ipv6: fix race condition regarding dst->expires and dst->from.
[pandora-kernel.git] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_PASSIVE_SCAN;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IBSS;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void send_scan_event(void *data)
2185 {
2186         struct ipw2100_priv *priv = data;
2187         union iwreq_data wrqu;
2188
2189         wrqu.data.length = 0;
2190         wrqu.data.flags = 0;
2191         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2192 }
2193
2194 static void ipw2100_scan_event_later(struct work_struct *work)
2195 {
2196         send_scan_event(container_of(work, struct ipw2100_priv,
2197                                         scan_event_later.work));
2198 }
2199
2200 static void ipw2100_scan_event_now(struct work_struct *work)
2201 {
2202         send_scan_event(container_of(work, struct ipw2100_priv,
2203                                         scan_event_now));
2204 }
2205
2206 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2207 {
2208         IPW_DEBUG_SCAN("scan complete\n");
2209         /* Age the scan results... */
2210         priv->ieee->scans++;
2211         priv->status &= ~STATUS_SCANNING;
2212
2213         /* Only userspace-requested scan completion events go out immediately */
2214         if (!priv->user_requested_scan) {
2215                 if (!delayed_work_pending(&priv->scan_event_later))
2216                         schedule_delayed_work(&priv->scan_event_later,
2217                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2218         } else {
2219                 priv->user_requested_scan = 0;
2220                 cancel_delayed_work(&priv->scan_event_later);
2221                 schedule_work(&priv->scan_event_now);
2222         }
2223 }
2224
2225 #ifdef CONFIG_IPW2100_DEBUG
2226 #define IPW2100_HANDLER(v, f) { v, f, # v }
2227 struct ipw2100_status_indicator {
2228         int status;
2229         void (*cb) (struct ipw2100_priv * priv, u32 status);
2230         char *name;
2231 };
2232 #else
2233 #define IPW2100_HANDLER(v, f) { v, f }
2234 struct ipw2100_status_indicator {
2235         int status;
2236         void (*cb) (struct ipw2100_priv * priv, u32 status);
2237 };
2238 #endif                          /* CONFIG_IPW2100_DEBUG */
2239
2240 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2241 {
2242         IPW_DEBUG_SCAN("Scanning...\n");
2243         priv->status |= STATUS_SCANNING;
2244 }
2245
2246 static const struct ipw2100_status_indicator status_handlers[] = {
2247         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2248         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2249         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2250         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2251         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2252         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2253         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2254         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2255         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2256         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2257         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2258         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2259         IPW2100_HANDLER(-1, NULL)
2260 };
2261
2262 static void isr_status_change(struct ipw2100_priv *priv, int status)
2263 {
2264         int i;
2265
2266         if (status == IPW_STATE_SCANNING &&
2267             priv->status & STATUS_ASSOCIATED &&
2268             !(priv->status & STATUS_SCANNING)) {
2269                 IPW_DEBUG_INFO("Scan detected while associated, with "
2270                                "no scan request.  Restarting firmware.\n");
2271
2272                 /* Wake up any sleeping jobs */
2273                 schedule_reset(priv);
2274         }
2275
2276         for (i = 0; status_handlers[i].status != -1; i++) {
2277                 if (status == status_handlers[i].status) {
2278                         IPW_DEBUG_NOTIF("Status change: %s\n",
2279                                         status_handlers[i].name);
2280                         if (status_handlers[i].cb)
2281                                 status_handlers[i].cb(priv, status);
2282                         priv->wstats.status = status;
2283                         return;
2284                 }
2285         }
2286
2287         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2288 }
2289
2290 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2291                                     struct ipw2100_cmd_header *cmd)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG
2294         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2295                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2296                              command_types[cmd->host_command_reg],
2297                              cmd->host_command_reg);
2298         }
2299 #endif
2300         if (cmd->host_command_reg == HOST_COMPLETE)
2301                 priv->status |= STATUS_ENABLED;
2302
2303         if (cmd->host_command_reg == CARD_DISABLE)
2304                 priv->status &= ~STATUS_ENABLED;
2305
2306         priv->status &= ~STATUS_CMD_ACTIVE;
2307
2308         wake_up_interruptible(&priv->wait_command_queue);
2309 }
2310
2311 #ifdef CONFIG_IPW2100_DEBUG
2312 static const char *frame_types[] = {
2313         "COMMAND_STATUS_VAL",
2314         "STATUS_CHANGE_VAL",
2315         "P80211_DATA_VAL",
2316         "P8023_DATA_VAL",
2317         "HOST_NOTIFICATION_VAL"
2318 };
2319 #endif
2320
2321 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2322                                     struct ipw2100_rx_packet *packet)
2323 {
2324         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2325         if (!packet->skb)
2326                 return -ENOMEM;
2327
2328         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2329         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2330                                           sizeof(struct ipw2100_rx),
2331                                           PCI_DMA_FROMDEVICE);
2332         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2333          *       dma_addr */
2334
2335         return 0;
2336 }
2337
2338 #define SEARCH_ERROR   0xffffffff
2339 #define SEARCH_FAIL    0xfffffffe
2340 #define SEARCH_SUCCESS 0xfffffff0
2341 #define SEARCH_DISCARD 0
2342 #define SEARCH_SNAPSHOT 1
2343
2344 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2345 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2346 {
2347         int i;
2348         if (!priv->snapshot[0])
2349                 return;
2350         for (i = 0; i < 0x30; i++)
2351                 kfree(priv->snapshot[i]);
2352         priv->snapshot[0] = NULL;
2353 }
2354
2355 #ifdef IPW2100_DEBUG_C3
2356 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2357 {
2358         int i;
2359         if (priv->snapshot[0])
2360                 return 1;
2361         for (i = 0; i < 0x30; i++) {
2362                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2363                 if (!priv->snapshot[i]) {
2364                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2365                                        "buffer %d\n", priv->net_dev->name, i);
2366                         while (i > 0)
2367                                 kfree(priv->snapshot[--i]);
2368                         priv->snapshot[0] = NULL;
2369                         return 0;
2370                 }
2371         }
2372
2373         return 1;
2374 }
2375
2376 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2377                                     size_t len, int mode)
2378 {
2379         u32 i, j;
2380         u32 tmp;
2381         u8 *s, *d;
2382         u32 ret;
2383
2384         s = in_buf;
2385         if (mode == SEARCH_SNAPSHOT) {
2386                 if (!ipw2100_snapshot_alloc(priv))
2387                         mode = SEARCH_DISCARD;
2388         }
2389
2390         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2391                 read_nic_dword(priv->net_dev, i, &tmp);
2392                 if (mode == SEARCH_SNAPSHOT)
2393                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2394                 if (ret == SEARCH_FAIL) {
2395                         d = (u8 *) & tmp;
2396                         for (j = 0; j < 4; j++) {
2397                                 if (*s != *d) {
2398                                         s = in_buf;
2399                                         continue;
2400                                 }
2401
2402                                 s++;
2403                                 d++;
2404
2405                                 if ((s - in_buf) == len)
2406                                         ret = (i + j) - len + 1;
2407                         }
2408                 } else if (mode == SEARCH_DISCARD)
2409                         return ret;
2410         }
2411
2412         return ret;
2413 }
2414 #endif
2415
2416 /*
2417  *
2418  * 0) Disconnect the SKB from the firmware (just unmap)
2419  * 1) Pack the ETH header into the SKB
2420  * 2) Pass the SKB to the network stack
2421  *
2422  * When packet is provided by the firmware, it contains the following:
2423  *
2424  * .  libipw_hdr
2425  * .  libipw_snap_hdr
2426  *
2427  * The size of the constructed ethernet
2428  *
2429  */
2430 #ifdef IPW2100_RX_DEBUG
2431 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2432 #endif
2433
2434 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2435 {
2436 #ifdef IPW2100_DEBUG_C3
2437         struct ipw2100_status *status = &priv->status_queue.drv[i];
2438         u32 match, reg;
2439         int j;
2440 #endif
2441
2442         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2443                        i * sizeof(struct ipw2100_status));
2444
2445 #ifdef IPW2100_DEBUG_C3
2446         /* Halt the firmware so we can get a good image */
2447         write_register(priv->net_dev, IPW_REG_RESET_REG,
2448                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2449         j = 5;
2450         do {
2451                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2452                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2453
2454                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2455                         break;
2456         } while (j--);
2457
2458         match = ipw2100_match_buf(priv, (u8 *) status,
2459                                   sizeof(struct ipw2100_status),
2460                                   SEARCH_SNAPSHOT);
2461         if (match < SEARCH_SUCCESS)
2462                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2463                                "offset 0x%06X, length %d:\n",
2464                                priv->net_dev->name, match,
2465                                sizeof(struct ipw2100_status));
2466         else
2467                 IPW_DEBUG_INFO("%s: No DMA status match in "
2468                                "Firmware.\n", priv->net_dev->name);
2469
2470         printk_buf((u8 *) priv->status_queue.drv,
2471                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2472 #endif
2473
2474         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2475         priv->net_dev->stats.rx_errors++;
2476         schedule_reset(priv);
2477 }
2478
2479 static void isr_rx(struct ipw2100_priv *priv, int i,
2480                           struct libipw_rx_stats *stats)
2481 {
2482         struct net_device *dev = priv->net_dev;
2483         struct ipw2100_status *status = &priv->status_queue.drv[i];
2484         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2485
2486         IPW_DEBUG_RX("Handler...\n");
2487
2488         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2489                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2490                                "  Dropping.\n",
2491                                dev->name,
2492                                status->frame_size, skb_tailroom(packet->skb));
2493                 dev->stats.rx_errors++;
2494                 return;
2495         }
2496
2497         if (unlikely(!netif_running(dev))) {
2498                 dev->stats.rx_errors++;
2499                 priv->wstats.discard.misc++;
2500                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2501                 return;
2502         }
2503
2504         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2505                      !(priv->status & STATUS_ASSOCIATED))) {
2506                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2507                 priv->wstats.discard.misc++;
2508                 return;
2509         }
2510
2511         pci_unmap_single(priv->pci_dev,
2512                          packet->dma_addr,
2513                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2514
2515         skb_put(packet->skb, status->frame_size);
2516
2517 #ifdef IPW2100_RX_DEBUG
2518         /* Make a copy of the frame so we can dump it to the logs if
2519          * libipw_rx fails */
2520         skb_copy_from_linear_data(packet->skb, packet_data,
2521                                   min_t(u32, status->frame_size,
2522                                              IPW_RX_NIC_BUFFER_LENGTH));
2523 #endif
2524
2525         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2526 #ifdef IPW2100_RX_DEBUG
2527                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2528                                dev->name);
2529                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2530 #endif
2531                 dev->stats.rx_errors++;
2532
2533                 /* libipw_rx failed, so it didn't free the SKB */
2534                 dev_kfree_skb_any(packet->skb);
2535                 packet->skb = NULL;
2536         }
2537
2538         /* We need to allocate a new SKB and attach it to the RDB. */
2539         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2540                 printk(KERN_WARNING DRV_NAME ": "
2541                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2542                        "adapter.\n", dev->name);
2543                 /* TODO: schedule adapter shutdown */
2544                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2545         }
2546
2547         /* Update the RDB entry */
2548         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2549 }
2550
2551 #ifdef CONFIG_IPW2100_MONITOR
2552
2553 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2554                    struct libipw_rx_stats *stats)
2555 {
2556         struct net_device *dev = priv->net_dev;
2557         struct ipw2100_status *status = &priv->status_queue.drv[i];
2558         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2559
2560         /* Magic struct that slots into the radiotap header -- no reason
2561          * to build this manually element by element, we can write it much
2562          * more efficiently than we can parse it. ORDER MATTERS HERE */
2563         struct ipw_rt_hdr {
2564                 struct ieee80211_radiotap_header rt_hdr;
2565                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2566         } *ipw_rt;
2567
2568         IPW_DEBUG_RX("Handler...\n");
2569
2570         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2571                                 sizeof(struct ipw_rt_hdr))) {
2572                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2573                                "  Dropping.\n",
2574                                dev->name,
2575                                status->frame_size,
2576                                skb_tailroom(packet->skb));
2577                 dev->stats.rx_errors++;
2578                 return;
2579         }
2580
2581         if (unlikely(!netif_running(dev))) {
2582                 dev->stats.rx_errors++;
2583                 priv->wstats.discard.misc++;
2584                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2585                 return;
2586         }
2587
2588         if (unlikely(priv->config & CFG_CRC_CHECK &&
2589                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2590                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2591                 dev->stats.rx_errors++;
2592                 return;
2593         }
2594
2595         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2596                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2597         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2598                 packet->skb->data, status->frame_size);
2599
2600         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2601
2602         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2603         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2604         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2605
2606         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2607
2608         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2609
2610         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2611
2612         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2613                 dev->stats.rx_errors++;
2614
2615                 /* libipw_rx failed, so it didn't free the SKB */
2616                 dev_kfree_skb_any(packet->skb);
2617                 packet->skb = NULL;
2618         }
2619
2620         /* We need to allocate a new SKB and attach it to the RDB. */
2621         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2622                 IPW_DEBUG_WARNING(
2623                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2624                         "adapter.\n", dev->name);
2625                 /* TODO: schedule adapter shutdown */
2626                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2627         }
2628
2629         /* Update the RDB entry */
2630         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2631 }
2632
2633 #endif
2634
2635 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2636 {
2637         struct ipw2100_status *status = &priv->status_queue.drv[i];
2638         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2639         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2640
2641         switch (frame_type) {
2642         case COMMAND_STATUS_VAL:
2643                 return (status->frame_size != sizeof(u->rx_data.command));
2644         case STATUS_CHANGE_VAL:
2645                 return (status->frame_size != sizeof(u->rx_data.status));
2646         case HOST_NOTIFICATION_VAL:
2647                 return (status->frame_size < sizeof(u->rx_data.notification));
2648         case P80211_DATA_VAL:
2649         case P8023_DATA_VAL:
2650 #ifdef CONFIG_IPW2100_MONITOR
2651                 return 0;
2652 #else
2653                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2654                 case IEEE80211_FTYPE_MGMT:
2655                 case IEEE80211_FTYPE_CTL:
2656                         return 0;
2657                 case IEEE80211_FTYPE_DATA:
2658                         return (status->frame_size >
2659                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2660                 }
2661 #endif
2662         }
2663
2664         return 1;
2665 }
2666
2667 /*
2668  * ipw2100 interrupts are disabled at this point, and the ISR
2669  * is the only code that calls this method.  So, we do not need
2670  * to play with any locks.
2671  *
2672  * RX Queue works as follows:
2673  *
2674  * Read index - firmware places packet in entry identified by the
2675  *              Read index and advances Read index.  In this manner,
2676  *              Read index will always point to the next packet to
2677  *              be filled--but not yet valid.
2678  *
2679  * Write index - driver fills this entry with an unused RBD entry.
2680  *               This entry has not filled by the firmware yet.
2681  *
2682  * In between the W and R indexes are the RBDs that have been received
2683  * but not yet processed.
2684  *
2685  * The process of handling packets will start at WRITE + 1 and advance
2686  * until it reaches the READ index.
2687  *
2688  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2689  *
2690  */
2691 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2692 {
2693         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2694         struct ipw2100_status_queue *sq = &priv->status_queue;
2695         struct ipw2100_rx_packet *packet;
2696         u16 frame_type;
2697         u32 r, w, i, s;
2698         struct ipw2100_rx *u;
2699         struct libipw_rx_stats stats = {
2700                 .mac_time = jiffies,
2701         };
2702
2703         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2704         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2705
2706         if (r >= rxq->entries) {
2707                 IPW_DEBUG_RX("exit - bad read index\n");
2708                 return;
2709         }
2710
2711         i = (rxq->next + 1) % rxq->entries;
2712         s = i;
2713         while (i != r) {
2714                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2715                    r, rxq->next, i); */
2716
2717                 packet = &priv->rx_buffers[i];
2718
2719                 /* Sync the DMA for the RX buffer so CPU is sure to get
2720                  * the correct values */
2721                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2722                                             sizeof(struct ipw2100_rx),
2723                                             PCI_DMA_FROMDEVICE);
2724
2725                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2726                         ipw2100_corruption_detected(priv, i);
2727                         goto increment;
2728                 }
2729
2730                 u = packet->rxp;
2731                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2732                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2733                 stats.len = sq->drv[i].frame_size;
2734
2735                 stats.mask = 0;
2736                 if (stats.rssi != 0)
2737                         stats.mask |= LIBIPW_STATMASK_RSSI;
2738                 stats.freq = LIBIPW_24GHZ_BAND;
2739
2740                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2741                              priv->net_dev->name, frame_types[frame_type],
2742                              stats.len);
2743
2744                 switch (frame_type) {
2745                 case COMMAND_STATUS_VAL:
2746                         /* Reset Rx watchdog */
2747                         isr_rx_complete_command(priv, &u->rx_data.command);
2748                         break;
2749
2750                 case STATUS_CHANGE_VAL:
2751                         isr_status_change(priv, u->rx_data.status);
2752                         break;
2753
2754                 case P80211_DATA_VAL:
2755                 case P8023_DATA_VAL:
2756 #ifdef CONFIG_IPW2100_MONITOR
2757                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2758                                 isr_rx_monitor(priv, i, &stats);
2759                                 break;
2760                         }
2761 #endif
2762                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2763                                 break;
2764                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2765                         case IEEE80211_FTYPE_MGMT:
2766                                 libipw_rx_mgt(priv->ieee,
2767                                                  &u->rx_data.header, &stats);
2768                                 break;
2769
2770                         case IEEE80211_FTYPE_CTL:
2771                                 break;
2772
2773                         case IEEE80211_FTYPE_DATA:
2774                                 isr_rx(priv, i, &stats);
2775                                 break;
2776
2777                         }
2778                         break;
2779                 }
2780
2781               increment:
2782                 /* clear status field associated with this RBD */
2783                 rxq->drv[i].status.info.field = 0;
2784
2785                 i = (i + 1) % rxq->entries;
2786         }
2787
2788         if (i != s) {
2789                 /* backtrack one entry, wrapping to end if at 0 */
2790                 rxq->next = (i ? i : rxq->entries) - 1;
2791
2792                 write_register(priv->net_dev,
2793                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2794         }
2795 }
2796
2797 /*
2798  * __ipw2100_tx_process
2799  *
2800  * This routine will determine whether the next packet on
2801  * the fw_pend_list has been processed by the firmware yet.
2802  *
2803  * If not, then it does nothing and returns.
2804  *
2805  * If so, then it removes the item from the fw_pend_list, frees
2806  * any associated storage, and places the item back on the
2807  * free list of its source (either msg_free_list or tx_free_list)
2808  *
2809  * TX Queue works as follows:
2810  *
2811  * Read index - points to the next TBD that the firmware will
2812  *              process.  The firmware will read the data, and once
2813  *              done processing, it will advance the Read index.
2814  *
2815  * Write index - driver fills this entry with an constructed TBD
2816  *               entry.  The Write index is not advanced until the
2817  *               packet has been configured.
2818  *
2819  * In between the W and R indexes are the TBDs that have NOT been
2820  * processed.  Lagging behind the R index are packets that have
2821  * been processed but have not been freed by the driver.
2822  *
2823  * In order to free old storage, an internal index will be maintained
2824  * that points to the next packet to be freed.  When all used
2825  * packets have been freed, the oldest index will be the same as the
2826  * firmware's read index.
2827  *
2828  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2829  *
2830  * Because the TBD structure can not contain arbitrary data, the
2831  * driver must keep an internal queue of cached allocations such that
2832  * it can put that data back into the tx_free_list and msg_free_list
2833  * for use by future command and data packets.
2834  *
2835  */
2836 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2837 {
2838         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2839         struct ipw2100_bd *tbd;
2840         struct list_head *element;
2841         struct ipw2100_tx_packet *packet;
2842         int descriptors_used;
2843         int e, i;
2844         u32 r, w, frag_num = 0;
2845
2846         if (list_empty(&priv->fw_pend_list))
2847                 return 0;
2848
2849         element = priv->fw_pend_list.next;
2850
2851         packet = list_entry(element, struct ipw2100_tx_packet, list);
2852         tbd = &txq->drv[packet->index];
2853
2854         /* Determine how many TBD entries must be finished... */
2855         switch (packet->type) {
2856         case COMMAND:
2857                 /* COMMAND uses only one slot; don't advance */
2858                 descriptors_used = 1;
2859                 e = txq->oldest;
2860                 break;
2861
2862         case DATA:
2863                 /* DATA uses two slots; advance and loop position. */
2864                 descriptors_used = tbd->num_fragments;
2865                 frag_num = tbd->num_fragments - 1;
2866                 e = txq->oldest + frag_num;
2867                 e %= txq->entries;
2868                 break;
2869
2870         default:
2871                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2872                        priv->net_dev->name);
2873                 return 0;
2874         }
2875
2876         /* if the last TBD is not done by NIC yet, then packet is
2877          * not ready to be released.
2878          *
2879          */
2880         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2881                       &r);
2882         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2883                       &w);
2884         if (w != txq->next)
2885                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2886                        priv->net_dev->name);
2887
2888         /*
2889          * txq->next is the index of the last packet written txq->oldest is
2890          * the index of the r is the index of the next packet to be read by
2891          * firmware
2892          */
2893
2894         /*
2895          * Quick graphic to help you visualize the following
2896          * if / else statement
2897          *
2898          * ===>|                     s---->|===============
2899          *                               e>|
2900          * | a | b | c | d | e | f | g | h | i | j | k | l
2901          *       r---->|
2902          *               w
2903          *
2904          * w - updated by driver
2905          * r - updated by firmware
2906          * s - start of oldest BD entry (txq->oldest)
2907          * e - end of oldest BD entry
2908          *
2909          */
2910         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2911                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2912                 return 0;
2913         }
2914
2915         list_del(element);
2916         DEC_STAT(&priv->fw_pend_stat);
2917
2918 #ifdef CONFIG_IPW2100_DEBUG
2919         {
2920                 i = txq->oldest;
2921                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2922                              &txq->drv[i],
2923                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2924                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2925
2926                 if (packet->type == DATA) {
2927                         i = (i + 1) % txq->entries;
2928
2929                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2930                                      &txq->drv[i],
2931                                      (u32) (txq->nic + i *
2932                                             sizeof(struct ipw2100_bd)),
2933                                      (u32) txq->drv[i].host_addr,
2934                                      txq->drv[i].buf_length);
2935                 }
2936         }
2937 #endif
2938
2939         switch (packet->type) {
2940         case DATA:
2941                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2942                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2943                                "Expecting DATA TBD but pulled "
2944                                "something else: ids %d=%d.\n",
2945                                priv->net_dev->name, txq->oldest, packet->index);
2946
2947                 /* DATA packet; we have to unmap and free the SKB */
2948                 for (i = 0; i < frag_num; i++) {
2949                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2950
2951                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2952                                      (packet->index + 1 + i) % txq->entries,
2953                                      tbd->host_addr, tbd->buf_length);
2954
2955                         pci_unmap_single(priv->pci_dev,
2956                                          tbd->host_addr,
2957                                          tbd->buf_length, PCI_DMA_TODEVICE);
2958                 }
2959
2960                 libipw_txb_free(packet->info.d_struct.txb);
2961                 packet->info.d_struct.txb = NULL;
2962
2963                 list_add_tail(element, &priv->tx_free_list);
2964                 INC_STAT(&priv->tx_free_stat);
2965
2966                 /* We have a free slot in the Tx queue, so wake up the
2967                  * transmit layer if it is stopped. */
2968                 if (priv->status & STATUS_ASSOCIATED)
2969                         netif_wake_queue(priv->net_dev);
2970
2971                 /* A packet was processed by the hardware, so update the
2972                  * watchdog */
2973                 priv->net_dev->trans_start = jiffies;
2974
2975                 break;
2976
2977         case COMMAND:
2978                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2979                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2980                                "Expecting COMMAND TBD but pulled "
2981                                "something else: ids %d=%d.\n",
2982                                priv->net_dev->name, txq->oldest, packet->index);
2983
2984 #ifdef CONFIG_IPW2100_DEBUG
2985                 if (packet->info.c_struct.cmd->host_command_reg <
2986                     ARRAY_SIZE(command_types))
2987                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2988                                      command_types[packet->info.c_struct.cmd->
2989                                                    host_command_reg],
2990                                      packet->info.c_struct.cmd->
2991                                      host_command_reg,
2992                                      packet->info.c_struct.cmd->cmd_status_reg);
2993 #endif
2994
2995                 list_add_tail(element, &priv->msg_free_list);
2996                 INC_STAT(&priv->msg_free_stat);
2997                 break;
2998         }
2999
3000         /* advance oldest used TBD pointer to start of next entry */
3001         txq->oldest = (e + 1) % txq->entries;
3002         /* increase available TBDs number */
3003         txq->available += descriptors_used;
3004         SET_STAT(&priv->txq_stat, txq->available);
3005
3006         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3007                      jiffies - packet->jiffy_start);
3008
3009         return (!list_empty(&priv->fw_pend_list));
3010 }
3011
3012 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3013 {
3014         int i = 0;
3015
3016         while (__ipw2100_tx_process(priv) && i < 200)
3017                 i++;
3018
3019         if (i == 200) {
3020                 printk(KERN_WARNING DRV_NAME ": "
3021                        "%s: Driver is running slow (%d iters).\n",
3022                        priv->net_dev->name, i);
3023         }
3024 }
3025
3026 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3027 {
3028         struct list_head *element;
3029         struct ipw2100_tx_packet *packet;
3030         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3031         struct ipw2100_bd *tbd;
3032         int next = txq->next;
3033
3034         while (!list_empty(&priv->msg_pend_list)) {
3035                 /* if there isn't enough space in TBD queue, then
3036                  * don't stuff a new one in.
