rt2x00: Fix BUG_ON() with antenna handling
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_rx(rt2x00dev);
105         rt2x00queue_init_tx(rt2x00dev);
106
107         /*
108          * Enable radio.
109          */
110         status =
111             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
112         if (status)
113                 return status;
114
115         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
116
117         rt2x00leds_led_radio(rt2x00dev, true);
118         rt2x00led_led_activity(rt2x00dev, true);
119
120         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
121
122         /*
123          * Enable RX.
124          */
125         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
126
127         /*
128          * Start the TX queues.
129          */
130         ieee80211_wake_queues(rt2x00dev->hw);
131
132         return 0;
133 }
134
135 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
136 {
137         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
138                 return;
139
140         /*
141          * Stop the TX queues.
142          */
143         ieee80211_stop_queues(rt2x00dev->hw);
144
145         /*
146          * Disable RX.
147          */
148         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
149
150         /*
151          * Disable radio.
152          */
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
154         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
155         rt2x00led_led_activity(rt2x00dev, false);
156         rt2x00leds_led_radio(rt2x00dev, false);
157 }
158
159 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
160 {
161         /*
162          * When we are disabling the RX, we should also stop the link tuner.
163          */
164         if (state == STATE_RADIO_RX_OFF)
165                 rt2x00lib_stop_link_tuner(rt2x00dev);
166
167         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
168
169         /*
170          * When we are enabling the RX, we should also start the link tuner.
171          */
172         if (state == STATE_RADIO_RX_ON &&
173             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
174                 rt2x00lib_start_link_tuner(rt2x00dev);
175 }
176
177 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
178 {
179         struct antenna_setup ant;
180         int sample_a =
181             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
182         int sample_b =
183             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
184
185         memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
186
187         /*
188          * We are done sampling. Now we should evaluate the results.
189          */
190         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
191
192         /*
193          * During the last period we have sampled the RSSI
194          * from both antenna's. It now is time to determine
195          * which antenna demonstrated the best performance.
196          * When we are already on the antenna with the best
197          * performance, then there really is nothing for us
198          * left to do.
199          */
200         if (sample_a == sample_b)
201                 return;
202
203         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
204                 ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
205
206         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
207                 ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
208
209         rt2x00lib_config_antenna(rt2x00dev, &ant);
210 }
211
212 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
213 {
214         struct antenna_setup ant;
215         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
216         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
217
218         memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
219
220         /*
221          * Legacy driver indicates that we should swap antenna's
222          * when the difference in RSSI is greater that 5. This
223          * also should be done when the RSSI was actually better
224          * then the previous sample.
225          * When the difference exceeds the threshold we should
226          * sample the rssi from the other antenna to make a valid
227          * comparison between the 2 antennas.
228          */
229         if (abs(rssi_curr - rssi_old) < 5)
230                 return;
231
232         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
233
234         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
235                 ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
236
237         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
238                 ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
239
240         rt2x00lib_config_antenna(rt2x00dev, &ant);
241 }
242
243 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
244 {
245         /*
246          * Determine if software diversity is enabled for
247          * either the TX or RX antenna (or both).
248          * Always perform this check since within the link
249          * tuner interval the configuration might have changed.
250          */
251         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
252         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
253
254         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
255                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
256         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
257                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
258
259         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
260             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
261                 rt2x00dev->link.ant.flags = 0;
262                 return;
263         }
264
265         /*
266          * If we have only sampled the data over the last period
267          * we should now harvest the data. Otherwise just evaluate
268          * the data. The latter should only be performed once
269          * every 2 seconds.
270          */
271         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
272                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
273         else if (rt2x00dev->link.count & 1)
274                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
275 }
276
277 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
278 {
279         int avg_rssi = rssi;
280
281         /*
282          * Update global RSSI
283          */
284         if (link->qual.avg_rssi)
285                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
286         link->qual.avg_rssi = avg_rssi;
287
288         /*
289          * Update antenna RSSI
290          */
291         if (link->ant.rssi_ant)
292                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
293         link->ant.rssi_ant = rssi;
294 }
295
296 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
297 {
298         if (qual->rx_failed || qual->rx_success)
299                 qual->rx_percentage =
300                     (qual->rx_success * 100) /
301                     (qual->rx_failed + qual->rx_success);
302         else
303                 qual->rx_percentage = 50;
304
305         if (qual->tx_failed || qual->tx_success)
306                 qual->tx_percentage =
307                     (qual->tx_success * 100) /
308                     (qual->tx_failed + qual->tx_success);
309         else
310                 qual->tx_percentage = 50;
311
312         qual->rx_success = 0;
313         qual->rx_failed = 0;
314         qual->tx_success = 0;
315         qual->tx_failed = 0;
316 }
317
318 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
319                                            int rssi)
320 {
321         int rssi_percentage = 0;
322         int signal;
323
324         /*
325          * We need a positive value for the RSSI.
