Merge branch 'net-2.6.26-isatap-20080403' of git://git.linux-ipv6.org/gitroot/yoshfuj...
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 #include "rt2x00dump.h"
32
33 /*
34  * Link tuning handlers
35  */
36 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
37 {
38         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
39                 return;
40
41         /*
42          * Reset link information.
43          * Both the currently active vgc level as well as
44          * the link tuner counter should be reset. Resetting
45          * the counter is important for devices where the
46          * device should only perform link tuning during the
47          * first minute after being enabled.
48          */
49         rt2x00dev->link.count = 0;
50         rt2x00dev->link.vgc_level = 0;
51
52         /*
53          * Reset the link tuner.
54          */
55         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
56 }
57
58 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
59 {
60         /*
61          * Clear all (possibly) pre-existing quality statistics.
62          */
63         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
64
65         /*
66          * The RX and TX percentage should start at 50%
67          * this will assure we will get at least get some
68          * decent value when the link tuner starts.
69          * The value will be dropped and overwritten with
70          * the correct (measured )value anyway during the
71          * first run of the link tuner.
72          */
73         rt2x00dev->link.qual.rx_percentage = 50;
74         rt2x00dev->link.qual.tx_percentage = 50;
75
76         rt2x00lib_reset_link_tuner(rt2x00dev);
77
78         queue_delayed_work(rt2x00dev->hw->workqueue,
79                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
80 }
81
82 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
83 {
84         cancel_delayed_work_sync(&rt2x00dev->link.work);
85 }
86
87 /*
88  * Radio control handlers.
89  */
90 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
91 {
92         int status;
93
94         /*
95          * Don't enable the radio twice.
96          * And check if the hardware button has been disabled.
97          */
98         if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
99             test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
100                 return 0;
101
102         /*
103          * Initialize all data queues.
104          */
105         rt2x00queue_init_rx(rt2x00dev);
106         rt2x00queue_init_tx(rt2x00dev);
107
108         /*
109          * Enable radio.
110          */
111         status =
112             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
113         if (status)
114                 return status;
115
116         rt2x00leds_led_radio(rt2x00dev, true);
117
118         __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
119
120         /*
121          * Enable RX.
122          */
123         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
124
125         /*
126          * Start the TX queues.
127          */
128         ieee80211_start_queues(rt2x00dev->hw);
129
130         return 0;
131 }
132
133 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
134 {
135         if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
136                 return;
137
138         /*
139          * Stop all scheduled work.
140          */
141         if (work_pending(&rt2x00dev->intf_work))
142                 cancel_work_sync(&rt2x00dev->intf_work);
143         if (work_pending(&rt2x00dev->filter_work))
144                 cancel_work_sync(&rt2x00dev->filter_work);
145
146         /*
147          * Stop the TX queues.
148          */
149         ieee80211_stop_queues(rt2x00dev->hw);
150
151         /*
152          * Disable RX.
153          */
154         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
155
156         /*
157          * Disable radio.
158          */
159         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
160         rt2x00leds_led_radio(rt2x00dev, false);
161 }
162
163 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
164 {
165         /*
166          * When we are disabling the RX, we should also stop the link tuner.
167          */
168         if (state == STATE_RADIO_RX_OFF)
169                 rt2x00lib_stop_link_tuner(rt2x00dev);
170
171         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
172
173         /*
174          * When we are enabling the RX, we should also start the link tuner.
175          */
176         if (state == STATE_RADIO_RX_ON &&
177             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
178                 rt2x00lib_start_link_tuner(rt2x00dev);
179 }
180
181 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
182 {
183         enum antenna rx = rt2x00dev->link.ant.active.rx;
184         enum antenna tx = rt2x00dev->link.ant.active.tx;
185         int sample_a =
186             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
187         int sample_b =
188             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
189
190         /*
191          * We are done sampling. Now we should evaluate the results.
192          */
193         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
194
195         /*
196          * During the last period we have sampled the RSSI
197          * from both antenna's. It now is time to determine
198          * which antenna demonstrated the best performance.
199          * When we are already on the antenna with the best
200          * performance, then there really is nothing for us
201          * left to do.