3037                  * NOTE: 3 are needed as a command will take one,
3038                  *       and there is a minimum of 2 that must be
3039                  *       maintained between the r and w indexes
3040                  */
3041                 if (txq->available <= 3) {
3042                         IPW_DEBUG_TX("no room in tx_queue\n");
3043                         break;
3044                 }
3045
3046                 element = priv->msg_pend_list.next;
3047                 list_del(element);
3048                 DEC_STAT(&priv->msg_pend_stat);
3049
3050                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3051
3052                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3053                              &txq->drv[txq->next],
3054                              (u32) (txq->nic + txq->next *
3055                                       sizeof(struct ipw2100_bd)));
3056
3057                 packet->index = txq->next;
3058
3059                 tbd = &txq->drv[txq->next];
3060
3061                 /* initialize TBD */
3062                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3063                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3064                 /* not marking number of fragments causes problems
3065                  * with f/w debug version */
3066                 tbd->num_fragments = 1;
3067                 tbd->status.info.field =
3068                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3069                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3070
3071                 /* update TBD queue counters */
3072                 txq->next++;
3073                 txq->next %= txq->entries;
3074                 txq->available--;
3075                 DEC_STAT(&priv->txq_stat);
3076
3077                 list_add_tail(element, &priv->fw_pend_list);
3078                 INC_STAT(&priv->fw_pend_stat);
3079         }
3080
3081         if (txq->next != next) {
3082                 /* kick off the DMA by notifying firmware the
3083                  * write index has moved; make sure TBD stores are sync'd */
3084                 wmb();
3085                 write_register(priv->net_dev,
3086                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3087                                txq->next);
3088         }
3089 }
3090
3091 /*
3092  * ipw2100_tx_send_data
3093  *
3094  */
3095 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3096 {
3097         struct list_head *element;
3098         struct ipw2100_tx_packet *packet;
3099         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3100         struct ipw2100_bd *tbd;
3101         int next = txq->next;
3102         int i = 0;
3103         struct ipw2100_data_header *ipw_hdr;
3104         struct libipw_hdr_3addr *hdr;
3105
3106         while (!list_empty(&priv->tx_pend_list)) {
3107                 /* if there isn't enough space in TBD queue, then
3108                  * don't stuff a new one in.
3109                  * NOTE: 4 are needed as a data will take two,
3110                  *       and there is a minimum of 2 that must be
3111                  *       maintained between the r and w indexes
3112                  */
3113                 element = priv->tx_pend_list.next;
3114                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3115
3116                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3117                              IPW_MAX_BDS)) {
3118                         /* TODO: Support merging buffers if more than
3119                          * IPW_MAX_BDS are used */
3120                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3121                                        "Increase fragmentation level.\n",
3122                                        priv->net_dev->name);
3123                 }
3124
3125                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3126                         IPW_DEBUG_TX("no room in tx_queue\n");
3127                         break;
3128                 }
3129
3130                 list_del(element);
3131                 DEC_STAT(&priv->tx_pend_stat);
3132
3133                 tbd = &txq->drv[txq->next];
3134
3135                 packet->index = txq->next;
3136
3137                 ipw_hdr = packet->info.d_struct.data;
3138                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3139                     fragments[0]->data;
3140
3141                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3142                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3143                            Addr3 = DA */
3144                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3145                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3146                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3147                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3148                            Addr3 = BSSID */
3149                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3150                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3151                 }
3152
3153                 ipw_hdr->host_command_reg = SEND;
3154                 ipw_hdr->host_command_reg1 = 0;
3155
3156                 /* For now we only support host based encryption */
3157                 ipw_hdr->needs_encryption = 0;
3158                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3159                 if (packet->info.d_struct.txb->nr_frags > 1)
3160                         ipw_hdr->fragment_size =
3161                             packet->info.d_struct.txb->frag_size -
3162                             LIBIPW_3ADDR_LEN;
3163                 else
3164                         ipw_hdr->fragment_size = 0;
3165
3166                 tbd->host_addr = packet->info.d_struct.data_phys;
3167                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3168                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3169                 tbd->status.info.field =
3170                     IPW_BD_STATUS_TX_FRAME_802_3 |
3171                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3172                 txq->next++;
3173                 txq->next %= txq->entries;
3174
3175                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3176                              packet->index, tbd->host_addr, tbd->buf_length);
3177 #ifdef CONFIG_IPW2100_DEBUG
3178                 if (packet->info.d_struct.txb->nr_frags > 1)
3179                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3180                                        packet->info.d_struct.txb->nr_frags);
3181 #endif
3182
3183                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3184                         tbd = &txq->drv[txq->next];
3185                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3186                                 tbd->status.info.field =
3187                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3188                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3189                         else
3190                                 tbd->status.info.field =
3191                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3192                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3193
3194                         tbd->buf_length = packet->info.d_struct.txb->
3195                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3196
3197                         tbd->host_addr = pci_map_single(priv->pci_dev,
3198                                                         packet->info.d_struct.
3199                                                         txb->fragments[i]->
3200                                                         data +
3201                                                         LIBIPW_3ADDR_LEN,
3202                                                         tbd->buf_length,
3203                                                         PCI_DMA_TODEVICE);
3204
3205                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3206                                      txq->next, tbd->host_addr,
3207                                      tbd->buf_length);
3208
3209                         pci_dma_sync_single_for_device(priv->pci_dev,
3210                                                        tbd->host_addr,
3211                                                        tbd->buf_length,
3212                                                        PCI_DMA_TODEVICE);
3213
3214                         txq->next++;
3215                         txq->next %= txq->entries;
3216                 }
3217
3218                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3219                 SET_STAT(&priv->txq_stat, txq->available);
3220
3221                 list_add_tail(element, &priv->fw_pend_list);
3222                 INC_STAT(&priv->fw_pend_stat);
3223         }
3224
3225         if (txq->next != next) {
3226                 /* kick off the DMA by notifying firmware the
3227                  * write index has moved; make sure TBD stores are sync'd */
3228                 write_register(priv->net_dev,
3229                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3230                                txq->next);
3231         }
3232 }
3233
3234 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3235 {
3236         struct net_device *dev = priv->net_dev;
3237         unsigned long flags;
3238         u32 inta, tmp;
3239
3240         spin_lock_irqsave(&priv->low_lock, flags);
3241         ipw2100_disable_interrupts(priv);
3242
3243         read_register(dev, IPW_REG_INTA, &inta);
3244
3245         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3246                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3247
3248         priv->in_isr++;
3249         priv->interrupts++;
3250
3251         /* We do not loop and keep polling for more interrupts as this
3252          * is frowned upon and doesn't play nicely with other potentially
3253          * chained IRQs */
3254         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3255                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3256
3257         if (inta & IPW2100_INTA_FATAL_ERROR) {
3258                 printk(KERN_WARNING DRV_NAME
3259                        ": Fatal interrupt. Scheduling firmware restart.\n");
3260                 priv->inta_other++;
3261                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3262
3263                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3264                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3265                                priv->net_dev->name, priv->fatal_error);
3266
3267                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3268                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3269                                priv->net_dev->name, tmp);
3270
3271                 /* Wake up any sleeping jobs */
3272                 schedule_reset(priv);
3273         }
3274
3275         if (inta & IPW2100_INTA_PARITY_ERROR) {
3276                 printk(KERN_ERR DRV_NAME
3277                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3278                 priv->inta_other++;
3279                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3280         }
3281
3282         if (inta & IPW2100_INTA_RX_TRANSFER) {
3283                 IPW_DEBUG_ISR("RX interrupt\n");
3284
3285                 priv->rx_interrupts++;
3286
3287                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3288
3289                 __ipw2100_rx_process(priv);
3290                 __ipw2100_tx_complete(priv);
3291         }
3292
3293         if (inta & IPW2100_INTA_TX_TRANSFER) {
3294                 IPW_DEBUG_ISR("TX interrupt\n");
3295
3296                 priv->tx_interrupts++;
3297
3298                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3299
3300                 __ipw2100_tx_complete(priv);
3301                 ipw2100_tx_send_commands(priv);
3302                 ipw2100_tx_send_data(priv);
3303         }
3304
3305         if (inta & IPW2100_INTA_TX_COMPLETE) {
3306                 IPW_DEBUG_ISR("TX complete\n");
3307                 priv->inta_other++;
3308                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3309
3310                 __ipw2100_tx_complete(priv);
3311         }
3312
3313         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3314                 /* ipw2100_handle_event(dev); */
3315                 priv->inta_other++;
3316                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3317         }
3318
3319         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3320                 IPW_DEBUG_ISR("FW init done interrupt\n");
3321                 priv->inta_other++;
3322
3323                 read_register(dev, IPW_REG_INTA, &tmp);
3324                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3325                            IPW2100_INTA_PARITY_ERROR)) {
3326                         write_register(dev, IPW_REG_INTA,
3327                                        IPW2100_INTA_FATAL_ERROR |
3328                                        IPW2100_INTA_PARITY_ERROR);
3329                 }
3330
3331                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3332         }
3333
3334         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3335                 IPW_DEBUG_ISR("Status change interrupt\n");
3336                 priv->inta_other++;
3337                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3338         }
3339
3340         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3341                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3342                 priv->inta_other++;
3343                 write_register(dev, IPW_REG_INTA,
3344                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3345         }
3346
3347         priv->in_isr--;
3348         ipw2100_enable_interrupts(priv);
3349
3350         spin_unlock_irqrestore(&priv->low_lock, flags);
3351
3352         IPW_DEBUG_ISR("exit\n");
3353 }
3354
3355 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3356 {
3357         struct ipw2100_priv *priv = data;
3358         u32 inta, inta_mask;
3359
3360         if (!data)
3361                 return IRQ_NONE;
3362
3363         spin_lock(&priv->low_lock);
3364
3365         /* We check to see if we should be ignoring interrupts before
3366          * we touch the hardware.  During ucode load if we try and handle
3367          * an interrupt we can cause keyboard problems as well as cause
3368          * the ucode to fail to initialize */
3369         if (!(priv->status & STATUS_INT_ENABLED)) {
3370                 /* Shared IRQ */
3371                 goto none;
3372         }
3373
3374         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3375         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3376
3377         if (inta == 0xFFFFFFFF) {
3378                 /* Hardware disappeared */
3379                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3380                 goto none;
3381         }
3382
3383         inta &= IPW_INTERRUPT_MASK;
3384
3385         if (!(inta & inta_mask)) {
3386                 /* Shared interrupt */
3387                 goto none;
3388         }
3389
3390         /* We disable the hardware interrupt here just to prevent unneeded
3391          * calls to be made.  We disable this again within the actual
3392          * work tasklet, so if another part of the code re-enables the
3393          * interrupt, that is fine */
3394         ipw2100_disable_interrupts(priv);
3395
3396         tasklet_schedule(&priv->irq_tasklet);
3397         spin_unlock(&priv->low_lock);
3398
3399         return IRQ_HANDLED;
3400       none:
3401         spin_unlock(&priv->low_lock);
3402         return IRQ_NONE;
3403 }
3404
3405 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3406                               struct net_device *dev, int pri)
3407 {
3408         struct ipw2100_priv *priv = libipw_priv(dev);
3409         struct list_head *element;
3410         struct ipw2100_tx_packet *packet;
3411         unsigned long flags;
3412
3413         spin_lock_irqsave(&priv->low_lock, flags);
3414
3415         if (!(priv->status & STATUS_ASSOCIATED)) {
3416                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3417                 priv->net_dev->stats.tx_carrier_errors++;
3418                 netif_stop_queue(dev);
3419                 goto fail_unlock;
3420         }
3421
3422         if (list_empty(&priv->tx_free_list))
3423                 goto fail_unlock;
3424
3425         element = priv->tx_free_list.next;
3426         packet = list_entry(element, struct ipw2100_tx_packet, list);
3427
3428         packet->info.d_struct.txb = txb;
3429
3430         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3431         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3432
3433         packet->jiffy_start = jiffies;
3434
3435         list_del(element);
3436         DEC_STAT(&priv->tx_free_stat);
3437
3438         list_add_tail(element, &priv->tx_pend_list);
3439         INC_STAT(&priv->tx_pend_stat);
3440
3441         ipw2100_tx_send_data(priv);
3442
3443         spin_unlock_irqrestore(&priv->low_lock, flags);
3444         return NETDEV_TX_OK;
3445
3446 fail_unlock:
3447         netif_stop_queue(dev);
3448         spin_unlock_irqrestore(&priv->low_lock, flags);
3449         return NETDEV_TX_BUSY;
3450 }
3451
3452 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3453 {
3454         int i, j, err = -EINVAL;
3455         void *v;
3456         dma_addr_t p;
3457
3458         priv->msg_buffers =
3459             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3460                     GFP_KERNEL);
3461         if (!priv->msg_buffers)
3462                 return -ENOMEM;
3463
3464         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3465                 v = pci_alloc_consistent(priv->pci_dev,
3466                                          sizeof(struct ipw2100_cmd_header), &p);
3467                 if (!v) {
3468                         printk(KERN_ERR DRV_NAME ": "
3469                                "%s: PCI alloc failed for msg "
3470                                "buffers.\n", priv->net_dev->name);
3471                         err = -ENOMEM;
3472                         break;
3473                 }
3474
3475                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3476
3477                 priv->msg_buffers[i].type = COMMAND;
3478                 priv->msg_buffers[i].info.c_struct.cmd =
3479                     (struct ipw2100_cmd_header *)v;
3480                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3481         }
3482
3483         if (i == IPW_COMMAND_POOL_SIZE)
3484                 return 0;
3485
3486         for (j = 0; j < i; j++) {
3487                 pci_free_consistent(priv->pci_dev,
3488                                     sizeof(struct ipw2100_cmd_header),
3489                                     priv->msg_buffers[j].info.c_struct.cmd,
3490                                     priv->msg_buffers[j].info.c_struct.
3491                                     cmd_phys);
3492         }
3493
3494         kfree(priv->msg_buffers);
3495         priv->msg_buffers = NULL;
3496
3497         return err;
3498 }
3499
3500 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3501 {
3502         int i;
3503
3504         INIT_LIST_HEAD(&priv->msg_free_list);
3505         INIT_LIST_HEAD(&priv->msg_pend_list);
3506
3507         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3508                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3509         SET_STAT(&priv->msg_free_stat, i);
3510
3511         return 0;
3512 }
3513
3514 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3515 {
3516         int i;
3517
3518         if (!priv->msg_buffers)
3519                 return;
3520
3521         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3522                 pci_free_consistent(priv->pci_dev,
3523                                     sizeof(struct ipw2100_cmd_header),
3524                                     priv->msg_buffers[i].info.c_struct.cmd,
3525                                     priv->msg_buffers[i].info.c_struct.
