rt2x00: Add support for BUFFALO WLI-UC-GNM2 to rt2800usb.
[pandora-kernel.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91
92         /*
93          * Start watchdog monitoring.
94          */
95         rt2x00link_start_watchdog(rt2x00dev);
96
97         return 0;
98 }
99
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         /*
106          * Stop watchdog monitoring.
107          */
108         rt2x00link_stop_watchdog(rt2x00dev);
109
110         /*
111          * Stop all queues
112          */
113         rt2x00link_stop_agc(rt2x00dev);
114         rt2x00link_stop_tuner(rt2x00dev);
115         rt2x00queue_stop_queues(rt2x00dev);
116         rt2x00queue_flush_queues(rt2x00dev, true);
117
118         /*
119          * Disable radio.
120          */
121         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
122         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
123         rt2x00led_led_activity(rt2x00dev, false);
124         rt2x00leds_led_radio(rt2x00dev, false);
125 }
126
127 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
128                                           struct ieee80211_vif *vif)
129 {
130         struct rt2x00_dev *rt2x00dev = data;
131         struct rt2x00_intf *intf = vif_to_intf(vif);
132
133         /*
134          * It is possible the radio was disabled while the work had been
135          * scheduled. If that happens we should return here immediately,
136          * note that in the spinlock protected area above the delayed_flags
137          * have been cleared correctly.
138          */
139         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
140                 return;
141
142         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
143                 rt2x00queue_update_beacon(rt2x00dev, vif);
144 }
145
146 static void rt2x00lib_intf_scheduled(struct work_struct *work)
147 {
148         struct rt2x00_dev *rt2x00dev =
149             container_of(work, struct rt2x00_dev, intf_work);
150
151         /*
152          * Iterate over each interface and perform the
153          * requested configurations.
154          */
155         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
156                                             rt2x00lib_intf_scheduled_iter,
157                                             rt2x00dev);
158 }
159
160 static void rt2x00lib_autowakeup(struct work_struct *work)
161 {
162         struct rt2x00_dev *rt2x00dev =
163             container_of(work, struct rt2x00_dev, autowakeup_work.work);
164
165         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
166                 return;
167
168         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
169                 ERROR(rt2x00dev, "Device failed to wakeup.\n");
170         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
171 }
172
173 /*
174  * Interrupt context handlers.
175  */
176 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
177                                      struct ieee80211_vif *vif)
178 {
179         struct rt2x00_dev *rt2x00dev = data;
180         struct sk_buff *skb;
181
182         /*
183          * Only AP mode interfaces do broad- and multicast buffering
184          */
185         if (vif->type != NL80211_IFTYPE_AP)
186                 return;
187
188         /*
189          * Send out buffered broad- and multicast frames
190          */
191         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
192         while (skb) {
193                 rt2x00mac_tx(rt2x00dev->hw, skb);
194                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
195         }
196 }
197
198 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
199                                         struct ieee80211_vif *vif)
200 {
201         struct rt2x00_dev *rt2x00dev = data;
202
203         if (vif->type != NL80211_IFTYPE_AP &&
204             vif->type != NL80211_IFTYPE_ADHOC &&
205             vif->type != NL80211_IFTYPE_MESH_POINT &&
206             vif->type != NL80211_IFTYPE_WDS)
207                 return;
208
209         /*
210          * Update the beacon without locking. This is safe on PCI devices
211          * as they only update the beacon periodically here. This should
212          * never be called for USB devices.
213          */
214         WARN_ON(rt2x00_is_usb(rt2x00dev));
215         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
216 }
217
218 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
219 {
220         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
221                 return;
222
223         /* send buffered bc/mc frames out for every bssid */
224         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
225                                                    rt2x00lib_bc_buffer_iter,
226                                                    rt2x00dev);
227         /*
228          * Devices with pre tbtt interrupt don't need to update the beacon
229          * here as they will fetch the next beacon directly prior to
230          * transmission.
