hwmon: (applesmc) Ignore some temperature registers
[pandora-kernel.git] / drivers / net / wireless / iwlwifi / dvm / calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "iwl-trans.h"
67
68 #include "dev.h"
69 #include "calib.h"
70 #include "agn.h"
71
72 /*****************************************************************************
73  * INIT calibrations framework
74  *****************************************************************************/
75
76 /* Opaque calibration results */
77 struct iwl_calib_result {
78         struct list_head list;
79         size_t cmd_len;
80         struct iwl_calib_hdr hdr;
81         /* data follows */
82 };
83
84 struct statistics_general_data {
85         u32 beacon_silence_rssi_a;
86         u32 beacon_silence_rssi_b;
87         u32 beacon_silence_rssi_c;
88         u32 beacon_energy_a;
89         u32 beacon_energy_b;
90         u32 beacon_energy_c;
91 };
92
93 int iwl_send_calib_results(struct iwl_priv *priv)
94 {
95         struct iwl_host_cmd hcmd = {
96                 .id = REPLY_PHY_CALIBRATION_CMD,
97                 .flags = CMD_SYNC,
98         };
99         struct iwl_calib_result *res;
100
101         list_for_each_entry(res, &priv->calib_results, list) {
102                 int ret;
103
104                 hcmd.len[0] = res->cmd_len;
105                 hcmd.data[0] = &res->hdr;
106                 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
107                 ret = iwl_dvm_send_cmd(priv, &hcmd);
108                 if (ret) {
109                         IWL_ERR(priv, "Error %d on calib cmd %d\n",
110                                 ret, res->hdr.op_code);
111                         return ret;
112                 }
113         }
114
115         return 0;
116 }
117
118 int iwl_calib_set(struct iwl_priv *priv,
119                   const struct iwl_calib_hdr *cmd, int len)
120 {
121         struct iwl_calib_result *res, *tmp;
122
123         res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
124                       GFP_ATOMIC);
125         if (!res)
126                 return -ENOMEM;
127         memcpy(&res->hdr, cmd, len);
128         res->cmd_len = len;
129
130         list_for_each_entry(tmp, &priv->calib_results, list) {
131                 if (tmp->hdr.op_code == res->hdr.op_code) {
132                         list_replace(&tmp->list, &res->list);
133                         kfree(tmp);
134                         return 0;
135                 }
136         }
137
138         /* wasn't in list already */
139         list_add_tail(&res->list, &priv->calib_results);
140
141         return 0;
142 }
143
144 void iwl_calib_free_results(struct iwl_priv *priv)
145 {
146         struct iwl_calib_result *res, *tmp;
147
148         list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
149                 list_del(&res->list);
150                 kfree(res);
151         }
152 }
153
154 /*****************************************************************************
155  * RUNTIME calibrations framework
156  *****************************************************************************/
157
158 /* "false alarms" are signals that our DSP tries to lock onto,
159  *   but then determines that they are either noise, or transmissions
160  *   from a distant wireless network (also "noise", really) that get
161  *   "stepped on" by stronger transmissions within our own network.
162  * This algorithm attempts to set a sensitivity level that is high
163  *   enough to receive all of our own network traffic, but not so
164  *   high that our DSP gets too busy trying to lock onto non-network
165  *   activity/noise. */
166 static int iwl_sens_energy_cck(struct iwl_priv *priv,
167                                    u32 norm_fa,
168                                    u32 rx_enable_time,
169                                    struct statistics_general_data *rx_info)
170 {
171         u32 max_nrg_cck = 0;
172         int i = 0;
173         u8 max_silence_rssi = 0;
174         u32 silence_ref = 0;
175         u8 silence_rssi_a = 0;
176         u8 silence_rssi_b = 0;
177         u8 silence_rssi_c = 0;
178         u32 val;
179
180         /* "false_alarms" values below are cross-multiplications to assess the
181          *   numbers of false alarms within the measured period of actual Rx
182          *   (Rx is off when we're txing), vs the min/max expected false alarms
183          *   (some should be expected if rx is sensitive enough) in a
184          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
185          *
186          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
187          *
188          * */
189         u32 false_alarms = norm_fa * 200 * 1024;
190         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
191         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
192         struct iwl_sensitivity_data *data = NULL;
193         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
194
195         data = &(priv->sensitivity_data);
196
197         data->nrg_auto_corr_silence_diff = 0;
198
199         /* Find max silence rssi among all 3 receivers.