3526                                     cmd_phys);
3527         }
3528
3529         kfree(priv->msg_buffers);
3530         priv->msg_buffers = NULL;
3531 }
3532
3533 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3534                         char *buf)
3535 {
3536         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3537         char *out = buf;
3538         int i, j;
3539         u32 val;
3540
3541         for (i = 0; i < 16; i++) {
3542                 out += sprintf(out, "[%08X] ", i * 16);
3543                 for (j = 0; j < 16; j += 4) {
3544                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3545                         out += sprintf(out, "%08X ", val);
3546                 }
3547                 out += sprintf(out, "\n");
3548         }
3549
3550         return out - buf;
3551 }
3552
3553 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3554
3555 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3556                         char *buf)
3557 {
3558         struct ipw2100_priv *p = dev_get_drvdata(d);
3559         return sprintf(buf, "0x%08x\n", (int)p->config);
3560 }
3561
3562 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3563
3564 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3565                            char *buf)
3566 {
3567         struct ipw2100_priv *p = dev_get_drvdata(d);
3568         return sprintf(buf, "0x%08x\n", (int)p->status);
3569 }
3570
3571 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3572
3573 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3574                                char *buf)
3575 {
3576         struct ipw2100_priv *p = dev_get_drvdata(d);
3577         return sprintf(buf, "0x%08x\n", (int)p->capability);
3578 }
3579
3580 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3581
3582 #define IPW2100_REG(x) { IPW_ ##x, #x }
3583 static const struct {
3584         u32 addr;
3585         const char *name;
3586 } hw_data[] = {
3587 IPW2100_REG(REG_GP_CNTRL),
3588             IPW2100_REG(REG_GPIO),
3589             IPW2100_REG(REG_INTA),
3590             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3591 #define IPW2100_NIC(x, s) { x, #x, s }
3592 static const struct {
3593         u32 addr;
3594         const char *name;
3595         size_t size;
3596 } nic_data[] = {
3597 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3598             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3599 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3600 static const struct {
3601         u8 index;
3602         const char *name;
3603         const char *desc;
3604 } ord_data[] = {
3605 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3606             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3607                                 "successful Host Tx's (MSDU)"),
3608             IPW2100_ORD(STAT_TX_DIR_DATA,
3609                                 "successful Directed Tx's (MSDU)"),
3610             IPW2100_ORD(STAT_TX_DIR_DATA1,
3611                                 "successful Directed Tx's (MSDU) @ 1MB"),
3612             IPW2100_ORD(STAT_TX_DIR_DATA2,
3613                                 "successful Directed Tx's (MSDU) @ 2MB"),
3614             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3615                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3616             IPW2100_ORD(STAT_TX_DIR_DATA11,
3617                                 "successful Directed Tx's (MSDU) @ 11MB"),
3618             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3619                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3620             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3621                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3622             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3623                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3624             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3625                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3626             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3627             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3628             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3629             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3630             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3631             IPW2100_ORD(STAT_TX_ASSN_RESP,
3632                                 "successful Association response Tx's"),
3633             IPW2100_ORD(STAT_TX_REASSN,
3634                                 "successful Reassociation Tx's"),
3635             IPW2100_ORD(STAT_TX_REASSN_RESP,
3636                                 "successful Reassociation response Tx's"),
3637             IPW2100_ORD(STAT_TX_PROBE,
3638                                 "probes successfully transmitted"),
3639             IPW2100_ORD(STAT_TX_PROBE_RESP,
3640                                 "probe responses successfully transmitted"),
3641             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3642             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3643             IPW2100_ORD(STAT_TX_DISASSN,
3644                                 "successful Disassociation TX"),
3645             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3646             IPW2100_ORD(STAT_TX_DEAUTH,
3647                                 "successful Deauthentication TX"),
3648             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3649                                 "Total successful Tx data bytes"),
3650             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3651             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3652             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3653             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3654             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3655             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3656             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3657                                 "times max tries in a hop failed"),
3658             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3659                                 "times disassociation failed"),
3660             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3661             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3662             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3663             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3664             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3665             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3666             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3667                                 "directed packets at 5.5MB"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3669             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3670             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3671                                 "nondirected packets at 1MB"),
3672             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3673                                 "nondirected packets at 2MB"),
3674             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3675                                 "nondirected packets at 5.5MB"),
3676             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3677                                 "nondirected packets at 11MB"),
3678             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3679             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3680                                                                     "Rx CTS"),
3681             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3682             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3683             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3684             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3685             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3686             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3687             IPW2100_ORD(STAT_RX_REASSN_RESP,
3688                                 "Reassociation response Rx's"),
3689             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3690             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3691             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3692             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3693             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3694             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3695             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3696             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3697                                 "Total rx data bytes received"),
3698             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3699             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3700             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3701             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3703             IPW2100_ORD(STAT_RX_DUPLICATE1,
3704                                 "duplicate rx packets at 1MB"),
3705             IPW2100_ORD(STAT_RX_DUPLICATE2,
3706                                 "duplicate rx packets at 2MB"),
3707             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3708                                 "duplicate rx packets at 5.5MB"),
3709             IPW2100_ORD(STAT_RX_DUPLICATE11,
3710                                 "duplicate rx packets at 11MB"),
3711             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3712             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3713             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3714             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3715             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3716                                 "rx frames with invalid protocol"),
3717             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3718             IPW2100_ORD(STAT_RX_NO_BUFFER,
3719                                 "rx frames rejected due to no buffer"),
3720             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3721                                 "rx frames dropped due to missing fragment"),
3722             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3723                                 "rx frames dropped due to non-sequential fragment"),
3724             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3725                                 "rx frames dropped due to unmatched 1st frame"),
3726             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3727                                 "rx frames dropped due to uncompleted frame"),
3728             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3729                                 "ICV errors during decryption"),
3730             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3731             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3732             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3733                                 "poll response timeouts"),
3734             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3735                                 "timeouts waiting for last {broad,multi}cast pkt"),
3736             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3737             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3738             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3739             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3740             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3741                                 "current calculation of % missed beacons"),
3742             IPW2100_ORD(STAT_PERCENT_RETRIES,
3743                                 "current calculation of % missed tx retries"),
3744             IPW2100_ORD(ASSOCIATED_AP_PTR,
3745                                 "0 if not associated, else pointer to AP table entry"),
3746             IPW2100_ORD(AVAILABLE_AP_CNT,
3747                                 "AP's decsribed in the AP table"),
3748             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3749             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3750             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3751             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3752                                 "failures due to response fail"),
3753             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3754             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3755             IPW2100_ORD(STAT_ROAM_INHIBIT,
3756                                 "times roaming was inhibited due to activity"),
3757             IPW2100_ORD(RSSI_AT_ASSN,
3758                                 "RSSI of associated AP at time of association"),
3759             IPW2100_ORD(STAT_ASSN_CAUSE1,
3760                                 "reassociation: no probe response or TX on hop"),
3761             IPW2100_ORD(STAT_ASSN_CAUSE2,
3762                                 "reassociation: poor tx/rx quality"),
3763             IPW2100_ORD(STAT_ASSN_CAUSE3,
3764                                 "reassociation: tx/rx quality (excessive AP load"),
3765             IPW2100_ORD(STAT_ASSN_CAUSE4,
3766                                 "reassociation: AP RSSI level"),
3767             IPW2100_ORD(STAT_ASSN_CAUSE5,
3768                                 "reassociations due to load leveling"),
3769             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3770             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3771                                 "times authentication response failed"),
3772             IPW2100_ORD(STATION_TABLE_CNT,
3773                                 "entries in association table"),
3774             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3775             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3776             IPW2100_ORD(COUNTRY_CODE,
3777                                 "IEEE country code as recv'd from beacon"),
3778             IPW2100_ORD(COUNTRY_CHANNELS,
3779                                 "channels supported by country"),
3780             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3781             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3782             IPW2100_ORD(ANTENNA_DIVERSITY,
3783                                 "TRUE if antenna diversity is disabled"),
3784             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3785             IPW2100_ORD(OUR_FREQ,
3786                                 "current radio freq lower digits - channel ID"),
3787             IPW2100_ORD(RTC_TIME, "current RTC time"),
3788             IPW2100_ORD(PORT_TYPE, "operating mode"),
3789             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3790             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3791             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3792             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3793             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3794             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3795             IPW2100_ORD(CAPABILITIES,
3796                                 "Management frame capability field"),
3797             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3798             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3799             IPW2100_ORD(RTS_THRESHOLD,
3800                                 "Min packet length for RTS handshaking"),
3801             IPW2100_ORD(INT_MODE, "International mode"),
3802             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3803                                 "protocol frag threshold"),
3804             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3805                                 "EEPROM offset in SRAM"),
3806             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3807                                 "EEPROM size in SRAM"),
3808             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3809             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3810                                 "EEPROM IBSS 11b channel set"),
3811             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3812             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3813             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3814             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3815             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3816
3817 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3818                               char *buf)
3819 {
3820         int i;
3821         struct ipw2100_priv *priv = dev_get_drvdata(d);
3822         struct net_device *dev = priv->net_dev;
3823         char *out = buf;
3824         u32 val = 0;
3825
3826         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3827
3828         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3829                 read_register(dev, hw_data[i].addr, &val);
3830                 out += sprintf(out, "%30s [%08X] : %08X\n",
3831                                hw_data[i].name, hw_data[i].addr, val);
3832         }
3833
3834         return out - buf;
3835 }
3836
3837 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3838
3839 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3840                              char *buf)
3841 {
3842         struct ipw2100_priv *priv = dev_get_drvdata(d);
3843         struct net_device *dev = priv->net_dev;
3844         char *out = buf;
3845         int i;
3846
3847         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3848
3849         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3850                 u8 tmp8;
3851                 u16 tmp16;
3852                 u32 tmp32;
3853
3854                 switch (nic_data[i].size) {
3855                 case 1:
3856                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3857                         out += sprintf(out, "%30s [%08X] : %02X\n",
3858                                        nic_data[i].name, nic_data[i].addr,
3859                                        tmp8);
3860                         break;
3861                 case 2:
3862                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3863                         out += sprintf(out, "%30s [%08X] : %04X\n",
3864                                        nic_data[i].name, nic_data[i].addr,
3865                                        tmp16);
3866                         break;
3867                 case 4:
3868                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3869                         out += sprintf(out, "%30s [%08X] : %08X\n",
3870                                        nic_data[i].name, nic_data[i].addr,
3871                                        tmp32);
3872                         break;
3873                 }
3874         }
3875         return out - buf;
3876 }
3877
3878 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3879
3880 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3881                            char *buf)
3882 {
3883         struct ipw2100_priv *priv = dev_get_drvdata(d);
3884         struct net_device *dev = priv->net_dev;
3885         static unsigned long loop = 0;
3886         int len = 0;
3887         u32 buffer[4];
3888         int i;
3889         char line[81];
3890
3891         if (loop >= 0x30000)
3892                 loop = 0;
3893
3894         /* sysfs provides us PAGE_SIZE buffer */
3895         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3896
3897                 if (priv->snapshot[0])
3898                         for (i = 0; i < 4; i++)
3899                                 buffer[i] =
3900                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3901                 else
3902                         for (i = 0; i < 4; i++)
3903                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3904
3905                 if (priv->dump_raw)
3906                         len += sprintf(buf + len,
3907                                        "%c%c%c%c"
3908                                        "%c%c%c%c"
3909                                        "%c%c%c%c"
3910                                        "%c%c%c%c",
3911                                        ((u8 *) buffer)[0x0],
3912                                        ((u8 *) buffer)[0x1],
3913                                        ((u8 *) buffer)[0x2],
3914                                        ((u8 *) buffer)[0x3],
3915                                        ((u8 *) buffer)[0x4],
3916                                        ((u8 *) buffer)[0x5],
3917                                        ((u8 *) buffer)[0x6],
3918                                        ((u8 *) buffer)[0x7],
3919                                        ((u8 *) buffer)[0x8],
3920                                        ((u8 *) buffer)[0x9],
3921                                        ((u8 *) buffer)[0xa],
3922                                        ((u8 *) buffer)[0xb],
3923                                        ((u8 *) buffer)[0xc],
3924                                        ((u8 *) buffer)[0xd],
3925                                        ((u8 *) buffer)[0xe],
3926                                        ((u8 *) buffer)[0xf]);
3927                 else
3928                         len += sprintf(buf + len, "%s\n",
3929                                        snprint_line(line, sizeof(line),
3930                                                     (u8 *) buffer, 16, loop));
3931                 loop += 16;
3932         }
3933
3934         return len;
3935 }
3936
3937 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3938                             const char *buf, size_t count)
3939 {
3940         struct ipw2100_priv *priv = dev_get_drvdata(d);
3941         struct net_device *dev = priv->net_dev;
3942         const char *p = buf;
3943
3944         (void)dev;              /* kill unused-var warning for debug-only code */
3945
3946         if (count < 1)
3947                 return count;
3948
3949         if (p[0] == '1' ||
3950             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3951                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3952                                dev->name);
3953                 priv->dump_raw = 1;
3954
3955         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3956                                    tolower(p[1]) == 'f')) {
3957                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3958                                dev->name);
3959                 priv->dump_raw = 0;
3960
3961         } else if (tolower(p[0]) == 'r') {
3962                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3963                 ipw2100_snapshot_free(priv);
3964
3965         } else
3966                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3967                                "reset = clear memory snapshot\n", dev->name);
3968
3969         return count;
3970 }
3971
3972 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3973
3974 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3975                              char *buf)
3976 {
3977         struct ipw2100_priv *priv = dev_get_drvdata(d);
3978         u32 val = 0;
3979         int len = 0;
3980         u32 val_len;
3981         static int loop = 0;
3982
3983         if (priv->status & STATUS_RF_KILL_MASK)
3984                 return 0;
3985
3986         if (loop >= ARRAY_SIZE(ord_data))
3987                 loop = 0;
3988
3989         /* sysfs provides us PAGE_SIZE buffer */
3990         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3991                 val_len = sizeof(u32);
3992
3993                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3994                                         &val_len))
3995                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3996                                        ord_data[loop].index,
3997                                        ord_data[loop].desc);
3998                 else
3999                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4000                                        ord_data[loop].index, val,
4001                                        ord_data[loop].desc);
4002                 loop++;
4003         }
4004
4005         return len;
4006 }
4007
4008 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4009
4010 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4011                           char *buf)
4012 {
4013         struct ipw2100_priv *priv = dev_get_drvdata(d);
4014         char *out = buf;
4015
4016         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4017                        priv->interrupts, priv->tx_interrupts,
4018                        priv->rx_interrupts, priv->inta_other);
4019         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4020         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4021 #ifdef CONFIG_IPW2100_DEBUG
4022         out += sprintf(out, "packet mismatch image: %s\n",
4023                        priv->snapshot[0] ? "YES" : "NO");
4024 #endif
4025
4026         return out - buf;
4027 }
4028
4029 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4030
4031 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4032 {
4033         int err;
4034
4035         if (mode == priv->ieee->iw_mode)
4036                 return 0;
4037
4038         err = ipw2100_disable_adapter(priv);
4039         if (err) {
4040                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4041                        priv->net_dev->name, err);
4042                 return err;
4043         }
4044
4045         switch (mode) {
4046         case IW_MODE_INFRA:
4047                 priv->net_dev->type = ARPHRD_ETHER;
4048                 break;
4049         case IW_MODE_ADHOC:
4050                 priv->net_dev->type = ARPHRD_ETHER;
4051                 break;
4052 #ifdef CONFIG_IPW2100_MONITOR
4053         case IW_MODE_MONITOR:
4054                 priv->last_mode = priv->ieee->iw_mode;
4055                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4056                 break;
4057 #endif                          /* CONFIG_IPW2100_MONITOR */
4058         }
4059
4060         priv->ieee->iw_mode = mode;
4061
4062 #ifdef CONFIG_PM
4063         /* Indicate ipw2100_download_firmware download firmware
4064          * from disk instead of memory. */
4065         ipw2100_firmware.version = 0;
4066 #endif
4067
4068         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4069         priv->reset_backoff = 0;
4070         schedule_reset(priv);
4071
4072         return 0;
4073 }
4074
4075 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4076                               char *buf)
4077 {
4078         struct ipw2100_priv *priv = dev_get_drvdata(d);
4079         int len = 0;
4080
4081 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4082
4083         if (priv->status & STATUS_ASSOCIATED)
4084                 len += sprintf(buf + len, "connected: %lu\n",
4085                                get_seconds() - priv->connect_start);
4086         else
4087                 len += sprintf(buf + len, "not connected\n");
4088
4089         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4090         DUMP_VAR(status, "08lx");
4091         DUMP_VAR(config, "08lx");
4092         DUMP_VAR(capability, "08lx");
4093
4094         len +=
4095             sprintf(buf + len, "last_rtc: %lu\n",
4096                     (unsigned long)priv->last_rtc);
4097
4098         DUMP_VAR(fatal_error, "d");
4099         DUMP_VAR(stop_hang_check, "d");
4100         DUMP_VAR(stop_rf_kill, "d");
4101         DUMP_VAR(messages_sent, "d");
4102
4103         DUMP_VAR(tx_pend_stat.value, "d");
4104         DUMP_VAR(tx_pend_stat.hi, "d");
4105
4106         DUMP_VAR(tx_free_stat.value, "d");
4107         DUMP_VAR(tx_free_stat.lo, "d");
4108
4109         DUMP_VAR(msg_free_stat.value, "d");
4110         DUMP_VAR(msg_free_stat.lo, "d");
4111
4112         DUMP_VAR(msg_pend_stat.value, "d");
4113         DUMP_VAR(msg_pend_stat.hi, "d");
4114
4115         DUMP_VAR(fw_pend_stat.value, "d");
4116         DUMP_VAR(fw_pend_stat.hi, "d");
4117
4118         DUMP_VAR(txq_stat.value, "d");
4119         DUMP_VAR(txq_stat.lo, "d");
4120
4121         DUMP_VAR(ieee->scans, "d");
4122         DUMP_VAR(reset_backoff, "d");
4123
4124         return len;
4125 }
4126
4127 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4128
4129 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4130                             char *buf)
4131 {
4132         struct ipw2100_priv *priv = dev_get_drvdata(d);
4133         char essid[IW_ESSID_MAX_SIZE + 1];
4134         u8 bssid[ETH_ALEN];
4135         u32 chan = 0;
4136         char *out = buf;
4137         unsigned int length;
4138         int ret;
4139
4140         if (priv->status & STATUS_RF_KILL_MASK)
4141                 return 0;
4142
4143         memset(essid, 0, sizeof(essid));
4144         memset(bssid, 0, sizeof(bssid));
4145
4146         length = IW_ESSID_MAX_SIZE;
4147         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4148         if (ret)
4149                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150                                __LINE__);
4151
4152         length = sizeof(bssid);
4153         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4154                                   bssid, &length);
4155         if (ret)
4156                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4157                                __LINE__);
4158
4159         length = sizeof(u32);
4160         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4161         if (ret)
4162                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4163                                __LINE__);
4164
4165         out += sprintf(out, "ESSID: %s\n", essid);
4166         out += sprintf(out, "BSSID:   %pM\n", bssid);
4167         out += sprintf(out, "Channel: %d\n", chan);
4168
4169         return out - buf;
4170 }
4171
4172 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4173
4174 #ifdef CONFIG_IPW2100_DEBUG
4175 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4176 {
4177         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4178 }
4179
4180 static ssize_t store_debug_level(struct device_driver *d,
4181                                  const char *buf, size_t count)
4182 {
4183         char *p = (char *)buf;
4184         u32 val;
4185
4186         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4187                 p++;
4188                 if (p[0] == 'x' || p[0] == 'X')
4189                         p++;
4190                 val = simple_strtoul(p, &p, 16);
4191         } else
4192                 val = simple_strtoul(p, &p, 10);
4193         if (p == buf)
4194                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4195         else
4196                 ipw2100_debug_level = val;
4197
4198         return strnlen(buf, count);
4199 }
4200
4201 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4202                    store_debug_level);
4203 #endif                          /* CONFIG_IPW2100_DEBUG */
4204
4205 static ssize_t show_fatal_error(struct device *d,
4206                                 struct device_attribute *attr, char *buf)
4207 {
4208         struct ipw2100_priv *priv = dev_get_drvdata(d);
4209         char *out = buf;
4210         int i;
4211
4212         if (priv->fatal_error)
4213                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4214         else
4215                 out += sprintf(out, "0\n");
4216
4217         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4218                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4219                                         IPW2100_ERROR_QUEUE])
4220                         continue;
4221
4222                 out += sprintf(out, "%d. 0x%08X\n", i,
4223                                priv->fatal_errors[(priv->fatal_index - i) %
4224                                                   IPW2100_ERROR_QUEUE]);
4225         }
4226
4227         return out - buf;
4228 }
4229
4230 static ssize_t store_fatal_error(struct device *d,
4231                                  struct device_attribute *attr, const char *buf,
4232                                  size_t count)
4233 {
4234         struct ipw2100_priv *priv = dev_get_drvdata(d);
4235         schedule_reset(priv);
4236         return count;
4237 }
4238
4239 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4240                    store_fatal_error);
4241
4242 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4243                              char *buf)
4244 {
4245         struct ipw2100_priv *priv = dev_get_drvdata(d);
4246         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4247 }
4248
4249 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4250                               const char *buf, size_t count)
4251 {
4252         struct ipw2100_priv *priv = dev_get_drvdata(d);
4253         struct net_device *dev = priv->net_dev;
4254         char buffer[] = "00000000";
4255         unsigned long len =
4256             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4257         unsigned long val;
4258         char *p = buffer;
4259
4260         (void)dev;              /* kill unused-var warning for debug-only code */
4261
4262         IPW_DEBUG_INFO("enter\n");
4263
4264         strncpy(buffer, buf, len);
4265         buffer[len] = 0;
4266
4267         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4268                 p++;
4269                 if (p[0] == 'x' || p[0] == 'X')
4270                         p++;
4271                 val = simple_strtoul(p, &p, 16);
4272         } else
4273                 val = simple_strtoul(p, &p, 10);
4274         if (p == buffer) {
4275                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4276         } else {
4277                 priv->ieee->scan_age = val;
4278                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4279         }
4280
4281         IPW_DEBUG_INFO("exit\n");
4282         return len;
4283 }
4284
4285 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4286
4287 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4288                             char *buf)
4289 {
4290         /* 0 - RF kill not enabled
4291            1 - SW based RF kill active (sysfs)
4292            2 - HW based RF kill active
4293            3 - Both HW and SW baed RF kill active */
4294         struct ipw2100_priv *priv = dev_get_drvdata(d);
4295         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4296             (rf_kill_active(priv) ? 0x2 : 0x0);
4297         return sprintf(buf, "%i\n", val);
4298 }
4299
4300 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4301 {
4302         if ((disable_radio ? 1 : 0) ==
4303             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4304                 return 0;
4305
4306         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4307                           disable_radio ? "OFF" : "ON");
4308
4309         mutex_lock(&priv->action_mutex);
4310
4311         if (disable_radio) {
4312                 priv->status |= STATUS_RF_KILL_SW;
4313                 ipw2100_down(priv);
4314         } else {
4315                 priv->status &= ~STATUS_RF_KILL_SW;
4316                 if (rf_kill_active(priv)) {
4317                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4318                                           "disabled by HW switch\n");
4319                         /* Make sure the RF_KILL check timer is running */
4320                         priv->stop_rf_kill = 0;
4321                         mod_delayed_work(system_wq, &priv->rf_kill,
4322                                          round_jiffies_relative(HZ));
4323                 } else
4324                         schedule_reset(priv);
4325         }
4326
4327         mutex_unlock(&priv->action_mutex);
4328         return 1;
4329 }
4330
4331 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4332                              const char *buf, size_t count)
4333 {
4334         struct ipw2100_priv *priv = dev_get_drvdata(d);
4335         ipw_radio_kill_sw(priv, buf[0] == '1');
4336         return count;
4337 }
4338
4339 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4340
4341 static struct attribute *ipw2100_sysfs_entries[] = {
4342         &dev_attr_hardware.attr,
4343         &dev_attr_registers.attr,
4344         &dev_attr_ordinals.attr,
4345         &dev_attr_pci.attr,
4346         &dev_attr_stats.attr,
4347         &dev_attr_internals.attr,
4348         &dev_attr_bssinfo.attr,
4349         &dev_attr_memory.attr,
4350         &dev_attr_scan_age.attr,
4351         &dev_attr_fatal_error.attr,
4352         &dev_attr_rf_kill.attr,
4353         &dev_attr_cfg.attr,
4354         &dev_attr_status.attr,
4355         &dev_attr_capability.attr,
4356         NULL,
4357 };
4358
4359 static struct attribute_group ipw2100_attribute_group = {
4360         .attrs = ipw2100_sysfs_entries,
4361 };
4362
4363 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4364 {
4365         struct ipw2100_status_queue *q = &priv->status_queue;
4366
4367         IPW_DEBUG_INFO("enter\n");
4368
4369         q->size = entries * sizeof(struct ipw2100_status);
4370         q->drv =
4371             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4372                                                           q->size, &q->nic);
4373         if (!q->drv) {
4374                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4375                 return -ENOMEM;
4376         }
4377
4378         memset(q->drv, 0, q->size);
4379
4380         IPW_DEBUG_INFO("exit\n");
4381
4382         return 0;
4383 }
4384
4385 static void status_queue_free(struct ipw2100_priv *priv)
4386 {
4387         IPW_DEBUG_INFO("enter\n");
4388
4389         if (priv->status_queue.drv) {
4390                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4391                                     priv->status_queue.drv,
4392                                     priv->status_queue.nic);
4393                 priv->status_queue.drv = NULL;
4394         }
4395
4396         IPW_DEBUG_INFO("exit\n");
4397 }
4398
4399 static int bd_queue_allocate(struct ipw2100_priv *priv,
4400                              struct ipw2100_bd_queue *q, int entries)
4401 {
4402         IPW_DEBUG_INFO("enter\n");
4403
4404         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4405
4406         q->entries = entries;
4407         q->size = entries * sizeof(struct ipw2100_bd);
4408         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4409         if (!q->drv) {
4410                 IPW_DEBUG_INFO
4411                     ("can't allocate shared memory for buffer descriptors\n");
4412                 return -ENOMEM;
4413         }
4414         memset(q->drv, 0, q->size);
4415
4416         IPW_DEBUG_INFO("exit\n");
4417
4418         return 0;
4419 }
4420
4421 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4422 {
4423         IPW_DEBUG_INFO("enter\n");
4424
4425         if (!q)
4426                 return;
4427
4428         if (q->drv) {
4429                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4430                 q->drv = NULL;
4431         }
4432
4433         IPW_DEBUG_INFO("exit\n");
4434 }
4435
4436 static void bd_queue_initialize(struct ipw2100_priv *priv,
4437                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4438                                 u32 r, u32 w)
4439 {
4440         IPW_DEBUG_INFO("enter\n");
4441
4442         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4443                        (u32) q->nic);
4444
4445         write_register(priv->net_dev, base, q->nic);
4446         write_register(priv->net_dev, size, q->entries);
4447         write_register(priv->net_dev, r, q->oldest);
4448         write_register(priv->net_dev, w, q->next);
4449
4450         IPW_DEBUG_INFO("exit\n");
4451 }
4452
4453 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4454 {
4455         priv->stop_rf_kill = 1;
4456         priv->stop_hang_check = 1;
4457         cancel_delayed_work_sync(&priv->reset_work);
4458         cancel_delayed_work_sync(&priv->security_work);
4459         cancel_delayed_work_sync(&priv->wx_event_work);
4460         cancel_delayed_work_sync(&priv->hang_check);
4461         cancel_delayed_work_sync(&priv->rf_kill);
4462         cancel_work_sync(&priv->scan_event_now);
4463         cancel_delayed_work_sync(&priv->scan_event_later);
4464 }
4465
4466 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4467 {
4468         int i, j, err = -EINVAL;
4469         void *v;
4470         dma_addr_t p;
4471
4472         IPW_DEBUG_INFO("enter\n");
4473
4474         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4475         if (err) {
4476                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4477                                 priv->net_dev->name);
4478                 return err;
4479         }
4480
4481         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4482                                          sizeof(struct ipw2100_tx_packet),
4483                                          GFP_ATOMIC);
4484         if (!priv->tx_buffers) {
4485                 bd_queue_free(priv, &priv->tx_queue);
4486                 return -ENOMEM;
4487         }
4488
4489         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4490                 v = pci_alloc_consistent(priv->pci_dev,
4491                                          sizeof(struct ipw2100_data_header),
4492                                          &p);
4493                 if (!v) {
4494                         printk(KERN_ERR DRV_NAME
4495                                ": %s: PCI alloc failed for tx " "buffers.\n",
4496                                priv->net_dev->name);
4497                         err = -ENOMEM;
4498                         break;
4499                 }
4500
4501                 priv->tx_buffers[i].type = DATA;
4502                 priv->tx_buffers[i].info.d_struct.data =
4503                     (struct ipw2100_data_header *)v;
4504                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4505                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4506         }
4507
4508         if (i == TX_PENDED_QUEUE_LENGTH)
4509                 return 0;
4510
4511         for (j = 0; j < i; j++) {
4512                 pci_free_consistent(priv->pci_dev,
4513                                     sizeof(struct ipw2100_data_header),
4514                                     priv->tx_buffers[j].info.d_struct.data,
4515                                     priv->tx_buffers[j].info.d_struct.
4516                                     data_phys);
4517         }
4518
4519         kfree(priv->tx_buffers);
4520         priv->tx_buffers = NULL;
4521
4522         return err;
4523 }
4524
4525 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4526 {
4527         int i;
4528
4529         IPW_DEBUG_INFO("enter\n");
4530
4531         /*
4532          * reinitialize packet info lists
4533          */
4534         INIT_LIST_HEAD(&priv->fw_pend_list);
4535         INIT_STAT(&priv->fw_pend_stat);
4536
4537         /*
4538          * reinitialize lists
4539          */
4540         INIT_LIST_HEAD(&priv->tx_pend_list);
4541         INIT_LIST_HEAD(&priv->tx_free_list);
4542         INIT_STAT(&priv->tx_pend_stat);
4543         INIT_STAT(&priv->tx_free_stat);
4544
4545         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4546                 /* We simply drop any SKBs that have been queued for
4547                  * transmit */
4548                 if (priv->tx_buffers[i].info.d_struct.txb) {
4549                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4550                                            txb);
4551                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4552                 }
4553
4554                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4555         }
4556
4557         SET_STAT(&priv->tx_free_stat, i);
4558
4559         priv->tx_queue.oldest = 0;
4560         priv->tx_queue.available = priv->tx_queue.entries;
4561         priv->tx_queue.next = 0;
4562         INIT_STAT(&priv->txq_stat);
4563         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4564
4565         bd_queue_initialize(priv, &priv->tx_queue,
4566                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4567                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4568                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4569                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4570
4571         IPW_DEBUG_INFO("exit\n");
4572
4573 }
4574
4575 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4576 {
4577         int i;
4578
4579         IPW_DEBUG_INFO("enter\n");
4580
4581         bd_queue_free(priv, &priv->tx_queue);
4582
4583         if (!priv->tx_buffers)
4584                 return;
4585
4586         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4587                 if (priv->tx_buffers[i].info.d_struct.txb) {
4588                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4589                                            txb);
4590                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4591                 }
4592                 if (priv->tx_buffers[i].info.d_struct.data)
4593                         pci_free_consistent(priv->pci_dev,
4594                                             sizeof(struct ipw2100_data_header),
4595                                             priv->tx_buffers[i].info.d_struct.
