rt2x00: Fix race condition when using inderect registers
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2x00lib
23         Abstract: rt2x00 generic device routines.
24  */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31
32 /*
33  * Link tuning handlers
34  */
35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38                 return;
39
40         /*
41          * Reset link information.
42          * Both the currently active vgc level as well as
43          * the link tuner counter should be reset. Resetting
44          * the counter is important for devices where the
45          * device should only perform link tuning during the
46          * first minute after being enabled.
47          */
48         rt2x00dev->link.count = 0;
49         rt2x00dev->link.vgc_level = 0;
50
51         /*
52          * Reset the link tuner.
53          */
54         rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56
57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59         /*
60          * Clear all (possibly) pre-existing quality statistics.
61          */
62         memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63
64         /*
65          * The RX and TX percentage should start at 50%
66          * this will assure we will get at least get some
67          * decent value when the link tuner starts.
68          * The value will be dropped and overwritten with
69          * the correct (measured )value anyway during the
70          * first run of the link tuner.
71          */
72         rt2x00dev->link.qual.rx_percentage = 50;
73         rt2x00dev->link.qual.tx_percentage = 50;
74
75         rt2x00lib_reset_link_tuner(rt2x00dev);
76
77         queue_delayed_work(rt2x00dev->hw->workqueue,
78                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80
81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83         cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85
86 /*
87  * Radio control handlers.
88  */
89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91         int status;
92
93         /*
94          * Don't enable the radio twice.
95          * And check if the hardware button has been disabled.
96          */
97         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98             test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99                 return 0;
100
101         /*
102          * Initialize all data queues.
103          */
104         rt2x00queue_init_queues(rt2x00dev);
105
106         /*
107          * Enable radio.
108          */
109         status =
110             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
111         if (status)
112                 return status;
113
114         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
115
116         rt2x00leds_led_radio(rt2x00dev, true);
117         rt2x00led_led_activity(rt2x00dev, true);
118
119         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
120
121         /*
122          * Enable RX.
123          */
124         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
125
126         /*
127          * Start the TX queues.
128          */
129         ieee80211_wake_queues(rt2x00dev->hw);
130
131         return 0;
132 }
133
134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
135 {
136         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
137                 return;
138
139         /*
140          * Stop the TX queues.
141          */
142         ieee80211_stop_queues(rt2x00dev->hw);
143
144         /*
145          * Disable RX.
146          */
147         rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
148
149         /*
150          * Disable radio.
151          */
152         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
153         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
154         rt2x00led_led_activity(rt2x00dev, false);
155         rt2x00leds_led_radio(rt2x00dev, false);
156 }
157
158 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
159 {
160         /*
161          * When we are disabling the RX, we should also stop the link tuner.
162          */
163         if (state == STATE_RADIO_RX_OFF)
164                 rt2x00lib_stop_link_tuner(rt2x00dev);
165
166         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
167
168         /*
169          * When we are enabling the RX, we should also start the link tuner.
170          */
171         if (state == STATE_RADIO_RX_ON &&
172             (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
173                 rt2x00lib_start_link_tuner(rt2x00dev);
174 }
175
176 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
177 {
178         struct antenna_setup ant;
179         int sample_a =
180             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
181         int sample_b =
182             rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
183
184         memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
185
186         /*
187          * We are done sampling. Now we should evaluate the results.
188          */
189         rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190
191         /*
192          * During the last period we have sampled the RSSI
193          * from both antenna's. It now is time to determine
194          * which antenna demonstrated the best performance.
195          * When we are already on the antenna with the best
196          * performance, then there really is nothing for us
197          * left to do.
198          */
199         if (sample_a == sample_b)
200                 return;
201
202         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203                 ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204
205         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206                 ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207
208         rt2x00lib_config_antenna(rt2x00dev, &ant);
209 }
210
211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213         struct antenna_setup ant;
214         int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
215         int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
216
217         memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
218
219         /*
220          * Legacy driver indicates that we should swap antenna's
221          * when the difference in RSSI is greater that 5. This
222          * also should be done when the RSSI was actually better
223          * then the previous sample.