202          */
203         if (sample_a == sample_b)
204                 return;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
207                 rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
210                 tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
211
212         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
213 }
214
215 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
216 {
217         enum antenna rx = rt2x00dev->link.ant.active.rx;
218         enum antenna tx = rt2x00dev->link.ant.active.tx;
219         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
220         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
221
222         /*
223          * Legacy driver indicates that we should swap antenna's
224          * when the difference in RSSI is greater that 5. This
225          * also should be done when the RSSI was actually better
226          * then the previous sample.
227          * When the difference exceeds the threshold we should
228          * sample the rssi from the other antenna to make a valid
229          * comparison between the 2 antennas.
230          */
231         if (abs(rssi_curr - rssi_old) < 5)
232                 return;
233
234         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
237                 rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
240                 tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
241
242         rt2x00lib_config_antenna(rt2x00dev, rx, tx);
243 }
244
245 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
246 {
247         /*
248          * Determine if software diversity is enabled for
249          * either the TX or RX antenna (or both).
250          * Always perform this check since within the link
251          * tuner interval the configuration might have changed.
252          */
253         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
254         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
255
256         if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
257             rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
258                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
259         if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
260             rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
261                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
262
263         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
264             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
265                 rt2x00dev->link.ant.flags = 0;
266                 return;
267         }
268
269         /*
270          * If we have only sampled the data over the last period
271          * we should now harvest the data. Otherwise just evaluate
272          * the data. The latter should only be performed once
273          * every 2 seconds.
274          */
275         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
276                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
277         else if (rt2x00dev->link.count & 1)
278                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
279 }
280
281 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
282 {
283         int avg_rssi = rssi;
284
285         /*
286          * Update global RSSI
287          */
288         if (link->qual.avg_rssi)
289                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
290         link->qual.avg_rssi = avg_rssi;
291
292         /*
293          * Update antenna RSSI
294          */
295         if (link->ant.rssi_ant)
296                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
297         link->ant.rssi_ant = rssi;
298 }
299
300 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
301 {
302         if (qual->rx_failed || qual->rx_success)
303                 qual->rx_percentage =
304                     (qual->rx_success * 100) /
305                     (qual->rx_failed + qual->rx_success);
306         else
307                 qual->rx_percentage = 50;
308
309         if (qual->tx_failed || qual->tx_success)
310                 qual->tx_percentage =
311                     (qual->tx_success * 100) /
312                     (qual->tx_failed + qual->tx_success);
313         else
314                 qual->tx_percentage = 50;
315
316         qual->rx_success = 0;
317         qual->rx_failed = 0;
318         qual->tx_success = 0;
319         qual->tx_failed = 0;
320 }
321
322 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
323                                            int rssi)
324 {
325         int rssi_percentage = 0;
326         int signal;
327
328         /*
329          * We need a positive value for the RSSI.
330          */
331         if (rssi < 0)
332                 rssi += rt2x00dev->rssi_offset;
333
334         /*
335          * Calculate the different percentages,
336          * which will be used for the signal.
337          */
338         if (rt2x00dev->rssi_offset)
339                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
340
341         /*
342          * Add the individual percentages and use the WEIGHT
343          * defines to calculate the current link signal.
344          */
345         signal = ((WEIGHT_RSSI * rssi_percentage) +
346                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
347                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
348
349         return (signal > 100) ? 100 : signal;
350 }
351
352 static void rt2x00lib_link_tuner(struct work_struct *work)
353 {
354         struct rt2x00_dev *rt2x00dev =
355             container_of(work, struct rt2x00_dev, link.work.work);
356
357         /*
358          * When the radio is shutting down we should
359          * immediately cease all link tuning.
360          */
361         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
362                 return;
363
364         /*
365          * Update statistics.
366          */
367         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
368         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
369             rt2x00dev->link.qual.rx_failed;
370
371         /*
372          * Only perform the link tuning when Link tuning
373          * has been enabled (This could have been disabled from the EEPROM).
374          */
375         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
376                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
377
378         /*
379          * Precalculate a portion of the link signal which is
380          * in based on the tx/rx success/failure counters.
381          */
382         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
383
384         /*
385          * Send a signal to the led to update the led signal strength.
386          */
387         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
388
389         /*
390          * Evaluate antenna setup, make this the last step since this could
391          * possibly reset some statistics.
392          */
393         rt2x00lib_evaluate_antenna(rt2x00dev);
394
395         /*
396          * Increase tuner counter, and reschedule the next link tuner run.
