intel-iommu: Ensure that PTE writes are 64-bit atomic, even on i386
[pandora-kernel.git] / drivers / pci / intel-iommu.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  * Author: Fenghua Yu <fenghua.yu@intel.com>
22  */
23
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
42 #include "pci.h"
43
44 #define ROOT_SIZE               VTD_PAGE_SIZE
45 #define CONTEXT_SIZE            VTD_PAGE_SIZE
46
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
49
50 #define IOAPIC_RANGE_START      (0xfee00000)
51 #define IOAPIC_RANGE_END        (0xfeefffff)
52 #define IOVA_START_ADDR         (0x1000)
53
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
55
56 #define MAX_AGAW_WIDTH 64
57
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
59 #define DOMAIN_MAX_PFN(gaw)  ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
60
61 #define IOVA_PFN(addr)          ((addr) >> PAGE_SHIFT)
62 #define DMA_32BIT_PFN           IOVA_PFN(DMA_BIT_MASK(32))
63 #define DMA_64BIT_PFN           IOVA_PFN(DMA_BIT_MASK(64))
64
65
66 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
67    are never going to work. */
68 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
69 {
70         return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
71 }
72
73 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
74 {
75         return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
76 }
77 static inline unsigned long page_to_dma_pfn(struct page *pg)
78 {
79         return mm_to_dma_pfn(page_to_pfn(pg));
80 }
81 static inline unsigned long virt_to_dma_pfn(void *p)
82 {
83         return page_to_dma_pfn(virt_to_page(p));
84 }
85
86 /* global iommu list, set NULL for ignored DMAR units */
87 static struct intel_iommu **g_iommus;
88
89 static int rwbf_quirk;
90
91 /*
92  * 0: Present
93  * 1-11: Reserved
94  * 12-63: Context Ptr (12 - (haw-1))
95  * 64-127: Reserved
96  */
97 struct root_entry {
98         u64     val;
99         u64     rsvd1;
100 };
101 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
102 static inline bool root_present(struct root_entry *root)
103 {
104         return (root->val & 1);
105 }
106 static inline void set_root_present(struct root_entry *root)
107 {
108         root->val |= 1;
109 }
110 static inline void set_root_value(struct root_entry *root, unsigned long value)
111 {
112         root->val |= value & VTD_PAGE_MASK;
113 }
114
115 static inline struct context_entry *
116 get_context_addr_from_root(struct root_entry *root)
117 {
118         return (struct context_entry *)
119                 (root_present(root)?phys_to_virt(
120                 root->val & VTD_PAGE_MASK) :
121                 NULL);
122 }
123
124 /*
125  * low 64 bits:
126  * 0: present
127  * 1: fault processing disable
128  * 2-3: translation type
129  * 12-63: address space root
130  * high 64 bits:
131  * 0-2: address width
132  * 3-6: aval
133  * 8-23: domain id
134  */
135 struct context_entry {
136         u64 lo;
137         u64 hi;
138 };
139
140 static inline bool context_present(struct context_entry *context)
141 {
142         return (context->lo & 1);
143 }
144 static inline void context_set_present(struct context_entry *context)
145 {
146         context->lo |= 1;
147 }
148
149 static inline void context_set_fault_enable(struct context_entry *context)
150 {
151         context->lo &= (((u64)-1) << 2) | 1;
152 }
153
154 static inline void context_set_translation_type(struct context_entry *context,
155                                                 unsigned long value)
156 {
157         context->lo &= (((u64)-1) << 4) | 3;
158         context->lo |= (value & 3) << 2;
159 }
160
161 static inline void context_set_address_root(struct context_entry *context,
162                                             unsigned long value)
163 {
164         context->lo |= value & VTD_PAGE_MASK;
165 }
166
167 static inline void context_set_address_width(struct context_entry *context,
168                                              unsigned long value)
169 {
170         context->hi |= value & 7;
171 }
172
173 static inline void context_set_domain_id(struct context_entry *context,
174                                          unsigned long value)
175 {
176         context->hi |= (value & ((1 << 16) - 1)) << 8;
177 }
178
179 static inline void context_clear_entry(struct context_entry *context)
180 {
181         context->lo = 0;
182         context->hi = 0;
183 }
184
185 /*
186  * 0: readable
187  * 1: writable
188  * 2-6: reserved
189  * 7: super page
190  * 8-10: available
191  * 11: snoop behavior
192  * 12-63: Host physcial address
193  */
194 struct dma_pte {
195         u64 val;
196 };
197
198 static inline void dma_clear_pte(struct dma_pte *pte)
199 {
200         pte->val = 0;
201 }
202
203 static inline void dma_set_pte_readable(struct dma_pte *pte)
204 {
205         pte->val |= DMA_PTE_READ;
206 }
207
208 static inline void dma_set_pte_writable(struct dma_pte *pte)
209 {
210         pte->val |= DMA_PTE_WRITE;
211 }
212
213 static inline void dma_set_pte_snp(struct dma_pte *pte)
214 {
215         pte->val |= DMA_PTE_SNP;
216 }
217
218 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
219 {
220         pte->val = (pte->val & ~3) | (prot & 3);
221 }
222
223 static inline u64 dma_pte_addr(struct dma_pte *pte)
224 {
225 #ifdef CONFIG_64BIT
226         return pte->val & VTD_PAGE_MASK;
227 #else
228         /* Must have a full atomic 64-bit read */
229         return  __cmpxchg64(pte, 0ULL, 0ULL) & VTD_PAGE_MASK;
230 #endif
231 }
232
233 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
234 {
235         pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
236 }
237
238 static inline bool dma_pte_present(struct dma_pte *pte)
239 {
240         return (pte->val & 3) != 0;
241 }
242
243 /*
244  * This domain is a statically identity mapping domain.
245  *      1. This domain creats a static 1:1 mapping to all usable memory.
246  *      2. It maps to each iommu if successful.
247  *      3. Each iommu mapps to this domain if successful.
248  */
249 struct dmar_domain *si_domain;
250
251 /* devices under the same p2p bridge are owned in one domain */
252 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
253
254 /* domain represents a virtual machine, more than one devices
255  * across iommus may be owned in one domain, e.g. kvm guest.
256  */
257 #define DOMAIN_FLAG_VIRTUAL_MACHINE     (1 << 1)
258
259 /* si_domain contains mulitple devices */
260 #define DOMAIN_FLAG_STATIC_IDENTITY     (1 << 2)
261
262 struct dmar_domain {
263         int     id;                     /* domain id */
264         unsigned long iommu_bmp;        /* bitmap of iommus this domain uses*/
265
266         struct list_head devices;       /* all devices' list */
267         struct iova_domain iovad;       /* iova's that belong to this domain */
268
269         struct dma_pte  *pgd;           /* virtual address */
270         spinlock_t      mapping_lock;   /* page table lock */
271         int             gaw;            /* max guest address width */
272
273         /* adjusted guest address width, 0 is level 2 30-bit */
274         int             agaw;
275
276         int             flags;          /* flags to find out type of domain */
277
278         int             iommu_coherency;/* indicate coherency of iommu access */
279         int             iommu_snooping; /* indicate snooping control feature*/
280         int             iommu_count;    /* reference count of iommu */
281         spinlock_t      iommu_lock;     /* protect iommu set in domain */
282         u64             max_addr;       /* maximum mapped address */
283 };
284
285 /* PCI domain-device relationship */
286 struct device_domain_info {
287         struct list_head link;  /* link to domain siblings */
288         struct list_head global; /* link to global list */
289         int segment;            /* PCI domain */
290         u8 bus;                 /* PCI bus number */
291         u8 devfn;               /* PCI devfn number */
292         struct pci_dev *dev; /* it's NULL for PCIE-to-PCI bridge */
293         struct intel_iommu *iommu; /* IOMMU used by this device */
294         struct dmar_domain *domain; /* pointer to domain */
295 };
296
297 static void flush_unmaps_timeout(unsigned long data);
298
299 DEFINE_TIMER(unmap_timer,  flush_unmaps_timeout, 0, 0);
300
301 #define HIGH_WATER_MARK 250
302 struct deferred_flush_tables {
303         int next;
304         struct iova *iova[HIGH_WATER_MARK];
305         struct dmar_domain *domain[HIGH_WATER_MARK];
306 };
307
308 static struct deferred_flush_tables *deferred_flush;
309
310 /* bitmap for indexing intel_iommus */
311 static int g_num_of_iommus;
312
313 static DEFINE_SPINLOCK(async_umap_flush_lock);
314 static LIST_HEAD(unmaps_to_do);
315
316 static int timer_on;
317 static long list_size;
318
319 static void domain_remove_dev_info(struct dmar_domain *domain);
320
321 #ifdef CONFIG_DMAR_DEFAULT_ON
322 int dmar_disabled = 0;
323 #else
324 int dmar_disabled = 1;
325 #endif /*CONFIG_DMAR_DEFAULT_ON*/
326
327 static int __initdata dmar_map_gfx = 1;
328 static int dmar_forcedac;
329 static int intel_iommu_strict;
330
331 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
332 static DEFINE_SPINLOCK(device_domain_lock);
333 static LIST_HEAD(device_domain_list);
334
335 static struct iommu_ops intel_iommu_ops;
336
337 static int __init intel_iommu_setup(char *str)
338 {
339         if (!str)
340                 return -EINVAL;
341         while (*str) {
342                 if (!strncmp(str, "on", 2)) {
343                         dmar_disabled = 0;
344                         printk(KERN_INFO "Intel-IOMMU: enabled\n");
345                 } else if (!strncmp(str, "off", 3)) {
346                         dmar_disabled = 1;
347                         printk(KERN_INFO "Intel-IOMMU: disabled\n");
348                 } else if (!strncmp(str, "igfx_off", 8)) {
349                         dmar_map_gfx = 0;
350                         printk(KERN_INFO
351                                 "Intel-IOMMU: disable GFX device mapping\n");
352                 } else if (!strncmp(str, "forcedac", 8)) {
353                         printk(KERN_INFO
354                                 "Intel-IOMMU: Forcing DAC for PCI devices\n");
355                         dmar_forcedac = 1;
356                 } else if (!strncmp(str, "strict", 6)) {
357                         printk(KERN_INFO
358                                 "Intel-IOMMU: disable batched IOTLB flush\n");
359                         intel_iommu_strict = 1;
360                 }
361
362                 str += strcspn(str, ",");
363                 while (*str == ',')
364                         str++;
365         }
366         return 0;
367 }
368 __setup("intel_iommu=", intel_iommu_setup);
369
370 static struct kmem_cache *iommu_domain_cache;
371 static struct kmem_cache *iommu_devinfo_cache;
372 static struct kmem_cache *iommu_iova_cache;
373
374 static inline void *iommu_kmem_cache_alloc(struct kmem_cache *cachep)
375 {
376         unsigned int flags;
377         void *vaddr;
378
379         /* trying to avoid low memory issues */
380         flags = current->flags & PF_MEMALLOC;
381         current->flags |= PF_MEMALLOC;
382         vaddr = kmem_cache_alloc(cachep, GFP_ATOMIC);
383         current->flags &= (~PF_MEMALLOC | flags);
384         return vaddr;
385 }
386
387
388 static inline void *alloc_pgtable_page(void)
389 {
390         unsigned int flags;
391         void *vaddr;
392
393         /* trying to avoid low memory issues */
394         flags = current->flags & PF_MEMALLOC;
395         current->flags |= PF_MEMALLOC;
396         vaddr = (void *)get_zeroed_page(GFP_ATOMIC);
397         current->flags &= (~PF_MEMALLOC | flags);
398         return vaddr;
399 }
400
401 static inline void free_pgtable_page(void *vaddr)
402 {
403         free_page((unsigned long)vaddr);
404 }
405
406 static inline void *alloc_domain_mem(void)
407 {
408         return iommu_kmem_cache_alloc(iommu_domain_cache);
409 }
410
411 static void free_domain_mem(void *vaddr)
412 {
413         kmem_cache_free(iommu_domain_cache, vaddr);
414 }
415
416 static inline void * alloc_devinfo_mem(void)
417 {
418         return iommu_kmem_cache_alloc(iommu_devinfo_cache);
419 }
420
421 static inline void free_devinfo_mem(void *vaddr)
422 {
423         kmem_cache_free(iommu_devinfo_cache, vaddr);
424 }
425
426 struct iova *alloc_iova_mem(void)
427 {
428         return iommu_kmem_cache_alloc(iommu_iova_cache);
429 }
430
431 void free_iova_mem(struct iova *iova)
432 {
433         kmem_cache_free(iommu_iova_cache, iova);
434 }
435
436
437 static inline int width_to_agaw(int width);
438
439 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
440 {
441         unsigned long sagaw;
442         int agaw = -1;
443
444         sagaw = cap_sagaw(iommu->cap);
445         for (agaw = width_to_agaw(max_gaw);
446              agaw >= 0; agaw--) {
447                 if (test_bit(agaw, &sagaw))
448                         break;
449         }
450
451         return agaw;
452 }
453
454 /*
455  * Calculate max SAGAW for each iommu.
456  */
457 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
458 {
459         return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
460 }
461
462 /*
463  * calculate agaw for each iommu.
464  * "SAGAW" may be different across iommus, use a default agaw, and
465  * get a supported less agaw for iommus that don't support the default agaw.
