2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/mutex.h>
22 #include <linux/suspend.h>
23 #include <linux/delay.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/driver.h>
26 #include <linux/regulator/machine.h>
30 #define REGULATOR_VERSION "0.5"
32 static DEFINE_MUTEX(regulator_list_mutex);
33 static LIST_HEAD(regulator_list);
34 static LIST_HEAD(regulator_map_list);
35 static int has_full_constraints;
36 static bool board_wants_dummy_regulator;
39 * struct regulator_map
41 * Used to provide symbolic supply names to devices.
43 struct regulator_map {
44 struct list_head list;
45 const char *dev_name; /* The dev_name() for the consumer */
47 struct regulator_dev *regulator;
53 * One for each consumer device.
57 struct list_head list;
62 struct device_attribute dev_attr;
63 struct regulator_dev *rdev;
66 static int _regulator_is_enabled(struct regulator_dev *rdev);
67 static int _regulator_disable(struct regulator_dev *rdev,
68 struct regulator_dev **supply_rdev_ptr);
69 static int _regulator_get_voltage(struct regulator_dev *rdev);
70 static int _regulator_get_current_limit(struct regulator_dev *rdev);
71 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
72 static void _notifier_call_chain(struct regulator_dev *rdev,
73 unsigned long event, void *data);
75 static const char *rdev_get_name(struct regulator_dev *rdev)
77 if (rdev->constraints && rdev->constraints->name)
78 return rdev->constraints->name;
79 else if (rdev->desc->name)
80 return rdev->desc->name;
85 /* gets the regulator for a given consumer device */
86 static struct regulator *get_device_regulator(struct device *dev)
88 struct regulator *regulator = NULL;
89 struct regulator_dev *rdev;
91 mutex_lock(®ulator_list_mutex);
92 list_for_each_entry(rdev, ®ulator_list, list) {
93 mutex_lock(&rdev->mutex);
94 list_for_each_entry(regulator, &rdev->consumer_list, list) {
95 if (regulator->dev == dev) {
96 mutex_unlock(&rdev->mutex);
97 mutex_unlock(®ulator_list_mutex);
101 mutex_unlock(&rdev->mutex);
103 mutex_unlock(®ulator_list_mutex);
107 /* Platform voltage constraint check */
108 static int regulator_check_voltage(struct regulator_dev *rdev,
109 int *min_uV, int *max_uV)
111 BUG_ON(*min_uV > *max_uV);
113 if (!rdev->constraints) {
114 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
115 rdev_get_name(rdev));
118 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
119 printk(KERN_ERR "%s: operation not allowed for %s\n",
120 __func__, rdev_get_name(rdev));
124 if (*max_uV > rdev->constraints->max_uV)
125 *max_uV = rdev->constraints->max_uV;
126 if (*min_uV < rdev->constraints->min_uV)
127 *min_uV = rdev->constraints->min_uV;
129 if (*min_uV > *max_uV)
135 /* current constraint check */
136 static int regulator_check_current_limit(struct regulator_dev *rdev,
137 int *min_uA, int *max_uA)
139 BUG_ON(*min_uA > *max_uA);
141 if (!rdev->constraints) {
142 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
143 rdev_get_name(rdev));
146 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
147 printk(KERN_ERR "%s: operation not allowed for %s\n",
148 __func__, rdev_get_name(rdev));
152 if (*max_uA > rdev->constraints->max_uA)
153 *max_uA = rdev->constraints->max_uA;
154 if (*min_uA < rdev->constraints->min_uA)
155 *min_uA = rdev->constraints->min_uA;
157 if (*min_uA > *max_uA)
163 /* operating mode constraint check */
164 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
167 case REGULATOR_MODE_FAST:
168 case REGULATOR_MODE_NORMAL:
169 case REGULATOR_MODE_IDLE:
170 case REGULATOR_MODE_STANDBY:
176 if (!rdev->constraints) {
177 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
178 rdev_get_name(rdev));
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
182 printk(KERN_ERR "%s: operation not allowed for %s\n",
183 __func__, rdev_get_name(rdev));
186 if (!(rdev->constraints->valid_modes_mask & mode)) {
187 printk(KERN_ERR "%s: invalid mode %x for %s\n",
188 __func__, mode, rdev_get_name(rdev));
194 /* dynamic regulator mode switching constraint check */
195 static int regulator_check_drms(struct regulator_dev *rdev)
197 if (!rdev->constraints) {
198 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
199 rdev_get_name(rdev));
202 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
203 printk(KERN_ERR "%s: operation not allowed for %s\n",
204 __func__, rdev_get_name(rdev));
210 static ssize_t device_requested_uA_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
213 struct regulator *regulator;
215 regulator = get_device_regulator(dev);
216 if (regulator == NULL)
219 return sprintf(buf, "%d\n", regulator->uA_load);
222 static ssize_t regulator_uV_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
225 struct regulator_dev *rdev = dev_get_drvdata(dev);
228 mutex_lock(&rdev->mutex);
229 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
230 mutex_unlock(&rdev->mutex);
234 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
236 static ssize_t regulator_uA_show(struct device *dev,
237 struct device_attribute *attr, char *buf)
239 struct regulator_dev *rdev = dev_get_drvdata(dev);
241 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
243 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
245 static ssize_t regulator_name_show(struct device *dev,
246 struct device_attribute *attr, char *buf)
248 struct regulator_dev *rdev = dev_get_drvdata(dev);
250 return sprintf(buf, "%s\n", rdev_get_name(rdev));
253 static ssize_t regulator_print_opmode(char *buf, int mode)
256 case REGULATOR_MODE_FAST:
257 return sprintf(buf, "fast\n");
258 case REGULATOR_MODE_NORMAL:
259 return sprintf(buf, "normal\n");
260 case REGULATOR_MODE_IDLE:
261 return sprintf(buf, "idle\n");
262 case REGULATOR_MODE_STANDBY:
263 return sprintf(buf, "standby\n");
265 return sprintf(buf, "unknown\n");
268 static ssize_t regulator_opmode_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
271 struct regulator_dev *rdev = dev_get_drvdata(dev);
273 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
275 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
277 static ssize_t regulator_print_state(char *buf, int state)
280 return sprintf(buf, "enabled\n");
282 return sprintf(buf, "disabled\n");
284 return sprintf(buf, "unknown\n");
287 static ssize_t regulator_state_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
293 mutex_lock(&rdev->mutex);
294 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
295 mutex_unlock(&rdev->mutex);
299 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
301 static ssize_t regulator_status_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
304 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 status = rdev->desc->ops->get_status(rdev);
313 case REGULATOR_STATUS_OFF:
316 case REGULATOR_STATUS_ON:
319 case REGULATOR_STATUS_ERROR:
322 case REGULATOR_STATUS_FAST:
325 case REGULATOR_STATUS_NORMAL:
328 case REGULATOR_STATUS_IDLE:
331 case REGULATOR_STATUS_STANDBY:
338 return sprintf(buf, "%s\n", label);
340 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
342 static ssize_t regulator_min_uA_show(struct device *dev,
343 struct device_attribute *attr, char *buf)
345 struct regulator_dev *rdev = dev_get_drvdata(dev);
347 if (!rdev->constraints)
348 return sprintf(buf, "constraint not defined\n");
350 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
352 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
354 static ssize_t regulator_max_uA_show(struct device *dev,
355 struct device_attribute *attr, char *buf)
357 struct regulator_dev *rdev = dev_get_drvdata(dev);
359 if (!rdev->constraints)
360 return sprintf(buf, "constraint not defined\n");
362 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
364 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
366 static ssize_t regulator_min_uV_show(struct device *dev,
367 struct device_attribute *attr, char *buf)
369 struct regulator_dev *rdev = dev_get_drvdata(dev);
371 if (!rdev->constraints)
372 return sprintf(buf, "constraint not defined\n");
374 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
376 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
378 static ssize_t regulator_max_uV_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
383 if (!rdev->constraints)
384 return sprintf(buf, "constraint not defined\n");
386 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
388 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
390 static ssize_t regulator_total_uA_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
393 struct regulator_dev *rdev = dev_get_drvdata(dev);
394 struct regulator *regulator;
397 mutex_lock(&rdev->mutex);
398 list_for_each_entry(regulator, &rdev->consumer_list, list)
399 uA += regulator->uA_load;
400 mutex_unlock(&rdev->mutex);