200          * This is background noise, which may include transmissions from other
201          *    networks, measured during silence before our network's beacon */
202         silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
203                             ALL_BAND_FILTER) >> 8);
204         silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
205                             ALL_BAND_FILTER) >> 8);
206         silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
207                             ALL_BAND_FILTER) >> 8);
208
209         val = max(silence_rssi_b, silence_rssi_c);
210         max_silence_rssi = max(silence_rssi_a, (u8) val);
211
212         /* Store silence rssi in 20-beacon history table */
213         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
214         data->nrg_silence_idx++;
215         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
216                 data->nrg_silence_idx = 0;
217
218         /* Find max silence rssi across 20 beacon history */
219         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
220                 val = data->nrg_silence_rssi[i];
221                 silence_ref = max(silence_ref, val);
222         }
223         IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
224                         silence_rssi_a, silence_rssi_b, silence_rssi_c,
225                         silence_ref);
226
227         /* Find max rx energy (min value!) among all 3 receivers,
228          *   measured during beacon frame.
229          * Save it in 10-beacon history table. */
230         i = data->nrg_energy_idx;
231         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
232         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
233
234         data->nrg_energy_idx++;
235         if (data->nrg_energy_idx >= 10)
236                 data->nrg_energy_idx = 0;
237
238         /* Find min rx energy (max value) across 10 beacon history.
239          * This is the minimum signal level that we want to receive well.
240          * Add backoff (margin so we don't miss slightly lower energy frames).
241          * This establishes an upper bound (min value) for energy threshold. */
242         max_nrg_cck = data->nrg_value[0];
243         for (i = 1; i < 10; i++)
244                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
245         max_nrg_cck += 6;
246
247         IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
248                         rx_info->beacon_energy_a, rx_info->beacon_energy_b,
249                         rx_info->beacon_energy_c, max_nrg_cck - 6);
250
251         /* Count number of consecutive beacons with fewer-than-desired
252          *   false alarms. */
253         if (false_alarms < min_false_alarms)
254                 data->num_in_cck_no_fa++;
255         else
256                 data->num_in_cck_no_fa = 0;
257         IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
258                         data->num_in_cck_no_fa);
259
260         /* If we got too many false alarms this time, reduce sensitivity */
261         if ((false_alarms > max_false_alarms) &&
262                 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
263                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
264                      false_alarms, max_false_alarms);
265                 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
266                 data->nrg_curr_state = IWL_FA_TOO_MANY;
267                 /* Store for "fewer than desired" on later beacon */
268                 data->nrg_silence_ref = silence_ref;
269
270                 /* increase energy threshold (reduce nrg value)
271                  *   to decrease sensitivity */
272                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
273         /* Else if we got fewer than desired, increase sensitivity */
274         } else if (false_alarms < min_false_alarms) {
275                 data->nrg_curr_state = IWL_FA_TOO_FEW;
276
277                 /* Compare silence level with silence level for most recent
278                  *   healthy number or too many false alarms */
279                 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
280                                                    (s32)silence_ref;
281
282                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
283                          false_alarms, min_false_alarms,
284                          data->nrg_auto_corr_silence_diff);
285
286                 /* Increase value to increase sensitivity, but only if:
287                  * 1a) previous beacon did *not* have *too many* false alarms
288                  * 1b) AND there's a significant difference in Rx levels
289                  *      from a previous beacon with too many, or healthy # FAs
290                  * OR 2) We've seen a lot of beacons (100) with too few
291                  *       false alarms */
292                 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
293                         ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
294                         (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
295
296                         IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
297                         /* Increase nrg value to increase sensitivity */
298                         val = data->nrg_th_cck + NRG_STEP_CCK;
299                         data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
300                 } else {
301                         IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
302                 }
303
304         /* Else we got a healthy number of false alarms, keep status quo */
305         } else {
306                 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
307                 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
308
309                 /* Store for use in "fewer than desired" with later beacon */
310                 data->nrg_silence_ref = silence_ref;
311
312                 /* If previous beacon had too many false alarms,
313                  *   give it some extra margin by reducing sensitivity again
314                  *   (but don't go below measured energy of desired Rx) */
315                 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
316                         IWL_DEBUG_CALIB(priv, "... increasing margin\n");
317                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
318                                 data->nrg_th_cck -= NRG_MARGIN;
319                         else
320                                 data->nrg_th_cck = max_nrg_cck;
321                 }
322         }
323
324         /* Make sure the energy threshold does not go above the measured
325          * energy of the desired Rx signals (reduced by backoff margin),
326          * or else we might start missing Rx frames.