224          * When the difference exceeds the threshold we should
225          * sample the rssi from the other antenna to make a valid
226          * comparison between the 2 antennas.
227          */
228         if (abs(rssi_curr - rssi_old) < 5)
229                 return;
230
231         rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232
233         if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234                 ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235
236         if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237                 ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238
239         rt2x00lib_config_antenna(rt2x00dev, &ant);
240 }
241
242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244         /*
245          * Determine if software diversity is enabled for
246          * either the TX or RX antenna (or both).
247          * Always perform this check since within the link
248          * tuner interval the configuration might have changed.
249          */
250         rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251         rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252
253         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254                 rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
256                 rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
257
258         if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
259             !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
260                 rt2x00dev->link.ant.flags = 0;
261                 return;
262         }
263
264         /*
265          * If we have only sampled the data over the last period
266          * we should now harvest the data. Otherwise just evaluate
267          * the data. The latter should only be performed once
268          * every 2 seconds.
269          */
270         if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
271                 rt2x00lib_evaluate_antenna_sample(rt2x00dev);
272         else if (rt2x00dev->link.count & 1)
273                 rt2x00lib_evaluate_antenna_eval(rt2x00dev);
274 }
275
276 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
277 {
278         int avg_rssi = rssi;
279
280         /*
281          * Update global RSSI
282          */
283         if (link->qual.avg_rssi)
284                 avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
285         link->qual.avg_rssi = avg_rssi;
286
287         /*
288          * Update antenna RSSI
289          */
290         if (link->ant.rssi_ant)
291                 rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
292         link->ant.rssi_ant = rssi;
293 }
294
295 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
296 {
297         if (qual->rx_failed || qual->rx_success)
298                 qual->rx_percentage =
299                     (qual->rx_success * 100) /
300                     (qual->rx_failed + qual->rx_success);
301         else
302                 qual->rx_percentage = 50;
303
304         if (qual->tx_failed || qual->tx_success)
305                 qual->tx_percentage =
306                     (qual->tx_success * 100) /
307                     (qual->tx_failed + qual->tx_success);
308         else
309                 qual->tx_percentage = 50;
310
311         qual->rx_success = 0;
312         qual->rx_failed = 0;
313         qual->tx_success = 0;
314         qual->tx_failed = 0;
315 }
316
317 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
318                                            int rssi)
319 {
320         int rssi_percentage = 0;
321         int signal;
322
323         /*
324          * We need a positive value for the RSSI.
325          */
326         if (rssi < 0)
327                 rssi += rt2x00dev->rssi_offset;
328
329         /*
330          * Calculate the different percentages,
331          * which will be used for the signal.
332          */
333         if (rt2x00dev->rssi_offset)
334                 rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
335
336         /*
337          * Add the individual percentages and use the WEIGHT
338          * defines to calculate the current link signal.
339          */
340         signal = ((WEIGHT_RSSI * rssi_percentage) +
341                   (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
342                   (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
343
344         return (signal > 100) ? 100 : signal;
345 }
346
347 static void rt2x00lib_link_tuner(struct work_struct *work)
348 {
349         struct rt2x00_dev *rt2x00dev =
350             container_of(work, struct rt2x00_dev, link.work.work);
351
352         /*
353          * When the radio is shutting down we should
354          * immediately cease all link tuning.
355          */
356         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
357                 return;
358
359         /*
360          * Update statistics.
361          */
362         rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
363         rt2x00dev->low_level_stats.dot11FCSErrorCount +=
364             rt2x00dev->link.qual.rx_failed;
365
366         /*
367          * Only perform the link tuning when Link tuning
368          * has been enabled (This could have been disabled from the EEPROM).
369          */
370         if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
371                 rt2x00dev->ops->lib->link_tuner(rt2x00dev);
372
373         /*
374          * Precalculate a portion of the link signal which is
375          * in based on the tx/rx success/failure counters.
376          */
377         rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
378
379         /*
380          * Send a signal to the led to update the led signal strength.
381          */
382         rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
383
384         /*
385          * Evaluate antenna setup, make this the last step since this could
386          * possibly reset some statistics.
