pdev->dev,
4513 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4514 psa[0], psa[1], psa[2], psa[3],
4515 psa[4], psa[5], psa[6], psa[7]);
4517 return rc; /* success */
4520 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
4521 * tell which kind we're dealing with, so we send the abort both ways. There
4522 * shouldn't be any collisions between swizzled and unswizzled tags due to the
4523 * way we construct our tags but we check anyway in case the assumptions which
4524 * make this true someday become false.
4526 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4527 unsigned char *scsi3addr, struct CommandList *abort)
4530 struct CommandList *c;
4531 int rc = 0, rc2 = 0;
4533 /* ioccelerator mode 2 commands should be aborted via the
4534 * accelerated path, since RAID path is unaware of these commands,
4535 * but underlying firmware can't handle abort TMF.
4536 * Change abort to physical device reset.
4538 if (abort->cmd_type == CMD_IOACCEL2)
4539 return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);
4541 /* we do not expect to find the swizzled tag in our queue, but
4542 * check anyway just to be sure the assumptions which make this
4543 * the case haven't become wrong.
4545 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
4546 swizzle_abort_tag(swizzled_tag);
4547 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
4549 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
4550 return hpsa_send_abort(h, scsi3addr, abort, 0);
4552 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
4554 /* if the command is still in our queue, we can't conclude that it was
4555 * aborted (it might have just completed normally) but in any case
4556 * we don't need to try to abort it another way.
4558 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
4560 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
4564 /* Send an abort for the specified command.
4565 * If the device and controller support it,
4566 * send a task abort request.
4568 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
4572 struct ctlr_info *h;
4573 struct hpsa_scsi_dev_t *dev;
4574 struct CommandList *abort; /* pointer to command to be aborted */
4575 struct CommandList *found;
4576 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
4577 char msg[256]; /* For debug messaging. */
4579 u32 tagupper, taglower;
4581 /* Find the controller of the command to be aborted */
4582 h = sdev_to_hba(sc->device);
4584 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
4587 /* Check that controller supports some kind of task abort */
4588 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
4589 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
4592 memset(msg, 0, sizeof(msg));
4593 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
4594 h->scsi_host->host_no, sc->device->channel,
4595 sc->device->id, sc->device->lun);
4597 /* Find the device of the command to be aborted */
4598 dev = sc->device->hostdata;
4600 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
4605 /* Get SCSI command to be aborted */
4606 abort = (struct CommandList *) sc->host_scribble;
4607 if (abort == NULL) {
4608 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
4612 hpsa_get_tag(h, abort, &taglower, &tagupper);
4613 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4614 as = (struct scsi_cmnd *) abort->scsi_cmd;
4616 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
4617 as->cmnd[0], as->serial_number);
4618 dev_dbg(&h->pdev->dev, "%s\n", msg);
4619 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
4620 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4622 /* Search reqQ to See if command is queued but not submitted,
4623 * if so, complete the command with aborted status and remove
4626 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
4628 found->err_info->CommandStatus = CMD_ABORTED;
4630 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
4635 /* not in reqQ, if also not in cmpQ, must have already completed */
4636 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4638 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4644 * Command is in flight, or possibly already completed
4645 * by the firmware (but not to the scsi mid layer) but we can't
4646 * distinguish which. Send the abort down.
4648 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4650 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
4651 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
4652 h->scsi_host->host_no,
4653 dev->bus, dev->target, dev->lun);
4656 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
4658 /* If the abort(s) above completed and actually aborted the
4659 * command, then the command to be aborted should already be
4660 * completed. If not, wait around a bit more to see if they
4661 * manage to complete normally.
4663 #define ABORT_COMPLETE_WAIT_SECS 30
4664 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4665 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
4670 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
4671 msg, ABORT_COMPLETE_WAIT_SECS);
4677 * For operations that cannot sleep, a command block is allocated at init,
4678 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
4679 * which ones are free or in use. Lock must be held when calling this.
4680 * cmd_free() is the complement.
4682 static struct CommandList *cmd_alloc(struct ctlr_info *h)
4684 struct CommandList *c;
4686 union u64bit temp64;
4687 dma_addr_t cmd_dma_handle, err_dma_handle;
4688 unsigned long flags;
4690 spin_lock_irqsave(&h->lock, flags);
4692 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4693 if (i == h->nr_cmds) {
4694 spin_unlock_irqrestore(&h->lock, flags);
4697 } while (test_and_set_bit
4698 (i & (BITS_PER_LONG - 1),
4699 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4700 spin_unlock_irqrestore(&h->lock, flags);
4702 c = h->cmd_pool + i;
4703 memset(c, 0, sizeof(*c));
4704 cmd_dma_handle = h->cmd_pool_dhandle
4706 c->err_info = h->errinfo_pool + i;
4707 memset(c->err_info, 0, sizeof(*c->err_info));
4708 err_dma_handle = h->errinfo_pool_dhandle
4709 + i * sizeof(*c->err_info);
4713 INIT_LIST_HEAD(&c->list);
4714 c->busaddr = (u32) cmd_dma_handle;
4715 temp64.val = (u64) err_dma_handle;
4716 c->ErrDesc.Addr.lower = temp64.val32.lower;
4717 c->ErrDesc.Addr.upper = temp64.val32.upper;
4718 c->ErrDesc.Len = sizeof(*c->err_info);
4724 /* For operations that can wait for kmalloc to possibly sleep,
4725 * this routine can be called. Lock need not be held to call
4726 * cmd_special_alloc. cmd_special_free() is the complement.
4728 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
4730 struct CommandList *c;
4731 union u64bit temp64;
4732 dma_addr_t cmd_dma_handle, err_dma_handle;
4734 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4737 memset(c, 0, sizeof(*c));
4739 c->cmd_type = CMD_SCSI;
4742 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
4745 if (c->err_info == NULL) {
4746 pci_free_consistent(h->pdev,
4747 sizeof(*c), c, cmd_dma_handle);
4750 memset(c->err_info, 0, sizeof(*c->err_info));
4752 INIT_LIST_HEAD(&c->list);
4753 c->busaddr = (u32) cmd_dma_handle;
4754 temp64.val = (u64) err_dma_handle;
4755 c->ErrDesc.Addr.lower = temp64.val32.lower;
4756 c->ErrDesc.Addr.upper = temp64.val32.upper;
4757 c->ErrDesc.Len = sizeof(*c->err_info);
4763 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
4766 unsigned long flags;
4768 i = c - h->cmd_pool;
4769 spin_lock_irqsave(&h->lock, flags);
4770 clear_bit(i & (BITS_PER_LONG - 1),
4771 h->cmd_pool_bits + (i / BITS_PER_LONG));
4772 spin_unlock_irqrestore(&h->lock, flags);
4775 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
4777 union u64bit temp64;
4779 temp64.val32.lower = c->ErrDesc.Addr.lower;
4780 temp64.val32.upper = c->ErrDesc.Addr.upper;
4781 pci_free_consistent(h->pdev, sizeof(*c->err_info),
4782 c->err_info, (dma_addr_t) temp64.val);
4783 pci_free_consistent(h->pdev, sizeof(*c),
4784 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4787 #ifdef CONFIG_COMPAT
4789 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
4791 IOCTL32_Command_struct __user *arg32 =
4792 (IOCTL32_Command_struct __user *) arg;
4793 IOCTL_Command_struct arg64;
4794 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
4798 memset(&arg64, 0, sizeof(arg64));
4800 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4801 sizeof(arg64.LUN_info));
4802 err |= copy_from_user(&arg64.Request, &arg32->Request,
4803 sizeof(arg64.Request));
4804 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4805 sizeof(arg64.error_info));
4806 err |= get_user(arg64.buf_size, &arg32->buf_size);
4807 err |= get_user(cp, &arg32->buf);
4808 arg64.buf = compat_ptr(cp);
4809 err |= copy_to_user(p, &arg64, sizeof(arg64));
4814 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
4817 err |= copy_in_user(&arg32->error_info, &p->error_info,
4818 sizeof(arg32->error_info));
4824 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
4827 BIG_IOCTL32_Command_struct __user *arg32 =
4828 (BIG_IOCTL32_Command_struct __user *) arg;
4829 BIG_IOCTL_Command_struct arg64;
4830 BIG_IOCTL_Command_struct __user *p =
4831 compat_alloc_user_space(sizeof(arg64));
4835 memset(&arg64, 0, sizeof(arg64));
4837 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
4838 sizeof(arg64.LUN_info));
4839 err |= copy_from_user(&arg64.Request, &arg32->Request,
4840 sizeof(arg64.Request));
4841 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
4842 sizeof(arg64.error_info));
4843 err |= get_user(arg64.buf_size, &arg32->buf_size);
4844 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
4845 err |= get_user(cp, &arg32->buf);
4846 arg64.buf = compat_ptr(cp);
4847 err |= copy_to_user(p, &arg64, sizeof(arg64));
4852 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
4855 err |= copy_in_user(&arg32->error_info, &p->error_info,
4856 sizeof(arg32->error_info));
