Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[pandora-kernel.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/of.h>
27 #include <linux/regmap.h>
28 #include <linux/regulator/of_regulator.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/regulator/driver.h>
31 #include <linux/regulator/machine.h>
32 #include <linux/module.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/regulator.h>
36
37 #include "dummy.h"
38
39 #define rdev_crit(rdev, fmt, ...)                                       \
40         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
41 #define rdev_err(rdev, fmt, ...)                                        \
42         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_warn(rdev, fmt, ...)                                       \
44         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_info(rdev, fmt, ...)                                       \
46         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_dbg(rdev, fmt, ...)                                        \
48         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49
50 static DEFINE_MUTEX(regulator_list_mutex);
51 static LIST_HEAD(regulator_list);
52 static LIST_HEAD(regulator_map_list);
53 static bool has_full_constraints;
54 static bool board_wants_dummy_regulator;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator
72  *
73  * One for each consumer device.
74  */
75 struct regulator {
76         struct device *dev;
77         struct list_head list;
78         unsigned int always_on:1;
79         int uA_load;
80         int min_uV;
81         int max_uV;
82         char *supply_name;
83         struct device_attribute dev_attr;
84         struct regulator_dev *rdev;
85         struct dentry *debugfs;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94                                   unsigned long event, void *data);
95 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
96                                      int min_uV, int max_uV);
97 static struct regulator *create_regulator(struct regulator_dev *rdev,
98                                           struct device *dev,
99                                           const char *supply_name);
100
101 static const char *rdev_get_name(struct regulator_dev *rdev)
102 {
103         if (rdev->constraints && rdev->constraints->name)
104                 return rdev->constraints->name;
105         else if (rdev->desc->name)
106                 return rdev->desc->name;
107         else
108                 return "";
109 }
110
111 /* gets the regulator for a given consumer device */
112 static struct regulator *get_device_regulator(struct device *dev)
113 {
114         struct regulator *regulator = NULL;
115         struct regulator_dev *rdev;
116
117         mutex_lock(&regulator_list_mutex);
118         list_for_each_entry(rdev, &regulator_list, list) {
119                 mutex_lock(&rdev->mutex);
120                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
121                         if (regulator->dev == dev) {
122                                 mutex_unlock(&rdev->mutex);
123                                 mutex_unlock(&regulator_list_mutex);
124                                 return regulator;
125                         }
126                 }
127                 mutex_unlock(&rdev->mutex);
128         }
129         mutex_unlock(&regulator_list_mutex);
130         return NULL;
131 }
132
133 /**
134  * of_get_regulator - get a regulator device node based on supply name
135  * @dev: Device pointer for the consumer (of regulator) device
136  * @supply: regulator supply name
137  *
138  * Extract the regulator device node corresponding to the supply name.
139  * retruns the device node corresponding to the regulator if found, else
140  * returns NULL.
141  */
142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144         struct device_node *regnode = NULL;
145         char prop_name[32]; /* 32 is max size of property name */
146
147         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149         snprintf(prop_name, 32, "%s-supply", supply);
150         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152         if (!regnode) {
153                 dev_dbg(dev, "Looking up %s property in node %s failed",
154                                 prop_name, dev->of_node->full_name);
155                 return NULL;
156         }
157         return regnode;
158 }
159
160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162         if (!rdev->constraints)
163                 return 0;
164
165         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166                 return 1;
167         else
168                 return 0;
169 }
170
171 /* Platform voltage constraint check */
172 static int regulator_check_voltage(struct regulator_dev *rdev,
173                                    int *min_uV, int *max_uV)
174 {
175         BUG_ON(*min_uV > *max_uV);
176
177         if (!rdev->constraints) {
178                 rdev_err(rdev, "no constraints\n");
179                 return -ENODEV;
180         }
181         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182                 rdev_err(rdev, "operation not allowed\n");
183                 return -EPERM;
184         }
185
186         if (*max_uV > rdev->constraints->max_uV)
187                 *max_uV = rdev->constraints->max_uV;
188         if (*min_uV < rdev->constraints->min_uV)
189                 *min_uV = rdev->constraints->min_uV;
190
191         if (*min_uV > *max_uV) {
192                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193                          *min_uV, *max_uV);
194                 return -EINVAL;
195         }
196
197         return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201  * regulator consumers
202  */
203 static int regulator_check_consumers(struct regulator_dev *rdev,
204                                      int *min_uV, int *max_uV)
205 {
206         struct regulator *regulator;
207
208         list_for_each_entry(regulator, &rdev->consumer_list, list) {
209                 /*
210                  * Assume consumers that didn't say anything are OK
211                  * with anything in the constraint range.
212                  */
213                 if (!regulator->min_uV && !regulator->max_uV)
214                         continue;
215
216                 if (*max_uV > regulator->max_uV)
217                         *max_uV = regulator->max_uV;
218                 if (*min_uV < regulator->min_uV)
219                         *min_uV = regulator->min_uV;
220         }
221
222         if (*min_uV > *max_uV)
223                 return -EINVAL;
224
225         return 0;
226 }
227
228 /* current constraint check */
229 static int regulator_check_current_limit(struct regulator_dev *rdev,
230                                         int *min_uA, int *max_uA)
231 {
232         BUG_ON(*min_uA > *max_uA);
233
234         if (!rdev->constraints) {
235                 rdev_err(rdev, "no constraints\n");
236                 return -ENODEV;
237         }
238         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
239                 rdev_err(rdev, "operation not allowed\n");
240                 return -EPERM;
241         }
242
243         if (*max_uA > rdev->constraints->max_uA)
244                 *max_uA = rdev->constraints->max_uA;
245         if (*min_uA < rdev->constraints->min_uA)
246                 *min_uA = rdev->constraints->min_uA;
247
248         if (*min_uA > *max_uA) {
249                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
250                          *min_uA, *max_uA);
251                 return -EINVAL;
252         }
253
254         return 0;
255 }
256
257 /* operating mode constraint check */
258 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 {
260         switch (*mode) {
261         case REGULATOR_MODE_FAST:
262         case REGULATOR_MODE_NORMAL:
263         case REGULATOR_MODE_IDLE:
264         case REGULATOR_MODE_STANDBY:
265                 break;
266         default:
267                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
268                 return -EINVAL;
269         }
270
271         if (!rdev->constraints) {
272                 rdev_err(rdev, "no constraints\n");
273                 return -ENODEV;
274         }
275         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
276                 rdev_err(rdev, "operation not allowed\n");
277                 return -EPERM;
278         }
279
280         /* The modes are bitmasks, the most power hungry modes having
281          * the lowest values. If the requested mode isn't supported
282          * try higher modes. */
283         while (*mode) {
284                 if (rdev->constraints->valid_modes_mask & *mode)
285                         return 0;
286                 *mode /= 2;
287         }
288
289         return -EINVAL;
290 }
291
292 /* dynamic regulator mode switching constraint check */
293 static int regulator_check_drms(struct regulator_dev *rdev)
294 {
295         if (!rdev->constraints) {
296                 rdev_err(rdev, "no constraints\n");
297                 return -ENODEV;
298         }
299         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
300                 rdev_err(rdev, "operation not allowed\n");
301                 return -EPERM;
302         }
303         return 0;
304 }
305
306 static ssize_t device_requested_uA_show(struct device *dev,
307                              struct device_attribute *attr, char *buf)
308 {
309         struct regulator *regulator;
310
311         regulator = get_device_regulator(dev);
312         if (regulator == NULL)
313                 return 0;
314
315         return sprintf(buf, "%d\n", regulator->uA_load);
316 }
317
318 static ssize_t regulator_uV_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322         ssize_t ret;
323
324         mutex_lock(&rdev->mutex);
325         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
326         mutex_unlock(&rdev->mutex);
327
328         return ret;
329 }
330 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
331
332 static ssize_t regulator_uA_show(struct device *dev,
333                                 struct device_attribute *attr, char *buf)
334 {
335         struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
338 }
339 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
340
341 static ssize_t regulator_name_show(struct device *dev,
342                              struct device_attribute *attr, char *buf)
343 {
344         struct regulator_dev *rdev = dev_get_drvdata(dev);
345
346         return sprintf(buf, "%s\n", rdev_get_name(rdev));
347 }
348
349 static ssize_t regulator_print_opmode(char *buf, int mode)
350 {
351         switch (mode) {
352         case REGULATOR_MODE_FAST:
353                 return sprintf(buf, "fast\n");
354         case REGULATOR_MODE_NORMAL:
355                 return sprintf(buf, "normal\n");
356         case REGULATOR_MODE_IDLE:
357                 return sprintf(buf, "idle\n");
358         case REGULATOR_MODE_STANDBY:
359                 return sprintf(buf, "standby\n");
360         }
361         return sprintf(buf, "unknown\n");
362 }
363
364 static ssize_t regulator_opmode_show(struct device *dev,
365                                     struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
370 }
371 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
372
373 static ssize_t regulator_print_state(char *buf, int state)
374 {
375         if (state > 0)
376                 return sprintf(buf, "enabled\n");
377         else if (state == 0)
378                 return sprintf(buf, "disabled\n");
379         else
380                 return sprintf(buf, "unknown\n");
381 }
382
383 static ssize_t regulator_state_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         ssize_t ret;
388
389         mutex_lock(&rdev->mutex);
390         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
391         mutex_unlock(&rdev->mutex);
392
393         return ret;
394 }
395 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
396
397 static ssize_t regulator_status_show(struct device *dev,
398                                    struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401         int status;
402         char *label;
403
404         status = rdev->desc->ops->get_status(rdev);
405         if (status < 0)
406                 return status;
407
408         switch (status) {
409         case REGULATOR_STATUS_OFF:
410                 label = "off";
411                 break;
412         case REGULATOR_STATUS_ON:
413                 label = "on";
414                 break;
415         case REGULATOR_STATUS_ERROR:
416                 label = "error";
417                 break;
418         case REGULATOR_STATUS_FAST:
419                 label = "fast";
420                 break;
421         case REGULATOR_STATUS_NORMAL:
422                 label = "normal";
423                 break;
424         case REGULATOR_STATUS_IDLE:
425                 label = "idle";
426                 break;
427         case REGULATOR_STATUS_STANDBY:
428                 label = "standby";
429                 break;
430         default:
431                 return -ERANGE;
432         }
433
434         return sprintf(buf, "%s\n", label);
435 }
436 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
437
438 static ssize_t regulator_min_uA_show(struct device *dev,
439                                     struct device_attribute *attr, char *buf)
440 {
441         struct regulator_dev *rdev = dev_get_drvdata(dev);
442
443         if (!rdev->constraints)
444                 return sprintf(buf, "constraint not defined\n");
445
446         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
447 }
448 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
449
450 static ssize_t regulator_max_uA_show(struct device *dev,
451                                     struct device_attribute *attr, char *buf)
452 {
453         struct regulator_dev *rdev = dev_get_drvdata(dev);
454
455         if (!rdev->constraints)
456                 return sprintf(buf, "constraint not defined\n");
457
458         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
459 }
460 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
461
462 static ssize_t regulator_min_uV_show(struct device *dev,
463                                     struct device_attribute *attr, char *buf)
464 {
465         struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467         if (!rdev->constraints)
468                 return sprintf(buf, "constraint not defined\n");
469
470         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
471 }
472 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
473
474 static ssize_t regulator_max_uV_show(struct device *dev,
475                                     struct device_attribute *attr, char *buf)
476 {
477         struct regulator_dev *rdev = dev_get_drvdata(dev);
478
479         if (!rdev->constraints)
480                 return sprintf(buf, "constraint not defined\n");
481
482         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
483 }
484 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
485
486 static ssize_t regulator_total_uA_show(struct device *dev,
487                                       struct device_attribute *attr, char *buf)
488 {
489         struct regulator_dev *rdev = dev_get_drvdata(dev);
490         struct regulator *regulator;
491         int uA = 0;
492
493         mutex_lock(&rdev->mutex);
494         list_for_each_entry(regulator, &rdev->consumer_list, list)
495                 uA += regulator->uA_load;
496         mutex_unlock(&rdev->mutex);
497         return sprintf(buf, "%d\n", uA);
498 }
499 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
500
501 static ssize_t regulator_num_users_show(struct device *dev,
502                                       struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505         return sprintf(buf, "%d\n", rdev->use_count);
506 }
507
508 static ssize_t regulator_type_show(struct device *dev,
509                                   struct device_attribute *attr, char *buf)
510 {
511         struct regulator_dev *rdev = dev_get_drvdata(dev);
512
513         switch (rdev->desc->type) {
514         case REGULATOR_VOLTAGE:
515                 return sprintf(buf, "voltage\n");
516         case REGULATOR_CURRENT:
517                 return sprintf(buf, "current\n");
518         }
519         return sprintf(buf, "unknown\n");
520 }
521
522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523                                 struct device_attribute *attr, char *buf)
524 {
525         struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530                 regulator_suspend_mem_uV_show, NULL);
531
532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533                                 struct device_attribute *attr, char *buf)
534 {
535         struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540                 regulator_suspend_disk_uV_show, NULL);
541
542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543                                 struct device_attribute *attr, char *buf)
544 {
545         struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550                 regulator_suspend_standby_uV_show, NULL);
551
552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553                                 struct device_attribute *attr, char *buf)
554 {
555         struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557         return regulator_print_opmode(buf,
558                 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561                 regulator_suspend_mem_mode_show, NULL);
562
563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return regulator_print_opmode(buf,
569                 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572                 regulator_suspend_disk_mode_show, NULL);
573
574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575                                 struct device_attribute *attr, char *buf)
576 {
577         struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579         return regulator_print_opmode(buf,
580                 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583                 regulator_suspend_standby_mode_show, NULL);
584
585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586                                    struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return regulator_print_state(buf,
591                         rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594                 regulator_suspend_mem_state_show, NULL);
595
596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597                                    struct device_attribute *attr, char *buf)
598 {
599         struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601         return regulator_print_state(buf,
602                         rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605                 regulator_suspend_disk_state_show, NULL);
606
607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608                                    struct device_attribute *attr, char *buf)
609 {
610         struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612         return regulator_print_state(buf,
613                         rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616                 regulator_suspend_standby_state_show, NULL);
617
618
619 /*
620  * These are the only attributes are present for all regulators.
