Merge branches 'core-fixes-for-linus', 'irq-fixes-for-linus' and 'timers-fixes-for...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt61pci
23         Abstract: rt61pci device specific routines.
24         Supported chipsets: RT2561, RT2561s, RT2661.
25  */
26
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/pci.h>
34 #include <linux/eeprom_93cx6.h>
35
36 #include "rt2x00.h"
37 #include "rt2x00pci.h"
38 #include "rt61pci.h"
39
40 /*
41  * Allow hardware encryption to be disabled.
42  */
43 static int modparam_nohwcrypt = 0;
44 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
45 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
46
47 /*
48  * Register access.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62 #define WAIT_FOR_MCU(__dev, __reg) \
63         rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \
64                                H2M_MAILBOX_CSR_OWNER, (__reg))
65
66 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
67                               const unsigned int word, const u8 value)
68 {
69         u32 reg;
70
71         mutex_lock(&rt2x00dev->csr_mutex);
72
73         /*
74          * Wait until the BBP becomes available, afterwards we
75          * can safely write the new data into the register.
76          */
77         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
78                 reg = 0;
79                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
80                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
81                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
82                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
83
84                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
85         }
86
87         mutex_unlock(&rt2x00dev->csr_mutex);
88 }
89
90 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
91                              const unsigned int word, u8 *value)
92 {
93         u32 reg;
94
95         mutex_lock(&rt2x00dev->csr_mutex);
96
97         /*
98          * Wait until the BBP becomes available, afterwards we
99          * can safely write the read request into the register.
100          * After the data has been written, we wait until hardware
101          * returns the correct value, if at any time the register
102          * doesn't become available in time, reg will be 0xffffffff
103          * which means we return 0xff to the caller.
104          */
105         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
106                 reg = 0;
107                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
108                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
109                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
110
111                 rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg);
112
113                 WAIT_FOR_BBP(rt2x00dev, &reg);
114         }
115
116         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
117
118         mutex_unlock(&rt2x00dev->csr_mutex);
119 }
120
121 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
122                              const unsigned int word, const u32 value)
123 {
124         u32 reg;
125
126         mutex_lock(&rt2x00dev->csr_mutex);
127
128         /*
129          * Wait until the RF becomes available, afterwards we
130          * can safely write the new data into the register.
131          */
132         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
133                 reg = 0;
134                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
135                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
136                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
137                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
138
139                 rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg);
140                 rt2x00_rf_write(rt2x00dev, word, value);
141         }
142
143         mutex_unlock(&rt2x00dev->csr_mutex);
144 }
145
146 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
147                                 const u8 command, const u8 token,
148                                 const u8 arg0, const u8 arg1)
149 {
150         u32 reg;
151
152         mutex_lock(&rt2x00dev->csr_mutex);
153
154         /*
155          * Wait until the MCU becomes available, afterwards we
156          * can safely write the new data into the register.
157          */
158         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
159                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
162                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
163                 rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
164
165                 rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
166                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
167                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
168                 rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg);
169         }
170
171         mutex_unlock(&rt2x00dev->csr_mutex);
172
173 }
174
175 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
176 {
177         struct rt2x00_dev *rt2x00dev = eeprom->data;
178         u32 reg;
179
180         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
181
182         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
183         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
184         eeprom->reg_data_clock =
185             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
186         eeprom->reg_chip_select =
187             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
188 }
189
190 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
191 {
192         struct rt2x00_dev *rt2x00dev = eeprom->data;
193         u32 reg = 0;
194
195         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
197         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
198                            !!eeprom->reg_data_clock);
199         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
200                            !!eeprom->reg_chip_select);
201
202         rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
203 }
204
205 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
206 static const struct rt2x00debug rt61pci_rt2x00debug = {
207         .owner  = THIS_MODULE,
208         .csr    = {
209                 .read           = rt2x00pci_register_read,
210                 .write          = rt2x00pci_register_write,
211                 .flags          = RT2X00DEBUGFS_OFFSET,
212                 .word_base      = CSR_REG_BASE,
213                 .word_size      = sizeof(u32),
214                 .word_count     = CSR_REG_SIZE / sizeof(u32),
215         },
216         .eeprom = {
217                 .read           = rt2x00_eeprom_read,
218                 .write          = rt2x00_eeprom_write,
219                 .word_base      = EEPROM_BASE,
220                 .word_size      = sizeof(u16),
221                 .word_count     = EEPROM_SIZE / sizeof(u16),
222         },
223         .bbp    = {
224                 .read           = rt61pci_bbp_read,
225                 .write          = rt61pci_bbp_write,
226                 .word_base      = BBP_BASE,
227                 .word_size      = sizeof(u8),
228                 .word_count     = BBP_SIZE / sizeof(u8),
229         },
230         .rf     = {
231                 .read           = rt2x00_rf_read,
232                 .write          = rt61pci_rf_write,
233                 .word_base      = RF_BASE,
234                 .word_size      = sizeof(u32),
235                 .word_count     = RF_SIZE / sizeof(u32),
236         },
237 };
238 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
239
240 #ifdef CONFIG_RT2X00_LIB_RFKILL
241 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
242 {
243         u32 reg;
244
245         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
246         return rt2x00_get_field32(reg, MAC_CSR13_BIT5);
247 }
248 #else
249 #define rt61pci_rfkill_poll     NULL
250 #endif /* CONFIG_RT2X00_LIB_RFKILL */
251
252 #ifdef CONFIG_RT2X00_LIB_LEDS
253 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
254                                    enum led_brightness brightness)
255 {
256         struct rt2x00_led *led =
257             container_of(led_cdev, struct rt2x00_led, led_dev);
258         unsigned int enabled = brightness != LED_OFF;
259         unsigned int a_mode =
260             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
261         unsigned int bg_mode =
262             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
263
264         if (led->type == LED_TYPE_RADIO) {
265                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
266                                    MCU_LEDCS_RADIO_STATUS, enabled);
267
268                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
269                                     (led->rt2x00dev->led_mcu_reg & 0xff),
270                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
271         } else if (led->type == LED_TYPE_ASSOC) {
272                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
273                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
274                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
275                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
276
277                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
278                                     (led->rt2x00dev->led_mcu_reg & 0xff),
279                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
280         } else if (led->type == LED_TYPE_QUALITY) {
281                 /*
282                  * The brightness is divided into 6 levels (0 - 5),
283                  * this means we need to convert the brightness
284                  * argument into the matching level within that range.
285                  */
286                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
287                                     brightness / (LED_FULL / 6), 0);
288         }
289 }
290
291 static int rt61pci_blink_set(struct led_classdev *led_cdev,
292                              unsigned long *delay_on,
293                              unsigned long *delay_off)
294 {
295         struct rt2x00_led *led =
296             container_of(led_cdev, struct rt2x00_led, led_dev);
297         u32 reg;
298
299         rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, &reg);
300         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
301         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
302         rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg);
303
304         return 0;
305 }
306
307 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
308                              struct rt2x00_led *led,
309                              enum led_type type)
310 {
311         led->rt2x00dev = rt2x00dev;
312         led->type = type;
313         led->led_dev.brightness_set = rt61pci_brightness_set;
314         led->led_dev.blink_set = rt61pci_blink_set;
315         led->flags = LED_INITIALIZED;
316 }
317 #endif /* CONFIG_RT2X00_LIB_LEDS */
318
319 /*
320  * Configuration handlers.
321  */
322 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
323                                      struct rt2x00lib_crypto *crypto,
324                                      struct ieee80211_key_conf *key)
325 {
326         struct hw_key_entry key_entry;
327         struct rt2x00_field32 field;
328         u32 mask;
329         u32 reg;
330
331         if (crypto->cmd == SET_KEY) {
332                 /*
333                  * rt2x00lib can't determine the correct free
334                  * key_idx for shared keys. We have 1 register
335                  * with key valid bits. The goal is simple, read
336                  * the register, if that is full we have no slots
337                  * left.
338                  * Note that each BSS is allowed to have up to 4
339                  * shared keys, so put a mask over the allowed
340                  * entries.
341                  */
342                 mask = (0xf << crypto->bssidx);
343
344                 rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
345                 reg &= mask;
346
347                 if (reg && reg == mask)
348                         return -ENOSPC;
349
350                 key->hw_key_idx += reg ? ffz(reg) : 0;
351
352                 /*
353                  * Upload key to hardware
354                  */
355                 memcpy(key_entry.key, crypto->key,
356                        sizeof(key_entry.key));
357                 memcpy(key_entry.tx_mic, crypto->tx_mic,
358                        sizeof(key_entry.tx_mic));
359                 memcpy(key_entry.rx_mic, crypto->rx_mic,
360                        sizeof(key_entry.rx_mic));
361
362                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
363                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
364                                               &key_entry, sizeof(key_entry));
365
366                 /*
367                  * The cipher types are stored over 2 registers.
368                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
369                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
370                  * Using the correct defines correctly will cause overhead,
371                  * so just calculate the correct offset.
