Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[pandora-kernel.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/slab.h>
67 #include <linux/init.h>
68
69 #include <net/mac80211.h>
70
71 #include "iwl-commands.h"
72 #include "iwl-dev.h"
73 #include "iwl-core.h"
74 #include "iwl-debug.h"
75 #include "iwl-eeprom.h"
76 #include "iwl-io.h"
77
78 /************************** EEPROM BANDS ****************************
79  *
80  * The iwl_eeprom_band definitions below provide the mapping from the
81  * EEPROM contents to the specific channel number supported for each
82  * band.
83  *
84  * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
85  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
86  * The specific geography and calibration information for that channel
87  * is contained in the eeprom map itself.
88  *
89  * During init, we copy the eeprom information and channel map
90  * information into priv->channel_info_24/52 and priv->channel_map_24/52
91  *
92  * channel_map_24/52 provides the index in the channel_info array for a
93  * given channel.  We have to have two separate maps as there is channel
94  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
95  * band_2
96  *
97  * A value of 0xff stored in the channel_map indicates that the channel
98  * is not supported by the hardware at all.
99  *
100  * A value of 0xfe in the channel_map indicates that the channel is not
101  * valid for Tx with the current hardware.  This means that
102  * while the system can tune and receive on a given channel, it may not
103  * be able to associate or transmit any frames on that
104  * channel.  There is no corresponding channel information for that
105  * entry.
106  *
107  *********************************************************************/
108
109 /* 2.4 GHz */
110 const u8 iwl_eeprom_band_1[14] = {
111         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
112 };
113
114 /* 5.2 GHz bands */
115 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
116         183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
117 };
118
119 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
120         34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
121 };
122
123 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
124         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
125 };
126
127 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
128         145, 149, 153, 157, 161, 165
129 };
130
131 static const u8 iwl_eeprom_band_6[] = {       /* 2.4 ht40 channel */
132         1, 2, 3, 4, 5, 6, 7
133 };
134
135 static const u8 iwl_eeprom_band_7[] = {       /* 5.2 ht40 channel */
136         36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
137 };
138
139 /**
140  * struct iwl_txpwr_section: eeprom section information
141  * @offset: indirect address into eeprom image
142  * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
143  * @band: band type for the section
144  * @is_common - true: common section, false: channel section
145  * @is_cck - true: cck section, false: not cck section
146  * @is_ht_40 - true: all channel in the section are HT40 channel,
147  *             false: legacy or HT 20 MHz
148  *             ignore if it is common section
149  * @iwl_eeprom_section_channel: channel array in the section,
150  *             ignore if common section
151  */
152 struct iwl_txpwr_section {
153         u32 offset;
154         u8 count;
155         enum ieee80211_band band;
156         bool is_common;
157         bool is_cck;
158         bool is_ht40;
159         u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
160 };
161
162 /**
163  * section 1 - 3 are regulatory tx power apply to all channels based on
164  *    modulation: CCK, OFDM
165  *    Band: 2.4GHz, 5.2GHz
166  * section 4 - 10 are regulatory tx power apply to specified channels
167  *    For example:
168  *      1L - Channel 1 Legacy
169  *      1HT - Channel 1 HT
170  *      (1,+1) - Channel 1 HT40 "_above_"
171  *
172  * Section 1: all CCK channels
173  * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
174  * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
175  * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
176  * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
177  * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
178  * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
179  * Section 8: 2.4 GHz channel: 13L, 13HT
180  * Section 9: 2.4 GHz channel: 140L, 140HT
181  * Section 10: 2.4 GHz 40MHz channels: (132,+1)  (44,+1)
182  *
183  */
184 static const struct iwl_txpwr_section enhinfo[] = {
185         { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
186         { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
187         { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
188         { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
189                 false, false, false,
190                 {1, 1, 2, 2, 10, 10, 11, 11 } },
191         { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
192                 false, false, true,
193                 { 1, 2, 6, 7, 9 } },
194         { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
195                 false, false, false,
196                 { 36, 64, 100, 36, 64, 100 } },
197         { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
198                 false, false, true,
199                 { 36, 60, 100 } },
200         { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
201                 false, false, false,
202                 { 13, 13 } },
203         { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
204                 false, false, false,
205                 { 140, 140 } },
206         { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
207                 false, false, true,
208                 { 132, 44 } },
209 };
210
211 /******************************************************************************
212  *
213  * EEPROM related functions
214  *
215 ******************************************************************************/
216
217 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
218 {
219         u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
220         int ret = 0;
221
222         IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
223         switch (gp) {
224         case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
225                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
226                         IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
227                                 gp);
228                         ret = -ENOENT;
229                 }
230                 break;
231         case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
232         case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
233                 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
234                         IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
235                         ret = -ENOENT;
236                 }
237                 break;
238         case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
239         default:
240                 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
241                         "EEPROM_GP=0x%08x\n",
242                         (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
243                         ? "OTP" : "EEPROM", gp);
244                 ret = -ENOENT;
245                 break;
246         }
247         return ret;
248 }
249 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
250