621  * Other attributes are a function of regulator functionality.
622  */
623 static struct device_attribute regulator_dev_attrs[] = {
624         __ATTR(name, 0444, regulator_name_show, NULL),
625         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
626         __ATTR(type, 0444, regulator_type_show, NULL),
627         __ATTR_NULL,
628 };
629
630 static void regulator_dev_release(struct device *dev)
631 {
632         struct regulator_dev *rdev = dev_get_drvdata(dev);
633         kfree(rdev);
634 }
635
636 static struct class regulator_class = {
637         .name = "regulator",
638         .dev_release = regulator_dev_release,
639         .dev_attrs = regulator_dev_attrs,
640 };
641
642 /* Calculate the new optimum regulator operating mode based on the new total
643  * consumer load. All locks held by caller */
644 static void drms_uA_update(struct regulator_dev *rdev)
645 {
646         struct regulator *sibling;
647         int current_uA = 0, output_uV, input_uV, err;
648         unsigned int mode;
649
650         err = regulator_check_drms(rdev);
651         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
652             (!rdev->desc->ops->get_voltage &&
653              !rdev->desc->ops->get_voltage_sel) ||
654             !rdev->desc->ops->set_mode)
655                 return;
656
657         /* get output voltage */
658         output_uV = _regulator_get_voltage(rdev);
659         if (output_uV <= 0)
660                 return;
661
662         /* get input voltage */
663         input_uV = 0;
664         if (rdev->supply)
665                 input_uV = regulator_get_voltage(rdev->supply);
666         if (input_uV <= 0)
667                 input_uV = rdev->constraints->input_uV;
668         if (input_uV <= 0)
669                 return;
670
671         /* calc total requested load */
672         list_for_each_entry(sibling, &rdev->consumer_list, list)
673                 current_uA += sibling->uA_load;
674
675         /* now get the optimum mode for our new total regulator load */
676         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
677                                                   output_uV, current_uA);
678
679         /* check the new mode is allowed */
680         err = regulator_mode_constrain(rdev, &mode);
681         if (err == 0)
682                 rdev->desc->ops->set_mode(rdev, mode);
683 }
684
685 static int suspend_set_state(struct regulator_dev *rdev,
686         struct regulator_state *rstate)
687 {
688         int ret = 0;
689
690         /* If we have no suspend mode configration don't set anything;
691          * only warn if the driver implements set_suspend_voltage or
692          * set_suspend_mode callback.
693          */
694         if (!rstate->enabled && !rstate->disabled) {
695                 if (rdev->desc->ops->set_suspend_voltage ||
696                     rdev->desc->ops->set_suspend_mode)
697                         rdev_warn(rdev, "No configuration\n");
698                 return 0;
699         }
700
701         if (rstate->enabled && rstate->disabled) {
702                 rdev_err(rdev, "invalid configuration\n");
703                 return -EINVAL;
704         }
705
706         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
707                 ret = rdev->desc->ops->set_suspend_enable(rdev);
708         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
709                 ret = rdev->desc->ops->set_suspend_disable(rdev);
710         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
711                 ret = 0;
712
713         if (ret < 0) {
714                 rdev_err(rdev, "failed to enabled/disable\n");
715                 return ret;
716         }
717
718         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
719                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
720                 if (ret < 0) {
721                         rdev_err(rdev, "failed to set voltage\n");
722                         return ret;
723                 }
724         }
725
726         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
727                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
728                 if (ret < 0) {
729                         rdev_err(rdev, "failed to set mode\n");
730                         return ret;
731                 }
732         }
733         return ret;
734 }
735
736 /* locks held by caller */
737 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
738 {
739         if (!rdev->constraints)
740                 return -EINVAL;
741
742         switch (state) {
743         case PM_SUSPEND_STANDBY:
744                 return suspend_set_state(rdev,
745                         &rdev->constraints->state_standby);
746         case PM_SUSPEND_MEM:
747                 return suspend_set_state(rdev,
748                         &rdev->constraints->state_mem);
749         case PM_SUSPEND_MAX:
750                 return suspend_set_state(rdev,
751                         &rdev->constraints->state_disk);
752         default:
753                 return -EINVAL;
754         }
755 }
756
757 static void print_constraints(struct regulator_dev *rdev)
758 {
759         struct regulation_constraints *constraints = rdev->constraints;
760         char buf[80] = "";
761         int count = 0;
762         int ret;
763
764         if (constraints->min_uV && constraints->max_uV) {
765                 if (constraints->min_uV == constraints->max_uV)
766                         count += sprintf(buf + count, "%d mV ",
767                                          constraints->min_uV / 1000);
768                 else
769                         count += sprintf(buf + count, "%d <--> %d mV ",
770                                          constraints->min_uV / 1000,
771                                          constraints->max_uV / 1000);
772         }
773
774         if (!constraints->min_uV ||
775             constraints->min_uV != constraints->max_uV) {
776                 ret = _regulator_get_voltage(rdev);
777                 if (ret > 0)
778                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
779         }
780
781         if (constraints->uV_offset)
782                 count += sprintf(buf, "%dmV offset ",
783                                  constraints->uV_offset / 1000);
784
785         if (constraints->min_uA && constraints->max_uA) {
786                 if (constraints->min_uA == constraints->max_uA)
787                         count += sprintf(buf + count, "%d mA ",
788                                          constraints->min_uA / 1000);
789                 else
790                         count += sprintf(buf + count, "%d <--> %d mA ",
791                                          constraints->min_uA / 1000,
792                                          constraints->max_uA / 1000);
793         }
794
795         if (!constraints->min_uA ||
796             constraints->min_uA != constraints->max_uA) {
797                 ret = _regulator_get_current_limit(rdev);
798                 if (ret > 0)
799                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
800         }
801
802         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
803                 count += sprintf(buf + count, "fast ");
804         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
805                 count += sprintf(buf + count, "normal ");
806         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
807                 count += sprintf(buf + count, "idle ");
808         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
809                 count += sprintf(buf + count, "standby");
810
811         rdev_info(rdev, "%s\n", buf);
812
813         if ((constraints->min_uV != constraints->max_uV) &&
814             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
815                 rdev_warn(rdev,
816                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
817 }
818
819 static int machine_constraints_voltage(struct regulator_dev *rdev,
820         struct regulation_constraints *constraints)
821 {
822         struct regulator_ops *ops = rdev->desc->ops;
823         int ret;
824
825         /* do we need to apply the constraint voltage */
826         if (rdev->constraints->apply_uV &&
827             rdev->constraints->min_uV == rdev->constraints->max_uV) {
828                 ret = _regulator_do_set_voltage(rdev,
829                                                 rdev->constraints->min_uV,
830                                                 rdev->constraints->max_uV);
831                 if (ret < 0) {
832                         rdev_err(rdev, "failed to apply %duV constraint\n",
833                                  rdev->constraints->min_uV);
834                         return ret;
835                 }
836         }
837
838         /* constrain machine-level voltage specs to fit
839          * the actual range supported by this regulator.
840          */
841         if (ops->list_voltage && rdev->desc->n_voltages) {
842                 int     count = rdev->desc->n_voltages;
843                 int     i;
844                 int     min_uV = INT_MAX;
845                 int     max_uV = INT_MIN;
846                 int     cmin = constraints->min_uV;
847                 int     cmax = constraints->max_uV;
848
849                 /* it's safe to autoconfigure fixed-voltage supplies
850                    and the constraints are used by list_voltage. */
851                 if (count == 1 && !cmin) {
852                         cmin = 1;
853                         cmax = INT_MAX;
854                         constraints->min_uV = cmin;
855                         constraints->max_uV = cmax;
856                 }
857
858                 /* voltage constraints are optional */
859                 if ((cmin == 0) && (cmax == 0))
860                         return 0;
861
862                 /* else require explicit machine-level constraints */
863                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
864                         rdev_err(rdev, "invalid voltage constraints\n");
865                         return -EINVAL;
866                 }
867
868                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
869                 for (i = 0; i < count; i++) {
870                         int     value;
871
872                         value = ops->list_voltage(rdev, i);
873                         if (value <= 0)
874                                 continue;
875
876                         /* maybe adjust [min_uV..max_uV] */
877                         if (value >= cmin && value < min_uV)
878                                 min_uV = value;
879                         if (value <= cmax && value > max_uV)
880                                 max_uV = value;
881                 }
882
883                 /* final: [min_uV..max_uV] valid iff constraints valid */
884                 if (max_uV < min_uV) {
885                         rdev_err(rdev, "unsupportable voltage constraints\n");
886                         return -EINVAL;
887                 }
888
889                 /* use regulator's subset of machine constraints */
890                 if (constraints->min_uV < min_uV) {
891                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
892                                  constraints->min_uV, min_uV);
893                         constraints->min_uV = min_uV;
894                 }
895                 if (constraints->max_uV > max_uV) {
896                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
897                                  constraints->max_uV, max_uV);
898                         constraints->max_uV = max_uV;
899                 }
900         }
901
902         return 0;
903 }
904
905 /**
906  * set_machine_constraints - sets regulator constraints
907  * @rdev: regulator source
908  * @constraints: constraints to apply
909  *
910  * Allows platform initialisation code to define and constrain
911  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
912  * Constraints *must* be set by platform code in order for some
913  * regulator operations to proceed i.e. set_voltage, set_current_limit,
914  * set_mode.
915  */
916 static int set_machine_constraints(struct regulator_dev *rdev,
917         const struct regulation_constraints *constraints)
918 {
919         int ret = 0;
920         struct regulator_ops *ops = rdev->desc->ops;
921
922         if (constraints)
923                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
924                                             GFP_KERNEL);
925         else
926                 rdev->constraints = kzalloc(sizeof(*constraints),
927                                             GFP_KERNEL);
928         if (!rdev->constraints)
929                 return -ENOMEM;
930
931         ret = machine_constraints_voltage(rdev, rdev->constraints);
932         if (ret != 0)
933                 goto out;
934
935         /* do we need to setup our suspend state */
936         if (rdev->constraints->initial_state) {
937                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
938                 if (ret < 0) {
939                         rdev_err(rdev, "failed to set suspend state\n");
940                         goto out;
941                 }
942         }
943
944         if (rdev->constraints->initial_mode) {
945                 if (!ops->set_mode) {
946                         rdev_err(rdev, "no set_mode operation\n");
947                         ret = -EINVAL;
948                         goto out;
949                 }
950
951                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
952                 if (ret < 0) {
953                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
954                         goto out;
955                 }
956         }
957
958         /* If the constraints say the regulator should be on at this point
959          * and we have control then make sure it is enabled.
960          */
961         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
962             ops->enable) {
963                 ret = ops->enable(rdev);
964                 if (ret < 0) {
965                         rdev_err(rdev, "failed to enable\n");
966                         goto out;
967                 }
968         }
969
970         print_constraints(rdev);
971         return 0;
972 out:
973         kfree(rdev->constraints);
974         rdev->constraints = NULL;
975         return ret;
976 }
977
978 /**
979  * set_supply - set regulator supply regulator
980  * @rdev: regulator name
981  * @supply_rdev: supply regulator name
982  *
983  * Called by platform initialisation code to set the supply regulator for this
984  * regulator. This ensures that a regulators supply will also be enabled by the
985  * core if it's child is enabled.