4596                                             data,
4597                                             priv->tx_buffers[i].info.d_struct.
4598                                             data_phys);
4599         }
4600
4601         kfree(priv->tx_buffers);
4602         priv->tx_buffers = NULL;
4603
4604         IPW_DEBUG_INFO("exit\n");
4605 }
4606
4607 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4608 {
4609         int i, j, err = -EINVAL;
4610
4611         IPW_DEBUG_INFO("enter\n");
4612
4613         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4614         if (err) {
4615                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4616                 return err;
4617         }
4618
4619         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4620         if (err) {
4621                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4622                 bd_queue_free(priv, &priv->rx_queue);
4623                 return err;
4624         }
4625
4626         /*
4627          * allocate packets
4628          */
4629         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4630                                    sizeof(struct ipw2100_rx_packet),
4631                                    GFP_KERNEL);
4632         if (!priv->rx_buffers) {
4633                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4634
4635                 bd_queue_free(priv, &priv->rx_queue);
4636
4637                 status_queue_free(priv);
4638
4639                 return -ENOMEM;
4640         }
4641
4642         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4643                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4644
4645                 err = ipw2100_alloc_skb(priv, packet);
4646                 if (unlikely(err)) {
4647                         err = -ENOMEM;
4648                         break;
4649                 }
4650
4651                 /* The BD holds the cache aligned address */
4652                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4653                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4654                 priv->status_queue.drv[i].status_fields = 0;
4655         }
4656
4657         if (i == RX_QUEUE_LENGTH)
4658                 return 0;
4659
4660         for (j = 0; j < i; j++) {
4661                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4662                                  sizeof(struct ipw2100_rx_packet),
4663                                  PCI_DMA_FROMDEVICE);
4664                 dev_kfree_skb(priv->rx_buffers[j].skb);
4665         }
4666
4667         kfree(priv->rx_buffers);
4668         priv->rx_buffers = NULL;
4669
4670         bd_queue_free(priv, &priv->rx_queue);
4671
4672         status_queue_free(priv);
4673
4674         return err;
4675 }
4676
4677 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4678 {
4679         IPW_DEBUG_INFO("enter\n");
4680
4681         priv->rx_queue.oldest = 0;
4682         priv->rx_queue.available = priv->rx_queue.entries - 1;
4683         priv->rx_queue.next = priv->rx_queue.entries - 1;
4684
4685         INIT_STAT(&priv->rxq_stat);
4686         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4687
4688         bd_queue_initialize(priv, &priv->rx_queue,
4689                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4690                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4691                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4692                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4693
4694         /* set up the status queue */
4695         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4696                        priv->status_queue.nic);
4697
4698         IPW_DEBUG_INFO("exit\n");
4699 }
4700
4701 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4702 {
4703         int i;
4704
4705         IPW_DEBUG_INFO("enter\n");
4706
4707         bd_queue_free(priv, &priv->rx_queue);
4708         status_queue_free(priv);
4709
4710         if (!priv->rx_buffers)
4711                 return;
4712
4713         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4714                 if (priv->rx_buffers[i].rxp) {
4715                         pci_unmap_single(priv->pci_dev,
4716                                          priv->rx_buffers[i].dma_addr,
4717                                          sizeof(struct ipw2100_rx),
4718                                          PCI_DMA_FROMDEVICE);
4719                         dev_kfree_skb(priv->rx_buffers[i].skb);
4720                 }
4721         }
4722
4723         kfree(priv->rx_buffers);
4724         priv->rx_buffers = NULL;
4725
4726         IPW_DEBUG_INFO("exit\n");
4727 }
4728
4729 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4730 {
4731         u32 length = ETH_ALEN;
4732         u8 addr[ETH_ALEN];
4733
4734         int err;
4735
4736         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4737         if (err) {
4738                 IPW_DEBUG_INFO("MAC address read failed\n");
4739                 return -EIO;
4740         }
4741
4742         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4743         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4744
4745         return 0;
4746 }
4747
4748 /********************************************************************
4749  *
4750  * Firmware Commands
4751  *
4752  ********************************************************************/
4753
4754 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4755 {
4756         struct host_command cmd = {
4757                 .host_command = ADAPTER_ADDRESS,
4758                 .host_command_sequence = 0,
4759                 .host_command_length = ETH_ALEN
4760         };
4761         int err;
4762
4763         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4764
4765         IPW_DEBUG_INFO("enter\n");
4766
4767         if (priv->config & CFG_CUSTOM_MAC) {
4768                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4769                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4770         } else
4771                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4772                        ETH_ALEN);
4773
4774         err = ipw2100_hw_send_command(priv, &cmd);
4775
4776         IPW_DEBUG_INFO("exit\n");
4777         return err;
4778 }
4779
4780 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4781                                  int batch_mode)
4782 {
4783         struct host_command cmd = {
4784                 .host_command = PORT_TYPE,
4785                 .host_command_sequence = 0,
4786                 .host_command_length = sizeof(u32)
4787         };
4788         int err;
4789
4790         switch (port_type) {
4791         case IW_MODE_INFRA:
4792                 cmd.host_command_parameters[0] = IPW_BSS;
4793                 break;
4794         case IW_MODE_ADHOC:
4795                 cmd.host_command_parameters[0] = IPW_IBSS;
4796                 break;
4797         }
4798
4799         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4800                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4801
4802         if (!batch_mode) {
4803                 err = ipw2100_disable_adapter(priv);
4804                 if (err) {
4805                         printk(KERN_ERR DRV_NAME
4806                                ": %s: Could not disable adapter %d\n",
4807                                priv->net_dev->name, err);
4808                         return err;
4809                 }
4810         }
4811
4812         /* send cmd to firmware */
4813         err = ipw2100_hw_send_command(priv, &cmd);
4814
4815         if (!batch_mode)
4816                 ipw2100_enable_adapter(priv);
4817
4818         return err;
4819 }
4820
4821 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4822                                int batch_mode)
4823 {
4824         struct host_command cmd = {
4825                 .host_command = CHANNEL,
4826                 .host_command_sequence = 0,
4827                 .host_command_length = sizeof(u32)
4828         };
4829         int err;
4830
4831         cmd.host_command_parameters[0] = channel;
4832
4833         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4834
4835         /* If BSS then we don't support channel selection */
4836         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4837                 return 0;
4838
4839         if ((channel != 0) &&
4840             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4841                 return -EINVAL;
4842
4843         if (!batch_mode) {
4844                 err = ipw2100_disable_adapter(priv);
4845                 if (err)
4846                         return err;
4847         }
4848
4849         err = ipw2100_hw_send_command(priv, &cmd);
4850         if (err) {
4851                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4852                 return err;
4853         }
4854
4855         if (channel)
4856                 priv->config |= CFG_STATIC_CHANNEL;
4857         else
4858                 priv->config &= ~CFG_STATIC_CHANNEL;
4859
4860         priv->channel = channel;
4861
4862         if (!batch_mode) {
4863                 err = ipw2100_enable_adapter(priv);
4864                 if (err)
4865                         return err;
4866         }
4867
4868         return 0;
4869 }
4870
4871 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4872 {
4873         struct host_command cmd = {
4874                 .host_command = SYSTEM_CONFIG,
4875                 .host_command_sequence = 0,
4876                 .host_command_length = 12,
4877         };
4878         u32 ibss_mask, len = sizeof(u32);
4879         int err;
4880
4881         /* Set system configuration */
4882
4883         if (!batch_mode) {
4884                 err = ipw2100_disable_adapter(priv);
4885                 if (err)
4886                         return err;
4887         }
4888
4889         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4890                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4891
4892         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4893             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4894
4895         if (!(priv->config & CFG_LONG_PREAMBLE))
4896                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4897
4898         err = ipw2100_get_ordinal(priv,
4899                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4900                                   &ibss_mask, &len);
4901         if (err)
4902                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4903
4904         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4905         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4906
4907         /* 11b only */
4908         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4909
4910         err = ipw2100_hw_send_command(priv, &cmd);
4911         if (err)
4912                 return err;
4913
4914 /* If IPv6 is configured in the kernel then we don't want to filter out all
4915  * of the multicast packets as IPv6 needs some. */
4916 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4917         cmd.host_command = ADD_MULTICAST;
4918         cmd.host_command_sequence = 0;
4919         cmd.host_command_length = 0;
4920
4921         ipw2100_hw_send_command(priv, &cmd);
4922 #endif
4923         if (!batch_mode) {
4924                 err = ipw2100_enable_adapter(priv);
4925                 if (err)
4926                         return err;
4927         }
4928
4929         return 0;
4930 }
4931
4932 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4933                                 int batch_mode)
4934 {
4935         struct host_command cmd = {
4936                 .host_command = BASIC_TX_RATES,
4937                 .host_command_sequence = 0,
4938                 .host_command_length = 4
4939         };
4940         int err;
4941
4942         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4943
4944         if (!batch_mode) {
4945                 err = ipw2100_disable_adapter(priv);
4946                 if (err)
4947                         return err;
4948         }
4949
4950         /* Set BASIC TX Rate first */
4951         ipw2100_hw_send_command(priv, &cmd);
4952
4953         /* Set TX Rate */
4954         cmd.host_command = TX_RATES;
4955         ipw2100_hw_send_command(priv, &cmd);
4956
4957         /* Set MSDU TX Rate */
4958         cmd.host_command = MSDU_TX_RATES;
4959         ipw2100_hw_send_command(priv, &cmd);
4960
4961         if (!batch_mode) {
4962                 err = ipw2100_enable_adapter(priv);
4963                 if (err)
4964                         return err;
4965         }
4966
4967         priv->tx_rates = rate;
4968
4969         return 0;
4970 }
4971
4972 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4973 {
4974         struct host_command cmd = {
4975                 .host_command = POWER_MODE,
4976                 .host_command_sequence = 0,
4977                 .host_command_length = 4
4978         };
4979         int err;
4980
4981         cmd.host_command_parameters[0] = power_level;
4982
4983         err = ipw2100_hw_send_command(priv, &cmd);
4984         if (err)
4985                 return err;
4986
4987         if (power_level == IPW_POWER_MODE_CAM)
4988                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4989         else
4990                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4991
4992 #ifdef IPW2100_TX_POWER
4993         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4994                 /* Set beacon interval */
4995                 cmd.host_command = TX_POWER_INDEX;
4996                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4997
4998                 err = ipw2100_hw_send_command(priv, &cmd);
4999                 if (err)
5000                         return err;
5001         }
5002 #endif
5003
5004         return 0;
5005 }
5006
5007 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5008 {
5009         struct host_command cmd = {
5010                 .host_command = RTS_THRESHOLD,
5011                 .host_command_sequence = 0,
5012                 .host_command_length = 4
5013         };
5014         int err;
5015
5016         if (threshold & RTS_DISABLED)
5017                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5018         else
5019                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5020
5021         err = ipw2100_hw_send_command(priv, &cmd);
5022         if (err)
5023                 return err;
5024
5025         priv->rts_threshold = threshold;
5026
5027         return 0;
5028 }
5029
5030 #if 0
5031 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5032                                         u32 threshold, int batch_mode)
5033 {
5034         struct host_command cmd = {
5035                 .host_command = FRAG_THRESHOLD,
5036                 .host_command_sequence = 0,
5037                 .host_command_length = 4,
5038                 .host_command_parameters[0] = 0,
5039         };
5040         int err;
5041
5042         if (!batch_mode) {
5043                 err = ipw2100_disable_adapter(priv);
5044                 if (err)
5045                         return err;
5046         }
5047
5048         if (threshold == 0)
5049                 threshold = DEFAULT_FRAG_THRESHOLD;
5050         else {
5051                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5052                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5053         }
5054
5055         cmd.host_command_parameters[0] = threshold;
5056
5057         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5058
5059         err = ipw2100_hw_send_command(priv, &cmd);
5060
5061         if (!batch_mode)
5062                 ipw2100_enable_adapter(priv);
5063
5064         if (!err)
5065                 priv->frag_threshold = threshold;
5066
5067         return err;
5068 }
5069 #endif
5070
5071 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5072 {
5073         struct host_command cmd = {
5074                 .host_command = SHORT_RETRY_LIMIT,
5075                 .host_command_sequence = 0,
5076                 .host_command_length = 4
5077         };
5078         int err;
5079
5080         cmd.host_command_parameters[0] = retry;
5081
5082         err = ipw2100_hw_send_command(priv, &cmd);
5083         if (err)
5084                 return err;
5085
5086         priv->short_retry_limit = retry;
5087
5088         return 0;
5089 }
5090
5091 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5092 {
5093         struct host_command cmd = {
5094                 .host_command = LONG_RETRY_LIMIT,
5095                 .host_command_sequence = 0,
5096                 .host_command_length = 4
5097         };
5098         int err;
5099
5100         cmd.host_command_parameters[0] = retry;
5101
5102         err = ipw2100_hw_send_command(priv, &cmd);
5103         if (err)
5104                 return err;
5105
5106         priv->long_retry_limit = retry;
5107
5108         return 0;
5109 }
5110
5111 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5112                                        int batch_mode)
5113 {
5114         struct host_command cmd = {
5115                 .host_command = MANDATORY_BSSID,
5116                 .host_command_sequence = 0,
5117                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5118         };
5119         int err;
5120
5121 #ifdef CONFIG_IPW2100_DEBUG
5122         if (bssid != NULL)
5123                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5124         else
5125                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5126 #endif
5127         /* if BSSID is empty then we disable mandatory bssid mode */
5128         if (bssid != NULL)
5129                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5130
5131         if (!batch_mode) {
5132                 err = ipw2100_disable_adapter(priv);
5133                 if (err)
5134                         return err;
5135         }
5136
5137         err = ipw2100_hw_send_command(priv, &cmd);
5138
5139         if (!batch_mode)
5140                 ipw2100_enable_adapter(priv);
5141
5142         return err;
5143 }
5144
5145 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5146 {
5147         struct host_command cmd = {
5148                 .host_command = DISASSOCIATION_BSSID,
5149                 .host_command_sequence = 0,
5150                 .host_command_length = ETH_ALEN
5151         };
5152         int err;
5153         int len;
5154
5155         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5156
5157         len = ETH_ALEN;
5158         /* The Firmware currently ignores the BSSID and just disassociates from
5159          * the currently associated AP -- but in the off chance that a future
5160          * firmware does use the BSSID provided here, we go ahead and try and
5161          * set it to the currently associated AP's BSSID */
5162         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5163
5164         err = ipw2100_hw_send_command(priv, &cmd);
5165
5166         return err;
5167 }
5168
5169 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5170                               struct ipw2100_wpa_assoc_frame *, int)
5171     __attribute__ ((unused));
5172
5173 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5174                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5175                               int batch_mode)
5176 {
5177         struct host_command cmd = {
5178                 .host_command = SET_WPA_IE,
5179                 .host_command_sequence = 0,
5180                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5181         };
5182         int err;
5183
5184         IPW_DEBUG_HC("SET_WPA_IE\n");
5185
5186         if (!batch_mode) {
5187                 err = ipw2100_disable_adapter(priv);
5188                 if (err)
5189                         return err;
5190         }
5191
5192         memcpy(cmd.host_command_parameters, wpa_frame,
5193                sizeof(struct ipw2100_wpa_assoc_frame));
5194
5195         err = ipw2100_hw_send_command(priv, &cmd);
5196
5197         if (!batch_mode) {
5198                 if (ipw2100_enable_adapter(priv))
5199                         err = -EIO;
5200         }
5201
5202         return err;
5203 }
5204
5205 struct security_info_params {
5206         u32 allowed_ciphers;
5207         u16 version;
5208         u8 auth_mode;
5209         u8 replay_counters_number;
5210         u8 unicast_using_group;
5211 } __packed;
5212
5213 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5214                                             int auth_mode,
5215                                             int security_level,
5216                                             int unicast_using_group,
5217                                             int batch_mode)
5218 {
5219         struct host_command cmd = {
5220                 .host_command = SET_SECURITY_INFORMATION,
5221                 .host_command_sequence = 0,
5222                 .host_command_length = sizeof(struct security_info_params)
5223         };
5224         struct security_info_params *security =
5225             (struct security_info_params *)&cmd.host_command_parameters;
5226         int err;
5227         memset(security, 0, sizeof(*security));
5228
5229         /* If shared key AP authentication is turned on, then we need to
5230          * configure the firmware to try and use it.
5231          *
5232          * Actual data encryption/decryption is handled by the host. */
5233         security->auth_mode = auth_mode;
5234         security->unicast_using_group = unicast_using_group;
5235
5236         switch (security_level) {
5237         default:
5238         case SEC_LEVEL_0:
5239                 security->allowed_ciphers = IPW_NONE_CIPHER;
5240                 break;
5241         case SEC_LEVEL_1:
5242                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5243                     IPW_WEP104_CIPHER;
5244                 break;
5245         case SEC_LEVEL_2:
5246                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5247                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5248                 break;
5249         case SEC_LEVEL_2_CKIP:
5250                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5251                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5252                 break;
5253         case SEC_LEVEL_3:
5254                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5255                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5256                 break;
5257         }
5258
5259         IPW_DEBUG_HC
5260             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5261              security->auth_mode, security->allowed_ciphers, security_level);
5262
5263         security->replay_counters_number = 0;
5264
5265         if (!batch_mode) {
5266                 err = ipw2100_disable_adapter(priv);
5267                 if (err)
5268                         return err;
5269         }
5270
5271         err = ipw2100_hw_send_command(priv, &cmd);
5272
5273         if (!batch_mode)
5274                 ipw2100_enable_adapter(priv);
5275
5276         return err;
5277 }
5278
5279 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5280 {
5281         struct host_command cmd = {
5282                 .host_command = TX_POWER_INDEX,
5283                 .host_command_sequence = 0,
5284                 .host_command_length = 4
5285         };
5286         int err = 0;
5287         u32 tmp = tx_power;
5288
5289         if (tx_power != IPW_TX_POWER_DEFAULT)
5290                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5291                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5292
5293         cmd.host_command_parameters[0] = tmp;
5294
5295         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5296                 err = ipw2100_hw_send_command(priv, &cmd);
5297         if (!err)
5298                 priv->tx_power = tx_power;
5299
5300         return 0;
5301 }
5302
5303 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5304                                             u32 interval, int batch_mode)
5305 {
5306         struct host_command cmd = {
5307                 .host_command = BEACON_INTERVAL,
5308                 .host_command_sequence = 0,
5309                 .host_command_length = 4
5310         };
5311         int err;
5312
5313         cmd.host_command_parameters[0] = interval;
5314
5315         IPW_DEBUG_INFO("enter\n");
5316
5317         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5318                 if (!batch_mode) {
5319                         err = ipw2100_disable_adapter(priv);
5320                         if (err)
5321                                 return err;
5322                 }
5323
5324                 ipw2100_hw_send_command(priv, &cmd);
5325
5326                 if (!batch_mode) {
5327                         err = ipw2100_enable_adapter(priv);
5328                         if (err)
5329                                 return err;
5330                 }
5331         }
5332
5333         IPW_DEBUG_INFO("exit\n");
5334
5335         return 0;
5336 }
5337
5338 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5339 {
5340         ipw2100_tx_initialize(priv);
5341         ipw2100_rx_initialize(priv);
5342         ipw2100_msg_initialize(priv);
5343 }
5344
5345 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5346 {
5347         ipw2100_tx_free(priv);
5348         ipw2100_rx_free(priv);
5349         ipw2100_msg_free(priv);
5350 }
5351
5352 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5353 {
5354         if (ipw2100_tx_allocate(priv) ||
5355             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5356                 goto fail;
5357
5358         return 0;
5359
5360       fail:
5361         ipw2100_tx_free(priv);
5362         ipw2100_rx_free(priv);
5363         ipw2100_msg_free(priv);
5364         return -ENOMEM;
5365 }
5366
5367 #define IPW_PRIVACY_CAPABLE 0x0008
5368
5369 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5370                                  int batch_mode)
5371 {
5372         struct host_command cmd = {
5373                 .host_command = WEP_FLAGS,
5374                 .host_command_sequence = 0,
5375                 .host_command_length = 4
5376         };
5377         int err;
5378
5379         cmd.host_command_parameters[0] = flags;
5380
5381         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5382
5383         if (!batch_mode) {
5384                 err = ipw2100_disable_adapter(priv);
5385                 if (err) {
5386                         printk(KERN_ERR DRV_NAME
5387                                ": %s: Could not disable adapter %d\n",
5388                                priv->net_dev->name, err);
5389                         return err;
5390                 }
5391         }
5392
5393         /* send cmd to firmware */
5394         err = ipw2100_hw_send_command(priv, &cmd);
5395
5396         if (!batch_mode)
5397                 ipw2100_enable_adapter(priv);
5398
5399         return err;
5400 }
5401
5402 struct ipw2100_wep_key {
5403         u8 idx;
5404         u8 len;
5405         u8 key[13];
5406 };
5407
5408 /* Macros to ease up priting WEP keys */
5409 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5410 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5411 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5412 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5413
5414 /**
5415  * Set a the wep key
5416  *
5417  * @priv: struct to work on
5418  * @idx: index of the key we want to set
5419  * @key: ptr to the key data to set
5420  * @len: length of the buffer at @key
5421  * @batch_mode: FIXME perform the operation in batch mode, not
5422  *              disabling the device.
5423  *
5424  * @returns 0 if OK, < 0 errno code on error.
5425  *
5426  * Fill out a command structure with the new wep key, length an
5427  * index and send it down the wire.