466  */
467 int iommu_calculate_agaw(struct intel_iommu *iommu)
468 {
469         return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
470 }
471
472 /* This functionin only returns single iommu in a domain */
473 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
474 {
475         int iommu_id;
476
477         /* si_domain and vm domain should not get here. */
478         BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
479         BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
480
481         iommu_id = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
482         if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
483                 return NULL;
484
485         return g_iommus[iommu_id];
486 }
487
488 static void domain_update_iommu_coherency(struct dmar_domain *domain)
489 {
490         int i;
491
492         domain->iommu_coherency = 1;
493
494         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
495         for (; i < g_num_of_iommus; ) {
496                 if (!ecap_coherent(g_iommus[i]->ecap)) {
497                         domain->iommu_coherency = 0;
498                         break;
499                 }
500                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
501         }
502 }
503
504 static void domain_update_iommu_snooping(struct dmar_domain *domain)
505 {
506         int i;
507
508         domain->iommu_snooping = 1;
509
510         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
511         for (; i < g_num_of_iommus; ) {
512                 if (!ecap_sc_support(g_iommus[i]->ecap)) {
513                         domain->iommu_snooping = 0;
514                         break;
515                 }
516                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
517         }
518 }
519
520 /* Some capabilities may be different across iommus */
521 static void domain_update_iommu_cap(struct dmar_domain *domain)
522 {
523         domain_update_iommu_coherency(domain);
524         domain_update_iommu_snooping(domain);
525 }
526
527 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
528 {
529         struct dmar_drhd_unit *drhd = NULL;
530         int i;
531
532         for_each_drhd_unit(drhd) {
533                 if (drhd->ignored)
534                         continue;
535                 if (segment != drhd->segment)
536                         continue;
537
538                 for (i = 0; i < drhd->devices_cnt; i++) {
539                         if (drhd->devices[i] &&
540                             drhd->devices[i]->bus->number == bus &&
541                             drhd->devices[i]->devfn == devfn)
542                                 return drhd->iommu;
543                         if (drhd->devices[i] &&
544                             drhd->devices[i]->subordinate &&
545                             drhd->devices[i]->subordinate->number <= bus &&
546                             drhd->devices[i]->subordinate->subordinate >= bus)
547                                 return drhd->iommu;
548                 }
549
550                 if (drhd->include_all)
551                         return drhd->iommu;
552         }
553
554         return NULL;
555 }
556
557 static void domain_flush_cache(struct dmar_domain *domain,
558                                void *addr, int size)
559 {
560         if (!domain->iommu_coherency)
561                 clflush_cache_range(addr, size);
562 }
563
564 /* Gets context entry for a given bus and devfn */
565 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
566                 u8 bus, u8 devfn)
567 {
568         struct root_entry *root;
569         struct context_entry *context;
570         unsigned long phy_addr;
571         unsigned long flags;
572
573         spin_lock_irqsave(&iommu->lock, flags);
574         root = &iommu->root_entry[bus];
575         context = get_context_addr_from_root(root);
576         if (!context) {
577                 context = (struct context_entry *)alloc_pgtable_page();
578                 if (!context) {
579                         spin_unlock_irqrestore(&iommu->lock, flags);
580                         return NULL;
581                 }
582                 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
583                 phy_addr = virt_to_phys((void *)context);
584                 set_root_value(root, phy_addr);
585                 set_root_present(root);
586                 __iommu_flush_cache(iommu, root, sizeof(*root));
587         }
588         spin_unlock_irqrestore(&iommu->lock, flags);
589         return &context[devfn];
590 }
591
592 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
593 {
594         struct root_entry *root;
595         struct context_entry *context;
596         int ret;
597         unsigned long flags;
598
599         spin_lock_irqsave(&iommu->lock, flags);
600         root = &iommu->root_entry[bus];
601         context = get_context_addr_from_root(root);
602         if (!context) {
603                 ret = 0;
604                 goto out;
605         }
606         ret = context_present(&context[devfn]);
607 out:
608         spin_unlock_irqrestore(&iommu->lock, flags);
609         return ret;
610 }
611
612 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
613 {
614         struct root_entry *root;
615         struct context_entry *context;
616         unsigned long flags;
617
618         spin_lock_irqsave(&iommu->lock, flags);
619         root = &iommu->root_entry[bus];
620         context = get_context_addr_from_root(root);
621         if (context) {
622                 context_clear_entry(&context[devfn]);
623                 __iommu_flush_cache(iommu, &context[devfn], \
624                         sizeof(*context));
625         }
626         spin_unlock_irqrestore(&iommu->lock, flags);
627 }
628
629 static void free_context_table(struct intel_iommu *iommu)
630 {
631         struct root_entry *root;
632         int i;
633         unsigned long flags;
634         struct context_entry *context;
635
636         spin_lock_irqsave(&iommu->lock, flags);
637         if (!iommu->root_entry) {
638                 goto out;
639         }
640         for (i = 0; i < ROOT_ENTRY_NR; i++) {
641                 root = &iommu->root_entry[i];
642                 context = get_context_addr_from_root(root);
643                 if (context)
644                         free_pgtable_page(context);
645         }
646         free_pgtable_page(iommu->root_entry);
647         iommu->root_entry = NULL;
648 out:
649         spin_unlock_irqrestore(&iommu->lock, flags);
650 }
651
652 /* page table handling */
653 #define LEVEL_STRIDE            (9)
654 #define LEVEL_MASK              (((u64)1 << LEVEL_STRIDE) - 1)
655
656 static inline int agaw_to_level(int agaw)
657 {
658         return agaw + 2;
659 }
660
661 static inline int agaw_to_width(int agaw)
662 {
663         return 30 + agaw * LEVEL_STRIDE;
664
665 }
666
667 static inline int width_to_agaw(int width)
668 {
669         return (width - 30) / LEVEL_STRIDE;
670 }
671
672 static inline unsigned int level_to_offset_bits(int level)
673 {
674         return (level - 1) * LEVEL_STRIDE;
675 }
676
677 static inline int pfn_level_offset(unsigned long pfn, int level)
678 {
679         return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
680 }
681
682 static inline unsigned long level_mask(int level)
683 {
684         return -1UL << level_to_offset_bits(level);
685 }
686
687 static inline unsigned long level_size(int level)
688 {
689         return 1UL << level_to_offset_bits(level);
690 }
691
692 static inline unsigned long align_to_level(unsigned long pfn, int level)
693 {
694         return (pfn + level_size(level) - 1) & level_mask(level);
695 }
696
697 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
698                                       unsigned long pfn)
699 {
700         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
701         struct dma_pte *parent, *pte = NULL;
702         int level = agaw_to_level(domain->agaw);
703         int offset;
704         unsigned long flags;
705
706         BUG_ON(!domain->pgd);
707         BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
708         parent = domain->pgd;
709
710         spin_lock_irqsave(&domain->mapping_lock, flags);
711         while (level > 0) {
712                 void *tmp_page;
713
714                 offset = pfn_level_offset(pfn, level);
715                 pte = &parent[offset];
716                 if (level == 1)
717                         break;
718
719                 if (!dma_pte_present(pte)) {
720                         uint64_t pteval;
721
722                         tmp_page = alloc_pgtable_page();
723
724                         if (!tmp_page) {
725                                 spin_unlock_irqrestore(&domain->mapping_lock,
726                                         flags);
727                                 return NULL;
728                         }
729                         domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
730                         pteval = (virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
731                         if (cmpxchg64(&pte->val, 0ULL, pteval)) {
732                                 /* Someone else set it while we were thinking; use theirs. */
733                                 free_pgtable_page(tmp_page);
734                         } else {
735                                 dma_pte_addr(pte);
736                                 domain_flush_cache(domain, pte, sizeof(*pte));
737                         }
738                 }
739                 parent = phys_to_virt(dma_pte_addr(pte));
740                 level--;
741         }
742
743         spin_unlock_irqrestore(&domain->mapping_lock, flags);
744         return pte;
745 }
746
747 /* return address's pte at specific level */
748 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
749                                          unsigned long pfn,
750                                          int level)
751 {
752         struct dma_pte *parent, *pte = NULL;
753         int total = agaw_to_level(domain->agaw);
754         int offset;
755
756         parent = domain->pgd;
757         while (level <= total) {
758                 offset = pfn_level_offset(pfn, total);
759                 pte = &parent[offset];
760                 if (level == total)
761                         return pte;
762
763                 if (!dma_pte_present(pte))
764                         break;
765                 parent = phys_to_virt(dma_pte_addr(pte));
766                 total--;
767         }
768         return NULL;
769 }
770
771 /* clear last level pte, a tlb flush should be followed */
772 static void dma_pte_clear_range(struct dmar_domain *domain,
773                                 unsigned long start_pfn,
774                                 unsigned long last_pfn)
775 {
776         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777         struct dma_pte *first_pte, *pte;
778
779         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
780         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
781
782         /* we don't need lock here; nobody else touches the iova range */
783         while (start_pfn <= last_pfn) {
784                 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1);
785                 if (!pte) {
786                         start_pfn = align_to_level(start_pfn + 1, 2);
787                         continue;
788                 }
789                 while (start_pfn <= last_pfn &&
790                        (unsigned long)pte >> VTD_PAGE_SHIFT ==
791                        (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
792                         dma_clear_pte(pte);
793                         start_pfn++;
794                         pte++;
795                 }
796                 domain_flush_cache(domain, first_pte,
797                                    (void *)pte - (void *)first_pte);
798         }
799 }
800
801 /* free page table pages. last level pte should already be cleared */
802 static void dma_pte_free_pagetable(struct dmar_domain *domain,
803                                    unsigned long start_pfn,
804                                    unsigned long last_pfn)
805 {
806         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
807         struct dma_pte *first_pte, *pte;
808         int total = agaw_to_level(domain->agaw);
809         int level;
810         unsigned long tmp;
811
812         BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
813         BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
814
815         /* We don't need lock here; nobody else touches the iova range */
816         level = 2;
817         while (level <= total) {
818                 tmp = align_to_level(start_pfn, level);
819
820                 /* If we can't even clear one PTE at this level, we're done */
821                 if (tmp + level_size(level) - 1 > last_pfn)
822                         return;
823
824                 while (tmp + level_size(level) - 1 <= last_pfn) {
825                         first_pte = pte = dma_pfn_level_pte(domain, tmp, level);
826                         if (!pte) {
827                                 tmp = align_to_level(tmp + 1, level + 1);
828                                 continue;
829                         }
830                         while (tmp + level_size(level) - 1 <= last_pfn &&
831                                (unsigned long)pte >> VTD_PAGE_SHIFT ==
832                                (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
833                                 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
834                                 dma_clear_pte(pte);
835                                 pte++;
836                                 tmp += level_size(level);
837                         }
838                         domain_flush_cache(domain, first_pte,
839                                            (void *)pte - (void *)first_pte);
840                         
841                 }
842                 level++;
843         }
844         /* free pgd */
845         if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
846                 free_pgtable_page(domain->pgd);
847                 domain->pgd = NULL;
848         }
849 }
850
851 /* iommu handling */
852 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
853 {
854         struct root_entry *root;
855         unsigned long flags;
856
857         root = (struct root_entry *)alloc_pgtable_page();
858         if (!root)
859                 return -ENOMEM;
860
861         __iommu_flush_cache(iommu, root, ROOT_SIZE);
862
863         spin_lock_irqsave(&iommu->lock, flags);
864         iommu->root_entry = root;
865         spin_unlock_irqrestore(&iommu->lock, flags);
866
867         return 0;
868 }
869
870 static void iommu_set_root_entry(struct intel_iommu *iommu)
871 {
872         void *addr;
873         u32 sts;
874         unsigned long flag;
875
876         addr = iommu->root_entry;
877
878         spin_lock_irqsave(&iommu->register_lock, flag);
879         dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
880
881         writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
882
883         /* Make sure hardware complete it */
884         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
885                       readl, (sts & DMA_GSTS_RTPS), sts);
886
887         spin_unlock_irqrestore(&iommu->register_lock, flag);
888 }
889
890 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
891 {
892         u32 val;
893         unsigned long flag;
894
895         if (!rwbf_quirk && !cap_rwbf(iommu->cap))
896                 return;
897
898         spin_lock_irqsave(&iommu->register_lock, flag);
899         writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
900
901         /* Make sure hardware complete it */
902         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
903                       readl, (!(val & DMA_GSTS_WBFS)), val);
904
905         spin_unlock_irqrestore(&iommu->register_lock, flag);
906 }
907
908 /* return value determine if we need a write buffer flush */
909 static void __iommu_flush_context(struct intel_iommu *iommu,
910                                   u16 did, u16 source_id, u8 function_mask,
911                                   u64 type)
912 {
913         u64 val = 0;
914         unsigned long flag;
915
916         switch (type) {
917         case DMA_CCMD_GLOBAL_INVL:
918                 val = DMA_CCMD_GLOBAL_INVL;
919                 break;
920         case DMA_CCMD_DOMAIN_INVL:
921                 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
922                 break;
923         case DMA_CCMD_DEVICE_INVL:
924                 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
925                         | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
926                 break;
927         default:
928                 BUG();
929         }
930         val |= DMA_CCMD_ICC;
931
932         spin_lock_irqsave(&iommu->register_lock, flag);
933         dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
934
935         /* Make sure hardware complete it */
936         IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
937                 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
938
939         spin_unlock_irqrestore(&iommu->register_lock, flag);
940 }
941
942 /* return value determine if we need a write buffer flush */
943 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
944                                 u64 addr, unsigned int size_order, u64 type)
945 {
946         int tlb_offset = ecap_iotlb_offset(iommu->ecap);
947         u64 val = 0, val_iva = 0;
948         unsigned long flag;
949
950         switch (type) {
951         case DMA_TLB_GLOBAL_FLUSH:
952                 /* global flush doesn't need set IVA_REG */
953                 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
954                 break;
955         case DMA_TLB_DSI_FLUSH:
956                 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
957                 break;
958         case DMA_TLB_PSI_FLUSH:
959                 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
960                 /* Note: always flush non-leaf currently */
961                 val_iva = size_order | addr;
962                 break;
963         default:
964                 BUG();
965         }
966         /* Note: set drain read/write */
967 #if 0
968         /*
969          * This is probably to be super secure.. Looks like we can
970          * ignore it without any impact.