231          */
232         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
233                 return;
234
235         /* fetch next beacon */
236         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
237                                                    rt2x00lib_beaconupdate_iter,
238                                                    rt2x00dev);
239 }
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
241
242 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
243 {
244         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
245                 return;
246
247         /* fetch next beacon */
248         ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
249                                                    rt2x00lib_beaconupdate_iter,
250                                                    rt2x00dev);
251 }
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
253
254 void rt2x00lib_dmastart(struct queue_entry *entry)
255 {
256         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
257         rt2x00queue_index_inc(entry, Q_INDEX);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
260
261 void rt2x00lib_dmadone(struct queue_entry *entry)
262 {
263         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
264         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
265         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
266 }
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
268
269 void rt2x00lib_txdone(struct queue_entry *entry,
270                       struct txdone_entry_desc *txdesc)
271 {
272         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
273         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
274         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
275         unsigned int header_length, i;
276         u8 rate_idx, rate_flags, retry_rates;
277         u8 skbdesc_flags = skbdesc->flags;
278         bool success;
279
280         /*
281          * Unmap the skb.
282          */
283         rt2x00queue_unmap_skb(entry);
284
285         /*
286          * Remove the extra tx headroom from the skb.
287          */
288         skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom);
289
290         /*
291          * Signal that the TX descriptor is no longer in the skb.
292          */
293         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
294
295         /*
296          * Determine the length of 802.11 header.
297          */
298         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
299
300         /*
301          * Remove L2 padding which was added during
302          */
303         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
304                 rt2x00queue_remove_l2pad(entry->skb, header_length);
305
306         /*
307          * If the IV/EIV data was stripped from the frame before it was
308          * passed to the hardware, we should now reinsert it again because
309          * mac80211 will expect the same data to be present it the
310          * frame as it was passed to us.
311          */
312         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
313                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
314
315         /*
316          * Send frame to debugfs immediately, after this call is completed
317          * we are going to overwrite the skb->cb array.
318          */
319         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
320
321         /*
322          * Determine if the frame has been successfully transmitted.
323          */
324         success =
325             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
326             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
327
328         /*
329          * Update TX statistics.
330          */
331         rt2x00dev->link.qual.tx_success += success;
332         rt2x00dev->link.qual.tx_failed += !success;
333
334         rate_idx = skbdesc->tx_rate_idx;
335         rate_flags = skbdesc->tx_rate_flags;
336         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
337             (txdesc->retry + 1) : 1;
338
339         /*
340          * Initialize TX status
341          */
342         memset(&tx_info->status, 0, sizeof(tx_info->status));
343         tx_info->status.ack_signal = 0;
344
345         /*
346          * Frame was send with retries, hardware tried
347          * different rates to send out the frame, at each
348          * retry it lowered the rate 1 step except when the
349          * lowest rate was used.
350          */
351         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
352                 tx_info->status.rates[i].idx = rate_idx - i;
353                 tx_info->status.rates[i].flags = rate_flags;
354
355                 if (rate_idx - i == 0) {
356                         /*
357                          * The lowest rate (index 0) was used until the
358                          * number of max retries was reached.
359                          */
360                         tx_info->status.rates[i].count = retry_rates - i;
361                         i++;
362                         break;
363                 }
364                 tx_info->status.rates[i].count = 1;
365         }
366         if (i < (IEEE80211_TX_MAX_RATES - 1))
367                 tx_info->status.rates[i].idx = -1; /* terminate */
368
369         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
370                 if (success)
371                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
372                 else
373                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
374         }
375
376         /*
377          * Every single frame has it's own tx status, hence report
378          * every frame as ampdu of size 1.
379          *
380          * TODO: if we can find out how many frames were aggregated
381          * by the hw we could provide the real ampdu_len to mac80211
382          * which would allow the rc algorithm to better decide on
383          * which rates are suitable.
384          */
385         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
386             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
387                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
388                 tx_info->status.ampdu_len = 1;
389                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
390
391                 if (!success)
392                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
393         }
394
395         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
396                 if (success)
397                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
398                 else
399                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
400         }
401
402         /*
403          * Only send the status report to mac80211 when it's a frame
404          * that originated in mac80211. If this was a extra frame coming
405          * through a mac80211 library call (RTS/CTS) then we should not
406          * send the status report back.