251 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
252 {
253         u32 otpgp;
254
255         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
256         if (mode == IWL_OTP_ACCESS_ABSOLUTE)
257                 iwl_clear_bit(priv, CSR_OTP_GP_REG,
258                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
259         else
260                 iwl_set_bit(priv, CSR_OTP_GP_REG,
261                                 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
262 }
263
264 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
265 {
266         u32 otpgp;
267         int nvm_type;
268
269         /* OTP only valid for CP/PP and after */
270         switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
271         case CSR_HW_REV_TYPE_NONE:
272                 IWL_ERR(priv, "Unknown hardware type\n");
273                 return -ENOENT;
274         case CSR_HW_REV_TYPE_3945:
275         case CSR_HW_REV_TYPE_4965:
276         case CSR_HW_REV_TYPE_5300:
277         case CSR_HW_REV_TYPE_5350:
278         case CSR_HW_REV_TYPE_5100:
279         case CSR_HW_REV_TYPE_5150:
280                 nvm_type = NVM_DEVICE_TYPE_EEPROM;
281                 break;
282         default:
283                 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
284                 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
285                         nvm_type = NVM_DEVICE_TYPE_OTP;
286                 else
287                         nvm_type = NVM_DEVICE_TYPE_EEPROM;
288                 break;
289         }
290         return  nvm_type;
291 }
292
293 /*
294  * The device's EEPROM semaphore prevents conflicts between driver and uCode
295  * when accessing the EEPROM; each access is a series of pulses to/from the
296  * EEPROM chip, not a single event, so even reads could conflict if they
297  * weren't arbitrated by the semaphore.
298  */
299 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
300 {
301         u16 count;
302         int ret;
303
304         for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
305                 /* Request semaphore */
306                 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
307                             CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
308
309                 /* See if we got it */
310                 ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
311                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
312                                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
313                                 EEPROM_SEM_TIMEOUT);
314                 if (ret >= 0) {
315                         IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
316                                 count+1);
317                         return ret;
318                 }
319         }
320
321         return ret;
322 }
323 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
324
325 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
326 {
327         iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
328                 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
329
330 }
331 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
332
333 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
334 {
335         BUG_ON(offset >= priv->cfg->eeprom_size);
336         return &priv->eeprom[offset];
337 }
338 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
339
340 static int iwl_init_otp_access(struct iwl_priv *priv)
341 {
342         int ret;
343
344         /* Enable 40MHz radio clock */
345         _iwl_write32(priv, CSR_GP_CNTRL,
346                      _iwl_read32(priv, CSR_GP_CNTRL) |
347                      CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
348
349         /* wait for clock to be ready */
350         ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
351                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352                                   CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
353                                   25000);
354         if (ret < 0)
355                 IWL_ERR(priv, "Time out access OTP\n");
356         else {
357                 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
358                                   APMG_PS_CTRL_VAL_RESET_REQ);
359                 udelay(5);
360                 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
361                                     APMG_PS_CTRL_VAL_RESET_REQ);
362
363                 /*
364                  * CSR auto clock gate disable bit -
365                  * this is only applicable for HW with OTP shadow RAM
366                  */
367                 if (priv->cfg->shadow_ram_support)
368                         iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
369                                 CSR_RESET_LINK_PWR_MGMT_DISABLED);
370         }
371         return ret;
372 }
373
374 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
375 {
376         int ret = 0;
377         u32 r;
378         u32 otpgp;
379
380         _iwl_write32(priv, CSR_EEPROM_REG,
381                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
382         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
383                                   CSR_EEPROM_REG_READ_VALID_MSK,
384                                   CSR_EEPROM_REG_READ_VALID_MSK,
385                                   IWL_EEPROM_ACCESS_TIMEOUT);
386         if (ret < 0) {
387                 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
388                 return ret;
389         }
390         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
391         /* check for ECC errors: */
392         otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
393         if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
394                 /* stop in this case */
395                 /* set the uncorrectable OTP ECC bit for acknowledgement */
396                 iwl_set_bit(priv, CSR_OTP_GP_REG,
397                         CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
398                 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
399                 return -EINVAL;
400         }
401         if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
402                 /* continue in this case */
403                 /* set the correctable OTP ECC bit for acknowledgement */
404                 iwl_set_bit(priv, CSR_OTP_GP_REG,
405                                 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
406                 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
407         }
408         *eeprom_data = cpu_to_le16(r >> 16);
409         return 0;
410 }
411
412 /*
413  * iwl_is_otp_empty: check for empty OTP
414  */
415 static bool iwl_is_otp_empty(struct iwl_priv *priv)
416 {
417         u16 next_link_addr = 0;
418         __le16 link_value;
419         bool is_empty = false;
420
421         /* locate the beginning of OTP link list */
422         if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
423                 if (!link_value) {
424                         IWL_ERR(priv, "OTP is empty\n");
425                         is_empty = true;
426                 }
427         } else {
428                 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
429                 is_empty = true;
430         }
431
432         return is_empty;
433 }
434
435
436 /*
437  * iwl_find_otp_image: find EEPROM image in OTP
438  *   finding the OTP block that contains the EEPROM image.