4862 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
4865 case CCISS_GETPCIINFO:
4866 case CCISS_GETINTINFO:
4867 case CCISS_SETINTINFO:
4868 case CCISS_GETNODENAME:
4869 case CCISS_SETNODENAME:
4870 case CCISS_GETHEARTBEAT:
4871 case CCISS_GETBUSTYPES:
4872 case CCISS_GETFIRMVER:
4873 case CCISS_GETDRIVVER:
4874 case CCISS_REVALIDVOLS:
4875 case CCISS_DEREGDISK:
4876 case CCISS_REGNEWDISK:
4878 case CCISS_RESCANDISK:
4879 case CCISS_GETLUNINFO:
4880 return hpsa_ioctl(dev, cmd, arg);
4882 case CCISS_PASSTHRU32:
4883 return hpsa_ioctl32_passthru(dev, cmd, arg);
4884 case CCISS_BIG_PASSTHRU32:
4885 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
4888 return -ENOIOCTLCMD;
4893 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
4895 struct hpsa_pci_info pciinfo;
4899 pciinfo.domain = pci_domain_nr(h->pdev->bus);
4900 pciinfo.bus = h->pdev->bus->number;
4901 pciinfo.dev_fn = h->pdev->devfn;
4902 pciinfo.board_id = h->board_id;
4903 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
4908 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
4910 DriverVer_type DriverVer;
4911 unsigned char vmaj, vmin, vsubmin;
4914 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
4915 &vmaj, &vmin, &vsubmin);
4917 dev_info(&h->pdev->dev, "driver version string '%s' "
4918 "unrecognized.", HPSA_DRIVER_VERSION);
4923 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
4926 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
4931 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
4933 IOCTL_Command_struct iocommand;
4934 struct CommandList *c;
4936 union u64bit temp64;
4941 if (!capable(CAP_SYS_RAWIO))
4943 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
4945 if ((iocommand.buf_size < 1) &&
4946 (iocommand.Request.Type.Direction != XFER_NONE)) {
4949 if (iocommand.buf_size > 0) {
4950 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
4953 if (iocommand.Request.Type.Direction & XFER_WRITE) {
4954 /* Copy the data into the buffer we created */
4955 if (copy_from_user(buff, iocommand.buf,
4956 iocommand.buf_size)) {
4961 memset(buff, 0, iocommand.buf_size);
4964 c = cmd_special_alloc(h);
4969 /* Fill in the command type */
4970 c->cmd_type = CMD_IOCTL_PEND;
4971 /* Fill in Command Header */
4972 c->Header.ReplyQueue = 0; /* unused in simple mode */
4973 if (iocommand.buf_size > 0) { /* buffer to fill */
4974 c->Header.SGList = 1;
4975 c->Header.SGTotal = 1;
4976 } else { /* no buffers to fill */
4977 c->Header.SGList = 0;
4978 c->Header.SGTotal = 0;
4980 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
4981 /* use the kernel address the cmd block for tag */
4982 c->Header.Tag.lower = c->busaddr;
4984 /* Fill in Request block */
4985 memcpy(&c->Request, &iocommand.Request,
4986 sizeof(c->Request));
4988 /* Fill in the scatter gather information */
4989 if (iocommand.buf_size > 0) {
4990 temp64.val = pci_map_single(h->pdev, buff,
4991 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4992 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
4993 c->SG[0].Addr.lower = 0;
4994 c->SG[0].Addr.upper = 0;
4999 c->SG[0].Addr.lower = temp64.val32.lower;
5000 c->SG[0].Addr.upper = temp64.val32.upper;
5001 c->SG[0].Len = iocommand.buf_size;
5002 c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
5004 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5005 if (iocommand.buf_size > 0)
5006 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5007 check_ioctl_unit_attention(h, c);
5009 /* Copy the error information out */
5010 memcpy(&iocommand.error_info, c->err_info,
5011 sizeof(iocommand.error_info));
5012 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5016 if ((iocommand.Request.Type.Direction & XFER_READ) &&
5017 iocommand.buf_size > 0) {
5018 /* Copy the data out of the buffer we created */
5019 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5025 cmd_special_free(h, c);
5031 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
5033 BIG_IOCTL_Command_struct *ioc;
5034 struct CommandList *c;
5035 unsigned char **buff = NULL;
5036 int *buff_size = NULL;
5037 union u64bit temp64;
5043 BYTE __user *data_ptr;
5047 if (!capable(CAP_SYS_RAWIO))
5049 ioc = (BIG_IOCTL_Command_struct *)
5050 kmalloc(sizeof(*ioc), GFP_KERNEL);
5055 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
5059 if ((ioc->buf_size < 1) &&
5060 (ioc->Request.Type.Direction != XFER_NONE)) {
5064 /* Check kmalloc limits using all SGs */
5065 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
5069 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5073 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5078 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5083 left = ioc->buf_size;
5084 data_ptr = ioc->buf;
5086 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
5087 buff_size[sg_used] = sz;
5088 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
5089 if (buff[sg_used] == NULL) {
5093 if (ioc->Request.Type.Direction & XFER_WRITE) {
5094 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5099 memset(buff[sg_used], 0, sz);
5104 c = cmd_special_alloc(h);
5109 c->cmd_type = CMD_IOCTL_PEND;
5110 c->Header.ReplyQueue = 0;
5111 c->Header.SGList = c->Header.SGTotal = sg_used;
5112 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
5113 c->Header.Tag.lower = c->busaddr;
5114 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
5115 if (ioc->buf_size > 0) {
5117 for (i = 0; i < sg_used; i++) {
5118 temp64.val = pci_map_single(h->pdev, buff[i],
5119 buff_size[i], PCI_DMA_BIDIRECTIONAL);
5120 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
5121 c->SG[i].Addr.lower = 0;
5122 c->SG[i].Addr.upper = 0;
5124 hpsa_pci_unmap(h->pdev, c, i,
5125 PCI_DMA_BIDIRECTIONAL);
5129 c->SG[i].Addr.lower = temp64.val32.lower;
5130 c->SG[i].Addr.upper = temp64.val32.upper;
5131 c->SG[i].Len = buff_size[i];
5132 c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5135 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5137 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5138 check_ioctl_unit_attention(h, c);
5139 /* Copy the error information out */
5140 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
5141 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
5145 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5146 /* Copy the data out of the buffer we created */
5147 BYTE __user *ptr = ioc->buf;
5148 for (i = 0; i < sg_used; i++) {
5149 if (copy_to_user(ptr, buff[i], buff_size[i])) {
5153 ptr += buff_size[i];
5158 cmd_special_free(h, c);
5161 for (i = 0; i < sg_used; i++)
5170 static void check_ioctl_unit_attention(struct ctlr_info *h,
5171 struct CommandList *c)
5173 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5174 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
5175 (void) check_for_unit_attention(h, c);
5178 static int increment_passthru_count(struct ctlr_info *h)
5180 unsigned long flags;
5182 spin_lock_irqsave(&h->passthru_count_lock, flags);
5183 if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
5184 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5187 h->passthru_count++;
5188 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5192 static void decrement_passthru_count(struct ctlr_info *h)
5194 unsigned long flags;
5196 spin_lock_irqsave(&h->passthru_count_lock, flags);
5197 if (h->passthru_count <= 0) {
5198 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5199 /* not expecting to get here. */
5200 dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
5203 h->passthru_count--;
5204 spin_unlock_irqrestore(&h->passthru_count_lock, flags);
5210 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
5212 struct ctlr_info *h;
5213 void __user *argp = (void __user *)arg;
5216 h = sdev_to_hba(dev);
5219 case CCISS_DEREGDISK:
5220 case CCISS_REGNEWDISK:
5222 hpsa_scan_start(h->scsi_host);
5224 case CCISS_GETPCIINFO:
5225 return hpsa_getpciinfo_ioctl(h, argp);
5226 case CCISS_GETDRIVVER:
5227 return hpsa_getdrivver_ioctl(h, argp);
5228 case CCISS_PASSTHRU:
5229 if (increment_passthru_count(h))
5231 rc = hpsa_passthru_ioctl(h, argp);
5232 decrement_passthru_count(h);
5234 case CCISS_BIG_PASSTHRU:
5235 if (increment_passthru_count(h))
5237 rc = hpsa_big_passthru_ioctl(h, argp);
5238 decrement_passthru_count(h);
5245 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
5248 struct CommandList *c;
5253 /* fill_cmd can't fail here, no data buffer to map */
5254 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5255 RAID_CTLR_LUNID, TYPE_MSG);
5256 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
5258 enqueue_cmd_and_start_io(h, c);
5259 /* Don't wait for completion, the reset won't complete. Don't free
5260 * the command either. This is the last command we will send before
5261 * re-initializing everything, so it doesn't matter and won't leak.
5266 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5267 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5270 int pci_dir = XFER_NONE;
5271 struct CommandList *a; /* for commands to be aborted */
5273 c->cmd_type = CMD_IOCTL_PEND;
5274 c->Header.ReplyQueue = 0;
5275 if (buff != NULL && size > 0) {
5276 c->Header.SGList = 1;
5277 c->Header.SGTotal = 1;
5279 c->Header.SGList = 0;
5280 c->Header.SGTotal = 0;
5282 c->Header.Tag.lower = c->busaddr;
5283 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
5285 c->Request.Type.Type = cmd_type;
5286 if (cmd_type == TYPE_CMD) {
5289 /* are we trying to read a vital product page */
5290 if (page_code & VPD_PAGE) {
5291 c->Request.CDB[1] = 0x01;
5292 c->Request.CDB[2] = (page_code & 0xff);
5294 c->Request.CDBLen = 6;
5295 c->Request.Type.Attribute = ATTR_SIMPLE;
5296 c->Request.Type.Direction = XFER_READ;
5297 c->Request.Timeout = 0;
5298 c->Request.CDB[0] = HPSA_INQUIRY;
5299 c->Request.CDB[4] = size & 0xFF;
5301 case HPSA_REPORT_LOG:
5302 case HPSA_REPORT_PHYS:
5303 /* Talking to controller so It's a physical command
5304 mode = 00 target = 0. Nothing to write.