397          */
398         rt2x00dev->link.count++;
399         queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
400                            LINK_TUNE_INTERVAL);
401 }
402
403 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
404 {
405         struct rt2x00_dev *rt2x00dev =
406             container_of(work, struct rt2x00_dev, filter_work);
407         unsigned int filter = rt2x00dev->packet_filter;
408
409         /*
410          * Since we had stored the filter inside rt2x00dev->packet_filter,
411          * we should now clear that field. Otherwise the driver will
412          * assume nothing has changed (*total_flags will be compared
413          * to rt2x00dev->packet_filter to determine if any action is required).
414          */
415         rt2x00dev->packet_filter = 0;
416
417         rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw,
418                                              filter, &filter, 0, NULL);
419 }
420
421 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
422                                           struct ieee80211_vif *vif)
423 {
424         struct rt2x00_dev *rt2x00dev = data;
425         struct rt2x00_intf *intf = vif_to_intf(vif);
426         struct sk_buff *skb;
427         struct ieee80211_tx_control control;
428         struct ieee80211_bss_conf conf;
429         int delayed_flags;
430
431         /*
432          * Copy all data we need during this action under the protection
433          * of a spinlock. Otherwise race conditions might occur which results
434          * into an invalid configuration.
435          */
436         spin_lock(&intf->lock);
437
438         memcpy(&conf, &intf->conf, sizeof(conf));
439         delayed_flags = intf->delayed_flags;
440         intf->delayed_flags = 0;
441
442         spin_unlock(&intf->lock);
443
444         if (delayed_flags & DELAYED_UPDATE_BEACON) {
445                 skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
446                 if (skb) {
447                         rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb,
448                                                           &control);
449                         dev_kfree_skb(skb);
450                 }
451         }
452
453         if (delayed_flags & DELAYED_CONFIG_ERP)
454                 rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
455
456         if (delayed_flags & DELAYED_LED_ASSOC)
457                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
458 }
459
460 static void rt2x00lib_intf_scheduled(struct work_struct *work)
461 {
462         struct rt2x00_dev *rt2x00dev =
463             container_of(work, struct rt2x00_dev, intf_work);
464
465         /*
466          * Iterate over each interface and perform the
467          * requested configurations.
468          */
469         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
470                                             rt2x00lib_intf_scheduled_iter,
471                                             rt2x00dev);
472 }
473
474 /*
475  * Interrupt context handlers.
476  */
477 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
478                                       struct ieee80211_vif *vif)
479 {
480         struct rt2x00_intf *intf = vif_to_intf(vif);
481
482         if (vif->type != IEEE80211_IF_TYPE_AP &&
483             vif->type != IEEE80211_IF_TYPE_IBSS)
484                 return;
485
486         spin_lock(&intf->lock);
487         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
488         spin_unlock(&intf->lock);
489 }
490
491 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
492 {
493         if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
494                 return;
495
496         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
497                                             rt2x00lib_beacondone_iter,
498                                             rt2x00dev);
499
500         queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
501 }
502 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
503
504 void rt2x00lib_txdone(struct queue_entry *entry,
505                       struct txdone_entry_desc *txdesc)
506 {
507         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
508         struct skb_frame_desc *skbdesc;
509         struct ieee80211_tx_status tx_status;
510         int success = !!(txdesc->status == TX_SUCCESS ||
511                          txdesc->status == TX_SUCCESS_RETRY);
512         int fail = !!(txdesc->status == TX_FAIL_RETRY ||
513                       txdesc->status == TX_FAIL_INVALID ||
514                       txdesc->status == TX_FAIL_OTHER);
515
516         /*
517          * Update TX statistics.
518          */
519         rt2x00dev->link.qual.tx_success += success;
520         rt2x00dev->link.qual.tx_failed += txdesc->retry + fail;
521
522         /*
523          * Initialize TX status
524          */
525         tx_status.flags = 0;
526         tx_status.ack_signal = 0;
527         tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
528         tx_status.retry_count = txdesc->retry;
529         memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
530
531         if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
532                 if (success)
533                         tx_status.flags |= IEEE80211_TX_STATUS_ACK;
534                 else
535                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
536         }
537
538         tx_status.queue_length = entry->queue->limit;
539         tx_status.queue_number = tx_status.control.queue;
540
541         if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
542                 if (success)
543                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
544                 else
545                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
546         }
547
548         /*
549          * Send the tx_status to debugfs. Only send the status report
550          * to mac80211 when the frame originated from there. If this was
551          * a extra frame coming through a mac80211 library call (RTS/CTS)
552          * then we should not send the status report back.