372                  */
373                 if (key->hw_key_idx < 8) {
374                         field.bit_offset = (3 * key->hw_key_idx);
375                         field.bit_mask = 0x7 << field.bit_offset;
376
377                         rt2x00pci_register_read(rt2x00dev, SEC_CSR1, &reg);
378                         rt2x00_set_field32(&reg, field, crypto->cipher);
379                         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg);
380                 } else {
381                         field.bit_offset = (3 * (key->hw_key_idx - 8));
382                         field.bit_mask = 0x7 << field.bit_offset;
383
384                         rt2x00pci_register_read(rt2x00dev, SEC_CSR5, &reg);
385                         rt2x00_set_field32(&reg, field, crypto->cipher);
386                         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg);
387                 }
388
389                 /*
390                  * The driver does not support the IV/EIV generation
391                  * in hardware. However it doesn't support the IV/EIV
392                  * inside the ieee80211 frame either, but requires it
393                  * to be provided seperately for the descriptor.
394                  * rt2x00lib will cut the IV/EIV data out of all frames
395                  * given to us by mac80211, but we must tell mac80211
396                  * to generate the IV/EIV data.
397                  */
398                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
399         }
400
401         /*
402          * SEC_CSR0 contains only single-bit fields to indicate
403          * a particular key is valid. Because using the FIELD32()
404          * defines directly will cause a lot of overhead we use
405          * a calculation to determine the correct bit directly.
406          */
407         mask = 1 << key->hw_key_idx;
408
409         rt2x00pci_register_read(rt2x00dev, SEC_CSR0, &reg);
410         if (crypto->cmd == SET_KEY)
411                 reg |= mask;
412         else if (crypto->cmd == DISABLE_KEY)
413                 reg &= ~mask;
414         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg);
415
416         return 0;
417 }
418
419 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
420                                        struct rt2x00lib_crypto *crypto,
421                                        struct ieee80211_key_conf *key)
422 {
423         struct hw_pairwise_ta_entry addr_entry;
424         struct hw_key_entry key_entry;
425         u32 mask;
426         u32 reg;
427
428         if (crypto->cmd == SET_KEY) {
429                 /*
430                  * rt2x00lib can't determine the correct free
431                  * key_idx for pairwise keys. We have 2 registers
432                  * with key valid bits. The goal is simple, read
433                  * the first register, if that is full move to
434                  * the next register.
435                  * When both registers are full, we drop the key,
436                  * otherwise we use the first invalid entry.
437                  */
438                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
439                 if (reg && reg == ~0) {
440                         key->hw_key_idx = 32;
441                         rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
442                         if (reg && reg == ~0)
443                                 return -ENOSPC;
444                 }
445
446                 key->hw_key_idx += reg ? ffz(reg) : 0;
447
448                 /*
449                  * Upload key to hardware
450                  */
451                 memcpy(key_entry.key, crypto->key,
452                        sizeof(key_entry.key));
453                 memcpy(key_entry.tx_mic, crypto->tx_mic,
454                        sizeof(key_entry.tx_mic));
455                 memcpy(key_entry.rx_mic, crypto->rx_mic,
456                        sizeof(key_entry.rx_mic));
457
458                 memset(&addr_entry, 0, sizeof(addr_entry));
459                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
460                 addr_entry.cipher = crypto->cipher;
461
462                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
463                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
464                                               &key_entry, sizeof(key_entry));
465
466                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
467                 rt2x00pci_register_multiwrite(rt2x00dev, reg,
468                                               &addr_entry, sizeof(addr_entry));
469
470                 /*
471                  * Enable pairwise lookup table for given BSS idx,
472                  * without this received frames will not be decrypted
473                  * by the hardware.
474                  */
475                 rt2x00pci_register_read(rt2x00dev, SEC_CSR4, &reg);
476                 reg |= (1 << crypto->bssidx);
477                 rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg);
478
479                 /*
480                  * The driver does not support the IV/EIV generation
481                  * in hardware. However it doesn't support the IV/EIV
482                  * inside the ieee80211 frame either, but requires it
483                  * to be provided seperately for the descriptor.
484                  * rt2x00lib will cut the IV/EIV data out of all frames
485                  * given to us by mac80211, but we must tell mac80211
486                  * to generate the IV/EIV data.
487                  */
488                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
489         }
490
491         /*
492          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
493          * a particular key is valid. Because using the FIELD32()
494          * defines directly will cause a lot of overhead we use
495          * a calculation to determine the correct bit directly.
496          */
497         if (key->hw_key_idx < 32) {
498                 mask = 1 << key->hw_key_idx;
499
500                 rt2x00pci_register_read(rt2x00dev, SEC_CSR2, &reg);
501                 if (crypto->cmd == SET_KEY)
502                         reg |= mask;
503                 else if (crypto->cmd == DISABLE_KEY)
504                         reg &= ~mask;
505                 rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg);
506         } else {
507                 mask = 1 << (key->hw_key_idx - 32);
508
509                 rt2x00pci_register_read(rt2x00dev, SEC_CSR3, &reg);
510                 if (crypto->cmd == SET_KEY)
511                         reg |= mask;
512                 else if (crypto->cmd == DISABLE_KEY)
513                         reg &= ~mask;
514                 rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg);
515         }
516
517         return 0;
518 }
519
520 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
521                                   const unsigned int filter_flags)
522 {
523         u32 reg;
524
525         /*
526          * Start configuration steps.
527          * Note that the version error will always be dropped
528          * and broadcast frames will always be accepted since
529          * there is no filter for it at this time.
530          */
531         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
532         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
533                            !(filter_flags & FIF_FCSFAIL));
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
535                            !(filter_flags & FIF_PLCPFAIL));
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
537                            !(filter_flags & FIF_CONTROL));
538         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
539                            !(filter_flags & FIF_PROMISC_IN_BSS));
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
541                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
542                            !rt2x00dev->intf_ap_count);
543         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
544         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
545                            !(filter_flags & FIF_ALLMULTI));
546         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
547         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
548                            !(filter_flags & FIF_CONTROL));
549         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
550 }
551
552 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
553                                 struct rt2x00_intf *intf,
554                                 struct rt2x00intf_conf *conf,
555                                 const unsigned int flags)
556 {
557         unsigned int beacon_base;
558         u32 reg;
559
560         if (flags & CONFIG_UPDATE_TYPE) {
561                 /*
562                  * Clear current synchronisation setup.
563                  * For the Beacon base registers we only need to clear
564                  * the first byte since that byte contains the VALID and OWNER
565                  * bits which (when set to 0) will invalidate the entire beacon.
566                  */
567                 beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
568                 rt2x00pci_register_write(rt2x00dev, beacon_base, 0);
569
570                 /*
571                  * Enable synchronisation.
572                  */
573                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
574                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
575                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
576                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
577                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
578         }
579
580         if (flags & CONFIG_UPDATE_MAC) {
581                 reg = le32_to_cpu(conf->mac[1]);
582                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
583                 conf->mac[1] = cpu_to_le32(reg);
584
585                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2,
586                                               conf->mac, sizeof(conf->mac));
587         }
588
589         if (flags & CONFIG_UPDATE_BSSID) {
590                 reg = le32_to_cpu(conf->bssid[1]);
591                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
592                 conf->bssid[1] = cpu_to_le32(reg);
593
594                 rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4,
595                                               conf->bssid, sizeof(conf->bssid));
596         }
597 }
598
599 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
600                                struct rt2x00lib_erp *erp)
601 {
602         u32 reg;
603
604         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
605         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
606         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
607
608         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
609         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
610                            !!erp->short_preamble);
611         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
612
613         rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
614
615         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
616         rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
617         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
618
619         rt2x00pci_register_read(rt2x00dev, MAC_CSR8, &reg);
620         rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
621         rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
622         rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
623         rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg);
624 }
625
626 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
627                                       struct antenna_setup *ant)
628 {
629         u8 r3;
630         u8 r4;
631         u8 r77;
632
633         rt61pci_bbp_read(rt2x00dev, 3, &r3);
634         rt61pci_bbp_read(rt2x00dev, 4, &r4);
635         rt61pci_bbp_read(rt2x00dev, 77, &r77);
636
637         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
638                           rt2x00_rf(&rt2x00dev->chip, RF5325));
639
640         /*
641          * Configure the RX antenna.
642          */
643         switch (ant->rx) {
644         case ANTENNA_HW_DIVERSITY:
645                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
646                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
647                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
648                 break;
649         case ANTENNA_A:
650                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
652                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
653                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
654                 else
655                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
656                 break;
657         case ANTENNA_B:
658         default:
659                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
660                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
661                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
662                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
663                 else
664                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
665                 break;
666         }
667
668         rt61pci_bbp_write(rt2x00dev, 77, r77);
669         rt61pci_bbp_write(rt2x00dev, 3, r3);
670         rt61pci_bbp_write(rt2x00dev, 4, r4);
671 }
672
673 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
674                                       struct antenna_setup *ant)
675 {
676         u8 r3;
677         u8 r4;
678         u8 r77;
679
680         rt61pci_bbp_read(rt2x00dev, 3, &r3);
681         rt61pci_bbp_read(rt2x00dev, 4, &r4);
682         rt61pci_bbp_read(rt2x00dev, 77, &r77);
683
684         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE,
685                           rt2x00_rf(&rt2x00dev->chip, RF2529));
686         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
687                           !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
688
689         /*
690          * Configure the RX antenna.