407          */
408         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
409                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
410                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
411                 else
412                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
413         } else
414                 dev_kfree_skb_any(entry->skb);
415
416         /*
417          * Make this entry available for reuse.
418          */
419         entry->skb = NULL;
420         entry->flags = 0;
421
422         rt2x00dev->ops->lib->clear_entry(entry);
423
424         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
425
426         /*
427          * If the data queue was below the threshold before the txdone
428          * handler we must make sure the packet queue in the mac80211 stack
429          * is reenabled when the txdone handler has finished. This has to be
430          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
431          * before it was stopped.
432          */
433         spin_lock_bh(&entry->queue->tx_lock);
434         if (!rt2x00queue_threshold(entry->queue))
435                 rt2x00queue_unpause_queue(entry->queue);
436         spin_unlock_bh(&entry->queue->tx_lock);
437 }
438 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
439
440 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
441 {
442         struct txdone_entry_desc txdesc;
443
444         txdesc.flags = 0;
445         __set_bit(status, &txdesc.flags);
446         txdesc.retry = 0;
447
448         rt2x00lib_txdone(entry, &txdesc);
449 }
450 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
451
452 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
453 {
454         struct ieee80211_mgmt *mgmt = (void *)data;
455         u8 *pos, *end;
456
457         pos = (u8 *)mgmt->u.beacon.variable;
458         end = data + len;
459         while (pos < end) {
460                 if (pos + 2 + pos[1] > end)
461                         return NULL;
462
463                 if (pos[0] == ie)
464                         return pos;
465
466                 pos += 2 + pos[1];
467         }
468
469         return NULL;
470 }
471
472 static void rt2x00lib_sleep(struct work_struct *work)
473 {
474         struct rt2x00_dev *rt2x00dev =
475             container_of(work, struct rt2x00_dev, sleep_work);
476
477         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
478                 return;
479
480         /*
481          * Check again is powersaving is enabled, to prevent races from delayed
482          * work execution.
483          */
484         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
485                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
486                                  IEEE80211_CONF_CHANGE_PS);
487 }
488
489 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
490                                       struct sk_buff *skb,
491                                       struct rxdone_entry_desc *rxdesc)
492 {
493         struct ieee80211_hdr *hdr = (void *) skb->data;
494         struct ieee80211_tim_ie *tim_ie;
495         u8 *tim;
496         u8 tim_len;
497         bool cam;
498
499         /* If this is not a beacon, or if mac80211 has no powersaving
500          * configured, or if the device is already in powersaving mode
501          * we can exit now. */
502         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
503                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
504                 return;
505
506         /* min. beacon length + FCS_LEN */
507         if (skb->len <= 40 + FCS_LEN)
508                 return;
509
510         /* and only beacons from the associated BSSID, please */
511         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
512             !rt2x00dev->aid)
513                 return;
514
515         rt2x00dev->last_beacon = jiffies;
516
517         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
518         if (!tim)
519                 return;
520
521         if (tim[1] < sizeof(*tim_ie))
522                 return;
523
524         tim_len = tim[1];
525         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
526
527         /* Check whenever the PHY can be turned off again. */
528
529         /* 1. What about buffered unicast traffic for our AID? */
530         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
531
532         /* 2. Maybe the AP wants to send multicast/broadcast data? */
533         cam |= (tim_ie->bitmap_ctrl & 0x01);
534
535         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
536                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
537 }
538
539 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
540                                         struct rxdone_entry_desc *rxdesc)
541 {
542         struct ieee80211_supported_band *sband;
543         const struct rt2x00_rate *rate;
544         unsigned int i;
545         int signal = rxdesc->signal;
546         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
547
548         switch (rxdesc->rate_mode) {
549         case RATE_MODE_CCK:
550         case RATE_MODE_OFDM:
551                 /*
552                  * For non-HT rates the MCS value needs to contain the
553                  * actually used rate modulation (CCK or OFDM).