387          */
388         rt2x00lib_evaluate_antenna(rt2x00dev);
389
390         /*
391          * Increase tuner counter, and reschedule the next link tuner run.
392          */
393         rt2x00dev->link.count++;
394         queue_delayed_work(rt2x00dev->hw->workqueue,
395                            &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
396 }
397
398 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
399 {
400         struct rt2x00_dev *rt2x00dev =
401             container_of(work, struct rt2x00_dev, filter_work);
402
403         rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
404 }
405
406 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
407                                           struct ieee80211_vif *vif)
408 {
409         struct rt2x00_dev *rt2x00dev = data;
410         struct rt2x00_intf *intf = vif_to_intf(vif);
411         struct ieee80211_bss_conf conf;
412         int delayed_flags;
413
414         /*
415          * Copy all data we need during this action under the protection
416          * of a spinlock. Otherwise race conditions might occur which results
417          * into an invalid configuration.
418          */
419         spin_lock(&intf->lock);
420
421         memcpy(&conf, &vif->bss_conf, sizeof(conf));
422         delayed_flags = intf->delayed_flags;
423         intf->delayed_flags = 0;
424
425         spin_unlock(&intf->lock);
426
427         /*
428          * It is possible the radio was disabled while the work had been
429          * scheduled. If that happens we should return here immediately,
430          * note that in the spinlock protected area above the delayed_flags
431          * have been cleared correctly.
432          */
433         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
434                 return;
435
436         if (delayed_flags & DELAYED_UPDATE_BEACON)
437                 rt2x00queue_update_beacon(rt2x00dev, vif);
438
439         if (delayed_flags & DELAYED_CONFIG_ERP)
440                 rt2x00lib_config_erp(rt2x00dev, intf, &conf);
441
442         if (delayed_flags & DELAYED_LED_ASSOC)
443                 rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
444 }
445
446 static void rt2x00lib_intf_scheduled(struct work_struct *work)
447 {
448         struct rt2x00_dev *rt2x00dev =
449             container_of(work, struct rt2x00_dev, intf_work);
450
451         /*
452          * Iterate over each interface and perform the
453          * requested configurations.
454          */
455         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
456                                             rt2x00lib_intf_scheduled_iter,
457                                             rt2x00dev);
458 }
459
460 /*
461  * Interrupt context handlers.
462  */
463 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
464                                       struct ieee80211_vif *vif)
465 {
466         struct rt2x00_dev *rt2x00dev = data;
467         struct rt2x00_intf *intf = vif_to_intf(vif);
468
469         if (vif->type != NL80211_IFTYPE_AP &&
470             vif->type != NL80211_IFTYPE_ADHOC)
471                 return;
472
473         /*
474          * Clean up the beacon skb.
475          */
476         rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
477         intf->beacon->skb = NULL;
478
479         spin_lock(&intf->lock);
480         intf->delayed_flags |= DELAYED_UPDATE_BEACON;
481         spin_unlock(&intf->lock);
482 }
483
484 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
485 {
486         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
487                 return;
488
489         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
490                                                    rt2x00lib_beacondone_iter,
491                                                    rt2x00dev);
492
493         schedule_work(&rt2x00dev->intf_work);
494 }
495 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
496
497 void rt2x00lib_txdone(struct queue_entry *entry,
498                       struct txdone_entry_desc *txdesc)
499 {
500         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
501         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
502         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
503         enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504         u8 rate_idx, rate_flags;
505
506         /*
507          * Unmap the skb.
508          */
509         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
510
511         /*
512          * If the IV/EIV data was stripped from the frame before it was
513          * passed to the hardware, we should now reinsert it again because
514          * mac80211 will expect the the same data to be present it the
515          * frame as it was passed to us.
516          */
517         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
518                 rt2x00crypto_tx_insert_iv(entry->skb);
519
520         /*
521          * Send frame to debugfs immediately, after this call is completed
522          * we are going to overwrite the skb->cb array.
523          */
524         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
525
526         /*
527          * Update TX statistics.