553          * If send to mac80211, mac80211 will clean up the skb structure,
554          * otherwise we have to do it ourself.
555          */
556         skbdesc = get_skb_frame_desc(entry->skb);
557         skbdesc->frame_type = DUMP_FRAME_TXDONE;
558
559         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
560
561         if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
562                 ieee80211_tx_status_irqsafe(rt2x00dev->hw,
563                                             entry->skb, &tx_status);
564         else
565                 dev_kfree_skb(entry->skb);
566         entry->skb = NULL;
567 }
568 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
569
570 void rt2x00lib_rxdone(struct queue_entry *entry,
571                       struct rxdone_entry_desc *rxdesc)
572 {
573         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
574         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
575         struct ieee80211_supported_band *sband;
576         struct ieee80211_hdr *hdr;
577         const struct rt2x00_rate *rate;
578         unsigned int i;
579         int idx = -1;
580         u16 fc;
581
582         /*
583          * Update RX statistics.
584          */
585         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
586         for (i = 0; i < sband->n_bitrates; i++) {
587                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
588
589                 if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
590                      (rate->plcp == rxdesc->signal)) ||
591                     (!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
592                       (rate->bitrate == rxdesc->signal))) {
593                         idx = i;
594                         break;
595                 }
596         }
597
598         if (idx < 0) {
599                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
600                         "signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
601                         !!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
602                 idx = 0;
603         }
604
605         /*
606          * Only update link status if this is a beacon frame carrying our bssid.
607          */
608         hdr = (struct ieee80211_hdr *)entry->skb->data;
609         fc = le16_to_cpu(hdr->frame_control);
610         if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
611                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
612
613         rt2x00dev->link.qual.rx_success++;
614
615         rx_status->rate_idx = idx;
616         rx_status->signal =
617             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
618         rx_status->ssi = rxdesc->rssi;
619         rx_status->flag = rxdesc->flags;
620         rx_status->antenna = rt2x00dev->link.ant.active.rx;
621
622         /*
623          * Send frame to mac80211 & debugfs.
624          * mac80211 will clean up the skb structure.
625          */
626         get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
627         rt2x00debug_dump_frame(rt2x00dev, entry->skb);
628         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
629         entry->skb = NULL;
630 }
631 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
632
633 /*
634  * TX descriptor initializer
635  */
636 void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
637                              struct sk_buff *skb,
638                              struct ieee80211_tx_control *control)
639 {
640         struct txentry_desc txdesc;
641         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
642         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
643         const struct rt2x00_rate *rate;
644         int tx_rate;
645         int length;
646         int duration;
647         int residual;
648         u16 frame_control;
649         u16 seq_ctrl;
650
651         memset(&txdesc, 0, sizeof(txdesc));
652
653         txdesc.queue = skbdesc->entry->queue->qid;
654         txdesc.cw_min = skbdesc->entry->queue->cw_min;
655         txdesc.cw_max = skbdesc->entry->queue->cw_max;
656         txdesc.aifs = skbdesc->entry->queue->aifs;
657
658         /*
659          * Read required fields from ieee80211 header.
660          */
661         frame_control = le16_to_cpu(hdr->frame_control);
662         seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
663
664         tx_rate = control->tx_rate->hw_value;
665
666         /*
667          * Check whether this frame is to be acked
668          */
669         if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
670                 __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
671
672         /*
673          * Check if this is a RTS/CTS frame
674          */
675         if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
676                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
677                 if (is_rts_frame(frame_control)) {
678                         __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
679                         __set_bit(ENTRY_TXD_ACK, &txdesc.flags);
680                 } else
681                         __clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
682                 if (control->rts_cts_rate)
683                         tx_rate = control->rts_cts_rate->hw_value;
684         }
685
686         rate = rt2x00_get_rate(tx_rate);
687
688         /*
689          * Check if more fragments are pending
690          */
691         if (ieee80211_get_morefrag(hdr)) {
692                 __set_bit(ENTRY_TXD_BURST, &txdesc.flags);
693                 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
694         }
695
696         /*
697          * Beacons and probe responses require the tsf timestamp
698          * to be inserted into the frame.