554                  */
555                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
556                         signal = RATE_MCS(rxdesc->rate_mode, signal);
557
558                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
559                 for (i = 0; i < sband->n_bitrates; i++) {
560                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
561                         if (((type == RXDONE_SIGNAL_PLCP) &&
562                              (rate->plcp == signal)) ||
563                             ((type == RXDONE_SIGNAL_BITRATE) &&
564                               (rate->bitrate == signal)) ||
565                             ((type == RXDONE_SIGNAL_MCS) &&
566                               (rate->mcs == signal))) {
567                                 return i;
568                         }
569                 }
570                 break;
571         case RATE_MODE_HT_MIX:
572         case RATE_MODE_HT_GREENFIELD:
573                 if (signal >= 0 && signal <= 76)
574                         return signal;
575                 break;
576         default:
577                 break;
578         }
579
580         WARNING(rt2x00dev, "Frame received with unrecognized signal, "
581                 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
582                 rxdesc->rate_mode, signal, type);
583         return 0;
584 }
585
586 void rt2x00lib_rxdone(struct queue_entry *entry)
587 {
588         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
589         struct rxdone_entry_desc rxdesc;
590         struct sk_buff *skb;
591         struct ieee80211_rx_status *rx_status;
592         unsigned int header_length;
593         int rate_idx;
594
595         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
596             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
597                 goto submit_entry;
598
599         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
600                 goto submit_entry;
601
602         /*
603          * Allocate a new sk_buffer. If no new buffer available, drop the
604          * received frame and reuse the existing buffer.
605          */
606         skb = rt2x00queue_alloc_rxskb(entry);
607         if (!skb)
608                 goto submit_entry;
609
610         /*
611          * Unmap the skb.
612          */
613         rt2x00queue_unmap_skb(entry);
614
615         /*
616          * Extract the RXD details.
617          */
618         memset(&rxdesc, 0, sizeof(rxdesc));
619         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
620
621         /*
622          * Check for valid size in case we get corrupted descriptor from
623          * hardware.
624          */
625         if (unlikely(rxdesc.size == 0 ||
626                      rxdesc.size > entry->queue->data_size)) {
627                 WARNING(rt2x00dev, "Wrong frame size %d max %d.\n",
628                         rxdesc.size, entry->queue->data_size);
629                 dev_kfree_skb(entry->skb);
630                 goto renew_skb;
631         }
632
633         /*
634          * The data behind the ieee80211 header must be
635          * aligned on a 4 byte boundary.
636          */
637         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
638
639         /*
640          * Hardware might have stripped the IV/EIV/ICV data,
641          * in that case it is possible that the data was
642          * provided separately (through hardware descriptor)
643          * in which case we should reinsert the data into the frame.
644          */
645         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
646             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
647                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
648                                           &rxdesc);
649         else if (header_length &&
650                  (rxdesc.size > header_length) &&
651                  (rxdesc.dev_flags & RXDONE_L2PAD))
652                 rt2x00queue_remove_l2pad(entry->skb, header_length);
653
654         /* Trim buffer to correct size */
655         skb_trim(entry->skb, rxdesc.size);
656
657         /*
658          * Translate the signal to the correct bitrate index.
659          */
660         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
661         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
662             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
663                 rxdesc.flags |= RX_FLAG_HT;
664
665         /*
666          * Check if this is a beacon, and more frames have been
667          * buffered while we were in powersaving mode.
668          */
669         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
670
671         /*
672          * Update extra components
673          */
674         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
675         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
676         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
677
678         /*
679          * Initialize RX status information, and send frame
680          * to mac80211.
681          */
682         rx_status = IEEE80211_SKB_RXCB(entry->skb);
683         rx_status->mactime = rxdesc.timestamp;
684         rx_status->band = rt2x00dev->curr_band;
685         rx_status->freq = rt2x00dev->curr_freq;
686         rx_status->rate_idx = rate_idx;
687         rx_status->signal = rxdesc.rssi;
688         rx_status->flag = rxdesc.flags;
689         rx_status->antenna = rt2x00dev->link.ant.active.rx;
690
691         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
692
693 renew_skb:
694         /*
695          * Replace the skb with the freshly allocated one.
696          */
697         entry->skb = skb;
698
699 submit_entry:
700         entry->flags = 0;
701         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
702         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
703             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
704                 rt2x00dev->ops->lib->clear_entry(entry);
705 }
706 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
707
708 /*
709  * Driver initialization handlers.