401 return sprintf(buf, "%d\n", uA);
403 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
405 static ssize_t regulator_num_users_show(struct device *dev,
406 struct device_attribute *attr, char *buf)
408 struct regulator_dev *rdev = dev_get_drvdata(dev);
409 return sprintf(buf, "%d\n", rdev->use_count);
412 static ssize_t regulator_type_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
417 switch (rdev->desc->type) {
418 case REGULATOR_VOLTAGE:
419 return sprintf(buf, "voltage\n");
420 case REGULATOR_CURRENT:
421 return sprintf(buf, "current\n");
423 return sprintf(buf, "unknown\n");
426 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
427 struct device_attribute *attr, char *buf)
429 struct regulator_dev *rdev = dev_get_drvdata(dev);
431 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
433 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
434 regulator_suspend_mem_uV_show, NULL);
436 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
441 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
443 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
444 regulator_suspend_disk_uV_show, NULL);
446 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
447 struct device_attribute *attr, char *buf)
449 struct regulator_dev *rdev = dev_get_drvdata(dev);
451 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
453 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
454 regulator_suspend_standby_uV_show, NULL);
456 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
461 return regulator_print_opmode(buf,
462 rdev->constraints->state_mem.mode);
464 static DEVICE_ATTR(suspend_mem_mode, 0444,
465 regulator_suspend_mem_mode_show, NULL);
467 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
472 return regulator_print_opmode(buf,
473 rdev->constraints->state_disk.mode);
475 static DEVICE_ATTR(suspend_disk_mode, 0444,
476 regulator_suspend_disk_mode_show, NULL);
478 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 return regulator_print_opmode(buf,
484 rdev->constraints->state_standby.mode);
486 static DEVICE_ATTR(suspend_standby_mode, 0444,
487 regulator_suspend_standby_mode_show, NULL);
489 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
490 struct device_attribute *attr, char *buf)
492 struct regulator_dev *rdev = dev_get_drvdata(dev);
494 return regulator_print_state(buf,
495 rdev->constraints->state_mem.enabled);
497 static DEVICE_ATTR(suspend_mem_state, 0444,
498 regulator_suspend_mem_state_show, NULL);
500 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
501 struct device_attribute *attr, char *buf)
503 struct regulator_dev *rdev = dev_get_drvdata(dev);
505 return regulator_print_state(buf,
506 rdev->constraints->state_disk.enabled);
508 static DEVICE_ATTR(suspend_disk_state, 0444,
509 regulator_suspend_disk_state_show, NULL);
511 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
512 struct device_attribute *attr, char *buf)
514 struct regulator_dev *rdev = dev_get_drvdata(dev);
516 return regulator_print_state(buf,
517 rdev->constraints->state_standby.enabled);
519 static DEVICE_ATTR(suspend_standby_state, 0444,
520 regulator_suspend_standby_state_show, NULL);
524 * These are the only attributes are present for all regulators.
525 * Other attributes are a function of regulator functionality.
527 static struct device_attribute regulator_dev_attrs[] = {
528 __ATTR(name, 0444, regulator_name_show, NULL),
529 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
530 __ATTR(type, 0444, regulator_type_show, NULL),
534 static void regulator_dev_release(struct device *dev)
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
540 static struct class regulator_class = {
542 .dev_release = regulator_dev_release,
543 .dev_attrs = regulator_dev_attrs,
546 /* Calculate the new optimum regulator operating mode based on the new total
547 * consumer load. All locks held by caller */
548 static void drms_uA_update(struct regulator_dev *rdev)
550 struct regulator *sibling;
551 int current_uA = 0, output_uV, input_uV, err;
554 err = regulator_check_drms(rdev);
555 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
556 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
559 /* get output voltage */
560 output_uV = rdev->desc->ops->get_voltage(rdev);
564 /* get input voltage */
565 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
566 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
568 input_uV = rdev->constraints->input_uV;
572 /* calc total requested load */
573 list_for_each_entry(sibling, &rdev->consumer_list, list)
574 current_uA += sibling->uA_load;
576 /* now get the optimum mode for our new total regulator load */
577 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
578 output_uV, current_uA);
580 /* check the new mode is allowed */
581 err = regulator_check_mode(rdev, mode);
583 rdev->desc->ops->set_mode(rdev, mode);
586 static int suspend_set_state(struct regulator_dev *rdev,
587 struct regulator_state *rstate)
592 can_set_state = rdev->desc->ops->set_suspend_enable &&
593 rdev->desc->ops->set_suspend_disable;
595 /* If we have no suspend mode configration don't set anything;
596 * only warn if the driver actually makes the suspend mode
599 if (!rstate->enabled && !rstate->disabled) {
601 printk(KERN_WARNING "%s: No configuration for %s\n",
602 __func__, rdev_get_name(rdev));
606 if (rstate->enabled && rstate->disabled) {
607 printk(KERN_ERR "%s: invalid configuration for %s\n",
608 __func__, rdev_get_name(rdev));
612 if (!can_set_state) {
613 printk(KERN_ERR "%s: no way to set suspend state\n",
619 ret = rdev->desc->ops->set_suspend_enable(rdev);
621 ret = rdev->desc->ops->set_suspend_disable(rdev);
623 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
627 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
628 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
630 printk(KERN_ERR "%s: failed to set voltage\n",
636 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
637 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
639 printk(KERN_ERR "%s: failed to set mode\n", __func__);
646 /* locks held by caller */
647 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
649 if (!rdev->constraints)
653 case PM_SUSPEND_STANDBY:
654 return suspend_set_state(rdev,
655 &rdev->constraints->state_standby);
657 return suspend_set_state(rdev,
658 &rdev->constraints->state_mem);
660 return suspend_set_state(rdev,
661 &rdev->constraints->state_disk);
667 static void print_constraints(struct regulator_dev *rdev)
669 struct regulation_constraints *constraints = rdev->constraints;
674 if (constraints->min_uV && constraints->max_uV) {
675 if (constraints->min_uV == constraints->max_uV)
676 count += sprintf(buf + count, "%d mV ",
677 constraints->min_uV / 1000);
679 count += sprintf(buf + count, "%d <--> %d mV ",
680 constraints->min_uV / 1000,
681 constraints->max_uV / 1000);
684 if (!constraints->min_uV ||
685 constraints->min_uV != constraints->max_uV) {
686 ret = _regulator_get_voltage(rdev);
688 count += sprintf(buf + count, "at %d mV ", ret / 1000);
691 if (constraints->min_uA && constraints->max_uA) {
692 if (constraints->min_uA == constraints->max_uA)
693 count += sprintf(buf + count, "%d mA ",
694 constraints->min_uA / 1000);
696 count += sprintf(buf + count, "%d <--> %d mA ",
697 constraints->min_uA / 1000,
698 constraints->max_uA / 1000);
701 if (!constraints->min_uA ||
702 constraints->min_uA != constraints->max_uA) {
703 ret = _regulator_get_current_limit(rdev);
705 count += sprintf(buf + count, "at %d mA ", ret / 1000);
708 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
709 count += sprintf(buf + count, "fast ");
710 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
711 count += sprintf(buf + count, "normal ");
712 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
713 count += sprintf(buf + count, "idle ");
714 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
715 count += sprintf(buf + count, "standby");
717 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
720 static int machine_constraints_voltage(struct regulator_dev *rdev,
721 struct regulation_constraints *constraints)
723 struct regulator_ops *ops = rdev->desc->ops;
724 const char *name = rdev_get_name(rdev);
727 /* do we need to apply the constraint voltage */
728 if (rdev->constraints->apply_uV &&
729 rdev->constraints->min_uV == rdev->constraints->max_uV &&
731 ret = ops->set_voltage(rdev,
732 rdev->constraints->min_uV, rdev->constraints->max_uV);
734 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
736 rdev->constraints->min_uV, name);
737 rdev->constraints = NULL;
742 /* constrain machine-level voltage specs to fit
743 * the actual range supported by this regulator.