691          */
692         switch (ant->rx) {
693         case ANTENNA_HW_DIVERSITY:
694                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
695                 break;
696         case ANTENNA_A:
697                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
698                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
699                 break;
700         case ANTENNA_B:
701         default:
702                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
703                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
704                 break;
705         }
706
707         rt61pci_bbp_write(rt2x00dev, 77, r77);
708         rt61pci_bbp_write(rt2x00dev, 3, r3);
709         rt61pci_bbp_write(rt2x00dev, 4, r4);
710 }
711
712 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
713                                            const int p1, const int p2)
714 {
715         u32 reg;
716
717         rt2x00pci_register_read(rt2x00dev, MAC_CSR13, &reg);
718
719         rt2x00_set_field32(&reg, MAC_CSR13_BIT4, p1);
720         rt2x00_set_field32(&reg, MAC_CSR13_BIT12, 0);
721
722         rt2x00_set_field32(&reg, MAC_CSR13_BIT3, !p2);
723         rt2x00_set_field32(&reg, MAC_CSR13_BIT11, 0);
724
725         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg);
726 }
727
728 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
729                                         struct antenna_setup *ant)
730 {
731         u8 r3;
732         u8 r4;
733         u8 r77;
734
735         rt61pci_bbp_read(rt2x00dev, 3, &r3);
736         rt61pci_bbp_read(rt2x00dev, 4, &r4);
737         rt61pci_bbp_read(rt2x00dev, 77, &r77);
738
739         /*
740          * Configure the RX antenna.
741          */
742         switch (ant->rx) {
743         case ANTENNA_A:
744                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
745                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
746                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
747                 break;
748         case ANTENNA_HW_DIVERSITY:
749                 /*
750                  * FIXME: Antenna selection for the rf 2529 is very confusing
751                  * in the legacy driver. Just default to antenna B until the
752                  * legacy code can be properly translated into rt2x00 code.
753                  */
754         case ANTENNA_B:
755         default:
756                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
757                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
758                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
759                 break;
760         }
761
762         rt61pci_bbp_write(rt2x00dev, 77, r77);
763         rt61pci_bbp_write(rt2x00dev, 3, r3);
764         rt61pci_bbp_write(rt2x00dev, 4, r4);
765 }
766
767 struct antenna_sel {
768         u8 word;
769         /*
770          * value[0] -> non-LNA
771          * value[1] -> LNA
772          */
773         u8 value[2];
774 };
775
776 static const struct antenna_sel antenna_sel_a[] = {
777         { 96,  { 0x58, 0x78 } },
778         { 104, { 0x38, 0x48 } },
779         { 75,  { 0xfe, 0x80 } },
780         { 86,  { 0xfe, 0x80 } },
781         { 88,  { 0xfe, 0x80 } },
782         { 35,  { 0x60, 0x60 } },
783         { 97,  { 0x58, 0x58 } },
784         { 98,  { 0x58, 0x58 } },
785 };
786
787 static const struct antenna_sel antenna_sel_bg[] = {
788         { 96,  { 0x48, 0x68 } },
789         { 104, { 0x2c, 0x3c } },
790         { 75,  { 0xfe, 0x80 } },
791         { 86,  { 0xfe, 0x80 } },
792         { 88,  { 0xfe, 0x80 } },
793         { 35,  { 0x50, 0x50 } },
794         { 97,  { 0x48, 0x48 } },
795         { 98,  { 0x48, 0x48 } },
796 };
797
798 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
799                                struct antenna_setup *ant)
800 {
801         const struct antenna_sel *sel;
802         unsigned int lna;
803         unsigned int i;
804         u32 reg;
805
806         /*
807          * We should never come here because rt2x00lib is supposed
808          * to catch this and send us the correct antenna explicitely.
809          */
810         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
811                ant->tx == ANTENNA_SW_DIVERSITY);
812
813         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
814                 sel = antenna_sel_a;
815                 lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
816         } else {
817                 sel = antenna_sel_bg;
818                 lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
819         }
820
821         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
822                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
823
824         rt2x00pci_register_read(rt2x00dev, PHY_CSR0, &reg);
825
826         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
827                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
828         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
829                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
830
831         rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg);
832
833         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
834             rt2x00_rf(&rt2x00dev->chip, RF5325))
835                 rt61pci_config_antenna_5x(rt2x00dev, ant);
836         else if (rt2x00_rf(&rt2x00dev->chip, RF2527))
837                 rt61pci_config_antenna_2x(rt2x00dev, ant);
838         else if (rt2x00_rf(&rt2x00dev->chip, RF2529)) {
839                 if (test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags))
840                         rt61pci_config_antenna_2x(rt2x00dev, ant);
841                 else
842                         rt61pci_config_antenna_2529(rt2x00dev, ant);
843         }
844 }
845
846 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
847                                     struct rt2x00lib_conf *libconf)
848 {
849         u16 eeprom;
850         short lna_gain = 0;
851
852         if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
853                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
854                         lna_gain += 14;
855
856                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
857                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
858         } else {
859                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags))
860                         lna_gain += 14;
861
862                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
863                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
864         }
865
866         rt2x00dev->lna_gain = lna_gain;
867 }
868
869 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
870                                    struct rf_channel *rf, const int txpower)
871 {
872         u8 r3;
873         u8 r94;
874         u8 smart;
875
876         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
877         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
878
879         smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
880                   rt2x00_rf(&rt2x00dev->chip, RF2527));
881
882         rt61pci_bbp_read(rt2x00dev, 3, &r3);
883         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
884         rt61pci_bbp_write(rt2x00dev, 3, r3);
885
886         r94 = 6;
887         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
888                 r94 += txpower - MAX_TXPOWER;
889         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
890                 r94 += txpower;
891         rt61pci_bbp_write(rt2x00dev, 94, r94);
892
893         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
894         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
895         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
896         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
897
898         udelay(200);
899
900         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
901         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
902         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
903         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
904
905         udelay(200);
906
907         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
908         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
909         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
910         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
911
912         msleep(1);
913 }
914
915 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
916                                    const int txpower)
917 {
918         struct rf_channel rf;
919
920         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
921         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
922         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
923         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
924
925         rt61pci_config_channel(rt2x00dev, &rf, txpower);
926 }
927
928 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
929                                     struct rt2x00lib_conf *libconf)
930 {
931         u32 reg;
932
933         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
934         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
935                            libconf->conf->long_frame_max_tx_count);
936         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
937                            libconf->conf->short_frame_max_tx_count);
938         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
939 }
940
941 static void rt61pci_config_duration(struct rt2x00_dev *rt2x00dev,
942                                     struct rt2x00lib_conf *libconf)
943 {
944         u32 reg;
945
946         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
947         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
948         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
949
950         rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, &reg);
951         rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
952         rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg);
953
954         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
955         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
956                            libconf->conf->beacon_int * 16);
957         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
958 }
959
960 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
961                                 struct rt2x00lib_conf *libconf)
962 {
963         enum dev_state state =
964             (libconf->conf->flags & IEEE80211_CONF_PS) ?
965                 STATE_SLEEP : STATE_AWAKE;
966         u32 reg;
967
968         if (state == STATE_SLEEP) {
969                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
970                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
971                                    libconf->conf->beacon_int - 10);
972                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
973                                    libconf->conf->listen_interval - 1);
974                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
975
976                 /* We must first disable autowake before it can be enabled */
977                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
978                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
979
980                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
981                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
982
983                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005);
984                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
985                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
986
987                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
988         } else {
989                 rt2x00pci_register_read(rt2x00dev, MAC_CSR11, &reg);
990                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
991                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
992                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
993                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
994                 rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg);
995
996                 rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
997                 rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
998                 rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
999
1000                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
1001         }
1002 }
1003
1004 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
1005                            struct rt2x00lib_conf *libconf,
1006                            const unsigned int flags)
1007 {
1008         /* Always recalculate LNA gain before changing configuration */
1009         rt61pci_config_lna_gain(rt2x00dev, libconf);
1010
1011         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
1012                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
1013                                        libconf->conf->power_level);
1014         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
1015             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
1016                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
1017         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
1018                 rt61pci_config_retry_limit(rt2x00dev, libconf);
1019         if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
1020                 rt61pci_config_duration(rt2x00dev, libconf);
1021         if (flags & IEEE80211_CONF_CHANGE_PS)
1022                 rt61pci_config_ps(rt2x00dev, libconf);
1023 }
1024
1025 /*
1026  * Link tuning
1027  */
1028 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1029                                struct link_qual *qual)
1030 {
1031         u32 reg;
1032
1033         /*
1034          * Update FCS error count from register.