528          */
529         rt2x00dev->link.qual.tx_success +=
530             test_bit(TXDONE_SUCCESS, &txdesc->flags);
531         rt2x00dev->link.qual.tx_failed +=
532             test_bit(TXDONE_FAILURE, &txdesc->flags);
533
534         rate_idx = skbdesc->tx_rate_idx;
535         rate_flags = skbdesc->tx_rate_flags;
536
537         /*
538          * Initialize TX status
539          */
540         memset(&tx_info->status, 0, sizeof(tx_info->status));
541         tx_info->status.ack_signal = 0;
542         tx_info->status.rates[0].idx = rate_idx;
543         tx_info->status.rates[0].flags = rate_flags;
544         tx_info->status.rates[0].count = txdesc->retry + 1;
545         tx_info->status.rates[1].idx = -1; /* terminate */
546
547         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
548                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
549                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
550                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
551                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
552         }
553
554         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
555                 if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
556                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
557                 else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
558                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
559         }
560
561         /*
562          * Only send the status report to mac80211 when TX status was
563          * requested by it. If this was a extra frame coming through
564          * a mac80211 library call (RTS/CTS) then we should not send the
565          * status report back.
566          */
567         if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
568                 ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
569         else
570                 dev_kfree_skb_irq(entry->skb);
571
572         /*
573          * Make this entry available for reuse.
574          */
575         entry->skb = NULL;
576         entry->flags = 0;
577
578         rt2x00dev->ops->lib->clear_entry(entry);
579
580         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
581         rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
582
583         /*
584          * If the data queue was below the threshold before the txdone
585          * handler we must make sure the packet queue in the mac80211 stack
586          * is reenabled when the txdone handler has finished.
587          */
588         if (!rt2x00queue_threshold(entry->queue))
589                 ieee80211_wake_queue(rt2x00dev->hw, qid);
590 }
591 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
592
593 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
594                       struct queue_entry *entry)
595 {
596         struct rxdone_entry_desc rxdesc;
597         struct sk_buff *skb;
598         struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
599         struct ieee80211_supported_band *sband;
600         struct ieee80211_hdr *hdr;
601         const struct rt2x00_rate *rate;
602         unsigned int header_length;
603         unsigned int align;
604         unsigned int i;
605         int idx = -1;
606
607         /*
608          * Allocate a new sk_buffer. If no new buffer available, drop the
609          * received frame and reuse the existing buffer.
610          */
611         skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
612         if (!skb)
613                 return;
614
615         /*
616          * Unmap the skb.
617          */
618         rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
619
620         /*
621          * Extract the RXD details.
622          */
623         memset(&rxdesc, 0, sizeof(rxdesc));
624         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
625
626         /*
627          * The data behind the ieee80211 header must be
628          * aligned on a 4 byte boundary.
629          */
630         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
631         align = ((unsigned long)(entry->skb->data + header_length)) & 3;
632
633         /*
634          * Hardware might have stripped the IV/EIV/ICV data,
635          * in that case it is possible that the data was
636          * provided seperately (through hardware descriptor)
637          * in which case we should reinsert the data into the frame.
638          */
639         if ((rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
640                 rt2x00crypto_rx_insert_iv(entry->skb, align,
641                                           header_length, &rxdesc);
642         } else if (align) {
643                 skb_push(entry->skb, align);
644                 /* Move entire frame in 1 command */
645                 memmove(entry->skb->data, entry->skb->data + align,
646                         rxdesc.size);
647         }
648
649         /* Update data pointers, trim buffer to correct size */
650         skb_trim(entry->skb, rxdesc.size);
651
652         /*
653          * Update RX statistics.
654          */
655         sband = &rt2x00dev->bands[rt2x00dev->curr_band];
656         for (i = 0; i < sband->n_bitrates; i++) {
657                 rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
658
659                 if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
660                      (rate->plcp == rxdesc.signal)) ||
661                     ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
662                       (rate->bitrate == rxdesc.signal))) {
663                         idx = i;
664                         break;
665                 }
666         }
667
668         if (idx < 0) {
669                 WARNING(rt2x00dev, "Frame received with unrecognized signal,"
670                         "signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
671                         !!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
672                 idx = 0;
673         }
674
675         /*
676          * Only update link status if this is a beacon frame carrying our bssid.