745 if (ops->list_voltage && rdev->desc->n_voltages) {
746 int count = rdev->desc->n_voltages;
748 int min_uV = INT_MAX;
749 int max_uV = INT_MIN;
750 int cmin = constraints->min_uV;
751 int cmax = constraints->max_uV;
753 /* it's safe to autoconfigure fixed-voltage supplies
754 and the constraints are used by list_voltage. */
755 if (count == 1 && !cmin) {
758 constraints->min_uV = cmin;
759 constraints->max_uV = cmax;
762 /* voltage constraints are optional */
763 if ((cmin == 0) && (cmax == 0))
766 /* else require explicit machine-level constraints */
767 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
768 pr_err("%s: %s '%s' voltage constraints\n",
769 __func__, "invalid", name);
773 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
774 for (i = 0; i < count; i++) {
777 value = ops->list_voltage(rdev, i);
781 /* maybe adjust [min_uV..max_uV] */
782 if (value >= cmin && value < min_uV)
784 if (value <= cmax && value > max_uV)
788 /* final: [min_uV..max_uV] valid iff constraints valid */
789 if (max_uV < min_uV) {
790 pr_err("%s: %s '%s' voltage constraints\n",
791 __func__, "unsupportable", name);
795 /* use regulator's subset of machine constraints */
796 if (constraints->min_uV < min_uV) {
797 pr_debug("%s: override '%s' %s, %d -> %d\n",
798 __func__, name, "min_uV",
799 constraints->min_uV, min_uV);
800 constraints->min_uV = min_uV;
802 if (constraints->max_uV > max_uV) {
803 pr_debug("%s: override '%s' %s, %d -> %d\n",
804 __func__, name, "max_uV",
805 constraints->max_uV, max_uV);
806 constraints->max_uV = max_uV;
814 * set_machine_constraints - sets regulator constraints
815 * @rdev: regulator source
816 * @constraints: constraints to apply
818 * Allows platform initialisation code to define and constrain
819 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
820 * Constraints *must* be set by platform code in order for some
821 * regulator operations to proceed i.e. set_voltage, set_current_limit,
824 static int set_machine_constraints(struct regulator_dev *rdev,
825 struct regulation_constraints *constraints)
829 struct regulator_ops *ops = rdev->desc->ops;
831 rdev->constraints = constraints;
833 name = rdev_get_name(rdev);
835 ret = machine_constraints_voltage(rdev, constraints);
839 /* do we need to setup our suspend state */
840 if (constraints->initial_state) {
841 ret = suspend_prepare(rdev, constraints->initial_state);
843 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
845 rdev->constraints = NULL;
850 if (constraints->initial_mode) {
851 if (!ops->set_mode) {
852 printk(KERN_ERR "%s: no set_mode operation for %s\n",
858 ret = ops->set_mode(rdev, constraints->initial_mode);
861 "%s: failed to set initial mode for %s: %d\n",
862 __func__, name, ret);
867 /* If the constraints say the regulator should be on at this point
868 * and we have control then make sure it is enabled.
870 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
871 ret = ops->enable(rdev);
873 printk(KERN_ERR "%s: failed to enable %s\n",
875 rdev->constraints = NULL;
880 print_constraints(rdev);
886 * set_supply - set regulator supply regulator
887 * @rdev: regulator name
888 * @supply_rdev: supply regulator name
890 * Called by platform initialisation code to set the supply regulator for this
891 * regulator. This ensures that a regulators supply will also be enabled by the
892 * core if it's child is enabled.
894 static int set_supply(struct regulator_dev *rdev,
895 struct regulator_dev *supply_rdev)
899 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
903 "%s: could not add device link %s err %d\n",
904 __func__, supply_rdev->dev.kobj.name, err);
907 rdev->supply = supply_rdev;
908 list_add(&rdev->slist, &supply_rdev->supply_list);
914 * set_consumer_device_supply - Bind a regulator to a symbolic supply
915 * @rdev: regulator source
916 * @consumer_dev: device the supply applies to
917 * @consumer_dev_name: dev_name() string for device supply applies to
918 * @supply: symbolic name for supply
920 * Allows platform initialisation code to map physical regulator
921 * sources to symbolic names for supplies for use by devices. Devices
922 * should use these symbolic names to request regulators, avoiding the
923 * need to provide board-specific regulator names as platform data.
925 * Only one of consumer_dev and consumer_dev_name may be specified.
927 static int set_consumer_device_supply(struct regulator_dev *rdev,
928 struct device *consumer_dev, const char *consumer_dev_name,
931 struct regulator_map *node;
934 if (consumer_dev && consumer_dev_name)
937 if (!consumer_dev_name && consumer_dev)
938 consumer_dev_name = dev_name(consumer_dev);
943 if (consumer_dev_name != NULL)
948 list_for_each_entry(node, ®ulator_map_list, list) {
949 if (node->dev_name && consumer_dev_name) {
950 if (strcmp(node->dev_name, consumer_dev_name) != 0)
952 } else if (node->dev_name || consumer_dev_name) {
956 if (strcmp(node->supply, supply) != 0)
959 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
960 dev_name(&node->regulator->dev),
961 node->regulator->desc->name,
963 dev_name(&rdev->dev), rdev_get_name(rdev));
967 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
971 node->regulator = rdev;
972 node->supply = supply;
975 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
976 if (node->dev_name == NULL) {
982 list_add(&node->list, ®ulator_map_list);
986 static void unset_regulator_supplies(struct regulator_dev *rdev)
988 struct regulator_map *node, *n;
990 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
991 if (rdev == node->regulator) {
992 list_del(&node->list);
993 kfree(node->dev_name);
999 #define REG_STR_SIZE 32
1001 static struct regulator *create_regulator(struct regulator_dev *rdev,
1003 const char *supply_name)
1005 struct regulator *regulator;
1006 char buf[REG_STR_SIZE];
1009 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1010 if (regulator == NULL)
1013 mutex_lock(&rdev->mutex);
1014 regulator->rdev = rdev;
1015 list_add(®ulator->list, &rdev->consumer_list);
1018 /* create a 'requested_microamps_name' sysfs entry */
1019 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1021 if (size >= REG_STR_SIZE)
1024 regulator->dev = dev;
1025 sysfs_attr_init(®ulator->dev_attr.attr);
1026 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1027 if (regulator->dev_attr.attr.name == NULL)
1030 regulator->dev_attr.attr.mode = 0444;
1031 regulator->dev_attr.show = device_requested_uA_show;
1032 err = device_create_file(dev, ®ulator->dev_attr);
1034 printk(KERN_WARNING "%s: could not add regulator_dev"
1035 " load sysfs\n", __func__);
1039 /* also add a link to the device sysfs entry */
1040 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1041 dev->kobj.name, supply_name);
1042 if (size >= REG_STR_SIZE)
1045 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1046 if (regulator->supply_name == NULL)
1049 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1053 "%s: could not add device link %s err %d\n",
1054 __func__, dev->kobj.name, err);
1058 mutex_unlock(&rdev->mutex);
1061 kfree(regulator->supply_name);
1063 device_remove_file(regulator->dev, ®ulator->dev_attr);
1065 kfree(regulator->dev_attr.attr.name);
1067 list_del(®ulator->list);
1069 mutex_unlock(&rdev->mutex);
1073 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1075 if (!rdev->desc->ops->enable_time)
1077 return rdev->desc->ops->enable_time(rdev);
1080 /* Internal regulator request function */
1081 static struct regulator *_regulator_get(struct device *dev, const char *id,
1084 struct regulator_dev *rdev;
1085 struct regulator_map *map;
1086 struct regulator *regulator = ERR_PTR(-ENODEV);
1087 const char *devname = NULL;
1091 printk(KERN_ERR "regulator: get() with no identifier\n");
1096 devname = dev_name(dev);
1098 mutex_lock(®ulator_list_mutex);
1100 list_for_each_entry(map, ®ulator_map_list, list) {
1101 /* If the mapping has a device set up it must match */
1102 if (map->dev_name &&
1103 (!devname || strcmp(map->dev_name, devname)))
1106 if (strcmp(map->supply, id) == 0) {
1107 rdev = map->regulator;
1112 if (board_wants_dummy_regulator) {
1113 rdev = dummy_regulator_rdev;
1117 #ifdef CONFIG_REGULATOR_DUMMY
1119 devname = "deviceless";
1121 /* If the board didn't flag that it was fully constrained then
1122 * substitute in a dummy regulator so consumers can continue.