1035          */
1036         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1037         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1038
1039         /*
1040          * Update False CCA count from register.
1041          */
1042         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1043         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1044 }
1045
1046 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1047                                    struct link_qual *qual, u8 vgc_level)
1048 {
1049         if (qual->vgc_level != vgc_level) {
1050                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1051                 qual->vgc_level = vgc_level;
1052                 qual->vgc_level_reg = vgc_level;
1053         }
1054 }
1055
1056 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1057                                 struct link_qual *qual)
1058 {
1059         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1060 }
1061
1062 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1063                                struct link_qual *qual, const u32 count)
1064 {
1065         u8 up_bound;
1066         u8 low_bound;
1067
1068         /*
1069          * Determine r17 bounds.
1070          */
1071         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1072                 low_bound = 0x28;
1073                 up_bound = 0x48;
1074                 if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1075                         low_bound += 0x10;
1076                         up_bound += 0x10;
1077                 }
1078         } else {
1079                 low_bound = 0x20;
1080                 up_bound = 0x40;
1081                 if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
1082                         low_bound += 0x10;
1083                         up_bound += 0x10;
1084                 }
1085         }
1086
1087         /*
1088          * If we are not associated, we should go straight to the
1089          * dynamic CCA tuning.
1090          */
1091         if (!rt2x00dev->intf_associated)
1092                 goto dynamic_cca_tune;
1093
1094         /*
1095          * Special big-R17 for very short distance
1096          */
1097         if (qual->rssi >= -35) {
1098                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1099                 return;
1100         }
1101
1102         /*
1103          * Special big-R17 for short distance
1104          */
1105         if (qual->rssi >= -58) {
1106                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1107                 return;
1108         }
1109
1110         /*
1111          * Special big-R17 for middle-short distance
1112          */
1113         if (qual->rssi >= -66) {
1114                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1115                 return;
1116         }
1117
1118         /*
1119          * Special mid-R17 for middle distance
1120          */
1121         if (qual->rssi >= -74) {
1122                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1123                 return;
1124         }
1125
1126         /*
1127          * Special case: Change up_bound based on the rssi.
1128          * Lower up_bound when rssi is weaker then -74 dBm.
1129          */
1130         up_bound -= 2 * (-74 - qual->rssi);
1131         if (low_bound > up_bound)
1132                 up_bound = low_bound;
1133
1134         if (qual->vgc_level > up_bound) {
1135                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1136                 return;
1137         }
1138
1139 dynamic_cca_tune:
1140
1141         /*
1142          * r17 does not yet exceed upper limit, continue and base
1143          * the r17 tuning on the false CCA count.
1144          */
1145         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1146                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1147         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1148                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1149 }
1150
1151 /*
1152  * Firmware functions
1153  */
1154 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1155 {
1156         char *fw_name;
1157
1158         switch (rt2x00dev->chip.rt) {
1159         case RT2561:
1160                 fw_name = FIRMWARE_RT2561;
1161                 break;
1162         case RT2561s:
1163                 fw_name = FIRMWARE_RT2561s;
1164                 break;
1165         case RT2661:
1166                 fw_name = FIRMWARE_RT2661;
1167                 break;
1168         default:
1169                 fw_name = NULL;
1170                 break;
1171         }
1172
1173         return fw_name;
1174 }
1175
1176 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1177                                   const u8 *data, const size_t len)
1178 {
1179         u16 fw_crc;
1180         u16 crc;
1181
1182         /*
1183          * Only support 8kb firmware files.
1184          */
1185         if (len != 8192)
1186                 return FW_BAD_LENGTH;
1187
1188         /*
1189          * The last 2 bytes in the firmware array are the crc checksum itself,
1190          * this means that we should never pass those 2 bytes to the crc
1191          * algorithm.
1192          */
1193         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1194
1195         /*
1196          * Use the crc itu-t algorithm.
1197          */
1198         crc = crc_itu_t(0, data, len - 2);
1199         crc = crc_itu_t_byte(crc, 0);
1200         crc = crc_itu_t_byte(crc, 0);
1201
1202         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1203 }
1204
1205 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1206                                  const u8 *data, const size_t len)
1207 {
1208         int i;
1209         u32 reg;
1210
1211         /*
1212          * Wait for stable hardware.
1213          */
1214         for (i = 0; i < 100; i++) {
1215                 rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
1216                 if (reg)
1217                         break;
1218                 msleep(1);
1219         }
1220
1221         if (!reg) {
1222                 ERROR(rt2x00dev, "Unstable hardware.\n");
1223                 return -EBUSY;
1224         }
1225
1226         /*
1227          * Prepare MCU and mailbox for firmware loading.
1228          */
1229         reg = 0;
1230         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1231         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1232         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1233         rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1234         rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1235
1236         /*
1237          * Write firmware to device.
1238          */
1239         reg = 0;
1240         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1241         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1242         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1243
1244         rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1245                                       data, len);
1246
1247         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1248         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1249
1250         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1251         rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1252
1253         for (i = 0; i < 100; i++) {
1254                 rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1255                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1256                         break;
1257                 msleep(1);
1258         }
1259
1260         if (i == 100) {
1261                 ERROR(rt2x00dev, "MCU Control register not ready.\n");
1262                 return -EBUSY;
1263         }
1264
1265         /*
1266          * Hardware needs another millisecond before it is ready.
1267          */
1268         msleep(1);
1269
1270         /*
1271          * Reset MAC and BBP registers.
1272          */
1273         reg = 0;
1274         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1275         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1276         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1277
1278         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1279         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1280         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1281         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1282
1283         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1284         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1285         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1286
1287         return 0;
1288 }
1289
1290 /*
1291  * Initialization functions.
1292  */
1293 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1294 {
1295         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1296         u32 word;
1297
1298         if (entry->queue->qid == QID_RX) {
1299                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1300
1301                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1302         } else {
1303                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1304
1305                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1306                         rt2x00_get_field32(word, TXD_W0_VALID));
1307         }
1308 }
1309
1310 static void rt61pci_clear_entry(struct queue_entry *entry)
1311 {
1312         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1313         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1314         u32 word;
1315
1316         if (entry->queue->qid == QID_RX) {
1317                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1318                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1319                                    skbdesc->skb_dma);
1320                 rt2x00_desc_write(entry_priv->desc, 5, word);
1321
1322                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1323                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1324                 rt2x00_desc_write(entry_priv->desc, 0, word);
1325         } else {
1326                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1327                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1328                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1329                 rt2x00_desc_write(entry_priv->desc, 0, word);
1330         }
1331 }
1332
1333 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1334 {
1335         struct queue_entry_priv_pci *entry_priv;
1336         u32 reg;
1337
1338         /*
1339          * Initialize registers.
1340          */
1341         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1342         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1343                            rt2x00dev->tx[0].limit);
1344         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1345                            rt2x00dev->tx[1].limit);
1346         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1347                            rt2x00dev->tx[2].limit);
1348         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1349                            rt2x00dev->tx[3].limit);
1350         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg);
1351
1352         rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1353         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1354                            rt2x00dev->tx[0].desc_size / 4);
1355         rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg);
1356
1357         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1358         rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1359         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1360                            entry_priv->desc_dma);
1361         rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1362
1363         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1364         rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1365         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1366                            entry_priv->desc_dma);
1367         rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1368
1369         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1370         rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1371         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1372                            entry_priv->desc_dma);
1373         rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1374
1375         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1376         rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1377         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1378                            entry_priv->desc_dma);
1379         rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1380
1381         rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, &reg);
1382         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1383         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1384                            rt2x00dev->rx->desc_size / 4);
1385         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1386         rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg);
1387
1388         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1389         rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1390         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1391                            entry_priv->desc_dma);
1392         rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg);
1393
1394         rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1395         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1396         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1397         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1398         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1399         rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1400
1401         rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1402         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1403         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1404         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1405         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1406         rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1407
1408         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1409         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1410         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1411
1412         return 0;
1413 }
1414
1415 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1416 {
1417         u32 reg;
1418
1419         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1420         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1421         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1422         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1423         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1424
1425         rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, &reg);
1426         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1427         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1428         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1429         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1430         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1431         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1432         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1433         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1434         rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg);
1435
1436         /*
1437          * CCK TXD BBP registers
1438          */
1439         rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, &reg);
1440         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1441         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1442         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1443         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1444         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1445         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1446         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1447         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1448         rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg);
1449
1450         /*
1451          * OFDM TXD BBP registers
1452          */
1453         rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, &reg);
1454         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1455         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1456         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1457         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1458         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1459         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1460         rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg);
1461
1462         rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, &reg);
1463         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1464         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1465         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1466         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1467         rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg);
1468
1469         rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, &reg);
1470         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1471         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1472         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1473         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1474         rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg);
1475
1476         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1477         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1478         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1479         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1480         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1481         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1482         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1483         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1484
1485         rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1486
1487         rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1488
1489         rt2x00pci_register_read(rt2x00dev, MAC_CSR9, &reg);
1490         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1491         rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg);
1492
1493         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1494
1495         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1496                 return -EBUSY;
1497
1498         rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1499
1500         /*
1501          * Invalidate all Shared Keys (SEC_CSR0),
1502          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1503          */
1504         rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1505         rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1506         rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1507
1508         rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1509         rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1510         rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1511         rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1512
1513         rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1514
1515         rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1516
1517         rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1518
1519         /*
1520          * Clear all beacons
1521          * For the Beacon base registers we only need to clear
1522          * the first byte since that byte contains the VALID and OWNER
1523          * bits which (when set to 0) will invalidate the entire beacon.