327          * Lower value is higher energy, so we use max()!
328          */
329         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
330         IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
331
332         data->nrg_prev_state = data->nrg_curr_state;
333
334         /* Auto-correlation CCK algorithm */
335         if (false_alarms > min_false_alarms) {
336
337                 /* increase auto_corr values to decrease sensitivity
338                  * so the DSP won't be disturbed by the noise
339                  */
340                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
341                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
342                 else {
343                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
344                         data->auto_corr_cck =
345                                 min((u32)ranges->auto_corr_max_cck, val);
346                 }
347                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
348                 data->auto_corr_cck_mrc =
349                         min((u32)ranges->auto_corr_max_cck_mrc, val);
350         } else if ((false_alarms < min_false_alarms) &&
351            ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
352            (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
353
354                 /* Decrease auto_corr values to increase sensitivity */
355                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
356                 data->auto_corr_cck =
357                         max((u32)ranges->auto_corr_min_cck, val);
358                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
359                 data->auto_corr_cck_mrc =
360                         max((u32)ranges->auto_corr_min_cck_mrc, val);
361         }
362
363         return 0;
364 }
365
366
367 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
368                                        u32 norm_fa,
369                                        u32 rx_enable_time)
370 {
371         u32 val;
372         u32 false_alarms = norm_fa * 200 * 1024;
373         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
374         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
375         struct iwl_sensitivity_data *data = NULL;
376         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
377
378         data = &(priv->sensitivity_data);
379
380         /* If we got too many false alarms this time, reduce sensitivity */
381         if (false_alarms > max_false_alarms) {
382
383                 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
384                              false_alarms, max_false_alarms);
385
386                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
387                 data->auto_corr_ofdm =
388                         min((u32)ranges->auto_corr_max_ofdm, val);
389
390                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
391                 data->auto_corr_ofdm_mrc =
392                         min((u32)ranges->auto_corr_max_ofdm_mrc, val);
393
394                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
395                 data->auto_corr_ofdm_x1 =
396                         min((u32)ranges->auto_corr_max_ofdm_x1, val);
397
398                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
399                 data->auto_corr_ofdm_mrc_x1 =
400                         min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
401         }
402
403         /* Else if we got fewer than desired, increase sensitivity */
404         else if (false_alarms < min_false_alarms) {
405
406                 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
407                              false_alarms, min_false_alarms);
408
409                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
410                 data->auto_corr_ofdm =
411                         max((u32)ranges->auto_corr_min_ofdm, val);
412
413                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
414                 data->auto_corr_ofdm_mrc =
415                         max((u32)ranges->auto_corr_min_ofdm_mrc, val);
416
417                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
418                 data->auto_corr_ofdm_x1 =
419                         max((u32)ranges->auto_corr_min_ofdm_x1, val);
420
421                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
422                 data->auto_corr_ofdm_mrc_x1 =
423                         max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
424         } else {
425                 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
426                          min_false_alarms, false_alarms, max_false_alarms);
427         }
428         return 0;
429 }
430
431 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
432                                 struct iwl_sensitivity_data *data,
433                                 __le16 *tbl)
434 {
435         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
436                                 cpu_to_le16((u16)data->auto_corr_ofdm);
437         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
438                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
439         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
440                                 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
441         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
442                                 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
443
444         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
445                                 cpu_to_le16((u16)data->auto_corr_cck);
446         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
447                                 cpu_to_le16((u16)data->auto_corr_cck_mrc);
448
449         tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
450                                 cpu_to_le16((u16)data->nrg_th_cck);
451         tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
452                                 cpu_to_le16((u16)data->nrg_th_ofdm);
453
454         tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
455                                 cpu_to_le16(data->barker_corr_th_min);
456         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
457                                 cpu_to_le16(data->barker_corr_th_min_mrc);
458         tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
459                                 cpu_to_le16(data->nrg_th_cca);
460
461         IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462                         data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
463                         data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
464                         data->nrg_th_ofdm);
465
466         IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