971          */
972         if (cap_read_drain(iommu->cap))
973                 val |= DMA_TLB_READ_DRAIN;
974 #endif
975         if (cap_write_drain(iommu->cap))
976                 val |= DMA_TLB_WRITE_DRAIN;
977
978         spin_lock_irqsave(&iommu->register_lock, flag);
979         /* Note: Only uses first TLB reg currently */
980         if (val_iva)
981                 dmar_writeq(iommu->reg + tlb_offset, val_iva);
982         dmar_writeq(iommu->reg + tlb_offset + 8, val);
983
984         /* Make sure hardware complete it */
985         IOMMU_WAIT_OP(iommu, tlb_offset + 8,
986                 dmar_readq, (!(val & DMA_TLB_IVT)), val);
987
988         spin_unlock_irqrestore(&iommu->register_lock, flag);
989
990         /* check IOTLB invalidation granularity */
991         if (DMA_TLB_IAIG(val) == 0)
992                 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
993         if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
994                 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
995                         (unsigned long long)DMA_TLB_IIRG(type),
996                         (unsigned long long)DMA_TLB_IAIG(val));
997 }
998
999 static struct device_domain_info *iommu_support_dev_iotlb(
1000         struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1001 {
1002         int found = 0;
1003         unsigned long flags;
1004         struct device_domain_info *info;
1005         struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1006
1007         if (!ecap_dev_iotlb_support(iommu->ecap))
1008                 return NULL;
1009
1010         if (!iommu->qi)
1011                 return NULL;
1012
1013         spin_lock_irqsave(&device_domain_lock, flags);
1014         list_for_each_entry(info, &domain->devices, link)
1015                 if (info->bus == bus && info->devfn == devfn) {
1016                         found = 1;
1017                         break;
1018                 }
1019         spin_unlock_irqrestore(&device_domain_lock, flags);
1020
1021         if (!found || !info->dev)
1022                 return NULL;
1023
1024         if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1025                 return NULL;
1026
1027         if (!dmar_find_matched_atsr_unit(info->dev))
1028                 return NULL;
1029
1030         info->iommu = iommu;
1031
1032         return info;
1033 }
1034
1035 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1036 {
1037         if (!info)
1038                 return;
1039
1040         pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1041 }
1042
1043 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1044 {
1045         if (!info->dev || !pci_ats_enabled(info->dev))
1046                 return;
1047
1048         pci_disable_ats(info->dev);
1049 }
1050
1051 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1052                                   u64 addr, unsigned mask)
1053 {
1054         u16 sid, qdep;
1055         unsigned long flags;
1056         struct device_domain_info *info;
1057
1058         spin_lock_irqsave(&device_domain_lock, flags);
1059         list_for_each_entry(info, &domain->devices, link) {
1060                 if (!info->dev || !pci_ats_enabled(info->dev))
1061                         continue;
1062
1063                 sid = info->bus << 8 | info->devfn;
1064                 qdep = pci_ats_queue_depth(info->dev);
1065                 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1066         }
1067         spin_unlock_irqrestore(&device_domain_lock, flags);
1068 }
1069
1070 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1071                                   unsigned long pfn, unsigned int pages)
1072 {
1073         unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1074         uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1075
1076         BUG_ON(pages == 0);
1077
1078         /*
1079          * Fallback to domain selective flush if no PSI support or the size is
1080          * too big.
1081          * PSI requires page size to be 2 ^ x, and the base address is naturally
1082          * aligned to the size
1083          */
1084         if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1085                 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1086                                                 DMA_TLB_DSI_FLUSH);
1087         else
1088                 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1089                                                 DMA_TLB_PSI_FLUSH);
1090
1091         /*
1092          * In caching mode, domain ID 0 is reserved for non-present to present
1093          * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1094          */
1095         if (!cap_caching_mode(iommu->cap) || did)
1096                 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1097 }
1098
1099 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1100 {
1101         u32 pmen;
1102         unsigned long flags;
1103
1104         spin_lock_irqsave(&iommu->register_lock, flags);
1105         pmen = readl(iommu->reg + DMAR_PMEN_REG);
1106         pmen &= ~DMA_PMEN_EPM;
1107         writel(pmen, iommu->reg + DMAR_PMEN_REG);
1108
1109         /* wait for the protected region status bit to clear */
1110         IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1111                 readl, !(pmen & DMA_PMEN_PRS), pmen);
1112
1113         spin_unlock_irqrestore(&iommu->register_lock, flags);
1114 }
1115
1116 static int iommu_enable_translation(struct intel_iommu *iommu)
1117 {
1118         u32 sts;
1119         unsigned long flags;
1120
1121         spin_lock_irqsave(&iommu->register_lock, flags);
1122         iommu->gcmd |= DMA_GCMD_TE;
1123         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1124
1125         /* Make sure hardware complete it */
1126         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1127                       readl, (sts & DMA_GSTS_TES), sts);
1128
1129         spin_unlock_irqrestore(&iommu->register_lock, flags);
1130         return 0;
1131 }
1132
1133 static int iommu_disable_translation(struct intel_iommu *iommu)
1134 {
1135         u32 sts;
1136         unsigned long flag;
1137
1138         spin_lock_irqsave(&iommu->register_lock, flag);
1139         iommu->gcmd &= ~DMA_GCMD_TE;
1140         writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1141
1142         /* Make sure hardware complete it */
1143         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1144                       readl, (!(sts & DMA_GSTS_TES)), sts);
1145
1146         spin_unlock_irqrestore(&iommu->register_lock, flag);
1147         return 0;
1148 }
1149
1150
1151 static int iommu_init_domains(struct intel_iommu *iommu)
1152 {
1153         unsigned long ndomains;
1154         unsigned long nlongs;
1155
1156         ndomains = cap_ndoms(iommu->cap);
1157         pr_debug("Number of Domains supportd <%ld>\n", ndomains);
1158         nlongs = BITS_TO_LONGS(ndomains);
1159
1160         /* TBD: there might be 64K domains,
1161          * consider other allocation for future chip
1162          */
1163         iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1164         if (!iommu->domain_ids) {
1165                 printk(KERN_ERR "Allocating domain id array failed\n");
1166                 return -ENOMEM;
1167         }
1168         iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1169                         GFP_KERNEL);
1170         if (!iommu->domains) {
1171                 printk(KERN_ERR "Allocating domain array failed\n");
1172                 kfree(iommu->domain_ids);
1173                 return -ENOMEM;
1174         }
1175
1176         spin_lock_init(&iommu->lock);
1177
1178         /*
1179          * if Caching mode is set, then invalid translations are tagged
1180          * with domainid 0. Hence we need to pre-allocate it.
1181          */
1182         if (cap_caching_mode(iommu->cap))
1183                 set_bit(0, iommu->domain_ids);
1184         return 0;
1185 }
1186
1187
1188 static void domain_exit(struct dmar_domain *domain);
1189 static void vm_domain_exit(struct dmar_domain *domain);
1190
1191 void free_dmar_iommu(struct intel_iommu *iommu)
1192 {
1193         struct dmar_domain *domain;
1194         int i;
1195         unsigned long flags;
1196
1197         i = find_first_bit(iommu->domain_ids, cap_ndoms(iommu->cap));
1198         for (; i < cap_ndoms(iommu->cap); ) {
1199                 domain = iommu->domains[i];
1200                 clear_bit(i, iommu->domain_ids);
1201
1202                 spin_lock_irqsave(&domain->iommu_lock, flags);
1203                 if (--domain->iommu_count == 0) {
1204                         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1205                                 vm_domain_exit(domain);
1206                         else
1207                                 domain_exit(domain);
1208                 }
1209                 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1210
1211                 i = find_next_bit(iommu->domain_ids,
1212                         cap_ndoms(iommu->cap), i+1);
1213         }
1214
1215         if (iommu->gcmd & DMA_GCMD_TE)
1216                 iommu_disable_translation(iommu);
1217
1218         if (iommu->irq) {
1219                 set_irq_data(iommu->irq, NULL);
1220                 /* This will mask the irq */
1221                 free_irq(iommu->irq, iommu);
1222                 destroy_irq(iommu->irq);
1223         }
1224
1225         kfree(iommu->domains);
1226         kfree(iommu->domain_ids);
1227
1228         g_iommus[iommu->seq_id] = NULL;
1229
1230         /* if all iommus are freed, free g_iommus */
1231         for (i = 0; i < g_num_of_iommus; i++) {
1232                 if (g_iommus[i])
1233                         break;
1234         }
1235
1236         if (i == g_num_of_iommus)
1237                 kfree(g_iommus);
1238
1239         /* free context mapping */
1240         free_context_table(iommu);
1241 }
1242
1243 static struct dmar_domain *alloc_domain(void)
1244 {
1245         struct dmar_domain *domain;
1246
1247         domain = alloc_domain_mem();
1248         if (!domain)
1249                 return NULL;
1250
1251         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
1252         domain->flags = 0;
1253
1254         return domain;
1255 }
1256
1257 static int iommu_attach_domain(struct dmar_domain *domain,
1258                                struct intel_iommu *iommu)
1259 {
1260         int num;
1261         unsigned long ndomains;
1262         unsigned long flags;
1263
1264         ndomains = cap_ndoms(iommu->cap);
1265
1266         spin_lock_irqsave(&iommu->lock, flags);
1267
1268         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1269         if (num >= ndomains) {
1270                 spin_unlock_irqrestore(&iommu->lock, flags);
1271                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1272                 return -ENOMEM;
1273         }
1274
1275         domain->id = num;
1276         set_bit(num, iommu->domain_ids);
1277         set_bit(iommu->seq_id, &domain->iommu_bmp);
1278         iommu->domains[num] = domain;
1279         spin_unlock_irqrestore(&iommu->lock, flags);
1280
1281         return 0;
1282 }
1283
1284 static void iommu_detach_domain(struct dmar_domain *domain,
1285                                 struct intel_iommu *iommu)
1286 {
1287         unsigned long flags;
1288         int num, ndomains;
1289         int found = 0;
1290
1291         spin_lock_irqsave(&iommu->lock, flags);
1292         ndomains = cap_ndoms(iommu->cap);
1293         num = find_first_bit(iommu->domain_ids, ndomains);
1294         for (; num < ndomains; ) {
1295                 if (iommu->domains[num] == domain) {
1296                         found = 1;
1297                         break;
1298                 }
1299                 num = find_next_bit(iommu->domain_ids,
1300                                     cap_ndoms(iommu->cap), num+1);
1301         }
1302
1303         if (found) {
1304                 clear_bit(num, iommu->domain_ids);
1305                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
1306                 iommu->domains[num] = NULL;
1307         }
1308         spin_unlock_irqrestore(&iommu->lock, flags);
1309 }
1310
1311 static struct iova_domain reserved_iova_list;
1312 static struct lock_class_key reserved_alloc_key;
1313 static struct lock_class_key reserved_rbtree_key;
1314
1315 static void dmar_init_reserved_ranges(void)
1316 {
1317         struct pci_dev *pdev = NULL;
1318         struct iova *iova;
1319         int i;
1320
1321         init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1322
1323         lockdep_set_class(&reserved_iova_list.iova_alloc_lock,
1324                 &reserved_alloc_key);
1325         lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1326                 &reserved_rbtree_key);
1327
1328         /* IOAPIC ranges shouldn't be accessed by DMA */
1329         iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1330                 IOVA_PFN(IOAPIC_RANGE_END));
1331         if (!iova)
1332                 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1333
1334         /* Reserve all PCI MMIO to avoid peer-to-peer access */
1335         for_each_pci_dev(pdev) {
1336                 struct resource *r;
1337
1338                 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1339                         r = &pdev->resource[i];
1340                         if (!r->flags || !(r->flags & IORESOURCE_MEM))
1341                                 continue;
1342                         iova = reserve_iova(&reserved_iova_list,
1343                                             IOVA_PFN(r->start),
1344                                             IOVA_PFN(r->end));
1345                         if (!iova)
1346                                 printk(KERN_ERR "Reserve iova failed\n");
1347                 }
1348         }
1349
1350 }
1351
1352 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1353 {
1354         copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1355 }
1356
1357 static inline int guestwidth_to_adjustwidth(int gaw)
1358 {
1359         int agaw;
1360         int r = (gaw - 12) % 9;
1361
1362         if (r == 0)
1363                 agaw = gaw;
1364         else
1365                 agaw = gaw + 9 - r;
1366         if (agaw > 64)
1367                 agaw = 64;
1368         return agaw;
1369 }
1370
1371 static int domain_init(struct dmar_domain *domain, int guest_width)
1372 {
1373         struct intel_iommu *iommu;
1374         int adjust_width, agaw;
1375         unsigned long sagaw;
1376
1377         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1378         spin_lock_init(&domain->mapping_lock);
1379         spin_lock_init(&domain->iommu_lock);
1380
1381         domain_reserve_special_ranges(domain);
1382
1383         /* calculate AGAW */
1384         iommu = domain_get_iommu(domain);
1385         if (guest_width > cap_mgaw(iommu->cap))
1386                 guest_width = cap_mgaw(iommu->cap);
1387         domain->gaw = guest_width;
1388         adjust_width = guestwidth_to_adjustwidth(guest_width);
1389         agaw = width_to_agaw(adjust_width);
1390         sagaw = cap_sagaw(iommu->cap);
1391         if (!test_bit(agaw, &sagaw)) {
1392                 /* hardware doesn't support it, choose a bigger one */
1393                 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1394                 agaw = find_next_bit(&sagaw, 5, agaw);
1395                 if (agaw >= 5)
1396                         return -ENODEV;
1397         }
1398         domain->agaw = agaw;
1399         INIT_LIST_HEAD(&domain->devices);
1400
1401         if (ecap_coherent(iommu->ecap))
1402                 domain->iommu_coherency = 1;
1403         else
1404                 domain->iommu_coherency = 0;
1405
1406         if (ecap_sc_support(iommu->ecap))
1407                 domain->iommu_snooping = 1;
1408         else
1409                 domain->iommu_snooping = 0;
1410
1411         domain->iommu_count = 1;
1412
1413         /* always allocate the top pgd */
1414         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
1415         if (!domain->pgd)
1416                 return -ENOMEM;
1417         __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1418         return 0;
1419 }
1420
1421 static void domain_exit(struct dmar_domain *domain)
1422 {
1423         struct dmar_drhd_unit *drhd;
1424         struct intel_iommu *iommu;
1425
1426         /* Domain 0 is reserved, so dont process it */
1427         if (!domain)
1428                 return;
1429
1430         domain_remove_dev_info(domain);
1431         /* destroy iovas */
1432         put_iova_domain(&domain->iovad);
1433
1434         /* clear ptes */
1435         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1436
1437         /* free page tables */
1438         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1439
1440         for_each_active_iommu(iommu, drhd)
1441                 if (test_bit(iommu->seq_id, &domain->iommu_bmp))
1442                         iommu_detach_domain(domain, iommu);
1443
1444         free_domain_mem(domain);
1445 }
1446
1447 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1448                                  u8 bus, u8 devfn, int translation)
1449 {
1450         struct context_entry *context;
1451         unsigned long flags;
1452         struct intel_iommu *iommu;
1453         struct dma_pte *pgd;
1454         unsigned long num;
1455         unsigned long ndomains;
1456         int id;
1457         int agaw;
1458         struct device_domain_info *info = NULL;
1459
1460         pr_debug("Set context mapping for %02x:%02x.%d\n",
1461                 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1462
1463         BUG_ON(!domain->pgd);
1464         BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1465                translation != CONTEXT_TT_MULTI_LEVEL);
1466
1467         iommu = device_to_iommu(segment, bus, devfn);
1468         if (!iommu)
1469                 return -ENODEV;
1470
1471         context = device_to_context_entry(iommu, bus, devfn);
1472         if (!context)
1473                 return -ENOMEM;
1474         spin_lock_irqsave(&iommu->lock, flags);
1475         if (context_present(context)) {
1476                 spin_unlock_irqrestore(&iommu->lock, flags);
1477                 return 0;
1478         }
1479
1480         id = domain->id;
1481         pgd = domain->pgd;
1482
1483         if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1484             domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1485                 int found = 0;
1486
1487                 /* find an available domain id for this device in iommu */
1488                 ndomains = cap_ndoms(iommu->cap);
1489                 num = find_first_bit(iommu->domain_ids, ndomains);
1490                 for (; num < ndomains; ) {
1491                         if (iommu->domains[num] == domain) {
1492                                 id = num;
1493                                 found = 1;
1494                                 break;
1495                         }
1496                         num = find_next_bit(iommu->domain_ids,
1497                                             cap_ndoms(iommu->cap), num+1);
1498                 }
1499
1500                 if (found == 0) {
1501                         num = find_first_zero_bit(iommu->domain_ids, ndomains);
1502                         if (num >= ndomains) {
1503                                 spin_unlock_irqrestore(&iommu->lock, flags);
1504                                 printk(KERN_ERR "IOMMU: no free domain ids\n");
1505                                 return -EFAULT;
1506                         }
1507
1508                         set_bit(num, iommu->domain_ids);
1509                         set_bit(iommu->seq_id, &domain->iommu_bmp);
1510                         iommu->domains[num] = domain;
1511                         id = num;
1512                 }
1513
1514                 /* Skip top levels of page tables for
1515                  * iommu which has less agaw than default.