1524          */
1525         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1526         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1527         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1528         rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1529
1530         /*
1531          * We must clear the error counters.
1532          * These registers are cleared on read,
1533          * so we may pass a useless variable to store the value.
1534          */
1535         rt2x00pci_register_read(rt2x00dev, STA_CSR0, &reg);
1536         rt2x00pci_register_read(rt2x00dev, STA_CSR1, &reg);
1537         rt2x00pci_register_read(rt2x00dev, STA_CSR2, &reg);
1538
1539         /*
1540          * Reset MAC and BBP registers.
1541          */
1542         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1543         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1544         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1545         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1546
1547         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1548         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1549         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1550         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1551
1552         rt2x00pci_register_read(rt2x00dev, MAC_CSR1, &reg);
1553         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1554         rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg);
1555
1556         return 0;
1557 }
1558
1559 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1560 {
1561         unsigned int i;
1562         u8 value;
1563
1564         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1565                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1566                 if ((value != 0xff) && (value != 0x00))
1567                         return 0;
1568                 udelay(REGISTER_BUSY_DELAY);
1569         }
1570
1571         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1572         return -EACCES;
1573 }
1574
1575 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1576 {
1577         unsigned int i;
1578         u16 eeprom;
1579         u8 reg_id;
1580         u8 value;
1581
1582         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1583                 return -EACCES;
1584
1585         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1586         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1587         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1588         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1589         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1590         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1591         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1592         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1593         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1594         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1595         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1596         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1597         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1598         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1599         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1600         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1601         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1602         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1603         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1604         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1605         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1606         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1607         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1608         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1609
1610         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1611                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1612
1613                 if (eeprom != 0xffff && eeprom != 0x0000) {
1614                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1615                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1616                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1617                 }
1618         }
1619
1620         return 0;
1621 }
1622
1623 /*
1624  * Device state switch handlers.
1625  */
1626 static void rt61pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1627                               enum dev_state state)
1628 {
1629         u32 reg;
1630
1631         rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, &reg);
1632         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1633                            (state == STATE_RADIO_RX_OFF) ||
1634                            (state == STATE_RADIO_RX_OFF_LINK));
1635         rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg);
1636 }
1637
1638 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1639                                enum dev_state state)
1640 {
1641         int mask = (state == STATE_RADIO_IRQ_OFF);
1642         u32 reg;
1643
1644         /*
1645          * When interrupts are being enabled, the interrupt registers
1646          * should clear the register to assure a clean state.
1647          */
1648         if (state == STATE_RADIO_IRQ_ON) {
1649                 rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1650                 rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1651
1652                 rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1653                 rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1654         }
1655
1656         /*
1657          * Only toggle the interrupts bits we are going to use.
1658          * Non-checked interrupt bits are disabled by default.
1659          */
1660         rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1661         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1662         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1663         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1664         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1665         rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
1666
1667         rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1668         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1669         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1670         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1671         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1672         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1673         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1674         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1675         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1676         rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1677 }
1678
1679 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1680 {
1681         u32 reg;
1682
1683         /*
1684          * Initialize all registers.
1685          */
1686         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1687                      rt61pci_init_registers(rt2x00dev) ||
1688                      rt61pci_init_bbp(rt2x00dev)))
1689                 return -EIO;
1690
1691         /*
1692          * Enable RX.
1693          */
1694         rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1695         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1696         rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1697
1698         return 0;
1699 }
1700
1701 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1702 {
1703         /*
1704          * Disable power
1705          */
1706         rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1707 }
1708
1709 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1710 {
1711         u32 reg;
1712         unsigned int i;
1713         char put_to_sleep;
1714
1715         put_to_sleep = (state != STATE_AWAKE);
1716
1717         rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1718         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1719         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1720         rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg);
1721
1722         /*
1723          * Device is not guaranteed to be in the requested state yet.
1724          * We must wait until the register indicates that the
1725          * device has entered the correct state.
1726          */
1727         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1728                 rt2x00pci_register_read(rt2x00dev, MAC_CSR12, &reg);
1729                 state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1730                 if (state == !put_to_sleep)
1731                         return 0;
1732                 msleep(10);
1733         }
1734
1735         return -EBUSY;
1736 }
1737
1738 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1739                                     enum dev_state state)
1740 {
1741         int retval = 0;
1742
1743         switch (state) {
1744         case STATE_RADIO_ON:
1745                 retval = rt61pci_enable_radio(rt2x00dev);
1746                 break;
1747         case STATE_RADIO_OFF:
1748                 rt61pci_disable_radio(rt2x00dev);
1749                 break;
1750         case STATE_RADIO_RX_ON:
1751         case STATE_RADIO_RX_ON_LINK:
1752         case STATE_RADIO_RX_OFF:
1753         case STATE_RADIO_RX_OFF_LINK:
1754                 rt61pci_toggle_rx(rt2x00dev, state);
1755                 break;
1756         case STATE_RADIO_IRQ_ON:
1757         case STATE_RADIO_IRQ_OFF:
1758                 rt61pci_toggle_irq(rt2x00dev, state);
1759                 break;
1760         case STATE_DEEP_SLEEP:
1761         case STATE_SLEEP:
1762         case STATE_STANDBY:
1763         case STATE_AWAKE:
1764                 retval = rt61pci_set_state(rt2x00dev, state);
1765                 break;
1766         default:
1767                 retval = -ENOTSUPP;
1768                 break;
1769         }
1770
1771         if (unlikely(retval))
1772                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1773                       state, retval);
1774
1775         return retval;
1776 }
1777
1778 /*
1779  * TX descriptor initialization
1780  */
1781 static void rt61pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1782                                   struct sk_buff *skb,
1783                                   struct txentry_desc *txdesc)
1784 {
1785         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1786         __le32 *txd = skbdesc->desc;
1787         u32 word;
1788
1789         /*
1790          * Start writing the descriptor words.
1791          */
1792         rt2x00_desc_read(txd, 1, &word);
1793         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1794         rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1795         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1796         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1797         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1798         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1799                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1800         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1801         rt2x00_desc_write(txd, 1, word);
1802
1803         rt2x00_desc_read(txd, 2, &word);
1804         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1805         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1806         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1807         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1808         rt2x00_desc_write(txd, 2, word);
1809
1810         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1811                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1812                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1813         }
1814
1815         rt2x00_desc_read(txd, 5, &word);
1816         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, skbdesc->entry->queue->qid);
1817         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1818                            skbdesc->entry->entry_idx);
1819         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1820                            TXPOWER_TO_DEV(rt2x00dev->tx_power));
1821         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1822         rt2x00_desc_write(txd, 5, word);
1823
1824         rt2x00_desc_read(txd, 6, &word);
1825         rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1826                            skbdesc->skb_dma);
1827         rt2x00_desc_write(txd, 6, word);
1828
1829         if (skbdesc->desc_len > TXINFO_SIZE) {
1830                 rt2x00_desc_read(txd, 11, &word);
1831                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, skb->len);
1832                 rt2x00_desc_write(txd, 11, word);
1833         }
1834
1835         rt2x00_desc_read(txd, 0, &word);
1836         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1837         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1838         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1839                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1840         rt2x00_set_field32(&word, TXD_W0_ACK,
1841                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1842         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1843                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1844         rt2x00_set_field32(&word, TXD_W0_OFDM,
1845                            (txdesc->rate_mode == RATE_MODE_OFDM));
1846         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1847         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1848                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1849         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1850                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1851         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1852                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1853         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1854         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1855         rt2x00_set_field32(&word, TXD_W0_BURST,
1856                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1857         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1858         rt2x00_desc_write(txd, 0, word);
1859 }
1860
1861 /*
1862  * TX data initialization
1863  */
1864 static void rt61pci_write_beacon(struct queue_entry *entry)
1865 {
1866         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1867         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1868         unsigned int beacon_base;
1869         u32 reg;
1870
1871         /*
1872          * Disable beaconing while we are reloading the beacon data,
1873          * otherwise we might be sending out invalid data.
1874          */
1875         rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1876         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1877         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1878         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1879         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1880
1881         /*
1882          * Write entire beacon with descriptor to register.