677          */
678         hdr = (struct ieee80211_hdr *)entry->skb->data;
679         if (ieee80211_is_beacon(hdr->frame_control) &&
680             (rxdesc.dev_flags & RXDONE_MY_BSS))
681                 rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
682
683         rt2x00debug_update_crypto(rt2x00dev,
684                                   rxdesc.cipher,
685                                   rxdesc.cipher_status);
686
687         rt2x00dev->link.qual.rx_success++;
688
689         rx_status->mactime = rxdesc.timestamp;
690         rx_status->rate_idx = idx;
691         rx_status->qual =
692             rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
693         rx_status->signal = rxdesc.rssi;
694         rx_status->flag = rxdesc.flags;
695         rx_status->antenna = rt2x00dev->link.ant.active.rx;
696
697         /*
698          * Send frame to mac80211 & debugfs.
699          * mac80211 will clean up the skb structure.
700          */
701         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
702         ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
703
704         /*
705          * Replace the skb with the freshly allocated one.
706          */
707         entry->skb = skb;
708         entry->flags = 0;
709
710         rt2x00dev->ops->lib->clear_entry(entry);
711
712         rt2x00queue_index_inc(entry->queue, Q_INDEX);
713 }
714 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
715
716 /*
717  * Driver initialization handlers.
718  */
719 const struct rt2x00_rate rt2x00_supported_rates[12] = {
720         {
721                 .flags = DEV_RATE_CCK,
722                 .bitrate = 10,
723                 .ratemask = BIT(0),
724                 .plcp = 0x00,
725         },
726         {
727                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728                 .bitrate = 20,
729                 .ratemask = BIT(1),
730                 .plcp = 0x01,
731         },
732         {
733                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
734                 .bitrate = 55,
735                 .ratemask = BIT(2),
736                 .plcp = 0x02,
737         },
738         {
739                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
740                 .bitrate = 110,
741                 .ratemask = BIT(3),
742                 .plcp = 0x03,
743         },
744         {
745                 .flags = DEV_RATE_OFDM,
746                 .bitrate = 60,
747                 .ratemask = BIT(4),
748                 .plcp = 0x0b,
749         },
750         {
751                 .flags = DEV_RATE_OFDM,
752                 .bitrate = 90,
753                 .ratemask = BIT(5),
754                 .plcp = 0x0f,
755         },
756         {
757                 .flags = DEV_RATE_OFDM,
758                 .bitrate = 120,
759                 .ratemask = BIT(6),
760                 .plcp = 0x0a,
761         },
762         {
763                 .flags = DEV_RATE_OFDM,
764                 .bitrate = 180,
765                 .ratemask = BIT(7),
766                 .plcp = 0x0e,
767         },
768         {
769                 .flags = DEV_RATE_OFDM,
770                 .bitrate = 240,
771                 .ratemask = BIT(8),
772                 .plcp = 0x09,
773         },
774         {
775                 .flags = DEV_RATE_OFDM,
776                 .bitrate = 360,
777                 .ratemask = BIT(9),
778                 .plcp = 0x0d,
779         },
780         {
781                 .flags = DEV_RATE_OFDM,
782                 .bitrate = 480,
783                 .ratemask = BIT(10),
784                 .plcp = 0x08,
785         },
786         {
787                 .flags = DEV_RATE_OFDM,
788                 .bitrate = 540,
789                 .ratemask = BIT(11),
790                 .plcp = 0x0c,
791         },
792 };
793
794 static void rt2x00lib_channel(struct ieee80211_channel *entry,
795                               const int channel, const int tx_power,
796                               const int value)
797 {
798         entry->center_freq = ieee80211_channel_to_frequency(channel);
799         entry->hw_value = value;
800         entry->max_power = tx_power;
801         entry->max_antenna_gain = 0xff;
802 }
803
804 static void rt2x00lib_rate(struct ieee80211_rate *entry,
805                            const u16 index, const struct rt2x00_rate *rate)
806 {
807         entry->flags = 0;
808         entry->bitrate = rate->bitrate;
809         entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
810         entry->hw_value_short = entry->hw_value;
811
812         if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
813                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
814                 entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
815         }
816 }
817
818 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
819                                     struct hw_mode_spec *spec)
820 {
821         struct ieee80211_hw *hw = rt2x00dev->hw;
822         struct ieee80211_channel *channels;
823         struct ieee80211_rate *rates;
824         unsigned int num_rates;
825         unsigned int i;
826
827         num_rates = 0;
828         if (spec->supported_rates & SUPPORT_RATE_CCK)
829                 num_rates += 4;
830         if (spec->supported_rates & SUPPORT_RATE_OFDM)
831                 num_rates += 8;
832
833         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
834         if (!channels)
835                 return -ENOMEM;
836
837         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
838         if (!rates)
839                 goto exit_free_channels;
840
841         /*
842          * Initialize Rate list.