5306 c->Request.CDBLen = 12;
5307 c->Request.Type.Attribute = ATTR_SIMPLE;
5308 c->Request.Type.Direction = XFER_READ;
5309 c->Request.Timeout = 0;
5310 c->Request.CDB[0] = cmd;
5311 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5312 c->Request.CDB[7] = (size >> 16) & 0xFF;
5313 c->Request.CDB[8] = (size >> 8) & 0xFF;
5314 c->Request.CDB[9] = size & 0xFF;
5316 case HPSA_CACHE_FLUSH:
5317 c->Request.CDBLen = 12;
5318 c->Request.Type.Attribute = ATTR_SIMPLE;
5319 c->Request.Type.Direction = XFER_WRITE;
5320 c->Request.Timeout = 0;
5321 c->Request.CDB[0] = BMIC_WRITE;
5322 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5323 c->Request.CDB[7] = (size >> 8) & 0xFF;
5324 c->Request.CDB[8] = size & 0xFF;
5326 case TEST_UNIT_READY:
5327 c->Request.CDBLen = 6;
5328 c->Request.Type.Attribute = ATTR_SIMPLE;
5329 c->Request.Type.Direction = XFER_NONE;
5330 c->Request.Timeout = 0;
5332 case HPSA_GET_RAID_MAP:
5333 c->Request.CDBLen = 12;
5334 c->Request.Type.Attribute = ATTR_SIMPLE;
5335 c->Request.Type.Direction = XFER_READ;
5336 c->Request.Timeout = 0;
5337 c->Request.CDB[0] = HPSA_CISS_READ;
5338 c->Request.CDB[1] = cmd;
5339 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
5340 c->Request.CDB[7] = (size >> 16) & 0xFF;
5341 c->Request.CDB[8] = (size >> 8) & 0xFF;
5342 c->Request.CDB[9] = size & 0xFF;
5344 case BMIC_SENSE_CONTROLLER_PARAMETERS:
5345 c->Request.CDBLen = 10;
5346 c->Request.Type.Attribute = ATTR_SIMPLE;
5347 c->Request.Type.Direction = XFER_READ;
5348 c->Request.Timeout = 0;
5349 c->Request.CDB[0] = BMIC_READ;
5350 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
5351 c->Request.CDB[7] = (size >> 16) & 0xFF;
5352 c->Request.CDB[8] = (size >> 8) & 0xFF;
5355 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
5359 } else if (cmd_type == TYPE_MSG) {
5362 case HPSA_DEVICE_RESET_MSG:
5363 c->Request.CDBLen = 16;
5364 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
5365 c->Request.Type.Attribute = ATTR_SIMPLE;
5366 c->Request.Type.Direction = XFER_NONE;
5367 c->Request.Timeout = 0; /* Don't time out */
5368 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
5369 c->Request.CDB[0] = cmd;
5370 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5371 /* If bytes 4-7 are zero, it means reset the */
5373 c->Request.CDB[4] = 0x00;
5374 c->Request.CDB[5] = 0x00;
5375 c->Request.CDB[6] = 0x00;
5376 c->Request.CDB[7] = 0x00;
5378 case HPSA_ABORT_MSG:
5379 a = buff; /* point to command to be aborted */
5380 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
5381 a->Header.Tag.upper, a->Header.Tag.lower,
5382 c->Header.Tag.upper, c->Header.Tag.lower);
5383 c->Request.CDBLen = 16;
5384 c->Request.Type.Type = TYPE_MSG;
5385 c->Request.Type.Attribute = ATTR_SIMPLE;
5386 c->Request.Type.Direction = XFER_WRITE;
5387 c->Request.Timeout = 0; /* Don't time out */
5388 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
5389 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
5390 c->Request.CDB[2] = 0x00; /* reserved */
5391 c->Request.CDB[3] = 0x00; /* reserved */
5392 /* Tag to abort goes in CDB[4]-CDB[11] */
5393 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
5394 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
5395 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
5396 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
5397 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
5398 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
5399 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
5400 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
5401 c->Request.CDB[12] = 0x00; /* reserved */
5402 c->Request.CDB[13] = 0x00; /* reserved */
5403 c->Request.CDB[14] = 0x00; /* reserved */
5404 c->Request.CDB[15] = 0x00; /* reserved */
5407 dev_warn(&h->pdev->dev, "unknown message type %d\n",
5412 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
5416 switch (c->Request.Type.Direction) {
5418 pci_dir = PCI_DMA_FROMDEVICE;
5421 pci_dir = PCI_DMA_TODEVICE;
5424 pci_dir = PCI_DMA_NONE;
5427 pci_dir = PCI_DMA_BIDIRECTIONAL;
5429 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
5435 * Map (physical) PCI mem into (virtual) kernel space
5437 static void __iomem *remap_pci_mem(ulong base, ulong size)
5439 ulong page_base = ((ulong) base) & PAGE_MASK;
5440 ulong page_offs = ((ulong) base) - page_base;
5441 void __iomem *page_remapped = ioremap_nocache(page_base,
5444 return page_remapped ? (page_remapped + page_offs) : NULL;
5447 /* Takes cmds off the submission queue and sends them to the hardware,
5448 * then puts them on the queue of cmds waiting for completion.
5449 * Assumes h->lock is held
5451 static void start_io(struct ctlr_info *h, unsigned long *flags)
5453 struct CommandList *c;
5455 while (!list_empty(&h->reqQ)) {
5456 c = list_entry(h->reqQ.next, struct CommandList, list);
5457 /* can't do anything if fifo is full */
5458 if ((h->access.fifo_full(h))) {
5459 h->fifo_recently_full = 1;
5460 dev_warn(&h->pdev->dev, "fifo full\n");
5463 h->fifo_recently_full = 0;
5465 /* Get the first entry from the Request Q */
5469 /* Put job onto the completed Q */
5472 /* Must increment commands_outstanding before unlocking
5473 * and submitting to avoid race checking for fifo full
5476 h->commands_outstanding++;
5478 /* Tell the controller execute command */
5479 spin_unlock_irqrestore(&h->lock, *flags);
5480 h->access.submit_command(h, c);
5481 spin_lock_irqsave(&h->lock, *flags);
5485 static void lock_and_start_io(struct ctlr_info *h)
5487 unsigned long flags;
5489 spin_lock_irqsave(&h->lock, flags);
5490 start_io(h, &flags);
5491 spin_unlock_irqrestore(&h->lock, flags);
5494 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5496 return h->access.command_completed(h, q);
5499 static inline bool interrupt_pending(struct ctlr_info *h)
5501 return h->access.intr_pending(h);
5504 static inline long interrupt_not_for_us(struct ctlr_info *h)
5506 return (h->access.intr_pending(h) == 0) ||
5507 (h->interrupts_enabled == 0);
5510 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
5513 if (unlikely(tag_index >= h->nr_cmds)) {
5514 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
5520 static inline void finish_cmd(struct CommandList *c)
5522 unsigned long flags;
5523 int io_may_be_stalled = 0;
5524 struct ctlr_info *h = c->h;
5526 spin_lock_irqsave(&h->lock, flags);
5530 * Check for possibly stalled i/o.
5532 * If a fifo_full condition is encountered, requests will back up
5533 * in h->reqQ. This queue is only emptied out by start_io which is
5534 * only called when a new i/o request comes in. If no i/o's are
5535 * forthcoming, the i/o's in h->reqQ can get stuck. So we call
5536 * start_io from here if we detect such a danger.
5538 * Normally, we shouldn't hit this case, but pounding on the
5539 * CCISS_PASSTHRU ioctl can provoke it. Only call start_io if
5540 * commands_outstanding is low. We want to avoid calling
5541 * start_io from in here as much as possible, and esp. don't
5542 * want to get in a cycle where we call start_io every time
5545 if (unlikely(h->fifo_recently_full) &&
5546 h->commands_outstanding < 5)
5547 io_may_be_stalled = 1;
5549 spin_unlock_irqrestore(&h->lock, flags);
5551 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5552 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
5553 || c->cmd_type == CMD_IOACCEL2))
5554 complete_scsi_command(c);
5555 else if (c->cmd_type == CMD_IOCTL_PEND)
5556 complete(c->waiting);
5557 if (unlikely(io_may_be_stalled))
5558 lock_and_start_io(h);
5561 static inline u32 hpsa_tag_contains_index(u32 tag)
5563 return tag & DIRECT_LOOKUP_BIT;
5566 static inline u32 hpsa_tag_to_index(u32 tag)
5568 return tag >> DIRECT_LOOKUP_SHIFT;
5572 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5574 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
5575 #define HPSA_SIMPLE_ERROR_BITS 0x03
5576 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5577 return tag & ~HPSA_SIMPLE_ERROR_BITS;
5578 return tag & ~HPSA_PERF_ERROR_BITS;
5581 /* process completion of an indexed ("direct lookup") command */
5582 static inline void process_indexed_cmd(struct ctlr_info *h,
5586 struct CommandList *c;
5588 tag_index = hpsa_tag_to_index(raw_tag);
5589 if (!bad_tag(h, tag_index, raw_tag)) {
5590 c = h->cmd_pool + tag_index;
5595 /* process completion of a non-indexed command */
5596 static inline void process_nonindexed_cmd(struct ctlr_info *h,
5600 struct CommandList *c = NULL;
5601 unsigned long flags;
5603 tag = hpsa_tag_discard_error_bits(h, raw_tag);
5604 spin_lock_irqsave(&h->lock, flags);
5605 list_for_each_entry(c, &h->cmpQ, list) {
5606 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5607 spin_unlock_irqrestore(&h->lock, flags);
5612 spin_unlock_irqrestore(&h->lock, flags);
5613 bad_tag(h, h->nr_cmds + 1, raw_tag);
5616 /* Some controllers, like p400, will give us one interrupt
5617 * after a soft reset, even if we turned interrupts off.
5618 * Only need to check for this in the hpsa_xxx_discard_completions
5621 static int ignore_bogus_interrupt(struct ctlr_info *h)
5623 if (likely(!reset_devices))
5626 if (likely(h->interrupts_enabled))
5629 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
5630 "(known firmware bug.) Ignoring.\n");
5636 * Convert &h->q[x] (passed to interrupt handlers) back to h.
5637 * Relies on (h-q[x] == x) being true for x such that
5638 * 0 <= x < MAX_REPLY_QUEUES.
5640 static struct ctlr_info *queue_to_hba(u8 *queue)
5642 return container_of((queue - *queue), struct ctlr_info, q[0]);
5645 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
5647 struct ctlr_info *h = queue_to_hba(queue);
5648 u8 q = *(u8 *) queue;
5651 if (ignore_bogus_interrupt(h))
5654 if (interrupt_not_for_us(h))
5656 h->last_intr_timestamp = get_jiffies_64();
5657 while (interrupt_pending(h)) {
5658 raw_tag = get_next_completion(h, q);
5659 while (raw_tag != FIFO_EMPTY)
5660 raw_tag = next_command(h, q);
5665 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5667 struct ctlr_info *h = queue_to_hba(queue);
5669 u8 q = *(u8 *) queue;
5671 if (ignore_bogus_interrupt(h))
5674 h->last_intr_timestamp = get_jiffies_64();
5675 raw_tag = get_next_completion(h, q);
5676 while (raw_tag != FIFO_EMPTY)
5677 raw_tag = next_command(h, q);
5681 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5683 struct ctlr_info *h = queue_to_hba((u8 *) queue);
5685 u8 q = *(u8 *) queue;
5687 if (interrupt_not_for_us(h))
5689 h->last_intr_timestamp = get_jiffies_64();
5690 while (interrupt_pending(h)) {
5691 raw_tag = get_next_completion(h, q);
5692 while (raw_tag != FIFO_EMPTY) {
5693 if (likely(hpsa_tag_contains_index(raw_tag)))
5694 process_indexed_cmd(h, raw_tag);
5696 process_nonindexed_cmd(h, raw_tag);
5697 raw_tag = next_command(h, q);
5703 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5705 struct ctlr_info *h = queue_to_hba(queue);
5707 u8 q = *(u8 *) queue;
5709 h->last_intr_timestamp = get_jiffies_64();
5710 raw_tag = get_next_completion(h, q);
5711 while (raw_tag != FIFO_EMPTY) {
5712 if (likely(hpsa_tag_contains_index(raw_tag)))
5713 process_indexed_cmd(h, raw_tag);
5715 process_nonindexed_cmd(h, raw_tag);
5716 raw_tag = next_command(h, q);
5721 /* Send a message CDB to the firmware. Careful, this only works
5722 * in simple mode, not performant mode due to the tag lookup.
5723 * We only ever use this immediately after a controller reset.
5725 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
5729 struct CommandListHeader CommandHeader;
5730 struct RequestBlock Request;
5731 struct ErrDescriptor ErrorDescriptor;
5733 struct Command *cmd;
5734 static const size_t cmd_sz = sizeof(*cmd) +
5735 sizeof(cmd->ErrorDescriptor);
5737 uint32_t paddr32, tag;
5738 void __iomem *vaddr;
5741 vaddr = pci_ioremap_bar(pdev, 0);
5745 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
5746 * CCISS commands, so they must be allocated from the lower 4GiB of
5749 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
5755 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
5761 /* This must fit, because of the 32-bit consistent DMA mask. Also,
5762 * although there's no guarantee, we assume that the address is at
5763 * least 4-byte aligned (most likely, it's page-aligned).