986  */
987 static int set_supply(struct regulator_dev *rdev,
988                       struct regulator_dev *supply_rdev)
989 {
990         int err;
991
992         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
993
994         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
995         if (rdev->supply == NULL) {
996                 err = -ENOMEM;
997                 return err;
998         }
999
1000         return 0;
1001 }
1002
1003 /**
1004  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1005  * @rdev:         regulator source
1006  * @consumer_dev_name: dev_name() string for device supply applies to
1007  * @supply:       symbolic name for supply
1008  *
1009  * Allows platform initialisation code to map physical regulator
1010  * sources to symbolic names for supplies for use by devices.  Devices
1011  * should use these symbolic names to request regulators, avoiding the
1012  * need to provide board-specific regulator names as platform data.
1013  */
1014 static int set_consumer_device_supply(struct regulator_dev *rdev,
1015                                       const char *consumer_dev_name,
1016                                       const char *supply)
1017 {
1018         struct regulator_map *node;
1019         int has_dev;
1020
1021         if (supply == NULL)
1022                 return -EINVAL;
1023
1024         if (consumer_dev_name != NULL)
1025                 has_dev = 1;
1026         else
1027                 has_dev = 0;
1028
1029         list_for_each_entry(node, &regulator_map_list, list) {
1030                 if (node->dev_name && consumer_dev_name) {
1031                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1032                                 continue;
1033                 } else if (node->dev_name || consumer_dev_name) {
1034                         continue;
1035                 }
1036
1037                 if (strcmp(node->supply, supply) != 0)
1038                         continue;
1039
1040                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1041                          consumer_dev_name,
1042                          dev_name(&node->regulator->dev),
1043                          node->regulator->desc->name,
1044                          supply,
1045                          dev_name(&rdev->dev), rdev_get_name(rdev));
1046                 return -EBUSY;
1047         }
1048
1049         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1050         if (node == NULL)
1051                 return -ENOMEM;
1052
1053         node->regulator = rdev;
1054         node->supply = supply;
1055
1056         if (has_dev) {
1057                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1058                 if (node->dev_name == NULL) {
1059                         kfree(node);
1060                         return -ENOMEM;
1061                 }
1062         }
1063
1064         list_add(&node->list, &regulator_map_list);
1065         return 0;
1066 }
1067
1068 static void unset_regulator_supplies(struct regulator_dev *rdev)
1069 {
1070         struct regulator_map *node, *n;
1071
1072         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1073                 if (rdev == node->regulator) {
1074                         list_del(&node->list);
1075                         kfree(node->dev_name);
1076                         kfree(node);
1077                 }
1078         }
1079 }
1080
1081 #define REG_STR_SIZE    64
1082
1083 static struct regulator *create_regulator(struct regulator_dev *rdev,
1084                                           struct device *dev,
1085                                           const char *supply_name)
1086 {
1087         struct regulator *regulator;
1088         char buf[REG_STR_SIZE];
1089         int err, size;
1090
1091         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1092         if (regulator == NULL)
1093                 return NULL;
1094
1095         mutex_lock(&rdev->mutex);
1096         regulator->rdev = rdev;
1097         list_add(&regulator->list, &rdev->consumer_list);
1098
1099         if (dev) {
1100                 /* create a 'requested_microamps_name' sysfs entry */
1101                 size = scnprintf(buf, REG_STR_SIZE,
1102                                  "microamps_requested_%s-%s",
1103                                  dev_name(dev), supply_name);
1104                 if (size >= REG_STR_SIZE)
1105                         goto overflow_err;
1106
1107                 regulator->dev = dev;
1108                 sysfs_attr_init(&regulator->dev_attr.attr);
1109                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1110                 if (regulator->dev_attr.attr.name == NULL)
1111                         goto attr_name_err;
1112
1113                 regulator->dev_attr.attr.mode = 0444;
1114                 regulator->dev_attr.show = device_requested_uA_show;
1115                 err = device_create_file(dev, &regulator->dev_attr);
1116                 if (err < 0) {
1117                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1118                         goto attr_name_err;
1119                 }
1120
1121                 /* also add a link to the device sysfs entry */
1122                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1123                                  dev->kobj.name, supply_name);
1124                 if (size >= REG_STR_SIZE)
1125                         goto attr_err;
1126
1127                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1128                 if (regulator->supply_name == NULL)
1129                         goto attr_err;
1130
1131                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1132                                         buf);
1133                 if (err) {
1134                         rdev_warn(rdev, "could not add device link %s err %d\n",
1135                                   dev->kobj.name, err);
1136                         goto link_name_err;
1137                 }
1138         } else {
1139                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1140                 if (regulator->supply_name == NULL)
1141                         goto attr_err;
1142         }
1143
1144         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1145                                                 rdev->debugfs);
1146         if (!regulator->debugfs) {
1147                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1148         } else {
1149                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1150                                    &regulator->uA_load);
1151                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1152                                    &regulator->min_uV);
1153                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1154                                    &regulator->max_uV);
1155         }
1156
1157         /*
1158          * Check now if the regulator is an always on regulator - if
1159          * it is then we don't need to do nearly so much work for
1160          * enable/disable calls.
1161          */
1162         if (!_regulator_can_change_status(rdev) &&
1163             _regulator_is_enabled(rdev))
1164                 regulator->always_on = true;
1165
1166         mutex_unlock(&rdev->mutex);
1167         return regulator;
1168 link_name_err:
1169         kfree(regulator->supply_name);
1170 attr_err:
1171         device_remove_file(regulator->dev, &regulator->dev_attr);
1172 attr_name_err:
1173         kfree(regulator->dev_attr.attr.name);
1174 overflow_err:
1175         list_del(&regulator->list);
1176         kfree(regulator);
1177         mutex_unlock(&rdev->mutex);
1178         return NULL;
1179 }
1180
1181 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1182 {
1183         if (!rdev->desc->ops->enable_time)
1184                 return 0;
1185         return rdev->desc->ops->enable_time(rdev);
1186 }
1187
1188 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1189                                                   const char *supply,
1190                                                   int *ret)
1191 {
1192         struct regulator_dev *r;
1193         struct device_node *node;
1194         struct regulator_map *map;
1195         const char *devname = NULL;
1196
1197         /* first do a dt based lookup */
1198         if (dev && dev->of_node) {
1199                 node = of_get_regulator(dev, supply);
1200                 if (node) {
1201                         list_for_each_entry(r, &regulator_list, list)
1202                                 if (r->dev.parent &&
1203                                         node == r->dev.of_node)
1204                                         return r;
1205                 } else {
1206                         /*
1207                          * If we couldn't even get the node then it's
1208                          * not just that the device didn't register
1209                          * yet, there's no node and we'll never
1210                          * succeed.
1211                          */
1212                         *ret = -ENODEV;
1213                 }
1214         }
1215
1216         /* if not found, try doing it non-dt way */
1217         if (dev)
1218                 devname = dev_name(dev);
1219
1220         list_for_each_entry(r, &regulator_list, list)
1221                 if (strcmp(rdev_get_name(r), supply) == 0)
1222                         return r;
1223
1224         list_for_each_entry(map, &regulator_map_list, list) {
1225                 /* If the mapping has a device set up it must match */
1226                 if (map->dev_name &&
1227                     (!devname || strcmp(map->dev_name, devname)))
1228                         continue;
1229
1230                 if (strcmp(map->supply, supply) == 0)
1231                         return map->regulator;
1232         }
1233
1234
1235         return NULL;
1236 }
1237
1238 /* Internal regulator request function */
1239 static struct regulator *_regulator_get(struct device *dev, const char *id,
1240                                         int exclusive)
1241 {
1242         struct regulator_dev *rdev;
1243         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1244         const char *devname = NULL;
1245         int ret;
1246
1247         if (id == NULL) {
1248                 pr_err("get() with no identifier\n");
1249                 return regulator;
1250         }
1251
1252         if (dev)
1253                 devname = dev_name(dev);
1254
1255         mutex_lock(&regulator_list_mutex);
1256
1257         rdev = regulator_dev_lookup(dev, id, &ret);
1258         if (rdev)
1259                 goto found;
1260
1261         if (board_wants_dummy_regulator) {
1262                 rdev = dummy_regulator_rdev;
1263                 goto found;
1264         }
1265
1266 #ifdef CONFIG_REGULATOR_DUMMY
1267         if (!devname)
1268                 devname = "deviceless";
1269
1270         /* If the board didn't flag that it was fully constrained then
1271          * substitute in a dummy regulator so consumers can continue.
1272          */
1273         if (!has_full_constraints) {
1274                 pr_warn("%s supply %s not found, using dummy regulator\n",
1275                         devname, id);
1276                 rdev = dummy_regulator_rdev;
1277                 goto found;
1278         }
1279 #endif
1280
1281         mutex_unlock(&regulator_list_mutex);
1282         return regulator;
1283
1284 found:
1285         if (rdev->exclusive) {
1286                 regulator = ERR_PTR(-EPERM);
1287                 goto out;
1288         }
1289
1290         if (exclusive && rdev->open_count) {
1291                 regulator = ERR_PTR(-EBUSY);
1292                 goto out;
1293         }
1294
1295         if (!try_module_get(rdev->owner))
1296                 goto out;
1297
1298         regulator = create_regulator(rdev, dev, id);
1299         if (regulator == NULL) {
1300                 regulator = ERR_PTR(-ENOMEM);
1301                 module_put(rdev->owner);
1302                 goto out;
1303         }
1304
1305         rdev->open_count++;
1306         if (exclusive) {
1307                 rdev->exclusive = 1;
1308
1309                 ret = _regulator_is_enabled(rdev);
1310                 if (ret > 0)
1311                         rdev->use_count = 1;
1312                 else
1313                         rdev->use_count = 0;
1314         }
1315
1316 out:
1317         mutex_unlock(&regulator_list_mutex);
1318
1319         return regulator;
1320 }
1321
1322 /**
1323  * regulator_get - lookup and obtain a reference to a regulator.
1324  * @dev: device for regulator "consumer"
1325  * @id: Supply name or regulator ID.
1326  *
1327  * Returns a struct regulator corresponding to the regulator producer,
1328  * or IS_ERR() condition containing errno.
1329  *
1330  * Use of supply names configured via regulator_set_device_supply() is
1331  * strongly encouraged.  It is recommended that the supply name used
1332  * should match the name used for the supply and/or the relevant
1333  * device pins in the datasheet.
1334  */
1335 struct regulator *regulator_get(struct device *dev, const char *id)
1336 {
1337         return _regulator_get(dev, id, 0);
1338 }
1339 EXPORT_SYMBOL_GPL(regulator_get);
1340
1341 static void devm_regulator_release(struct device *dev, void *res)
1342 {
1343         regulator_put(*(struct regulator **)res);
1344 }
1345
1346 /**
1347  * devm_regulator_get - Resource managed regulator_get()
1348  * @dev: device for regulator "consumer"
1349  * @id: Supply name or regulator ID.
1350  *
1351  * Managed regulator_get(). Regulators returned from this function are
1352  * automatically regulator_put() on driver detach. See regulator_get() for more
1353  * information.
1354  */
1355 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1356 {
1357         struct regulator **ptr, *regulator;
1358
1359         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1360         if (!ptr)
1361                 return ERR_PTR(-ENOMEM);
1362
1363         regulator = regulator_get(dev, id);
1364         if (!IS_ERR(regulator)) {
1365                 *ptr = regulator;
1366                 devres_add(dev, ptr);
1367         } else {
1368                 devres_free(ptr);
1369         }
1370
1371         return regulator;
1372 }
1373 EXPORT_SYMBOL_GPL(devm_regulator_get);
1374
1375 /**
1376  * regulator_get_exclusive - obtain exclusive access to a regulator.
1377  * @dev: device for regulator "consumer"
1378  * @id: Supply name or regulator ID.
1379  *
1380  * Returns a struct regulator corresponding to the regulator producer,
1381  * or IS_ERR() condition containing errno.  Other consumers will be
1382  * unable to obtain this reference is held and the use count for the
1383  * regulator will be initialised to reflect the current state of the
1384  * regulator.
1385  *
1386  * This is intended for use by consumers which cannot tolerate shared
1387  * use of the regulator such as those which need to force the
1388  * regulator off for correct operation of the hardware they are
1389  * controlling.
1390  *
1391  * Use of supply names configured via regulator_set_device_supply() is
1392  * strongly encouraged.  It is recommended that the supply name used
1393  * should match the name used for the supply and/or the relevant
1394  * device pins in the datasheet.
1395  */
1396 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1397 {
1398         return _regulator_get(dev, id, 1);
1399 }
1400 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1401
1402 /**
1403  * regulator_put - "free" the regulator source
1404  * @regulator: regulator source
1405  *
1406  * Note: drivers must ensure that all regulator_enable calls made on this
1407  * regulator source are balanced by regulator_disable calls prior to calling
1408  * this function.