5428  */
5429 static int ipw2100_set_key(struct ipw2100_priv *priv,
5430                            int idx, char *key, int len, int batch_mode)
5431 {
5432         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5433         struct host_command cmd = {
5434                 .host_command = WEP_KEY_INFO,
5435                 .host_command_sequence = 0,
5436                 .host_command_length = sizeof(struct ipw2100_wep_key),
5437         };
5438         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5439         int err;
5440
5441         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5442                      idx, keylen, len);
5443
5444         /* NOTE: We don't check cached values in case the firmware was reset
5445          * or some other problem is occurring.  If the user is setting the key,
5446          * then we push the change */
5447
5448         wep_key->idx = idx;
5449         wep_key->len = keylen;
5450
5451         if (keylen) {
5452                 memcpy(wep_key->key, key, len);
5453                 memset(wep_key->key + len, 0, keylen - len);
5454         }
5455
5456         /* Will be optimized out on debug not being configured in */
5457         if (keylen == 0)
5458                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5459                               priv->net_dev->name, wep_key->idx);
5460         else if (keylen == 5)
5461                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5462                               priv->net_dev->name, wep_key->idx, wep_key->len,
5463                               WEP_STR_64(wep_key->key));
5464         else
5465                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5466                               "\n",
5467                               priv->net_dev->name, wep_key->idx, wep_key->len,
5468                               WEP_STR_128(wep_key->key));
5469
5470         if (!batch_mode) {
5471                 err = ipw2100_disable_adapter(priv);
5472                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5473                 if (err) {
5474                         printk(KERN_ERR DRV_NAME
5475                                ": %s: Could not disable adapter %d\n",
5476                                priv->net_dev->name, err);
5477                         return err;
5478                 }
5479         }
5480
5481         /* send cmd to firmware */
5482         err = ipw2100_hw_send_command(priv, &cmd);
5483
5484         if (!batch_mode) {
5485                 int err2 = ipw2100_enable_adapter(priv);
5486                 if (err == 0)
5487                         err = err2;
5488         }
5489         return err;
5490 }
5491
5492 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5493                                  int idx, int batch_mode)
5494 {
5495         struct host_command cmd = {
5496                 .host_command = WEP_KEY_INDEX,
5497                 .host_command_sequence = 0,
5498                 .host_command_length = 4,
5499                 .host_command_parameters = {idx},
5500         };
5501         int err;
5502
5503         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5504
5505         if (idx < 0 || idx > 3)
5506                 return -EINVAL;
5507
5508         if (!batch_mode) {
5509                 err = ipw2100_disable_adapter(priv);
5510                 if (err) {
5511                         printk(KERN_ERR DRV_NAME
5512                                ": %s: Could not disable adapter %d\n",
5513                                priv->net_dev->name, err);
5514                         return err;
5515                 }
5516         }
5517
5518         /* send cmd to firmware */
5519         err = ipw2100_hw_send_command(priv, &cmd);
5520
5521         if (!batch_mode)
5522                 ipw2100_enable_adapter(priv);
5523
5524         return err;
5525 }
5526
5527 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5528 {
5529         int i, err, auth_mode, sec_level, use_group;
5530
5531         if (!(priv->status & STATUS_RUNNING))
5532                 return 0;
5533
5534         if (!batch_mode) {
5535                 err = ipw2100_disable_adapter(priv);
5536                 if (err)
5537                         return err;
5538         }
5539
5540         if (!priv->ieee->sec.enabled) {
5541                 err =
5542                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5543                                                      SEC_LEVEL_0, 0, 1);
5544         } else {
5545                 auth_mode = IPW_AUTH_OPEN;
5546                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5547                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5548                                 auth_mode = IPW_AUTH_SHARED;
5549                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5550                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5551                 }
5552
5553                 sec_level = SEC_LEVEL_0;
5554                 if (priv->ieee->sec.flags & SEC_LEVEL)
5555                         sec_level = priv->ieee->sec.level;
5556
5557                 use_group = 0;
5558                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5559                         use_group = priv->ieee->sec.unicast_uses_group;
5560
5561                 err =
5562                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5563                                                      use_group, 1);
5564         }
5565
5566         if (err)
5567                 goto exit;
5568
5569         if (priv->ieee->sec.enabled) {
5570                 for (i = 0; i < 4; i++) {
5571                         if (!(priv->ieee->sec.flags & (1 << i))) {
5572                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5573                                 priv->ieee->sec.key_sizes[i] = 0;
5574                         } else {
5575                                 err = ipw2100_set_key(priv, i,
5576                                                       priv->ieee->sec.keys[i],
5577                                                       priv->ieee->sec.
5578                                                       key_sizes[i], 1);
5579                                 if (err)
5580                                         goto exit;
5581                         }
5582                 }
5583
5584                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5585         }
5586
5587         /* Always enable privacy so the Host can filter WEP packets if
5588          * encrypted data is sent up */
5589         err =
5590             ipw2100_set_wep_flags(priv,
5591                                   priv->ieee->sec.
5592                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5593         if (err)
5594                 goto exit;
5595
5596         priv->status &= ~STATUS_SECURITY_UPDATED;
5597
5598       exit:
5599         if (!batch_mode)
5600                 ipw2100_enable_adapter(priv);
5601
5602         return err;
5603 }
5604
5605 static void ipw2100_security_work(struct work_struct *work)
5606 {
5607         struct ipw2100_priv *priv =
5608                 container_of(work, struct ipw2100_priv, security_work.work);
5609
5610         /* If we happen to have reconnected before we get a chance to
5611          * process this, then update the security settings--which causes
5612          * a disassociation to occur */
5613         if (!(priv->status & STATUS_ASSOCIATED) &&
5614             priv->status & STATUS_SECURITY_UPDATED)
5615                 ipw2100_configure_security(priv, 0);
5616 }
5617
5618 static void shim__set_security(struct net_device *dev,
5619                                struct libipw_security *sec)
5620 {
5621         struct ipw2100_priv *priv = libipw_priv(dev);
5622         int i, force_update = 0;
5623
5624         mutex_lock(&priv->action_mutex);
5625         if (!(priv->status & STATUS_INITIALIZED))
5626                 goto done;
5627
5628         for (i = 0; i < 4; i++) {
5629                 if (sec->flags & (1 << i)) {
5630                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5631                         if (sec->key_sizes[i] == 0)
5632                                 priv->ieee->sec.flags &= ~(1 << i);
5633                         else
5634                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5635                                        sec->key_sizes[i]);
5636                         if (sec->level == SEC_LEVEL_1) {
5637                                 priv->ieee->sec.flags |= (1 << i);
5638                                 priv->status |= STATUS_SECURITY_UPDATED;
5639                         } else
5640                                 priv->ieee->sec.flags &= ~(1 << i);
5641                 }
5642         }
5643
5644         if ((sec->flags & SEC_ACTIVE_KEY) &&
5645             priv->ieee->sec.active_key != sec->active_key) {
5646                 if (sec->active_key <= 3) {
5647                         priv->ieee->sec.active_key = sec->active_key;
5648                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5649                 } else
5650                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5651
5652                 priv->status |= STATUS_SECURITY_UPDATED;
5653         }
5654
5655         if ((sec->flags & SEC_AUTH_MODE) &&
5656             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5657                 priv->ieee->sec.auth_mode = sec->auth_mode;
5658                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5659                 priv->status |= STATUS_SECURITY_UPDATED;
5660         }
5661
5662         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5663                 priv->ieee->sec.flags |= SEC_ENABLED;
5664                 priv->ieee->sec.enabled = sec->enabled;
5665                 priv->status |= STATUS_SECURITY_UPDATED;
5666                 force_update = 1;
5667         }
5668
5669         if (sec->flags & SEC_ENCRYPT)
5670                 priv->ieee->sec.encrypt = sec->encrypt;
5671
5672         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5673                 priv->ieee->sec.level = sec->level;
5674                 priv->ieee->sec.flags |= SEC_LEVEL;
5675                 priv->status |= STATUS_SECURITY_UPDATED;
5676         }
5677
5678         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5679                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5680                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5681                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5682                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5683                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5684                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5685                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5686                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5687                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5688
5689 /* As a temporary work around to enable WPA until we figure out why
5690  * wpa_supplicant toggles the security capability of the driver, which
5691  * forces a disassocation with force_update...
5692  *
5693  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5694         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5695                 ipw2100_configure_security(priv, 0);
5696       done:
5697         mutex_unlock(&priv->action_mutex);
5698 }
5699
5700 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5701 {
5702         int err;
5703         int batch_mode = 1;
5704         u8 *bssid;
5705
5706         IPW_DEBUG_INFO("enter\n");
5707
5708         err = ipw2100_disable_adapter(priv);
5709         if (err)
5710                 return err;
5711 #ifdef CONFIG_IPW2100_MONITOR
5712         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5713                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5714                 if (err)
5715                         return err;
5716
5717                 IPW_DEBUG_INFO("exit\n");
5718
5719                 return 0;
5720         }
5721 #endif                          /* CONFIG_IPW2100_MONITOR */
5722
5723         err = ipw2100_read_mac_address(priv);
5724         if (err)
5725                 return -EIO;
5726
5727         err = ipw2100_set_mac_address(priv, batch_mode);
5728         if (err)
5729                 return err;
5730
5731         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5732         if (err)
5733                 return err;
5734
5735         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5736                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5737                 if (err)
5738                         return err;
5739         }
5740
5741         err = ipw2100_system_config(priv, batch_mode);
5742         if (err)
5743                 return err;
5744
5745         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5746         if (err)
5747                 return err;
5748
5749         /* Default to power mode OFF */
5750         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5751         if (err)
5752                 return err;
5753
5754         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5755         if (err)
5756                 return err;
5757
5758         if (priv->config & CFG_STATIC_BSSID)
5759                 bssid = priv->bssid;
5760         else
5761                 bssid = NULL;
5762         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5763         if (err)
5764                 return err;
5765
5766         if (priv->config & CFG_STATIC_ESSID)
5767                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5768                                         batch_mode);
5769         else
5770                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5771         if (err)
5772                 return err;
5773
5774         err = ipw2100_configure_security(priv, batch_mode);
5775         if (err)
5776                 return err;
5777
5778         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5779                 err =
5780                     ipw2100_set_ibss_beacon_interval(priv,
5781                                                      priv->beacon_interval,
5782                                                      batch_mode);
5783                 if (err)
5784                         return err;
5785
5786                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5787                 if (err)
5788                         return err;
5789         }
5790
5791         /*
5792            err = ipw2100_set_fragmentation_threshold(
5793            priv, priv->frag_threshold, batch_mode);
5794            if (err)
5795            return err;
5796          */
5797
5798         IPW_DEBUG_INFO("exit\n");
5799
5800         return 0;
5801 }
5802
5803 /*************************************************************************
5804  *
5805  * EXTERNALLY CALLED METHODS
5806  *
5807  *************************************************************************/
5808
5809 /* This method is called by the network layer -- not to be confused with
5810  * ipw2100_set_mac_address() declared above called by this driver (and this
5811  * method as well) to talk to the firmware */
5812 static int ipw2100_set_address(struct net_device *dev, void *p)
5813 {
5814         struct ipw2100_priv *priv = libipw_priv(dev);
5815         struct sockaddr *addr = p;
5816         int err = 0;
5817
5818         if (!is_valid_ether_addr(addr->sa_data))
5819                 return -EADDRNOTAVAIL;
5820
5821         mutex_lock(&priv->action_mutex);
5822
5823         priv->config |= CFG_CUSTOM_MAC;
5824         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5825
5826         err = ipw2100_set_mac_address(priv, 0);
5827         if (err)
5828                 goto done;
5829
5830         priv->reset_backoff = 0;
5831         mutex_unlock(&priv->action_mutex);
5832         ipw2100_reset_adapter(&priv->reset_work.work);
5833         return 0;
5834
5835       done:
5836         mutex_unlock(&priv->action_mutex);
5837         return err;
5838 }
5839
5840 static int ipw2100_open(struct net_device *dev)
5841 {
5842         struct ipw2100_priv *priv = libipw_priv(dev);
5843         unsigned long flags;
5844         IPW_DEBUG_INFO("dev->open\n");
5845
5846         spin_lock_irqsave(&priv->low_lock, flags);
5847         if (priv->status & STATUS_ASSOCIATED) {
5848                 netif_carrier_on(dev);
5849                 netif_start_queue(dev);
5850         }
5851         spin_unlock_irqrestore(&priv->low_lock, flags);
5852
5853         return 0;
5854 }
5855
5856 static int ipw2100_close(struct net_device *dev)
5857 {
5858         struct ipw2100_priv *priv = libipw_priv(dev);
5859         unsigned long flags;
5860         struct list_head *element;
5861         struct ipw2100_tx_packet *packet;
5862
5863         IPW_DEBUG_INFO("enter\n");
5864
5865         spin_lock_irqsave(&priv->low_lock, flags);
5866
5867         if (priv->status & STATUS_ASSOCIATED)
5868                 netif_carrier_off(dev);
5869         netif_stop_queue(dev);
5870
5871         /* Flush the TX queue ... */
5872         while (!list_empty(&priv->tx_pend_list)) {
5873                 element = priv->tx_pend_list.next;
5874                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5875
5876                 list_del(element);
5877                 DEC_STAT(&priv->tx_pend_stat);
5878
5879                 libipw_txb_free(packet->info.d_struct.txb);
5880                 packet->info.d_struct.txb = NULL;
5881
5882                 list_add_tail(element, &priv->tx_free_list);
5883                 INC_STAT(&priv->tx_free_stat);
5884         }
5885         spin_unlock_irqrestore(&priv->low_lock, flags);
5886
5887         IPW_DEBUG_INFO("exit\n");
5888
5889         return 0;
5890 }
5891
5892 /*
5893  * TODO:  Fix this function... its just wrong
5894  */
5895 static void ipw2100_tx_timeout(struct net_device *dev)
5896 {
5897         struct ipw2100_priv *priv = libipw_priv(dev);
5898
5899         dev->stats.tx_errors++;
5900
5901 #ifdef CONFIG_IPW2100_MONITOR
5902         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5903                 return;
5904 #endif
5905
5906         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5907                        dev->name);
5908         schedule_reset(priv);
5909 }
5910
5911 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5912 {
5913         /* This is called when wpa_supplicant loads and closes the driver
5914          * interface. */
5915         priv->ieee->wpa_enabled = value;
5916         return 0;
5917 }
5918
5919 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5920 {
5921
5922         struct libipw_device *ieee = priv->ieee;
5923         struct libipw_security sec = {
5924                 .flags = SEC_AUTH_MODE,
5925         };
5926         int ret = 0;
5927
5928         if (value & IW_AUTH_ALG_SHARED_KEY) {
5929                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5930                 ieee->open_wep = 0;
5931         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5932                 sec.auth_mode = WLAN_AUTH_OPEN;
5933                 ieee->open_wep = 1;
5934         } else if (value & IW_AUTH_ALG_LEAP) {
5935                 sec.auth_mode = WLAN_AUTH_LEAP;
5936                 ieee->open_wep = 1;
5937         } else
5938                 return -EINVAL;
5939
5940         if (ieee->set_security)
5941                 ieee->set_security(ieee->dev, &sec);
5942         else
5943                 ret = -EOPNOTSUPP;
5944
5945         return ret;
5946 }
5947
5948 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5949                                     char *wpa_ie, int wpa_ie_len)
5950 {
5951
5952         struct ipw2100_wpa_assoc_frame frame;
5953
5954         frame.fixed_ie_mask = 0;
5955
5956         /* copy WPA IE */
5957         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5958         frame.var_ie_len = wpa_ie_len;
5959
5960         /* make sure WPA is enabled */
5961         ipw2100_wpa_enable(priv, 1);
5962         ipw2100_set_wpa_ie(priv, &frame, 0);
5963 }
5964
5965 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5966                                     struct ethtool_drvinfo *info)
5967 {
5968         struct ipw2100_priv *priv = libipw_priv(dev);
5969         char fw_ver[64], ucode_ver[64];
5970
5971         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5972         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5973
5974         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5975         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5976
5977         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5978                  fw_ver, priv->eeprom_version, ucode_ver);
5979
5980         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5981                 sizeof(info->bus_info));
5982 }
5983
5984 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5985 {
5986         struct ipw2100_priv *priv = libipw_priv(dev);
5987         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5988 }
5989
5990 static const struct ethtool_ops ipw2100_ethtool_ops = {
5991         .get_link = ipw2100_ethtool_get_link,
5992         .get_drvinfo = ipw_ethtool_get_drvinfo,
5993 };
5994
5995 static void ipw2100_hang_check(struct work_struct *work)
5996 {
5997         struct ipw2100_priv *priv =
5998                 container_of(work, struct ipw2100_priv, hang_check.work);
5999         unsigned long flags;
6000         u32 rtc = 0xa5a5a5a5;
6001         u32 len = sizeof(rtc);
6002         int restart = 0;
6003
6004         spin_lock_irqsave(&priv->low_lock, flags);
6005
6006         if (priv->fatal_error != 0) {
6007                 /* If fatal_error is set then we need to restart */
6008                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6009                                priv->net_dev->name);
6010
6011                 restart = 1;
6012         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6013                    (rtc == priv->last_rtc)) {
6014                 /* Check if firmware is hung */
6015                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6016                                priv->net_dev->name);
6017
6018                 restart = 1;
6019         }
6020
6021         if (restart) {
6022                 /* Kill timer */
6023                 priv->stop_hang_check = 1;
6024                 priv->hangs++;
6025
6026                 /* Restart the NIC */
6027                 schedule_reset(priv);
6028         }
6029
6030         priv->last_rtc = rtc;
6031
6032         if (!priv->stop_hang_check)
6033                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6034
6035         spin_unlock_irqrestore(&priv->low_lock, flags);
6036 }
6037
6038 static void ipw2100_rf_kill(struct work_struct *work)
6039 {
6040         struct ipw2100_priv *priv =
6041                 container_of(work, struct ipw2100_priv, rf_kill.work);
6042         unsigned long flags;
6043
6044         spin_lock_irqsave(&priv->low_lock, flags);
6045
6046         if (rf_kill_active(priv)) {
6047                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6048                 if (!priv->stop_rf_kill)
6049                         schedule_delayed_work(&priv->rf_kill,
6050                                               round_jiffies_relative(HZ));
6051                 goto exit_unlock;
6052         }
6053
6054         /* RF Kill is now disabled, so bring the device back up */
6055
6056         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6057                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6058                                   "device\n");
6059                 schedule_reset(priv);
6060         } else
6061                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6062                                   "enabled\n");
6063
6064       exit_unlock:
6065         spin_unlock_irqrestore(&priv->low_lock, flags);
6066 }
6067
6068 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6069
6070 static const struct net_device_ops ipw2100_netdev_ops = {
6071         .ndo_open               = ipw2100_open,
6072         .ndo_stop               = ipw2100_close,
6073         .ndo_start_xmit         = libipw_xmit,
6074         .ndo_change_mtu         = libipw_change_mtu,
6075         .ndo_tx_timeout         = ipw2100_tx_timeout,
6076         .ndo_set_mac_address    = ipw2100_set_address,
6077         .ndo_validate_addr      = eth_validate_addr,
6078 };
6079
6080 /* Look into using netdev destructor to shutdown libipw? */
6081
6082 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6083                                                void __iomem * ioaddr)
6084 {
6085         struct ipw2100_priv *priv;
6086         struct net_device *dev;
6087
6088         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6089         if (!dev)
6090                 return NULL;
6091         priv = libipw_priv(dev);
6092         priv->ieee = netdev_priv(dev);
6093         priv->pci_dev = pci_dev;
6094         priv->net_dev = dev;
6095         priv->ioaddr = ioaddr;
6096
6097         priv->ieee->hard_start_xmit = ipw2100_tx;
6098         priv->ieee->set_security = shim__set_security;
6099
6100         priv->ieee->perfect_rssi = -20;
6101         priv->ieee->worst_rssi = -85;
6102
6103         dev->netdev_ops = &ipw2100_netdev_ops;
6104         dev->ethtool_ops = &ipw2100_ethtool_ops;
6105         dev->wireless_handlers = &ipw2100_wx_handler_def;
6106         priv->wireless_data.libipw = priv->ieee;
6107         dev->wireless_data = &priv->wireless_data;
6108         dev->watchdog_timeo = 3 * HZ;
6109         dev->irq = 0;
6110
6111         /* NOTE: We don't use the wireless_handlers hook
6112          * in dev as the system will start throwing WX requests
6113          * to us before we're actually initialized and it just
6114          * ends up causing problems.  So, we just handle
6115          * the WX extensions through the ipw2100_ioctl interface */
6116
6117         /* memset() puts everything to 0, so we only have explicitly set
6118          * those values that need to be something else */
6119
6120         /* If power management is turned on, default to AUTO mode */
6121         priv->power_mode = IPW_POWER_AUTO;
6122
6123 #ifdef CONFIG_IPW2100_MONITOR
6124         priv->config |= CFG_CRC_CHECK;
6125 #endif
6126         priv->ieee->wpa_enabled = 0;
6127         priv->ieee->drop_unencrypted = 0;
6128         priv->ieee->privacy_invoked = 0;
6129         priv->ieee->ieee802_1x = 1;
6130
6131         /* Set module parameters */
6132         switch (network_mode) {
6133         case 1:
6134                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6135                 break;
6136 #ifdef CONFIG_IPW2100_MONITOR
6137         case 2:
6138                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6139                 break;
6140 #endif
6141         default:
6142         case 0:
6143                 priv->ieee->iw_mode = IW_MODE_INFRA;
6144                 break;
6145         }
6146
6147         if (disable == 1)
6148                 priv->status |= STATUS_RF_KILL_SW;
6149
6150         if (channel != 0 &&
6151             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6152                 priv->config |= CFG_STATIC_CHANNEL;
6153                 priv->channel = channel;
6154         }
6155
6156         if (associate)
6157                 priv->config |= CFG_ASSOCIATE;
6158
6159         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6160         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6161         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6162         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6163         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6164         priv->tx_power = IPW_TX_POWER_DEFAULT;
6165         priv->tx_rates = DEFAULT_TX_RATES;
6166
6167         strcpy(priv->nick, "ipw2100");
6168
6169         spin_lock_init(&priv->low_lock);
6170         mutex_init(&priv->action_mutex);
6171         mutex_init(&priv->adapter_mutex);
6172
6173         init_waitqueue_head(&priv->wait_command_queue);
6174
6175         netif_carrier_off(dev);
6176
6177         INIT_LIST_HEAD(&priv->msg_free_list);
6178         INIT_LIST_HEAD(&priv->msg_pend_list);
6179         INIT_STAT(&priv->msg_free_stat);
6180         INIT_STAT(&priv->msg_pend_stat);
6181
6182         INIT_LIST_HEAD(&priv->tx_free_list);
6183         INIT_LIST_HEAD(&priv->tx_pend_list);
6184         INIT_STAT(&priv->tx_free_stat);
6185         INIT_STAT(&priv->tx_pend_stat);
6186
6187         INIT_LIST_HEAD(&priv->fw_pend_list);
6188         INIT_STAT(&priv->fw_pend_stat);
6189
6190         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6191         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6192         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6193         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6194         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6195         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6196         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6197
6198         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6199                      ipw2100_irq_tasklet, (unsigned long)priv);
6200
6201         /* NOTE:  We do not start the deferred work for status checks yet */
6202         priv->stop_rf_kill = 1;
6203         priv->stop_hang_check = 1;
6204
6205         return dev;
6206 }
6207
6208 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6209                                 const struct pci_device_id *ent)
6210 {
6211         void __iomem *ioaddr;
6212         struct net_device *dev = NULL;
6213         struct ipw2100_priv *priv = NULL;
6214         int err = 0;
6215         int registered = 0;
6216         u32 val;
6217
6218         IPW_DEBUG_INFO("enter\n");
6219
6220         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6221                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6222                 err = -ENODEV;
6223                 goto out;
6224         }
6225
6226         ioaddr = pci_iomap(pci_dev, 0, 0);
6227         if (!ioaddr) {
6228                 printk(KERN_WARNING DRV_NAME
6229                        "Error calling ioremap_nocache.\n");
6230                 err = -EIO;
6231                 goto fail;
6232         }
6233
6234         /* allocate and initialize our net_device */
6235         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6236         if (!dev) {
6237                 printk(KERN_WARNING DRV_NAME
6238                        "Error calling ipw2100_alloc_device.\n");
6239                 err = -ENOMEM;
6240                 goto fail;
6241         }
6242
6243         /* set up PCI mappings for device */
6244         err = pci_enable_device(pci_dev);
6245         if (err) {
6246                 printk(KERN_WARNING DRV_NAME
6247                        "Error calling pci_enable_device.\n");
6248                 return err;
6249         }
6250
6251         priv = libipw_priv(dev);
6252
6253         pci_set_master(pci_dev);
6254         pci_set_drvdata(pci_dev, priv);
6255
6256         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6257         if (err) {
6258                 printk(KERN_WARNING DRV_NAME
6259                        "Error calling pci_set_dma_mask.\n");
6260                 pci_disable_device(pci_dev);
6261                 return err;
6262         }
6263
6264         err = pci_request_regions(pci_dev, DRV_NAME);
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling pci_request_regions.\n");
6268                 pci_disable_device(pci_dev);
6269                 return err;
6270         }
6271
6272         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6273          * PCI Tx retries from interfering with C3 CPU state */
6274         pci_read_config_dword(pci_dev, 0x40, &val);
6275         if ((val & 0x0000ff00) != 0)
6276                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6277
6278         pci_set_power_state(pci_dev, PCI_D0);
6279
6280         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6281                 printk(KERN_WARNING DRV_NAME
6282                        "Device not found via register read.\n");
6283                 err = -ENODEV;
6284                 goto fail;
6285         }
6286
6287         SET_NETDEV_DEV(dev, &pci_dev->dev);
6288
6289         /* Force interrupts to be shut off on the device */
6290         priv->status |= STATUS_INT_ENABLED;
6291         ipw2100_disable_interrupts(priv);
6292
6293         /* Allocate and initialize the Tx/Rx queues and lists */
6294         if (ipw2100_queues_allocate(priv)) {
6295                 printk(KERN_WARNING DRV_NAME
6296                        "Error calling ipw2100_queues_allocate.\n");
6297                 err = -ENOMEM;
6298                 goto fail;
6299         }
6300         ipw2100_queues_initialize(priv);
6301
6302         err = request_irq(pci_dev->irq,
6303                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6304         if (err) {
6305                 printk(KERN_WARNING DRV_NAME
6306                        "Error calling request_irq: %d.\n", pci_dev->irq);
6307                 goto fail;
6308         }
6309         dev->irq = pci_dev->irq;
6310
6311         IPW_DEBUG_INFO("Attempting to register device...\n");
6312
6313         printk(KERN_INFO DRV_NAME
6314                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6315
6316         err = ipw2100_up(priv, 1);
6317         if (err)
6318                 goto fail;
6319
6320         err = ipw2100_wdev_init(dev);
6321         if (err)
6322                 goto fail;
6323         registered = 1;
6324
6325         /* Bring up the interface.  Pre 0.46, after we registered the
6326          * network device we would call ipw2100_up.  This introduced a race
6327          * condition with newer hotplug configurations (network was coming
6328          * up and making calls before the device was initialized).