5767 cmd->CommandHeader.ReplyQueue = 0;
5768 cmd->CommandHeader.SGList = 0;
5769 cmd->CommandHeader.SGTotal = 0;
5770 cmd->CommandHeader.Tag.lower = paddr32;
5771 cmd->CommandHeader.Tag.upper = 0;
5772 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
5774 cmd->Request.CDBLen = 16;
5775 cmd->Request.Type.Type = TYPE_MSG;
5776 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
5777 cmd->Request.Type.Direction = XFER_NONE;
5778 cmd->Request.Timeout = 0; /* Don't time out */
5779 cmd->Request.CDB[0] = opcode;
5780 cmd->Request.CDB[1] = type;
5781 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5782 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
5783 cmd->ErrorDescriptor.Addr.upper = 0;
5784 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
5786 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
5788 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
5789 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5790 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5792 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
5797 /* we leak the DMA buffer here ... no choice since the controller could
5798 * still complete the command.
5800 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
5801 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
5806 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
5808 if (tag & HPSA_ERROR_BIT) {
5809 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
5814 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
5819 #define hpsa_noop(p) hpsa_message(p, 3, 0)
5821 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
5822 void * __iomem vaddr, u32 use_doorbell)
5828 /* For everything after the P600, the PCI power state method
5829 * of resetting the controller doesn't work, so we have this
5830 * other way using the doorbell register.
5832 dev_info(&pdev->dev, "using doorbell to reset controller\n");
5833 writel(use_doorbell, vaddr + SA5_DOORBELL);
5835 /* PMC hardware guys tell us we need a 10 second delay after
5836 * doorbell reset and before any attempt to talk to the board
5837 * at all to ensure that this actually works and doesn't fall
5838 * over in some weird corner cases.
5841 } else { /* Try to do it the PCI power state way */
5843 /* Quoting from the Open CISS Specification: "The Power
5844 * Management Control/Status Register (CSR) controls the power
5845 * state of the device. The normal operating state is D0,
5846 * CSR=00h. The software off state is D3, CSR=03h. To reset
5847 * the controller, place the interface device in D3 then to D0,
5848 * this causes a secondary PCI reset which will reset the
5851 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
5854 "hpsa_reset_controller: "
5855 "PCI PM not supported\n");
5858 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5859 /* enter the D3hot power management state */
5860 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
5861 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5863 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5867 /* enter the D0 power management state */
5868 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
5870 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5873 * The P600 requires a small delay when changing states.
5874 * Otherwise we may think the board did not reset and we bail.
5875 * This for kdump only and is particular to the P600.
5882 static void init_driver_version(char *driver_version, int len)
5884 memset(driver_version, 0, len);
5885 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5888 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5890 char *driver_version;
5891 int i, size = sizeof(cfgtable->driver_version);
5893 driver_version = kmalloc(size, GFP_KERNEL);
5894 if (!driver_version)
5897 init_driver_version(driver_version, size);
5898 for (i = 0; i < size; i++)
5899 writeb(driver_version[i], &cfgtable->driver_version[i]);
5900 kfree(driver_version);
5904 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
5905 unsigned char *driver_ver)
5909 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
5910 driver_ver[i] = readb(&cfgtable->driver_version[i]);
5913 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5916 char *driver_ver, *old_driver_ver;
5917 int rc, size = sizeof(cfgtable->driver_version);
5919 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
5920 if (!old_driver_ver)
5922 driver_ver = old_driver_ver + size;
5924 /* After a reset, the 32 bytes of "driver version" in the cfgtable
5925 * should have been changed, otherwise we know the reset failed.
5927 init_driver_version(old_driver_ver, size);
5928 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
5929 rc = !memcmp(driver_ver, old_driver_ver, size);
5930 kfree(old_driver_ver);
5933 /* This does a hard reset of the controller using PCI power management
5934 * states or the using the doorbell register.
5936 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5940 u64 cfg_base_addr_index;
5941 void __iomem *vaddr;
5942 unsigned long paddr;
5943 u32 misc_fw_support;
5945 struct CfgTable __iomem *cfgtable;
5948 u16 command_register;
5950 /* For controllers as old as the P600, this is very nearly
5953 * pci_save_state(pci_dev);
5954 * pci_set_power_state(pci_dev, PCI_D3hot);
5955 * pci_set_power_state(pci_dev, PCI_D0);
5956 * pci_restore_state(pci_dev);
5958 * For controllers newer than the P600, the pci power state
5959 * method of resetting doesn't work so we have another way
5960 * using the doorbell register.
5963 rc = hpsa_lookup_board_id(pdev, &board_id);
5964 if (rc < 0 || !ctlr_is_resettable(board_id)) {
5965 dev_warn(&pdev->dev, "Not resetting device.\n");
5969 /* if controller is soft- but not hard resettable... */
5970 if (!ctlr_is_hard_resettable(board_id))
5971 return -ENOTSUPP; /* try soft reset later. */
5973 /* Save the PCI command register */
5974 pci_read_config_word(pdev, 4, &command_register);
5975 /* Turn the board off. This is so that later pci_restore_state()
5976 * won't turn the board on before the rest of config space is ready.
5978 pci_disable_device(pdev);
5979 pci_save_state(pdev);
5981 /* find the first memory BAR, so we can find the cfg table */
5982 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
5985 vaddr = remap_pci_mem(paddr, 0x250);
5989 /* find cfgtable in order to check if reset via doorbell is supported */
5990 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
5991 &cfg_base_addr_index, &cfg_offset);
5994 cfgtable = remap_pci_mem(pci_resource_start(pdev,
5995 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
6000 rc = write_driver_ver_to_cfgtable(cfgtable);
6004 /* If reset via doorbell register is supported, use that.
6005 * There are two such methods. Favor the newest method.
6007 misc_fw_support = readl(&cfgtable->misc_fw_support);
6008 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
6010 use_doorbell = DOORBELL_CTLR_RESET2;
6012 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
6014 dev_warn(&pdev->dev, "Soft reset not supported. "
6015 "Firmware update is required.\n");
6016 rc = -ENOTSUPP; /* try soft reset */
6017 goto unmap_cfgtable;
6021 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
6023 goto unmap_cfgtable;
6025 pci_restore_state(pdev);
6026 rc = pci_enable_device(pdev);
6028 dev_warn(&pdev->dev, "failed to enable device.\n");
6029 goto unmap_cfgtable;
6031 pci_write_config_word(pdev, 4, command_register);
6033 /* Some devices (notably the HP Smart Array 5i Controller)
6034 need a little pause here */
6035 msleep(HPSA_POST_RESET_PAUSE_MSECS);
6037 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
6039 dev_warn(&pdev->dev,
6040 "failed waiting for board to become ready "
6041 "after hard reset\n");
6042 goto unmap_cfgtable;
6045 rc = controller_reset_failed(vaddr);
6047 goto unmap_cfgtable;
6049 dev_warn(&pdev->dev, "Unable to successfully reset "
6050 "controller. Will try soft reset.\n");
6053 dev_info(&pdev->dev, "board ready after hard reset.\n");
6065 * We cannot read the structure directly, for portability we must use
6067 * This is for debug only.
6069 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
6075 dev_info(dev, "Controller Configuration information\n");
6076 dev_info(dev, "------------------------------------\n");
6077 for (i = 0; i < 4; i++)
6078 temp_name[i] = readb(&(tb->Signature[i]));
6079 temp_name[4] = '\0';
6080 dev_info(dev, " Signature = %s\n", temp_name);
6081 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
6082 dev_info(dev, " Transport methods supported = 0x%x\n",
6083 readl(&(tb->TransportSupport)));
6084 dev_info(dev, " Transport methods active = 0x%x\n",
6085 readl(&(tb->TransportActive)));
6086 dev_info(dev, " Requested transport Method = 0x%x\n",
6087 readl(&(tb->HostWrite.TransportRequest)));
6088 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
6089 readl(&(tb->HostWrite.CoalIntDelay)));
6090 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
6091 readl(&(tb->HostWrite.CoalIntCount)));
6092 dev_info(dev, " Max outstanding commands = 0x%d\n",
6093 readl(&(tb->CmdsOutMax)));
6094 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
6095 for (i = 0; i < 16; i++)
6096 temp_name[i] = readb(&(tb->ServerName[i]));
6097 temp_name[16] = '\0';
6098 dev_info(dev, " Server Name = %s\n", temp_name);
6099 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
6100 readl(&(tb->HeartBeat)));
6101 #endif /* HPSA_DEBUG */
6104 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
6106 int i, offset, mem_type, bar_type;
6108 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
6111 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
6112 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
6113 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
6116 mem_type = pci_resource_flags(pdev, i) &
6117 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
6119 case PCI_BASE_ADDRESS_MEM_TYPE_32:
6120 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
6121 offset += 4; /* 32 bit */
6123 case PCI_BASE_ADDRESS_MEM_TYPE_64:
6126 default: /* reserved in PCI 2.2 */
6127 dev_warn(&pdev->dev,
6128 "base address is invalid\n");
6133 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
6139 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
6140 * controllers that are capable. If not, we use IO-APIC mode.