467                         data->auto_corr_cck, data->auto_corr_cck_mrc,
468                         data->nrg_th_cck);
469 }
470
471 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
472 static int iwl_sensitivity_write(struct iwl_priv *priv)
473 {
474         struct iwl_sensitivity_cmd cmd;
475         struct iwl_sensitivity_data *data = NULL;
476         struct iwl_host_cmd cmd_out = {
477                 .id = SENSITIVITY_CMD,
478                 .len = { sizeof(struct iwl_sensitivity_cmd), },
479                 .flags = CMD_ASYNC,
480                 .data = { &cmd, },
481         };
482
483         data = &(priv->sensitivity_data);
484
485         memset(&cmd, 0, sizeof(cmd));
486
487         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
488
489         /* Update uCode's "work" table, and copy it to DSP */
490         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
491
492         /* Don't send command to uCode if nothing has changed */
493         if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
494                     sizeof(u16)*HD_TABLE_SIZE)) {
495                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
496                 return 0;
497         }
498
499         /* Copy table for comparison next time */
500         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
501                sizeof(u16)*HD_TABLE_SIZE);
502
503         return iwl_dvm_send_cmd(priv, &cmd_out);
504 }
505
506 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
507 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
508 {
509         struct iwl_enhance_sensitivity_cmd cmd;
510         struct iwl_sensitivity_data *data = NULL;
511         struct iwl_host_cmd cmd_out = {
512                 .id = SENSITIVITY_CMD,
513                 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
514                 .flags = CMD_ASYNC,
515                 .data = { &cmd, },
516         };
517
518         data = &(priv->sensitivity_data);
519
520         memset(&cmd, 0, sizeof(cmd));
521
522         iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
523
524         if (priv->cfg->base_params->hd_v2) {
525                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
526                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
527                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
528                         HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
529                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
530                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
531                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
532                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
533                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
534                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
535                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
536                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
537                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
538                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
539                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
540                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
541                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
542                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
543                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
544                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
545                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
546                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
547         } else {
548                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
549                         HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
550                 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
551                         HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
552                 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
553                         HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
554                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
555                         HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
556                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
557                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
558                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
559                         HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
560                 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
561                         HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
562                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
563                         HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
564                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
565                         HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
566                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
567                         HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
568                 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
569                         HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
570         }
571
572         /* Update uCode's "work" table, and copy it to DSP */
573         cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
574
575         /* Don't send command to uCode if nothing has changed */
576         if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
577                     sizeof(u16)*HD_TABLE_SIZE) &&
578             !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
579                     &(priv->enhance_sensitivity_tbl[0]),
580                     sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
581                 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
582                 return 0;
583         }
584
585         /* Copy table for comparison next time */
586         memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
587                sizeof(u16)*HD_TABLE_SIZE);
588         memcpy(&(priv->enhance_sensitivity_tbl[0]),
589                &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
590                sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
591
592         return iwl_dvm_send_cmd(priv, &cmd_out);
593 }
594
595 void iwl_init_sensitivity(struct iwl_priv *priv)
596 {
597         int ret = 0;
598         int i;
599         struct iwl_sensitivity_data *data = NULL;
600         const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
601