439  *   the last valid block on the link list (the block _before_ the last block)
440  *   is the block we should read and used to configure the device.
441  *   If all the available OTP blocks are full, the last block will be the block
442  *   we should read and used to configure the device.
443  *   only perform this operation if shadow RAM is disabled
444  */
445 static int iwl_find_otp_image(struct iwl_priv *priv,
446                                         u16 *validblockaddr)
447 {
448         u16 next_link_addr = 0, valid_addr;
449         __le16 link_value = 0;
450         int usedblocks = 0;
451
452         /* set addressing mode to absolute to traverse the link list */
453         iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
454
455         /* checking for empty OTP or error */
456         if (iwl_is_otp_empty(priv))
457                 return -EINVAL;
458
459         /*
460          * start traverse link list
461          * until reach the max number of OTP blocks
462          * different devices have different number of OTP blocks
463          */
464         do {
465                 /* save current valid block address
466                  * check for more block on the link list
467                  */
468                 valid_addr = next_link_addr;
469                 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
470                 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
471                                usedblocks, next_link_addr);
472                 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
473                         return -EINVAL;
474                 if (!link_value) {
475                         /*
476                          * reach the end of link list, return success and
477                          * set address point to the starting address
478                          * of the image
479                          */
480                         *validblockaddr = valid_addr;
481                         /* skip first 2 bytes (link list pointer) */
482                         *validblockaddr += 2;
483                         return 0;
484                 }
485                 /* more in the link list, continue */
486                 usedblocks++;
487         } while (usedblocks <= priv->cfg->max_ll_items);
488
489         /* OTP has no valid blocks */
490         IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
491         return -EINVAL;
492 }
493
494 /**
495  * iwl_eeprom_init - read EEPROM contents
496  *
497  * Load the EEPROM contents from adapter into priv->eeprom
498  *
499  * NOTE:  This routine uses the non-debug IO access functions.