1516                  */
1517                 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1518                         pgd = phys_to_virt(dma_pte_addr(pgd));
1519                         if (!dma_pte_present(pgd)) {
1520                                 spin_unlock_irqrestore(&iommu->lock, flags);
1521                                 return -ENOMEM;
1522                         }
1523                 }
1524         }
1525
1526         context_set_domain_id(context, id);
1527
1528         if (translation != CONTEXT_TT_PASS_THROUGH) {
1529                 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1530                 translation = info ? CONTEXT_TT_DEV_IOTLB :
1531                                      CONTEXT_TT_MULTI_LEVEL;
1532         }
1533         /*
1534          * In pass through mode, AW must be programmed to indicate the largest
1535          * AGAW value supported by hardware. And ASR is ignored by hardware.
1536          */
1537         if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1538                 context_set_address_width(context, iommu->msagaw);
1539         else {
1540                 context_set_address_root(context, virt_to_phys(pgd));
1541                 context_set_address_width(context, iommu->agaw);
1542         }
1543
1544         context_set_translation_type(context, translation);
1545         context_set_fault_enable(context);
1546         context_set_present(context);
1547         domain_flush_cache(domain, context, sizeof(*context));
1548
1549         /*
1550          * It's a non-present to present mapping. If hardware doesn't cache
1551          * non-present entry we only need to flush the write-buffer. If the
1552          * _does_ cache non-present entries, then it does so in the special
1553          * domain #0, which we have to flush:
1554          */
1555         if (cap_caching_mode(iommu->cap)) {
1556                 iommu->flush.flush_context(iommu, 0,
1557                                            (((u16)bus) << 8) | devfn,
1558                                            DMA_CCMD_MASK_NOBIT,
1559                                            DMA_CCMD_DEVICE_INVL);
1560                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_DSI_FLUSH);
1561         } else {
1562                 iommu_flush_write_buffer(iommu);
1563         }
1564         iommu_enable_dev_iotlb(info);
1565         spin_unlock_irqrestore(&iommu->lock, flags);
1566
1567         spin_lock_irqsave(&domain->iommu_lock, flags);
1568         if (!test_and_set_bit(iommu->seq_id, &domain->iommu_bmp)) {
1569                 domain->iommu_count++;
1570                 domain_update_iommu_cap(domain);
1571         }
1572         spin_unlock_irqrestore(&domain->iommu_lock, flags);
1573         return 0;
1574 }
1575
1576 static int
1577 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1578                         int translation)
1579 {
1580         int ret;
1581         struct pci_dev *tmp, *parent;
1582
1583         ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1584                                          pdev->bus->number, pdev->devfn,
1585                                          translation);
1586         if (ret)
1587                 return ret;
1588
1589         /* dependent device mapping */
1590         tmp = pci_find_upstream_pcie_bridge(pdev);
1591         if (!tmp)
1592                 return 0;
1593         /* Secondary interface's bus number and devfn 0 */
1594         parent = pdev->bus->self;
1595         while (parent != tmp) {
1596                 ret = domain_context_mapping_one(domain,
1597                                                  pci_domain_nr(parent->bus),
1598                                                  parent->bus->number,
1599                                                  parent->devfn, translation);
1600                 if (ret)
1601                         return ret;
1602                 parent = parent->bus->self;
1603         }
1604         if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
1605                 return domain_context_mapping_one(domain,
1606                                         pci_domain_nr(tmp->subordinate),
1607                                         tmp->subordinate->number, 0,
1608                                         translation);
1609         else /* this is a legacy PCI bridge */
1610                 return domain_context_mapping_one(domain,
1611                                                   pci_domain_nr(tmp->bus),
1612                                                   tmp->bus->number,
1613                                                   tmp->devfn,
1614                                                   translation);
1615 }
1616
1617 static int domain_context_mapped(struct pci_dev *pdev)
1618 {
1619         int ret;
1620         struct pci_dev *tmp, *parent;
1621         struct intel_iommu *iommu;
1622
1623         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1624                                 pdev->devfn);
1625         if (!iommu)
1626                 return -ENODEV;
1627
1628         ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1629         if (!ret)
1630                 return ret;
1631         /* dependent device mapping */
1632         tmp = pci_find_upstream_pcie_bridge(pdev);
1633         if (!tmp)
1634                 return ret;
1635         /* Secondary interface's bus number and devfn 0 */
1636         parent = pdev->bus->self;
1637         while (parent != tmp) {
1638                 ret = device_context_mapped(iommu, parent->bus->number,
1639                                             parent->devfn);
1640                 if (!ret)
1641                         return ret;
1642                 parent = parent->bus->self;
1643         }
1644         if (tmp->is_pcie)
1645                 return device_context_mapped(iommu, tmp->subordinate->number,
1646                                              0);
1647         else
1648                 return device_context_mapped(iommu, tmp->bus->number,
1649                                              tmp->devfn);
1650 }
1651
1652 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1653                             struct scatterlist *sg, unsigned long phys_pfn,
1654                             unsigned long nr_pages, int prot)
1655 {
1656         struct dma_pte *first_pte = NULL, *pte = NULL;
1657         phys_addr_t uninitialized_var(pteval);
1658         int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1659         unsigned long sg_res;
1660
1661         BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1662
1663         if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1664                 return -EINVAL;
1665
1666         prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1667
1668         if (sg)
1669                 sg_res = 0;
1670         else {
1671                 sg_res = nr_pages + 1;
1672                 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1673         }
1674
1675         while (nr_pages--) {
1676                 uint64_t tmp;
1677
1678                 if (!sg_res) {
1679                         sg_res = (sg->offset + sg->length + VTD_PAGE_SIZE - 1) >> VTD_PAGE_SHIFT;
1680                         sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1681                         sg->dma_length = sg->length;
1682                         pteval = page_to_phys(sg_page(sg)) | prot;
1683                 }
1684                 if (!pte) {
1685                         first_pte = pte = pfn_to_dma_pte(domain, iov_pfn);
1686                         if (!pte)
1687                                 return -ENOMEM;
1688                 }
1689                 /* We don't need lock here, nobody else
1690                  * touches the iova range
1691                  */
1692                 tmp = cmpxchg64(&pte->val, 0ULL, pteval);
1693                 if (tmp) {
1694                         static int dumps = 5;
1695                         printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1696                                iov_pfn, tmp, (unsigned long long)pteval);
1697                         if (dumps) {
1698                                 dumps--;
1699                                 debug_dma_dump_mappings(NULL);
1700                         }
1701                         WARN_ON(1);
1702                 }
1703                 pte++;
1704                 if (!nr_pages ||
1705                     (unsigned long)pte >> VTD_PAGE_SHIFT !=
1706                     (unsigned long)first_pte >> VTD_PAGE_SHIFT) {
1707                         domain_flush_cache(domain, first_pte,
1708                                            (void *)pte - (void *)first_pte);
1709                         pte = NULL;
1710                 }
1711                 iov_pfn++;
1712                 pteval += VTD_PAGE_SIZE;
1713                 sg_res--;
1714                 if (!sg_res)
1715                         sg = sg_next(sg);
1716         }
1717         return 0;
1718 }
1719
1720 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1721                                     struct scatterlist *sg, unsigned long nr_pages,
1722                                     int prot)
1723 {
1724         return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1725 }
1726
1727 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1728                                      unsigned long phys_pfn, unsigned long nr_pages,
1729                                      int prot)
1730 {
1731         return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1732 }
1733
1734 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1735 {
1736         if (!iommu)
1737                 return;
1738
1739         clear_context_table(iommu, bus, devfn);
1740         iommu->flush.flush_context(iommu, 0, 0, 0,
1741                                            DMA_CCMD_GLOBAL_INVL);
1742         iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1743 }
1744
1745 static void domain_remove_dev_info(struct dmar_domain *domain)
1746 {
1747         struct device_domain_info *info;
1748         unsigned long flags;
1749         struct intel_iommu *iommu;
1750
1751         spin_lock_irqsave(&device_domain_lock, flags);
1752         while (!list_empty(&domain->devices)) {
1753                 info = list_entry(domain->devices.next,
1754                         struct device_domain_info, link);
1755                 list_del(&info->link);
1756                 list_del(&info->global);
1757                 if (info->dev)
1758                         info->dev->dev.archdata.iommu = NULL;
1759                 spin_unlock_irqrestore(&device_domain_lock, flags);
1760
1761                 iommu_disable_dev_iotlb(info);
1762                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1763                 iommu_detach_dev(iommu, info->bus, info->devfn);
1764                 free_devinfo_mem(info);
1765
1766                 spin_lock_irqsave(&device_domain_lock, flags);
1767         }
1768         spin_unlock_irqrestore(&device_domain_lock, flags);
1769 }
1770
1771 /*
1772  * find_domain
1773  * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1774  */
1775 static struct dmar_domain *
1776 find_domain(struct pci_dev *pdev)
1777 {
1778         struct device_domain_info *info;
1779
1780         /* No lock here, assumes no domain exit in normal case */
1781         info = pdev->dev.archdata.iommu;
1782         if (info)
1783                 return info->domain;
1784         return NULL;
1785 }
1786
1787 /* domain is initialized */
1788 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1789 {
1790         struct dmar_domain *domain, *found = NULL;
1791         struct intel_iommu *iommu;
1792         struct dmar_drhd_unit *drhd;
1793         struct device_domain_info *info, *tmp;
1794         struct pci_dev *dev_tmp;
1795         unsigned long flags;
1796         int bus = 0, devfn = 0;
1797         int segment;
1798         int ret;
1799
1800         domain = find_domain(pdev);
1801         if (domain)
1802                 return domain;
1803
1804         segment = pci_domain_nr(pdev->bus);
1805
1806         dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1807         if (dev_tmp) {
1808                 if (dev_tmp->is_pcie) {
1809                         bus = dev_tmp->subordinate->number;
1810                         devfn = 0;
1811                 } else {
1812                         bus = dev_tmp->bus->number;
1813                         devfn = dev_tmp->devfn;
1814                 }
1815                 spin_lock_irqsave(&device_domain_lock, flags);
1816                 list_for_each_entry(info, &device_domain_list, global) {
1817                         if (info->segment == segment &&
1818                             info->bus == bus && info->devfn == devfn) {
1819                                 found = info->domain;
1820                                 break;
1821                         }
1822                 }
1823                 spin_unlock_irqrestore(&device_domain_lock, flags);
1824                 /* pcie-pci bridge already has a domain, uses it */
1825                 if (found) {
1826                         domain = found;
1827                         goto found_domain;
1828                 }
1829         }
1830
1831         domain = alloc_domain();
1832         if (!domain)
1833                 goto error;
1834
1835         /* Allocate new domain for the device */
1836         drhd = dmar_find_matched_drhd_unit(pdev);
1837         if (!drhd) {
1838                 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
1839                         pci_name(pdev));
1840                 return NULL;
1841         }
1842         iommu = drhd->iommu;
1843
1844         ret = iommu_attach_domain(domain, iommu);
1845         if (ret) {
1846                 domain_exit(domain);
1847                 goto error;
1848         }
1849
1850         if (domain_init(domain, gaw)) {
1851                 domain_exit(domain);
1852                 goto error;
1853         }
1854
1855         /* register pcie-to-pci device */
1856         if (dev_tmp) {
1857                 info = alloc_devinfo_mem();
1858                 if (!info) {
1859                         domain_exit(domain);
1860                         goto error;
1861                 }
1862                 info->segment = segment;
1863                 info->bus = bus;
1864                 info->devfn = devfn;
1865                 info->dev = NULL;
1866                 info->domain = domain;
1867                 /* This domain is shared by devices under p2p bridge */
1868                 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
1869
1870                 /* pcie-to-pci bridge already has a domain, uses it */
1871                 found = NULL;
1872                 spin_lock_irqsave(&device_domain_lock, flags);
1873                 list_for_each_entry(tmp, &device_domain_list, global) {
1874                         if (tmp->segment == segment &&
1875                             tmp->bus == bus && tmp->devfn == devfn) {
1876                                 found = tmp->domain;