1883          */
1884         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1885         rt2x00pci_register_multiwrite(rt2x00dev,
1886                                       beacon_base,
1887                                       skbdesc->desc, skbdesc->desc_len);
1888         rt2x00pci_register_multiwrite(rt2x00dev,
1889                                       beacon_base + skbdesc->desc_len,
1890                                       entry->skb->data, entry->skb->len);
1891
1892         /*
1893          * Clean up beacon skb.
1894          */
1895         dev_kfree_skb_any(entry->skb);
1896         entry->skb = NULL;
1897 }
1898
1899 static void rt61pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1900                                   const enum data_queue_qid queue)
1901 {
1902         u32 reg;
1903
1904         if (queue == QID_BEACON) {
1905                 /*
1906                  * For Wi-Fi faily generated beacons between participating
1907                  * stations. Set TBTT phase adaptive adjustment step to 8us.
1908                  */
1909                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1910
1911                 rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, &reg);
1912                 if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1913                         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1914                         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1915                         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1916                         rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg);
1917                 }
1918                 return;
1919         }
1920
1921         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1922         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, (queue == QID_AC_BE));
1923         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, (queue == QID_AC_BK));
1924         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, (queue == QID_AC_VI));
1925         rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, (queue == QID_AC_VO));
1926         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1927 }
1928
1929 static void rt61pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
1930                                   const enum data_queue_qid qid)
1931 {
1932         u32 reg;
1933
1934         if (qid == QID_BEACON) {
1935                 rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, 0);
1936                 return;
1937         }
1938
1939         rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1940         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, (qid == QID_AC_BE));
1941         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, (qid == QID_AC_BK));
1942         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, (qid == QID_AC_VI));
1943         rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, (qid == QID_AC_VO));
1944         rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1945 }
1946
1947 /*
1948  * RX control handlers
1949  */
1950 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1951 {
1952         u8 offset = rt2x00dev->lna_gain;
1953         u8 lna;
1954
1955         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1956         switch (lna) {
1957         case 3:
1958                 offset += 90;
1959                 break;
1960         case 2:
1961                 offset += 74;
1962                 break;
1963         case 1:
1964                 offset += 64;
1965                 break;
1966         default:
1967                 return 0;
1968         }
1969
1970         if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1971                 if (lna == 3 || lna == 2)
1972                         offset += 10;
1973         }
1974
1975         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1976 }
1977
1978 static void rt61pci_fill_rxdone(struct queue_entry *entry,
1979                                 struct rxdone_entry_desc *rxdesc)
1980 {
1981         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1982         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1983         u32 word0;
1984         u32 word1;
1985
1986         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1987         rt2x00_desc_read(entry_priv->desc, 1, &word1);
1988
1989         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1990                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1991
1992         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1993                 rxdesc->cipher =
1994                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1995                 rxdesc->cipher_status =
1996                     rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1997         }
1998
1999         if (rxdesc->cipher != CIPHER_NONE) {
2000                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2001                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2002                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2003
2004                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2005                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2006
2007                 /*
2008                  * Hardware has stripped IV/EIV data from 802.11 frame during
2009                  * decryption. It has provided the data seperately but rt2x00lib
2010                  * should decide if it should be reinserted.
2011                  */
2012                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2013
2014                 /*
2015                  * FIXME: Legacy driver indicates that the frame does
2016                  * contain the Michael Mic. Unfortunately, in rt2x00
2017                  * the MIC seems to be missing completely...
2018                  */
2019                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2020
2021                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2022                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2023                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2024                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2025         }
2026
2027         /*
2028          * Obtain the status about this packet.
2029          * When frame was received with an OFDM bitrate,
2030          * the signal is the PLCP value. If it was received with
2031          * a CCK bitrate the signal is the rate in 100kbit/s.
2032          */
2033         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2034         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2035         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2036
2037         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2038                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2039         else
2040                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2041         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2042                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2043 }
2044
2045 /*
2046  * Interrupt functions.
2047  */
2048 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2049 {
2050         struct data_queue *queue;
2051         struct queue_entry *entry;
2052         struct queue_entry *entry_done;
2053         struct queue_entry_priv_pci *entry_priv;
2054         struct txdone_entry_desc txdesc;
2055         u32 word;
2056         u32 reg;
2057         u32 old_reg;
2058         int type;
2059         int index;
2060
2061         /*
2062          * During each loop we will compare the freshly read
2063          * STA_CSR4 register value with the value read from
2064          * the previous loop. If the 2 values are equal then
2065          * we should stop processing because the chance it
2066          * quite big that the device has been unplugged and
2067          * we risk going into an endless loop.
2068          */
2069         old_reg = 0;
2070
2071         while (1) {
2072                 rt2x00pci_register_read(rt2x00dev, STA_CSR4, &reg);
2073                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2074                         break;
2075
2076                 if (old_reg == reg)
2077                         break;
2078                 old_reg = reg;
2079
2080                 /*
2081                  * Skip this entry when it contains an invalid
2082                  * queue identication number.
2083                  */
2084                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2085                 queue = rt2x00queue_get_queue(rt2x00dev, type);
2086                 if (unlikely(!queue))
2087                         continue;
2088
2089                 /*
2090                  * Skip this entry when it contains an invalid
2091                  * index number.
2092                  */
2093                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2094                 if (unlikely(index >= queue->limit))
2095                         continue;
2096
2097                 entry = &queue->entries[index];
2098                 entry_priv = entry->priv_data;
2099                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2100
2101                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2102                     !rt2x00_get_field32(word, TXD_W0_VALID))
2103                         return;
2104
2105                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2106                 while (entry != entry_done) {
2107                         /* Catch up.
2108                          * Just report any entries we missed as failed.
2109                          */
2110                         WARNING(rt2x00dev,
2111                                 "TX status report missed for entry %d\n",
2112                                 entry_done->entry_idx);
2113
2114                         txdesc.flags = 0;
2115                         __set_bit(TXDONE_UNKNOWN, &txdesc.flags);
2116                         txdesc.retry = 0;
2117
2118                         rt2x00lib_txdone(entry_done, &txdesc);
2119                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2120                 }
2121
2122                 /*
2123                  * Obtain the status about this packet.
2124                  */
2125                 txdesc.flags = 0;
2126                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2127                 case 0: /* Success, maybe with retry */
2128                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2129                         break;
2130                 case 6: /* Failure, excessive retries */
2131                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2132                         /* Don't break, this is a failed frame! */
2133                 default: /* Failure */
2134                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2135                 }
2136                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2137
2138                 rt2x00lib_txdone(entry, &txdesc);
2139         }
2140 }
2141
2142 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2143 {
2144         struct rt2x00_dev *rt2x00dev = dev_instance;
2145         u32 reg_mcu;
2146         u32 reg;
2147
2148         /*
2149          * Get the interrupt sources & saved to local variable.
2150          * Write register value back to clear pending interrupts.
2151          */
2152         rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2153         rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2154
2155         rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2156         rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2157
2158         if (!reg && !reg_mcu)
2159                 return IRQ_NONE;
2160
2161         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2162                 return IRQ_HANDLED;
2163
2164         /*
2165          * Handle interrupts, walk through all bits
2166          * and run the tasks, the bits are checked in order of
2167          * priority.
2168          */
2169
2170         /*
2171          * 1 - Rx ring done interrupt.
2172          */
2173         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2174                 rt2x00pci_rxdone(rt2x00dev);
2175
2176         /*
2177          * 2 - Tx ring done interrupt.
2178          */
2179         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2180                 rt61pci_txdone(rt2x00dev);
2181
2182         /*
2183          * 3 - Handle MCU command done.
2184          */
2185         if (reg_mcu)
2186                 rt2x00pci_register_write(rt2x00dev,
2187                                          M2H_CMD_DONE_CSR, 0xffffffff);
2188
2189         return IRQ_HANDLED;
2190 }
2191
2192 /*
2193  * Device probe functions.
2194  */
2195 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2196 {
2197         struct eeprom_93cx6 eeprom;
2198         u32 reg;
2199         u16 word;
2200         u8 *mac;
2201         s8 value;
2202
2203         rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
2204
2205         eeprom.data = rt2x00dev;
2206         eeprom.register_read = rt61pci_eepromregister_read;
2207         eeprom.register_write = rt61pci_eepromregister_write;
2208         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2209             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2210         eeprom.reg_data_in = 0;
2211         eeprom.reg_data_out = 0;
2212         eeprom.reg_data_clock = 0;
2213         eeprom.reg_chip_select = 0;
2214
2215         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2216                                EEPROM_SIZE / sizeof(u16));
2217
2218         /*
2219          * Start validation of the data that has been read.