602         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
603                 return;
604
605         IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
606
607         /* Clear driver's sensitivity algo data */
608         data = &(priv->sensitivity_data);
609
610         if (ranges == NULL)
611                 return;
612
613         memset(data, 0, sizeof(struct iwl_sensitivity_data));
614
615         data->num_in_cck_no_fa = 0;
616         data->nrg_curr_state = IWL_FA_TOO_MANY;
617         data->nrg_prev_state = IWL_FA_TOO_MANY;
618         data->nrg_silence_ref = 0;
619         data->nrg_silence_idx = 0;
620         data->nrg_energy_idx = 0;
621
622         for (i = 0; i < 10; i++)
623                 data->nrg_value[i] = 0;
624
625         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
626                 data->nrg_silence_rssi[i] = 0;
627
628         data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
629         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
630         data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
631         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
632         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
633         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
634         data->nrg_th_cck = ranges->nrg_th_cck;
635         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
636         data->barker_corr_th_min = ranges->barker_corr_th_min;
637         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
638         data->nrg_th_cca = ranges->nrg_th_cca;
639
640         data->last_bad_plcp_cnt_ofdm = 0;
641         data->last_fa_cnt_ofdm = 0;
642         data->last_bad_plcp_cnt_cck = 0;
643         data->last_fa_cnt_cck = 0;
644
645         if (priv->fw->enhance_sensitivity_table)
646                 ret |= iwl_enhance_sensitivity_write(priv);
647         else
648                 ret |= iwl_sensitivity_write(priv);
649         IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
650 }
651
652 void iwl_sensitivity_calibration(struct iwl_priv *priv)
653 {
654         u32 rx_enable_time;
655         u32 fa_cck;
656         u32 fa_ofdm;
657         u32 bad_plcp_cck;
658         u32 bad_plcp_ofdm;
659         u32 norm_fa_ofdm;
660         u32 norm_fa_cck;
661         struct iwl_sensitivity_data *data = NULL;
662         struct statistics_rx_non_phy *rx_info;
663         struct statistics_rx_phy *ofdm, *cck;
664         struct statistics_general_data statis;
665
666         if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
667                 return;
668
669         data = &(priv->sensitivity_data);
670
671         if (!iwl_is_any_associated(priv)) {
672                 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
673                 return;
674         }
675
676         spin_lock_bh(&priv->statistics.lock);
677         rx_info = &priv->statistics.rx_non_phy;
678         ofdm = &priv->statistics.rx_ofdm;
679         cck = &priv->statistics.rx_cck;
680         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
681                 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
682                 spin_unlock_bh(&priv->statistics.lock);
683                 return;
684         }
685
686         /* Extract Statistics: */
687         rx_enable_time = le32_to_cpu(rx_info->channel_load);
688         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
689         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
690         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
691         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
692
693         statis.beacon_silence_rssi_a =
694                         le32_to_cpu(rx_info->beacon_silence_rssi_a);
695         statis.beacon_silence_rssi_b =
696                         le32_to_cpu(rx_info->beacon_silence_rssi_b);
697         statis.beacon_silence_rssi_c =
698                         le32_to_cpu(rx_info->beacon_silence_rssi_c);
699         statis.beacon_energy_a =
700                         le32_to_cpu(rx_info->beacon_energy_a);
701         statis.beacon_energy_b =
702                         le32_to_cpu(rx_info->beacon_energy_b);
703         statis.beacon_energy_c =
704                         le32_to_cpu(rx_info->beacon_energy_c);
705
706         spin_unlock_bh(&priv->statistics.lock);
707
708         IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
709
710         if (!rx_enable_time) {
711                 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
712                 return;
713         }
714
715         /* These statistics increase monotonically, and do not reset
716          *   at each beacon.  Calculate difference from last value, or just
717          *   use the new statistics value if it has reset or wrapped around. */
718         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
719                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
720         else {
721                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
722                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
723         }
724
725         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
726                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
727         else {
728                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
729                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
730         }
731
732         if (data->last_fa_cnt_ofdm > fa_ofdm)
733                 data->last_fa_cnt_ofdm = fa_ofdm;
734         else {
735                 fa_ofdm -= data->last_fa_cnt_ofdm;
736                 data->last_fa_cnt_ofdm += fa_ofdm;
737         }
738
739         if (data->last_fa_cnt_cck > fa_cck)
740                 data->last_fa_cnt_cck = fa_cck;
741         else {
742                 fa_cck -= data->last_fa_cnt_cck;
743                 data->last_fa_cnt_cck += fa_cck;
744         }
745
746         /* Total aborted signal locks */
747         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
748         norm_fa_cck = fa_cck + bad_plcp_cck;
749
750         IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
751                         bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
752
753         iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
754         iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
755         if (priv->fw->enhance_sensitivity_table)
756                 iwl_enhance_sensitivity_write(priv);
757         else
758                 iwl_sensitivity_write(priv);
759 }
760
761 static inline u8 find_first_chain(u8 mask)
762 {
763         if (mask & ANT_A)
764                 return CHAIN_A;
765         if (mask & ANT_B)
766                 return CHAIN_B;
767         return CHAIN_C;
768 }
769
770 /**
771  * Run disconnected antenna algorithm to find out which antennas are
772  * disconnected.