1877                                 break;
1878                         }
1879                 }
1880                 if (found) {
1881                         free_devinfo_mem(info);
1882                         domain_exit(domain);
1883                         domain = found;
1884                 } else {
1885                         list_add(&info->link, &domain->devices);
1886                         list_add(&info->global, &device_domain_list);
1887                 }
1888                 spin_unlock_irqrestore(&device_domain_lock, flags);
1889         }
1890
1891 found_domain:
1892         info = alloc_devinfo_mem();
1893         if (!info)
1894                 goto error;
1895         info->segment = segment;
1896         info->bus = pdev->bus->number;
1897         info->devfn = pdev->devfn;
1898         info->dev = pdev;
1899         info->domain = domain;
1900         spin_lock_irqsave(&device_domain_lock, flags);
1901         /* somebody is fast */
1902         found = find_domain(pdev);
1903         if (found != NULL) {
1904                 spin_unlock_irqrestore(&device_domain_lock, flags);
1905                 if (found != domain) {
1906                         domain_exit(domain);
1907                         domain = found;
1908                 }
1909                 free_devinfo_mem(info);
1910                 return domain;
1911         }
1912         list_add(&info->link, &domain->devices);
1913         list_add(&info->global, &device_domain_list);
1914         pdev->dev.archdata.iommu = info;
1915         spin_unlock_irqrestore(&device_domain_lock, flags);
1916         return domain;
1917 error:
1918         /* recheck it here, maybe others set it */
1919         return find_domain(pdev);
1920 }
1921
1922 static int iommu_identity_mapping;
1923
1924 static int iommu_domain_identity_map(struct dmar_domain *domain,
1925                                      unsigned long long start,
1926                                      unsigned long long end)
1927 {
1928         unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
1929         unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
1930
1931         if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
1932                           dma_to_mm_pfn(last_vpfn))) {
1933                 printk(KERN_ERR "IOMMU: reserve iova failed\n");
1934                 return -ENOMEM;
1935         }
1936
1937         pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1938                  start, end, domain->id);
1939         /*
1940          * RMRR range might have overlap with physical memory range,
1941          * clear it first
1942          */
1943         dma_pte_clear_range(domain, first_vpfn, last_vpfn);
1944
1945         return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
1946                                   last_vpfn - first_vpfn + 1,
1947                                   DMA_PTE_READ|DMA_PTE_WRITE);
1948 }
1949
1950 static int iommu_prepare_identity_map(struct pci_dev *pdev,
1951                                       unsigned long long start,
1952                                       unsigned long long end)
1953 {
1954         struct dmar_domain *domain;
1955         int ret;
1956
1957         printk(KERN_INFO
1958                "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1959                pci_name(pdev), start, end);
1960
1961         domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
1962         if (!domain)
1963                 return -ENOMEM;
1964
1965         ret = iommu_domain_identity_map(domain, start, end);
1966         if (ret)
1967                 goto error;
1968
1969         /* context entry init */
1970         ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
1971         if (ret)
1972                 goto error;
1973
1974         return 0;
1975
1976  error:
1977         domain_exit(domain);
1978         return ret;
1979 }
1980
1981 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
1982         struct pci_dev *pdev)
1983 {
1984         if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
1985                 return 0;
1986         return iommu_prepare_identity_map(pdev, rmrr->base_address,
1987                 rmrr->end_address + 1);
1988 }
1989
1990 #ifdef CONFIG_DMAR_FLOPPY_WA
1991 static inline void iommu_prepare_isa(void)
1992 {
1993         struct pci_dev *pdev;
1994         int ret;
1995
1996         pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
1997         if (!pdev)
1998                 return;
1999
2000         printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2001         ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024);
2002
2003         if (ret)
2004                 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2005                        "floppy might not work\n");
2006
2007 }
2008 #else
2009 static inline void iommu_prepare_isa(void)
2010 {
2011         return;
2012 }
2013 #endif /* !CONFIG_DMAR_FLPY_WA */
2014
2015 /* Initialize each context entry as pass through.*/
2016 static int __init init_context_pass_through(void)
2017 {
2018         struct pci_dev *pdev = NULL;
2019         struct dmar_domain *domain;
2020         int ret;
2021
2022         for_each_pci_dev(pdev) {
2023                 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2024                 ret = domain_context_mapping(domain, pdev,
2025                                              CONTEXT_TT_PASS_THROUGH);
2026                 if (ret)
2027                         return ret;
2028         }
2029         return 0;
2030 }
2031
2032 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2033
2034 static int __init si_domain_work_fn(unsigned long start_pfn,
2035                                     unsigned long end_pfn, void *datax)
2036 {
2037         int *ret = datax;
2038
2039         *ret = iommu_domain_identity_map(si_domain,
2040                                          (uint64_t)start_pfn << PAGE_SHIFT,
2041                                          (uint64_t)end_pfn << PAGE_SHIFT);
2042         return *ret;
2043
2044 }
2045
2046 static int si_domain_init(void)
2047 {
2048         struct dmar_drhd_unit *drhd;
2049         struct intel_iommu *iommu;
2050         int nid, ret = 0;
2051
2052         si_domain = alloc_domain();
2053         if (!si_domain)
2054                 return -EFAULT;
2055
2056         pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2057
2058         for_each_active_iommu(iommu, drhd) {
2059                 ret = iommu_attach_domain(si_domain, iommu);
2060                 if (ret) {
2061                         domain_exit(si_domain);
2062                         return -EFAULT;
2063                 }
2064         }
2065
2066         if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2067                 domain_exit(si_domain);
2068                 return -EFAULT;
2069         }
2070
2071         si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2072
2073         for_each_online_node(nid) {
2074                 work_with_active_regions(nid, si_domain_work_fn, &ret);
2075                 if (ret)
2076                         return ret;
2077         }
2078
2079         return 0;
2080 }
2081
2082 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2083                                           struct pci_dev *pdev);
2084 static int identity_mapping(struct pci_dev *pdev)
2085 {
2086         struct device_domain_info *info;
2087
2088         if (likely(!iommu_identity_mapping))
2089                 return 0;
2090
2091
2092         list_for_each_entry(info, &si_domain->devices, link)
2093                 if (info->dev == pdev)
2094                         return 1;
2095         return 0;
2096 }
2097
2098 static int domain_add_dev_info(struct dmar_domain *domain,
2099                                   struct pci_dev *pdev)
2100 {
2101         struct device_domain_info *info;
2102         unsigned long flags;
2103
2104         info = alloc_devinfo_mem();
2105         if (!info)
2106                 return -ENOMEM;
2107
2108         info->segment = pci_domain_nr(pdev->bus);
2109         info->bus = pdev->bus->number;
2110         info->devfn = pdev->devfn;
2111         info->dev = pdev;
2112         info->domain = domain;
2113
2114         spin_lock_irqsave(&device_domain_lock, flags);
2115         list_add(&info->link, &domain->devices);
2116         list_add(&info->global, &device_domain_list);
2117         pdev->dev.archdata.iommu = info;
2118         spin_unlock_irqrestore(&device_domain_lock, flags);
2119
2120         return 0;
2121 }
2122
2123 static int iommu_prepare_static_identity_mapping(void)
2124 {
2125         struct pci_dev *pdev = NULL;
2126         int ret;
2127
2128         ret = si_domain_init();
2129         if (ret)
2130                 return -EFAULT;
2131
2132         for_each_pci_dev(pdev) {
2133                 printk(KERN_INFO "IOMMU: identity mapping for device %s\n",
2134                        pci_name(pdev));
2135
2136                 ret = domain_context_mapping(si_domain, pdev,
2137                                              CONTEXT_TT_MULTI_LEVEL);
2138                 if (ret)
2139                         return ret;
2140                 ret = domain_add_dev_info(si_domain, pdev);
2141                 if (ret)
2142                         return ret;
2143         }
2144
2145         return 0;
2146 }
2147
2148 int __init init_dmars(void)
2149 {
2150         struct dmar_drhd_unit *drhd;
2151         struct dmar_rmrr_unit *rmrr;
2152         struct pci_dev *pdev;
2153         struct intel_iommu *iommu;
2154         int i, ret;
2155         int pass_through = 1;
2156
2157         /*
2158          * In case pass through can not be enabled, iommu tries to use identity
2159          * mapping.
2160          */
2161         if (iommu_pass_through)
2162                 iommu_identity_mapping = 1;
2163
2164         /*
2165          * for each drhd
2166          *    allocate root
2167          *    initialize and program root entry to not present
2168          * endfor
2169          */
2170         for_each_drhd_unit(drhd) {
2171                 g_num_of_iommus++;
2172                 /*
2173                  * lock not needed as this is only incremented in the single
2174                  * threaded kernel __init code path all other access are read
2175                  * only
2176                  */
2177         }
2178
2179         g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2180                         GFP_KERNEL);
2181         if (!g_iommus) {
2182                 printk(KERN_ERR "Allocating global iommu array failed\n");
2183                 ret = -ENOMEM;
2184                 goto error;
2185         }
2186
2187         deferred_flush = kzalloc(g_num_of_iommus *
2188                 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2189         if (!deferred_flush) {
2190                 kfree(g_iommus);
2191                 ret = -ENOMEM;
2192                 goto error;
2193         }
2194
2195         for_each_drhd_unit(drhd) {
2196                 if (drhd->ignored)
2197                         continue;
2198
2199                 iommu = drhd->iommu;
2200                 g_iommus[iommu->seq_id] = iommu;
2201
2202                 ret = iommu_init_domains(iommu);
2203                 if (ret)
2204                         goto error;
2205
2206                 /*
2207                  * TBD:
2208                  * we could share the same root & context tables
2209                  * amoung all IOMMU's. Need to Split it later.
2210                  */
2211                 ret = iommu_alloc_root_entry(iommu);
2212                 if (ret) {
2213                         printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2214                         goto error;
2215                 }
2216                 if (!ecap_pass_through(iommu->ecap))
2217                         pass_through = 0;
2218         }
2219         if (iommu_pass_through)
2220                 if (!pass_through) {
2221                         printk(KERN_INFO
2222                                "Pass Through is not supported by hardware.\n");
2223                         iommu_pass_through = 0;
2224                 }
2225
2226         /*
2227          * Start from the sane iommu hardware state.
2228          */
2229         for_each_drhd_unit(drhd) {
2230                 if (drhd->ignored)
2231                         continue;
2232
2233                 iommu = drhd->iommu;
2234
2235                 /*
2236                  * If the queued invalidation is already initialized by us
2237                  * (for example, while enabling interrupt-remapping) then
2238                  * we got the things already rolling from a sane state.
2239                  */
2240                 if (iommu->qi)
2241                         continue;
2242
2243                 /*
2244                  * Clear any previous faults.
2245                  */
2246                 dmar_fault(-1, iommu);
2247                 /*
2248                  * Disable queued invalidation if supported and already enabled
2249                  * before OS handover.
2250                  */
2251                 dmar_disable_qi(iommu);
2252         }
2253
2254         for_each_drhd_unit(drhd) {
2255                 if (drhd->ignored)
2256                         continue;
2257
2258                 iommu = drhd->iommu;
2259
2260                 if (dmar_enable_qi(iommu)) {
2261                         /*
2262                          * Queued Invalidate not enabled, use Register Based
2263                          * Invalidate
2264                          */
2265                         iommu->flush.flush_context = __iommu_flush_context;
2266                         iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2267                         printk(KERN_INFO "IOMMU 0x%Lx: using Register based "
2268                                "invalidation\n",
2269                                (unsigned long long)drhd->reg_base_addr);
2270                 } else {
2271                         iommu->flush.flush_context = qi_flush_context;
2272                         iommu->flush.flush_iotlb = qi_flush_iotlb;
2273                         printk(KERN_INFO "IOMMU 0x%Lx: using Queued "
2274                                "invalidation\n",
2275                                (unsigned long long)drhd->reg_base_addr);
2276                 }
2277         }
2278
2279         /*
2280          * If pass through is set and enabled, context entries of all pci
2281          * devices are intialized by pass through translation type.
2282          */
2283         if (iommu_pass_through) {
2284                 ret = init_context_pass_through();
2285                 if (ret) {
2286                         printk(KERN_ERR "IOMMU: Pass through init failed.\n");
2287                         iommu_pass_through = 0;
2288                 }
2289         }
2290
2291         /*
2292          * If pass through is not set or not enabled, setup context entries for
2293          * identity mappings for rmrr, gfx, and isa and may fall back to static
2294          * identity mapping if iommu_identity_mapping is set.