326          */
327         if (rssi < 0)
328                 rssi += rt2x00dev->rssi_offset;
329
330         /*
331          * Calculate the different percentages,
332          * which will be used for the signal.
333          */
334         if (rt2x00dev->rssi_offset)
335                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
336
337         /*
338          * Add the individual percentages and use the WEIGHT
339          * defines to calculate the current link signal.
340          */
341         signal = ((WEIGHT_RSSI * rssi_percentage) +
342                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
343                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
344
345         return (signal > 100) ? 100 : signal;
346 }
347
348 static void rt2x00lib_link_tuner(struct work_struct *work)
349 {
350         struct rt2x00_dev *rt2x00dev =
351             container_of(work, struct rt2x00_dev, link.work.work);
352
353         /*
354          * When the radio is shutting down we should
355          * immediately cease all link tuning.
356          */
357         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
358                 return;
359
360         /*
361          * Update statistics.
362          */
363         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
364         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
365             rt2x00dev->link.qual.rx_failed;
366
367         /*
368          * Only perform the link tuning when Link tuning
369          * has been enabled (This could have been disabled from the EEPROM).
370          */
371         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
372                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
373
374         /*
375          * Precalculate a portion of the link signal which is
376          * in based on the tx/rx success/failure counters.
377          */
378         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
379
380         /*
381          * Send a signal to the led to update the led signal strength.
382          */
383         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
384
385         /*
386          * Evaluate antenna setup, make this the last step since this could
387          * possibly reset some statistics.
388          */
389         rt2x00lib_evaluate_antenna(rt2x00dev);
390
391         /*
392          * Increase tuner counter, and reschedule the next link tuner run.
393          */
394         rt2x00dev->link.count++;
395         queue_delayed_work(rt2x00dev->hw->workqueue,
396                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
397 }
398
399 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
400 {
401         struct rt2x00_dev *rt2x00dev =
402             container_of(work, struct rt2x00_dev, filter_work);
403
404         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
405 }
406
407 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
408                                           struct ieee80211_vif *vif)
409 {
410         struct rt2x00_dev *rt2x00dev = data;
411         struct rt2x00_intf *intf = vif_to_intf(vif);
412         struct ieee80211_bss_conf conf;
413         int delayed_flags;
414
415         /*
416          * Copy all data we need during this action under the protection
417          * of a spinlock. Otherwise race conditions might occur which results
418          * into an invalid configuration.
419          */
420         spin_lock(&intf->lock);
421
422         memcpy(&conf, &vif->bss_conf, sizeof(conf));
423         delayed_flags = intf->delayed_flags;
424         intf->delayed_flags = 0;
425
426         spin_unlock(&intf->lock);
427
428         /*
429          * It is possible the radio was disabled while the work had been
430          * scheduled. If that happens we should return here immediately,
431          * note that in the spinlock protected area above the delayed_flags
432          * have been cleared correctly.
433          */
434         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
435                 return;
436
437         if (delayed_flags & DELAYED_UPDATE_BEACON)
438                 rt2x00queue_update_beacon(rt2x00dev, vif);
439
440         if (delayed_flags & DELAYED_CONFIG_ERP)
441                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
442
443         if (delayed_flags & DELAYED_LED_ASSOC)
444                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
445 }
446
447 static void rt2x00lib_intf_scheduled(struct work_struct *work)
448 {
449         struct rt2x00_dev *rt2x00dev =
450             container_of(work, struct rt2x00_dev, intf_work);
451
452         /*
453          * Iterate over each interface and perform the
454          * requested configurations.
455          */
456         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
457                                             rt2x00lib_intf_scheduled_iter,
458                                             rt2x00dev);
459 }
460
461 /*
462  * Interrupt context handlers.