1124 if (!has_full_constraints) {
1125 pr_warning("%s supply %s not found, using dummy regulator\n",
1127 rdev = dummy_regulator_rdev;
1132 mutex_unlock(®ulator_list_mutex);
1136 if (rdev->exclusive) {
1137 regulator = ERR_PTR(-EPERM);
1141 if (exclusive && rdev->open_count) {
1142 regulator = ERR_PTR(-EBUSY);
1146 if (!try_module_get(rdev->owner))
1149 regulator = create_regulator(rdev, dev, id);
1150 if (regulator == NULL) {
1151 regulator = ERR_PTR(-ENOMEM);
1152 module_put(rdev->owner);
1157 rdev->exclusive = 1;
1159 ret = _regulator_is_enabled(rdev);
1161 rdev->use_count = 1;
1163 rdev->use_count = 0;
1167 mutex_unlock(®ulator_list_mutex);
1173 * regulator_get - lookup and obtain a reference to a regulator.
1174 * @dev: device for regulator "consumer"
1175 * @id: Supply name or regulator ID.
1177 * Returns a struct regulator corresponding to the regulator producer,
1178 * or IS_ERR() condition containing errno.
1180 * Use of supply names configured via regulator_set_device_supply() is
1181 * strongly encouraged. It is recommended that the supply name used
1182 * should match the name used for the supply and/or the relevant
1183 * device pins in the datasheet.
1185 struct regulator *regulator_get(struct device *dev, const char *id)
1187 return _regulator_get(dev, id, 0);
1189 EXPORT_SYMBOL_GPL(regulator_get);
1192 * regulator_get_exclusive - obtain exclusive access to a regulator.
1193 * @dev: device for regulator "consumer"
1194 * @id: Supply name or regulator ID.
1196 * Returns a struct regulator corresponding to the regulator producer,
1197 * or IS_ERR() condition containing errno. Other consumers will be
1198 * unable to obtain this reference is held and the use count for the
1199 * regulator will be initialised to reflect the current state of the
1202 * This is intended for use by consumers which cannot tolerate shared
1203 * use of the regulator such as those which need to force the
1204 * regulator off for correct operation of the hardware they are
1207 * Use of supply names configured via regulator_set_device_supply() is
1208 * strongly encouraged. It is recommended that the supply name used
1209 * should match the name used for the supply and/or the relevant
1210 * device pins in the datasheet.
1212 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1214 return _regulator_get(dev, id, 1);
1216 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1219 * regulator_put - "free" the regulator source
1220 * @regulator: regulator source
1222 * Note: drivers must ensure that all regulator_enable calls made on this
1223 * regulator source are balanced by regulator_disable calls prior to calling
1226 void regulator_put(struct regulator *regulator)
1228 struct regulator_dev *rdev;
1230 if (regulator == NULL || IS_ERR(regulator))
1233 mutex_lock(®ulator_list_mutex);
1234 rdev = regulator->rdev;
1236 /* remove any sysfs entries */
1237 if (regulator->dev) {
1238 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1239 kfree(regulator->supply_name);
1240 device_remove_file(regulator->dev, ®ulator->dev_attr);
1241 kfree(regulator->dev_attr.attr.name);
1243 list_del(®ulator->list);
1247 rdev->exclusive = 0;
1249 module_put(rdev->owner);
1250 mutex_unlock(®ulator_list_mutex);
1252 EXPORT_SYMBOL_GPL(regulator_put);
1254 static int _regulator_can_change_status(struct regulator_dev *rdev)
1256 if (!rdev->constraints)
1259 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1265 /* locks held by regulator_enable() */
1266 static int _regulator_enable(struct regulator_dev *rdev)
1270 if (rdev->use_count == 0) {
1271 /* do we need to enable the supply regulator first */
1273 mutex_lock(&rdev->supply->mutex);
1274 ret = _regulator_enable(rdev->supply);
1275 mutex_unlock(&rdev->supply->mutex);
1277 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1278 __func__, rdev_get_name(rdev), ret);
1284 /* check voltage and requested load before enabling */
1285 if (rdev->constraints &&
1286 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1287 drms_uA_update(rdev);
1289 if (rdev->use_count == 0) {
1290 /* The regulator may on if it's not switchable or left on */
1291 ret = _regulator_is_enabled(rdev);
1292 if (ret == -EINVAL || ret == 0) {
1293 if (!_regulator_can_change_status(rdev))
1296 if (!rdev->desc->ops->enable)
1299 /* Query before enabling in case configuration
1301 ret = _regulator_get_enable_time(rdev);
1306 "%s: enable_time() failed for %s: %d\n",
1307 __func__, rdev_get_name(rdev),
1312 /* Allow the regulator to ramp; it would be useful
1313 * to extend this for bulk operations so that the
1314 * regulators can ramp together. */
1315 ret = rdev->desc->ops->enable(rdev);
1319 if (delay >= 1000) {
1320 mdelay(delay / 1000);
1321 udelay(delay % 1000);
1326 } else if (ret < 0) {
1327 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1328 __func__, rdev_get_name(rdev), ret);
1331 /* Fallthrough on positive return values - already enabled */
1340 * regulator_enable - enable regulator output
1341 * @regulator: regulator source
1343 * Request that the regulator be enabled with the regulator output at
1344 * the predefined voltage or current value. Calls to regulator_enable()
1345 * must be balanced with calls to regulator_disable().
1347 * NOTE: the output value can be set by other drivers, boot loader or may be
1348 * hardwired in the regulator.