500  */
501 int iwl_eeprom_init(struct iwl_priv *priv)
502 {
503         __le16 *e;
504         u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
505         int sz;
506         int ret;
507         u16 addr;
508         u16 validblockaddr = 0;
509         u16 cache_addr = 0;
510
511         priv->nvm_device_type = iwlcore_get_nvm_type(priv);
512         if (priv->nvm_device_type == -ENOENT)
513                 return -ENOENT;
514         /* allocate eeprom */
515         IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
516         sz = priv->cfg->eeprom_size;
517         priv->eeprom = kzalloc(sz, GFP_KERNEL);
518         if (!priv->eeprom) {
519                 ret = -ENOMEM;
520                 goto alloc_err;
521         }
522         e = (__le16 *)priv->eeprom;
523
524         priv->cfg->ops->lib->apm_ops.init(priv);
525
526         ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
527         if (ret < 0) {
528                 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
529                 ret = -ENOENT;
530                 goto err;
531         }
532
533         /* Make sure driver (instead of uCode) is allowed to read EEPROM */
534         ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
535         if (ret < 0) {
536                 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
537                 ret = -ENOENT;
538                 goto err;
539         }
540
541         if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
542
543                 ret = iwl_init_otp_access(priv);
544                 if (ret) {
545                         IWL_ERR(priv, "Failed to initialize OTP access.\n");
546                         ret = -ENOENT;
547                         goto done;
548                 }
549                 _iwl_write32(priv, CSR_EEPROM_GP,
550                              iwl_read32(priv, CSR_EEPROM_GP) &
551                              ~CSR_EEPROM_GP_IF_OWNER_MSK);
552
553                 iwl_set_bit(priv, CSR_OTP_GP_REG,
554                              CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
555                              CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
556                 /* traversing the linked list if no shadow ram supported */
557                 if (!priv->cfg->shadow_ram_support) {
558                         if (iwl_find_otp_image(priv, &validblockaddr)) {
559                                 ret = -ENOENT;
560                                 goto done;
561                         }
562                 }
563                 for (addr = validblockaddr; addr < validblockaddr + sz;
564                      addr += sizeof(u16)) {
565                         __le16 eeprom_data;
566
567                         ret = iwl_read_otp_word(priv, addr, &eeprom_data);
568                         if (ret)
569                                 goto done;
570                         e[cache_addr / 2] = eeprom_data;
571                         cache_addr += sizeof(u16);
572                 }
573         } else {
574                 /* eeprom is an array of 16bit values */
575                 for (addr = 0; addr < sz; addr += sizeof(u16)) {
576                         u32 r;
577
578                         _iwl_write32(priv, CSR_EEPROM_REG,
579                                      CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
580
581                         ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
582                                                   CSR_EEPROM_REG_READ_VALID_MSK,
583                                                   CSR_EEPROM_REG_READ_VALID_MSK,
584                                                   IWL_EEPROM_ACCESS_TIMEOUT);
585                         if (ret < 0) {
586                                 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
587                                 goto done;
588                         }
589                         r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
590                         e[addr / 2] = cpu_to_le16(r >> 16);
591                 }
592         }
593
594         IWL_DEBUG_INFO(priv, "NVM Type: %s, version: 0x%x\n",
595                        (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
596                        ? "OTP" : "EEPROM",
597                        iwl_eeprom_query16(priv, EEPROM_VERSION));
598
599         ret = 0;
600 done:
601         priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
602
603 err:
604         if (ret)
605                 iwl_eeprom_free(priv);
606         /* Reset chip to save power until we load uCode during "up". */
607         priv->cfg->ops->lib->apm_ops.stop(priv);
608 alloc_err:
609         return ret;
610 }
611 EXPORT_SYMBOL(iwl_eeprom_init);
612
613 void iwl_eeprom_free(struct iwl_priv *priv)
614 {
615         kfree(priv->eeprom);
616         priv->eeprom = NULL;
617 }
618 EXPORT_SYMBOL(iwl_eeprom_free);
619
620 int iwl_eeprom_check_version(struct iwl_priv *priv)
621 {
622         u16 eeprom_ver;
623         u16 calib_ver;
624
625         eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
626         calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
627
628         if (eeprom_ver < priv->cfg->eeprom_ver ||
629             calib_ver < priv->cfg->eeprom_calib_ver)
630                 goto err;
631
632         return 0;
633 err:
634         IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
635                   eeprom_ver, priv->cfg->eeprom_ver,
636                   calib_ver,  priv->cfg->eeprom_calib_ver);
637         return -EINVAL;
638
639 }
640 EXPORT_SYMBOL(iwl_eeprom_check_version);
641
642 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
643 {
644         return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
645 }
646 EXPORT_SYMBOL(iwl_eeprom_query_addr);
647
648 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
649 {
650         if (!priv->eeprom)
651                 return 0;
652         return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
653 }
654 EXPORT_SYMBOL(iwl_eeprom_query16);
655
656 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
657 {
658         const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
659                                         EEPROM_MAC_ADDRESS);
660         memcpy(mac, addr, ETH_ALEN);
661 }
662 EXPORT_SYMBOL(iwl_eeprom_get_mac);
663
664 static void iwl_init_band_reference(const struct iwl_priv *priv,
665                         int eep_band, int *eeprom_ch_count,
666                         const struct iwl_eeprom_channel **eeprom_ch_info,
667                         const u8 **eeprom_ch_index)
668 {
669         u32 offset = priv->cfg->ops->lib->
670                         eeprom_ops.regulatory_bands[eep_band - 1];
671         switch (eep_band) {
672         case 1:         /* 2.4GHz band */
673                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
674                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
675                                 iwl_eeprom_query_addr(priv, offset);