699          */
700         if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
701             is_probe_resp(frame_control))
702                 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
703
704         /*
705          * Determine with what IFS priority this frame should be send.
706          * Set ifs to IFS_SIFS when the this is not the first fragment,
707          * or this fragment came after RTS/CTS.
708          */
709         if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
710             test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
711                 txdesc.ifs = IFS_SIFS;
712         else
713                 txdesc.ifs = IFS_BACKOFF;
714
715         /*
716          * PLCP setup
717          * Length calculation depends on OFDM/CCK rate.
718          */
719         txdesc.signal = rate->plcp;
720         txdesc.service = 0x04;
721
722         length = skbdesc->data_len + FCS_LEN;
723         if (rate->flags & DEV_RATE_OFDM) {
724                 __set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
725
726                 txdesc.length_high = (length >> 6) & 0x3f;
727                 txdesc.length_low = length & 0x3f;
728         } else {
729                 /*
730                  * Convert length to microseconds.
731                  */
732                 residual = get_duration_res(length, rate->bitrate);
733                 duration = get_duration(length, rate->bitrate);
734
735                 if (residual != 0) {
736                         duration++;
737
738                         /*
739                          * Check if we need to set the Length Extension
740                          */
741                         if (rate->bitrate == 110 && residual <= 30)
742                                 txdesc.service |= 0x80;
743                 }
744
745                 txdesc.length_high = (duration >> 8) & 0xff;
746                 txdesc.length_low = duration & 0xff;
747
748                 /*
749                  * When preamble is enabled we should set the
750                  * preamble bit for the signal.
751                  */
752                 if (rt2x00_get_rate_preamble(tx_rate))
753                         txdesc.signal |= 0x08;
754         }
755
756         rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
757
758         /*
759          * Update queue entry.
760          */
761         skbdesc->entry->skb = skb;
762
763         /*
764          * The frame has been completely initialized and ready
765          * for sending to the device. The caller will push the
766          * frame to the device, but we are going to push the
767          * frame to debugfs here.
768          */
769         skbdesc->frame_type = DUMP_FRAME_TX;
770         rt2x00debug_dump_frame(rt2x00dev, skb);
771 }
772 EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
773
774 /*
775  * Driver initialization handlers.
776  */
777 const struct rt2x00_rate rt2x00_supported_rates[12] = {
778         {
779                 .flags = DEV_RATE_CCK | DEV_RATE_BASIC,
780                 .bitrate = 10,
781                 .ratemask = BIT(0),
782                 .plcp = 0x00,
783         },
784         {
785                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
786                 .bitrate = 20,
787                 .ratemask = BIT(1),
788                 .plcp = 0x01,
789         },
790         {
791                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
792                 .bitrate = 55,
793                 .ratemask = BIT(2),
794                 .plcp = 0x02,
795         },
796         {
797                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
798                 .bitrate = 110,
799                 .ratemask = BIT(3),
800                 .plcp = 0x03,
801         },
802         {
803                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
804                 .bitrate = 60,
805                 .ratemask = BIT(4),
806                 .plcp = 0x0b,
807         },
808         {
809                 .flags = DEV_RATE_OFDM,
810                 .bitrate = 90,
811                 .ratemask = BIT(5),
812                 .plcp = 0x0f,
813         },
814         {
815                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
816                 .bitrate = 120,
817                 .ratemask = BIT(6),
818                 .plcp = 0x0a,
819         },
820         {
821                 .flags = DEV_RATE_OFDM,
822                 .bitrate = 180,
823                 .ratemask = BIT(7),
824                 .plcp = 0x0e,
825         },
826         {
827                 .flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
828                 .bitrate = 240,
829                 .ratemask = BIT(8),
830                 .plcp = 0x09,
831         },
832         {
833                 .flags = DEV_RATE_OFDM,
834                 .bitrate = 360,
835                 .ratemask = BIT(9),
836                 .plcp = 0x0d,
837         },
838         {
839                 .flags = DEV_RATE_OFDM,
840                 .bitrate = 480,
841                 .ratemask = BIT(10),
842                 .plcp = 0x08,
843         },
844         {
845                 .flags = DEV_RATE_OFDM,
846                 .bitrate = 540,
847                 .ratemask = BIT(11),
848                 .plcp = 0x0c,
849         },
850 };
851
852 static void rt2x00lib_channel(struct ieee80211_channel *entry,
853                               const int channel, const int tx_power,
854                               const int value)
855 {
856         entry->center_freq = ieee80211_channel_to_frequency(channel);
857         entry->hw_value = value;
858         entry->max_power = tx_power;
859         entry->max_antenna_gain = 0xff;
860 }
861
862 static void rt2x00lib_rate(struct ieee80211_rate *entry,
863                            const u16 index, const struct rt2x00_rate *rate)
864 {
865         entry->flags = 0;
866         entry->bitrate = rate->bitrate;
867         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
868         entry->hw_value_short = entry->hw_value;