6329          */
6330         err = register_netdev(dev);
6331         if (err) {
6332                 printk(KERN_WARNING DRV_NAME
6333                        "Error calling register_netdev.\n");
6334                 goto fail;
6335         }
6336         registered = 2;
6337
6338         mutex_lock(&priv->action_mutex);
6339
6340         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6341
6342         /* perform this after register_netdev so that dev->name is set */
6343         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6344         if (err)
6345                 goto fail_unlock;
6346
6347         /* If the RF Kill switch is disabled, go ahead and complete the
6348          * startup sequence */
6349         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6350                 /* Enable the adapter - sends HOST_COMPLETE */
6351                 if (ipw2100_enable_adapter(priv)) {
6352                         printk(KERN_WARNING DRV_NAME
6353                                ": %s: failed in call to enable adapter.\n",
6354                                priv->net_dev->name);
6355                         ipw2100_hw_stop_adapter(priv);
6356                         err = -EIO;
6357                         goto fail_unlock;
6358                 }
6359
6360                 /* Start a scan . . . */
6361                 ipw2100_set_scan_options(priv);
6362                 ipw2100_start_scan(priv);
6363         }
6364
6365         IPW_DEBUG_INFO("exit\n");
6366
6367         priv->status |= STATUS_INITIALIZED;
6368
6369         mutex_unlock(&priv->action_mutex);
6370 out:
6371         return err;
6372
6373       fail_unlock:
6374         mutex_unlock(&priv->action_mutex);
6375       fail:
6376         if (dev) {
6377                 if (registered >= 2)
6378                         unregister_netdev(dev);
6379
6380                 if (registered) {
6381                         wiphy_unregister(priv->ieee->wdev.wiphy);
6382                         kfree(priv->ieee->bg_band.channels);
6383                 }
6384
6385                 ipw2100_hw_stop_adapter(priv);
6386
6387                 ipw2100_disable_interrupts(priv);
6388
6389                 if (dev->irq)
6390                         free_irq(dev->irq, priv);
6391
6392                 ipw2100_kill_works(priv);
6393
6394                 /* These are safe to call even if they weren't allocated */
6395                 ipw2100_queues_free(priv);
6396                 sysfs_remove_group(&pci_dev->dev.kobj,
6397                                    &ipw2100_attribute_group);
6398
6399                 free_libipw(dev, 0);
6400                 pci_set_drvdata(pci_dev, NULL);
6401         }
6402
6403         pci_iounmap(pci_dev, ioaddr);
6404
6405         pci_release_regions(pci_dev);
6406         pci_disable_device(pci_dev);
6407         goto out;
6408 }
6409
6410 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6411 {
6412         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6413         struct net_device *dev = priv->net_dev;
6414
6415         mutex_lock(&priv->action_mutex);
6416
6417         priv->status &= ~STATUS_INITIALIZED;
6418
6419         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6420
6421 #ifdef CONFIG_PM
6422         if (ipw2100_firmware.version)
6423                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6424 #endif
6425         /* Take down the hardware */
6426         ipw2100_down(priv);
6427
6428         /* Release the mutex so that the network subsystem can
6429          * complete any needed calls into the driver... */
6430         mutex_unlock(&priv->action_mutex);
6431
6432         /* Unregister the device first - this results in close()
6433          * being called if the device is open.  If we free storage
6434          * first, then close() will crash.
6435          * FIXME: remove the comment above. */
6436         unregister_netdev(dev);
6437
6438         ipw2100_kill_works(priv);
6439
6440         ipw2100_queues_free(priv);
6441
6442         /* Free potential debugging firmware snapshot */
6443         ipw2100_snapshot_free(priv);
6444
6445         free_irq(dev->irq, priv);
6446
6447         pci_iounmap(pci_dev, priv->ioaddr);
6448
6449         /* wiphy_unregister needs to be here, before free_libipw */
6450         wiphy_unregister(priv->ieee->wdev.wiphy);
6451         kfree(priv->ieee->bg_band.channels);
6452         free_libipw(dev, 0);
6453
6454         pci_release_regions(pci_dev);
6455         pci_disable_device(pci_dev);
6456
6457         IPW_DEBUG_INFO("exit\n");
6458 }
6459
6460 #ifdef CONFIG_PM
6461 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6462 {
6463         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6464         struct net_device *dev = priv->net_dev;
6465
6466         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6467
6468         mutex_lock(&priv->action_mutex);
6469         if (priv->status & STATUS_INITIALIZED) {
6470                 /* Take down the device; powers it off, etc. */
6471                 ipw2100_down(priv);
6472         }
6473
6474         /* Remove the PRESENT state of the device */
6475         netif_device_detach(dev);
6476
6477         pci_save_state(pci_dev);
6478         pci_disable_device(pci_dev);
6479         pci_set_power_state(pci_dev, PCI_D3hot);
6480
6481         priv->suspend_at = get_seconds();
6482
6483         mutex_unlock(&priv->action_mutex);
6484
6485         return 0;
6486 }
6487
6488 static int ipw2100_resume(struct pci_dev *pci_dev)
6489 {
6490         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6491         struct net_device *dev = priv->net_dev;
6492         int err;
6493         u32 val;
6494
6495         if (IPW2100_PM_DISABLED)
6496                 return 0;
6497
6498         mutex_lock(&priv->action_mutex);
6499
6500         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6501
6502         pci_set_power_state(pci_dev, PCI_D0);
6503         err = pci_enable_device(pci_dev);
6504         if (err) {
6505                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6506                        dev->name);
6507                 mutex_unlock(&priv->action_mutex);
6508                 return err;
6509         }
6510         pci_restore_state(pci_dev);
6511
6512         /*
6513          * Suspend/Resume resets the PCI configuration space, so we have to
6514          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6515          * from interfering with C3 CPU state. pci_restore_state won't help
6516          * here since it only restores the first 64 bytes pci config header.
6517          */
6518         pci_read_config_dword(pci_dev, 0x40, &val);
6519         if ((val & 0x0000ff00) != 0)
6520                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6521
6522         /* Set the device back into the PRESENT state; this will also wake
6523          * the queue of needed */
6524         netif_device_attach(dev);
6525
6526         priv->suspend_time = get_seconds() - priv->suspend_at;
6527
6528         /* Bring the device back up */
6529         if (!(priv->status & STATUS_RF_KILL_SW))
6530                 ipw2100_up(priv, 0);
6531
6532         mutex_unlock(&priv->action_mutex);
6533
6534         return 0;
6535 }
6536 #endif
6537
6538 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6539 {
6540         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6541
6542         /* Take down the device; powers it off, etc. */
6543         ipw2100_down(priv);
6544
6545         pci_disable_device(pci_dev);
6546 }
6547
6548 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6549
6550 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6551         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6552         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6553         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6554         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6555         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6556         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6557         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6558         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6559         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6560         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6561         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6562         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6563         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6564
6565         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6566         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6567         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6568         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6569         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6570
6571         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6572         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6573         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6574         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6575         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6576         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6577         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6578
6579         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6580
6581         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6582         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6583         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6584         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6585         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6586         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6587         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6588
6589         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6590         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6591         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6592         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6593         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6594         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6595
6596         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6597         {0,},
6598 };
6599
6600 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6601
6602 static struct pci_driver ipw2100_pci_driver = {
6603         .name = DRV_NAME,
6604         .id_table = ipw2100_pci_id_table,
6605         .probe = ipw2100_pci_init_one,
6606         .remove = ipw2100_pci_remove_one,
6607 #ifdef CONFIG_PM
6608         .suspend = ipw2100_suspend,
6609         .resume = ipw2100_resume,
6610 #endif
6611         .shutdown = ipw2100_shutdown,
6612 };
6613
6614 /**
6615  * Initialize the ipw2100 driver/module
6616  *
6617  * @returns 0 if ok, < 0 errno node con error.
6618  *
6619  * Note: we cannot init the /proc stuff until the PCI driver is there,
6620  * or we risk an unlikely race condition on someone accessing
6621  * uninitialized data in the PCI dev struct through /proc.
6622  */
6623 static int __init ipw2100_init(void)
6624 {
6625         int ret;
6626
6627         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6628         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6629
6630         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6631                            PM_QOS_DEFAULT_VALUE);
6632
6633         ret = pci_register_driver(&ipw2100_pci_driver);
6634         if (ret)
6635                 goto out;
6636
6637 #ifdef CONFIG_IPW2100_DEBUG
6638         ipw2100_debug_level = debug;
6639         ret = driver_create_file(&ipw2100_pci_driver.driver,
6640                                  &driver_attr_debug_level);
6641 #endif
6642
6643 out:
6644         return ret;
6645 }
6646
6647 /**
6648  * Cleanup ipw2100 driver registration
6649  */
6650 static void __exit ipw2100_exit(void)
6651 {
6652         /* FIXME: IPG: check that we have no instances of the devices open */
6653 #ifdef CONFIG_IPW2100_DEBUG
6654         driver_remove_file(&ipw2100_pci_driver.driver,
6655                            &driver_attr_debug_level);
6656 #endif
6657         pci_unregister_driver(&ipw2100_pci_driver);
6658         pm_qos_remove_request(&ipw2100_pm_qos_req);
6659 }
6660
6661 module_init(ipw2100_init);
6662 module_exit(ipw2100_exit);
6663
6664 static int ipw2100_wx_get_name(struct net_device *dev,
6665                                struct iw_request_info *info,
6666                                union iwreq_data *wrqu, char *extra)
6667 {
6668         /*
6669          * This can be called at any time.  No action lock required
6670          */
6671
6672         struct ipw2100_priv *priv = libipw_priv(dev);
6673         if (!(priv->status & STATUS_ASSOCIATED))
6674                 strcpy(wrqu->name, "unassociated");
6675         else
6676                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6677
6678         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6679         return 0;
6680 }
6681
6682 static int ipw2100_wx_set_freq(struct net_device *dev,
6683                                struct iw_request_info *info,
6684                                union iwreq_data *wrqu, char *extra)
6685 {
6686         struct ipw2100_priv *priv = libipw_priv(dev);
6687         struct iw_freq *fwrq = &wrqu->freq;
6688         int err = 0;
6689
6690         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6691                 return -EOPNOTSUPP;
6692
6693         mutex_lock(&priv->action_mutex);
6694         if (!(priv->status & STATUS_INITIALIZED)) {
6695                 err = -EIO;
6696                 goto done;
6697         }
6698
6699         /* if setting by freq convert to channel */
6700         if (fwrq->e == 1) {
6701                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6702                         int f = fwrq->m / 100000;
6703                         int c = 0;
6704
6705                         while ((c < REG_MAX_CHANNEL) &&
6706                                (f != ipw2100_frequencies[c]))
6707                                 c++;
6708
6709                         /* hack to fall through */
6710                         fwrq->e = 0;
6711                         fwrq->m = c + 1;
6712                 }
6713         }
6714
6715         if (fwrq->e > 0 || fwrq->m > 1000) {
6716                 err = -EOPNOTSUPP;
6717                 goto done;
6718         } else {                /* Set the channel */
6719                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6720                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6721         }
6722
6723       done:
6724         mutex_unlock(&priv->action_mutex);
6725         return err;
6726 }
6727
6728 static int ipw2100_wx_get_freq(struct net_device *dev,
6729                                struct iw_request_info *info,
6730                                union iwreq_data *wrqu, char *extra)
6731 {
6732         /*
6733          * This can be called at any time.  No action lock required
6734          */
6735
6736         struct ipw2100_priv *priv = libipw_priv(dev);
6737
6738         wrqu->freq.e = 0;
6739
6740         /* If we are associated, trying to associate, or have a statically
6741          * configured CHANNEL then return that; otherwise return ANY */
6742         if (priv->config & CFG_STATIC_CHANNEL ||
6743             priv->status & STATUS_ASSOCIATED)
6744                 wrqu->freq.m = priv->channel;
6745         else
6746                 wrqu->freq.m = 0;
6747
6748         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6749         return 0;
6750
6751 }
6752
6753 static int ipw2100_wx_set_mode(struct net_device *dev,
6754                                struct iw_request_info *info,
6755                                union iwreq_data *wrqu, char *extra)
6756 {
6757         struct ipw2100_priv *priv = libipw_priv(dev);
6758         int err = 0;
6759
6760         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6761
6762         if (wrqu->mode == priv->ieee->iw_mode)
6763                 return 0;
6764
6765         mutex_lock(&priv->action_mutex);
6766         if (!(priv->status & STATUS_INITIALIZED)) {
6767                 err = -EIO;
6768                 goto done;
6769         }
6770
6771         switch (wrqu->mode) {
6772 #ifdef CONFIG_IPW2100_MONITOR
6773         case IW_MODE_MONITOR:
6774                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6775                 break;
6776 #endif                          /* CONFIG_IPW2100_MONITOR */
6777         case IW_MODE_ADHOC:
6778                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6779                 break;
6780         case IW_MODE_INFRA:
6781         case IW_MODE_AUTO:
6782         default:
6783                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6784                 break;
6785         }
6786
6787       done:
6788         mutex_unlock(&priv->action_mutex);
6789         return err;
6790 }
6791
6792 static int ipw2100_wx_get_mode(struct net_device *dev,
6793                                struct iw_request_info *info,
6794                                union iwreq_data *wrqu, char *extra)
6795 {
6796         /*
6797          * This can be called at any time.  No action lock required
6798          */
6799
6800         struct ipw2100_priv *priv = libipw_priv(dev);
6801
6802         wrqu->mode = priv->ieee->iw_mode;
6803         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6804
6805         return 0;
6806 }
6807
6808 #define POWER_MODES 5
6809
6810 /* Values are in microsecond */
6811 static const s32 timeout_duration[POWER_MODES] = {
6812         350000,
6813         250000,
6814         75000,
6815         37000,
6816         25000,
6817 };
6818
6819 static const s32 period_duration[POWER_MODES] = {
6820         400000,
6821         700000,
6822         1000000,
6823         1000000,
6824         1000000
6825 };
6826
6827 static int ipw2100_wx_get_range(struct net_device *dev,
6828                                 struct iw_request_info *info,
6829                                 union iwreq_data *wrqu, char *extra)
6830 {
6831         /*
6832          * This can be called at any time.  No action lock required
6833          */
6834
6835         struct ipw2100_priv *priv = libipw_priv(dev);
6836         struct iw_range *range = (struct iw_range *)extra;
6837         u16 val;
6838         int i, level;
6839
6840         wrqu->data.length = sizeof(*range);
6841         memset(range, 0, sizeof(*range));
6842
6843         /* Let's try to keep this struct in the same order as in
6844          * linux/include/wireless.h
6845          */
6846
6847         /* TODO: See what values we can set, and remove the ones we can't
6848          * set, or fill them with some default data.