710  */
711 const struct rt2x00_rate rt2x00_supported_rates[12] = {
712         {
713                 .flags = DEV_RATE_CCK,
714                 .bitrate = 10,
715                 .ratemask = BIT(0),
716                 .plcp = 0x00,
717                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
718         },
719         {
720                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
721                 .bitrate = 20,
722                 .ratemask = BIT(1),
723                 .plcp = 0x01,
724                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
725         },
726         {
727                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
728                 .bitrate = 55,
729                 .ratemask = BIT(2),
730                 .plcp = 0x02,
731                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
732         },
733         {
734                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735                 .bitrate = 110,
736                 .ratemask = BIT(3),
737                 .plcp = 0x03,
738                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
739         },
740         {
741                 .flags = DEV_RATE_OFDM,
742                 .bitrate = 60,
743                 .ratemask = BIT(4),
744                 .plcp = 0x0b,
745                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
746         },
747         {
748                 .flags = DEV_RATE_OFDM,
749                 .bitrate = 90,
750                 .ratemask = BIT(5),
751                 .plcp = 0x0f,
752                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
753         },
754         {
755                 .flags = DEV_RATE_OFDM,
756                 .bitrate = 120,
757                 .ratemask = BIT(6),
758                 .plcp = 0x0a,
759                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
760         },
761         {
762                 .flags = DEV_RATE_OFDM,
763                 .bitrate = 180,
764                 .ratemask = BIT(7),
765                 .plcp = 0x0e,
766                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
767         },
768         {
769                 .flags = DEV_RATE_OFDM,
770                 .bitrate = 240,
771                 .ratemask = BIT(8),
772                 .plcp = 0x09,
773                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
774         },
775         {
776                 .flags = DEV_RATE_OFDM,
777                 .bitrate = 360,
778                 .ratemask = BIT(9),
779                 .plcp = 0x0d,
780                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
781         },
782         {
783                 .flags = DEV_RATE_OFDM,
784                 .bitrate = 480,
785                 .ratemask = BIT(10),
786                 .plcp = 0x08,
787                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
788         },
789         {
790                 .flags = DEV_RATE_OFDM,
791                 .bitrate = 540,
792                 .ratemask = BIT(11),
793                 .plcp = 0x0c,
794                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
795         },
796 };
797
798 static void rt2x00lib_channel(struct ieee80211_channel *entry,
799                               const int channel, const int tx_power,
800                               const int value)
801 {
802         /* XXX: this assumption about the band is wrong for 802.11j */
803         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
804         entry->center_freq = ieee80211_channel_to_frequency(channel,
805                                                             entry->band);
806         entry->hw_value = value;
807         entry->max_power = tx_power;
808         entry->max_antenna_gain = 0xff;
809 }
810
811 static void rt2x00lib_rate(struct ieee80211_rate *entry,
812                            const u16 index, const struct rt2x00_rate *rate)
813 {
814         entry->flags = 0;
815         entry->bitrate = rate->bitrate;
816         entry->hw_value = index;
817         entry->hw_value_short = index;
818
819         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
820                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
821 }
822
823 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
824                                     struct hw_mode_spec *spec)
825 {
826         struct ieee80211_hw *hw = rt2x00dev->hw;
827         struct ieee80211_channel *channels;
828         struct ieee80211_rate *rates;
829         unsigned int num_rates;
830         unsigned int i;
831
832         num_rates = 0;
833         if (spec->supported_rates & SUPPORT_RATE_CCK)
834                 num_rates += 4;
835         if (spec->supported_rates & SUPPORT_RATE_OFDM)
836                 num_rates += 8;
837
838         channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
839         if (!channels)
840                 return -ENOMEM;
841
842         rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
843         if (!rates)
844                 goto exit_free_channels;
845
846         /*
847          * Initialize Rate list.
848          */
849         for (i = 0; i < num_rates; i++)
850                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
851
852         /*
853          * Initialize Channel list.
854          */
855         for (i = 0; i < spec->num_channels; i++) {
856                 rt2x00lib_channel(&channels[i],
857                                   spec->channels[i].channel,
858                                   spec->channels_info[i].max_power, i);
859         }
860
861         /*
862          * Intitialize 802.11b, 802.11g
863          * Rates: CCK, OFDM.