1409  */
1410 void regulator_put(struct regulator *regulator)
1411 {
1412         struct regulator_dev *rdev;
1413
1414         if (regulator == NULL || IS_ERR(regulator))
1415                 return;
1416
1417         mutex_lock(&regulator_list_mutex);
1418         rdev = regulator->rdev;
1419
1420         debugfs_remove_recursive(regulator->debugfs);
1421
1422         /* remove any sysfs entries */
1423         if (regulator->dev) {
1424                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1425                 device_remove_file(regulator->dev, &regulator->dev_attr);
1426                 kfree(regulator->dev_attr.attr.name);
1427         }
1428         kfree(regulator->supply_name);
1429         list_del(&regulator->list);
1430         kfree(regulator);
1431
1432         rdev->open_count--;
1433         rdev->exclusive = 0;
1434
1435         module_put(rdev->owner);
1436         mutex_unlock(&regulator_list_mutex);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_put);
1439
1440 static int devm_regulator_match(struct device *dev, void *res, void *data)
1441 {
1442         struct regulator **r = res;
1443         if (!r || !*r) {
1444                 WARN_ON(!r || !*r);
1445                 return 0;
1446         }
1447         return *r == data;
1448 }
1449
1450 /**
1451  * devm_regulator_put - Resource managed regulator_put()
1452  * @regulator: regulator to free
1453  *
1454  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1455  * this function will not need to be called and the resource management
1456  * code will ensure that the resource is freed.
1457  */
1458 void devm_regulator_put(struct regulator *regulator)
1459 {
1460         int rc;
1461
1462         rc = devres_destroy(regulator->dev, devm_regulator_release,
1463                             devm_regulator_match, regulator);
1464         if (rc == 0)
1465                 regulator_put(regulator);
1466         else
1467                 WARN_ON(rc);
1468 }
1469 EXPORT_SYMBOL_GPL(devm_regulator_put);
1470
1471 /* locks held by regulator_enable() */
1472 static int _regulator_enable(struct regulator_dev *rdev)
1473 {
1474         int ret, delay;
1475
1476         /* check voltage and requested load before enabling */
1477         if (rdev->constraints &&
1478             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1479                 drms_uA_update(rdev);
1480
1481         if (rdev->use_count == 0) {
1482                 /* The regulator may on if it's not switchable or left on */
1483                 ret = _regulator_is_enabled(rdev);
1484                 if (ret == -EINVAL || ret == 0) {
1485                         if (!_regulator_can_change_status(rdev))
1486                                 return -EPERM;
1487
1488                         if (!rdev->desc->ops->enable)
1489                                 return -EINVAL;
1490
1491                         /* Query before enabling in case configuration
1492                          * dependent.  */
1493                         ret = _regulator_get_enable_time(rdev);
1494                         if (ret >= 0) {
1495                                 delay = ret;
1496                         } else {
1497                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1498                                            ret);
1499                                 delay = 0;
1500                         }
1501
1502                         trace_regulator_enable(rdev_get_name(rdev));
1503
1504                         /* Allow the regulator to ramp; it would be useful
1505                          * to extend this for bulk operations so that the
1506                          * regulators can ramp together.  */
1507                         ret = rdev->desc->ops->enable(rdev);
1508                         if (ret < 0)
1509                                 return ret;
1510
1511                         trace_regulator_enable_delay(rdev_get_name(rdev));
1512
1513                         if (delay >= 1000) {
1514                                 mdelay(delay / 1000);
1515                                 udelay(delay % 1000);
1516                         } else if (delay) {
1517                                 udelay(delay);
1518                         }
1519
1520                         trace_regulator_enable_complete(rdev_get_name(rdev));
1521
1522                 } else if (ret < 0) {
1523                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1524                         return ret;
1525                 }
1526                 /* Fallthrough on positive return values - already enabled */
1527         }
1528
1529         rdev->use_count++;
1530
1531         return 0;
1532 }
1533
1534 /**
1535  * regulator_enable - enable regulator output
1536  * @regulator: regulator source
1537  *
1538  * Request that the regulator be enabled with the regulator output at
1539  * the predefined voltage or current value.  Calls to regulator_enable()
1540  * must be balanced with calls to regulator_disable().
1541  *
1542  * NOTE: the output value can be set by other drivers, boot loader or may be
1543  * hardwired in the regulator.
1544  */
1545 int regulator_enable(struct regulator *regulator)
1546 {
1547         struct regulator_dev *rdev = regulator->rdev;
1548         int ret = 0;
1549
1550         if (regulator->always_on)
1551                 return 0;
1552
1553         if (rdev->supply) {
1554                 ret = regulator_enable(rdev->supply);
1555                 if (ret != 0)
1556                         return ret;
1557         }
1558
1559         mutex_lock(&rdev->mutex);
1560         ret = _regulator_enable(rdev);
1561         mutex_unlock(&rdev->mutex);
1562
1563         if (ret != 0 && rdev->supply)
1564                 regulator_disable(rdev->supply);
1565
1566         return ret;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_enable);
1569
1570 /* locks held by regulator_disable() */
1571 static int _regulator_disable(struct regulator_dev *rdev)
1572 {
1573         int ret = 0;
1574
1575         if (WARN(rdev->use_count <= 0,
1576                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1577                 return -EIO;
1578
1579         /* are we the last user and permitted to disable ? */
1580         if (rdev->use_count == 1 &&
1581             (rdev->constraints && !rdev->constraints->always_on)) {
1582
1583                 /* we are last user */
1584                 if (_regulator_can_change_status(rdev) &&
1585                     rdev->desc->ops->disable) {
1586                         trace_regulator_disable(rdev_get_name(rdev));
1587
1588                         ret = rdev->desc->ops->disable(rdev);
1589                         if (ret < 0) {
1590                                 rdev_err(rdev, "failed to disable\n");
1591                                 return ret;
1592                         }
1593
1594                         trace_regulator_disable_complete(rdev_get_name(rdev));
1595
1596                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1597                                              NULL);
1598                 }
1599
1600                 rdev->use_count = 0;
1601         } else if (rdev->use_count > 1) {
1602
1603                 if (rdev->constraints &&
1604                         (rdev->constraints->valid_ops_mask &
1605                         REGULATOR_CHANGE_DRMS))
1606                         drms_uA_update(rdev);
1607
1608                 rdev->use_count--;
1609         }
1610
1611         return ret;
1612 }
1613
1614 /**
1615  * regulator_disable - disable regulator output
1616  * @regulator: regulator source
1617  *
1618  * Disable the regulator output voltage or current.  Calls to
1619  * regulator_enable() must be balanced with calls to
1620  * regulator_disable().
1621  *
1622  * NOTE: this will only disable the regulator output if no other consumer
1623  * devices have it enabled, the regulator device supports disabling and
1624  * machine constraints permit this operation.
1625  */
1626 int regulator_disable(struct regulator *regulator)
1627 {
1628         struct regulator_dev *rdev = regulator->rdev;
1629         int ret = 0;
1630
1631         if (regulator->always_on)
1632                 return 0;
1633
1634         mutex_lock(&rdev->mutex);
1635         ret = _regulator_disable(rdev);
1636         mutex_unlock(&rdev->mutex);
1637
1638         if (ret == 0 && rdev->supply)
1639                 regulator_disable(rdev->supply);
1640
1641         return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(regulator_disable);
1644
1645 /* locks held by regulator_force_disable() */
1646 static int _regulator_force_disable(struct regulator_dev *rdev)
1647 {
1648         int ret = 0;
1649
1650         /* force disable */
1651         if (rdev->desc->ops->disable) {
1652                 /* ah well, who wants to live forever... */
1653                 ret = rdev->desc->ops->disable(rdev);
1654                 if (ret < 0) {
1655                         rdev_err(rdev, "failed to force disable\n");
1656                         return ret;
1657                 }
1658                 /* notify other consumers that power has been forced off */
1659                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1660                         REGULATOR_EVENT_DISABLE, NULL);
1661         }
1662
1663         return ret;
1664 }
1665
1666 /**
1667  * regulator_force_disable - force disable regulator output
1668  * @regulator: regulator source
1669  *
1670  * Forcibly disable the regulator output voltage or current.
1671  * NOTE: this *will* disable the regulator output even if other consumer
1672  * devices have it enabled. This should be used for situations when device
1673  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1674  */
1675 int regulator_force_disable(struct regulator *regulator)
1676 {
1677         struct regulator_dev *rdev = regulator->rdev;
1678         int ret;
1679
1680         mutex_lock(&rdev->mutex);
1681         regulator->uA_load = 0;
1682         ret = _regulator_force_disable(regulator->rdev);
1683         mutex_unlock(&rdev->mutex);
1684
1685         if (rdev->supply)
1686                 while (rdev->open_count--)
1687                         regulator_disable(rdev->supply);
1688
1689         return ret;
1690 }
1691 EXPORT_SYMBOL_GPL(regulator_force_disable);
1692
1693 static void regulator_disable_work(struct work_struct *work)
1694 {
1695         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1696                                                   disable_work.work);
1697         int count, i, ret;
1698
1699         mutex_lock(&rdev->mutex);
1700
1701         BUG_ON(!rdev->deferred_disables);
1702
1703         count = rdev->deferred_disables;
1704         rdev->deferred_disables = 0;
1705
1706         for (i = 0; i < count; i++) {
1707                 ret = _regulator_disable(rdev);
1708                 if (ret != 0)
1709                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1710         }
1711
1712         mutex_unlock(&rdev->mutex);
1713
1714         if (rdev->supply) {
1715                 for (i = 0; i < count; i++) {
1716                         ret = regulator_disable(rdev->supply);
1717                         if (ret != 0) {
1718                                 rdev_err(rdev,
1719                                          "Supply disable failed: %d\n", ret);
1720                         }
1721                 }
1722         }
1723 }
1724
1725 /**
1726  * regulator_disable_deferred - disable regulator output with delay
1727  * @regulator: regulator source
1728  * @ms: miliseconds until the regulator is disabled
1729  *
1730  * Execute regulator_disable() on the regulator after a delay.  This
1731  * is intended for use with devices that require some time to quiesce.
1732  *
1733  * NOTE: this will only disable the regulator output if no other consumer
1734  * devices have it enabled, the regulator device supports disabling and
1735  * machine constraints permit this operation.
1736  */
1737 int regulator_disable_deferred(struct regulator *regulator, int ms)
1738 {
1739         struct regulator_dev *rdev = regulator->rdev;
1740         int ret;
1741
1742         if (regulator->always_on)
1743                 return 0;
1744
1745         mutex_lock(&rdev->mutex);
1746         rdev->deferred_disables++;
1747         mutex_unlock(&rdev->mutex);
1748
1749         ret = schedule_delayed_work(&rdev->disable_work,
1750                                     msecs_to_jiffies(ms));
1751         if (ret < 0)
1752                 return ret;
1753         else
1754                 return 0;
1755 }
1756 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1757
1758 /**
1759  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1760  *
1761  * @rdev: regulator to operate on
1762  *
1763  * Regulators that use regmap for their register I/O can set the
1764  * enable_reg and enable_mask fields in their descriptor and then use
1765  * this as their is_enabled operation, saving some code.
1766  */
1767 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1768 {
1769         unsigned int val;
1770         int ret;
1771
1772         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1773         if (ret != 0)
1774                 return ret;
1775
1776         return (val & rdev->desc->enable_mask) != 0;
1777 }
1778 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1779
1780 /**
1781  * regulator_enable_regmap - standard enable() for regmap users
1782  *
1783  * @rdev: regulator to operate on
1784  *
1785  * Regulators that use regmap for their register I/O can set the
1786  * enable_reg and enable_mask fields in their descriptor and then use
1787  * this as their enable() operation, saving some code.
1788  */
1789 int regulator_enable_regmap(struct regulator_dev *rdev)
1790 {
1791         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1792                                   rdev->desc->enable_mask,
1793                                   rdev->desc->enable_mask);
1794 }
1795 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1796
1797 /**
1798  * regulator_disable_regmap - standard disable() for regmap users
1799  *
1800  * @rdev: regulator to operate on
1801  *
1802  * Regulators that use regmap for their register I/O can set the
1803  * enable_reg and enable_mask fields in their descriptor and then use
1804  * this as their disable() operation, saving some code.
1805  */
1806 int regulator_disable_regmap(struct regulator_dev *rdev)
1807 {
1808         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1809                                   rdev->desc->enable_mask, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1812
1813 static int _regulator_is_enabled(struct regulator_dev *rdev)
1814 {
1815         /* If we don't know then assume that the regulator is always on */
1816         if (!rdev->desc->ops->is_enabled)
1817                 return 1;
1818
1819         return rdev->desc->ops->is_enabled(rdev);
1820 }
1821
1822 /**
1823  * regulator_is_enabled - is the regulator output enabled
1824  * @regulator: regulator source
1825  *
1826  * Returns positive if the regulator driver backing the source/client
1827  * has requested that the device be enabled, zero if it hasn't, else a
1828  * negative errno code.
1829  *
1830  * Note that the device backing this regulator handle can have multiple
1831  * users, so it might be enabled even if regulator_enable() was never
1832  * called for this particular source.