2220          */
2221         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2222         if (!is_valid_ether_addr(mac)) {
2223                 random_ether_addr(mac);
2224                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
2225         }
2226
2227         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2228         if (word == 0xffff) {
2229                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2230                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2231                                    ANTENNA_B);
2232                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2233                                    ANTENNA_B);
2234                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2235                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2236                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2237                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2238                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2239                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
2240         }
2241
2242         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2243         if (word == 0xffff) {
2244                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2245                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2246                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2247                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2248                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2249                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2250                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2251                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2252                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
2253         }
2254
2255         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2256         if (word == 0xffff) {
2257                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2258                                    LED_MODE_DEFAULT);
2259                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2260                 EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
2261         }
2262
2263         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2264         if (word == 0xffff) {
2265                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2266                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2267                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2268                 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
2269         }
2270
2271         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2272         if (word == 0xffff) {
2273                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2274                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2275                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2276                 EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2277         } else {
2278                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2279                 if (value < -10 || value > 10)
2280                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2281                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2282                 if (value < -10 || value > 10)
2283                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2284                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2285         }
2286
2287         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2288         if (word == 0xffff) {
2289                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2290                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2291                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2292                 EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2293         } else {
2294                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2295                 if (value < -10 || value > 10)
2296                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2297                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2298                 if (value < -10 || value > 10)
2299                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2300                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2301         }
2302
2303         return 0;
2304 }
2305
2306 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2307 {
2308         u32 reg;
2309         u16 value;
2310         u16 eeprom;
2311         u16 device;
2312
2313         /*
2314          * Read EEPROM word for configuration.
2315          */
2316         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2317
2318         /*
2319          * Identify RF chipset.
2320          * To determine the RT chip we have to read the
2321          * PCI header of the device.
2322          */
2323         pci_read_config_word(to_pci_dev(rt2x00dev->dev),
2324                              PCI_CONFIG_HEADER_DEVICE, &device);
2325         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2326         rt2x00pci_register_read(rt2x00dev, MAC_CSR0, &reg);
2327         rt2x00_set_chip(rt2x00dev, device, value, reg);
2328
2329         if (!rt2x00_rf(&rt2x00dev->chip, RF5225) &&
2330             !rt2x00_rf(&rt2x00dev->chip, RF5325) &&
2331             !rt2x00_rf(&rt2x00dev->chip, RF2527) &&
2332             !rt2x00_rf(&rt2x00dev->chip, RF2529)) {
2333                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
2334                 return -ENODEV;
2335         }
2336
2337         /*
2338          * Determine number of antenna's.
2339          */
2340         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2341                 __set_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags);
2342
2343         /*
2344          * Identify default antenna configuration.
2345          */
2346         rt2x00dev->default_ant.tx =
2347             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2348         rt2x00dev->default_ant.rx =
2349             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2350
2351         /*
2352          * Read the Frame type.
2353          */
2354         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2355                 __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
2356
2357         /*
2358          * Detect if this device has an hardware controlled radio.
2359          */
2360 #ifdef CONFIG_RT2X00_LIB_RFKILL
2361         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2362                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
2363 #endif /* CONFIG_RT2X00_LIB_RFKILL */
2364
2365         /*
2366          * Read frequency offset and RF programming sequence.
2367          */
2368         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2369         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2370                 __set_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags);
2371
2372         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2373
2374         /*
2375          * Read external LNA informations.
2376          */
2377         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2378
2379         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2380                 __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
2381         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2382                 __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
2383
2384         /*
2385          * When working with a RF2529 chip without double antenna
2386          * the antenna settings should be gathered from the NIC
2387          * eeprom word.
2388          */
2389         if (rt2x00_rf(&rt2x00dev->chip, RF2529) &&
2390             !test_bit(CONFIG_DOUBLE_ANTENNA, &rt2x00dev->flags)) {
2391                 rt2x00dev->default_ant.rx =
2392                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2393                 rt2x00dev->default_ant.tx =
2394                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2395
2396                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2397                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2398                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2399                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2400         }
2401
2402         /*
2403          * Store led settings, for correct led behaviour.
2404          * If the eeprom value is invalid,
2405          * switch to default led mode.
2406          */
2407 #ifdef CONFIG_RT2X00_LIB_LEDS
2408         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2409         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2410
2411         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2412         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2413         if (value == LED_MODE_SIGNAL_STRENGTH)
2414                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2415                                  LED_TYPE_QUALITY);
2416
2417         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2418         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2419                            rt2x00_get_field16(eeprom,
2420                                               EEPROM_LED_POLARITY_GPIO_0));
2421         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2422                            rt2x00_get_field16(eeprom,
2423                                               EEPROM_LED_POLARITY_GPIO_1));
2424         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2425                            rt2x00_get_field16(eeprom,
2426                                               EEPROM_LED_POLARITY_GPIO_2));
2427         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2428                            rt2x00_get_field16(eeprom,
2429                                               EEPROM_LED_POLARITY_GPIO_3));
2430         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2431                            rt2x00_get_field16(eeprom,
2432                                               EEPROM_LED_POLARITY_GPIO_4));
2433         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2434                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2435         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2436                            rt2x00_get_field16(eeprom,
2437                                               EEPROM_LED_POLARITY_RDY_G));
2438         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2439                            rt2x00_get_field16(eeprom,
2440                                               EEPROM_LED_POLARITY_RDY_A));
2441 #endif /* CONFIG_RT2X00_LIB_LEDS */
2442
2443         return 0;
2444 }
2445
2446 /*
2447  * RF value list for RF5225 & RF5325
2448  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2449  */
2450 static const struct rf_channel rf_vals_noseq[] = {
2451         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2452         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2453         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2454         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2455         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2456         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2457         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2458         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2459         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2460         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2461         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2462         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2463         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2464         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2465
2466         /* 802.11 UNI / HyperLan 2 */
2467         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2468         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2469         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2470         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2471         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2472         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2473         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2474         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2475
2476         /* 802.11 HyperLan 2 */
2477         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2478         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2479         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2480         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2481         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2482         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2483         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2484         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2485         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2486         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2487
2488         /* 802.11 UNII */
2489         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2490         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2491         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2492         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2493         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2494         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2495
2496         /* MMAC(Japan)J52 ch 34,38,42,46 */
2497         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2498         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2499         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2500         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2501 };
2502
2503 /*
2504  * RF value list for RF5225 & RF5325
2505  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2506  */
2507 static const struct rf_channel rf_vals_seq[] = {
2508         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2509         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2510         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2511         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2512         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2513         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2514         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2515         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2516         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2517         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2518         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2519         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2520         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2521         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2522
2523         /* 802.11 UNI / HyperLan 2 */
2524         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2525         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2526         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2527         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2528         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2529         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2530         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2531         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2532
2533         /* 802.11 HyperLan 2 */
2534         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2535         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2536         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2537         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2538         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2539         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2540         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2541         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2542         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2543         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2544
2545         /* 802.11 UNII */
2546         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2547         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2548         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2549         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2550         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2551         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2552
2553         /* MMAC(Japan)J52 ch 34,38,42,46 */
2554         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2555         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2556         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2557         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2558 };
2559
2560 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2561 {
2562         struct hw_mode_spec *spec = &rt2x00dev->spec;
2563         struct channel_info *info;
2564         char *tx_power;
2565         unsigned int i;
2566
2567         /*
2568          * Initialize all hw fields.
2569          */
2570         rt2x00dev->hw->flags =
2571             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2572             IEEE80211_HW_SIGNAL_DBM |
2573             IEEE80211_HW_SUPPORTS_PS |
2574             IEEE80211_HW_PS_NULLFUNC_STACK;
2575         rt2x00dev->hw->extra_tx_headroom = 0;
2576
2577         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2578         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2579                                 rt2x00_eeprom_addr(rt2x00dev,
2580                                                    EEPROM_MAC_ADDR_0));
2581
2582         /*
2583          * Initialize hw_mode information.
2584          */
2585         spec->supported_bands = SUPPORT_BAND_2GHZ;
2586         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2587
2588         if (!test_bit(CONFIG_RF_SEQUENCE, &rt2x00dev->flags)) {
2589                 spec->num_channels = 14;
2590                 spec->channels = rf_vals_noseq;
2591         } else {
2592                 spec->num_channels = 14;
2593                 spec->channels = rf_vals_seq;
2594         }
2595
2596         if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
2597             rt2x00_rf(&rt2x00dev->chip, RF5325)) {
2598                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2599                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2600         }
2601
2602         /*
2603          * Create channel information array
2604          */
2605         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2606         if (!info)
2607                 return -ENOMEM;
2608
2609         spec->channels_info = info;
2610
2611         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2612         for (i = 0; i < 14; i++)
2613                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2614
2615         if (spec->num_channels > 14) {
2616                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2617                 for (i = 14; i < spec->num_channels; i++)
2618                         info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2619         }
2620
2621         return 0;
2622 }
2623
2624 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2625 {
2626         int retval;
2627
2628         /*
2629          * Allocate eeprom data.
2630          */
2631         retval = rt61pci_validate_eeprom(rt2x00dev);
2632         if (retval)
2633                 return retval;
2634
2635         retval = rt61pci_init_eeprom(rt2x00dev);
2636         if (retval)
2637                 return retval;
2638
2639         /*
2640          * Initialize hw specifications.