864          * Channels: 2.4 GHz
865          */
866         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
867                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
868                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
869                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
870                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
871                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
872                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
873                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
874                        &spec->ht, sizeof(spec->ht));
875         }
876
877         /*
878          * Intitialize 802.11a
879          * Rates: OFDM.
880          * Channels: OFDM, UNII, HiperLAN2.
881          */
882         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
883                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
884                     spec->num_channels - 14;
885                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
886                     num_rates - 4;
887                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
888                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
889                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
890                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
891                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
892                        &spec->ht, sizeof(spec->ht));
893         }
894
895         return 0;
896
897  exit_free_channels:
898         kfree(channels);
899         ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
900         return -ENOMEM;
901 }
902
903 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
904 {
905         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
906                 ieee80211_unregister_hw(rt2x00dev->hw);
907
908         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
909                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
910                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
911                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
912                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
913         }
914
915         kfree(rt2x00dev->spec.channels_info);
916 }
917
918 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
919 {
920         struct hw_mode_spec *spec = &rt2x00dev->spec;
921         int status;
922
923         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
924                 return 0;
925
926         /*
927          * Initialize HW modes.
928          */
929         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
930         if (status)
931                 return status;
932
933         /*
934          * Initialize HW fields.
935          */
936         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
937
938         /*
939          * Initialize extra TX headroom required.
940          */
941         rt2x00dev->hw->extra_tx_headroom =
942                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
943                       rt2x00dev->ops->extra_tx_headroom);
944
945         /*
946          * Take TX headroom required for alignment into account.
947          */
948         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
949                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
950         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
951                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
952
953         /*
954          * Tell mac80211 about the size of our private STA structure.
955          */
956         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
957
958         /*
959          * Allocate tx status FIFO for driver use.
960          */
961         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
962                 /*
963                  * Allocate the txstatus fifo. In the worst case the tx
964                  * status fifo has to hold the tx status of all entries
965                  * in all tx queues. Hence, calculate the kfifo size as
966                  * tx_queues * entry_num and round up to the nearest
967                  * power of 2.
968                  */
969                 int kfifo_size =
970                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
971                                            rt2x00dev->ops->tx->entry_num *
972                                            sizeof(u32));
973
974                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
975                                      GFP_KERNEL);
976                 if (status)
977                         return status;
978         }
979
980         /*
981          * Initialize tasklets if used by the driver. Tasklets are
982          * disabled until the interrupts are turned on. The driver
983          * has to handle that.
984          */
985 #define RT2X00_TASKLET_INIT(taskletname) \
986         if (rt2x00dev->ops->lib->taskletname) { \
987                 tasklet_init(&rt2x00dev->taskletname, \
988                              rt2x00dev->ops->lib->taskletname, \
989                              (unsigned long)rt2x00dev); \
990         }
991
992         RT2X00_TASKLET_INIT(txstatus_tasklet);
993         RT2X00_TASKLET_INIT(pretbtt_tasklet);
994         RT2X00_TASKLET_INIT(tbtt_tasklet);
995         RT2X00_TASKLET_INIT(rxdone_tasklet);
996         RT2X00_TASKLET_INIT(autowake_tasklet);
997
998 #undef RT2X00_TASKLET_INIT
999
1000         /*
1001          * Register HW.
1002          */
1003         status = ieee80211_register_hw(rt2x00dev->hw);
1004         if (status)
1005                 return status;
1006
1007         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1008
1009         return 0;
1010 }
1011
1012 /*
1013  * Initialization/uninitialization handlers.
1014  */
1015 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1016 {
1017         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1018                 return;
1019
1020         /*
1021          * Unregister extra components.
1022          */
1023         rt2x00rfkill_unregister(rt2x00dev);
1024
1025         /*
1026          * Allow the HW to uninitialize.
1027          */
1028         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1029
1030         /*
1031          * Free allocated queue entries.