463  */
464 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
465                                       struct ieee80211_vif *vif)
466 {
467         struct rt2x00_dev *rt2x00dev = data;
468         struct rt2x00_intf *intf = vif_to_intf(vif);
469
470         if (vif->type != NL80211_IFTYPE_AP &&
471             vif->type != NL80211_IFTYPE_ADHOC)
472                 return;
473
474         /*
475          * Clean up the beacon skb.
476          */
477         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
478         intf->beacon->skb = NULL;
479
480         spin_lock(&intf->lock);
481         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
482         spin_unlock(&intf->lock);
483 }
484
485 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
486 {
487         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
488                 return;
489
490         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
491                                                    rt2x00lib_beacondone_iter,
492                                                    rt2x00dev);
493
494         schedule_work(&rt2x00dev->intf_work);
495 }
496 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
497
498 void rt2x00lib_txdone(struct queue_entry *entry,
499                       struct txdone_entry_desc *txdesc)
500 {
501         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
502         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
503         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
504         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
505         u8 rate_idx, rate_flags;
506
507         /*
508          * Unmap the skb.
509          */
510         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
511
512         /*
513          * If the IV/EIV data was stripped from the frame before it was
514          * passed to the hardware, we should now reinsert it again because
515          * mac80211 will expect the the same data to be present it the
516          * frame as it was passed to us.
517          */
518         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
519                 rt2x00crypto_tx_insert_iv(entry->skb);
520
521         /*
522          * Send frame to debugfs immediately, after this call is completed
523          * we are going to overwrite the skb->cb array.
524          */
525         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
526
527         /*
528          * Update TX statistics.
529          */
530         rt2x00dev->link.qual.tx_success +=
531             test_bit(TXDONE_SUCCESS, &txdesc->flags);
532         rt2x00dev->link.qual.tx_failed +=
533             test_bit(TXDONE_FAILURE, &txdesc->flags);
534
535         rate_idx = skbdesc->tx_rate_idx;
536         rate_flags = skbdesc->tx_rate_flags;
537
538         /*
539          * Initialize TX status
540          */
541         memset(&tx_info->status, 0, sizeof(tx_info->status));
542         tx_info->status.ack_signal = 0;
543         tx_info->status.rates[0].idx = rate_idx;
544         tx_info->status.rates[0].flags = rate_flags;
545         tx_info->status.rates[0].count = txdesc->retry + 1;
546         tx_info->status.rates[1].idx = -1; /* terminate */
547
548         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
549                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
550                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
551                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
552                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
553         }
554
555         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
556                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
557                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
558                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
559                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
560         }
561
562         /*
563          * Only send the status report to mac80211 when TX status was
564          * requested by it. If this was a extra frame coming through
565          * a mac80211 library call (RTS/CTS) then we should not send the
566          * status report back.
567          */
568         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
569                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
570         else
571                 dev_kfree_skb_irq(entry->skb);
572
573         /*
574          * Make this entry available for reuse.
575          */
576         entry->skb = NULL;
577         entry->flags = 0;
578
579         rt2x00dev->ops->lib->init_txentry(rt2x00dev, entry);
580
581         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
582         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
583
584         /*
585          * If the data queue was below the threshold before the txdone
586          * handler we must make sure the packet queue in the mac80211 stack
587          * is reenabled when the txdone handler has finished.
588          */
589         if (!rt2x00queue_threshold(entry->queue))
590                 ieee80211_wake_queue(rt2x00dev->hw, qid);
591 }
592 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
593
594 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
595                       struct queue_entry *entry)
596 {
597         struct rxdone_entry_desc rxdesc;
598         struct sk_buff *skb;
599         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
600         struct ieee80211_supported_band *sband;
601         struct ieee80211_hdr *hdr;
602         const struct rt2x00_rate *rate;
603         unsigned int header_length;
604         unsigned int align;
605         unsigned int i;
606         int idx = -1;
607
608         /*
609          * Allocate a new sk_buffer. If no new buffer available, drop the
610          * received frame and reuse the existing buffer.
611          */
612         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
613         if (!skb)
614                 return;
615
616         /*
617          * Unmap the skb.
618          */
619         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
620
621         /*
622          * Extract the RXD details.
623          */
624         memset(&rxdesc, 0, sizeof(rxdesc));
625         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
626
627         /*
628          * The data behind the ieee80211 header must be
629          * aligned on a 4 byte boundary.