869
870         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
871                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
872                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
873         }
874 }
875
876 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
877                                     struct hw_mode_spec *spec)
878 {
879         struct ieee80211_hw *hw = rt2x00dev->hw;
880         struct ieee80211_channel *channels;
881         struct ieee80211_rate *rates;
882         unsigned int num_rates;
883         unsigned int i;
884         unsigned char tx_power;
885
886         num_rates = 0;
887         if (spec->supported_rates & SUPPORT_RATE_CCK)
888                 num_rates += 4;
889         if (spec->supported_rates & SUPPORT_RATE_OFDM)
890                 num_rates += 8;
891
892         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
893         if (!channels)
894                 return -ENOMEM;
895
896         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
897         if (!rates)
898                 goto exit_free_channels;
899
900         /*
901          * Initialize Rate list.
902          */
903         for (i = 0; i < num_rates; i++)
904                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
905
906         /*
907          * Initialize Channel list.
908          */
909         for (i = 0; i < spec->num_channels; i++) {
910                 if (spec->channels[i].channel <= 14) {
911                         if (spec->tx_power_bg)
912                                 tx_power = spec->tx_power_bg[i];
913                         else
914                                 tx_power = spec->tx_power_default;
915                 } else {
916                         if (spec->tx_power_a)
917                                 tx_power = spec->tx_power_a[i];
918                         else
919                                 tx_power = spec->tx_power_default;
920                 }
921
922                 rt2x00lib_channel(&channels[i],
923                                   spec->channels[i].channel, tx_power, i);
924         }
925
926         /*
927          * Intitialize 802.11b, 802.11g
928          * Rates: CCK, OFDM.
929          * Channels: 2.4 GHz
930          */
931         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
932                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
933                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
934                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
935                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
936                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
937                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
938         }
939
940         /*
941          * Intitialize 802.11a
942          * Rates: OFDM.
943          * Channels: OFDM, UNII, HiperLAN2.
944          */
945         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
946                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
947                     spec->num_channels - 14;
948                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
949                     num_rates - 4;
950                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
951                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
952                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
953                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
954         }
955
956         return 0;
957
958  exit_free_channels:
959         kfree(channels);
960         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
961         return -ENOMEM;
962 }
963
964 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
965 {
966         if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
967                 ieee80211_unregister_hw(rt2x00dev->hw);
968
969         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
970                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
971                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
972                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
973                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
974         }
975 }
976
977 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
978 {
979         struct hw_mode_spec *spec = &rt2x00dev->spec;
980         int status;
981
982         /*
983          * Initialize HW modes.
984          */
985         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
986         if (status)
987                 return status;
988
989         /*
990          * Register HW.
991          */
992         status = ieee80211_register_hw(rt2x00dev->hw);
993         if (status) {
994                 rt2x00lib_remove_hw(rt2x00dev);
995                 return status;
996         }
997
998         __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
999
1000         return 0;
1001 }
1002
1003 /*
1004  * Initialization/uninitialization handlers.
1005  */
1006 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1007 {
1008         if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1009                 return;
1010
1011         /*
1012          * Unregister extra components.
1013          */
1014         rt2x00rfkill_unregister(rt2x00dev);
1015
1016         /*
1017          * Allow the HW to uninitialize.
1018          */
1019         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1020
1021         /*
1022          * Free allocated queue entries.
1023          */
1024         rt2x00queue_uninitialize(rt2x00dev);
1025 }
1026
1027 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1028 {
1029         int status;
1030
1031         if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
1032                 return 0;
1033
1034         /*
1035          * Allocate all queue entries.
1036          */
1037         status = rt2x00queue_initialize(rt2x00dev);
1038         if (status)
1039                 return status;
1040
1041         /*
1042          * Initialize the device.