1833  */
1834 int regulator_is_enabled(struct regulator *regulator)
1835 {
1836         int ret;
1837
1838         if (regulator->always_on)
1839                 return 1;
1840
1841         mutex_lock(&regulator->rdev->mutex);
1842         ret = _regulator_is_enabled(regulator->rdev);
1843         mutex_unlock(&regulator->rdev->mutex);
1844
1845         return ret;
1846 }
1847 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1848
1849 /**
1850  * regulator_count_voltages - count regulator_list_voltage() selectors
1851  * @regulator: regulator source
1852  *
1853  * Returns number of selectors, or negative errno.  Selectors are
1854  * numbered starting at zero, and typically correspond to bitfields
1855  * in hardware registers.
1856  */
1857 int regulator_count_voltages(struct regulator *regulator)
1858 {
1859         struct regulator_dev    *rdev = regulator->rdev;
1860
1861         return rdev->desc->n_voltages ? : -EINVAL;
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1864
1865 /**
1866  * regulator_list_voltage_linear - List voltages with simple calculation
1867  *
1868  * @rdev: Regulator device
1869  * @selector: Selector to convert into a voltage
1870  *
1871  * Regulators with a simple linear mapping between voltages and
1872  * selectors can set min_uV and uV_step in the regulator descriptor
1873  * and then use this function as their list_voltage() operation,
1874  */
1875 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1876                                   unsigned int selector)
1877 {
1878         if (selector >= rdev->desc->n_voltages)
1879                 return -EINVAL;
1880
1881         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1884
1885 /**
1886  * regulator_list_voltage - enumerate supported voltages
1887  * @regulator: regulator source
1888  * @selector: identify voltage to list
1889  * Context: can sleep
1890  *
1891  * Returns a voltage that can be passed to @regulator_set_voltage(),
1892  * zero if this selector code can't be used on this system, or a
1893  * negative errno.
1894  */
1895 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1896 {
1897         struct regulator_dev    *rdev = regulator->rdev;
1898         struct regulator_ops    *ops = rdev->desc->ops;
1899         int                     ret;
1900
1901         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1902                 return -EINVAL;
1903
1904         mutex_lock(&rdev->mutex);
1905         ret = ops->list_voltage(rdev, selector);
1906         mutex_unlock(&rdev->mutex);
1907
1908         if (ret > 0) {
1909                 if (ret < rdev->constraints->min_uV)
1910                         ret = 0;
1911                 else if (ret > rdev->constraints->max_uV)
1912                         ret = 0;
1913         }
1914
1915         return ret;
1916 }
1917 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1918
1919 /**
1920  * regulator_is_supported_voltage - check if a voltage range can be supported
1921  *
1922  * @regulator: Regulator to check.
1923  * @min_uV: Minimum required voltage in uV.
1924  * @max_uV: Maximum required voltage in uV.
1925  *
1926  * Returns a boolean or a negative error code.
1927  */
1928 int regulator_is_supported_voltage(struct regulator *regulator,
1929                                    int min_uV, int max_uV)
1930 {
1931         int i, voltages, ret;
1932
1933         ret = regulator_count_voltages(regulator);
1934         if (ret < 0)
1935                 return ret;
1936         voltages = ret;
1937
1938         for (i = 0; i < voltages; i++) {
1939                 ret = regulator_list_voltage(regulator, i);
1940
1941                 if (ret >= min_uV && ret <= max_uV)
1942                         return 1;
1943         }
1944
1945         return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1948
1949 /**
1950  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1951  *
1952  * @rdev: regulator to operate on
1953  *
1954  * Regulators that use regmap for their register I/O can set the
1955  * vsel_reg and vsel_mask fields in their descriptor and then use this
1956  * as their get_voltage_vsel operation, saving some code.
1957  */
1958 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1959 {
1960         unsigned int val;
1961         int ret;
1962
1963         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1964         if (ret != 0)
1965                 return ret;
1966
1967         val &= rdev->desc->vsel_mask;
1968         val >>= ffs(rdev->desc->vsel_mask) - 1;
1969
1970         return val;
1971 }
1972 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1973
1974 /**
1975  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1976  *
1977  * @rdev: regulator to operate on
1978  * @sel: Selector to set
1979  *
1980  * Regulators that use regmap for their register I/O can set the
1981  * vsel_reg and vsel_mask fields in their descriptor and then use this
1982  * as their set_voltage_vsel operation, saving some code.
1983  */
1984 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
1985 {
1986         sel <<= ffs(rdev->desc->vsel_mask) - 1;
1987
1988         return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
1989                                   rdev->desc->vsel_mask, sel);
1990 }
1991 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
1992
1993 /**
1994  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
1995  *
1996  * @rdev: Regulator to operate on
1997  * @min_uV: Lower bound for voltage
1998  * @max_uV: Upper bound for voltage
1999  *
2000  * Drivers implementing set_voltage_sel() and list_voltage() can use
2001  * this as their map_voltage() operation.  It will find a suitable
2002  * voltage by calling list_voltage() until it gets something in bounds
2003  * for the requested voltages.
2004  */
2005 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2006                                   int min_uV, int max_uV)
2007 {
2008         int best_val = INT_MAX;
2009         int selector = 0;
2010         int i, ret;
2011
2012         /* Find the smallest voltage that falls within the specified
2013          * range.
2014          */
2015         for (i = 0; i < rdev->desc->n_voltages; i++) {
2016                 ret = rdev->desc->ops->list_voltage(rdev, i);
2017                 if (ret < 0)
2018                         continue;
2019
2020                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2021                         best_val = ret;
2022                         selector = i;
2023                 }
2024         }
2025
2026         if (best_val != INT_MAX)
2027                 return selector;
2028         else
2029                 return -EINVAL;
2030 }
2031 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2032
2033 /**
2034  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2035  *
2036  * @rdev: Regulator to operate on
2037  * @min_uV: Lower bound for voltage
2038  * @max_uV: Upper bound for voltage
2039  *
2040  * Drivers providing min_uV and uV_step in their regulator_desc can
2041  * use this as their map_voltage() operation.
2042  */
2043 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2044                                  int min_uV, int max_uV)
2045 {
2046         int ret, voltage;
2047
2048         if (!rdev->desc->uV_step) {
2049                 BUG_ON(!rdev->desc->uV_step);
2050                 return -EINVAL;
2051         }
2052
2053         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2054         if (ret < 0)
2055                 return ret;
2056
2057         /* Map back into a voltage to verify we're still in bounds */
2058         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2059         if (voltage < min_uV || voltage > max_uV)
2060                 return -EINVAL;
2061
2062         return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2065
2066 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2067                                      int min_uV, int max_uV)
2068 {
2069         int ret;
2070         int delay = 0;
2071         int best_val;
2072         unsigned int selector;
2073         int old_selector = -1;
2074
2075         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2076
2077         min_uV += rdev->constraints->uV_offset;
2078         max_uV += rdev->constraints->uV_offset;
2079
2080         /*
2081          * If we can't obtain the old selector there is not enough
2082          * info to call set_voltage_time_sel().
2083          */
2084         if (rdev->desc->ops->set_voltage_time_sel &&
2085             rdev->desc->ops->get_voltage_sel) {
2086                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2087                 if (old_selector < 0)
2088                         return old_selector;
2089         }
2090
2091         if (rdev->desc->ops->set_voltage) {
2092                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2093                                                    &selector);
2094         } else if (rdev->desc->ops->set_voltage_sel) {
2095                 if (rdev->desc->ops->map_voltage)
2096                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2097                                                            max_uV);
2098                 else
2099                         ret = regulator_map_voltage_iterate(rdev, min_uV,
2100                                                             max_uV);
2101
2102                 if (ret >= 0) {
2103                         selector = ret;
2104                         ret = rdev->desc->ops->set_voltage_sel(rdev, ret);
2105                 }
2106         } else {
2107                 ret = -EINVAL;
2108         }
2109
2110         if (rdev->desc->ops->list_voltage)
2111                 best_val = rdev->desc->ops->list_voltage(rdev, selector);
2112         else
2113                 best_val = -1;
2114
2115         /* Call set_voltage_time_sel if successfully obtained old_selector */
2116         if (ret == 0 && old_selector >= 0 &&
2117             rdev->desc->ops->set_voltage_time_sel) {
2118
2119                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2120                                                 old_selector, selector);
2121                 if (delay < 0) {
2122                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2123                                   delay);
2124                         delay = 0;
2125                 }
2126         }
2127
2128         /* Insert any necessary delays */
2129         if (delay >= 1000) {
2130                 mdelay(delay / 1000);
2131                 udelay(delay % 1000);
2132         } else if (delay) {
2133                 udelay(delay);
2134         }
2135
2136         if (ret == 0)
2137                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2138                                      NULL);
2139
2140         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2141
2142         return ret;
2143 }
2144
2145 /**
2146  * regulator_set_voltage - set regulator output voltage
2147  * @regulator: regulator source
2148  * @min_uV: Minimum required voltage in uV
2149  * @max_uV: Maximum acceptable voltage in uV
2150  *
2151  * Sets a voltage regulator to the desired output voltage. This can be set
2152  * during any regulator state. IOW, regulator can be disabled or enabled.
2153  *
2154  * If the regulator is enabled then the voltage will change to the new value
2155  * immediately otherwise if the regulator is disabled the regulator will
2156  * output at the new voltage when enabled.
2157  *
2158  * NOTE: If the regulator is shared between several devices then the lowest
2159  * request voltage that meets the system constraints will be used.
2160  * Regulator system constraints must be set for this regulator before
2161  * calling this function otherwise this call will fail.
2162  */
2163 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2164 {
2165         struct regulator_dev *rdev = regulator->rdev;
2166         int ret = 0;
2167
2168         mutex_lock(&rdev->mutex);
2169
2170         /* If we're setting the same range as last time the change
2171          * should be a noop (some cpufreq implementations use the same
2172          * voltage for multiple frequencies, for example).
2173          */
2174         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2175                 goto out;
2176
2177         /* sanity check */
2178         if (!rdev->desc->ops->set_voltage &&
2179             !rdev->desc->ops->set_voltage_sel) {
2180                 ret = -EINVAL;
2181                 goto out;
2182         }
2183
2184         /* constraints check */
2185         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2186         if (ret < 0)
2187                 goto out;
2188         regulator->min_uV = min_uV;
2189         regulator->max_uV = max_uV;
2190
2191         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2192         if (ret < 0)
2193                 goto out;
2194
2195         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2196
2197 out:
2198         mutex_unlock(&rdev->mutex);
2199         return ret;
2200 }
2201 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2202
2203 /**
2204  * regulator_set_voltage_time - get raise/fall time
2205  * @regulator: regulator source
2206  * @old_uV: starting voltage in microvolts
2207  * @new_uV: target voltage in microvolts
2208  *
2209  * Provided with the starting and ending voltage, this function attempts to
2210  * calculate the time in microseconds required to rise or fall to this new
2211  * voltage.
2212  */
2213 int regulator_set_voltage_time(struct regulator *regulator,
2214                                int old_uV, int new_uV)
2215 {
2216         struct regulator_dev    *rdev = regulator->rdev;
2217         struct regulator_ops    *ops = rdev->desc->ops;
2218         int old_sel = -1;
2219         int new_sel = -1;
2220         int voltage;
2221         int i;
2222
2223         /* Currently requires operations to do this */
2224         if (!ops->list_voltage || !ops->set_voltage_time_sel
2225             || !rdev->desc->n_voltages)
2226                 return -EINVAL;
2227
2228         for (i = 0; i < rdev->desc->n_voltages; i++) {
2229                 /* We only look for exact voltage matches here */
2230                 voltage = regulator_list_voltage(regulator, i);
2231                 if (voltage < 0)
2232                         return -EINVAL;
2233                 if (voltage == 0)
2234                         continue;
2235                 if (voltage == old_uV)
2236                         old_sel = i;
2237                 if (voltage == new_uV)
2238                         new_sel = i;
2239         }
2240
2241         if (old_sel < 0 || new_sel < 0)
2242                 return -EINVAL;
2243
2244         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2245 }
2246 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2247
2248 /**
2249  * regulator_sync_voltage - re-apply last regulator output voltage
2250  * @regulator: regulator source
2251  *
2252  * Re-apply the last configured voltage.  This is intended to be used
2253  * where some external control source the consumer is cooperating with
2254  * has caused the configured voltage to change.