630          */
631         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
632         align = ((unsigned long)(entry->skb->data + header_length)) & 3;
633
634         /*
635          * Hardware might have stripped the IV/EIV/ICV data,
636          * in that case it is possible that the data was
637          * provided seperately (through hardware descriptor)
638          * in which case we should reinsert the data into the frame.
639          */
640         if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
641                 rt2x00crypto_rx_insert_iv(entry->skb, align,
642                                           header_length, &rxdesc);
643         } else if (align) {
644                 skb_push(entry->skb, align);
645                 /* Move entire frame in 1 command */
646                 memmove(entry->skb->data, entry->skb->data + align,
647                         rxdesc.size);
648         }
649
650         /* Update data pointers, trim buffer to correct size */
651         skb_trim(entry->skb, rxdesc.size);
652
653         /*
654          * Update RX statistics.
655          */
656         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657         for (i = 0; i < sband->n_bitrates; i++) {
658                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659
660                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
661                      (rate->plcp == rxdesc.signal)) ||
662                     ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
663                       (rate->bitrate == rxdesc.signal))) {
664                         idx = i;
665                         break;
666                 }
667         }
668
669         if (idx < 0) {
670                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
671                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
672                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
673                 idx = 0;
674         }
675
676         /*
677          * Only update link status if this is a beacon frame carrying our bssid.
678          */
679         hdr = (struct ieee80211_hdr *)entry->skb->data;
680         if (ieee80211_is_beacon(hdr->frame_control) &&
681             (rxdesc.dev_flags & RXDONE_MY_BSS))
682                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
683
684         rt2x00debug_update_crypto(rt2x00dev,
685                                   rxdesc.cipher,
686                                   rxdesc.cipher_status);
687
688         rt2x00dev->link.qual.rx_success++;
689
690         rx_status->mactime = rxdesc.timestamp;
691         rx_status->rate_idx = idx;
692         rx_status->qual =
693             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
694         rx_status->signal = rxdesc.rssi;
695         rx_status->flag = rxdesc.flags;
696         rx_status->antenna = rt2x00dev->link.ant.active.rx;
697
698         /*
699          * Send frame to mac80211 & debugfs.
700          * mac80211 will clean up the skb structure.
701          */
702         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
703         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
704
705         /*
706          * Replace the skb with the freshly allocated one.
707          */
708         entry->skb = skb;
709         entry->flags = 0;
710
711         rt2x00dev->ops->lib->init_rxentry(rt2x00dev, entry);
712
713         rt2x00queue_index_inc(entry->queue, Q_INDEX);
714 }
715 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
716
717 /*
718  * Driver initialization handlers.
719  */
720 const struct rt2x00_rate rt2x00_supported_rates[12] = {
721         {
722                 .flags = DEV_RATE_CCK,
723                 .bitrate = 10,
724                 .ratemask = BIT(0),
725                 .plcp = 0x00,
726         },
727         {
728                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
729                 .bitrate = 20,
730                 .ratemask = BIT(1),
731                 .plcp = 0x01,
732         },
733         {
734                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735                 .bitrate = 55,
736                 .ratemask = BIT(2),
737                 .plcp = 0x02,
738         },
739         {
740                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
741                 .bitrate = 110,
742                 .ratemask = BIT(3),
743                 .plcp = 0x03,
744         },
745         {
746                 .flags = DEV_RATE_OFDM,
747                 .bitrate = 60,
748                 .ratemask = BIT(4),
749                 .plcp = 0x0b,
750         },
751         {
752                 .flags = DEV_RATE_OFDM,
753                 .bitrate = 90,
754                 .ratemask = BIT(5),
755                 .plcp = 0x0f,
756         },
757         {
758                 .flags = DEV_RATE_OFDM,
759                 .bitrate = 120,
760                 .ratemask = BIT(6),
761                 .plcp = 0x0a,
762         },
763         {
764                 .flags = DEV_RATE_OFDM,
765                 .bitrate = 180,
766                 .ratemask = BIT(7),
767                 .plcp = 0x0e,
768         },
769         {
770                 .flags = DEV_RATE_OFDM,
771                 .bitrate = 240,
772                 .ratemask = BIT(8),
773                 .plcp = 0x09,
774         },
775         {
776                 .flags = DEV_RATE_OFDM,
777                 .bitrate = 360,
778                 .ratemask = BIT(9),
779                 .plcp = 0x0d,
780         },
781         {
782                 .flags = DEV_RATE_OFDM,
783                 .bitrate = 480,
784                 .ratemask = BIT(10),
785                 .plcp = 0x08,
786         },
787         {
788                 .flags = DEV_RATE_OFDM,
789                 .bitrate = 540,
790                 .ratemask = BIT(11),
791                 .plcp = 0x0c,
792         },
793 };
794
795 static void rt2x00lib_channel(struct ieee80211_channel *entry,
796                               const int channel, const int tx_power,
797                               const int value)
798 {