2295          */
2296         if (!iommu_pass_through) {
2297                 if (iommu_identity_mapping)
2298                         iommu_prepare_static_identity_mapping();
2299                 /*
2300                  * For each rmrr
2301                  *   for each dev attached to rmrr
2302                  *   do
2303                  *     locate drhd for dev, alloc domain for dev
2304                  *     allocate free domain
2305                  *     allocate page table entries for rmrr
2306                  *     if context not allocated for bus
2307                  *           allocate and init context
2308                  *           set present in root table for this bus
2309                  *     init context with domain, translation etc
2310                  *    endfor
2311                  * endfor
2312                  */
2313                 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2314                 for_each_rmrr_units(rmrr) {
2315                         for (i = 0; i < rmrr->devices_cnt; i++) {
2316                                 pdev = rmrr->devices[i];
2317                                 /*
2318                                  * some BIOS lists non-exist devices in DMAR
2319                                  * table.
2320                                  */
2321                                 if (!pdev)
2322                                         continue;
2323                                 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2324                                 if (ret)
2325                                         printk(KERN_ERR
2326                                  "IOMMU: mapping reserved region failed\n");
2327                         }
2328                 }
2329
2330                 iommu_prepare_isa();
2331         }
2332
2333         /*
2334          * for each drhd
2335          *   enable fault log
2336          *   global invalidate context cache
2337          *   global invalidate iotlb
2338          *   enable translation
2339          */
2340         for_each_drhd_unit(drhd) {
2341                 if (drhd->ignored)
2342                         continue;
2343                 iommu = drhd->iommu;
2344
2345                 iommu_flush_write_buffer(iommu);
2346
2347                 ret = dmar_set_interrupt(iommu);
2348                 if (ret)
2349                         goto error;
2350
2351                 iommu_set_root_entry(iommu);
2352
2353                 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2354                 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2355                 iommu_disable_protect_mem_regions(iommu);
2356
2357                 ret = iommu_enable_translation(iommu);
2358                 if (ret)
2359                         goto error;
2360         }
2361
2362         return 0;
2363 error:
2364         for_each_drhd_unit(drhd) {
2365                 if (drhd->ignored)
2366                         continue;
2367                 iommu = drhd->iommu;
2368                 free_iommu(iommu);
2369         }
2370         kfree(g_iommus);
2371         return ret;
2372 }
2373
2374 static inline unsigned long aligned_nrpages(unsigned long host_addr,
2375                                             size_t size)
2376 {
2377         host_addr &= ~PAGE_MASK;
2378         host_addr += size + PAGE_SIZE - 1;
2379
2380         return host_addr >> VTD_PAGE_SHIFT;
2381 }
2382
2383 static struct iova *intel_alloc_iova(struct device *dev,
2384                                      struct dmar_domain *domain,
2385                                      unsigned long nrpages, uint64_t dma_mask)
2386 {
2387         struct pci_dev *pdev = to_pci_dev(dev);
2388         struct iova *iova = NULL;
2389
2390         /* Restrict dma_mask to the width that the iommu can handle */
2391         dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2392
2393         if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2394                 /*
2395                  * First try to allocate an io virtual address in
2396                  * DMA_BIT_MASK(32) and if that fails then try allocating
2397                  * from higher range
2398                  */
2399                 iova = alloc_iova(&domain->iovad, nrpages,
2400                                   IOVA_PFN(DMA_BIT_MASK(32)), 1);
2401                 if (iova)
2402                         return iova;
2403         }
2404         iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2405         if (unlikely(!iova)) {
2406                 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2407                        nrpages, pci_name(pdev));
2408                 return NULL;
2409         }
2410
2411         return iova;
2412 }
2413
2414 static struct dmar_domain *
2415 get_valid_domain_for_dev(struct pci_dev *pdev)
2416 {
2417         struct dmar_domain *domain;
2418         int ret;
2419
2420         domain = get_domain_for_dev(pdev,
2421                         DEFAULT_DOMAIN_ADDRESS_WIDTH);
2422         if (!domain) {
2423                 printk(KERN_ERR
2424                         "Allocating domain for %s failed", pci_name(pdev));
2425                 return NULL;
2426         }
2427
2428         /* make sure context mapping is ok */
2429         if (unlikely(!domain_context_mapped(pdev))) {
2430                 ret = domain_context_mapping(domain, pdev,
2431                                              CONTEXT_TT_MULTI_LEVEL);
2432                 if (ret) {
2433                         printk(KERN_ERR
2434                                 "Domain context map for %s failed",
2435                                 pci_name(pdev));
2436                         return NULL;
2437                 }
2438         }
2439
2440         return domain;
2441 }
2442
2443 static int iommu_dummy(struct pci_dev *pdev)
2444 {
2445         return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2446 }
2447
2448 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2449 static int iommu_no_mapping(struct pci_dev *pdev)
2450 {
2451         int found;
2452
2453         if (!iommu_identity_mapping)
2454                 return iommu_dummy(pdev);
2455
2456         found = identity_mapping(pdev);
2457         if (found) {
2458                 if (pdev->dma_mask > DMA_BIT_MASK(32))
2459                         return 1;
2460                 else {
2461                         /*
2462                          * 32 bit DMA is removed from si_domain and fall back
2463                          * to non-identity mapping.
2464                          */
2465                         domain_remove_one_dev_info(si_domain, pdev);
2466                         printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2467                                pci_name(pdev));
2468                         return 0;
2469                 }
2470         } else {
2471                 /*
2472                  * In case of a detached 64 bit DMA device from vm, the device
2473                  * is put into si_domain for identity mapping.
2474                  */
2475                 if (pdev->dma_mask > DMA_BIT_MASK(32)) {
2476                         int ret;
2477                         ret = domain_add_dev_info(si_domain, pdev);
2478                         if (!ret) {
2479                                 printk(KERN_INFO "64bit %s uses identity mapping\n",
2480                                        pci_name(pdev));
2481                                 return 1;
2482                         }
2483                 }
2484         }
2485
2486         return iommu_dummy(pdev);
2487 }
2488
2489 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2490                                      size_t size, int dir, u64 dma_mask)
2491 {
2492         struct pci_dev *pdev = to_pci_dev(hwdev);
2493         struct dmar_domain *domain;
2494         phys_addr_t start_paddr;
2495         struct iova *iova;
2496         int prot = 0;
2497         int ret;
2498         struct intel_iommu *iommu;
2499
2500         BUG_ON(dir == DMA_NONE);
2501
2502         if (iommu_no_mapping(pdev))
2503                 return paddr;
2504
2505         domain = get_valid_domain_for_dev(pdev);
2506         if (!domain)
2507                 return 0;
2508
2509         iommu = domain_get_iommu(domain);
2510         size = aligned_nrpages(paddr, size);
2511
2512         iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2513         if (!iova)
2514                 goto error;
2515
2516         /*
2517          * Check if DMAR supports zero-length reads on write only
2518          * mappings..
2519          */
2520         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2521                         !cap_zlr(iommu->cap))
2522                 prot |= DMA_PTE_READ;
2523         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2524                 prot |= DMA_PTE_WRITE;
2525         /*
2526          * paddr - (paddr + size) might be partial page, we should map the whole
2527          * page.  Note: if two part of one page are separately mapped, we
2528          * might have two guest_addr mapping to the same host paddr, but this
2529          * is not a big problem
2530          */
2531         ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2532                                  paddr >> VTD_PAGE_SHIFT, size, prot);
2533         if (ret)
2534                 goto error;
2535
2536         /* it's a non-present to present mapping. Only flush if caching mode */
2537         if (cap_caching_mode(iommu->cap))
2538                 iommu_flush_iotlb_psi(iommu, 0, mm_to_dma_pfn(iova->pfn_lo), size);
2539         else
2540                 iommu_flush_write_buffer(iommu);
2541
2542         start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2543         start_paddr += paddr & ~PAGE_MASK;
2544         return start_paddr;
2545
2546 error:
2547         if (iova)
2548                 __free_iova(&domain->iovad, iova);
2549         printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2550                 pci_name(pdev), size, (unsigned long long)paddr, dir);
2551         return 0;
2552 }
2553
2554 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2555                                  unsigned long offset, size_t size,
2556                                  enum dma_data_direction dir,
2557                                  struct dma_attrs *attrs)
2558 {
2559         return __intel_map_single(dev, page_to_phys(page) + offset, size,
2560                                   dir, to_pci_dev(dev)->dma_mask);
2561 }
2562
2563 static void flush_unmaps(void)
2564 {
2565         int i, j;
2566
2567         timer_on = 0;
2568
2569         /* just flush them all */
2570         for (i = 0; i < g_num_of_iommus; i++) {
2571                 struct intel_iommu *iommu = g_iommus[i];
2572                 if (!iommu)
2573                         continue;
2574
2575                 if (!deferred_flush[i].next)
2576                         continue;
2577
2578                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2579                                          DMA_TLB_GLOBAL_FLUSH);
2580                 for (j = 0; j < deferred_flush[i].next; j++) {
2581                         unsigned long mask;
2582                         struct iova *iova = deferred_flush[i].iova[j];
2583
2584                         mask = (iova->pfn_hi - iova->pfn_lo + 1) << PAGE_SHIFT;
2585                         mask = ilog2(mask >> VTD_PAGE_SHIFT);
2586                         iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2587                                         iova->pfn_lo << PAGE_SHIFT, mask);
2588                         __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2589                 }
2590                 deferred_flush[i].next = 0;
2591         }
2592
2593         list_size = 0;
2594 }
2595
2596 static void flush_unmaps_timeout(unsigned long data)
2597 {
2598         unsigned long flags;
2599
2600         spin_lock_irqsave(&async_umap_flush_lock, flags);
2601         flush_unmaps();
2602         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2603 }
2604
2605 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2606 {
2607         unsigned long flags;
2608         int next, iommu_id;
2609         struct intel_iommu *iommu;
2610
2611         spin_lock_irqsave(&async_umap_flush_lock, flags);
2612         if (list_size == HIGH_WATER_MARK)
2613                 flush_unmaps();
2614
2615         iommu = domain_get_iommu(dom);
2616         iommu_id = iommu->seq_id;
2617
2618         next = deferred_flush[iommu_id].next;
2619         deferred_flush[iommu_id].domain[next] = dom;
2620         deferred_flush[iommu_id].iova[next] = iova;
2621         deferred_flush[iommu_id].next++;
2622
2623         if (!timer_on) {
2624                 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2625                 timer_on = 1;
2626         }
2627         list_size++;
2628         spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2629 }
2630
2631 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2632                              size_t size, enum dma_data_direction dir,
2633                              struct dma_attrs *attrs)
2634 {
2635         struct pci_dev *pdev = to_pci_dev(dev);
2636         struct dmar_domain *domain;
2637         unsigned long start_pfn, last_pfn;
2638         struct iova *iova;
2639         struct intel_iommu *iommu;
2640
2641         if (iommu_no_mapping(pdev))
2642                 return;
2643
2644         domain = find_domain(pdev);
2645         BUG_ON(!domain);
2646
2647         iommu = domain_get_iommu(domain);
2648
2649         iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2650         if (!iova)
2651                 return;
2652
2653         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2654         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2655
2656         pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2657                  pci_name(pdev), start_pfn, last_pfn);
2658
2659         /*  clear the whole page */
2660         dma_pte_clear_range(domain, start_pfn, last_pfn);
2661
2662         /* free page tables */
2663         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2664
2665         if (intel_iommu_strict) {
2666                 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2667                                       last_pfn - start_pfn + 1);
2668                 /* free iova */
2669                 __free_iova(&domain->iovad, iova);
2670         } else {
2671                 add_unmap(domain, iova);
2672                 /*
2673                  * queue up the release of the unmap to save the 1/6th of the
2674                  * cpu used up by the iotlb flush operation...
2675                  */
2676         }
2677 }
2678
2679 static void intel_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
2680                                int dir)
2681 {
2682         intel_unmap_page(dev, dev_addr, size, dir, NULL);
2683 }
2684
2685 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
2686                                   dma_addr_t *dma_handle, gfp_t flags)
2687 {
2688         void *vaddr;
2689         int order;
2690
2691         size = PAGE_ALIGN(size);
2692         order = get_order(size);
2693         flags &= ~(GFP_DMA | GFP_DMA32);
2694
2695         vaddr = (void *)__get_free_pages(flags, order);
2696         if (!vaddr)
2697                 return NULL;
2698         memset(vaddr, 0, size);
2699
2700         *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
2701                                          DMA_BIDIRECTIONAL,
2702                                          hwdev->coherent_dma_mask);
2703         if (*dma_handle)
2704                 return vaddr;
2705         free_pages((unsigned long)vaddr, order);
2706         return NULL;
2707 }
2708
2709 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
2710                                 dma_addr_t dma_handle)
2711 {
2712         int order;
2713
2714         size = PAGE_ALIGN(size);
2715         order = get_order(size);
2716
2717         intel_unmap_single(hwdev, dma_handle, size, DMA_BIDIRECTIONAL);
2718         free_pages((unsigned long)vaddr, order);
2719 }
2720
2721 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
2722                            int nelems, enum dma_data_direction dir,
2723                            struct dma_attrs *attrs)
2724 {
2725         struct pci_dev *pdev = to_pci_dev(hwdev);
2726         struct dmar_domain *domain;
2727         unsigned long start_pfn, last_pfn;
2728         struct iova *iova;
2729         struct intel_iommu *iommu;
2730
2731         if (iommu_no_mapping(pdev))
2732                 return;
2733
2734         domain = find_domain(pdev);
2735         BUG_ON(!domain);
2736
2737         iommu = domain_get_iommu(domain);
2738
2739         iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
2740         if (!iova)
2741                 return;
2742
2743         start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2744         last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2745
2746         /*  clear the whole page */
2747         dma_pte_clear_range(domain, start_pfn, last_pfn);
2748
2749         /* free page tables */
2750         dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2751
2752         iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2753                               (last_pfn - start_pfn + 1));
2754
2755         /* free iova */
2756         __free_iova(&domain->iovad, iova);
2757 }
2758
2759 static int intel_nontranslate_map_sg(struct device *hddev,
2760         struct scatterlist *sglist, int nelems, int dir)
2761 {
2762         int i;
2763         struct scatterlist *sg;
2764
2765         for_each_sg(sglist, sg, nelems, i) {
2766                 BUG_ON(!sg_page(sg));
2767                 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
2768                 sg->dma_length = sg->length;
2769         }
2770         return nelems;
2771 }
2772
2773 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
2774                         enum dma_data_direction dir, struct dma_attrs *attrs)
2775 {
2776         int i;
2777         struct pci_dev *pdev = to_pci_dev(hwdev);
2778         struct dmar_domain *domain;
2779         size_t size = 0;
2780         int prot = 0;
2781         size_t offset_pfn = 0;
2782         struct iova *iova = NULL;
2783         int ret;
2784         struct scatterlist *sg;
2785         unsigned long start_vpfn;
2786         struct intel_iommu *iommu;
2787
2788         BUG_ON(dir == DMA_NONE);
2789         if (iommu_no_mapping(pdev))
2790                 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
2791
2792         domain = get_valid_domain_for_dev(pdev);
2793         if (!domain)
2794                 return 0;
2795
2796         iommu = domain_get_iommu(domain);
2797
2798         for_each_sg(sglist, sg, nelems, i)
2799                 size += aligned_nrpages(sg->offset, sg->length);
2800
2801         iova = intel_alloc_iova(hwdev, domain, size, pdev->dma_mask);
2802         if (!iova) {
2803                 sglist->dma_length = 0;
2804                 return 0;
2805         }
2806
2807         /*
2808          * Check if DMAR supports zero-length reads on write only
2809          * mappings..