1032          */
1033         rt2x00queue_uninitialize(rt2x00dev);
1034 }
1035
1036 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1037 {
1038         int status;
1039
1040         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1041                 return 0;
1042
1043         /*
1044          * Allocate all queue entries.
1045          */
1046         status = rt2x00queue_initialize(rt2x00dev);
1047         if (status)
1048                 return status;
1049
1050         /*
1051          * Initialize the device.
1052          */
1053         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1054         if (status) {
1055                 rt2x00queue_uninitialize(rt2x00dev);
1056                 return status;
1057         }
1058
1059         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1060
1061         /*
1062          * Register the extra components.
1063          */
1064         rt2x00rfkill_register(rt2x00dev);
1065
1066         return 0;
1067 }
1068
1069 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1070 {
1071         int retval;
1072
1073         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1074                 return 0;
1075
1076         /*
1077          * If this is the first interface which is added,
1078          * we should load the firmware now.
1079          */
1080         retval = rt2x00lib_load_firmware(rt2x00dev);
1081         if (retval)
1082                 return retval;
1083
1084         /*
1085          * Initialize the device.
1086          */
1087         retval = rt2x00lib_initialize(rt2x00dev);
1088         if (retval)
1089                 return retval;
1090
1091         rt2x00dev->intf_ap_count = 0;
1092         rt2x00dev->intf_sta_count = 0;
1093         rt2x00dev->intf_associated = 0;
1094
1095         /* Enable the radio */
1096         retval = rt2x00lib_enable_radio(rt2x00dev);
1097         if (retval)
1098                 return retval;
1099
1100         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1101
1102         return 0;
1103 }
1104
1105 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1106 {
1107         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1108                 return;
1109
1110         /*
1111          * Perhaps we can add something smarter here,
1112          * but for now just disabling the radio should do.
1113          */
1114         rt2x00lib_disable_radio(rt2x00dev);
1115
1116         rt2x00dev->intf_ap_count = 0;
1117         rt2x00dev->intf_sta_count = 0;
1118         rt2x00dev->intf_associated = 0;
1119 }
1120
1121 /*
1122  * driver allocation handlers.
1123  */
1124 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1125 {
1126         int retval = -ENOMEM;
1127
1128         spin_lock_init(&rt2x00dev->irqmask_lock);
1129         mutex_init(&rt2x00dev->csr_mutex);
1130
1131         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1132
1133         /*
1134          * Make room for rt2x00_intf inside the per-interface
1135          * structure ieee80211_vif.
1136          */
1137         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1138
1139         /*
1140          * Determine which operating modes are supported, all modes
1141          * which require beaconing, depend on the availability of
1142          * beacon entries.
1143          */
1144         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1145         if (rt2x00dev->ops->bcn->entry_num > 0)
1146                 rt2x00dev->hw->wiphy->interface_modes |=
1147                     BIT(NL80211_IFTYPE_ADHOC) |
1148                     BIT(NL80211_IFTYPE_AP) |
1149                     BIT(NL80211_IFTYPE_MESH_POINT) |
1150                     BIT(NL80211_IFTYPE_WDS);
1151
1152         /*
1153          * Initialize work.
1154          */
1155         rt2x00dev->workqueue =
1156             alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0);
1157         if (!rt2x00dev->workqueue) {
1158                 retval = -ENOMEM;
1159                 goto exit;
1160         }
1161
1162         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1163         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1164         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1165
1166         /*
1167          * Let the driver probe the device to detect the capabilities.
1168          */
1169         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1170         if (retval) {
1171                 ERROR(rt2x00dev, "Failed to allocate device.\n");
1172                 goto exit;
1173         }
1174
1175         /*
1176          * Allocate queue array.
1177          */
1178         retval = rt2x00queue_allocate(rt2x00dev);
1179         if (retval)
1180                 goto exit;
1181
1182         /*
1183          * Initialize ieee80211 structure.
1184          */
1185         retval = rt2x00lib_probe_hw(rt2x00dev);
1186         if (retval) {
1187                 ERROR(rt2x00dev, "Failed to initialize hw.\n");
1188                 goto exit;
1189         }
1190
1191         /*
1192          * Register extra components.