773  */
774 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
775                                      struct iwl_chain_noise_data *data)
776 {
777         u32 active_chains = 0;
778         u32 max_average_sig;
779         u16 max_average_sig_antenna_i;
780         u8 num_tx_chains;
781         u8 first_chain;
782         u16 i = 0;
783
784         average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
785         average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
786         average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
787
788         if (average_sig[0] >= average_sig[1]) {
789                 max_average_sig = average_sig[0];
790                 max_average_sig_antenna_i = 0;
791                 active_chains = (1 << max_average_sig_antenna_i);
792         } else {
793                 max_average_sig = average_sig[1];
794                 max_average_sig_antenna_i = 1;
795                 active_chains = (1 << max_average_sig_antenna_i);
796         }
797
798         if (average_sig[2] >= max_average_sig) {
799                 max_average_sig = average_sig[2];
800                 max_average_sig_antenna_i = 2;
801                 active_chains = (1 << max_average_sig_antenna_i);
802         }
803
804         IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
805                      average_sig[0], average_sig[1], average_sig[2]);
806         IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
807                      max_average_sig, max_average_sig_antenna_i);
808
809         /* Compare signal strengths for all 3 receivers. */
810         for (i = 0; i < NUM_RX_CHAINS; i++) {
811                 if (i != max_average_sig_antenna_i) {
812                         s32 rssi_delta = (max_average_sig - average_sig[i]);
813
814                         /* If signal is very weak, compared with
815                          * strongest, mark it as disconnected. */
816                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
817                                 data->disconn_array[i] = 1;
818                         else
819                                 active_chains |= (1 << i);
820                         IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
821                              "disconn_array[i] = %d\n",
822                              i, rssi_delta, data->disconn_array[i]);
823                 }
824         }
825
826         /*
827          * The above algorithm sometimes fails when the ucode
828          * reports 0 for all chains. It's not clear why that
829          * happens to start with, but it is then causing trouble
830          * because this can make us enable more chains than the
831          * hardware really has.
832          *
833          * To be safe, simply mask out any chains that we know
834          * are not on the device.