6143 static void hpsa_interrupt_mode(struct ctlr_info *h)
6145 #ifdef CONFIG_PCI_MSI
6147 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
6149 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
6150 hpsa_msix_entries[i].vector = 0;
6151 hpsa_msix_entries[i].entry = i;
6154 /* Some boards advertise MSI but don't really support it */
6155 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
6156 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6157 goto default_int_mode;
6158 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6159 dev_info(&h->pdev->dev, "MSIX\n");
6160 h->msix_vector = MAX_REPLY_QUEUES;
6161 if (h->msix_vector > num_online_cpus())
6162 h->msix_vector = num_online_cpus();
6163 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6166 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6167 "available\n", err);
6168 h->msix_vector = err;
6169 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
6173 for (i = 0; i < h->msix_vector; i++)
6174 h->intr[i] = hpsa_msix_entries[i].vector;
6177 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
6180 goto default_int_mode;
6183 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6184 dev_info(&h->pdev->dev, "MSI\n");
6185 if (!pci_enable_msi(h->pdev))
6188 dev_warn(&h->pdev->dev, "MSI init failed\n");
6191 #endif /* CONFIG_PCI_MSI */
6192 /* if we get here we're going to use the default interrupt mode */
6193 h->intr[h->intr_mode] = h->pdev->irq;
6196 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6199 u32 subsystem_vendor_id, subsystem_device_id;
6201 subsystem_vendor_id = pdev->subsystem_vendor;
6202 subsystem_device_id = pdev->subsystem_device;
6203 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
6204 subsystem_vendor_id;
6206 for (i = 0; i < ARRAY_SIZE(products); i++)
6207 if (*board_id == products[i].board_id)
6210 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
6211 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
6213 dev_warn(&pdev->dev, "unrecognized board ID: "
6214 "0x%08x, ignoring.\n", *board_id);
6217 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
6220 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
6221 unsigned long *memory_bar)
6225 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6226 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6227 /* addressing mode bits already removed */
6228 *memory_bar = pci_resource_start(pdev, i);
6229 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6233 dev_warn(&pdev->dev, "no memory BAR found\n");
6237 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
6243 iterations = HPSA_BOARD_READY_ITERATIONS;
6245 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6247 for (i = 0; i < iterations; i++) {
6248 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
6249 if (wait_for_ready) {
6250 if (scratchpad == HPSA_FIRMWARE_READY)
6253 if (scratchpad != HPSA_FIRMWARE_READY)
6256 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
6258 dev_warn(&pdev->dev, "board not ready, timed out.\n");
6262 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
6263 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
6266 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
6267 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
6268 *cfg_base_addr &= (u32) 0x0000ffff;
6269 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
6270 if (*cfg_base_addr_index == -1) {
6271 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
6277 static int hpsa_find_cfgtables(struct ctlr_info *h)
6281 u64 cfg_base_addr_index;
6285 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
6286 &cfg_base_addr_index, &cfg_offset);
6289 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6290 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6293 rc = write_driver_ver_to_cfgtable(h->cfgtable);
6296 /* Find performant mode table. */
6297 trans_offset = readl(&h->cfgtable->TransMethodOffset);
6298 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
6299 cfg_base_addr_index)+cfg_offset+trans_offset,
6300 sizeof(*h->transtable));
6306 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6308 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6310 /* Limit commands in memory limited kdump scenario. */
6311 if (reset_devices && h->max_commands > 32)
6312 h->max_commands = 32;
6314 if (h->max_commands < 16) {
6315 dev_warn(&h->pdev->dev, "Controller reports "
6316 "max supported commands of %d, an obvious lie. "
6317 "Using 16. Ensure that firmware is up to date.\n",
6319 h->max_commands = 16;
6323 /* Interrogate the hardware for some limits:
6324 * max commands, max SG elements without chaining, and with chaining,
6325 * SG chain block size, etc.
6327 static void hpsa_find_board_params(struct ctlr_info *h)
6329 hpsa_get_max_perf_mode_cmds(h);
6330 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
6331 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6332 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6334 * Limit in-command s/g elements to 32 save dma'able memory.
6335 * Howvever spec says if 0, use 31
6337 h->max_cmd_sg_entries = 31;
6338 if (h->maxsgentries > 512) {
6339 h->max_cmd_sg_entries = 32;
6340 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
6341 h->maxsgentries--; /* save one for chain pointer */
6343 h->maxsgentries = 31; /* default to traditional values */
6347 /* Find out what task management functions are supported and cache */
6348 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6349 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
6350 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
6351 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6352 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6355 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
6357 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6358 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
6364 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6369 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
6370 driver_support = readl(&(h->cfgtable->driver_support));
6371 driver_support |= ENABLE_SCSI_PREFETCH;
6373 driver_support |= ENABLE_UNIT_ATTN;
6374 writel(driver_support, &(h->cfgtable->driver_support));
6377 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
6378 * in a prefetch beyond physical memory.
6380 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
6384 if (h->board_id != 0x3225103C)
6386 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
6387 dma_prefetch |= 0x8000;
6388 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
6391 static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6395 unsigned long flags;
6396 /* wait until the clear_event_notify bit 6 is cleared by controller. */
6397 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6398 spin_lock_irqsave(&h->lock, flags);
6399 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6400 spin_unlock_irqrestore(&h->lock, flags);
6401 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6403 /* delay and try again */
6408 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6412 unsigned long flags;
6414 /* under certain very rare conditions, this can take awhile.
6415 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
6416 * as we enter this code.)
6418 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6419 spin_lock_irqsave(&h->lock, flags);
6420 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
6421 spin_unlock_irqrestore(&h->lock, flags);
6422 if (!(doorbell_value & CFGTBL_ChangeReq))
6424 /* delay and try again */
6425 usleep_range(10000, 20000);
6429 static int hpsa_enter_simple_mode(struct ctlr_info *h)
6433 trans_support = readl(&(h->cfgtable->TransportSupport));
6434 if (!(trans_support & SIMPLE_MODE))
6437 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6439 /* Update the field, and then ring the doorbell */
6440 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6441 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6442 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6443 hpsa_wait_for_mode_change_ack(h);
6444 print_cfg_table(&h->pdev->dev, h->cfgtable);
6445 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
6447 h->transMethod = CFGTBL_Trans_Simple;
6450 dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
6454 static int hpsa_pci_init(struct ctlr_info *h)
6456 int prod_index, err;
6458 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
6461 h->product_name = products[prod_index].product_name;
6462 h->access = *(products[prod_index].access);
6464 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
6465 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
6467 err = pci_enable_device(h->pdev);
6469 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6473 /* Enable bus mastering (pci_disable_device may disable this) */
6474 pci_set_master(h->pdev);
6476 err = pci_request_regions(h->pdev, HPSA);
6478 dev_err(&h->pdev->dev,
6479 "cannot obtain PCI resources, aborting\n");
6482 hpsa_interrupt_mode(h);
6483 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6485 goto err_out_free_res;
6486 h->vaddr = remap_pci_mem(h->paddr, 0x250);
6489 goto err_out_free_res;
6491 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6493 goto err_out_free_res;
6494 err = hpsa_find_cfgtables(h);
6496 goto err_out_free_res;
6497 hpsa_find_board_params(h);
6499 if (!hpsa_CISS_signature_present(h)) {
6501 goto err_out_free_res;
6503 hpsa_set_driver_support_bits(h);
6504 hpsa_p600_dma_prefetch_quirk(h);
6505 err = hpsa_enter_simple_mode(h);
6507 goto err_out_free_res;
6512 iounmap(h->transtable);
6514 iounmap(h->cfgtable);
6517 pci_disable_device(h->pdev);
6518 pci_release_regions(h->pdev);
6522 static void hpsa_hba_inquiry(struct ctlr_info *h)
6526 #define HBA_INQUIRY_BYTE_COUNT 64
6527 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
6528 if (!h->hba_inquiry_data)
6530 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
6531 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
6533 kfree(h->hba_inquiry_data);
6534 h->hba_inquiry_data = NULL;
6538 static int hpsa_init_reset_devices(struct pci_dev *pdev)
6545 /* Reset the controller with a PCI power-cycle or via doorbell */
6546 rc = hpsa_kdump_hard_reset_controller(pdev);
6548 /* -ENOTSUPP here means we cannot reset the controller
6549 * but it's already (and still) up and running in
6550 * "performant mode". Or, it might be 640x, which can't reset
6551 * due to concerns about shared bbwc between 6402/6404 pair.
6553 if (rc == -ENOTSUPP)
6554 return rc; /* just try to do the kdump anyhow. */
6558 /* Now try to get the controller to respond to a no-op */
6559 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6560 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
6561 if (hpsa_noop(pdev) == 0)
6564 dev_warn(&pdev->dev, "no-op failed%s\n",
6565 (i < 11 ? "; re-trying" : ""));
6570 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6572 h->cmd_pool_bits = kzalloc(
6573 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
6574 sizeof(unsigned long), GFP_KERNEL);
6575 h->cmd_pool = pci_alloc_consistent(h->pdev,
6576 h->nr_cmds * sizeof(*h->cmd_pool),
6577 &(h->cmd_pool_dhandle));
6578 h->errinfo_pool = pci_alloc_consistent(h->pdev,
6579 h->nr_cmds * sizeof(*h->errinfo_pool),
6580 &(h->errinfo_pool_dhandle));
6581 if ((h->cmd_pool_bits == NULL)
6582 || (h->cmd_pool == NULL)
6583 || (h->errinfo_pool == NULL)) {
6584 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6590 static void hpsa_free_cmd_pool(struct ctlr_info *h)
6592 kfree(h->cmd_pool_bits);
6594 pci_free_consistent(h->pdev,
6595 h->nr_cmds * sizeof(struct CommandList),
6596 h->cmd_pool, h->cmd_pool_dhandle);
6597 if (h->ioaccel2_cmd_pool)
6598 pci_free_consistent(h->pdev,
6599 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
6600 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6601 if (h->errinfo_pool)
6602 pci_free_consistent(h->pdev,
6603 h->nr_cmds * sizeof(struct ErrorInfo),
6605 h->errinfo_pool_dhandle);
6606 if (h->ioaccel_cmd_pool)
6607 pci_free_consistent(h->pdev,
6608 h->nr_cmds * sizeof(struct io_accel1_cmd),