1193          */
1194         rt2x00link_register(rt2x00dev);
1195         rt2x00leds_register(rt2x00dev);
1196         rt2x00debug_register(rt2x00dev);
1197
1198         return 0;
1199
1200 exit:
1201         rt2x00lib_remove_dev(rt2x00dev);
1202
1203         return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1206
1207 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1208 {
1209         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1210
1211         /*
1212          * Disable radio.
1213          */
1214         rt2x00lib_disable_radio(rt2x00dev);
1215
1216         /*
1217          * Stop all work.
1218          */
1219         cancel_work_sync(&rt2x00dev->intf_work);
1220         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1221         cancel_work_sync(&rt2x00dev->sleep_work);
1222         if (rt2x00_is_usb(rt2x00dev)) {
1223                 del_timer_sync(&rt2x00dev->txstatus_timer);
1224                 cancel_work_sync(&rt2x00dev->rxdone_work);
1225                 cancel_work_sync(&rt2x00dev->txdone_work);
1226         }
1227         destroy_workqueue(rt2x00dev->workqueue);
1228
1229         /*
1230          * Free the tx status fifo.
1231          */
1232         kfifo_free(&rt2x00dev->txstatus_fifo);
1233
1234         /*
1235          * Kill the tx status tasklet.
1236          */
1237         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1238         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1239         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1240         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1241         tasklet_kill(&rt2x00dev->autowake_tasklet);
1242
1243         /*
1244          * Uninitialize device.
1245          */
1246         rt2x00lib_uninitialize(rt2x00dev);
1247
1248         /*
1249          * Free extra components
1250          */
1251         rt2x00debug_deregister(rt2x00dev);
1252         rt2x00leds_unregister(rt2x00dev);
1253
1254         /*
1255          * Free ieee80211_hw memory.
1256          */
1257         rt2x00lib_remove_hw(rt2x00dev);
1258
1259         /*
1260          * Free firmware image.
1261          */
1262         rt2x00lib_free_firmware(rt2x00dev);
1263
1264         /*
1265          * Free queue structures.
1266          */
1267         rt2x00queue_free(rt2x00dev);
1268 }
1269 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1270
1271 /*
1272  * Device state handlers
1273  */
1274 #ifdef CONFIG_PM
1275 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1276 {
1277         NOTICE(rt2x00dev, "Going to sleep.\n");
1278
1279         /*
1280          * Prevent mac80211 from accessing driver while suspended.
1281          */
1282         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1283                 return 0;
1284
1285         /*
1286          * Cleanup as much as possible.
1287          */
1288         rt2x00lib_uninitialize(rt2x00dev);
1289
1290         /*
1291          * Suspend/disable extra components.
1292          */
1293         rt2x00leds_suspend(rt2x00dev);
1294         rt2x00debug_deregister(rt2x00dev);
1295
1296         /*
1297          * Set device mode to sleep for power management,
1298          * on some hardware this call seems to consistently fail.
1299          * From the specifications it is hard to tell why it fails,
1300          * and if this is a "bad thing".
1301          * Overall it is safe to just ignore the failure and
1302          * continue suspending. The only downside is that the
1303          * device will not be in optimal power save mode, but with
1304          * the radio and the other components already disabled the
1305          * device is as good as disabled.
1306          */
1307         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1308                 WARNING(rt2x00dev, "Device failed to enter sleep state, "
1309                         "continue suspending.\n");
1310
1311         return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1314
1315 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1316 {
1317         NOTICE(rt2x00dev, "Waking up.\n");
1318
1319         /*
1320          * Restore/enable extra components.
1321          */
1322         rt2x00debug_register(rt2x00dev);
1323         rt2x00leds_resume(rt2x00dev);
1324
1325         /*
1326          * We are ready again to receive requests from mac80211.
1327          */
1328         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1329
1330         return 0;
1331 }
1332 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1333 #endif /* CONFIG_PM */
1334
1335 /*
1336  * rt2x00lib module information.
1337  */
1338 MODULE_AUTHOR(DRV_PROJECT);
1339 MODULE_VERSION(DRV_VERSION);
1340 MODULE_DESCRIPTION("rt2x00 library");
1341 MODULE_LICENSE("GPL");