799         entry->center_freq = ieee80211_channel_to_frequency(channel);
800         entry->hw_value = value;
801         entry->max_power = tx_power;
802         entry->max_antenna_gain = 0xff;
803 }
804
805 static void rt2x00lib_rate(struct ieee80211_rate *entry,
806                            const u16 index, const struct rt2x00_rate *rate)
807 {
808         entry->flags = 0;
809         entry->bitrate = rate->bitrate;
810         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
811         entry->hw_value_short = entry->hw_value;
812
813         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
814                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
815                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
816         }
817 }
818
819 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
820                                     struct hw_mode_spec *spec)
821 {
822         struct ieee80211_hw *hw = rt2x00dev->hw;
823         struct ieee80211_channel *channels;
824         struct ieee80211_rate *rates;
825         unsigned int num_rates;
826         unsigned int i;
827
828         num_rates = 0;
829         if (spec->supported_rates & SUPPORT_RATE_CCK)
830                 num_rates += 4;
831         if (spec->supported_rates & SUPPORT_RATE_OFDM)
832                 num_rates += 8;
833
834         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
835         if (!channels)
836                 return -ENOMEM;
837
838         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
839         if (!rates)
840                 goto exit_free_channels;
841
842         /*
843          * Initialize Rate list.
844          */
845         for (i = 0; i < num_rates; i++)
846                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
847
848         /*
849          * Initialize Channel list.
850          */
851         for (i = 0; i < spec->num_channels; i++) {
852                 rt2x00lib_channel(&channels[i],
853                                   spec->channels[i].channel,
854                                   spec->channels_info[i].tx_power1, i);
855         }
856
857         /*
858          * Intitialize 802.11b, 802.11g
859          * Rates: CCK, OFDM.
860          * Channels: 2.4 GHz
861          */
862         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
863                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
864                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
865                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
866                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
867                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
868                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
869         }
870
871         /*
872          * Intitialize 802.11a
873          * Rates: OFDM.
874          * Channels: OFDM, UNII, HiperLAN2.
875          */
876         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
877                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
878                     spec->num_channels - 14;
879                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
880                     num_rates - 4;
881                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
882                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
883                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
884                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
885         }
886
887         return 0;
888
889  exit_free_channels:
890         kfree(channels);
891         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
892         return -ENOMEM;
893 }
894
895 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
896 {
897         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
898                 ieee80211_unregister_hw(rt2x00dev->hw);
899
900         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
901                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
902                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
903                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
904                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
905         }
906
907         kfree(rt2x00dev->spec.channels_info);
908 }
909
910 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
911 {
912         struct hw_mode_spec *spec = &rt2x00dev->spec;
913         int status;
914
915         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
916                 return 0;
917
918         /*
919          * Initialize HW modes.
920          */
921         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
922         if (status)
923                 return status;
924
925         /*
926          * Initialize HW fields.
927          */
928         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
929
930         /*
931          * Register HW.
932          */
933         status = ieee80211_register_hw(rt2x00dev->hw);
934         if (status) {
935                 rt2x00lib_remove_hw(rt2x00dev);
936                 return status;
937         }
938
939         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
940
941         return 0;
942 }
943
944 /*
945  * Initialization/uninitialization handlers.
946  */
947 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
948 {
949         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
950                 return;
951
952         /*
953          * Unregister extra components.
954          */
955         rt2x00rfkill_unregister(rt2x00dev);
956
957         /*
958          * Allow the HW to uninitialize.
959          */
960         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
961
962         /*
963          * Free allocated queue entries.
964          */
965         rt2x00queue_uninitialize(rt2x00dev);
966 }
967
968 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
969 {
970         int status;
971
972         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
973                 return 0;
974
975         /*
976          * Allocate all queue entries.