6849          */
6850
6851         /* ~5 Mb/s real (802.11b) */
6852         range->throughput = 5 * 1000 * 1000;
6853
6854 //      range->sensitivity;     /* signal level threshold range */
6855
6856         range->max_qual.qual = 100;
6857         /* TODO: Find real max RSSI and stick here */
6858         range->max_qual.level = 0;
6859         range->max_qual.noise = 0;
6860         range->max_qual.updated = 7;    /* Updated all three */
6861
6862         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6863         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6864         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6865         range->avg_qual.noise = 0;
6866         range->avg_qual.updated = 7;    /* Updated all three */
6867
6868         range->num_bitrates = RATE_COUNT;
6869
6870         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6871                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6872         }
6873
6874         range->min_rts = MIN_RTS_THRESHOLD;
6875         range->max_rts = MAX_RTS_THRESHOLD;
6876         range->min_frag = MIN_FRAG_THRESHOLD;
6877         range->max_frag = MAX_FRAG_THRESHOLD;
6878
6879         range->min_pmp = period_duration[0];    /* Minimal PM period */
6880         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6881         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6882         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6883
6884         /* How to decode max/min PM period */
6885         range->pmp_flags = IW_POWER_PERIOD;
6886         /* How to decode max/min PM period */
6887         range->pmt_flags = IW_POWER_TIMEOUT;
6888         /* What PM options are supported */
6889         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6890
6891         range->encoding_size[0] = 5;
6892         range->encoding_size[1] = 13;   /* Different token sizes */
6893         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6894         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6895 //      range->encoding_login_index;            /* token index for login token */
6896
6897         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6898                 range->txpower_capa = IW_TXPOW_DBM;
6899                 range->num_txpower = IW_MAX_TXPOWER;
6900                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6901                      i < IW_MAX_TXPOWER;
6902                      i++, level -=
6903                      ((IPW_TX_POWER_MAX_DBM -
6904                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6905                         range->txpower[i] = level / 16;
6906         } else {
6907                 range->txpower_capa = 0;
6908                 range->num_txpower = 0;
6909         }
6910
6911         /* Set the Wireless Extension versions */
6912         range->we_version_compiled = WIRELESS_EXT;
6913         range->we_version_source = 18;
6914
6915 //      range->retry_capa;      /* What retry options are supported */
6916 //      range->retry_flags;     /* How to decode max/min retry limit */
6917 //      range->r_time_flags;    /* How to decode max/min retry life */
6918 //      range->min_retry;       /* Minimal number of retries */
6919 //      range->max_retry;       /* Maximal number of retries */
6920 //      range->min_r_time;      /* Minimal retry lifetime */
6921 //      range->max_r_time;      /* Maximal retry lifetime */
6922
6923         range->num_channels = FREQ_COUNT;
6924
6925         val = 0;
6926         for (i = 0; i < FREQ_COUNT; i++) {
6927                 // TODO: Include only legal frequencies for some countries
6928 //              if (local->channel_mask & (1 << i)) {
6929                 range->freq[val].i = i + 1;
6930                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6931                 range->freq[val].e = 1;
6932                 val++;
6933 //              }
6934                 if (val == IW_MAX_FREQUENCIES)
6935                         break;
6936         }
6937         range->num_frequency = val;
6938
6939         /* Event capability (kernel + driver) */
6940         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6941                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6942         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6943
6944         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6945                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6946
6947         IPW_DEBUG_WX("GET Range\n");
6948
6949         return 0;
6950 }
6951
6952 static int ipw2100_wx_set_wap(struct net_device *dev,
6953                               struct iw_request_info *info,
6954                               union iwreq_data *wrqu, char *extra)
6955 {
6956         struct ipw2100_priv *priv = libipw_priv(dev);
6957         int err = 0;
6958
6959         // sanity checks
6960         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6961                 return -EINVAL;
6962
6963         mutex_lock(&priv->action_mutex);
6964         if (!(priv->status & STATUS_INITIALIZED)) {
6965                 err = -EIO;
6966                 goto done;
6967         }
6968
6969         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6970             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6971                 /* we disable mandatory BSSID association */
6972                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6973                 priv->config &= ~CFG_STATIC_BSSID;
6974                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6975                 goto done;
6976         }
6977
6978         priv->config |= CFG_STATIC_BSSID;
6979         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6980
6981         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6982
6983         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6984
6985       done:
6986         mutex_unlock(&priv->action_mutex);
6987         return err;
6988 }
6989
6990 static int ipw2100_wx_get_wap(struct net_device *dev,
6991                               struct iw_request_info *info,
6992                               union iwreq_data *wrqu, char *extra)
6993 {
6994         /*
6995          * This can be called at any time.  No action lock required
6996          */
6997
6998         struct ipw2100_priv *priv = libipw_priv(dev);
6999
7000         /* If we are associated, trying to associate, or have a statically
7001          * configured BSSID then return that; otherwise return ANY */
7002         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7003                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7004                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7005         } else
7006                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7007
7008         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7009         return 0;
7010 }
7011
7012 static int ipw2100_wx_set_essid(struct net_device *dev,
7013                                 struct iw_request_info *info,
7014                                 union iwreq_data *wrqu, char *extra)
7015 {
7016         struct ipw2100_priv *priv = libipw_priv(dev);
7017         char *essid = "";       /* ANY */
7018         int length = 0;
7019         int err = 0;
7020         DECLARE_SSID_BUF(ssid);
7021
7022         mutex_lock(&priv->action_mutex);
7023         if (!(priv->status & STATUS_INITIALIZED)) {
7024                 err = -EIO;
7025                 goto done;
7026         }
7027
7028         if (wrqu->essid.flags && wrqu->essid.length) {
7029                 length = wrqu->essid.length;
7030                 essid = extra;
7031         }
7032
7033         if (length == 0) {
7034                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7035                 priv->config &= ~CFG_STATIC_ESSID;
7036                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7037                 goto done;
7038         }
7039
7040         length = min(length, IW_ESSID_MAX_SIZE);
7041
7042         priv->config |= CFG_STATIC_ESSID;
7043
7044         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7045                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7046                 err = 0;
7047                 goto done;
7048         }
7049
7050         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7051                      print_ssid(ssid, essid, length), length);
7052
7053         priv->essid_len = length;
7054         memcpy(priv->essid, essid, priv->essid_len);
7055
7056         err = ipw2100_set_essid(priv, essid, length, 0);
7057
7058       done:
7059         mutex_unlock(&priv->action_mutex);
7060         return err;
7061 }
7062
7063 static int ipw2100_wx_get_essid(struct net_device *dev,
7064                                 struct iw_request_info *info,
7065                                 union iwreq_data *wrqu, char *extra)
7066 {
7067         /*
7068          * This can be called at any time.  No action lock required
7069          */
7070
7071         struct ipw2100_priv *priv = libipw_priv(dev);
7072         DECLARE_SSID_BUF(ssid);
7073
7074         /* If we are associated, trying to associate, or have a statically
7075          * configured ESSID then return that; otherwise return ANY */
7076         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7077                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7078                              print_ssid(ssid, priv->essid, priv->essid_len));
7079                 memcpy(extra, priv->essid, priv->essid_len);
7080                 wrqu->essid.length = priv->essid_len;
7081                 wrqu->essid.flags = 1;  /* active */
7082         } else {
7083                 IPW_DEBUG_WX("Getting essid: ANY\n");
7084                 wrqu->essid.length = 0;
7085                 wrqu->essid.flags = 0;  /* active */
7086         }
7087
7088         return 0;
7089 }
7090
7091 static int ipw2100_wx_set_nick(struct net_device *dev,
7092                                struct iw_request_info *info,
7093                                union iwreq_data *wrqu, char *extra)
7094 {
7095         /*
7096          * This can be called at any time.  No action lock required
7097          */
7098
7099         struct ipw2100_priv *priv = libipw_priv(dev);
7100
7101         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7102                 return -E2BIG;
7103
7104         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7105         memset(priv->nick, 0, sizeof(priv->nick));
7106         memcpy(priv->nick, extra, wrqu->data.length);
7107
7108         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7109
7110         return 0;
7111 }
7112
7113 static int ipw2100_wx_get_nick(struct net_device *dev,
7114                                struct iw_request_info *info,
7115                                union iwreq_data *wrqu, char *extra)
7116 {
7117         /*
7118          * This can be called at any time.  No action lock required
7119          */
7120
7121         struct ipw2100_priv *priv = libipw_priv(dev);
7122
7123         wrqu->data.length = strlen(priv->nick);
7124         memcpy(extra, priv->nick, wrqu->data.length);
7125         wrqu->data.flags = 1;   /* active */
7126
7127         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7128
7129         return 0;
7130 }
7131
7132 static int ipw2100_wx_set_rate(struct net_device *dev,
7133                                struct iw_request_info *info,
7134                                union iwreq_data *wrqu, char *extra)
7135 {
7136         struct ipw2100_priv *priv = libipw_priv(dev);
7137         u32 target_rate = wrqu->bitrate.value;
7138         u32 rate;
7139         int err = 0;
7140
7141         mutex_lock(&priv->action_mutex);
7142         if (!(priv->status & STATUS_INITIALIZED)) {
7143                 err = -EIO;
7144                 goto done;
7145         }
7146
7147         rate = 0;
7148
7149         if (target_rate == 1000000 ||
7150             (!wrqu->bitrate.fixed && target_rate > 1000000))
7151                 rate |= TX_RATE_1_MBIT;
7152         if (target_rate == 2000000 ||
7153             (!wrqu->bitrate.fixed && target_rate > 2000000))
7154                 rate |= TX_RATE_2_MBIT;
7155         if (target_rate == 5500000 ||
7156             (!wrqu->bitrate.fixed && target_rate > 5500000))
7157                 rate |= TX_RATE_5_5_MBIT;
7158         if (target_rate == 11000000 ||
7159             (!wrqu->bitrate.fixed && target_rate > 11000000))
7160                 rate |= TX_RATE_11_MBIT;
7161         if (rate == 0)
7162                 rate = DEFAULT_TX_RATES;
7163
7164         err = ipw2100_set_tx_rates(priv, rate, 0);
7165
7166         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7167       done:
7168         mutex_unlock(&priv->action_mutex);
7169         return err;
7170 }
7171
7172 static int ipw2100_wx_get_rate(struct net_device *dev,
7173                                struct iw_request_info *info,
7174                                union iwreq_data *wrqu, char *extra)
7175 {
7176         struct ipw2100_priv *priv = libipw_priv(dev);
7177         int val;
7178         unsigned int len = sizeof(val);
7179         int err = 0;
7180
7181         if (!(priv->status & STATUS_ENABLED) ||
7182             priv->status & STATUS_RF_KILL_MASK ||
7183             !(priv->status & STATUS_ASSOCIATED)) {
7184                 wrqu->bitrate.value = 0;
7185                 return 0;
7186         }
7187
7188         mutex_lock(&priv->action_mutex);
7189         if (!(priv->status & STATUS_INITIALIZED)) {
7190                 err = -EIO;
7191                 goto done;
7192         }
7193
7194         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7195         if (err) {
7196                 IPW_DEBUG_WX("failed querying ordinals.\n");
7197                 goto done;
7198         }
7199
7200         switch (val & TX_RATE_MASK) {
7201         case TX_RATE_1_MBIT:
7202                 wrqu->bitrate.value = 1000000;
7203                 break;
7204         case TX_RATE_2_MBIT:
7205                 wrqu->bitrate.value = 2000000;
7206                 break;
7207         case TX_RATE_5_5_MBIT:
7208                 wrqu->bitrate.value = 5500000;
7209                 break;
7210         case TX_RATE_11_MBIT:
7211                 wrqu->bitrate.value = 11000000;
7212                 break;
7213         default:
7214                 wrqu->bitrate.value = 0;
7215         }
7216
7217         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7218
7219       done:
7220         mutex_unlock(&priv->action_mutex);
7221         return err;
7222 }
7223
7224 static int ipw2100_wx_set_rts(struct net_device *dev,
7225                               struct iw_request_info *info,
7226                               union iwreq_data *wrqu, char *extra)
7227 {
7228         struct ipw2100_priv *priv = libipw_priv(dev);
7229         int value, err;
7230
7231         /* Auto RTS not yet supported */
7232         if (wrqu->rts.fixed == 0)
7233                 return -EINVAL;
7234
7235         mutex_lock(&priv->action_mutex);
7236         if (!(priv->status & STATUS_INITIALIZED)) {
7237                 err = -EIO;
7238                 goto done;
7239         }
7240
7241         if (wrqu->rts.disabled)
7242                 value = priv->rts_threshold | RTS_DISABLED;
7243         else {
7244                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7245                         err = -EINVAL;
7246                         goto done;
7247                 }
7248                 value = wrqu->rts.value;
7249         }
7250
7251         err = ipw2100_set_rts_threshold(priv, value);
7252
7253         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7254       done:
7255         mutex_unlock(&priv->action_mutex);
7256         return err;
7257 }
7258
7259 static int ipw2100_wx_get_rts(struct net_device *dev,
7260                               struct iw_request_info *info,
7261                               union iwreq_data *wrqu, char *extra)
7262 {
7263         /*
7264          * This can be called at any time.  No action lock required
7265          */
7266
7267         struct ipw2100_priv *priv = libipw_priv(dev);
7268
7269         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7270         wrqu->rts.fixed = 1;    /* no auto select */
7271
7272         /* If RTS is set to the default value, then it is disabled */
7273         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7274
7275         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7276
7277         return 0;
7278 }
7279
7280 static int ipw2100_wx_set_txpow(struct net_device *dev,
7281                                 struct iw_request_info *info,
7282                                 union iwreq_data *wrqu, char *extra)
7283 {
7284         struct ipw2100_priv *priv = libipw_priv(dev);
7285         int err = 0, value;
7286         
7287         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7288                 return -EINPROGRESS;
7289
7290         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7291                 return 0;
7292
7293         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7294                 return -EINVAL;
7295
7296         if (wrqu->txpower.fixed == 0)
7297                 value = IPW_TX_POWER_DEFAULT;
7298         else {
7299                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7300                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7301                         return -EINVAL;
7302
7303                 value = wrqu->txpower.value;
7304         }
7305
7306         mutex_lock(&priv->action_mutex);
7307         if (!(priv->status & STATUS_INITIALIZED)) {
7308                 err = -EIO;
7309                 goto done;
7310         }
7311
7312         err = ipw2100_set_tx_power(priv, value);
7313
7314         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7315
7316       done:
7317         mutex_unlock(&priv->action_mutex);
7318         return err;
7319 }
7320
7321 static int ipw2100_wx_get_txpow(struct net_device *dev,
7322                                 struct iw_request_info *info,
7323                                 union iwreq_data *wrqu, char *extra)
7324 {
7325         /*
7326          * This can be called at any time.  No action lock required
7327          */
7328
7329         struct ipw2100_priv *priv = libipw_priv(dev);
7330
7331         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7332
7333         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7334                 wrqu->txpower.fixed = 0;
7335                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7336         } else {
7337                 wrqu->txpower.fixed = 1;
7338                 wrqu->txpower.value = priv->tx_power;
7339         }
7340
7341         wrqu->txpower.flags = IW_TXPOW_DBM;
7342
7343         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7344
7345         return 0;
7346 }
7347
7348 static int ipw2100_wx_set_frag(struct net_device *dev,
7349                                struct iw_request_info *info,
7350                                union iwreq_data *wrqu, char *extra)
7351 {
7352         /*
7353          * This can be called at any time.  No action lock required
7354          */
7355
7356         struct ipw2100_priv *priv = libipw_priv(dev);
7357
7358         if (!wrqu->frag.fixed)
7359                 return -EINVAL;
7360
7361         if (wrqu->frag.disabled) {
7362                 priv->frag_threshold |= FRAG_DISABLED;
7363                 priv->ieee->fts = DEFAULT_FTS;
7364         } else {
7365                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7366                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7367                         return -EINVAL;
7368
7369                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7370                 priv->frag_threshold = priv->ieee->fts;
7371         }
7372
7373         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7374
7375         return 0;
7376 }
7377
7378 static int ipw2100_wx_get_frag(struct net_device *dev,
7379                                struct iw_request_info *info,
7380                                union iwreq_data *wrqu, char *extra)
7381 {
7382         /*
7383          * This can be called at any time.  No action lock required
7384          */
7385
7386         struct ipw2100_priv *priv = libipw_priv(dev);
7387         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7388         wrqu->frag.fixed = 0;   /* no auto select */
7389         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7390
7391         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7392
7393         return 0;
7394 }
7395
7396 static int ipw2100_wx_set_retry(struct net_device *dev,
7397                                 struct iw_request_info *info,
7398                                 union iwreq_data *wrqu, char *extra)
7399 {
7400         struct ipw2100_priv *priv = libipw_priv(dev);
7401         int err = 0;
7402
7403         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7404                 return -EINVAL;
7405
7406         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7407                 return 0;
7408
7409         mutex_lock(&priv->action_mutex);
7410         if (!(priv->status & STATUS_INITIALIZED)) {
7411                 err = -EIO;
7412                 goto done;
7413         }
7414
7415         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7416                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7417                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7418                              wrqu->retry.value);
7419                 goto done;
7420         }
7421
7422         if (wrqu->retry.flags & IW_RETRY_LONG) {
7423                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7424                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7425                              wrqu->retry.value);
7426                 goto done;
7427         }
7428
7429         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7430         if (!err)
7431                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7432
7433         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7434
7435       done:
7436         mutex_unlock(&priv->action_mutex);
7437         return err;
7438 }
7439
7440 static int ipw2100_wx_get_retry(struct net_device *dev,
7441                                 struct iw_request_info *info,
7442                                 union iwreq_data *wrqu, char *extra)
7443 {
7444         /*
7445          * This can be called at any time.  No action lock required
7446          */
7447
7448         struct ipw2100_priv *priv = libipw_priv(dev);
7449
7450         wrqu->retry.disabled = 0;       /* can't be disabled */
7451
7452         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7453                 return -EINVAL;
7454
7455         if (wrqu->retry.flags & IW_RETRY_LONG) {
7456                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7457                 wrqu->retry.value = priv->long_retry_limit;
7458         } else {
7459                 wrqu->retry.flags =
7460                     (priv->short_retry_limit !=
7461                      priv->long_retry_limit) ?
7462                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7463
7464                 wrqu->retry.value = priv->short_retry_limit;
7465         }
7466
7467         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7468
7469         return 0;
7470 }
7471
7472 static int ipw2100_wx_set_scan(struct net_device *dev,
7473                                struct iw_request_info *info,
7474                                union iwreq_data *wrqu, char *extra)
7475 {
7476         struct ipw2100_priv *priv = libipw_priv(dev);
7477         int err = 0;
7478
7479         mutex_lock(&priv->action_mutex);
7480         if (!(priv->status & STATUS_INITIALIZED)) {
7481                 err = -EIO;
7482                 goto done;
7483         }
7484
7485         IPW_DEBUG_WX("Initiating scan...\n");
7486
7487         priv->user_requested_scan = 1;
7488         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7489                 IPW_DEBUG_WX("Start scan failed.\n");
7490
7491                 /* TODO: Mark a scan as pending so when hardware initialized
7492                  *       a scan starts */
7493         }
7494
7495       done:
7496         mutex_unlock(&priv->action_mutex);
7497         return err;
7498 }
7499
7500 static int ipw2100_wx_get_scan(struct net_device *dev,
7501                                struct iw_request_info *info,
7502                                union iwreq_data *wrqu, char *extra)
7503 {
7504         /*
7505          * This can be called at any time.  No action lock required
7506          */
7507
7508         struct ipw2100_priv *priv = libipw_priv(dev);
7509         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7510 }
7511
7512 /*
7513  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7514  */
7515 static int ipw2100_wx_set_encode(struct net_device *dev,
7516                                  struct iw_request_info *info,
7517                                  union iwreq_data *wrqu, char *key)
7518 {
7519         /*
7520          * No check of STATUS_INITIALIZED required
7521          */
7522
7523         struct ipw2100_priv *priv = libipw_priv(dev);
7524         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7525 }
7526
7527 static int ipw2100_wx_get_encode(struct net_device *dev,
7528                                  struct iw_request_info *info,
7529                                  union iwreq_data *wrqu, char *key)
7530 {
7531         /*
7532          * This can be called at any time.  No action lock required
7533          */
7534
7535         struct ipw2100_priv *priv = libipw_priv(dev);
7536         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7537 }
7538
7539 static int ipw2100_wx_set_power(struct net_device *dev,
7540                                 struct iw_request_info *info,
7541                                 union iwreq_data *wrqu, char *extra)
7542 {
7543         struct ipw2100_priv *priv = libipw_priv(dev);
7544         int err = 0;
7545
7546         mutex_lock(&priv->action_mutex);
7547         if (!(priv->status & STATUS_INITIALIZED)) {
7548                 err = -EIO;
7549                 goto done;
7550         }
7551
7552         if (wrqu->power.disabled) {
7553                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7554                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7555                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7556                 goto done;
7557         }
7558
7559         switch (wrqu->power.flags & IW_POWER_MODE) {
7560         case IW_POWER_ON:       /* If not specified */
7561         case IW_POWER_MODE:     /* If set all mask */
7562         case IW_POWER_ALL_R:    /* If explicitly state all */
7563                 break;
7564         default:                /* Otherwise we don't support it */
7565                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7566                              wrqu->power.flags);
7567                 err = -EOPNOTSUPP;
7568                 goto done;
7569         }
7570
7571         /* If the user hasn't specified a power management mode yet, default
7572          * to BATTERY */
7573         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7574         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7575
7576         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7577
7578       done:
7579         mutex_unlock(&priv->action_mutex);
7580         return err;
7581
7582 }
7583
7584 static int ipw2100_wx_get_power(struct net_device *dev,
7585                                 struct iw_request_info *info,
7586                                 union iwreq_data *wrqu, char *extra)
7587 {
7588         /*
7589          * This can be called at any time.  No action lock required
7590          */
7591
7592         struct ipw2100_priv *priv = libipw_priv(dev);
7593
7594         if (!(priv->power_mode & IPW_POWER_ENABLED))
7595                 wrqu->power.disabled = 1;
7596         else {
7597                 wrqu->power.disabled = 0;
7598                 wrqu->power.flags = 0;
7599         }
7600
7601         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7602
7603         return 0;
7604 }
7605
7606 /*
7607  * WE-18 WPA support
7608  */
7609
7610 /* SIOCSIWGENIE */
7611 static int ipw2100_wx_set_genie(struct net_device *dev,
7612                                 struct iw_request_info *info,
7613                                 union iwreq_data *wrqu, char *extra)
7614 {
7615
7616         struct ipw2100_priv *priv = libipw_priv(dev);
7617         struct libipw_device *ieee = priv->ieee;
7618         u8 *buf;
7619
7620         if (!ieee->wpa_enabled)
7621                 return -EOPNOTSUPP;
7622
7623         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7624             (wrqu->data.length && extra == NULL))
7625                 return -EINVAL;
7626
7627         if (wrqu->data.length) {
7628                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7629                 if (buf == NULL)
7630                         return -ENOMEM;
7631
7632                 kfree(ieee->wpa_ie);
7633                 ieee->wpa_ie = buf;
7634                 ieee->wpa_ie_len = wrqu->data.length;
7635         } else {
7636                 kfree(ieee->wpa_ie);
7637                 ieee->wpa_ie = NULL;
7638                 ieee->wpa_ie_len = 0;
7639         }
7640
7641         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7642
7643         return 0;
7644 }
7645
7646 /* SIOCGIWGENIE */
7647 static int ipw2100_wx_get_genie(struct net_device *dev,
7648                                 struct iw_request_info *info,
7649                                 union iwreq_data *wrqu, char *extra)
7650 {
7651         struct ipw2100_priv *priv = libipw_priv(dev);
7652         struct libipw_device *ieee = priv->ieee;
7653
7654         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7655                 wrqu->data.length = 0;
7656                 return 0;
7657         }
7658
7659         if (wrqu->data.length < ieee->wpa_ie_len)
7660                 return -E2BIG;
7661
7662         wrqu->data.length = ieee->wpa_ie_len;
7663         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7664
7665         return 0;
7666 }
7667
7668 /* SIOCSIWAUTH */
7669 static int ipw2100_wx_set_auth(struct net_device *dev,
7670                                struct iw_request_info *info,
7671                                union iwreq_data *wrqu, char *extra)
7672 {
7673         struct ipw2100_priv *priv = libipw_priv(dev);
7674         struct libipw_device *ieee = priv->ieee;
7675         struct iw_param *param = &wrqu->param;
7676         struct lib80211_crypt_data *crypt;
7677         unsigned long flags;
7678         int ret = 0;
7679
7680         switch (param->flags & IW_AUTH_INDEX) {
7681         case IW_AUTH_WPA_VERSION:
7682         case IW_AUTH_CIPHER_PAIRWISE:
7683         case IW_AUTH_CIPHER_GROUP:
7684         case IW_AUTH_KEY_MGMT:
7685                 /*
7686                  * ipw2200 does not use these parameters
7687                  */
7688                 break;
7689
7690         case IW_AUTH_TKIP_COUNTERMEASURES:
7691                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7692                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7693                         break;
7694
7695                 flags = crypt->ops->get_flags(crypt->priv);
7696
7697                 if (param->value)
7698                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7699                 else
7700                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7701
7702                 crypt->ops->set_flags(flags, crypt->priv);
7703
7704                 break;
7705
7706         case IW_AUTH_DROP_UNENCRYPTED:{
7707                         /* HACK:
7708                          *
7709                          * wpa_supplicant calls set_wpa_enabled when the driver
7710                          * is loaded and unloaded, regardless of if WPA is being
7711                          * used.  No other calls are made which can be used to
7712                          * determine if encryption will be used or not prior to
7713                          * association being expected.  If encryption is not being
7714                          * used, drop_unencrypted is set to false, else true -- we
7715                          * can use this to determine if the CAP_PRIVACY_ON bit should
7716                          * be set.
7717                          */
7718                         struct libipw_security sec = {
7719                                 .flags = SEC_ENABLED,
7720                                 .enabled = param->value,
7721                         };
7722                         priv->ieee->drop_unencrypted = param->value;
7723                         /* We only change SEC_LEVEL for open mode. Others
7724                          * are set by ipw_wpa_set_encryption.