6609 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6612 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
6616 cpu = cpumask_first(cpu_online_mask);
6617 for (i = 0; i < h->msix_vector; i++) {
6618 rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6619 cpu = cpumask_next(cpu, cpu_online_mask);
6623 static int hpsa_request_irq(struct ctlr_info *h,
6624 irqreturn_t (*msixhandler)(int, void *),
6625 irqreturn_t (*intxhandler)(int, void *))
6630 * initialize h->q[x] = x so that interrupt handlers know which
6633 for (i = 0; i < MAX_REPLY_QUEUES; i++)
6636 if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6637 /* If performant mode and MSI-X, use multiple reply queues */
6638 for (i = 0; i < h->msix_vector; i++)
6639 rc = request_irq(h->intr[i], msixhandler,
6642 hpsa_irq_affinity_hints(h);
6644 /* Use single reply pool */
6645 if (h->msix_vector > 0 || h->msi_vector) {
6646 rc = request_irq(h->intr[h->intr_mode],
6647 msixhandler, 0, h->devname,
6648 &h->q[h->intr_mode]);
6650 rc = request_irq(h->intr[h->intr_mode],
6651 intxhandler, IRQF_SHARED, h->devname,
6652 &h->q[h->intr_mode]);
6656 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
6657 h->intr[h->intr_mode], h->devname);
6663 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6665 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
6666 HPSA_RESET_TYPE_CONTROLLER)) {
6667 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
6671 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
6672 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
6673 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
6677 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
6678 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
6679 dev_warn(&h->pdev->dev, "Board failed to become ready "
6680 "after soft reset.\n");
6687 static void free_irqs(struct ctlr_info *h)
6691 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
6692 /* Single reply queue, only one irq to free */
6694 irq_set_affinity_hint(h->intr[i], NULL);
6695 free_irq(h->intr[i], &h->q[i]);
6699 for (i = 0; i < h->msix_vector; i++) {
6700 irq_set_affinity_hint(h->intr[i], NULL);
6701 free_irq(h->intr[i], &h->q[i]);
6705 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6708 #ifdef CONFIG_PCI_MSI
6709 if (h->msix_vector) {
6710 if (h->pdev->msix_enabled)
6711 pci_disable_msix(h->pdev);
6712 } else if (h->msi_vector) {
6713 if (h->pdev->msi_enabled)
6714 pci_disable_msi(h->pdev);
6716 #endif /* CONFIG_PCI_MSI */
6719 static void hpsa_free_reply_queues(struct ctlr_info *h)
6723 for (i = 0; i < h->nreply_queues; i++) {
6724 if (!h->reply_queue[i].head)
6726 pci_free_consistent(h->pdev, h->reply_queue_size,
6727 h->reply_queue[i].head, h->reply_queue[i].busaddr);
6728 h->reply_queue[i].head = NULL;
6729 h->reply_queue[i].busaddr = 0;
6733 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
6735 hpsa_free_irqs_and_disable_msix(h);
6736 hpsa_free_sg_chain_blocks(h);
6737 hpsa_free_cmd_pool(h);
6738 kfree(h->ioaccel1_blockFetchTable);
6739 kfree(h->blockFetchTable);
6740 hpsa_free_reply_queues(h);
6744 iounmap(h->transtable);
6746 iounmap(h->cfgtable);
6747 pci_release_regions(h->pdev);
6751 /* Called when controller lockup detected. */
6752 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
6754 struct CommandList *c = NULL;
6756 assert_spin_locked(&h->lock);
6757 /* Mark all outstanding commands as failed and complete them. */
6758 while (!list_empty(list)) {
6759 c = list_entry(list->next, struct CommandList, list);
6760 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6765 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
6769 cpu = cpumask_first(cpu_online_mask);
6770 for (i = 0; i < num_online_cpus(); i++) {
6771 u32 *lockup_detected;
6772 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
6773 *lockup_detected = value;
6774 cpu = cpumask_next(cpu, cpu_online_mask);
6776 wmb(); /* be sure the per-cpu variables are out to memory */
6779 static void controller_lockup_detected(struct ctlr_info *h)
6781 unsigned long flags;
6782 u32 lockup_detected;
6784 h->access.set_intr_mask(h, HPSA_INTR_OFF);
6785 spin_lock_irqsave(&h->lock, flags);
6786 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
6787 if (!lockup_detected) {
6788 /* no heartbeat, but controller gave us a zero. */
6789 dev_warn(&h->pdev->dev,
6790 "lockup detected but scratchpad register is zero\n");
6791 lockup_detected = 0xffffffff;
6793 set_lockup_detected_for_all_cpus(h, lockup_detected);
6794 spin_unlock_irqrestore(&h->lock, flags);
6795 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6797 pci_disable_device(h->pdev);
6798 spin_lock_irqsave(&h->lock, flags);
6799 fail_all_cmds_on_list(h, &h->cmpQ);
6800 fail_all_cmds_on_list(h, &h->reqQ);
6801 spin_unlock_irqrestore(&h->lock, flags);
6804 static void detect_controller_lockup(struct ctlr_info *h)
6808 unsigned long flags;
6810 now = get_jiffies_64();
6811 /* If we've received an interrupt recently, we're ok. */
6812 if (time_after64(h->last_intr_timestamp +
6813 (h->heartbeat_sample_interval), now))
6817 * If we've already checked the heartbeat recently, we're ok.
6818 * This could happen if someone sends us a signal. We
6819 * otherwise don't care about signals in this thread.
6821 if (time_after64(h->last_heartbeat_timestamp +
6822 (h->heartbeat_sample_interval), now))
6825 /* If heartbeat has not changed since we last looked, we're not ok. */
6826 spin_lock_irqsave(&h->lock, flags);
6827 heartbeat = readl(&h->cfgtable->HeartBeat);
6828 spin_unlock_irqrestore(&h->lock, flags);
6829 if (h->last_heartbeat == heartbeat) {
6830 controller_lockup_detected(h);
6835 h->last_heartbeat = heartbeat;
6836 h->last_heartbeat_timestamp = now;
6839 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6844 /* Clear the driver-requested rescan flag */
6845 h->drv_req_rescan = 0;
6847 /* Ask the controller to clear the events we're handling. */
6848 if ((h->transMethod & (CFGTBL_Trans_io_accel1
6849 | CFGTBL_Trans_io_accel2)) &&
6850 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
6851 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
6853 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
6854 event_type = "state change";
6855 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
6856 event_type = "configuration change";
6857 /* Stop sending new RAID offload reqs via the IO accelerator */
6858 scsi_block_requests(h->scsi_host);
6859 for (i = 0; i < h->ndevices; i++)
6860 h->dev[i]->offload_enabled = 0;
6861 hpsa_drain_accel_commands(h);
6862 /* Set 'accelerator path config change' bit */
6863 dev_warn(&h->pdev->dev,
6864 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
6865 h->events, event_type);
6866 writel(h->events, &(h->cfgtable->clear_event_notify));
6867 /* Set the "clear event notify field update" bit 6 */
6868 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6869 /* Wait until ctlr clears 'clear event notify field', bit 6 */
6870 hpsa_wait_for_clear_event_notify_ack(h);
6871 scsi_unblock_requests(h->scsi_host);
6873 /* Acknowledge controller notification events. */
6874 writel(h->events, &(h->cfgtable->clear_event_notify));
6875 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
6876 hpsa_wait_for_clear_event_notify_ack(h);
6878 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6879 hpsa_wait_for_mode_change_ack(h);
6885 /* Check a register on the controller to see if there are configuration
6886 * changes (added/changed/removed logical drives, etc.) which mean that
6887 * we should rescan the controller for devices.
6888 * Also check flag for driver-initiated rescan.
6890 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6892 if (h->drv_req_rescan)
6895 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6898 h->events = readl(&(h->cfgtable->event_notify));
6899 return h->events & RESCAN_REQUIRED_EVENT_BITS;
6903 * Check if any of the offline devices have become ready
6905 static int hpsa_offline_devices_ready(struct ctlr_info *h)
6907 unsigned long flags;
6908 struct offline_device_entry *d;
6909 struct list_head *this, *tmp;
6911 spin_lock_irqsave(&h->offline_device_lock, flags);
6912 list_for_each_safe(this, tmp, &h->offline_device_list) {
6913 d = list_entry(this, struct offline_device_entry,
6915 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6916 if (!hpsa_volume_offline(h, d->scsi3addr))
6918 spin_lock_irqsave(&h->offline_device_lock, flags);
6920 spin_unlock_irqrestore(&h->offline_device_lock, flags);
6925 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6927 unsigned long flags;
6928 struct ctlr_info *h = container_of(to_delayed_work(work),
6929 struct ctlr_info, monitor_ctlr_work);
6930 detect_controller_lockup(h);
6931 if (lockup_detected(h))
6934 if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
6935 scsi_host_get(h->scsi_host);
6936 h->drv_req_rescan = 0;
6937 hpsa_ack_ctlr_events(h);
6938 hpsa_scan_start(h->scsi_host);
6939 scsi_host_put(h->scsi_host);
6942 spin_lock_irqsave(&h->lock, flags);
6943 if (h->remove_in_progress) {
6944 spin_unlock_irqrestore(&h->lock, flags);
6947 schedule_delayed_work(&h->monitor_ctlr_work,
6948 h->heartbeat_sample_interval);
6949 spin_unlock_irqrestore(&h->lock, flags);
6952 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6955 struct ctlr_info *h;
6956 int try_soft_reset = 0;
6957 unsigned long flags;
6959 if (number_of_controllers == 0)
6960 printk(KERN_INFO DRIVER_NAME "\n");
6962 rc = hpsa_init_reset_devices(pdev);
6964 if (rc != -ENOTSUPP)
6966 /* If the reset fails in a particular way (it has no way to do
6967 * a proper hard reset, so returns -ENOTSUPP) we can try to do
6968 * a soft reset once we get the controller configured up to the
6969 * point that it can accept a command.
6975 reinit_after_soft_reset:
6977 /* Command structures must be aligned on a 32-byte boundary because
6978 * the 5 lower bits of the address are used by the hardware. and by
6979 * the driver. See comments in hpsa.h for more info.
6981 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6982 h = kzalloc(sizeof(*h), GFP_KERNEL);
6987 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6988 INIT_LIST_HEAD(&h->cmpQ);
6989 INIT_LIST_HEAD(&h->reqQ);
6990 INIT_LIST_HEAD(&h->offline_device_list);
6991 spin_lock_init(&h->lock);
6992 spin_lock_init(&h->offline_device_lock);
6993 spin_lock_init(&h->scan_lock);
6994 spin_lock_init(&h->passthru_count_lock);
6996 /* Allocate and clear per-cpu variable lockup_detected */
6997 h->lockup_detected = alloc_percpu(u32);
6998 if (!h->lockup_detected)
7000 set_lockup_detected_for_all_cpus(h, 0);
7002 rc = hpsa_pci_init(h);
7006 sprintf(h->devname, HPSA "%d", number_of_controllers);
7007 h->ctlr = number_of_controllers;
7008 number_of_controllers++;
7010 /* configure PCI DMA stuff */
7011 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
7015 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
7019 dev_err(&pdev->dev, "no suitable DMA available\n");
7024 /* make sure the board interrupts are off */
7025 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7027 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7029 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
7030 h->devname, pdev->device,
7031 h->intr[h->intr_mode], dac ? "" : " not");
7032 if (hpsa_allocate_cmd_pool(h))
7034 if (hpsa_allocate_sg_chain_blocks(h))
7036 init_waitqueue_head(&h->scan_wait_queue);
7037 h->scan_finished = 1; /* no scan currently in progress */
7039 pci_set_drvdata(pdev, h);
7041 h->hba_mode_enabled = 0;
7042 h->scsi_host = NULL;
7043 spin_lock_init(&h->devlock);
7044 hpsa_put_ctlr_into_performant_mode(h);
7046 /* At this point, the controller is ready to take commands.
7047 * Now, if reset_devices and the hard reset didn't work, try
7048 * the soft reset and see if that works.
7050 if (try_soft_reset) {
7052 /* This is kind of gross. We may or may not get a completion
7053 * from the soft reset command, and if we do, then the value
7054 * from the fifo may or may not be valid. So, we wait 10 secs
7055 * after the reset throwing away any completions we get during
7056 * that time. Unregister the interrupt handler and register
7057 * fake ones to scoop up any residual completions.