977          */
978         status = rt2x00queue_initialize(rt2x00dev);
979         if (status)
980                 return status;
981
982         /*
983          * Initialize the device.
984          */
985         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
986         if (status) {
987                 rt2x00queue_uninitialize(rt2x00dev);
988                 return status;
989         }
990
991         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
992
993         /*
994          * Register the extra components.
995          */
996         rt2x00rfkill_register(rt2x00dev);
997
998         return 0;
999 }
1000
1001 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1002 {
1003         int retval;
1004
1005         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1006                 return 0;
1007
1008         /*
1009          * If this is the first interface which is added,
1010          * we should load the firmware now.
1011          */
1012         retval = rt2x00lib_load_firmware(rt2x00dev);
1013         if (retval)
1014                 return retval;
1015
1016         /*
1017          * Initialize the device.
1018          */
1019         retval = rt2x00lib_initialize(rt2x00dev);
1020         if (retval)
1021                 return retval;
1022
1023         rt2x00dev->intf_ap_count = 0;
1024         rt2x00dev->intf_sta_count = 0;
1025         rt2x00dev->intf_associated = 0;
1026
1027         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1028
1029         return 0;
1030 }
1031
1032 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1033 {
1034         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1035                 return;
1036
1037         /*
1038          * Perhaps we can add something smarter here,
1039          * but for now just disabling the radio should do.
1040          */
1041         rt2x00lib_disable_radio(rt2x00dev);
1042
1043         rt2x00dev->intf_ap_count = 0;
1044         rt2x00dev->intf_sta_count = 0;
1045         rt2x00dev->intf_associated = 0;
1046 }
1047
1048 /*
1049  * driver allocation handlers.
1050  */
1051 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1052 {
1053         int retval = -ENOMEM;
1054
1055         /*
1056          * Make room for rt2x00_intf inside the per-interface
1057          * structure ieee80211_vif.
1058          */
1059         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1060
1061         /*
1062          * Determine which operating modes are supported, all modes
1063          * which require beaconing, depend on the availability of
1064          * beacon entries.
1065          */
1066         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1067         if (rt2x00dev->ops->bcn->entry_num > 0)
1068                 rt2x00dev->hw->wiphy->interface_modes |=
1069                     BIT(NL80211_IFTYPE_ADHOC) |
1070                     BIT(NL80211_IFTYPE_AP);
1071
1072         /*
1073          * Let the driver probe the device to detect the capabilities.
1074          */
1075         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1076         if (retval) {
1077                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1078                 goto exit;
1079         }
1080
1081         /*
1082          * Initialize configuration work.
1083          */
1084         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1085         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1086         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1087
1088         /*
1089          * Allocate queue array.
1090          */
1091         retval = rt2x00queue_allocate(rt2x00dev);
1092         if (retval)
1093                 goto exit;
1094
1095         /*
1096          * Initialize ieee80211 structure.
1097          */
1098         retval = rt2x00lib_probe_hw(rt2x00dev);
1099         if (retval) {
1100                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1101                 goto exit;
1102         }
1103
1104         /*
1105          * Register extra components.
1106          */
1107         rt2x00leds_register(rt2x00dev);
1108         rt2x00rfkill_allocate(rt2x00dev);
1109         rt2x00debug_register(rt2x00dev);
1110
1111         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1112
1113         return 0;
1114
1115 exit:
1116         rt2x00lib_remove_dev(rt2x00dev);
1117
1118         return retval;
1119 }
1120 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1121
1122 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1123 {
1124         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1125
1126         /*
1127          * Disable radio.
1128          */
1129         rt2x00lib_disable_radio(rt2x00dev);
1130
1131         /*
1132          * Uninitialize device.
1133          */
1134         rt2x00lib_uninitialize(rt2x00dev);
1135
1136         /*
1137          * Free extra components
1138          */
1139         rt2x00debug_deregister(rt2x00dev);
1140         rt2x00rfkill_free(rt2x00dev);
1141         rt2x00leds_unregister(rt2x00dev);
1142
1143         /*
1144          * Free ieee80211_hw memory.
1145          */
1146         rt2x00lib_remove_hw(rt2x00dev);
1147
1148         /*
1149          * Free firmware image.
1150          */
1151         rt2x00lib_free_firmware(rt2x00dev);
1152
1153         /*
1154          * Free queue structures.