835          */
836         active_chains &= priv->eeprom_data->valid_rx_ant;
837
838         num_tx_chains = 0;
839         for (i = 0; i < NUM_RX_CHAINS; i++) {
840                 /* loops on all the bits of
841                  * priv->hw_setting.valid_tx_ant */
842                 u8 ant_msk = (1 << i);
843                 if (!(priv->eeprom_data->valid_tx_ant & ant_msk))
844                         continue;
845
846                 num_tx_chains++;
847                 if (data->disconn_array[i] == 0)
848                         /* there is a Tx antenna connected */
849                         break;
850                 if (num_tx_chains == priv->hw_params.tx_chains_num &&
851                     data->disconn_array[i]) {
852                         /*
853                          * If all chains are disconnected
854                          * connect the first valid tx chain
855                          */
856                         first_chain =
857                                 find_first_chain(priv->eeprom_data->valid_tx_ant);
858                         data->disconn_array[first_chain] = 0;
859                         active_chains |= BIT(first_chain);
860                         IWL_DEBUG_CALIB(priv,
861                                         "All Tx chains are disconnected W/A - declare %d as connected\n",
862                                         first_chain);
863                         break;
864                 }
865         }
866
867         if (active_chains != priv->eeprom_data->valid_rx_ant &&
868             active_chains != priv->chain_noise_data.active_chains)
869                 IWL_DEBUG_CALIB(priv,
870                                 "Detected that not all antennas are connected! "
871                                 "Connected: %#x, valid: %#x.\n",
872                                 active_chains,
873                                 priv->eeprom_data->valid_rx_ant);
874
875         /* Save for use within RXON, TX, SCAN commands, etc. */
876         data->active_chains = active_chains;
877         IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
878                         active_chains);
879 }
880
881 static void iwlagn_gain_computation(struct iwl_priv *priv,
882                                     u32 average_noise[NUM_RX_CHAINS],
883                                     u8 default_chain)
884 {
885         int i;
886         s32 delta_g;
887         struct iwl_chain_noise_data *data = &priv->chain_noise_data;
888
889         /*
890          * Find Gain Code for the chains based on "default chain"
891          */
892         for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
893                 if ((data->disconn_array[i])) {
894                         data->delta_gain_code[i] = 0;
895                         continue;
896                 }
897
898                 delta_g = (priv->cfg->base_params->chain_noise_scale *
899                         ((s32)average_noise[default_chain] -
900                         (s32)average_noise[i])) / 1500;
901
902                 /* bound gain by 2 bits value max, 3rd bit is sign */
903                 data->delta_gain_code[i] =
904                         min(abs(delta_g),
905                         (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
906
907                 if (delta_g < 0)
908                         /*
909                          * set negative sign ...
910                          * note to Intel developers:  This is uCode API format,
911                          *   not the format of any internal device registers.
912                          *   Do not change this format for e.g. 6050 or similar
913                          *   devices.  Change format only if more resolution
914                          *   (i.e. more than 2 bits magnitude) is needed.
915                          */
916                         data->delta_gain_code[i] |= (1 << 2);
917         }
918
919         IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
920                         data->delta_gain_code[1], data->delta_gain_code[2]);
921
922         if (!data->radio_write) {
923                 struct iwl_calib_chain_noise_gain_cmd cmd;
924
925                 memset(&cmd, 0, sizeof(cmd));
926
927                 iwl_set_calib_hdr(&cmd.hdr,
928                         priv->phy_calib_chain_noise_gain_cmd);
929                 cmd.delta_gain_1 = data->delta_gain_code[1];
930                 cmd.delta_gain_2 = data->delta_gain_code[2];
931                 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
932                         CMD_ASYNC, sizeof(cmd), &cmd);
933
934                 data->radio_write = 1;
935                 data->state = IWL_CHAIN_NOISE_CALIBRATED;
936         }
937 }
938
939 /*
940  * Accumulate 16 beacons of signal and noise statistics for each of
941  *   3 receivers/antennas/rx-chains, then figure out:
942  * 1)  Which antennas are connected.
943  * 2)  Differential rx gain settings to balance the 3 receivers.
944  */
945 void iwl_chain_noise_calibration(struct iwl_priv *priv)
946 {
947         struct iwl_chain_noise_data *data = NULL;
948
949         u32 chain_noise_a;
950         u32 chain_noise_b;
951         u32 chain_noise_c;
952         u32 chain_sig_a;
953         u32 chain_sig_b;
954         u32 chain_sig_c;
955         u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956         u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
957         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
958         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
959         u16 i = 0;
960         u16 rxon_chnum = INITIALIZATION_VALUE;
961         u16 stat_chnum = INITIALIZATION_VALUE;
962         u8 rxon_band24;
963         u8 stat_band24;
964         struct statistics_rx_non_phy *rx_info;
965
966         /*
967          * MULTI-FIXME:
968          * When we support multiple interfaces on different channels,
969          * this must be modified/fixed.
970          */
971         struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
972
973         if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
974                 return;
975
976         data = &(priv->chain_noise_data);
977
978         /*
979          * Accumulate just the first "chain_noise_num_beacons" after
980          * the first association, then we're done forever.