7059 spin_lock_irqsave(&h->lock, flags);
7060 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7061 spin_unlock_irqrestore(&h->lock, flags);
7063 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
7064 hpsa_intx_discard_completions);
7066 dev_warn(&h->pdev->dev, "Failed to request_irq after "
7071 rc = hpsa_kdump_soft_reset(h);
7073 /* Neither hard nor soft reset worked, we're hosed. */
7076 dev_info(&h->pdev->dev, "Board READY.\n");
7077 dev_info(&h->pdev->dev,
7078 "Waiting for stale completions to drain.\n");
7079 h->access.set_intr_mask(h, HPSA_INTR_ON);
7081 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7083 rc = controller_reset_failed(h->cfgtable);
7085 dev_info(&h->pdev->dev,
7086 "Soft reset appears to have failed.\n");
7088 /* since the controller's reset, we have to go back and re-init
7089 * everything. Easiest to just forget what we've done and do it
7092 hpsa_undo_allocations_after_kdump_soft_reset(h);
7095 /* don't go to clean4, we already unallocated */
7098 goto reinit_after_soft_reset;
7101 /* Enable Accelerated IO path at driver layer */
7102 h->acciopath_status = 1;
7104 h->drv_req_rescan = 0;
7106 /* Turn the interrupts on so we can service requests */
7107 h->access.set_intr_mask(h, HPSA_INTR_ON);
7109 hpsa_hba_inquiry(h);
7110 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
7112 /* Monitor the controller for firmware lockups */
7113 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
7114 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
7115 schedule_delayed_work(&h->monitor_ctlr_work,
7116 h->heartbeat_sample_interval);
7120 hpsa_free_sg_chain_blocks(h);
7121 hpsa_free_cmd_pool(h);
7125 if (h->lockup_detected)
7126 free_percpu(h->lockup_detected);
7131 static void hpsa_flush_cache(struct ctlr_info *h)
7134 struct CommandList *c;
7136 /* Don't bother trying to flush the cache if locked up */
7137 if (unlikely(lockup_detected(h)))
7139 flush_buf = kzalloc(4, GFP_KERNEL);
7143 c = cmd_special_alloc(h);
7145 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
7148 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
7149 RAID_CTLR_LUNID, TYPE_CMD)) {
7152 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
7153 if (c->err_info->CommandStatus != 0)
7155 dev_warn(&h->pdev->dev,
7156 "error flushing cache on controller\n");
7157 cmd_special_free(h, c);
7162 static void hpsa_shutdown(struct pci_dev *pdev)
7164 struct ctlr_info *h;
7166 h = pci_get_drvdata(pdev);
7167 /* Turn board interrupts off and send the flush cache command
7168 * sendcmd will turn off interrupt, and send the flush...
7169 * To write all data in the battery backed cache to disks
7171 hpsa_flush_cache(h);
7172 h->access.set_intr_mask(h, HPSA_INTR_OFF);
7173 hpsa_free_irqs_and_disable_msix(h);
7176 static void hpsa_free_device_info(struct ctlr_info *h)
7180 for (i = 0; i < h->ndevices; i++)
7184 static void hpsa_remove_one(struct pci_dev *pdev)
7186 struct ctlr_info *h;
7187 unsigned long flags;
7189 if (pci_get_drvdata(pdev) == NULL) {
7190 dev_err(&pdev->dev, "unable to remove device\n");
7193 h = pci_get_drvdata(pdev);
7195 /* Get rid of any controller monitoring work items */
7196 spin_lock_irqsave(&h->lock, flags);
7197 h->remove_in_progress = 1;
7198 cancel_delayed_work(&h->monitor_ctlr_work);
7199 spin_unlock_irqrestore(&h->lock, flags);
7201 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
7202 hpsa_shutdown(pdev);
7204 iounmap(h->transtable);
7205 iounmap(h->cfgtable);
7206 hpsa_free_device_info(h);
7207 hpsa_free_sg_chain_blocks(h);
7208 pci_free_consistent(h->pdev,
7209 h->nr_cmds * sizeof(struct CommandList),
7210 h->cmd_pool, h->cmd_pool_dhandle);
7211 pci_free_consistent(h->pdev,
7212 h->nr_cmds * sizeof(struct ErrorInfo),
7213 h->errinfo_pool, h->errinfo_pool_dhandle);
7214 hpsa_free_reply_queues(h);
7215 kfree(h->cmd_pool_bits);
7216 kfree(h->blockFetchTable);
7217 kfree(h->ioaccel1_blockFetchTable);
7218 kfree(h->ioaccel2_blockFetchTable);
7219 kfree(h->hba_inquiry_data);
7220 pci_disable_device(pdev);
7221 pci_release_regions(pdev);
7222 free_percpu(h->lockup_detected);
7226 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
7227 __attribute__((unused)) pm_message_t state)
7232 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
7237 static struct pci_driver hpsa_pci_driver = {
7239 .probe = hpsa_init_one,
7240 .remove = hpsa_remove_one,
7241 .id_table = hpsa_pci_device_id, /* id_table */
7242 .shutdown = hpsa_shutdown,
7243 .suspend = hpsa_suspend,
7244 .resume = hpsa_resume,
7247 /* Fill in bucket_map[], given nsgs (the max number of
7248 * scatter gather elements supported) and bucket[],
7249 * which is an array of 8 integers. The bucket[] array
7250 * contains 8 different DMA transfer sizes (in 16
7251 * byte increments) which the controller uses to fetch
7252 * commands. This function fills in bucket_map[], which
7253 * maps a given number of scatter gather elements to one of
7254 * the 8 DMA transfer sizes. The point of it is to allow the
7255 * controller to only do as much DMA as needed to fetch the
7256 * command, with the DMA transfer size encoded in the lower
7257 * bits of the command address.
7259 static void calc_bucket_map(int bucket[], int num_buckets,
7260 int nsgs, int min_blocks, int *bucket_map)
7264 /* Note, bucket_map must have nsgs+1 entries. */
7265 for (i = 0; i <= nsgs; i++) {
7266 /* Compute size of a command with i SG entries */
7267 size = i + min_blocks;
7268 b = num_buckets; /* Assume the biggest bucket */
7269 /* Find the bucket that is just big enough */
7270 for (j = 0; j < num_buckets; j++) {
7271 if (bucket[j] >= size) {
7276 /* for a command with i SG entries, use bucket b. */
7281 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7284 unsigned long register_value;
7285 unsigned long transMethod = CFGTBL_Trans_Performant |
7286 (trans_support & CFGTBL_Trans_use_short_tags) |
7287 CFGTBL_Trans_enable_directed_msix |
7288 (trans_support & (CFGTBL_Trans_io_accel1 |
7289 CFGTBL_Trans_io_accel2));
7290 struct access_method access = SA5_performant_access;
7292 /* This is a bit complicated. There are 8 registers on
7293 * the controller which we write to to tell it 8 different
7294 * sizes of commands which there may be. It's a way of
7295 * reducing the DMA done to fetch each command. Encoded into
7296 * each command's tag are 3 bits which communicate to the controller
7297 * which of the eight sizes that command fits within. The size of
7298 * each command depends on how many scatter gather entries there are.
7299 * Each SG entry requires 16 bytes. The eight registers are programmed
7300 * with the number of 16-byte blocks a command of that size requires.
7301 * The smallest command possible requires 5 such 16 byte blocks.
7302 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7303 * blocks. Note, this only extends to the SG entries contained
7304 * within the command block, and does not extend to chained blocks
7305 * of SG elements. bft[] contains the eight values we write to
7306 * the registers. They are not evenly distributed, but have more
7307 * sizes for small commands, and fewer sizes for larger commands.
7309 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7310 #define MIN_IOACCEL2_BFT_ENTRY 5
7311 #define HPSA_IOACCEL2_HEADER_SZ 4
7312 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
7313 13, 14, 15, 16, 17, 18, 19,
7314 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
7315 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
7316 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
7317 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
7318 16 * MIN_IOACCEL2_BFT_ENTRY);
7319 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7320 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7321 /* 5 = 1 s/g entry or 4k
7322 * 6 = 2 s/g entry or 8k
7323 * 8 = 4 s/g entry or 16k
7324 * 10 = 6 s/g entry or 24k
7327 /* If the controller supports either ioaccel method then
7328 * we can also use the RAID stack submit path that does not
7329 * perform the superfluous readl() after each command submission.
7331 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
7332 access = SA5_performant_access_no_read;
7334 /* Controller spec: zero out this buffer. */
7335 for (i = 0; i < h->nreply_queues; i++)
7336 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7338 bft[7] = SG_ENTRIES_IN_CMD + 4;
7339 calc_bucket_map(bft, ARRAY_SIZE(bft),
7340 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7341 for (i = 0; i < 8; i++)
7342 writel(bft[i], &h->transtable->BlockFetch[i]);
7344 /* size of controller ring buffer */
7345 writel(h->max_commands, &h->transtable->RepQSize);
7346 writel(h->nreply_queues, &h->transtable->RepQCount);
7347 writel(0, &h->transtable->RepQCtrAddrLow32);
7348 writel(0, &h->transtable->RepQCtrAddrHigh32);
7350 for (i = 0; i < h->nreply_queues; i++) {
7351 writel(0, &h->transtable->RepQAddr[i].upper);
7352 writel(h->reply_queue[i].busaddr,
7353 &h->transtable->RepQAddr[i].lower);
7356 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7357 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
7359 * enable outbound interrupt coalescing in accelerator mode;
7361 if (trans_support & CFGTBL_Trans_io_accel1) {
7362 access = SA5_ioaccel_mode1_access;
7363 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7364 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7366 if (trans_support & CFGTBL_Trans_io_accel2) {
7367 access = SA5_ioaccel_mode2_access;
7368 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
7369 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7372 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7373 hpsa_wait_for_mode_change_ack(h);
7374 register_value = readl(&(h->cfgtable->TransportActive));
7375 if (!(register_value & CFGTBL_Trans_Performant)) {
7376 dev_warn(&h->pdev->dev, "unable to get board into"
7377 " performant mode\n");
7380 /* Change the access methods to the performant access methods */
7382 h->transMethod = transMethod;
7384 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
7385 (trans_support & CFGTBL_Trans_io_accel2)))
7388 if (trans_support & CFGTBL_Trans_io_accel1) {
7389 /* Set up I/O accelerator mode */
7390 for (i = 0; i < h->nreply_queues; i++) {
7391 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
7392 h->reply_queue[i].current_entry =
7393 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
7395 bft[7] = h->ioaccel_maxsg + 8;
7396 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
7397 h->ioaccel1_blockFetchTable);
7399 /* initialize all reply queue entries to unused */
7400 for (i = 0; i < h->nreply_queues; i++)
7401 memset(h->reply_queue[i].head,
7402 (u8) IOACCEL_MODE1_REPLY_UNUSED,
7403 h->reply_queue_size);
7405 /* set all the constant fields in the accelerator command
7406 * frames once at init time to save CPU cycles later.