676                 *eeprom_ch_index = iwl_eeprom_band_1;
677                 break;
678         case 2:         /* 4.9GHz band */
679                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
680                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
681                                 iwl_eeprom_query_addr(priv, offset);
682                 *eeprom_ch_index = iwl_eeprom_band_2;
683                 break;
684         case 3:         /* 5.2GHz band */
685                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
686                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
687                                 iwl_eeprom_query_addr(priv, offset);
688                 *eeprom_ch_index = iwl_eeprom_band_3;
689                 break;
690         case 4:         /* 5.5GHz band */
691                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
692                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
693                                 iwl_eeprom_query_addr(priv, offset);
694                 *eeprom_ch_index = iwl_eeprom_band_4;
695                 break;
696         case 5:         /* 5.7GHz band */
697                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
698                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
699                                 iwl_eeprom_query_addr(priv, offset);
700                 *eeprom_ch_index = iwl_eeprom_band_5;
701                 break;
702         case 6:         /* 2.4GHz ht40 channels */
703                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
704                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
705                                 iwl_eeprom_query_addr(priv, offset);
706                 *eeprom_ch_index = iwl_eeprom_band_6;
707                 break;
708         case 7:         /* 5 GHz ht40 channels */
709                 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
710                 *eeprom_ch_info = (struct iwl_eeprom_channel *)
711                                 iwl_eeprom_query_addr(priv, offset);
712                 *eeprom_ch_index = iwl_eeprom_band_7;
713                 break;
714         default:
715                 BUG();
716                 return;
717         }
718 }
719
720 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
721                             ? # x " " : "")
722
723 /**
724  * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
725  *
726  * Does not set up a command, or touch hardware.
727  */
728 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
729                               enum ieee80211_band band, u16 channel,
730                               const struct iwl_eeprom_channel *eeprom_ch,
731                               u8 clear_ht40_extension_channel)
732 {
733         struct iwl_channel_info *ch_info;
734
735         ch_info = (struct iwl_channel_info *)
736                         iwl_get_channel_info(priv, band, channel);
737
738         if (!is_channel_valid(ch_info))
739                 return -1;
740
741         IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
742                         " Ad-Hoc %ssupported\n",
743                         ch_info->channel,
744                         is_channel_a_band(ch_info) ?
745                         "5.2" : "2.4",
746                         CHECK_AND_PRINT(IBSS),
747                         CHECK_AND_PRINT(ACTIVE),
748                         CHECK_AND_PRINT(RADAR),
749                         CHECK_AND_PRINT(WIDE),
750                         CHECK_AND_PRINT(DFS),
751                         eeprom_ch->flags,
752                         eeprom_ch->max_power_avg,
753                         ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
754                          && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
755                         "" : "not ");
756
757         ch_info->ht40_eeprom = *eeprom_ch;
758         ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
759         ch_info->ht40_flags = eeprom_ch->flags;
760         if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
761                 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
762
763         return 0;
764 }
765
766 /**
767  * iwl_get_max_txpower_avg - get the highest tx power from all chains.
768  *     find the highest tx power from all chains for the channel
769  */
770 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
771                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
772                 int element, s8 *max_txpower_in_half_dbm)
773 {
774         s8 max_txpower_avg = 0; /* (dBm) */
775
776         IWL_DEBUG_INFO(priv, "%d - "
777                         "chain_a: %d dB chain_b: %d dB "
778                         "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
779                         element,
780                         enhanced_txpower[element].chain_a_max >> 1,
781                         enhanced_txpower[element].chain_b_max >> 1,
782                         enhanced_txpower[element].chain_c_max >> 1,
783                         enhanced_txpower[element].mimo2_max >> 1,
784                         enhanced_txpower[element].mimo3_max >> 1);
785         /* Take the highest tx power from any valid chains */
786         if ((priv->cfg->valid_tx_ant & ANT_A) &&
787             (enhanced_txpower[element].chain_a_max > max_txpower_avg))
788                 max_txpower_avg = enhanced_txpower[element].chain_a_max;
789         if ((priv->cfg->valid_tx_ant & ANT_B) &&
790             (enhanced_txpower[element].chain_b_max > max_txpower_avg))
791                 max_txpower_avg = enhanced_txpower[element].chain_b_max;
792         if ((priv->cfg->valid_tx_ant & ANT_C) &&
793             (enhanced_txpower[element].chain_c_max > max_txpower_avg))
794                 max_txpower_avg = enhanced_txpower[element].chain_c_max;
795         if (((priv->cfg->valid_tx_ant == ANT_AB) |
796             (priv->cfg->valid_tx_ant == ANT_BC) |
797             (priv->cfg->valid_tx_ant == ANT_AC)) &&
798             (enhanced_txpower[element].mimo2_max > max_txpower_avg))
799                 max_txpower_avg =  enhanced_txpower[element].mimo2_max;
800         if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
801             (enhanced_txpower[element].mimo3_max > max_txpower_avg))
802                 max_txpower_avg = enhanced_txpower[element].mimo3_max;
803
804         /*
805          * max. tx power in EEPROM is in 1/2 dBm format
806          * convert from 1/2 dBm to dBm (round-up convert)
807          * but we also do not want to loss 1/2 dBm resolution which
808          * will impact performance
809          */
810         *max_txpower_in_half_dbm = max_txpower_avg;
811         return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
812 }
813
814 /**
815  * iwl_update_common_txpower: update channel tx power
816  *     update tx power per band based on EEPROM enhanced tx power info.