1350 int regulator_enable(struct regulator *regulator)
1352 struct regulator_dev *rdev = regulator->rdev;
1355 mutex_lock(&rdev->mutex);
1356 ret = _regulator_enable(rdev);
1357 mutex_unlock(&rdev->mutex);
1360 EXPORT_SYMBOL_GPL(regulator_enable);
1362 /* locks held by regulator_disable() */
1363 static int _regulator_disable(struct regulator_dev *rdev,
1364 struct regulator_dev **supply_rdev_ptr)
1367 *supply_rdev_ptr = NULL;
1369 if (WARN(rdev->use_count <= 0,
1370 "unbalanced disables for %s\n",
1371 rdev_get_name(rdev)))
1374 /* are we the last user and permitted to disable ? */
1375 if (rdev->use_count == 1 &&
1376 (rdev->constraints && !rdev->constraints->always_on)) {
1378 /* we are last user */
1379 if (_regulator_can_change_status(rdev) &&
1380 rdev->desc->ops->disable) {
1381 ret = rdev->desc->ops->disable(rdev);
1383 printk(KERN_ERR "%s: failed to disable %s\n",
1384 __func__, rdev_get_name(rdev));
1388 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1392 /* decrease our supplies ref count and disable if required */
1393 *supply_rdev_ptr = rdev->supply;
1395 rdev->use_count = 0;
1396 } else if (rdev->use_count > 1) {
1398 if (rdev->constraints &&
1399 (rdev->constraints->valid_ops_mask &
1400 REGULATOR_CHANGE_DRMS))
1401 drms_uA_update(rdev);
1409 * regulator_disable - disable regulator output
1410 * @regulator: regulator source
1412 * Disable the regulator output voltage or current. Calls to
1413 * regulator_enable() must be balanced with calls to
1414 * regulator_disable().
1416 * NOTE: this will only disable the regulator output if no other consumer
1417 * devices have it enabled, the regulator device supports disabling and
1418 * machine constraints permit this operation.
1420 int regulator_disable(struct regulator *regulator)
1422 struct regulator_dev *rdev = regulator->rdev;
1423 struct regulator_dev *supply_rdev = NULL;
1426 mutex_lock(&rdev->mutex);
1427 ret = _regulator_disable(rdev, &supply_rdev);
1428 mutex_unlock(&rdev->mutex);
1430 /* decrease our supplies ref count and disable if required */
1431 while (supply_rdev != NULL) {
1434 mutex_lock(&rdev->mutex);
1435 _regulator_disable(rdev, &supply_rdev);
1436 mutex_unlock(&rdev->mutex);
1441 EXPORT_SYMBOL_GPL(regulator_disable);
1443 /* locks held by regulator_force_disable() */
1444 static int _regulator_force_disable(struct regulator_dev *rdev,
1445 struct regulator_dev **supply_rdev_ptr)
1450 if (rdev->desc->ops->disable) {
1451 /* ah well, who wants to live forever... */
1452 ret = rdev->desc->ops->disable(rdev);
1454 printk(KERN_ERR "%s: failed to force disable %s\n",
1455 __func__, rdev_get_name(rdev));
1458 /* notify other consumers that power has been forced off */
1459 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1460 REGULATOR_EVENT_DISABLE, NULL);
1463 /* decrease our supplies ref count and disable if required */
1464 *supply_rdev_ptr = rdev->supply;
1466 rdev->use_count = 0;
1471 * regulator_force_disable - force disable regulator output
1472 * @regulator: regulator source
1474 * Forcibly disable the regulator output voltage or current.
1475 * NOTE: this *will* disable the regulator output even if other consumer
1476 * devices have it enabled. This should be used for situations when device
1477 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1479 int regulator_force_disable(struct regulator *regulator)
1481 struct regulator_dev *supply_rdev = NULL;
1484 mutex_lock(®ulator->rdev->mutex);
1485 regulator->uA_load = 0;
1486 ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1487 mutex_unlock(®ulator->rdev->mutex);
1490 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1494 EXPORT_SYMBOL_GPL(regulator_force_disable);
1496 static int _regulator_is_enabled(struct regulator_dev *rdev)
1498 /* If we don't know then assume that the regulator is always on */
1499 if (!rdev->desc->ops->is_enabled)
1502 return rdev->desc->ops->is_enabled(rdev);
1506 * regulator_is_enabled - is the regulator output enabled
1507 * @regulator: regulator source
1509 * Returns positive if the regulator driver backing the source/client
1510 * has requested that the device be enabled, zero if it hasn't, else a
1511 * negative errno code.
1513 * Note that the device backing this regulator handle can have multiple
1514 * users, so it might be enabled even if regulator_enable() was never
1515 * called for this particular source.
1517 int regulator_is_enabled(struct regulator *regulator)
1521 mutex_lock(®ulator->rdev->mutex);
1522 ret = _regulator_is_enabled(regulator->rdev);
1523 mutex_unlock(®ulator->rdev->mutex);
1527 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1530 * regulator_count_voltages - count regulator_list_voltage() selectors
1531 * @regulator: regulator source
1533 * Returns number of selectors, or negative errno. Selectors are
1534 * numbered starting at zero, and typically correspond to bitfields
1535 * in hardware registers.
1537 int regulator_count_voltages(struct regulator *regulator)
1539 struct regulator_dev *rdev = regulator->rdev;
1541 return rdev->desc->n_voltages ? : -EINVAL;
1543 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1546 * regulator_list_voltage - enumerate supported voltages
1547 * @regulator: regulator source
1548 * @selector: identify voltage to list
1549 * Context: can sleep
1551 * Returns a voltage that can be passed to @regulator_set_voltage(),
1552 * zero if this selector code can't be used on this system, or a
1555 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1557 struct regulator_dev *rdev = regulator->rdev;
1558 struct regulator_ops *ops = rdev->desc->ops;
1561 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1564 mutex_lock(&rdev->mutex);
1565 ret = ops->list_voltage(rdev, selector);
1566 mutex_unlock(&rdev->mutex);
1569 if (ret < rdev->constraints->min_uV)
1571 else if (ret > rdev->constraints->max_uV)
1577 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1580 * regulator_is_supported_voltage - check if a voltage range can be supported
1582 * @regulator: Regulator to check.
1583 * @min_uV: Minimum required voltage in uV.
1584 * @max_uV: Maximum required voltage in uV.
1586 * Returns a boolean or a negative error code.
1588 int regulator_is_supported_voltage(struct regulator *regulator,
1589 int min_uV, int max_uV)
1591 int i, voltages, ret;
1593 ret = regulator_count_voltages(regulator);
1598 for (i = 0; i < voltages; i++) {
1599 ret = regulator_list_voltage(regulator, i);
1601 if (ret >= min_uV && ret <= max_uV)
1609 * regulator_set_voltage - set regulator output voltage
1610 * @regulator: regulator source
1611 * @min_uV: Minimum required voltage in uV
1612 * @max_uV: Maximum acceptable voltage in uV
1614 * Sets a voltage regulator to the desired output voltage. This can be set
1615 * during any regulator state. IOW, regulator can be disabled or enabled.
1617 * If the regulator is enabled then the voltage will change to the new value
1618 * immediately otherwise if the regulator is disabled the regulator will
1619 * output at the new voltage when enabled.
1621 * NOTE: If the regulator is shared between several devices then the lowest
1622 * request voltage that meets the system constraints will be used.
1623 * Regulator system constraints must be set for this regulator before
1624 * calling this function otherwise this call will fail.
1626 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1628 struct regulator_dev *rdev = regulator->rdev;
1631 mutex_lock(&rdev->mutex);
1634 if (!rdev->desc->ops->set_voltage) {
1639 /* constraints check */
1640 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1643 regulator->min_uV = min_uV;
1644 regulator->max_uV = max_uV;
1645 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1648 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1649 mutex_unlock(&rdev->mutex);
1652 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1654 static int _regulator_get_voltage(struct regulator_dev *rdev)
1657 if (rdev->desc->ops->get_voltage)
1658 return rdev->desc->ops->get_voltage(rdev);
1664 * regulator_get_voltage - get regulator output voltage
1665 * @regulator: regulator source
1667 * This returns the current regulator voltage in uV.