7408 for (i = 0; i < h->nr_cmds; i++) {
7409 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
7411 cp->function = IOACCEL1_FUNCTION_SCSIIO;
7412 cp->err_info = (u32) (h->errinfo_pool_dhandle +
7413 (i * sizeof(struct ErrorInfo)));
7414 cp->err_info_len = sizeof(struct ErrorInfo);
7415 cp->sgl_offset = IOACCEL1_SGLOFFSET;
7416 cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
7417 cp->timeout_sec = 0;
7419 cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
7422 cp->host_addr.lower =
7423 (u32) (h->ioaccel_cmd_pool_dhandle +
7424 (i * sizeof(struct io_accel1_cmd)));
7425 cp->host_addr.upper = 0;
7427 } else if (trans_support & CFGTBL_Trans_io_accel2) {
7428 u64 cfg_offset, cfg_base_addr_index;
7429 u32 bft2_offset, cfg_base_addr;
7432 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7433 &cfg_base_addr_index, &cfg_offset);
7434 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
7435 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
7436 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
7437 4, h->ioaccel2_blockFetchTable);
7438 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
7439 BUILD_BUG_ON(offsetof(struct CfgTable,
7440 io_accel_request_size_offset) != 0xb8);
7441 h->ioaccel2_bft2_regs =
7442 remap_pci_mem(pci_resource_start(h->pdev,
7443 cfg_base_addr_index) +
7444 cfg_offset + bft2_offset,
7446 sizeof(*h->ioaccel2_bft2_regs));
7447 for (i = 0; i < ARRAY_SIZE(bft2); i++)
7448 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7450 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7451 hpsa_wait_for_mode_change_ack(h);
7454 static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
7457 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7458 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
7459 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
7461 /* Command structures must be aligned on a 128-byte boundary
7462 * because the 7 lower bits of the address are used by the
7465 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
7466 IOACCEL1_COMMANDLIST_ALIGNMENT);
7467 h->ioaccel_cmd_pool =
7468 pci_alloc_consistent(h->pdev,
7469 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7470 &(h->ioaccel_cmd_pool_dhandle));
7472 h->ioaccel1_blockFetchTable =
7473 kmalloc(((h->ioaccel_maxsg + 1) *
7474 sizeof(u32)), GFP_KERNEL);
7476 if ((h->ioaccel_cmd_pool == NULL) ||
7477 (h->ioaccel1_blockFetchTable == NULL))
7480 memset(h->ioaccel_cmd_pool, 0,
7481 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
7485 if (h->ioaccel_cmd_pool)
7486 pci_free_consistent(h->pdev,
7487 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
7488 h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
7489 kfree(h->ioaccel1_blockFetchTable);
7493 static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
7495 /* Allocate ioaccel2 mode command blocks and block fetch table */
7498 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
7499 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
7500 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
7502 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
7503 IOACCEL2_COMMANDLIST_ALIGNMENT);
7504 h->ioaccel2_cmd_pool =
7505 pci_alloc_consistent(h->pdev,
7506 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7507 &(h->ioaccel2_cmd_pool_dhandle));
7509 h->ioaccel2_blockFetchTable =
7510 kmalloc(((h->ioaccel_maxsg + 1) *
7511 sizeof(u32)), GFP_KERNEL);
7513 if ((h->ioaccel2_cmd_pool == NULL) ||
7514 (h->ioaccel2_blockFetchTable == NULL))
7517 memset(h->ioaccel2_cmd_pool, 0,
7518 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
7522 if (h->ioaccel2_cmd_pool)
7523 pci_free_consistent(h->pdev,
7524 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
7525 h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
7526 kfree(h->ioaccel2_blockFetchTable);
7530 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7533 unsigned long transMethod = CFGTBL_Trans_Performant |
7534 CFGTBL_Trans_use_short_tags;
7537 if (hpsa_simple_mode)
7540 trans_support = readl(&(h->cfgtable->TransportSupport));
7541 if (!(trans_support & PERFORMANT_MODE))
7544 /* Check for I/O accelerator mode support */
7545 if (trans_support & CFGTBL_Trans_io_accel1) {
7546 transMethod |= CFGTBL_Trans_io_accel1 |
7547 CFGTBL_Trans_enable_directed_msix;
7548 if (hpsa_alloc_ioaccel_cmd_and_bft(h))
7551 if (trans_support & CFGTBL_Trans_io_accel2) {
7552 transMethod |= CFGTBL_Trans_io_accel2 |
7553 CFGTBL_Trans_enable_directed_msix;
7554 if (ioaccel2_alloc_cmds_and_bft(h))
7559 h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7560 hpsa_get_max_perf_mode_cmds(h);
7561 /* Performant mode ring buffer and supporting data structures */
7562 h->reply_queue_size = h->max_commands * sizeof(u64);
7564 for (i = 0; i < h->nreply_queues; i++) {
7565 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
7566 h->reply_queue_size,
7567 &(h->reply_queue[i].busaddr));
7568 if (!h->reply_queue[i].head)
7570 h->reply_queue[i].size = h->max_commands;
7571 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
7572 h->reply_queue[i].current_entry = 0;
7575 /* Need a block fetch table for performant mode */
7576 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7577 sizeof(u32)), GFP_KERNEL);
7578 if (!h->blockFetchTable)
7581 hpsa_enter_performant_mode(h, trans_support);
7585 hpsa_free_reply_queues(h);
7586 kfree(h->blockFetchTable);
7589 static int is_accelerated_cmd(struct CommandList *c)
7591 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
7594 static void hpsa_drain_accel_commands(struct ctlr_info *h)
7596 struct CommandList *c = NULL;
7597 unsigned long flags;
7600 do { /* wait for all outstanding commands to drain out */
7602 spin_lock_irqsave(&h->lock, flags);
7603 list_for_each_entry(c, &h->cmpQ, list)
7604 accel_cmds_out += is_accelerated_cmd(c);
7605 list_for_each_entry(c, &h->reqQ, list)
7606 accel_cmds_out += is_accelerated_cmd(c);
7607 spin_unlock_irqrestore(&h->lock, flags);
7608 if (accel_cmds_out <= 0)
7615 * This is it. Register the PCI driver information for the cards we control
7616 * the OS will call our registered routines when it finds one of our cards.
7618 static int __init hpsa_init(void)
7620 return pci_register_driver(&hpsa_pci_driver);
7623 static void __exit hpsa_cleanup(void)
7625 pci_unregister_driver(&hpsa_pci_driver);
7628 static void __attribute__((unused)) verify_offsets(void)
7630 #define VERIFY_OFFSET(member, offset) \
7631 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
7633 VERIFY_OFFSET(structure_size, 0);
7634 VERIFY_OFFSET(volume_blk_size, 4);
7635 VERIFY_OFFSET(volume_blk_cnt, 8);
7636 VERIFY_OFFSET(phys_blk_shift, 16);
7637 VERIFY_OFFSET(parity_rotation_shift, 17);
7638 VERIFY_OFFSET(strip_size, 18);
7639 VERIFY_OFFSET(disk_starting_blk, 20);
7640 VERIFY_OFFSET(disk_blk_cnt, 28);
7641 VERIFY_OFFSET(data_disks_per_row, 36);
7642 VERIFY_OFFSET(metadata_disks_per_row, 38);
7643 VERIFY_OFFSET(row_cnt, 40);
7644 VERIFY_OFFSET(layout_map_count, 42);
7645 VERIFY_OFFSET(flags, 44);
7646 VERIFY_OFFSET(dekindex, 46);
7647 /* VERIFY_OFFSET(reserved, 48 */
7648 VERIFY_OFFSET(data, 64);
7650 #undef VERIFY_OFFSET
7652 #define VERIFY_OFFSET(member, offset) \
7653 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
7655 VERIFY_OFFSET(IU_type, 0);
7656 VERIFY_OFFSET(direction, 1);
7657 VERIFY_OFFSET(reply_queue, 2);
7658 /* VERIFY_OFFSET(reserved1, 3); */
7659 VERIFY_OFFSET(scsi_nexus, 4);
7660 VERIFY_OFFSET(Tag, 8);
7661 VERIFY_OFFSET(cdb, 16);
7662 VERIFY_OFFSET(cciss_lun, 32);
7663 VERIFY_OFFSET(data_len, 40);
7664 VERIFY_OFFSET(cmd_priority_task_attr, 44);
7665 VERIFY_OFFSET(sg_count, 45);
7666 /* VERIFY_OFFSET(reserved3 */
7667 VERIFY_OFFSET(err_ptr, 48);
7668 VERIFY_OFFSET(err_len, 56);
7669 /* VERIFY_OFFSET(reserved4 */
7670 VERIFY_OFFSET(sg, 64);
7672 #undef VERIFY_OFFSET
7674 #define VERIFY_OFFSET(member, offset) \
7675 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
7677 VERIFY_OFFSET(dev_handle, 0x00);
7678 VERIFY_OFFSET(reserved1, 0x02);
7679 VERIFY_OFFSET(function, 0x03);
7680 VERIFY_OFFSET(reserved2, 0x04);
7681 VERIFY_OFFSET(err_info, 0x0C);
7682 VERIFY_OFFSET(reserved3, 0x10);
7683 VERIFY_OFFSET(err_info_len, 0x12);
7684 VERIFY_OFFSET(reserved4, 0x13);
7685 VERIFY_OFFSET(sgl_offset, 0x14);
7686 VERIFY_OFFSET(reserved5, 0x15);
7687 VERIFY_OFFSET(transfer_len, 0x1C);
7688 VERIFY_OFFSET(reserved6, 0x20);
7689 VERIFY_OFFSET(io_flags, 0x24);
7690 VERIFY_OFFSET(reserved7, 0x26);
7691 VERIFY_OFFSET(LUN, 0x34);
7692 VERIFY_OFFSET(control, 0x3C);
7693 VERIFY_OFFSET(CDB, 0x40);
7694 VERIFY_OFFSET(reserved8, 0x50);
7695 VERIFY_OFFSET(host_context_flags, 0x60);
7696 VERIFY_OFFSET(timeout_sec, 0x62);
7697 VERIFY_OFFSET(ReplyQueue, 0x64);
7698 VERIFY_OFFSET(reserved9, 0x65);
7699 VERIFY_OFFSET(Tag, 0x68);
7700 VERIFY_OFFSET(host_addr, 0x70);
7701 VERIFY_OFFSET(CISS_LUN, 0x78);
7702 VERIFY_OFFSET(SG, 0x78 + 8);
7703 #undef VERIFY_OFFSET
7706 module_init(hpsa_init);
7707 module_exit(hpsa_cleanup);