843          */
844         for (i = 0; i < num_rates; i++)
845                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
846
847         /*
848          * Initialize Channel list.
849          */
850         for (i = 0; i < spec->num_channels; i++) {
851                 rt2x00lib_channel(&channels[i],
852                                   spec->channels[i].channel,
853                                   spec->channels_info[i].tx_power1, i);
854         }
855
856         /*
857          * Intitialize 802.11b, 802.11g
858          * Rates: CCK, OFDM.
859          * Channels: 2.4 GHz
860          */
861         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
862                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
863                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
864                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
865                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
866                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
867                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
868         }
869
870         /*
871          * Intitialize 802.11a
872          * Rates: OFDM.
873          * Channels: OFDM, UNII, HiperLAN2.
874          */
875         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
876                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
877                     spec->num_channels - 14;
878                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
879                     num_rates - 4;
880                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
881                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
882                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
883                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
884         }
885
886         return 0;
887
888  exit_free_channels:
889         kfree(channels);
890         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
891         return -ENOMEM;
892 }
893
894 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
895 {
896         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
897                 ieee80211_unregister_hw(rt2x00dev->hw);
898
899         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
900                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
901                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
902                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
903                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
904         }
905
906         kfree(rt2x00dev->spec.channels_info);
907 }
908
909 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
910 {
911         struct hw_mode_spec *spec = &rt2x00dev->spec;
912         int status;
913
914         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
915                 return 0;
916
917         /*
918          * Initialize HW modes.
919          */
920         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
921         if (status)
922                 return status;
923
924         /*
925          * Initialize HW fields.
926          */
927         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
928
929         /*
930          * Register HW.
931          */
932         status = ieee80211_register_hw(rt2x00dev->hw);
933         if (status) {
934                 rt2x00lib_remove_hw(rt2x00dev);
935                 return status;
936         }
937
938         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
939
940         return 0;
941 }
942
943 /*
944  * Initialization/uninitialization handlers.
945  */
946 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
947 {
948         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
949                 return;
950
951         /*
952          * Unregister extra components.
953          */
954         rt2x00rfkill_unregister(rt2x00dev);
955
956         /*
957          * Allow the HW to uninitialize.
958          */
959         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
960
961         /*
962          * Free allocated queue entries.
963          */
964         rt2x00queue_uninitialize(rt2x00dev);
965 }
966
967 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
968 {
969         int status;
970
971         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
972                 return 0;
973
974         /*
975          * Allocate all queue entries.
976          */
977         status = rt2x00queue_initialize(rt2x00dev);
978         if (status)
979                 return status;
980
981         /*
982          * Initialize the device.
983          */
984         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
985         if (status) {
986                 rt2x00queue_uninitialize(rt2x00dev);
987                 return status;
988         }
989
990         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
991
992         /*
993          * Register the extra components.
994          */
995         rt2x00rfkill_register(rt2x00dev);
996
997         return 0;
998 }
999
1000 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1001 {
1002         int retval;
1003
1004         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1005                 return 0;
1006
1007         /*
1008          * If this is the first interface which is added,
1009          * we should load the firmware now.