817  */
818 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
819                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
820                 int section, int element, s8 *max_txpower_in_half_dbm)
821 {
822         struct iwl_channel_info *ch_info;
823         int ch;
824         bool is_ht40 = false;
825         s8 max_txpower_avg; /* (dBm) */
826
827         /* it is common section, contain all type (Legacy, HT and HT40)
828          * based on the element in the section to determine
829          * is it HT 40 or not
830          */
831         if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
832                 is_ht40 = true;
833         max_txpower_avg =
834                 iwl_get_max_txpower_avg(priv, enhanced_txpower,
835                                         element, max_txpower_in_half_dbm);
836
837         ch_info = priv->channel_info;
838
839         for (ch = 0; ch < priv->channel_count; ch++) {
840                 /* find matching band and update tx power if needed */
841                 if ((ch_info->band == enhinfo[section].band) &&
842                     (ch_info->max_power_avg < max_txpower_avg) &&
843                     (!is_ht40)) {
844                         /* Update regulatory-based run-time data */
845                         ch_info->max_power_avg = ch_info->curr_txpow =
846                                 max_txpower_avg;
847                         ch_info->scan_power = max_txpower_avg;
848                 }
849                 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
850                     (ch_info->ht40_max_power_avg < max_txpower_avg)) {
851                         /* Update regulatory-based run-time data */
852                         ch_info->ht40_max_power_avg = max_txpower_avg;
853                 }
854                 ch_info++;
855         }
856         return max_txpower_avg;
857 }
858
859 /**
860  * iwl_update_channel_txpower: update channel tx power
861  *      update channel tx power based on EEPROM enhanced tx power info.
862  */
863 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
864                 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
865                 int section, int element, s8 *max_txpower_in_half_dbm)
866 {
867         struct iwl_channel_info *ch_info;
868         int ch;
869         u8 channel;
870         s8 max_txpower_avg; /* (dBm) */
871
872         channel = enhinfo[section].iwl_eeprom_section_channel[element];
873         max_txpower_avg =
874                 iwl_get_max_txpower_avg(priv, enhanced_txpower,
875                                         element, max_txpower_in_half_dbm);
876
877         ch_info = priv->channel_info;
878         for (ch = 0; ch < priv->channel_count; ch++) {
879                 /* find matching channel and update tx power if needed */
880                 if (ch_info->channel == channel) {
881                         if ((ch_info->max_power_avg < max_txpower_avg) &&
882                             (!enhinfo[section].is_ht40)) {
883                                 /* Update regulatory-based run-time data */
884                                 ch_info->max_power_avg = max_txpower_avg;
885                                 ch_info->curr_txpow = max_txpower_avg;
886                                 ch_info->scan_power = max_txpower_avg;
887                         }
888                         if ((enhinfo[section].is_ht40) &&
889                             (ch_info->ht40_max_power_avg < max_txpower_avg)) {
890                                 /* Update regulatory-based run-time data */
891                                 ch_info->ht40_max_power_avg = max_txpower_avg;
892                         }
893                         break;
894                 }
895                 ch_info++;
896         }
897         return max_txpower_avg;
898 }
899
900 /**
901  * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
902  */
903 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
904 {
905         int eeprom_section_count = 0;
906         int section, element;
907         struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
908         u32 offset;
909         s8 max_txpower_avg; /* (dBm) */
910         s8 max_txpower_in_half_dbm; /* (half-dBm) */
911
912         /* Loop through all the sections
913          * adjust bands and channel's max tx power
914          * Set the tx_power_user_lmt to the highest power
915          * supported by any channels and chains
916          */
917         for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
918                 eeprom_section_count = enhinfo[section].count;
919                 offset = enhinfo[section].offset;
920                 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
921                                 iwl_eeprom_query_addr(priv, offset);
922
923                 /*
924                  * check for valid entry -
925                  * different version of EEPROM might contain different set
926                  * of enhanced tx power table
927                  * always check for valid entry before process
928                  * the information
929                  */
930                 if (!enhanced_txpower->common || enhanced_txpower->reserved)