1669 * NOTE: If the regulator is disabled it will return the voltage value. This
1670 * function should not be used to determine regulator state.
1672 int regulator_get_voltage(struct regulator *regulator)
1676 mutex_lock(®ulator->rdev->mutex);
1678 ret = _regulator_get_voltage(regulator->rdev);
1680 mutex_unlock(®ulator->rdev->mutex);
1684 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1687 * regulator_set_current_limit - set regulator output current limit
1688 * @regulator: regulator source
1689 * @min_uA: Minimuum supported current in uA
1690 * @max_uA: Maximum supported current in uA
1692 * Sets current sink to the desired output current. This can be set during
1693 * any regulator state. IOW, regulator can be disabled or enabled.
1695 * If the regulator is enabled then the current will change to the new value
1696 * immediately otherwise if the regulator is disabled the regulator will
1697 * output at the new current when enabled.
1699 * NOTE: Regulator system constraints must be set for this regulator before
1700 * calling this function otherwise this call will fail.
1702 int regulator_set_current_limit(struct regulator *regulator,
1703 int min_uA, int max_uA)
1705 struct regulator_dev *rdev = regulator->rdev;
1708 mutex_lock(&rdev->mutex);
1711 if (!rdev->desc->ops->set_current_limit) {
1716 /* constraints check */
1717 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1721 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1723 mutex_unlock(&rdev->mutex);
1726 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1728 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1732 mutex_lock(&rdev->mutex);
1735 if (!rdev->desc->ops->get_current_limit) {
1740 ret = rdev->desc->ops->get_current_limit(rdev);
1742 mutex_unlock(&rdev->mutex);
1747 * regulator_get_current_limit - get regulator output current
1748 * @regulator: regulator source
1750 * This returns the current supplied by the specified current sink in uA.
1752 * NOTE: If the regulator is disabled it will return the current value. This
1753 * function should not be used to determine regulator state.
1755 int regulator_get_current_limit(struct regulator *regulator)
1757 return _regulator_get_current_limit(regulator->rdev);
1759 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1762 * regulator_set_mode - set regulator operating mode
1763 * @regulator: regulator source
1764 * @mode: operating mode - one of the REGULATOR_MODE constants
1766 * Set regulator operating mode to increase regulator efficiency or improve
1767 * regulation performance.
1769 * NOTE: Regulator system constraints must be set for this regulator before
1770 * calling this function otherwise this call will fail.
1772 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1774 struct regulator_dev *rdev = regulator->rdev;
1776 int regulator_curr_mode;
1778 mutex_lock(&rdev->mutex);
1781 if (!rdev->desc->ops->set_mode) {
1786 /* return if the same mode is requested */
1787 if (rdev->desc->ops->get_mode) {
1788 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
1789 if (regulator_curr_mode == mode) {
1795 /* constraints check */
1796 ret = regulator_check_mode(rdev, mode);
1800 ret = rdev->desc->ops->set_mode(rdev, mode);
1802 mutex_unlock(&rdev->mutex);
1805 EXPORT_SYMBOL_GPL(regulator_set_mode);
1807 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1811 mutex_lock(&rdev->mutex);
1814 if (!rdev->desc->ops->get_mode) {
1819 ret = rdev->desc->ops->get_mode(rdev);
1821 mutex_unlock(&rdev->mutex);
1826 * regulator_get_mode - get regulator operating mode
1827 * @regulator: regulator source
1829 * Get the current regulator operating mode.
1831 unsigned int regulator_get_mode(struct regulator *regulator)
1833 return _regulator_get_mode(regulator->rdev);
1835 EXPORT_SYMBOL_GPL(regulator_get_mode);
1838 * regulator_set_optimum_mode - set regulator optimum operating mode
1839 * @regulator: regulator source
1840 * @uA_load: load current
1842 * Notifies the regulator core of a new device load. This is then used by
1843 * DRMS (if enabled by constraints) to set the most efficient regulator
1844 * operating mode for the new regulator loading.
1846 * Consumer devices notify their supply regulator of the maximum power
1847 * they will require (can be taken from device datasheet in the power
1848 * consumption tables) when they change operational status and hence power
1849 * state. Examples of operational state changes that can affect power
1850 * consumption are :-
1852 * o Device is opened / closed.
1853 * o Device I/O is about to begin or has just finished.
1854 * o Device is idling in between work.
1856 * This information is also exported via sysfs to userspace.
1858 * DRMS will sum the total requested load on the regulator and change
1859 * to the most efficient operating mode if platform constraints allow.
1861 * Returns the new regulator mode or error.
1863 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1865 struct regulator_dev *rdev = regulator->rdev;
1866 struct regulator *consumer;
1867 int ret, output_uV, input_uV, total_uA_load = 0;
1870 mutex_lock(&rdev->mutex);
1872 regulator->uA_load = uA_load;
1873 ret = regulator_check_drms(rdev);
1879 if (!rdev->desc->ops->get_optimum_mode)
1882 /* get output voltage */
1883 output_uV = rdev->desc->ops->get_voltage(rdev);
1884 if (output_uV <= 0) {
1885 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1886 __func__, rdev_get_name(rdev));
1890 /* get input voltage */
1891 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1892 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1894 input_uV = rdev->constraints->input_uV;
1895 if (input_uV <= 0) {
1896 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1897 __func__, rdev_get_name(rdev));
1901 /* calc total requested load for this regulator */
1902 list_for_each_entry(consumer, &rdev->consumer_list, list)
1903 total_uA_load += consumer->uA_load;
1905 mode = rdev->desc->ops->get_optimum_mode(rdev,
1906 input_uV, output_uV,
1908 ret = regulator_check_mode(rdev, mode);
1910 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1911 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1912 total_uA_load, input_uV, output_uV);
1916 ret = rdev->desc->ops->set_mode(rdev, mode);
1918 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1919 __func__, mode, rdev_get_name(rdev));
1924 mutex_unlock(&rdev->mutex);
1927 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1930 * regulator_register_notifier - register regulator event notifier
1931 * @regulator: regulator source
1932 * @nb: notifier block
1934 * Register notifier block to receive regulator events.
1936 int regulator_register_notifier(struct regulator *regulator,
1937 struct notifier_block *nb)
1939 return blocking_notifier_chain_register(®ulator->rdev->notifier,
1942 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1945 * regulator_unregister_notifier - unregister regulator event notifier
1946 * @regulator: regulator source
1947 * @nb: notifier block
1949 * Unregister regulator event notifier block.
1951 int regulator_unregister_notifier(struct regulator *regulator,
1952 struct notifier_block *nb)
1954 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
1957 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1959 /* notify regulator consumers and downstream regulator consumers.
1960 * Note mutex must be held by caller.
1962 static void _notifier_call_chain(struct regulator_dev *rdev,
1963 unsigned long event, void *data)
1965 struct regulator_dev *_rdev;
1967 /* call rdev chain first */
1968 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1970 /* now notify regulator we supply */
1971 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1972 mutex_lock(&_rdev->mutex);
1973 _notifier_call_chain(_rdev, event, data);
1974 mutex_unlock(&_rdev->mutex);
1979 * regulator_bulk_get - get multiple regulator consumers
1981 * @dev: Device to supply
1982 * @num_consumers: Number of consumers to register
1983 * @consumers: Configuration of consumers; clients are stored here.