2255  */
2256 int regulator_sync_voltage(struct regulator *regulator)
2257 {
2258         struct regulator_dev *rdev = regulator->rdev;
2259         int ret, min_uV, max_uV;
2260
2261         mutex_lock(&rdev->mutex);
2262
2263         if (!rdev->desc->ops->set_voltage &&
2264             !rdev->desc->ops->set_voltage_sel) {
2265                 ret = -EINVAL;
2266                 goto out;
2267         }
2268
2269         /* This is only going to work if we've had a voltage configured. */
2270         if (!regulator->min_uV && !regulator->max_uV) {
2271                 ret = -EINVAL;
2272                 goto out;
2273         }
2274
2275         min_uV = regulator->min_uV;
2276         max_uV = regulator->max_uV;
2277
2278         /* This should be a paranoia check... */
2279         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2280         if (ret < 0)
2281                 goto out;
2282
2283         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2284         if (ret < 0)
2285                 goto out;
2286
2287         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2288
2289 out:
2290         mutex_unlock(&rdev->mutex);
2291         return ret;
2292 }
2293 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2294
2295 static int _regulator_get_voltage(struct regulator_dev *rdev)
2296 {
2297         int sel, ret;
2298
2299         if (rdev->desc->ops->get_voltage_sel) {
2300                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2301                 if (sel < 0)
2302                         return sel;
2303                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2304         } else if (rdev->desc->ops->get_voltage) {
2305                 ret = rdev->desc->ops->get_voltage(rdev);
2306         } else {
2307                 return -EINVAL;
2308         }
2309
2310         if (ret < 0)
2311                 return ret;
2312         return ret - rdev->constraints->uV_offset;
2313 }
2314
2315 /**
2316  * regulator_get_voltage - get regulator output voltage
2317  * @regulator: regulator source
2318  *
2319  * This returns the current regulator voltage in uV.
2320  *
2321  * NOTE: If the regulator is disabled it will return the voltage value. This
2322  * function should not be used to determine regulator state.
2323  */
2324 int regulator_get_voltage(struct regulator *regulator)
2325 {
2326         int ret;
2327
2328         mutex_lock(&regulator->rdev->mutex);
2329
2330         ret = _regulator_get_voltage(regulator->rdev);
2331
2332         mutex_unlock(&regulator->rdev->mutex);
2333
2334         return ret;
2335 }
2336 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2337
2338 /**
2339  * regulator_set_current_limit - set regulator output current limit
2340  * @regulator: regulator source
2341  * @min_uA: Minimuum supported current in uA
2342  * @max_uA: Maximum supported current in uA
2343  *
2344  * Sets current sink to the desired output current. This can be set during
2345  * any regulator state. IOW, regulator can be disabled or enabled.
2346  *
2347  * If the regulator is enabled then the current will change to the new value
2348  * immediately otherwise if the regulator is disabled the regulator will
2349  * output at the new current when enabled.
2350  *
2351  * NOTE: Regulator system constraints must be set for this regulator before
2352  * calling this function otherwise this call will fail.
2353  */
2354 int regulator_set_current_limit(struct regulator *regulator,
2355                                int min_uA, int max_uA)
2356 {
2357         struct regulator_dev *rdev = regulator->rdev;
2358         int ret;
2359
2360         mutex_lock(&rdev->mutex);
2361
2362         /* sanity check */
2363         if (!rdev->desc->ops->set_current_limit) {
2364                 ret = -EINVAL;
2365                 goto out;
2366         }
2367
2368         /* constraints check */
2369         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2370         if (ret < 0)
2371                 goto out;
2372
2373         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2374 out:
2375         mutex_unlock(&rdev->mutex);
2376         return ret;
2377 }
2378 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2379
2380 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2381 {
2382         int ret;
2383
2384         mutex_lock(&rdev->mutex);
2385
2386         /* sanity check */
2387         if (!rdev->desc->ops->get_current_limit) {
2388                 ret = -EINVAL;
2389                 goto out;
2390         }
2391
2392         ret = rdev->desc->ops->get_current_limit(rdev);
2393 out:
2394         mutex_unlock(&rdev->mutex);
2395         return ret;
2396 }
2397
2398 /**
2399  * regulator_get_current_limit - get regulator output current
2400  * @regulator: regulator source
2401  *
2402  * This returns the current supplied by the specified current sink in uA.
2403  *
2404  * NOTE: If the regulator is disabled it will return the current value. This
2405  * function should not be used to determine regulator state.
2406  */
2407 int regulator_get_current_limit(struct regulator *regulator)
2408 {
2409         return _regulator_get_current_limit(regulator->rdev);
2410 }
2411 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2412
2413 /**
2414  * regulator_set_mode - set regulator operating mode
2415  * @regulator: regulator source
2416  * @mode: operating mode - one of the REGULATOR_MODE constants
2417  *
2418  * Set regulator operating mode to increase regulator efficiency or improve
2419  * regulation performance.
2420  *
2421  * NOTE: Regulator system constraints must be set for this regulator before
2422  * calling this function otherwise this call will fail.
2423  */
2424 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2425 {
2426         struct regulator_dev *rdev = regulator->rdev;
2427         int ret;
2428         int regulator_curr_mode;
2429
2430         mutex_lock(&rdev->mutex);
2431
2432         /* sanity check */
2433         if (!rdev->desc->ops->set_mode) {
2434                 ret = -EINVAL;
2435                 goto out;
2436         }
2437
2438         /* return if the same mode is requested */
2439         if (rdev->desc->ops->get_mode) {
2440                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2441                 if (regulator_curr_mode == mode) {
2442                         ret = 0;
2443                         goto out;
2444                 }
2445         }
2446
2447         /* constraints check */
2448         ret = regulator_mode_constrain(rdev, &mode);
2449         if (ret < 0)
2450                 goto out;
2451
2452         ret = rdev->desc->ops->set_mode(rdev, mode);
2453 out:
2454         mutex_unlock(&rdev->mutex);
2455         return ret;
2456 }
2457 EXPORT_SYMBOL_GPL(regulator_set_mode);
2458
2459 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2460 {
2461         int ret;
2462
2463         mutex_lock(&rdev->mutex);
2464
2465         /* sanity check */
2466         if (!rdev->desc->ops->get_mode) {
2467                 ret = -EINVAL;
2468                 goto out;
2469         }
2470
2471         ret = rdev->desc->ops->get_mode(rdev);
2472 out:
2473         mutex_unlock(&rdev->mutex);
2474         return ret;
2475 }
2476
2477 /**
2478  * regulator_get_mode - get regulator operating mode
2479  * @regulator: regulator source
2480  *
2481  * Get the current regulator operating mode.
2482  */
2483 unsigned int regulator_get_mode(struct regulator *regulator)
2484 {
2485         return _regulator_get_mode(regulator->rdev);
2486 }
2487 EXPORT_SYMBOL_GPL(regulator_get_mode);
2488
2489 /**
2490  * regulator_set_optimum_mode - set regulator optimum operating mode
2491  * @regulator: regulator source
2492  * @uA_load: load current
2493  *
2494  * Notifies the regulator core of a new device load. This is then used by
2495  * DRMS (if enabled by constraints) to set the most efficient regulator
2496  * operating mode for the new regulator loading.
2497  *
2498  * Consumer devices notify their supply regulator of the maximum power
2499  * they will require (can be taken from device datasheet in the power
2500  * consumption tables) when they change operational status and hence power
2501  * state. Examples of operational state changes that can affect power
2502  * consumption are :-
2503  *
2504  *    o Device is opened / closed.
2505  *    o Device I/O is about to begin or has just finished.
2506  *    o Device is idling in between work.
2507  *
2508  * This information is also exported via sysfs to userspace.
2509  *
2510  * DRMS will sum the total requested load on the regulator and change
2511  * to the most efficient operating mode if platform constraints allow.
2512  *
2513  * Returns the new regulator mode or error.
2514  */
2515 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2516 {
2517         struct regulator_dev *rdev = regulator->rdev;
2518         struct regulator *consumer;
2519         int ret, output_uV, input_uV, total_uA_load = 0;
2520         unsigned int mode;
2521
2522         mutex_lock(&rdev->mutex);
2523
2524         /*
2525          * first check to see if we can set modes at all, otherwise just
2526          * tell the consumer everything is OK.
2527          */
2528         regulator->uA_load = uA_load;
2529         ret = regulator_check_drms(rdev);
2530         if (ret < 0) {
2531                 ret = 0;
2532                 goto out;
2533         }
2534
2535         if (!rdev->desc->ops->get_optimum_mode)
2536                 goto out;
2537
2538         /*
2539          * we can actually do this so any errors are indicators of
2540          * potential real failure.
2541          */
2542         ret = -EINVAL;
2543
2544         if (!rdev->desc->ops->set_mode)
2545                 goto out;
2546
2547         /* get output voltage */
2548         output_uV = _regulator_get_voltage(rdev);
2549         if (output_uV <= 0) {
2550                 rdev_err(rdev, "invalid output voltage found\n");
2551                 goto out;
2552         }
2553
2554         /* get input voltage */
2555         input_uV = 0;
2556         if (rdev->supply)
2557                 input_uV = regulator_get_voltage(rdev->supply);
2558         if (input_uV <= 0)
2559                 input_uV = rdev->constraints->input_uV;
2560         if (input_uV <= 0) {
2561                 rdev_err(rdev, "invalid input voltage found\n");
2562                 goto out;
2563         }
2564
2565         /* calc total requested load for this regulator */
2566         list_for_each_entry(consumer, &rdev->consumer_list, list)
2567                 total_uA_load += consumer->uA_load;
2568
2569         mode = rdev->desc->ops->get_optimum_mode(rdev,
2570                                                  input_uV, output_uV,
2571                                                  total_uA_load);
2572         ret = regulator_mode_constrain(rdev, &mode);
2573         if (ret < 0) {
2574                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2575                          total_uA_load, input_uV, output_uV);
2576                 goto out;
2577         }
2578
2579         ret = rdev->desc->ops->set_mode(rdev, mode);
2580         if (ret < 0) {
2581                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2582                 goto out;
2583         }
2584         ret = mode;
2585 out:
2586         mutex_unlock(&rdev->mutex);
2587         return ret;
2588 }
2589 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2590
2591 /**
2592  * regulator_register_notifier - register regulator event notifier
2593  * @regulator: regulator source
2594  * @nb: notifier block
2595  *
2596  * Register notifier block to receive regulator events.
2597  */
2598 int regulator_register_notifier(struct regulator *regulator,
2599                               struct notifier_block *nb)
2600 {
2601         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2602                                                 nb);
2603 }
2604 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2605
2606 /**
2607  * regulator_unregister_notifier - unregister regulator event notifier
2608  * @regulator: regulator source
2609  * @nb: notifier block
2610  *
2611  * Unregister regulator event notifier block.
2612  */
2613 int regulator_unregister_notifier(struct regulator *regulator,
2614                                 struct notifier_block *nb)
2615 {
2616         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2617                                                   nb);
2618 }
2619 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2620
2621 /* notify regulator consumers and downstream regulator consumers.
2622  * Note mutex must be held by caller.
2623  */
2624 static void _notifier_call_chain(struct regulator_dev *rdev,
2625                                   unsigned long event, void *data)
2626 {
2627         /* call rdev chain first */
2628         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2629 }
2630
2631 /**
2632  * regulator_bulk_get - get multiple regulator consumers
2633  *
2634  * @dev:           Device to supply
2635  * @num_consumers: Number of consumers to register
2636  * @consumers:     Configuration of consumers; clients are stored here.
2637  *
2638  * @return 0 on success, an errno on failure.
2639  *
2640  * This helper function allows drivers to get several regulator
2641  * consumers in one operation.  If any of the regulators cannot be
2642  * acquired then any regulators that were allocated will be freed
2643  * before returning to the caller.
2644  */
2645 int regulator_bulk_get(struct device *dev, int num_consumers,
2646                        struct regulator_bulk_data *consumers)
2647 {
2648         int i;
2649         int ret;
2650
2651         for (i = 0; i < num_consumers; i++)
2652                 consumers[i].consumer = NULL;
2653
2654         for (i = 0; i < num_consumers; i++) {
2655                 consumers[i].consumer = regulator_get(dev,
2656                                                       consumers[i].supply);
2657                 if (IS_ERR(consumers[i].consumer)) {
2658                         ret = PTR_ERR(consumers[i].consumer);
2659                         dev_err(dev, "Failed to get supply '%s': %d\n",
2660                                 consumers[i].supply, ret);
2661                         consumers[i].consumer = NULL;
2662                         goto err;
2663                 }
2664         }
2665
2666         return 0;
2667
2668 err:
2669         while (--i >= 0)
2670                 regulator_put(consumers[i].consumer);
2671
2672         return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2675
2676 /**
2677  * devm_regulator_bulk_get - managed get multiple regulator consumers
2678  *
2679  * @dev:           Device to supply
2680  * @num_consumers: Number of consumers to register
2681  * @consumers:     Configuration of consumers; clients are stored here.
2682  *
2683  * @return 0 on success, an errno on failure.
2684  *
2685  * This helper function allows drivers to get several regulator
2686  * consumers in one operation with management, the regulators will
2687  * automatically be freed when the device is unbound.  If any of the
2688  * regulators cannot be acquired then any regulators that were
2689  * allocated will be freed before returning to the caller.