981          */
982         if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
983                 if (data->state == IWL_CHAIN_NOISE_ALIVE)
984                         IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
985                 return;
986         }
987
988         spin_lock_bh(&priv->statistics.lock);
989
990         rx_info = &priv->statistics.rx_non_phy;
991
992         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
993                 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
994                 spin_unlock_bh(&priv->statistics.lock);
995                 return;
996         }
997
998         rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
999         rxon_chnum = le16_to_cpu(ctx->staging.channel);
1000         stat_band24 =
1001                 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1002         stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1003
1004         /* Make sure we accumulate data for just the associated channel
1005          *   (even if scanning). */
1006         if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1007                 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1008                                 rxon_chnum, rxon_band24);
1009                 spin_unlock_bh(&priv->statistics.lock);
1010                 return;
1011         }
1012
1013         /*
1014          *  Accumulate beacon statistics values across
1015          * "chain_noise_num_beacons"
1016          */
1017         chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1018                                 IN_BAND_FILTER;
1019         chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1020                                 IN_BAND_FILTER;
1021         chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1022                                 IN_BAND_FILTER;
1023
1024         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1025         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1026         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1027
1028         spin_unlock_bh(&priv->statistics.lock);
1029
1030         data->beacon_count++;
1031
1032         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1033         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1034         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1035
1036         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1037         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1038         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1039
1040         IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1041                         rxon_chnum, rxon_band24, data->beacon_count);
1042         IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1043                         chain_sig_a, chain_sig_b, chain_sig_c);
1044         IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1045                         chain_noise_a, chain_noise_b, chain_noise_c);
1046
1047         /* If this is the "chain_noise_num_beacons", determine:
1048          * 1)  Disconnected antennas (using signal strengths)
1049          * 2)  Differential gain (using silence noise) to balance receivers */
1050         if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1051                 return;
1052
1053         /* Analyze signal for disconnected antenna */
1054         if (priv->cfg->bt_params &&
1055             priv->cfg->bt_params->advanced_bt_coexist) {
1056                 /* Disable disconnected antenna algorithm for advanced
1057                    bt coex, assuming valid antennas are connected */
1058                 data->active_chains = priv->eeprom_data->valid_rx_ant;
1059                 for (i = 0; i < NUM_RX_CHAINS; i++)
1060                         if (!(data->active_chains & (1<<i)))
1061                                 data->disconn_array[i] = 1;
1062         } else
1063                 iwl_find_disconn_antenna(priv, average_sig, data);
1064
1065         /* Analyze noise for rx balance */
1066         average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1067         average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1068         average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1069
1070         for (i = 0; i < NUM_RX_CHAINS; i++) {
1071                 if (!(data->disconn_array[i]) &&
1072                    (average_noise[i] <= min_average_noise)) {
1073                         /* This means that chain i is active and has
1074                          * lower noise values so far: */
1075                         min_average_noise = average_noise[i];
1076                         min_average_noise_antenna_i = i;
1077                 }
1078         }
1079
1080         IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1081                         average_noise[0], average_noise[1],
1082                         average_noise[2]);
1083
1084         IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1085                         min_average_noise, min_average_noise_antenna_i);
1086
1087         iwlagn_gain_computation(
1088                 priv, average_noise,
1089                 find_first_chain(priv->eeprom_data->valid_rx_ant));
1090
1091         /* Some power changes may have been made during the calibration.
1092          * Update and commit the RXON
1093          */
1094         iwl_update_chain_flags(priv);
1095
1096         data->state = IWL_CHAIN_NOISE_DONE;
1097         iwl_power_update_mode(priv, false);
1098 }
1099
1100 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1101 {
1102         int i;
1103         memset(&(priv->sensitivity_data), 0,
1104                sizeof(struct iwl_sensitivity_data));
1105         memset(&(priv->chain_noise_data), 0,
1106                sizeof(struct iwl_chain_noise_data));
1107         for (i = 0; i < NUM_RX_CHAINS; i++)
1108                 priv->chain_noise_data.delta_gain_code[i] =
1109                                 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1110
1111         /* Ask for statistics now, the uCode will send notification
1112          * periodically after association */
1113         iwl_send_statistics_request(priv, CMD_ASYNC, true);
1114 }