1155          */
1156         rt2x00queue_free(rt2x00dev);
1157 }
1158 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1159
1160 /*
1161  * Device state handlers
1162  */
1163 #ifdef CONFIG_PM
1164 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1165 {
1166         int retval;
1167
1168         NOTICE(rt2x00dev, "Going to sleep.\n");
1169
1170         /*
1171          * Only continue if mac80211 has open interfaces.
1172          */
1173         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1174             !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1175                 goto exit;
1176
1177         set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1178
1179         /*
1180          * Disable radio.
1181          */
1182         rt2x00lib_stop(rt2x00dev);
1183         rt2x00lib_uninitialize(rt2x00dev);
1184
1185         /*
1186          * Suspend/disable extra components.
1187          */
1188         rt2x00leds_suspend(rt2x00dev);
1189         rt2x00debug_deregister(rt2x00dev);
1190
1191 exit:
1192         /*
1193          * Set device mode to sleep for power management,
1194          * on some hardware this call seems to consistently fail.
1195          * From the specifications it is hard to tell why it fails,
1196          * and if this is a "bad thing".
1197          * Overall it is safe to just ignore the failure and
1198          * continue suspending. The only downside is that the
1199          * device will not be in optimal power save mode, but with
1200          * the radio and the other components already disabled the
1201          * device is as good as disabled.
1202          */
1203         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1204         if (retval)
1205                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1206                         "continue suspending.\n");
1207
1208         return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1211
1212 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1213                                   struct ieee80211_vif *vif)
1214 {
1215         struct rt2x00_dev *rt2x00dev = data;
1216         struct rt2x00_intf *intf = vif_to_intf(vif);
1217
1218         spin_lock(&intf->lock);
1219
1220         rt2x00lib_config_intf(rt2x00dev, intf,
1221                               vif->type, intf->mac, intf->bssid);
1222
1223
1224         /*
1225          * Master or Ad-hoc mode require a new beacon update.
1226          */
1227         if (vif->type == NL80211_IFTYPE_AP ||
1228             vif->type == NL80211_IFTYPE_ADHOC)
1229                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1230
1231         spin_unlock(&intf->lock);
1232 }
1233
1234 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1235 {
1236         int retval;
1237
1238         NOTICE(rt2x00dev, "Waking up.\n");
1239
1240         /*
1241          * Restore/enable extra components.
1242          */
1243         rt2x00debug_register(rt2x00dev);
1244         rt2x00leds_resume(rt2x00dev);
1245
1246         /*
1247          * Only continue if mac80211 had open interfaces.
1248          */
1249         if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1250                 return 0;
1251
1252         /*
1253          * Reinitialize device and all active interfaces.
1254          */
1255         retval = rt2x00lib_start(rt2x00dev);
1256         if (retval)
1257                 goto exit;
1258
1259         /*
1260          * Reconfigure device.
1261          */
1262         retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1263         if (retval)
1264                 goto exit;
1265
1266         /*
1267          * Iterator over each active interface to
1268          * reconfigure the hardware.
1269          */
1270         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1271                                             rt2x00lib_resume_intf, rt2x00dev);
1272
1273         /*
1274          * We are ready again to receive requests from mac80211.
1275          */
1276         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1277
1278         /*
1279          * It is possible that during that mac80211 has attempted
1280          * to send frames while we were suspending or resuming.
1281          * In that case we have disabled the TX queue and should
1282          * now enable it again
1283          */
1284         ieee80211_wake_queues(rt2x00dev->hw);
1285
1286         /*
1287          * During interface iteration we might have changed the
1288          * delayed_flags, time to handles the event by calling
1289          * the work handler directly.
1290          */
1291         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1292
1293         return 0;
1294
1295 exit:
1296         rt2x00lib_stop(rt2x00dev);
1297         rt2x00lib_uninitialize(rt2x00dev);
1298         rt2x00debug_deregister(rt2x00dev);
1299
1300         return retval;
1301 }
1302 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1303 #endif /* CONFIG_PM */
1304
1305 /*
1306  * rt2x00lib module information.
1307  */
1308 MODULE_AUTHOR(DRV_PROJECT);
1309 MODULE_VERSION(DRV_VERSION);
1310 MODULE_DESCRIPTION("rt2x00 library");
1311 MODULE_LICENSE("GPL");