2690  */
2691 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2692                             struct regulator_bulk_data *consumers)
2693 {
2694         int i;
2695         int ret;
2696
2697         for (i = 0; i < num_consumers; i++)
2698                 consumers[i].consumer = NULL;
2699
2700         for (i = 0; i < num_consumers; i++) {
2701                 consumers[i].consumer = devm_regulator_get(dev,
2702                                                            consumers[i].supply);
2703                 if (IS_ERR(consumers[i].consumer)) {
2704                         ret = PTR_ERR(consumers[i].consumer);
2705                         dev_err(dev, "Failed to get supply '%s': %d\n",
2706                                 consumers[i].supply, ret);
2707                         consumers[i].consumer = NULL;
2708                         goto err;
2709                 }
2710         }
2711
2712         return 0;
2713
2714 err:
2715         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2716                 devm_regulator_put(consumers[i].consumer);
2717
2718         return ret;
2719 }
2720 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2721
2722 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2723 {
2724         struct regulator_bulk_data *bulk = data;
2725
2726         bulk->ret = regulator_enable(bulk->consumer);
2727 }
2728
2729 /**
2730  * regulator_bulk_enable - enable multiple regulator consumers
2731  *
2732  * @num_consumers: Number of consumers
2733  * @consumers:     Consumer data; clients are stored here.
2734  * @return         0 on success, an errno on failure
2735  *
2736  * This convenience API allows consumers to enable multiple regulator
2737  * clients in a single API call.  If any consumers cannot be enabled
2738  * then any others that were enabled will be disabled again prior to
2739  * return.
2740  */
2741 int regulator_bulk_enable(int num_consumers,
2742                           struct regulator_bulk_data *consumers)
2743 {
2744         LIST_HEAD(async_domain);
2745         int i;
2746         int ret = 0;
2747
2748         for (i = 0; i < num_consumers; i++) {
2749                 if (consumers[i].consumer->always_on)
2750                         consumers[i].ret = 0;
2751                 else
2752                         async_schedule_domain(regulator_bulk_enable_async,
2753                                               &consumers[i], &async_domain);
2754         }
2755
2756         async_synchronize_full_domain(&async_domain);
2757
2758         /* If any consumer failed we need to unwind any that succeeded */
2759         for (i = 0; i < num_consumers; i++) {
2760                 if (consumers[i].ret != 0) {
2761                         ret = consumers[i].ret;
2762                         goto err;
2763                 }
2764         }
2765
2766         return 0;
2767
2768 err:
2769         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2770         while (--i >= 0)
2771                 regulator_disable(consumers[i].consumer);
2772
2773         return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2776
2777 /**
2778  * regulator_bulk_disable - disable multiple regulator consumers
2779  *
2780  * @num_consumers: Number of consumers
2781  * @consumers:     Consumer data; clients are stored here.
2782  * @return         0 on success, an errno on failure
2783  *
2784  * This convenience API allows consumers to disable multiple regulator
2785  * clients in a single API call.  If any consumers cannot be disabled
2786  * then any others that were disabled will be enabled again prior to
2787  * return.
2788  */
2789 int regulator_bulk_disable(int num_consumers,
2790                            struct regulator_bulk_data *consumers)
2791 {
2792         int i;
2793         int ret, r;
2794
2795         for (i = num_consumers - 1; i >= 0; --i) {
2796                 ret = regulator_disable(consumers[i].consumer);
2797                 if (ret != 0)
2798                         goto err;
2799         }
2800
2801         return 0;
2802
2803 err:
2804         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2805         for (++i; i < num_consumers; ++i) {
2806                 r = regulator_enable(consumers[i].consumer);
2807                 if (r != 0)
2808                         pr_err("Failed to reename %s: %d\n",
2809                                consumers[i].supply, r);
2810         }
2811
2812         return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2815
2816 /**
2817  * regulator_bulk_force_disable - force disable multiple regulator consumers
2818  *
2819  * @num_consumers: Number of consumers
2820  * @consumers:     Consumer data; clients are stored here.
2821  * @return         0 on success, an errno on failure
2822  *
2823  * This convenience API allows consumers to forcibly disable multiple regulator
2824  * clients in a single API call.
2825  * NOTE: This should be used for situations when device damage will
2826  * likely occur if the regulators are not disabled (e.g. over temp).
2827  * Although regulator_force_disable function call for some consumers can
2828  * return error numbers, the function is called for all consumers.
2829  */
2830 int regulator_bulk_force_disable(int num_consumers,
2831                            struct regulator_bulk_data *consumers)
2832 {
2833         int i;
2834         int ret;
2835
2836         for (i = 0; i < num_consumers; i++)
2837                 consumers[i].ret =
2838                             regulator_force_disable(consumers[i].consumer);
2839
2840         for (i = 0; i < num_consumers; i++) {
2841                 if (consumers[i].ret != 0) {
2842                         ret = consumers[i].ret;
2843                         goto out;
2844                 }
2845         }
2846
2847         return 0;
2848 out:
2849         return ret;
2850 }
2851 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2852
2853 /**
2854  * regulator_bulk_free - free multiple regulator consumers
2855  *
2856  * @num_consumers: Number of consumers
2857  * @consumers:     Consumer data; clients are stored here.
2858  *
2859  * This convenience API allows consumers to free multiple regulator
2860  * clients in a single API call.
2861  */
2862 void regulator_bulk_free(int num_consumers,
2863                          struct regulator_bulk_data *consumers)
2864 {
2865         int i;
2866
2867         for (i = 0; i < num_consumers; i++) {
2868                 regulator_put(consumers[i].consumer);
2869                 consumers[i].consumer = NULL;
2870         }
2871 }
2872 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2873
2874 /**
2875  * regulator_notifier_call_chain - call regulator event notifier
2876  * @rdev: regulator source
2877  * @event: notifier block
2878  * @data: callback-specific data.
2879  *
2880  * Called by regulator drivers to notify clients a regulator event has
2881  * occurred. We also notify regulator clients downstream.
2882  * Note lock must be held by caller.
2883  */
2884 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2885                                   unsigned long event, void *data)
2886 {
2887         _notifier_call_chain(rdev, event, data);
2888         return NOTIFY_DONE;
2889
2890 }
2891 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2892
2893 /**
2894  * regulator_mode_to_status - convert a regulator mode into a status
2895  *
2896  * @mode: Mode to convert
2897  *
2898  * Convert a regulator mode into a status.
2899  */
2900 int regulator_mode_to_status(unsigned int mode)
2901 {
2902         switch (mode) {
2903         case REGULATOR_MODE_FAST:
2904                 return REGULATOR_STATUS_FAST;
2905         case REGULATOR_MODE_NORMAL:
2906                 return REGULATOR_STATUS_NORMAL;
2907         case REGULATOR_MODE_IDLE:
2908                 return REGULATOR_STATUS_IDLE;
2909         case REGULATOR_STATUS_STANDBY:
2910                 return REGULATOR_STATUS_STANDBY;
2911         default:
2912                 return 0;
2913         }
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2916
2917 /*
2918  * To avoid cluttering sysfs (and memory) with useless state, only
2919  * create attributes that can be meaningfully displayed.
2920  */
2921 static int add_regulator_attributes(struct regulator_dev *rdev)
2922 {
2923         struct device           *dev = &rdev->dev;
2924         struct regulator_ops    *ops = rdev->desc->ops;
2925         int                     status = 0;
2926
2927         /* some attributes need specific methods to be displayed */
2928         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2929             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2930                 status = device_create_file(dev, &dev_attr_microvolts);
2931                 if (status < 0)
2932                         return status;
2933         }
2934         if (ops->get_current_limit) {
2935                 status = device_create_file(dev, &dev_attr_microamps);
2936                 if (status < 0)
2937                         return status;
2938         }
2939         if (ops->get_mode) {
2940                 status = device_create_file(dev, &dev_attr_opmode);
2941                 if (status < 0)
2942                         return status;
2943         }
2944         if (ops->is_enabled) {
2945                 status = device_create_file(dev, &dev_attr_state);
2946                 if (status < 0)
2947                         return status;
2948         }
2949         if (ops->get_status) {
2950                 status = device_create_file(dev, &dev_attr_status);
2951                 if (status < 0)
2952                         return status;
2953         }
2954
2955         /* some attributes are type-specific */
2956         if (rdev->desc->type == REGULATOR_CURRENT) {
2957                 status = device_create_file(dev, &dev_attr_requested_microamps);
2958                 if (status < 0)
2959                         return status;
2960         }
2961
2962         /* all the other attributes exist to support constraints;
2963          * don't show them if there are no constraints, or if the
2964          * relevant supporting methods are missing.
2965          */
2966         if (!rdev->constraints)
2967                 return status;
2968
2969         /* constraints need specific supporting methods */
2970         if (ops->set_voltage || ops->set_voltage_sel) {
2971                 status = device_create_file(dev, &dev_attr_min_microvolts);
2972                 if (status < 0)
2973                         return status;
2974                 status = device_create_file(dev, &dev_attr_max_microvolts);
2975                 if (status < 0)
2976                         return status;
2977         }
2978         if (ops->set_current_limit) {
2979                 status = device_create_file(dev, &dev_attr_min_microamps);
2980                 if (status < 0)
2981                         return status;
2982                 status = device_create_file(dev, &dev_attr_max_microamps);
2983                 if (status < 0)
2984                         return status;
2985         }
2986
2987         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2988         if (status < 0)
2989                 return status;
2990         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2991         if (status < 0)
2992                 return status;
2993         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2994         if (status < 0)
2995                 return status;
2996
2997         if (ops->set_suspend_voltage) {
2998                 status = device_create_file(dev,
2999                                 &dev_attr_suspend_standby_microvolts);
3000                 if (status < 0)
3001                         return status;
3002                 status = device_create_file(dev,
3003                                 &dev_attr_suspend_mem_microvolts);
3004                 if (status < 0)
3005                         return status;
3006                 status = device_create_file(dev,
3007                                 &dev_attr_suspend_disk_microvolts);
3008                 if (status < 0)
3009                         return status;
3010         }
3011
3012         if (ops->set_suspend_mode) {
3013                 status = device_create_file(dev,
3014                                 &dev_attr_suspend_standby_mode);
3015                 if (status < 0)
3016                         return status;
3017                 status = device_create_file(dev,
3018                                 &dev_attr_suspend_mem_mode);
3019                 if (status < 0)
3020                         return status;
3021                 status = device_create_file(dev,
3022                                 &dev_attr_suspend_disk_mode);
3023                 if (status < 0)
3024                         return status;
3025         }
3026
3027         return status;
3028 }
3029
3030 static void rdev_init_debugfs(struct regulator_dev *rdev)
3031 {
3032         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3033         if (!rdev->debugfs) {
3034                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3035                 return;
3036         }
3037
3038         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3039                            &rdev->use_count);
3040         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3041                            &rdev->open_count);
3042 }
3043
3044 /**
3045  * regulator_register - register regulator
3046  * @regulator_desc: regulator to register
3047  * @config: runtime configuration for regulator
3048  *
3049  * Called by regulator drivers to register a regulator.
3050  * Returns 0 on success.