931                         continue;
932
933                 for (element = 0; element < eeprom_section_count; element++) {
934                         if (enhinfo[section].is_common)
935                                 max_txpower_avg =
936                                         iwl_update_common_txpower(priv,
937                                                 enhanced_txpower, section,
938                                                 element,
939                                                 &max_txpower_in_half_dbm);
940                         else
941                                 max_txpower_avg =
942                                         iwl_update_channel_txpower(priv,
943                                                 enhanced_txpower, section,
944                                                 element,
945                                                 &max_txpower_in_half_dbm);
946
947                         /* Update the tx_power_user_lmt to the highest power
948                          * supported by any channel */
949                         if (max_txpower_avg > priv->tx_power_user_lmt)
950                                 priv->tx_power_user_lmt = max_txpower_avg;
951
952                         /*
953                          * Update the tx_power_lmt_in_half_dbm to
954                          * the highest power supported by any channel
955                          */
956                         if (max_txpower_in_half_dbm >
957                             priv->tx_power_lmt_in_half_dbm)
958                                 priv->tx_power_lmt_in_half_dbm =
959                                         max_txpower_in_half_dbm;
960                 }
961         }
962 }
963 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
964
965 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
966                             ? # x " " : "")
967
968 /**
969  * iwl_init_channel_map - Set up driver's info for all possible channels
970  */
971 int iwl_init_channel_map(struct iwl_priv *priv)
972 {
973         int eeprom_ch_count = 0;
974         const u8 *eeprom_ch_index = NULL;
975         const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
976         int band, ch;
977         struct iwl_channel_info *ch_info;
978
979         if (priv->channel_count) {
980                 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
981                 return 0;
982         }
983
984         IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
985
986         priv->channel_count =
987             ARRAY_SIZE(iwl_eeprom_band_1) +
988             ARRAY_SIZE(iwl_eeprom_band_2) +
989             ARRAY_SIZE(iwl_eeprom_band_3) +
990             ARRAY_SIZE(iwl_eeprom_band_4) +
991             ARRAY_SIZE(iwl_eeprom_band_5);
992
993         IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
994
995         priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
996                                      priv->channel_count, GFP_KERNEL);
997         if (!priv->channel_info) {
998                 IWL_ERR(priv, "Could not allocate channel_info\n");
999                 priv->channel_count = 0;
1000                 return -ENOMEM;
1001         }
1002
1003         ch_info = priv->channel_info;
1004
1005         /* Loop through the 5 EEPROM bands adding them in order to the
1006          * channel map we maintain (that contains additional information than
1007          * what just in the EEPROM) */
1008         for (band = 1; band <= 5; band++) {
1009
1010                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1011                                         &eeprom_ch_info, &eeprom_ch_index);
1012
1013                 /* Loop through each band adding each of the channels */
1014                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1015                         ch_info->channel = eeprom_ch_index[ch];
1016                         ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
1017                             IEEE80211_BAND_5GHZ;
1018
1019                         /* permanently store EEPROM's channel regulatory flags
1020                          *   and max power in channel info database. */
1021                         ch_info->eeprom = eeprom_ch_info[ch];
1022
1023                         /* Copy the run-time flags so they are there even on
1024                          * invalid channels */
1025                         ch_info->flags = eeprom_ch_info[ch].flags;
1026                         /* First write that ht40 is not enabled, and then enable
1027                          * one by one */
1028                         ch_info->ht40_extension_channel =
1029                                         IEEE80211_CHAN_NO_HT40;
1030
1031                         if (!(is_channel_valid(ch_info))) {
1032                                 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
1033                                                "No traffic\n",
1034                                                ch_info->channel,
1035                                                ch_info->flags,
1036                                                is_channel_a_band(ch_info) ?