1010          */
1011         retval = rt2x00lib_load_firmware(rt2x00dev);
1012         if (retval)
1013                 return retval;
1014
1015         /*
1016          * Initialize the device.
1017          */
1018         retval = rt2x00lib_initialize(rt2x00dev);
1019         if (retval)
1020                 return retval;
1021
1022         rt2x00dev->intf_ap_count = 0;
1023         rt2x00dev->intf_sta_count = 0;
1024         rt2x00dev->intf_associated = 0;
1025
1026         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1027
1028         return 0;
1029 }
1030
1031 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1032 {
1033         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1034                 return;
1035
1036         /*
1037          * Perhaps we can add something smarter here,
1038          * but for now just disabling the radio should do.
1039          */
1040         rt2x00lib_disable_radio(rt2x00dev);
1041
1042         rt2x00dev->intf_ap_count = 0;
1043         rt2x00dev->intf_sta_count = 0;
1044         rt2x00dev->intf_associated = 0;
1045 }
1046
1047 /*
1048  * driver allocation handlers.
1049  */
1050 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1051 {
1052         int retval = -ENOMEM;
1053
1054         mutex_init(&rt2x00dev->csr_mutex);
1055
1056         /*
1057          * Make room for rt2x00_intf inside the per-interface
1058          * structure ieee80211_vif.
1059          */
1060         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1061
1062         /*
1063          * Determine which operating modes are supported, all modes
1064          * which require beaconing, depend on the availability of
1065          * beacon entries.
1066          */
1067         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1068         if (rt2x00dev->ops->bcn->entry_num > 0)
1069                 rt2x00dev->hw->wiphy->interface_modes |=
1070                     BIT(NL80211_IFTYPE_ADHOC) |
1071                     BIT(NL80211_IFTYPE_AP);
1072
1073         /*
1074          * Let the driver probe the device to detect the capabilities.
1075          */
1076         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1077         if (retval) {
1078                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1079                 goto exit;
1080         }
1081
1082         /*
1083          * Initialize configuration work.
1084          */
1085         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1086         INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1087         INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1088
1089         /*
1090          * Allocate queue array.
1091          */
1092         retval = rt2x00queue_allocate(rt2x00dev);
1093         if (retval)
1094                 goto exit;
1095
1096         /*
1097          * Initialize ieee80211 structure.
1098          */
1099         retval = rt2x00lib_probe_hw(rt2x00dev);
1100         if (retval) {
1101                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1102                 goto exit;
1103         }
1104
1105         /*
1106          * Register extra components.
1107          */
1108         rt2x00leds_register(rt2x00dev);
1109         rt2x00rfkill_allocate(rt2x00dev);
1110         rt2x00debug_register(rt2x00dev);
1111
1112         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1113
1114         return 0;
1115
1116 exit:
1117         rt2x00lib_remove_dev(rt2x00dev);
1118
1119         return retval;
1120 }
1121 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1122
1123 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1124 {
1125         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1126
1127         /*
1128          * Disable radio.
1129          */
1130         rt2x00lib_disable_radio(rt2x00dev);
1131
1132         /*
1133          * Uninitialize device.
1134          */
1135         rt2x00lib_uninitialize(rt2x00dev);
1136
1137         /*
1138          * Free extra components
1139          */
1140         rt2x00debug_deregister(rt2x00dev);
1141         rt2x00rfkill_free(rt2x00dev);
1142         rt2x00leds_unregister(rt2x00dev);
1143
1144         /*
1145          * Free ieee80211_hw memory.
1146          */
1147         rt2x00lib_remove_hw(rt2x00dev);
1148
1149         /*
1150          * Free firmware image.
1151          */
1152         rt2x00lib_free_firmware(rt2x00dev);
1153
1154         /*
1155          * Free queue structures.
1156          */
1157         rt2x00queue_free(rt2x00dev);
1158 }
1159 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1160
1161 /*
1162  * Device state handlers
1163  */
1164 #ifdef CONFIG_PM
1165 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1166 {
1167         int retval;
1168
1169         NOTICE(rt2x00dev, "Going to sleep.\n");
1170
1171         /*
1172          * Only continue if mac80211 has open interfaces.