3051  */
3052 struct regulator_dev *
3053 regulator_register(const struct regulator_desc *regulator_desc,
3054                    const struct regulator_config *config)
3055 {
3056         const struct regulation_constraints *constraints = NULL;
3057         const struct regulator_init_data *init_data;
3058         static atomic_t regulator_no = ATOMIC_INIT(0);
3059         struct regulator_dev *rdev;
3060         struct device *dev;
3061         int ret, i;
3062         const char *supply = NULL;
3063
3064         if (regulator_desc == NULL || config == NULL)
3065                 return ERR_PTR(-EINVAL);
3066
3067         dev = config->dev;
3068         WARN_ON(!dev);
3069
3070         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3071                 return ERR_PTR(-EINVAL);
3072
3073         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3074             regulator_desc->type != REGULATOR_CURRENT)
3075                 return ERR_PTR(-EINVAL);
3076
3077         /* Only one of each should be implemented */
3078         WARN_ON(regulator_desc->ops->get_voltage &&
3079                 regulator_desc->ops->get_voltage_sel);
3080         WARN_ON(regulator_desc->ops->set_voltage &&
3081                 regulator_desc->ops->set_voltage_sel);
3082
3083         /* If we're using selectors we must implement list_voltage. */
3084         if (regulator_desc->ops->get_voltage_sel &&
3085             !regulator_desc->ops->list_voltage) {
3086                 return ERR_PTR(-EINVAL);
3087         }
3088         if (regulator_desc->ops->set_voltage_sel &&
3089             !regulator_desc->ops->list_voltage) {
3090                 return ERR_PTR(-EINVAL);
3091         }
3092
3093         init_data = config->init_data;
3094
3095         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3096         if (rdev == NULL)
3097                 return ERR_PTR(-ENOMEM);
3098
3099         mutex_lock(&regulator_list_mutex);
3100
3101         mutex_init(&rdev->mutex);
3102         rdev->reg_data = config->driver_data;
3103         rdev->owner = regulator_desc->owner;
3104         rdev->desc = regulator_desc;
3105         rdev->regmap = config->regmap;
3106         INIT_LIST_HEAD(&rdev->consumer_list);
3107         INIT_LIST_HEAD(&rdev->list);
3108         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3109         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3110
3111         /* preform any regulator specific init */
3112         if (init_data && init_data->regulator_init) {
3113                 ret = init_data->regulator_init(rdev->reg_data);
3114                 if (ret < 0)
3115                         goto clean;
3116         }
3117
3118         /* register with sysfs */
3119         rdev->dev.class = &regulator_class;
3120         rdev->dev.of_node = config->of_node;
3121         rdev->dev.parent = dev;
3122         dev_set_name(&rdev->dev, "regulator.%d",
3123                      atomic_inc_return(&regulator_no) - 1);
3124         ret = device_register(&rdev->dev);
3125         if (ret != 0) {
3126                 put_device(&rdev->dev);
3127                 goto clean;
3128         }
3129
3130         dev_set_drvdata(&rdev->dev, rdev);
3131
3132         /* set regulator constraints */
3133         if (init_data)
3134                 constraints = &init_data->constraints;
3135
3136         ret = set_machine_constraints(rdev, constraints);
3137         if (ret < 0)
3138                 goto scrub;
3139
3140         /* add attributes supported by this regulator */
3141         ret = add_regulator_attributes(rdev);
3142         if (ret < 0)
3143                 goto scrub;
3144
3145         if (init_data && init_data->supply_regulator)
3146                 supply = init_data->supply_regulator;
3147         else if (regulator_desc->supply_name)
3148                 supply = regulator_desc->supply_name;
3149
3150         if (supply) {
3151                 struct regulator_dev *r;
3152
3153                 r = regulator_dev_lookup(dev, supply, &ret);
3154
3155                 if (!r) {
3156                         dev_err(dev, "Failed to find supply %s\n", supply);
3157                         ret = -EPROBE_DEFER;
3158                         goto scrub;
3159                 }
3160
3161                 ret = set_supply(rdev, r);
3162                 if (ret < 0)
3163                         goto scrub;
3164
3165                 /* Enable supply if rail is enabled */
3166                 if (_regulator_is_enabled(rdev)) {
3167                         ret = regulator_enable(rdev->supply);
3168                         if (ret < 0)
3169                                 goto scrub;
3170                 }
3171         }
3172
3173         /* add consumers devices */
3174         if (init_data) {
3175                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3176                         ret = set_consumer_device_supply(rdev,
3177                                 init_data->consumer_supplies[i].dev_name,
3178                                 init_data->consumer_supplies[i].supply);
3179                         if (ret < 0) {
3180                                 dev_err(dev, "Failed to set supply %s\n",
3181                                         init_data->consumer_supplies[i].supply);
3182                                 goto unset_supplies;
3183                         }
3184                 }
3185         }
3186
3187         list_add(&rdev->list, &regulator_list);
3188
3189         rdev_init_debugfs(rdev);
3190 out:
3191         mutex_unlock(&regulator_list_mutex);
3192         return rdev;
3193
3194 unset_supplies:
3195         unset_regulator_supplies(rdev);
3196
3197 scrub:
3198         if (rdev->supply)
3199                 regulator_put(rdev->supply);
3200         kfree(rdev->constraints);
3201         device_unregister(&rdev->dev);
3202         /* device core frees rdev */
3203         rdev = ERR_PTR(ret);
3204         goto out;
3205
3206 clean:
3207         kfree(rdev);
3208         rdev = ERR_PTR(ret);
3209         goto out;
3210 }
3211 EXPORT_SYMBOL_GPL(regulator_register);
3212
3213 /**
3214  * regulator_unregister - unregister regulator
3215  * @rdev: regulator to unregister
3216  *
3217  * Called by regulator drivers to unregister a regulator.
3218  */
3219 void regulator_unregister(struct regulator_dev *rdev)
3220 {
3221         if (rdev == NULL)
3222                 return;
3223
3224         if (rdev->supply)
3225                 regulator_put(rdev->supply);
3226         mutex_lock(&regulator_list_mutex);
3227         debugfs_remove_recursive(rdev->debugfs);
3228         flush_work_sync(&rdev->disable_work.work);
3229         WARN_ON(rdev->open_count);
3230         unset_regulator_supplies(rdev);
3231         list_del(&rdev->list);
3232         kfree(rdev->constraints);
3233         device_unregister(&rdev->dev);
3234         mutex_unlock(&regulator_list_mutex);
3235 }
3236 EXPORT_SYMBOL_GPL(regulator_unregister);
3237
3238 /**
3239  * regulator_suspend_prepare - prepare regulators for system wide suspend
3240  * @state: system suspend state
3241  *
3242  * Configure each regulator with it's suspend operating parameters for state.
3243  * This will usually be called by machine suspend code prior to supending.
3244  */
3245 int regulator_suspend_prepare(suspend_state_t state)
3246 {
3247         struct regulator_dev *rdev;
3248         int ret = 0;
3249
3250         /* ON is handled by regulator active state */
3251         if (state == PM_SUSPEND_ON)
3252                 return -EINVAL;
3253
3254         mutex_lock(&regulator_list_mutex);
3255         list_for_each_entry(rdev, &regulator_list, list) {
3256
3257                 mutex_lock(&rdev->mutex);
3258                 ret = suspend_prepare(rdev, state);
3259                 mutex_unlock(&rdev->mutex);
3260
3261                 if (ret < 0) {
3262                         rdev_err(rdev, "failed to prepare\n");
3263                         goto out;
3264                 }
3265         }
3266 out:
3267         mutex_unlock(&regulator_list_mutex);
3268         return ret;
3269 }
3270 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3271
3272 /**
3273  * regulator_suspend_finish - resume regulators from system wide suspend
3274  *
3275  * Turn on regulators that might be turned off by regulator_suspend_prepare
3276  * and that should be turned on according to the regulators properties.
3277  */
3278 int regulator_suspend_finish(void)
3279 {
3280         struct regulator_dev *rdev;
3281         int ret = 0, error;
3282
3283         mutex_lock(&regulator_list_mutex);
3284         list_for_each_entry(rdev, &regulator_list, list) {
3285                 struct regulator_ops *ops = rdev->desc->ops;
3286
3287                 mutex_lock(&rdev->mutex);
3288                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3289                                 ops->enable) {
3290                         error = ops->enable(rdev);
3291                         if (error)
3292                                 ret = error;
3293                 } else {
3294                         if (!has_full_constraints)
3295                                 goto unlock;
3296                         if (!ops->disable)
3297                                 goto unlock;
3298                         if (!_regulator_is_enabled(rdev))
3299                                 goto unlock;
3300
3301                         error = ops->disable(rdev);
3302                         if (error)
3303                                 ret = error;
3304                 }
3305 unlock:
3306                 mutex_unlock(&rdev->mutex);
3307         }
3308         mutex_unlock(&regulator_list_mutex);
3309         return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3312
3313 /**
3314  * regulator_has_full_constraints - the system has fully specified constraints
3315  *
3316  * Calling this function will cause the regulator API to disable all
3317  * regulators which have a zero use count and don't have an always_on
3318  * constraint in a late_initcall.
3319  *
3320  * The intention is that this will become the default behaviour in a
3321  * future kernel release so users are encouraged to use this facility
3322  * now.
3323  */
3324 void regulator_has_full_constraints(void)
3325 {
3326         has_full_constraints = 1;
3327 }
3328 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3329
3330 /**
3331  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3332  *
3333  * Calling this function will cause the regulator API to provide a
3334  * dummy regulator to consumers if no physical regulator is found,
3335  * allowing most consumers to proceed as though a regulator were
3336  * configured.  This allows systems such as those with software
3337  * controllable regulators for the CPU core only to be brought up more
3338  * readily.
3339  */
3340 void regulator_use_dummy_regulator(void)
3341 {
3342         board_wants_dummy_regulator = true;
3343 }
3344 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3345
3346 /**
3347  * rdev_get_drvdata - get rdev regulator driver data
3348  * @rdev: regulator
3349  *
3350  * Get rdev regulator driver private data. This call can be used in the
3351  * regulator driver context.
3352  */
3353 void *rdev_get_drvdata(struct regulator_dev *rdev)
3354 {
3355         return rdev->reg_data;
3356 }
3357 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3358
3359 /**
3360  * regulator_get_drvdata - get regulator driver data
3361  * @regulator: regulator
3362  *
3363  * Get regulator driver private data. This call can be used in the consumer
3364  * driver context when non API regulator specific functions need to be called.
3365  */
3366 void *regulator_get_drvdata(struct regulator *regulator)
3367 {
3368         return regulator->rdev->reg_data;
3369 }
3370 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3371
3372 /**
3373  * regulator_set_drvdata - set regulator driver data
3374  * @regulator: regulator
3375  * @data: data
3376  */
3377 void regulator_set_drvdata(struct regulator *regulator, void *data)
3378 {
3379         regulator->rdev->reg_data = data;
3380 }
3381 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3382
3383 /**
3384  * regulator_get_id - get regulator ID
3385  * @rdev: regulator
3386  */
3387 int rdev_get_id(struct regulator_dev *rdev)
3388 {
3389         return rdev->desc->id;
3390 }
3391 EXPORT_SYMBOL_GPL(rdev_get_id);
3392
3393 struct device *rdev_get_dev(struct regulator_dev *rdev)
3394 {
3395         return &rdev->dev;
3396 }
3397 EXPORT_SYMBOL_GPL(rdev_get_dev);
3398
3399 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3400 {
3401         return reg_init_data->driver_data;
3402 }
3403 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3404
3405 #ifdef CONFIG_DEBUG_FS
3406 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3407                                     size_t count, loff_t *ppos)
3408 {
3409         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3410         ssize_t len, ret = 0;
3411         struct regulator_map *map;
3412
3413         if (!buf)
3414                 return -ENOMEM;
3415
3416         list_for_each_entry(map, &regulator_map_list, list) {
3417                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3418                                "%s -> %s.%s\n",
3419                                rdev_get_name(map->regulator), map->dev_name,
3420                                map->supply);
3421                 if (len >= 0)
3422                         ret += len;
3423                 if (ret > PAGE_SIZE) {
3424                         ret = PAGE_SIZE;
3425                         break;
3426                 }
3427         }
3428
3429         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3430
3431         kfree(buf);
3432
3433         return ret;
3434 }
3435 #endif
3436
3437 static const struct file_operations supply_map_fops = {
3438 #ifdef CONFIG_DEBUG_FS
3439         .read = supply_map_read_file,
3440         .llseek = default_llseek,
3441 #endif
3442 };
3443
3444 static int __init regulator_init(void)
3445 {
3446         int ret;
3447
3448         ret = class_register(&regulator_class);
3449
3450         debugfs_root = debugfs_create_dir("regulator", NULL);
3451         if (!debugfs_root)
3452                 pr_warn("regulator: Failed to create debugfs directory\n");
3453
3454         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3455                             &supply_map_fops);
3456
3457         regulator_dummy_init();
3458
3459         return ret;
3460 }
3461
3462 /* init early to allow our consumers to complete system booting */
3463 core_initcall(regulator_init);
3464
3465 static int __init regulator_init_complete(void)
3466 {
3467         struct regulator_dev *rdev;
3468         struct regulator_ops *ops;
3469         struct regulation_constraints *c;
3470         int enabled, ret;
3471
3472         mutex_lock(&regulator_list_mutex);
3473
3474         /* If we have a full configuration then disable any regulators
3475          * which are not in use or always_on.  This will become the
3476          * default behaviour in the future.
3477          */
3478         list_for_each_entry(rdev, &regulator_list, list) {
3479                 ops = rdev->desc->ops;
3480                 c = rdev->constraints;
3481
3482                 if (!ops->disable || (c && c->always_on))
3483                         continue;
3484
3485                 mutex_lock(&rdev->mutex);
3486
3487                 if (rdev->use_count)
3488                         goto unlock;
3489
3490                 /* If we can't read the status assume it's on. */
3491                 if (ops->is_enabled)
3492                         enabled = ops->is_enabled(rdev);
3493                 else
3494                         enabled = 1;
3495
3496                 if (!enabled)
3497                         goto unlock;
3498
3499                 if (has_full_constraints) {
3500                         /* We log since this may kill the system if it
3501                          * goes wrong. */
3502                         rdev_info(rdev, "disabling\n");
3503                         ret = ops->disable(rdev);
3504                         if (ret != 0) {
3505                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3506                         }
3507                 } else {
3508                         /* The intention is that in future we will
3509                          * assume that full constraints are provided
3510                          * so warn even if we aren't going to do
3511                          * anything here.
3512                          */
3513                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3514                 }
3515
3516 unlock:
3517                 mutex_unlock(&rdev->mutex);
3518         }
3519
3520         mutex_unlock(&regulator_list_mutex);
3521
3522         return 0;
3523 }
3524 late_initcall(regulator_init_complete);