1037                                                "5.2" : "2.4");
1038                                 ch_info++;
1039                                 continue;
1040                         }
1041
1042                         /* Initialize regulatory-based run-time data */
1043                         ch_info->max_power_avg = ch_info->curr_txpow =
1044                             eeprom_ch_info[ch].max_power_avg;
1045                         ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
1046                         ch_info->min_power = 0;
1047
1048                         IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1049                                        " Ad-Hoc %ssupported\n",
1050                                        ch_info->channel,
1051                                        is_channel_a_band(ch_info) ?
1052                                        "5.2" : "2.4",
1053                                        CHECK_AND_PRINT_I(VALID),
1054                                        CHECK_AND_PRINT_I(IBSS),
1055                                        CHECK_AND_PRINT_I(ACTIVE),
1056                                        CHECK_AND_PRINT_I(RADAR),
1057                                        CHECK_AND_PRINT_I(WIDE),
1058                                        CHECK_AND_PRINT_I(DFS),
1059                                        eeprom_ch_info[ch].flags,
1060                                        eeprom_ch_info[ch].max_power_avg,
1061                                        ((eeprom_ch_info[ch].
1062                                          flags & EEPROM_CHANNEL_IBSS)
1063                                         && !(eeprom_ch_info[ch].
1064                                              flags & EEPROM_CHANNEL_RADAR))
1065                                        ? "" : "not ");
1066
1067                         /* Set the tx_power_user_lmt to the highest power
1068                          * supported by any channel */
1069                         if (eeprom_ch_info[ch].max_power_avg >
1070                                                 priv->tx_power_user_lmt)
1071                                 priv->tx_power_user_lmt =
1072                                     eeprom_ch_info[ch].max_power_avg;
1073
1074                         ch_info++;
1075                 }
1076         }
1077
1078         /* Check if we do have HT40 channels */
1079         if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1080             EEPROM_REGULATORY_BAND_NO_HT40 &&
1081             priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1082             EEPROM_REGULATORY_BAND_NO_HT40)
1083                 return 0;
1084
1085         /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1086         for (band = 6; band <= 7; band++) {
1087                 enum ieee80211_band ieeeband;
1088
1089                 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1090                                         &eeprom_ch_info, &eeprom_ch_index);
1091
1092                 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1093                 ieeeband =
1094                         (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1095
1096                 /* Loop through each band adding each of the channels */
1097                 for (ch = 0; ch < eeprom_ch_count; ch++) {
1098                         /* Set up driver's info for lower half */
1099                         iwl_mod_ht40_chan_info(priv, ieeeband,
1100                                                 eeprom_ch_index[ch],
1101                                                 &eeprom_ch_info[ch],
1102                                                 IEEE80211_CHAN_NO_HT40PLUS);
1103
1104                         /* Set up driver's info for upper half */
1105                         iwl_mod_ht40_chan_info(priv, ieeeband,
1106                                                 eeprom_ch_index[ch] + 4,
1107                                                 &eeprom_ch_info[ch],
1108                                                 IEEE80211_CHAN_NO_HT40MINUS);
1109                 }
1110         }
1111
1112         /* for newer device (6000 series and up)
1113          * EEPROM contain enhanced tx power information
1114          * driver need to process addition information
1115          * to determine the max channel tx power limits
1116          */
1117         if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1118                 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1119
1120         return 0;
1121 }
1122 EXPORT_SYMBOL(iwl_init_channel_map);
1123
1124 /*
1125  * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1126  */
1127 void iwl_free_channel_map(struct iwl_priv *priv)
1128 {
1129         kfree(priv->channel_info);
1130         priv->channel_count = 0;
1131 }
1132 EXPORT_SYMBOL(iwl_free_channel_map);
1133
1134 /**
1135  * iwl_get_channel_info - Find driver's private channel info
1136  *
1137  * Based on band and channel number.
1138  */
1139 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1140                                         enum ieee80211_band band, u16 channel)
1141 {
1142         int i;
1143
1144         switch (band) {
1145         case IEEE80211_BAND_5GHZ:
1146                 for (i = 14; i < priv->channel_count; i++) {
1147                         if (priv->channel_info[i].channel == channel)
1148                                 return &priv->channel_info[i];
1149                 }
1150                 break;
1151         case IEEE80211_BAND_2GHZ:
1152                 if (channel >= 1 && channel <= 14)
1153                         return &priv->channel_info[channel - 1];
1154                 break;
1155         default:
1156                 BUG();
1157         }
1158
1159         return NULL;
1160 }
1161 EXPORT_SYMBOL(iwl_get_channel_info);
1162