1043          */
1044         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1045         if (status)
1046                 goto exit;
1047
1048         __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
1049
1050         /*
1051          * Register the extra components.
1052          */
1053         rt2x00rfkill_register(rt2x00dev);
1054
1055         return 0;
1056
1057 exit:
1058         rt2x00lib_uninitialize(rt2x00dev);
1059
1060         return status;
1061 }
1062
1063 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1064 {
1065         int retval;
1066
1067         if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1068                 return 0;
1069
1070         /*
1071          * If this is the first interface which is added,
1072          * we should load the firmware now.
1073          */
1074         retval = rt2x00lib_load_firmware(rt2x00dev);
1075         if (retval)
1076                 return retval;
1077
1078         /*
1079          * Initialize the device.
1080          */
1081         retval = rt2x00lib_initialize(rt2x00dev);
1082         if (retval)
1083                 return retval;
1084
1085         /*
1086          * Enable radio.
1087          */
1088         retval = rt2x00lib_enable_radio(rt2x00dev);
1089         if (retval) {
1090                 rt2x00lib_uninitialize(rt2x00dev);
1091                 return retval;
1092         }
1093
1094         rt2x00dev->intf_ap_count = 0;
1095         rt2x00dev->intf_sta_count = 0;
1096         rt2x00dev->intf_associated = 0;
1097
1098         __set_bit(DEVICE_STARTED, &rt2x00dev->flags);
1099
1100         return 0;
1101 }
1102
1103 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1104 {
1105         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1106                 return;
1107
1108         /*
1109          * Perhaps we can add something smarter here,
1110          * but for now just disabling the radio should do.
1111          */
1112         rt2x00lib_disable_radio(rt2x00dev);
1113
1114         rt2x00dev->intf_ap_count = 0;
1115         rt2x00dev->intf_sta_count = 0;
1116         rt2x00dev->intf_associated = 0;
1117
1118         __clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
1119 }
1120
1121 /*
1122  * driver allocation handlers.
1123  */
1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126         int retval = -ENOMEM;
1127
1128         /*
1129          * Make room for rt2x00_intf inside the per-interface
1130          * structure ieee80211_vif.
1131          */
1132         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1133
1134         /*
1135          * Let the driver probe the device to detect the capabilities.
1136          */
1137         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1138         if (retval) {
1139                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1140                 goto exit;
1141         }
1142
1143         /*
1144          * Initialize configuration work.
1145          */
1146         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1147         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1148         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1149
1150         /*
1151          * Allocate queue array.
1152          */
1153         retval = rt2x00queue_allocate(rt2x00dev);
1154         if (retval)
1155                 goto exit;
1156
1157         /*
1158          * Initialize ieee80211 structure.
1159          */
1160         retval = rt2x00lib_probe_hw(rt2x00dev);
1161         if (retval) {
1162                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1163                 goto exit;
1164         }
1165
1166         /*
1167          * Register extra components.
1168          */
1169         rt2x00leds_register(rt2x00dev);
1170         rt2x00rfkill_allocate(rt2x00dev);
1171         rt2x00debug_register(rt2x00dev);
1172
1173         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1174
1175         return 0;
1176
1177 exit:
1178         rt2x00lib_remove_dev(rt2x00dev);
1179
1180         return retval;
1181 }
1182 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1183
1184 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1185 {
1186         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1187
1188         /*
1189          * Disable radio.
1190          */
1191         rt2x00lib_disable_radio(rt2x00dev);
1192
1193         /*
1194          * Uninitialize device.
1195          */
1196         rt2x00lib_uninitialize(rt2x00dev);
1197
1198         /*
1199          * Free extra components
1200          */
1201         rt2x00debug_deregister(rt2x00dev);
1202         rt2x00rfkill_free(rt2x00dev);
1203         rt2x00leds_unregister(rt2x00dev);
1204
1205         /*
1206          * Free ieee80211_hw memory.
1207          */
1208         rt2x00lib_remove_hw(rt2x00dev);
1209
1210         /*
1211          * Free firmware image.
1212          */
1213         rt2x00lib_free_firmware(rt2x00dev);
1214
1215         /*
1216          * Free queue structures.
1217          */
1218         rt2x00queue_free(rt2x00dev);
1219 }
1220 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1221
1222 /*
1223  * Device state handlers
1224  */
1225 #ifdef CONFIG_PM
1226 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1227 {
1228         int retval;
1229
1230         NOTICE(rt2x00dev, "Going to sleep.\n");
1231         __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1232
1233         /*
1234          * Only continue if mac80211 has open interfaces.