2810          */
2811         if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2812                         !cap_zlr(iommu->cap))
2813                 prot |= DMA_PTE_READ;
2814         if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2815                 prot |= DMA_PTE_WRITE;
2816
2817         start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
2818
2819         ret = domain_sg_mapping(domain, start_vpfn, sglist, mm_to_dma_pfn(size), prot);
2820         if (unlikely(ret)) {
2821                 /*  clear the page */
2822                 dma_pte_clear_range(domain, start_vpfn,
2823                                     start_vpfn + size - 1);
2824                 /* free page tables */
2825                 dma_pte_free_pagetable(domain, start_vpfn,
2826                                        start_vpfn + size - 1);
2827                 /* free iova */
2828                 __free_iova(&domain->iovad, iova);
2829                 return 0;
2830         }
2831
2832         /* it's a non-present to present mapping. Only flush if caching mode */
2833         if (cap_caching_mode(iommu->cap))
2834                 iommu_flush_iotlb_psi(iommu, 0, start_vpfn, offset_pfn);
2835         else
2836                 iommu_flush_write_buffer(iommu);
2837
2838         return nelems;
2839 }
2840
2841 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
2842 {
2843         return !dma_addr;
2844 }
2845
2846 struct dma_map_ops intel_dma_ops = {
2847         .alloc_coherent = intel_alloc_coherent,
2848         .free_coherent = intel_free_coherent,
2849         .map_sg = intel_map_sg,
2850         .unmap_sg = intel_unmap_sg,
2851         .map_page = intel_map_page,
2852         .unmap_page = intel_unmap_page,
2853         .mapping_error = intel_mapping_error,
2854 };
2855
2856 static inline int iommu_domain_cache_init(void)
2857 {
2858         int ret = 0;
2859
2860         iommu_domain_cache = kmem_cache_create("iommu_domain",
2861                                          sizeof(struct dmar_domain),
2862                                          0,
2863                                          SLAB_HWCACHE_ALIGN,
2864
2865                                          NULL);
2866         if (!iommu_domain_cache) {
2867                 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
2868                 ret = -ENOMEM;
2869         }
2870
2871         return ret;
2872 }
2873
2874 static inline int iommu_devinfo_cache_init(void)
2875 {
2876         int ret = 0;
2877
2878         iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
2879                                          sizeof(struct device_domain_info),
2880                                          0,
2881                                          SLAB_HWCACHE_ALIGN,
2882                                          NULL);
2883         if (!iommu_devinfo_cache) {
2884                 printk(KERN_ERR "Couldn't create devinfo cache\n");
2885                 ret = -ENOMEM;
2886         }
2887
2888         return ret;
2889 }
2890
2891 static inline int iommu_iova_cache_init(void)
2892 {
2893         int ret = 0;
2894
2895         iommu_iova_cache = kmem_cache_create("iommu_iova",
2896                                          sizeof(struct iova),
2897                                          0,
2898                                          SLAB_HWCACHE_ALIGN,
2899                                          NULL);
2900         if (!iommu_iova_cache) {
2901                 printk(KERN_ERR "Couldn't create iova cache\n");
2902                 ret = -ENOMEM;
2903         }
2904
2905         return ret;
2906 }
2907
2908 static int __init iommu_init_mempool(void)
2909 {
2910         int ret;
2911         ret = iommu_iova_cache_init();
2912         if (ret)
2913                 return ret;
2914
2915         ret = iommu_domain_cache_init();
2916         if (ret)
2917                 goto domain_error;
2918
2919         ret = iommu_devinfo_cache_init();
2920         if (!ret)
2921                 return ret;
2922
2923         kmem_cache_destroy(iommu_domain_cache);
2924 domain_error:
2925         kmem_cache_destroy(iommu_iova_cache);
2926
2927         return -ENOMEM;
2928 }
2929
2930 static void __init iommu_exit_mempool(void)
2931 {
2932         kmem_cache_destroy(iommu_devinfo_cache);
2933         kmem_cache_destroy(iommu_domain_cache);
2934         kmem_cache_destroy(iommu_iova_cache);
2935
2936 }
2937
2938 static void __init init_no_remapping_devices(void)
2939 {
2940         struct dmar_drhd_unit *drhd;
2941
2942         for_each_drhd_unit(drhd) {
2943                 if (!drhd->include_all) {
2944                         int i;
2945                         for (i = 0; i < drhd->devices_cnt; i++)
2946                                 if (drhd->devices[i] != NULL)
2947                                         break;
2948                         /* ignore DMAR unit if no pci devices exist */
2949                         if (i == drhd->devices_cnt)
2950                                 drhd->ignored = 1;
2951                 }
2952         }
2953
2954         if (dmar_map_gfx)
2955                 return;
2956
2957         for_each_drhd_unit(drhd) {
2958                 int i;
2959                 if (drhd->ignored || drhd->include_all)
2960                         continue;
2961
2962                 for (i = 0; i < drhd->devices_cnt; i++)
2963                         if (drhd->devices[i] &&
2964                                 !IS_GFX_DEVICE(drhd->devices[i]))
2965                                 break;
2966
2967                 if (i < drhd->devices_cnt)
2968                         continue;
2969
2970                 /* bypass IOMMU if it is just for gfx devices */
2971                 drhd->ignored = 1;
2972                 for (i = 0; i < drhd->devices_cnt; i++) {
2973                         if (!drhd->devices[i])
2974                                 continue;
2975                         drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
2976                 }
2977         }
2978 }
2979
2980 #ifdef CONFIG_SUSPEND
2981 static int init_iommu_hw(void)
2982 {
2983         struct dmar_drhd_unit *drhd;
2984         struct intel_iommu *iommu = NULL;
2985
2986         for_each_active_iommu(iommu, drhd)
2987                 if (iommu->qi)
2988                         dmar_reenable_qi(iommu);
2989
2990         for_each_active_iommu(iommu, drhd) {
2991                 iommu_flush_write_buffer(iommu);
2992
2993                 iommu_set_root_entry(iommu);
2994
2995                 iommu->flush.flush_context(iommu, 0, 0, 0,
2996                                            DMA_CCMD_GLOBAL_INVL);
2997                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2998                                          DMA_TLB_GLOBAL_FLUSH);
2999                 iommu_disable_protect_mem_regions(iommu);
3000                 iommu_enable_translation(iommu);
3001         }
3002
3003         return 0;
3004 }
3005
3006 static void iommu_flush_all(void)
3007 {
3008         struct dmar_drhd_unit *drhd;
3009         struct intel_iommu *iommu;
3010
3011         for_each_active_iommu(iommu, drhd) {
3012                 iommu->flush.flush_context(iommu, 0, 0, 0,
3013                                            DMA_CCMD_GLOBAL_INVL);
3014                 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3015                                          DMA_TLB_GLOBAL_FLUSH);
3016         }
3017 }
3018
3019 static int iommu_suspend(struct sys_device *dev, pm_message_t state)
3020 {
3021         struct dmar_drhd_unit *drhd;
3022         struct intel_iommu *iommu = NULL;
3023         unsigned long flag;
3024
3025         for_each_active_iommu(iommu, drhd) {
3026                 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3027                                                  GFP_ATOMIC);
3028                 if (!iommu->iommu_state)
3029                         goto nomem;
3030         }
3031
3032         iommu_flush_all();
3033
3034         for_each_active_iommu(iommu, drhd) {
3035                 iommu_disable_translation(iommu);
3036
3037                 spin_lock_irqsave(&iommu->register_lock, flag);
3038
3039                 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3040                         readl(iommu->reg + DMAR_FECTL_REG);
3041                 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3042                         readl(iommu->reg + DMAR_FEDATA_REG);
3043                 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3044                         readl(iommu->reg + DMAR_FEADDR_REG);
3045                 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3046                         readl(iommu->reg + DMAR_FEUADDR_REG);
3047
3048                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3049         }
3050         return 0;
3051
3052 nomem:
3053         for_each_active_iommu(iommu, drhd)
3054                 kfree(iommu->iommu_state);
3055
3056         return -ENOMEM;
3057 }
3058
3059 static int iommu_resume(struct sys_device *dev)
3060 {
3061         struct dmar_drhd_unit *drhd;
3062         struct intel_iommu *iommu = NULL;
3063         unsigned long flag;
3064
3065         if (init_iommu_hw()) {
3066                 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3067                 return -EIO;
3068         }
3069
3070         for_each_active_iommu(iommu, drhd) {
3071
3072                 spin_lock_irqsave(&iommu->register_lock, flag);
3073
3074                 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3075                         iommu->reg + DMAR_FECTL_REG);
3076                 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3077                         iommu->reg + DMAR_FEDATA_REG);
3078                 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3079                         iommu->reg + DMAR_FEADDR_REG);
3080                 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3081                         iommu->reg + DMAR_FEUADDR_REG);
3082
3083                 spin_unlock_irqrestore(&iommu->register_lock, flag);
3084         }
3085
3086         for_each_active_iommu(iommu, drhd)
3087                 kfree(iommu->iommu_state);
3088
3089         return 0;
3090 }
3091
3092 static struct sysdev_class iommu_sysclass = {
3093         .name           = "iommu",
3094         .resume         = iommu_resume,
3095         .suspend        = iommu_suspend,
3096 };
3097
3098 static struct sys_device device_iommu = {
3099         .cls    = &iommu_sysclass,
3100 };
3101
3102 static int __init init_iommu_sysfs(void)
3103 {
3104         int error;
3105
3106         error = sysdev_class_register(&iommu_sysclass);
3107         if (error)
3108                 return error;
3109
3110         error = sysdev_register(&device_iommu);
3111         if (error)
3112                 sysdev_class_unregister(&iommu_sysclass);
3113
3114         return error;
3115 }
3116
3117 #else
3118 static int __init init_iommu_sysfs(void)
3119 {
3120         return 0;
3121 }
3122 #endif  /* CONFIG_PM */
3123
3124 int __init intel_iommu_init(void)
3125 {
3126         int ret = 0;
3127
3128         if (dmar_table_init())
3129                 return  -ENODEV;
3130
3131         if (dmar_dev_scope_init())
3132                 return  -ENODEV;
3133
3134         /*
3135          * Check the need for DMA-remapping initialization now.
3136          * Above initialization will also be used by Interrupt-remapping.