7725                          */
7726                         if (!param->value) {
7727                                 sec.flags |= SEC_LEVEL;
7728                                 sec.level = SEC_LEVEL_0;
7729                         } else {
7730                                 sec.flags |= SEC_LEVEL;
7731                                 sec.level = SEC_LEVEL_1;
7732                         }
7733                         if (priv->ieee->set_security)
7734                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7735                         break;
7736                 }
7737
7738         case IW_AUTH_80211_AUTH_ALG:
7739                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7740                 break;
7741
7742         case IW_AUTH_WPA_ENABLED:
7743                 ret = ipw2100_wpa_enable(priv, param->value);
7744                 break;
7745
7746         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7747                 ieee->ieee802_1x = param->value;
7748                 break;
7749
7750                 //case IW_AUTH_ROAMING_CONTROL:
7751         case IW_AUTH_PRIVACY_INVOKED:
7752                 ieee->privacy_invoked = param->value;
7753                 break;
7754
7755         default:
7756                 return -EOPNOTSUPP;
7757         }
7758         return ret;
7759 }
7760
7761 /* SIOCGIWAUTH */
7762 static int ipw2100_wx_get_auth(struct net_device *dev,
7763                                struct iw_request_info *info,
7764                                union iwreq_data *wrqu, char *extra)
7765 {
7766         struct ipw2100_priv *priv = libipw_priv(dev);
7767         struct libipw_device *ieee = priv->ieee;
7768         struct lib80211_crypt_data *crypt;
7769         struct iw_param *param = &wrqu->param;
7770         int ret = 0;
7771
7772         switch (param->flags & IW_AUTH_INDEX) {
7773         case IW_AUTH_WPA_VERSION:
7774         case IW_AUTH_CIPHER_PAIRWISE:
7775         case IW_AUTH_CIPHER_GROUP:
7776         case IW_AUTH_KEY_MGMT:
7777                 /*
7778                  * wpa_supplicant will control these internally
7779                  */
7780                 ret = -EOPNOTSUPP;
7781                 break;
7782
7783         case IW_AUTH_TKIP_COUNTERMEASURES:
7784                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7785                 if (!crypt || !crypt->ops->get_flags) {
7786                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7787                                           "crypt not set!\n");
7788                         break;
7789                 }
7790
7791                 param->value = (crypt->ops->get_flags(crypt->priv) &
7792                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7793
7794                 break;
7795
7796         case IW_AUTH_DROP_UNENCRYPTED:
7797                 param->value = ieee->drop_unencrypted;
7798                 break;
7799
7800         case IW_AUTH_80211_AUTH_ALG:
7801                 param->value = priv->ieee->sec.auth_mode;
7802                 break;
7803
7804         case IW_AUTH_WPA_ENABLED:
7805                 param->value = ieee->wpa_enabled;
7806                 break;
7807
7808         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7809                 param->value = ieee->ieee802_1x;
7810                 break;
7811
7812         case IW_AUTH_ROAMING_CONTROL:
7813         case IW_AUTH_PRIVACY_INVOKED:
7814                 param->value = ieee->privacy_invoked;
7815                 break;
7816
7817         default:
7818                 return -EOPNOTSUPP;
7819         }
7820         return 0;
7821 }
7822
7823 /* SIOCSIWENCODEEXT */
7824 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7825                                     struct iw_request_info *info,
7826                                     union iwreq_data *wrqu, char *extra)
7827 {
7828         struct ipw2100_priv *priv = libipw_priv(dev);
7829         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7830 }
7831
7832 /* SIOCGIWENCODEEXT */
7833 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7834                                     struct iw_request_info *info,
7835                                     union iwreq_data *wrqu, char *extra)
7836 {
7837         struct ipw2100_priv *priv = libipw_priv(dev);
7838         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7839 }
7840
7841 /* SIOCSIWMLME */
7842 static int ipw2100_wx_set_mlme(struct net_device *dev,
7843                                struct iw_request_info *info,
7844                                union iwreq_data *wrqu, char *extra)
7845 {
7846         struct ipw2100_priv *priv = libipw_priv(dev);
7847         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7848         __le16 reason;
7849
7850         reason = cpu_to_le16(mlme->reason_code);
7851
7852         switch (mlme->cmd) {
7853         case IW_MLME_DEAUTH:
7854                 // silently ignore
7855                 break;
7856
7857         case IW_MLME_DISASSOC:
7858                 ipw2100_disassociate_bssid(priv);
7859                 break;
7860
7861         default:
7862                 return -EOPNOTSUPP;
7863         }
7864         return 0;
7865 }
7866
7867 /*
7868  *
7869  * IWPRIV handlers
7870  *
7871  */
7872 #ifdef CONFIG_IPW2100_MONITOR
7873 static int ipw2100_wx_set_promisc(struct net_device *dev,
7874                                   struct iw_request_info *info,
7875                                   union iwreq_data *wrqu, char *extra)
7876 {
7877         struct ipw2100_priv *priv = libipw_priv(dev);
7878         int *parms = (int *)extra;
7879         int enable = (parms[0] > 0);
7880         int err = 0;
7881
7882         mutex_lock(&priv->action_mutex);
7883         if (!(priv->status & STATUS_INITIALIZED)) {
7884                 err = -EIO;
7885                 goto done;
7886         }
7887
7888         if (enable) {
7889                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7890                         err = ipw2100_set_channel(priv, parms[1], 0);
7891                         goto done;
7892                 }
7893                 priv->channel = parms[1];
7894                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7895         } else {
7896                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7897                         err = ipw2100_switch_mode(priv, priv->last_mode);
7898         }
7899       done:
7900         mutex_unlock(&priv->action_mutex);
7901         return err;
7902 }
7903
7904 static int ipw2100_wx_reset(struct net_device *dev,
7905                             struct iw_request_info *info,
7906                             union iwreq_data *wrqu, char *extra)
7907 {
7908         struct ipw2100_priv *priv = libipw_priv(dev);
7909         if (priv->status & STATUS_INITIALIZED)
7910                 schedule_reset(priv);
7911         return 0;
7912 }
7913
7914 #endif
7915
7916 static int ipw2100_wx_set_powermode(struct net_device *dev,
7917                                     struct iw_request_info *info,
7918                                     union iwreq_data *wrqu, char *extra)
7919 {
7920         struct ipw2100_priv *priv = libipw_priv(dev);
7921         int err = 0, mode = *(int *)extra;
7922
7923         mutex_lock(&priv->action_mutex);
7924         if (!(priv->status & STATUS_INITIALIZED)) {
7925                 err = -EIO;
7926                 goto done;
7927         }
7928
7929         if ((mode < 0) || (mode > POWER_MODES))
7930                 mode = IPW_POWER_AUTO;
7931
7932         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7933                 err = ipw2100_set_power_mode(priv, mode);
7934       done:
7935         mutex_unlock(&priv->action_mutex);
7936         return err;
7937 }
7938
7939 #define MAX_POWER_STRING 80
7940 static int ipw2100_wx_get_powermode(struct net_device *dev,
7941                                     struct iw_request_info *info,
7942                                     union iwreq_data *wrqu, char *extra)
7943 {
7944         /*
7945          * This can be called at any time.  No action lock required
7946          */
7947
7948         struct ipw2100_priv *priv = libipw_priv(dev);
7949         int level = IPW_POWER_LEVEL(priv->power_mode);
7950         s32 timeout, period;
7951
7952         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7953                 snprintf(extra, MAX_POWER_STRING,
7954                          "Power save level: %d (Off)", level);
7955         } else {
7956                 switch (level) {
7957                 case IPW_POWER_MODE_CAM:
7958                         snprintf(extra, MAX_POWER_STRING,
7959                                  "Power save level: %d (None)", level);
7960                         break;
7961                 case IPW_POWER_AUTO:
7962                         snprintf(extra, MAX_POWER_STRING,
7963                                  "Power save level: %d (Auto)", level);
7964                         break;
7965                 default:
7966                         timeout = timeout_duration[level - 1] / 1000;
7967                         period = period_duration[level - 1] / 1000;
7968                         snprintf(extra, MAX_POWER_STRING,
7969                                  "Power save level: %d "
7970                                  "(Timeout %dms, Period %dms)",
7971                                  level, timeout, period);
7972                 }
7973         }
7974
7975         wrqu->data.length = strlen(extra) + 1;
7976
7977         return 0;
7978 }
7979
7980 static int ipw2100_wx_set_preamble(struct net_device *dev,
7981                                    struct iw_request_info *info,
7982                                    union iwreq_data *wrqu, char *extra)
7983 {
7984         struct ipw2100_priv *priv = libipw_priv(dev);
7985         int err, mode = *(int *)extra;
7986
7987         mutex_lock(&priv->action_mutex);
7988         if (!(priv->status & STATUS_INITIALIZED)) {
7989                 err = -EIO;
7990                 goto done;
7991         }
7992
7993         if (mode == 1)
7994                 priv->config |= CFG_LONG_PREAMBLE;
7995         else if (mode == 0)
7996                 priv->config &= ~CFG_LONG_PREAMBLE;
7997         else {
7998                 err = -EINVAL;
7999                 goto done;
8000         }
8001
8002         err = ipw2100_system_config(priv, 0);
8003
8004       done:
8005         mutex_unlock(&priv->action_mutex);
8006         return err;
8007 }
8008
8009 static int ipw2100_wx_get_preamble(struct net_device *dev,
8010                                    struct iw_request_info *info,
8011                                    union iwreq_data *wrqu, char *extra)
8012 {
8013         /*
8014          * This can be called at any time.  No action lock required
8015          */
8016
8017         struct ipw2100_priv *priv = libipw_priv(dev);
8018
8019         if (priv->config & CFG_LONG_PREAMBLE)
8020                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8021         else
8022                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8023
8024         return 0;
8025 }
8026
8027 #ifdef CONFIG_IPW2100_MONITOR
8028 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8029                                     struct iw_request_info *info,
8030                                     union iwreq_data *wrqu, char *extra)
8031 {
8032         struct ipw2100_priv *priv = libipw_priv(dev);
8033         int err, mode = *(int *)extra;
8034
8035         mutex_lock(&priv->action_mutex);
8036         if (!(priv->status & STATUS_INITIALIZED)) {
8037                 err = -EIO;
8038                 goto done;
8039         }
8040
8041         if (mode == 1)
8042                 priv->config |= CFG_CRC_CHECK;
8043         else if (mode == 0)
8044                 priv->config &= ~CFG_CRC_CHECK;
8045         else {
8046                 err = -EINVAL;
8047                 goto done;
8048         }
8049         err = 0;
8050
8051       done:
8052         mutex_unlock(&priv->action_mutex);
8053         return err;
8054 }
8055
8056 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8057                                     struct iw_request_info *info,
8058                                     union iwreq_data *wrqu, char *extra)
8059 {
8060         /*
8061          * This can be called at any time.  No action lock required
8062          */
8063
8064         struct ipw2100_priv *priv = libipw_priv(dev);
8065
8066         if (priv->config & CFG_CRC_CHECK)
8067                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8068         else
8069                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8070
8071         return 0;
8072 }
8073 #endif                          /* CONFIG_IPW2100_MONITOR */
8074
8075 static iw_handler ipw2100_wx_handlers[] = {
8076         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8077         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8078         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8079         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8080         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8081         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8082         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8083         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8084         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8085         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8086         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8087         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8088         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8089         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8090         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8091         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8092         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8093         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8094         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8095         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8096         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8097         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8098         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8099         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8100         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8101         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8102         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8103         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8104         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8105         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8106         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8107         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8108         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8109         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8110         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8111 };
8112
8113 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8114 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8115 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8116 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8117 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8118 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8119 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8120 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8121
8122 static const struct iw_priv_args ipw2100_private_args[] = {
8123
8124 #ifdef CONFIG_IPW2100_MONITOR
8125         {
8126          IPW2100_PRIV_SET_MONITOR,
8127          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8128         {
8129          IPW2100_PRIV_RESET,
8130          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8131 #endif                          /* CONFIG_IPW2100_MONITOR */
8132
8133         {
8134          IPW2100_PRIV_SET_POWER,
8135          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8136         {
8137          IPW2100_PRIV_GET_POWER,
8138          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8139          "get_power"},
8140         {
8141          IPW2100_PRIV_SET_LONGPREAMBLE,
8142          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8143         {
8144          IPW2100_PRIV_GET_LONGPREAMBLE,
8145          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8146 #ifdef CONFIG_IPW2100_MONITOR
8147         {
8148          IPW2100_PRIV_SET_CRC_CHECK,
8149          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8150         {
8151          IPW2100_PRIV_GET_CRC_CHECK,
8152          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8153 #endif                          /* CONFIG_IPW2100_MONITOR */
8154 };
8155
8156 static iw_handler ipw2100_private_handler[] = {
8157 #ifdef CONFIG_IPW2100_MONITOR
8158         ipw2100_wx_set_promisc,
8159         ipw2100_wx_reset,
8160 #else                           /* CONFIG_IPW2100_MONITOR */
8161         NULL,
8162         NULL,
8163 #endif                          /* CONFIG_IPW2100_MONITOR */
8164         ipw2100_wx_set_powermode,
8165         ipw2100_wx_get_powermode,
8166         ipw2100_wx_set_preamble,
8167         ipw2100_wx_get_preamble,
8168 #ifdef CONFIG_IPW2100_MONITOR
8169         ipw2100_wx_set_crc_check,
8170         ipw2100_wx_get_crc_check,
8171 #else                           /* CONFIG_IPW2100_MONITOR */
8172         NULL,
8173         NULL,
8174 #endif                          /* CONFIG_IPW2100_MONITOR */
8175 };
8176
8177 /*
8178  * Get wireless statistics.
8179  * Called by /proc/net/wireless
8180  * Also called by SIOCGIWSTATS
8181  */
8182 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8183 {
8184         enum {
8185                 POOR = 30,
8186                 FAIR = 60,
8187                 GOOD = 80,
8188                 VERY_GOOD = 90,
8189                 EXCELLENT = 95,
8190                 PERFECT = 100
8191         };
8192         int rssi_qual;
8193         int tx_qual;
8194         int beacon_qual;
8195         int quality;
8196
8197         struct ipw2100_priv *priv = libipw_priv(dev);
8198         struct iw_statistics *wstats;
8199         u32 rssi, tx_retries, missed_beacons, tx_failures;
8200         u32 ord_len = sizeof(u32);
8201
8202         if (!priv)
8203                 return (struct iw_statistics *)NULL;
8204
8205         wstats = &priv->wstats;
8206
8207         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8208          * ipw2100_wx_wireless_stats seems to be called before fw is
8209          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8210          * and associated; if not associcated, the values are all meaningless
8211          * anyway, so set them all to NULL and INVALID */
8212         if (!(priv->status & STATUS_ASSOCIATED)) {
8213                 wstats->miss.beacon = 0;
8214                 wstats->discard.retries = 0;
8215                 wstats->qual.qual = 0;
8216                 wstats->qual.level = 0;
8217                 wstats->qual.noise = 0;
8218                 wstats->qual.updated = 7;
8219                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8220                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8221                 return wstats;
8222         }
8223
8224         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8225                                 &missed_beacons, &ord_len))
8226                 goto fail_get_ordinal;
8227
8228         /* If we don't have a connection the quality and level is 0 */
8229         if (!(priv->status & STATUS_ASSOCIATED)) {
8230                 wstats->qual.qual = 0;
8231                 wstats->qual.level = 0;
8232         } else {
8233                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8234                                         &rssi, &ord_len))
8235                         goto fail_get_ordinal;
8236                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8237                 if (rssi < 10)
8238                         rssi_qual = rssi * POOR / 10;
8239                 else if (rssi < 15)
8240                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8241                 else if (rssi < 20)
8242                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8243                 else if (rssi < 30)
8244                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8245                             10 + GOOD;
8246                 else
8247                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8248                             10 + VERY_GOOD;
8249
8250                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8251                                         &tx_retries, &ord_len))
8252                         goto fail_get_ordinal;
8253
8254                 if (tx_retries > 75)
8255                         tx_qual = (90 - tx_retries) * POOR / 15;
8256                 else if (tx_retries > 70)
8257                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8258                 else if (tx_retries > 65)
8259                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8260                 else if (tx_retries > 50)
8261                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8262                             15 + GOOD;
8263                 else
8264                         tx_qual = (50 - tx_retries) *
8265                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8266
8267                 if (missed_beacons > 50)
8268                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8269                 else if (missed_beacons > 40)
8270                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8271                             10 + POOR;
8272                 else if (missed_beacons > 32)
8273                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8274                             18 + FAIR;
8275                 else if (missed_beacons > 20)
8276                         beacon_qual = (32 - missed_beacons) *
8277                             (VERY_GOOD - GOOD) / 20 + GOOD;
8278                 else
8279                         beacon_qual = (20 - missed_beacons) *
8280                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8281
8282                 quality = min(tx_qual, rssi_qual);
8283                 quality = min(beacon_qual, quality);
8284
8285 #ifdef CONFIG_IPW2100_DEBUG
8286                 if (beacon_qual == quality)
8287                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8288                 else if (tx_qual == quality)
8289                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8290                 else if (quality != 100)
8291                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8292                 else
8293                         IPW_DEBUG_WX("Quality not clamped.\n");
8294 #endif
8295
8296                 wstats->qual.qual = quality;
8297                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8298         }
8299
8300         wstats->qual.noise = 0;
8301         wstats->qual.updated = 7;
8302         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8303
8304         /* FIXME: this is percent and not a # */
8305         wstats->miss.beacon = missed_beacons;
8306
8307         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8308                                 &tx_failures, &ord_len))
8309                 goto fail_get_ordinal;
8310         wstats->discard.retries = tx_failures;
8311
8312         return wstats;
8313
8314       fail_get_ordinal:
8315         IPW_DEBUG_WX("failed querying ordinals.\n");
8316
8317         return (struct iw_statistics *)NULL;
8318 }
8319
8320 static struct iw_handler_def ipw2100_wx_handler_def = {
8321         .standard = ipw2100_wx_handlers,
8322         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8323         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8324         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8325         .private = (iw_handler *) ipw2100_private_handler,
8326         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8327         .get_wireless_stats = ipw2100_wx_wireless_stats,
8328 };
8329
8330 static void ipw2100_wx_event_work(struct work_struct *work)
8331 {
8332         struct ipw2100_priv *priv =
8333                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8334         union iwreq_data wrqu;
8335         unsigned int len = ETH_ALEN;
8336
8337         if (priv->status & STATUS_STOPPING)
8338                 return;
8339
8340         mutex_lock(&priv->action_mutex);
8341
8342         IPW_DEBUG_WX("enter\n");
8343
8344         mutex_unlock(&priv->action_mutex);
8345
8346         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8347
8348         /* Fetch BSSID from the hardware */
8349         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8350             priv->status & STATUS_RF_KILL_MASK ||
8351             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8352                                 &priv->bssid, &len)) {
8353                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8354         } else {
8355                 /* We now have the BSSID, so can finish setting to the full
8356                  * associated state */
8357                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8358                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8359                 priv->status &= ~STATUS_ASSOCIATING;
8360                 priv->status |= STATUS_ASSOCIATED;
8361                 netif_carrier_on(priv->net_dev);
8362                 netif_wake_queue(priv->net_dev);
8363         }
8364
8365         if (!(priv->status & STATUS_ASSOCIATED)) {
8366                 IPW_DEBUG_WX("Configuring ESSID\n");
8367                 mutex_lock(&priv->action_mutex);
8368                 /* This is a disassociation event, so kick the firmware to
8369                  * look for another AP */
8370                 if (priv->config & CFG_STATIC_ESSID)
8371                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8372                                           0);
8373                 else
8374                         ipw2100_set_essid(priv, NULL, 0, 0);
8375                 mutex_unlock(&priv->action_mutex);
8376         }
8377
8378         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8379 }
8380
8381 #define IPW2100_FW_MAJOR_VERSION 1
8382 #define IPW2100_FW_MINOR_VERSION 3
8383
8384 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8385 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8386
8387 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8388                              IPW2100_FW_MAJOR_VERSION)
8389
8390 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8391 "." __stringify(IPW2100_FW_MINOR_VERSION)
8392
8393 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8394
8395 /*
8396
8397 BINARY FIRMWARE HEADER FORMAT
8398
8399 offset      length   desc
8400 0           2        version
8401 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8402 4           4        fw_len
8403 8           4        uc_len
8404 C           fw_len   firmware data
8405 12 + fw_len uc_len   microcode data
8406
8407 */
8408
8409 struct ipw2100_fw_header {
8410         short version;
8411         short mode;
8412         unsigned int fw_size;
8413         unsigned int uc_size;
8414 } __packed;
8415
8416 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8417 {
8418         struct ipw2100_fw_header *h =
8419             (struct ipw2100_fw_header *)fw->fw_entry->data;
8420
8421         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8422                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8423                        "(detected version id of %u). "
8424                        "See Documentation/networking/README.ipw2100\n",
8425                        h->version);
8426                 return 1;
8427         }
8428
8429         fw->version = h->version;
8430         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8431         fw->fw.size = h->fw_size;
8432         fw->uc.data = fw->fw.data + h->fw_size;
8433         fw->uc.size = h->uc_size;
8434
8435         return 0;
8436 }
8437
8438 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8439                                 struct ipw2100_fw *fw)
8440 {
8441         char *fw_name;
8442         int rc;
8443
8444         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8445                        priv->net_dev->name);
8446
8447         switch (priv->ieee->iw_mode) {
8448         case IW_MODE_ADHOC:
8449                 fw_name = IPW2100_FW_NAME("-i");
8450                 break;
8451 #ifdef CONFIG_IPW2100_MONITOR
8452         case IW_MODE_MONITOR:
8453                 fw_name = IPW2100_FW_NAME("-p");
8454                 break;
8455 #endif
8456         case IW_MODE_INFRA:
8457         default:
8458                 fw_name = IPW2100_FW_NAME("");
8459                 break;
8460         }
8461
8462         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8463
8464         if (rc < 0) {
8465                 printk(KERN_ERR DRV_NAME ": "
8466                        "%s: Firmware '%s' not available or load failed.\n",
8467                        priv->net_dev->name, fw_name);
8468                 return rc;
8469         }
8470         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8471                        fw->fw_entry->size);
8472
8473         ipw2100_mod_firmware_load(fw);
8474
8475         return 0;
8476 }
8477
8478 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8479 #ifdef CONFIG_IPW2100_MONITOR
8480 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8481 #endif
8482 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8483
8484 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8485                                      struct ipw2100_fw *fw)
8486 {
8487         fw->version = 0;
8488         release_firmware(fw->fw_entry);
8489         fw->fw_entry = NULL;
8490 }
8491
8492 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8493                                  size_t max)
8494 {
8495         char ver[MAX_FW_VERSION_LEN];
8496         u32 len = MAX_FW_VERSION_LEN;
8497         u32 tmp;
8498         int i;
8499         /* firmware version is an ascii string (max len of 14) */
8500         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8501                 return -EIO;
8502         tmp = max;
8503         if (len >= max)
8504                 len = max - 1;
8505         for (i = 0; i < len; i++)
8506                 buf[i] = ver[i];
8507         buf[i] = '\0';
8508         return tmp;
8509 }
8510
8511 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8512                                     size_t max)
8513 {
8514         u32 ver;
8515         u32 len = sizeof(ver);
8516         /* microcode version is a 32 bit integer */
8517         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8518                 return -EIO;
8519         return snprintf(buf, max, "%08X", ver);
8520 }
8521
8522 /*
8523  * On exit, the firmware will have been freed from the fw list
8524  */
8525 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8526 {
8527         /* firmware is constructed of N contiguous entries, each entry is
8528          * structured as:
8529          *
8530          * offset    sie         desc
8531          * 0         4           address to write to
8532          * 4         2           length of data run
8533          * 6         length      data
8534          */
8535         unsigned int addr;
8536         unsigned short len;
8537
8538         const unsigned char *firmware_data = fw->fw.data;
8539         unsigned int firmware_data_left = fw->fw.size;
8540
8541         while (firmware_data_left > 0) {
8542                 addr = *(u32 *) (firmware_data);
8543                 firmware_data += 4;
8544                 firmware_data_left -= 4;
8545
8546                 len = *(u16 *) (firmware_data);
8547                 firmware_data += 2;
8548                 firmware_data_left -= 2;
8549
8550                 if (len > 32) {
8551                         printk(KERN_ERR DRV_NAME ": "
8552                                "Invalid firmware run-length of %d bytes\n",
8553                                len);
8554                         return -EINVAL;
8555                 }
8556
8557                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8558                 firmware_data += len;
8559                 firmware_data_left -= len;
8560         }
8561
8562         return 0;
8563 }
8564
8565 struct symbol_alive_response {
8566         u8 cmd_id;
8567         u8 seq_num;
8568         u8 ucode_rev;
8569         u8 eeprom_valid;
8570         u16 valid_flags;
8571         u8 IEEE_addr[6];
8572         u16 flags;
8573         u16 pcb_rev;
8574         u16 clock_settle_time;  // 1us LSB
8575         u16 powerup_settle_time;        // 1us LSB
8576         u16 hop_settle_time;    // 1us LSB
8577         u8 date[3];             // month, day, year
8578         u8 time[2];             // hours, minutes
8579         u8 ucode_valid;
8580 };
8581
8582 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8583                                   struct ipw2100_fw *fw)
8584 {
8585         struct net_device *dev = priv->net_dev;
8586         const unsigned char *microcode_data = fw->uc.data;
8587         unsigned int microcode_data_left = fw->uc.size;
8588         void __iomem *reg = priv->ioaddr;
8589
8590         struct symbol_alive_response response;
8591         int i, j;
8592         u8 data;
8593
8594         /* Symbol control */
8595         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8596         readl(reg);
8597         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8598         readl(reg);
8599
8600         /* HW config */
8601         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8602         readl(reg);
8603         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8604         readl(reg);
8605
8606         /* EN_CS_ACCESS bit to reset control store pointer */
8607         write_nic_byte(dev, 0x210000, 0x40);
8608         readl(reg);
8609         write_nic_byte(dev, 0x210000, 0x0);
8610         readl(reg);
8611         write_nic_byte(dev, 0x210000, 0x40);
8612         readl(reg);
8613
8614         /* copy microcode from buffer into Symbol */
8615
8616         while (microcode_data_left > 0) {
8617                 write_nic_byte(dev, 0x210010, *microcode_data++);
8618                 write_nic_byte(dev, 0x210010, *microcode_data++);
8619                 microcode_data_left -= 2;
8620         }
8621
8622         /* EN_CS_ACCESS bit to reset the control store pointer */
8623         write_nic_byte(dev, 0x210000, 0x0);
8624         readl(reg);
8625
8626         /* Enable System (Reg 0)
8627          * first enable causes garbage in RX FIFO */
8628         write_nic_byte(dev, 0x210000, 0x0);
8629         readl(reg);
8630         write_nic_byte(dev, 0x210000, 0x80);
8631         readl(reg);
8632
8633         /* Reset External Baseband Reg */
8634         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8635         readl(reg);
8636         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8637         readl(reg);
8638
8639         /* HW Config (Reg 5) */
8640         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8641         readl(reg);
8642         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8643         readl(reg);
8644
8645         /* Enable System (Reg 0)
8646          * second enable should be OK */
8647         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8648         readl(reg);
8649         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8650
8651         /* check Symbol is enabled - upped this from 5 as it wasn't always
8652          * catching the update */
8653         for (i = 0; i < 10; i++) {
8654                 udelay(10);
8655
8656                 /* check Dino is enabled bit */
8657                 read_nic_byte(dev, 0x210000, &data);
8658                 if (data & 0x1)
8659                         break;
8660         }
8661
8662         if (i == 10) {
8663                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8664                        dev->name);
8665                 return -EIO;
8666         }
8667
8668         /* Get Symbol alive response */
8669         for (i = 0; i < 30; i++) {
8670                 /* Read alive response structure */
8671                 for (j = 0;
8672                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8673                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8674
8675                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8676                         break;
8677                 udelay(10);
8678         }
8679
8680         if (i == 30) {
8681                 printk(KERN_ERR DRV_NAME
8682                        ": %s: No response from Symbol - hw not alive\n",
8683                        dev->name);
8684                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8685                 return -EIO;
8686         }
8687
8688         return 0;
8689 }