2641          */
2642         retval = rt61pci_probe_hw_mode(rt2x00dev);
2643         if (retval)
2644                 return retval;
2645
2646         /*
2647          * This device requires firmware and DMA mapped skbs.
2648          */
2649         __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2650         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
2651         if (!modparam_nohwcrypt)
2652                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2653
2654         /*
2655          * Set the rssi offset.
2656          */
2657         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2658
2659         return 0;
2660 }
2661
2662 /*
2663  * IEEE80211 stack callback functions.
2664  */
2665 static int rt61pci_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2666                            const struct ieee80211_tx_queue_params *params)
2667 {
2668         struct rt2x00_dev *rt2x00dev = hw->priv;
2669         struct data_queue *queue;
2670         struct rt2x00_field32 field;
2671         int retval;
2672         u32 reg;
2673         u32 offset;
2674
2675         /*
2676          * First pass the configuration through rt2x00lib, that will
2677          * update the queue settings and validate the input. After that
2678          * we are free to update the registers based on the value
2679          * in the queue parameter.
2680          */
2681         retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2682         if (retval)
2683                 return retval;
2684
2685         /*
2686          * We only need to perform additional register initialization
2687          * for WMM queues/
2688          */
2689         if (queue_idx >= 4)
2690                 return 0;
2691
2692         queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2693
2694         /* Update WMM TXOP register */
2695         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2696         field.bit_offset = (queue_idx & 1) * 16;
2697         field.bit_mask = 0xffff << field.bit_offset;
2698
2699         rt2x00pci_register_read(rt2x00dev, offset, &reg);
2700         rt2x00_set_field32(&reg, field, queue->txop);
2701         rt2x00pci_register_write(rt2x00dev, offset, reg);
2702
2703         /* Update WMM registers */
2704         field.bit_offset = queue_idx * 4;
2705         field.bit_mask = 0xf << field.bit_offset;
2706
2707         rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, &reg);
2708         rt2x00_set_field32(&reg, field, queue->aifs);
2709         rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg);
2710
2711         rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, &reg);
2712         rt2x00_set_field32(&reg, field, queue->cw_min);
2713         rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg);
2714
2715         rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, &reg);
2716         rt2x00_set_field32(&reg, field, queue->cw_max);
2717         rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg);
2718
2719         return 0;
2720 }
2721
2722 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw)
2723 {
2724         struct rt2x00_dev *rt2x00dev = hw->priv;
2725         u64 tsf;
2726         u32 reg;
2727
2728         rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, &reg);
2729         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2730         rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, &reg);
2731         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2732
2733         return tsf;
2734 }
2735
2736 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2737         .tx                     = rt2x00mac_tx,
2738         .start                  = rt2x00mac_start,
2739         .stop                   = rt2x00mac_stop,
2740         .add_interface          = rt2x00mac_add_interface,
2741         .remove_interface       = rt2x00mac_remove_interface,
2742         .config                 = rt2x00mac_config,
2743         .config_interface       = rt2x00mac_config_interface,
2744         .configure_filter       = rt2x00mac_configure_filter,
2745         .set_key                = rt2x00mac_set_key,
2746         .get_stats              = rt2x00mac_get_stats,
2747         .bss_info_changed       = rt2x00mac_bss_info_changed,
2748         .conf_tx                = rt61pci_conf_tx,
2749         .get_tx_stats           = rt2x00mac_get_tx_stats,
2750         .get_tsf                = rt61pci_get_tsf,
2751 };
2752
2753 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2754         .irq_handler            = rt61pci_interrupt,
2755         .probe_hw               = rt61pci_probe_hw,
2756         .get_firmware_name      = rt61pci_get_firmware_name,
2757         .check_firmware         = rt61pci_check_firmware,
2758         .load_firmware          = rt61pci_load_firmware,
2759         .initialize             = rt2x00pci_initialize,
2760         .uninitialize           = rt2x00pci_uninitialize,
2761         .get_entry_state        = rt61pci_get_entry_state,
2762         .clear_entry            = rt61pci_clear_entry,
2763         .set_device_state       = rt61pci_set_device_state,
2764         .rfkill_poll            = rt61pci_rfkill_poll,
2765         .link_stats             = rt61pci_link_stats,
2766         .reset_tuner            = rt61pci_reset_tuner,
2767         .link_tuner             = rt61pci_link_tuner,
2768         .write_tx_desc          = rt61pci_write_tx_desc,
2769         .write_tx_data          = rt2x00pci_write_tx_data,
2770         .write_beacon           = rt61pci_write_beacon,
2771         .kick_tx_queue          = rt61pci_kick_tx_queue,
2772         .kill_tx_queue          = rt61pci_kill_tx_queue,
2773         .fill_rxdone            = rt61pci_fill_rxdone,
2774         .config_shared_key      = rt61pci_config_shared_key,
2775         .config_pairwise_key    = rt61pci_config_pairwise_key,
2776         .config_filter          = rt61pci_config_filter,
2777         .config_intf            = rt61pci_config_intf,
2778         .config_erp             = rt61pci_config_erp,
2779         .config_ant             = rt61pci_config_ant,
2780         .config                 = rt61pci_config,
2781 };
2782
2783 static const struct data_queue_desc rt61pci_queue_rx = {
2784         .entry_num              = RX_ENTRIES,
2785         .data_size              = DATA_FRAME_SIZE,
2786         .desc_size              = RXD_DESC_SIZE,
2787         .priv_size              = sizeof(struct queue_entry_priv_pci),
2788 };
2789
2790 static const struct data_queue_desc rt61pci_queue_tx = {
2791         .entry_num              = TX_ENTRIES,
2792         .data_size              = DATA_FRAME_SIZE,
2793         .desc_size              = TXD_DESC_SIZE,
2794         .priv_size              = sizeof(struct queue_entry_priv_pci),
2795 };
2796
2797 static const struct data_queue_desc rt61pci_queue_bcn = {
2798         .entry_num              = 4 * BEACON_ENTRIES,
2799         .data_size              = 0, /* No DMA required for beacons */
2800         .desc_size              = TXINFO_SIZE,
2801         .priv_size              = sizeof(struct queue_entry_priv_pci),
2802 };
2803
2804 static const struct rt2x00_ops rt61pci_ops = {
2805         .name           = KBUILD_MODNAME,
2806         .max_sta_intf   = 1,
2807         .max_ap_intf    = 4,
2808         .eeprom_size    = EEPROM_SIZE,
2809         .rf_size        = RF_SIZE,
2810         .tx_queues      = NUM_TX_QUEUES,
2811         .rx             = &rt61pci_queue_rx,
2812         .tx             = &rt61pci_queue_tx,
2813         .bcn            = &rt61pci_queue_bcn,
2814         .lib            = &rt61pci_rt2x00_ops,
2815         .hw             = &rt61pci_mac80211_ops,
2816 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2817         .debugfs        = &rt61pci_rt2x00debug,
2818 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2819 };
2820
2821 /*
2822  * RT61pci module information.
2823  */
2824 static struct pci_device_id rt61pci_device_table[] = {
2825         /* RT2561s */
2826         { PCI_DEVICE(0x1814, 0x0301), PCI_DEVICE_DATA(&rt61pci_ops) },
2827         /* RT2561 v2 */
2828         { PCI_DEVICE(0x1814, 0x0302), PCI_DEVICE_DATA(&rt61pci_ops) },
2829         /* RT2661 */
2830         { PCI_DEVICE(0x1814, 0x0401), PCI_DEVICE_DATA(&rt61pci_ops) },
2831         { 0, }
2832 };
2833
2834 MODULE_AUTHOR(DRV_PROJECT);
2835 MODULE_VERSION(DRV_VERSION);
2836 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
2837 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
2838                         "PCI & PCMCIA chipset based cards");
2839 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
2840 MODULE_FIRMWARE(FIRMWARE_RT2561);
2841 MODULE_FIRMWARE(FIRMWARE_RT2561s);
2842 MODULE_FIRMWARE(FIRMWARE_RT2661);
2843 MODULE_LICENSE("GPL");
2844
2845 static struct pci_driver rt61pci_driver = {
2846         .name           = KBUILD_MODNAME,
2847         .id_table       = rt61pci_device_table,
2848         .probe          = rt2x00pci_probe,
2849         .remove         = __devexit_p(rt2x00pci_remove),
2850         .suspend        = rt2x00pci_suspend,
2851         .resume         = rt2x00pci_resume,
2852 };
2853
2854 static int __init rt61pci_init(void)
2855 {
2856         return pci_register_driver(&rt61pci_driver);
2857 }
2858
2859 static void __exit rt61pci_exit(void)
2860 {
2861         pci_unregister_driver(&rt61pci_driver);
2862 }
2863
2864 module_init(rt61pci_init);
2865 module_exit(rt61pci_exit);