1173          */
1174         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1175             !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1176                 goto exit;
1177
1178         set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1179
1180         /*
1181          * Disable radio.
1182          */
1183         rt2x00lib_stop(rt2x00dev);
1184         rt2x00lib_uninitialize(rt2x00dev);
1185
1186         /*
1187          * Suspend/disable extra components.
1188          */
1189         rt2x00leds_suspend(rt2x00dev);
1190         rt2x00debug_deregister(rt2x00dev);
1191
1192 exit:
1193         /*
1194          * Set device mode to sleep for power management,
1195          * on some hardware this call seems to consistently fail.
1196          * From the specifications it is hard to tell why it fails,
1197          * and if this is a "bad thing".
1198          * Overall it is safe to just ignore the failure and
1199          * continue suspending. The only downside is that the
1200          * device will not be in optimal power save mode, but with
1201          * the radio and the other components already disabled the
1202          * device is as good as disabled.
1203          */
1204         retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1205         if (retval)
1206                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1207                         "continue suspending.\n");
1208
1209         return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1212
1213 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1214                                   struct ieee80211_vif *vif)
1215 {
1216         struct rt2x00_dev *rt2x00dev = data;
1217         struct rt2x00_intf *intf = vif_to_intf(vif);
1218
1219         spin_lock(&intf->lock);
1220
1221         rt2x00lib_config_intf(rt2x00dev, intf,
1222                               vif->type, intf->mac, intf->bssid);
1223
1224
1225         /*
1226          * Master or Ad-hoc mode require a new beacon update.
1227          */
1228         if (vif->type == NL80211_IFTYPE_AP ||
1229             vif->type == NL80211_IFTYPE_ADHOC)
1230                 intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1231
1232         spin_unlock(&intf->lock);
1233 }
1234
1235 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1236 {
1237         int retval;
1238
1239         NOTICE(rt2x00dev, "Waking up.\n");
1240
1241         /*
1242          * Restore/enable extra components.
1243          */
1244         rt2x00debug_register(rt2x00dev);
1245         rt2x00leds_resume(rt2x00dev);
1246
1247         /*
1248          * Only continue if mac80211 had open interfaces.
1249          */
1250         if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1251                 return 0;
1252
1253         /*
1254          * Reinitialize device and all active interfaces.
1255          */
1256         retval = rt2x00lib_start(rt2x00dev);
1257         if (retval)
1258                 goto exit;
1259
1260         /*
1261          * Reconfigure device.
1262          */
1263         retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1264         if (retval)
1265                 goto exit;
1266
1267         /*
1268          * Iterator over each active interface to
1269          * reconfigure the hardware.
1270          */
1271         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1272                                             rt2x00lib_resume_intf, rt2x00dev);
1273
1274         /*
1275          * We are ready again to receive requests from mac80211.
1276          */
1277         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1278
1279         /*
1280          * It is possible that during that mac80211 has attempted
1281          * to send frames while we were suspending or resuming.
1282          * In that case we have disabled the TX queue and should
1283          * now enable it again
1284          */
1285         ieee80211_wake_queues(rt2x00dev->hw);
1286
1287         /*
1288          * During interface iteration we might have changed the
1289          * delayed_flags, time to handles the event by calling
1290          * the work handler directly.
1291          */
1292         rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1293
1294         return 0;
1295
1296 exit:
1297         rt2x00lib_stop(rt2x00dev);
1298         rt2x00lib_uninitialize(rt2x00dev);
1299         rt2x00debug_deregister(rt2x00dev);
1300
1301         return retval;
1302 }
1303 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1304 #endif /* CONFIG_PM */
1305
1306 /*
1307  * rt2x00lib module information.
1308  */
1309 MODULE_AUTHOR(DRV_PROJECT);
1310 MODULE_VERSION(DRV_VERSION);
1311 MODULE_DESCRIPTION("rt2x00 library");
1312 MODULE_LICENSE("GPL");