1985 * @return 0 on success, an errno on failure.
1987 * This helper function allows drivers to get several regulator
1988 * consumers in one operation. If any of the regulators cannot be
1989 * acquired then any regulators that were allocated will be freed
1990 * before returning to the caller.
1992 int regulator_bulk_get(struct device *dev, int num_consumers,
1993 struct regulator_bulk_data *consumers)
1998 for (i = 0; i < num_consumers; i++)
1999 consumers[i].consumer = NULL;
2001 for (i = 0; i < num_consumers; i++) {
2002 consumers[i].consumer = regulator_get(dev,
2003 consumers[i].supply);
2004 if (IS_ERR(consumers[i].consumer)) {
2005 ret = PTR_ERR(consumers[i].consumer);
2006 dev_err(dev, "Failed to get supply '%s': %d\n",
2007 consumers[i].supply, ret);
2008 consumers[i].consumer = NULL;
2016 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2017 regulator_put(consumers[i].consumer);
2021 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2024 * regulator_bulk_enable - enable multiple regulator consumers
2026 * @num_consumers: Number of consumers
2027 * @consumers: Consumer data; clients are stored here.
2028 * @return 0 on success, an errno on failure
2030 * This convenience API allows consumers to enable multiple regulator
2031 * clients in a single API call. If any consumers cannot be enabled
2032 * then any others that were enabled will be disabled again prior to
2035 int regulator_bulk_enable(int num_consumers,
2036 struct regulator_bulk_data *consumers)
2041 for (i = 0; i < num_consumers; i++) {
2042 ret = regulator_enable(consumers[i].consumer);
2050 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2051 for (--i; i >= 0; --i)
2052 regulator_disable(consumers[i].consumer);
2056 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2059 * regulator_bulk_disable - disable multiple regulator consumers
2061 * @num_consumers: Number of consumers
2062 * @consumers: Consumer data; clients are stored here.
2063 * @return 0 on success, an errno on failure
2065 * This convenience API allows consumers to disable multiple regulator
2066 * clients in a single API call. If any consumers cannot be enabled
2067 * then any others that were disabled will be disabled again prior to
2070 int regulator_bulk_disable(int num_consumers,
2071 struct regulator_bulk_data *consumers)
2076 for (i = 0; i < num_consumers; i++) {
2077 ret = regulator_disable(consumers[i].consumer);
2085 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2087 for (--i; i >= 0; --i)
2088 regulator_enable(consumers[i].consumer);
2092 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2095 * regulator_bulk_free - free multiple regulator consumers
2097 * @num_consumers: Number of consumers
2098 * @consumers: Consumer data; clients are stored here.
2100 * This convenience API allows consumers to free multiple regulator
2101 * clients in a single API call.
2103 void regulator_bulk_free(int num_consumers,
2104 struct regulator_bulk_data *consumers)
2108 for (i = 0; i < num_consumers; i++) {
2109 regulator_put(consumers[i].consumer);
2110 consumers[i].consumer = NULL;
2113 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2116 * regulator_notifier_call_chain - call regulator event notifier
2117 * @rdev: regulator source
2118 * @event: notifier block
2119 * @data: callback-specific data.
2121 * Called by regulator drivers to notify clients a regulator event has
2122 * occurred. We also notify regulator clients downstream.
2123 * Note lock must be held by caller.
2125 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2126 unsigned long event, void *data)
2128 _notifier_call_chain(rdev, event, data);
2132 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2135 * regulator_mode_to_status - convert a regulator mode into a status
2137 * @mode: Mode to convert
2139 * Convert a regulator mode into a status.
2141 int regulator_mode_to_status(unsigned int mode)
2144 case REGULATOR_MODE_FAST:
2145 return REGULATOR_STATUS_FAST;
2146 case REGULATOR_MODE_NORMAL:
2147 return REGULATOR_STATUS_NORMAL;
2148 case REGULATOR_MODE_IDLE:
2149 return REGULATOR_STATUS_IDLE;
2150 case REGULATOR_STATUS_STANDBY:
2151 return REGULATOR_STATUS_STANDBY;
2156 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2159 * To avoid cluttering sysfs (and memory) with useless state, only
2160 * create attributes that can be meaningfully displayed.
2162 static int add_regulator_attributes(struct regulator_dev *rdev)
2164 struct device *dev = &rdev->dev;
2165 struct regulator_ops *ops = rdev->desc->ops;
2168 /* some attributes need specific methods to be displayed */
2169 if (ops->get_voltage) {
2170 status = device_create_file(dev, &dev_attr_microvolts);
2174 if (ops->get_current_limit) {
2175 status = device_create_file(dev, &dev_attr_microamps);
2179 if (ops->get_mode) {
2180 status = device_create_file(dev, &dev_attr_opmode);
2184 if (ops->is_enabled) {
2185 status = device_create_file(dev, &dev_attr_state);
2189 if (ops->get_status) {
2190 status = device_create_file(dev, &dev_attr_status);
2195 /* some attributes are type-specific */
2196 if (rdev->desc->type == REGULATOR_CURRENT) {
2197 status = device_create_file(dev, &dev_attr_requested_microamps);
2202 /* all the other attributes exist to support constraints;
2203 * don't show them if there are no constraints, or if the
2204 * relevant supporting methods are missing.
2206 if (!rdev->constraints)
2209 /* constraints need specific supporting methods */
2210 if (ops->set_voltage) {
2211 status = device_create_file(dev, &dev_attr_min_microvolts);
2214 status = device_create_file(dev, &dev_attr_max_microvolts);
2218 if (ops->set_current_limit) {
2219 status = device_create_file(dev, &dev_attr_min_microamps);
2222 status = device_create_file(dev, &dev_attr_max_microamps);
2227 /* suspend mode constraints need multiple supporting methods */
2228 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2231 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2234 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2237 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2241 if (ops->set_suspend_voltage) {
2242 status = device_create_file(dev,
2243 &dev_attr_suspend_standby_microvolts);
2246 status = device_create_file(dev,
2247 &dev_attr_suspend_mem_microvolts);
2250 status = device_create_file(dev,
2251 &dev_attr_suspend_disk_microvolts);
2256 if (ops->set_suspend_mode) {
2257 status = device_create_file(dev,
2258 &dev_attr_suspend_standby_mode);
2261 status = device_create_file(dev,
2262 &dev_attr_suspend_mem_mode);
2265 status = device_create_file(dev,
2266 &dev_attr_suspend_disk_mode);
2275 * regulator_register - register regulator
2276 * @regulator_desc: regulator to register
2277 * @dev: struct device for the regulator
2278 * @init_data: platform provided init data, passed through by driver
2279 * @driver_data: private regulator data
2281 * Called by regulator drivers to register a regulator.
2282 * Returns 0 on success.