1235          */
1236         if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
1237                 goto exit;
1238         __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
1239
1240         /*
1241          * Disable radio.
1242          */
1243         rt2x00lib_stop(rt2x00dev);
1244         rt2x00lib_uninitialize(rt2x00dev);
1245
1246         /*
1247          * Suspend/disable extra components.
1248          */
1249         rt2x00leds_suspend(rt2x00dev);
1250         rt2x00rfkill_suspend(rt2x00dev);
1251         rt2x00debug_deregister(rt2x00dev);
1252
1253 exit:
1254         /*
1255          * Set device mode to sleep for power management,
1256          * on some hardware this call seems to consistently fail.
1257          * From the specifications it is hard to tell why it fails,
1258          * and if this is a "bad thing".
1259          * Overall it is safe to just ignore the failure and
1260          * continue suspending. The only downside is that the
1261          * device will not be in optimal power save mode, but with
1262          * the radio and the other components already disabled the
1263          * device is as good as disabled.
1264          */
1265         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1266         if (retval)
1267                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1268                         "continue suspending.\n");
1269
1270         return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1273
1274 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1275                                   struct ieee80211_vif *vif)
1276 {
1277         struct rt2x00_dev *rt2x00dev = data;
1278         struct rt2x00_intf *intf = vif_to_intf(vif);
1279
1280         spin_lock(&intf->lock);
1281
1282         rt2x00lib_config_intf(rt2x00dev, intf,
1283                               vif->type, intf->mac, intf->bssid);
1284
1285
1286         /*
1287          * Master or Ad-hoc mode require a new beacon update.
1288          */
1289         if (vif->type == IEEE80211_IF_TYPE_AP ||
1290             vif->type == IEEE80211_IF_TYPE_IBSS)
1291                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1292
1293         spin_unlock(&intf->lock);
1294 }
1295
1296 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1297 {
1298         int retval;
1299
1300         NOTICE(rt2x00dev, "Waking up.\n");
1301
1302         /*
1303          * Restore/enable extra components.
1304          */
1305         rt2x00debug_register(rt2x00dev);
1306         rt2x00rfkill_resume(rt2x00dev);
1307         rt2x00leds_resume(rt2x00dev);
1308
1309         /*
1310          * Only continue if mac80211 had open interfaces.
1311          */
1312         if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
1313                 return 0;
1314
1315         /*
1316          * Reinitialize device and all active interfaces.
1317          */
1318         retval = rt2x00lib_start(rt2x00dev);
1319         if (retval)
1320                 goto exit;
1321
1322         /*
1323          * Reconfigure device.
1324          */
1325         rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
1326         if (!rt2x00dev->hw->conf.radio_enabled)
1327                 rt2x00lib_disable_radio(rt2x00dev);
1328
1329         /*
1330          * Iterator over each active interface to
1331          * reconfigure the hardware.
1332          */
1333         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1334                                             rt2x00lib_resume_intf, rt2x00dev);
1335
1336         /*
1337          * We are ready again to receive requests from mac80211.
1338          */
1339         __set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
1340
1341         /*
1342          * It is possible that during that mac80211 has attempted
1343          * to send frames while we were suspending or resuming.
1344          * In that case we have disabled the TX queue and should
1345          * now enable it again
1346          */
1347         ieee80211_start_queues(rt2x00dev->hw);
1348
1349         /*
1350          * During interface iteration we might have changed the
1351          * delayed_flags, time to handles the event by calling
1352          * the work handler directly.
1353          */
1354         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1355
1356         return 0;
1357
1358 exit:
1359         rt2x00lib_disable_radio(rt2x00dev);
1360         rt2x00lib_uninitialize(rt2x00dev);
1361         rt2x00debug_deregister(rt2x00dev);
1362
1363         return retval;
1364 }
1365 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1366 #endif /* CONFIG_PM */
1367
1368 /*
1369  * rt2x00lib module information.
1370  */
1371 MODULE_AUTHOR(DRV_PROJECT);
1372 MODULE_VERSION(DRV_VERSION);
1373 MODULE_DESCRIPTION("rt2x00 library");
1374 MODULE_LICENSE("GPL");