3137          */
3138         if (no_iommu || (swiotlb && !iommu_pass_through) || dmar_disabled)
3139                 return -ENODEV;
3140
3141         iommu_init_mempool();
3142         dmar_init_reserved_ranges();
3143
3144         init_no_remapping_devices();
3145
3146         ret = init_dmars();
3147         if (ret) {
3148                 printk(KERN_ERR "IOMMU: dmar init failed\n");
3149                 put_iova_domain(&reserved_iova_list);
3150                 iommu_exit_mempool();
3151                 return ret;
3152         }
3153         printk(KERN_INFO
3154         "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3155
3156         init_timer(&unmap_timer);
3157         force_iommu = 1;
3158
3159         if (!iommu_pass_through) {
3160                 printk(KERN_INFO
3161                        "Multi-level page-table translation for DMAR.\n");
3162                 dma_ops = &intel_dma_ops;
3163         } else
3164                 printk(KERN_INFO
3165                        "DMAR: Pass through translation for DMAR.\n");
3166
3167         init_iommu_sysfs();
3168
3169         register_iommu(&intel_iommu_ops);
3170
3171         return 0;
3172 }
3173
3174 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3175                                            struct pci_dev *pdev)
3176 {
3177         struct pci_dev *tmp, *parent;
3178
3179         if (!iommu || !pdev)
3180                 return;
3181
3182         /* dependent device detach */
3183         tmp = pci_find_upstream_pcie_bridge(pdev);
3184         /* Secondary interface's bus number and devfn 0 */
3185         if (tmp) {
3186                 parent = pdev->bus->self;
3187                 while (parent != tmp) {
3188                         iommu_detach_dev(iommu, parent->bus->number,
3189                                          parent->devfn);
3190                         parent = parent->bus->self;
3191                 }
3192                 if (tmp->is_pcie) /* this is a PCIE-to-PCI bridge */
3193                         iommu_detach_dev(iommu,
3194                                 tmp->subordinate->number, 0);
3195                 else /* this is a legacy PCI bridge */
3196                         iommu_detach_dev(iommu, tmp->bus->number,
3197                                          tmp->devfn);
3198         }
3199 }
3200
3201 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3202                                           struct pci_dev *pdev)
3203 {
3204         struct device_domain_info *info;
3205         struct intel_iommu *iommu;
3206         unsigned long flags;
3207         int found = 0;
3208         struct list_head *entry, *tmp;
3209
3210         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3211                                 pdev->devfn);
3212         if (!iommu)
3213                 return;
3214
3215         spin_lock_irqsave(&device_domain_lock, flags);
3216         list_for_each_safe(entry, tmp, &domain->devices) {
3217                 info = list_entry(entry, struct device_domain_info, link);
3218                 /* No need to compare PCI domain; it has to be the same */
3219                 if (info->bus == pdev->bus->number &&
3220                     info->devfn == pdev->devfn) {
3221                         list_del(&info->link);
3222                         list_del(&info->global);
3223                         if (info->dev)
3224                                 info->dev->dev.archdata.iommu = NULL;
3225                         spin_unlock_irqrestore(&device_domain_lock, flags);
3226
3227                         iommu_disable_dev_iotlb(info);
3228                         iommu_detach_dev(iommu, info->bus, info->devfn);
3229                         iommu_detach_dependent_devices(iommu, pdev);
3230                         free_devinfo_mem(info);
3231
3232                         spin_lock_irqsave(&device_domain_lock, flags);
3233
3234                         if (found)
3235                                 break;
3236                         else
3237                                 continue;
3238                 }
3239
3240                 /* if there is no other devices under the same iommu
3241                  * owned by this domain, clear this iommu in iommu_bmp
3242                  * update iommu count and coherency
3243                  */
3244                 if (iommu == device_to_iommu(info->segment, info->bus,
3245                                             info->devfn))
3246                         found = 1;
3247         }
3248
3249         if (found == 0) {
3250                 unsigned long tmp_flags;
3251                 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3252                 clear_bit(iommu->seq_id, &domain->iommu_bmp);
3253                 domain->iommu_count--;
3254                 domain_update_iommu_cap(domain);
3255                 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3256         }
3257
3258         spin_unlock_irqrestore(&device_domain_lock, flags);
3259 }
3260
3261 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3262 {
3263         struct device_domain_info *info;
3264         struct intel_iommu *iommu;
3265         unsigned long flags1, flags2;
3266
3267         spin_lock_irqsave(&device_domain_lock, flags1);
3268         while (!list_empty(&domain->devices)) {
3269                 info = list_entry(domain->devices.next,
3270                         struct device_domain_info, link);
3271                 list_del(&info->link);
3272                 list_del(&info->global);
3273                 if (info->dev)
3274                         info->dev->dev.archdata.iommu = NULL;
3275
3276                 spin_unlock_irqrestore(&device_domain_lock, flags1);
3277
3278                 iommu_disable_dev_iotlb(info);
3279                 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3280                 iommu_detach_dev(iommu, info->bus, info->devfn);
3281                 iommu_detach_dependent_devices(iommu, info->dev);
3282
3283                 /* clear this iommu in iommu_bmp, update iommu count
3284                  * and capabilities
3285                  */
3286                 spin_lock_irqsave(&domain->iommu_lock, flags2);
3287                 if (test_and_clear_bit(iommu->seq_id,
3288                                        &domain->iommu_bmp)) {
3289                         domain->iommu_count--;
3290                         domain_update_iommu_cap(domain);
3291                 }
3292                 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3293
3294                 free_devinfo_mem(info);
3295                 spin_lock_irqsave(&device_domain_lock, flags1);
3296         }
3297         spin_unlock_irqrestore(&device_domain_lock, flags1);
3298 }
3299
3300 /* domain id for virtual machine, it won't be set in context */
3301 static unsigned long vm_domid;
3302
3303 static int vm_domain_min_agaw(struct dmar_domain *domain)
3304 {
3305         int i;
3306         int min_agaw = domain->agaw;
3307
3308         i = find_first_bit(&domain->iommu_bmp, g_num_of_iommus);
3309         for (; i < g_num_of_iommus; ) {
3310                 if (min_agaw > g_iommus[i]->agaw)
3311                         min_agaw = g_iommus[i]->agaw;
3312
3313                 i = find_next_bit(&domain->iommu_bmp, g_num_of_iommus, i+1);
3314         }
3315
3316         return min_agaw;
3317 }
3318
3319 static struct dmar_domain *iommu_alloc_vm_domain(void)
3320 {
3321         struct dmar_domain *domain;
3322
3323         domain = alloc_domain_mem();
3324         if (!domain)
3325                 return NULL;
3326
3327         domain->id = vm_domid++;
3328         memset(&domain->iommu_bmp, 0, sizeof(unsigned long));
3329         domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3330
3331         return domain;
3332 }
3333
3334 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3335 {
3336         int adjust_width;
3337
3338         init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3339         spin_lock_init(&domain->mapping_lock);
3340         spin_lock_init(&domain->iommu_lock);
3341
3342         domain_reserve_special_ranges(domain);
3343
3344         /* calculate AGAW */
3345         domain->gaw = guest_width;
3346         adjust_width = guestwidth_to_adjustwidth(guest_width);
3347         domain->agaw = width_to_agaw(adjust_width);
3348
3349         INIT_LIST_HEAD(&domain->devices);
3350
3351         domain->iommu_count = 0;
3352         domain->iommu_coherency = 0;
3353         domain->max_addr = 0;
3354
3355         /* always allocate the top pgd */
3356         domain->pgd = (struct dma_pte *)alloc_pgtable_page();
3357         if (!domain->pgd)
3358                 return -ENOMEM;
3359         domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3360         return 0;
3361 }
3362
3363 static void iommu_free_vm_domain(struct dmar_domain *domain)
3364 {
3365         unsigned long flags;
3366         struct dmar_drhd_unit *drhd;
3367         struct intel_iommu *iommu;
3368         unsigned long i;
3369         unsigned long ndomains;
3370
3371         for_each_drhd_unit(drhd) {
3372                 if (drhd->ignored)
3373                         continue;
3374                 iommu = drhd->iommu;
3375
3376                 ndomains = cap_ndoms(iommu->cap);
3377                 i = find_first_bit(iommu->domain_ids, ndomains);
3378                 for (; i < ndomains; ) {
3379                         if (iommu->domains[i] == domain) {
3380                                 spin_lock_irqsave(&iommu->lock, flags);
3381                                 clear_bit(i, iommu->domain_ids);
3382                                 iommu->domains[i] = NULL;
3383                                 spin_unlock_irqrestore(&iommu->lock, flags);
3384                                 break;
3385                         }
3386                         i = find_next_bit(iommu->domain_ids, ndomains, i+1);
3387                 }
3388         }
3389 }
3390
3391 static void vm_domain_exit(struct dmar_domain *domain)
3392 {
3393         /* Domain 0 is reserved, so dont process it */
3394         if (!domain)
3395                 return;
3396
3397         vm_domain_remove_all_dev_info(domain);
3398         /* destroy iovas */
3399         put_iova_domain(&domain->iovad);
3400
3401         /* clear ptes */
3402         dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3403
3404         /* free page tables */
3405         dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3406
3407         iommu_free_vm_domain(domain);
3408         free_domain_mem(domain);
3409 }
3410
3411 static int intel_iommu_domain_init(struct iommu_domain *domain)
3412 {
3413         struct dmar_domain *dmar_domain;
3414
3415         dmar_domain = iommu_alloc_vm_domain();
3416         if (!dmar_domain) {
3417                 printk(KERN_ERR
3418                         "intel_iommu_domain_init: dmar_domain == NULL\n");
3419                 return -ENOMEM;
3420         }
3421         if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3422                 printk(KERN_ERR
3423                         "intel_iommu_domain_init() failed\n");
3424                 vm_domain_exit(dmar_domain);
3425                 return -ENOMEM;
3426         }
3427         domain->priv = dmar_domain;
3428
3429         return 0;
3430 }
3431
3432 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3433 {
3434         struct dmar_domain *dmar_domain = domain->priv;
3435
3436         domain->priv = NULL;
3437         vm_domain_exit(dmar_domain);
3438 }
3439
3440 static int intel_iommu_attach_device(struct iommu_domain *domain,
3441                                      struct device *dev)
3442 {
3443         struct dmar_domain *dmar_domain = domain->priv;
3444         struct pci_dev *pdev = to_pci_dev(dev);
3445         struct intel_iommu *iommu;
3446         int addr_width;
3447         u64 end;
3448         int ret;
3449
3450         /* normally pdev is not mapped */
3451         if (unlikely(domain_context_mapped(pdev))) {
3452                 struct dmar_domain *old_domain;
3453
3454                 old_domain = find_domain(pdev);
3455                 if (old_domain) {
3456                         if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
3457                             dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
3458                                 domain_remove_one_dev_info(old_domain, pdev);
3459                         else
3460                                 domain_remove_dev_info(old_domain);
3461                 }
3462         }
3463
3464         iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3465                                 pdev->devfn);
3466         if (!iommu)
3467                 return -ENODEV;
3468
3469         /* check if this iommu agaw is sufficient for max mapped address */
3470         addr_width = agaw_to_width(iommu->agaw);
3471         end = DOMAIN_MAX_ADDR(addr_width);
3472         end = end & VTD_PAGE_MASK;
3473         if (end < dmar_domain->max_addr) {
3474                 printk(KERN_ERR "%s: iommu agaw (%d) is not "
3475                        "sufficient for the mapped address (%llx)\n",
3476                        __func__, iommu->agaw, dmar_domain->max_addr);
3477                 return -EFAULT;
3478         }
3479
3480         ret = domain_add_dev_info(dmar_domain, pdev);
3481         if (ret)
3482                 return ret;
3483
3484         ret = domain_context_mapping(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
3485         return ret;
3486 }
3487
3488 static void intel_iommu_detach_device(struct iommu_domain *domain,
3489                                       struct device *dev)
3490 {
3491         struct dmar_domain *dmar_domain = domain->priv;
3492         struct pci_dev *pdev = to_pci_dev(dev);
3493
3494         domain_remove_one_dev_info(dmar_domain, pdev);
3495 }
3496
3497 static int intel_iommu_map_range(struct iommu_domain *domain,
3498                                  unsigned long iova, phys_addr_t hpa,
3499                                  size_t size, int iommu_prot)
3500 {
3501         struct dmar_domain *dmar_domain = domain->priv;
3502         u64 max_addr;
3503         int addr_width;
3504         int prot = 0;
3505         int ret;
3506
3507         if (iommu_prot & IOMMU_READ)
3508                 prot |= DMA_PTE_READ;
3509         if (iommu_prot & IOMMU_WRITE)
3510                 prot |= DMA_PTE_WRITE;
3511         if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
3512                 prot |= DMA_PTE_SNP;
3513
3514         max_addr = iova + size;
3515         if (dmar_domain->max_addr < max_addr) {
3516                 int min_agaw;
3517                 u64 end;
3518
3519                 /* check if minimum agaw is sufficient for mapped address */
3520                 min_agaw = vm_domain_min_agaw(dmar_domain);
3521                 addr_width = agaw_to_width(min_agaw);
3522                 end = DOMAIN_MAX_ADDR(addr_width);
3523                 end = end & VTD_PAGE_MASK;
3524                 if (end < max_addr) {
3525                         printk(KERN_ERR "%s: iommu agaw (%d) is not "
3526                                "sufficient for the mapped address (%llx)\n",
3527                                __func__, min_agaw, max_addr);
3528                         return -EFAULT;
3529                 }
3530                 dmar_domain->max_addr = max_addr;
3531         }
3532         /* Round up size to next multiple of PAGE_SIZE, if it and
3533            the low bits of hpa would take us onto the next page */
3534         size = aligned_nrpages(hpa, size);
3535         ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
3536                                  hpa >> VTD_PAGE_SHIFT, size, prot);
3537         return ret;
3538 }
3539
3540 static void intel_iommu_unmap_range(struct iommu_domain *domain,
3541                                     unsigned long iova, size_t size)
3542 {
3543         struct dmar_domain *dmar_domain = domain->priv;
3544
3545         dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
3546                             (iova + size - 1) >> VTD_PAGE_SHIFT);
3547
3548         if (dmar_domain->max_addr == iova + size)
3549                 dmar_domain->max_addr = iova;
3550 }
3551
3552 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
3553                                             unsigned long iova)
3554 {
3555         struct dmar_domain *dmar_domain = domain->priv;
3556         struct dma_pte *pte;
3557         u64 phys = 0;
3558
3559         pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT);
3560         if (pte)
3561                 phys = dma_pte_addr(pte);
3562
3563         return phys;
3564 }
3565
3566 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
3567                                       unsigned long cap)
3568 {
3569         struct dmar_domain *dmar_domain = domain->priv;
3570
3571         if (cap == IOMMU_CAP_CACHE_COHERENCY)
3572                 return dmar_domain->iommu_snooping;
3573
3574         return 0;
3575 }
3576
3577 static struct iommu_ops intel_iommu_ops = {
3578         .domain_init    = intel_iommu_domain_init,
3579         .domain_destroy = intel_iommu_domain_destroy,
3580         .attach_dev     = intel_iommu_attach_device,
3581         .detach_dev     = intel_iommu_detach_device,
3582         .map            = intel_iommu_map_range,
3583         .unmap          = intel_iommu_unmap_range,
3584         .iova_to_phys   = intel_iommu_iova_to_phys,
3585         .domain_has_cap = intel_iommu_domain_has_cap,
3586 };
3587
3588 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
3589 {
3590         /*
3591          * Mobile 4 Series Chipset neglects to set RWBF capability,
3592          * but needs it:
3593          */
3594         printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
3595         rwbf_quirk = 1;
3596 }
3597
3598 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);