2284 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2285 struct device *dev, struct regulator_init_data *init_data,
2288 static atomic_t regulator_no = ATOMIC_INIT(0);
2289 struct regulator_dev *rdev;
2292 if (regulator_desc == NULL)
2293 return ERR_PTR(-EINVAL);
2295 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2296 return ERR_PTR(-EINVAL);
2298 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2299 regulator_desc->type != REGULATOR_CURRENT)
2300 return ERR_PTR(-EINVAL);
2303 return ERR_PTR(-EINVAL);
2305 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2307 return ERR_PTR(-ENOMEM);
2309 mutex_lock(®ulator_list_mutex);
2311 mutex_init(&rdev->mutex);
2312 rdev->reg_data = driver_data;
2313 rdev->owner = regulator_desc->owner;
2314 rdev->desc = regulator_desc;
2315 INIT_LIST_HEAD(&rdev->consumer_list);
2316 INIT_LIST_HEAD(&rdev->supply_list);
2317 INIT_LIST_HEAD(&rdev->list);
2318 INIT_LIST_HEAD(&rdev->slist);
2319 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2321 /* preform any regulator specific init */
2322 if (init_data->regulator_init) {
2323 ret = init_data->regulator_init(rdev->reg_data);
2328 /* register with sysfs */
2329 rdev->dev.class = ®ulator_class;
2330 rdev->dev.parent = dev;
2331 dev_set_name(&rdev->dev, "regulator.%d",
2332 atomic_inc_return(®ulator_no) - 1);
2333 ret = device_register(&rdev->dev);
2335 put_device(&rdev->dev);
2339 dev_set_drvdata(&rdev->dev, rdev);
2341 /* set regulator constraints */
2342 ret = set_machine_constraints(rdev, &init_data->constraints);
2346 /* add attributes supported by this regulator */
2347 ret = add_regulator_attributes(rdev);
2351 /* set supply regulator if it exists */
2352 if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2354 "Supply regulator specified by both name and dev\n");
2359 if (init_data->supply_regulator) {
2360 struct regulator_dev *r;
2363 list_for_each_entry(r, ®ulator_list, list) {
2364 if (strcmp(rdev_get_name(r),
2365 init_data->supply_regulator) == 0) {
2372 dev_err(dev, "Failed to find supply %s\n",
2373 init_data->supply_regulator);
2378 ret = set_supply(rdev, r);
2383 if (init_data->supply_regulator_dev) {
2384 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2385 ret = set_supply(rdev,
2386 dev_get_drvdata(init_data->supply_regulator_dev));
2391 /* add consumers devices */
2392 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2393 ret = set_consumer_device_supply(rdev,
2394 init_data->consumer_supplies[i].dev,
2395 init_data->consumer_supplies[i].dev_name,
2396 init_data->consumer_supplies[i].supply);
2398 goto unset_supplies;
2401 list_add(&rdev->list, ®ulator_list);
2403 mutex_unlock(®ulator_list_mutex);
2407 unset_regulator_supplies(rdev);
2410 device_unregister(&rdev->dev);
2411 /* device core frees rdev */
2412 rdev = ERR_PTR(ret);
2417 rdev = ERR_PTR(ret);
2420 EXPORT_SYMBOL_GPL(regulator_register);
2423 * regulator_unregister - unregister regulator
2424 * @rdev: regulator to unregister
2426 * Called by regulator drivers to unregister a regulator.
2428 void regulator_unregister(struct regulator_dev *rdev)
2433 mutex_lock(®ulator_list_mutex);
2434 WARN_ON(rdev->open_count);
2435 unset_regulator_supplies(rdev);
2436 list_del(&rdev->list);
2438 sysfs_remove_link(&rdev->dev.kobj, "supply");
2439 device_unregister(&rdev->dev);
2440 mutex_unlock(®ulator_list_mutex);
2442 EXPORT_SYMBOL_GPL(regulator_unregister);
2445 * regulator_suspend_prepare - prepare regulators for system wide suspend
2446 * @state: system suspend state
2448 * Configure each regulator with it's suspend operating parameters for state.
2449 * This will usually be called by machine suspend code prior to supending.
2451 int regulator_suspend_prepare(suspend_state_t state)
2453 struct regulator_dev *rdev;
2456 /* ON is handled by regulator active state */
2457 if (state == PM_SUSPEND_ON)
2460 mutex_lock(®ulator_list_mutex);
2461 list_for_each_entry(rdev, ®ulator_list, list) {
2463 mutex_lock(&rdev->mutex);
2464 ret = suspend_prepare(rdev, state);
2465 mutex_unlock(&rdev->mutex);
2468 printk(KERN_ERR "%s: failed to prepare %s\n",
2469 __func__, rdev_get_name(rdev));
2474 mutex_unlock(®ulator_list_mutex);
2477 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2480 * regulator_has_full_constraints - the system has fully specified constraints
2482 * Calling this function will cause the regulator API to disable all
2483 * regulators which have a zero use count and don't have an always_on
2484 * constraint in a late_initcall.
2486 * The intention is that this will become the default behaviour in a
2487 * future kernel release so users are encouraged to use this facility
2490 void regulator_has_full_constraints(void)
2492 has_full_constraints = 1;
2494 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2497 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2499 * Calling this function will cause the regulator API to provide a
2500 * dummy regulator to consumers if no physical regulator is found,
2501 * allowing most consumers to proceed as though a regulator were
2502 * configured. This allows systems such as those with software
2503 * controllable regulators for the CPU core only to be brought up more
2506 void regulator_use_dummy_regulator(void)
2508 board_wants_dummy_regulator = true;
2510 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2513 * rdev_get_drvdata - get rdev regulator driver data
2516 * Get rdev regulator driver private data. This call can be used in the
2517 * regulator driver context.
2519 void *rdev_get_drvdata(struct regulator_dev *rdev)
2521 return rdev->reg_data;
2523 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2526 * regulator_get_drvdata - get regulator driver data
2527 * @regulator: regulator
2529 * Get regulator driver private data. This call can be used in the consumer
2530 * driver context when non API regulator specific functions need to be called.
2532 void *regulator_get_drvdata(struct regulator *regulator)
2534 return regulator->rdev->reg_data;
2536 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2539 * regulator_set_drvdata - set regulator driver data
2540 * @regulator: regulator
2543 void regulator_set_drvdata(struct regulator *regulator, void *data)
2545 regulator->rdev->reg_data = data;
2547 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2550 * regulator_get_id - get regulator ID
2553 int rdev_get_id(struct regulator_dev *rdev)
2555 return rdev->desc->id;
2557 EXPORT_SYMBOL_GPL(rdev_get_id);
2559 struct device *rdev_get_dev(struct regulator_dev *rdev)
2563 EXPORT_SYMBOL_GPL(rdev_get_dev);
2565 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2567 return reg_init_data->driver_data;
2569 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2571 static int __init regulator_init(void)
2575 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2577 ret = class_register(®ulator_class);
2579 regulator_dummy_init();
2584 /* init early to allow our consumers to complete system booting */
2585 core_initcall(regulator_init);
2587 static int __init regulator_init_complete(void)
2589 struct regulator_dev *rdev;
2590 struct regulator_ops *ops;
2591 struct regulation_constraints *c;
2595 mutex_lock(®ulator_list_mutex);
2597 /* If we have a full configuration then disable any regulators
2598 * which are not in use or always_on. This will become the
2599 * default behaviour in the future.
2601 list_for_each_entry(rdev, ®ulator_list, list) {
2602 ops = rdev->desc->ops;
2603 c = rdev->constraints;
2605 name = rdev_get_name(rdev);
2607 if (!ops->disable || (c && c->always_on))
2610 mutex_lock(&rdev->mutex);
2612 if (rdev->use_count)
2615 /* If we can't read the status assume it's on. */
2616 if (ops->is_enabled)
2617 enabled = ops->is_enabled(rdev);
2624 if (has_full_constraints) {
2625 /* We log since this may kill the system if it
2627 printk(KERN_INFO "%s: disabling %s\n",
2629 ret = ops->disable(rdev);
2632 "%s: couldn't disable %s: %d\n",
2633 __func__, name, ret);
2636 /* The intention is that in future we will
2637 * assume that full constraints are provided
2638 * so warn even if we aren't going to do
2642 "%s: incomplete constraints, leaving %s on\n",
2647 mutex_unlock(&rdev->mutex);
2650 mutex_unlock(®ulator_list_mutex);
2654 late_initcall(regulator_init_complete);