Merge branch 'stable/broadcom.ibft-bugfixes' of git://git.kernel.org/pub/scm/linux...
[pandora-kernel.git] / drivers / net / wireless / ath / key.c
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
20
21 #include "ath.h"
22 #include "reg.h"
23
24 #define REG_READ                        (common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val)      (common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah)                     \
27         if (common->ops->enable_write_buffer)           \
28                 common->ops->enable_write_buffer((_ah));
29
30 #define REGWRITE_BUFFER_FLUSH(_ah)                      \
31         if (common->ops->write_flush)                   \
32                 common->ops->write_flush((_ah));
33
34
35 #define IEEE80211_WEP_NKID      4       /* number of key ids */
36
37 /************************/
38 /* Key Cache Management */
39 /************************/
40
41 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
42 {
43         u32 keyType;
44         void *ah = common->ah;
45
46         if (entry >= common->keymax) {
47                 ath_err(common, "keycache entry %u out of range\n", entry);
48                 return false;
49         }
50
51         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
52
53         ENABLE_REGWRITE_BUFFER(ah);
54
55         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
56         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
57         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
58         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
59         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
60         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
61         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
62         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
63
64         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
65                 u16 micentry = entry + 64;
66
67                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
68                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
69                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
70                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
71                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
72                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
73                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
74                                   AR_KEYTABLE_TYPE_CLR);
75                 }
76
77         }
78
79         REGWRITE_BUFFER_FLUSH(ah);
80
81         return true;
82 }
83 EXPORT_SYMBOL(ath_hw_keyreset);
84
85 static bool ath_hw_keysetmac(struct ath_common *common,
86                              u16 entry, const u8 *mac)
87 {
88         u32 macHi, macLo;
89         u32 unicast_flag = AR_KEYTABLE_VALID;
90         void *ah = common->ah;
91
92         if (entry >= common->keymax) {
93                 ath_err(common, "keycache entry %u out of range\n", entry);
94                 return false;
95         }
96
97         if (mac != NULL) {
98                 /*
99                  * AR_KEYTABLE_VALID indicates that the address is a unicast
100                  * address, which must match the transmitter address for
101                  * decrypting frames.
102                  * Not setting this bit allows the hardware to use the key
103                  * for multicast frame decryption.
104                  */
105                 if (mac[0] & 0x01)
106                         unicast_flag = 0;
107
108                 macHi = (mac[5] << 8) | mac[4];
109                 macLo = (mac[3] << 24) |
110                         (mac[2] << 16) |
111                         (mac[1] << 8) |
112                         mac[0];
113                 macLo >>= 1;
114                 macLo |= (macHi & 1) << 31;
115                 macHi >>= 1;
116         } else {
117                 macLo = macHi = 0;
118         }
119         ENABLE_REGWRITE_BUFFER(ah);
120
121         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
122         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
123
124         REGWRITE_BUFFER_FLUSH(ah);
125
126         return true;
127 }
128
129 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
130                                       const struct ath_keyval *k,
131                                       const u8 *mac)
132 {
133         void *ah = common->ah;
134         u32 key0, key1, key2, key3, key4;
135         u32 keyType;
136
137         if (entry >= common->keymax) {
138                 ath_err(common, "keycache entry %u out of range\n", entry);
139                 return false;
140         }
141
142         switch (k->kv_type) {
143         case ATH_CIPHER_AES_OCB:
144                 keyType = AR_KEYTABLE_TYPE_AES;
145                 break;
146         case ATH_CIPHER_AES_CCM:
147                 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
148                         ath_dbg(common, ATH_DBG_ANY,
149                                 "AES-CCM not supported by this mac rev\n");
150                         return false;
151                 }
152                 keyType = AR_KEYTABLE_TYPE_CCM;
153                 break;
154         case ATH_CIPHER_TKIP:
155                 keyType = AR_KEYTABLE_TYPE_TKIP;
156                 if (entry + 64 >= common->keymax) {
157                         ath_dbg(common, ATH_DBG_ANY,
158                                 "entry %u inappropriate for TKIP\n", entry);
159                         return false;
160                 }
161                 break;
162         case ATH_CIPHER_WEP:
163                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
164                         ath_dbg(common, ATH_DBG_ANY,
165                                 "WEP key length %u too small\n", k->kv_len);
166                         return false;
167                 }
168                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
169                         keyType = AR_KEYTABLE_TYPE_40;
170                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
171                         keyType = AR_KEYTABLE_TYPE_104;
172                 else
173                         keyType = AR_KEYTABLE_TYPE_128;
174                 break;
175         case ATH_CIPHER_CLR:
176                 keyType = AR_KEYTABLE_TYPE_CLR;
177                 break;
178         default:
179                 ath_err(common, "cipher %u not supported\n", k->kv_type);
180                 return false;
181         }
182
183         key0 = get_unaligned_le32(k->kv_val + 0);
184         key1 = get_unaligned_le16(k->kv_val + 4);
185         key2 = get_unaligned_le32(k->kv_val + 6);
186         key3 = get_unaligned_le16(k->kv_val + 10);
187         key4 = get_unaligned_le32(k->kv_val + 12);
188         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
189                 key4 &= 0xff;
190
191         /*
192          * Note: Key cache registers access special memory area that requires
193          * two 32-bit writes to actually update the values in the internal
194          * memory. Consequently, the exact order and pairs used here must be
195          * maintained.
196          */
197
198         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
199                 u16 micentry = entry + 64;
200
201                 /*
202                  * Write inverted key[47:0] first to avoid Michael MIC errors
203                  * on frames that could be sent or received at the same time.
204                  * The correct key will be written in the end once everything
205                  * else is ready.
206                  */
207                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
208                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
209
210                 /* Write key[95:48] */
211                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
212                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
213
214                 /* Write key[127:96] and key type */
215                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
216                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
217
218                 /* Write MAC address for the entry */
219                 (void) ath_hw_keysetmac(common, entry, mac);
220
221                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
222                         /*
223                          * TKIP uses two key cache entries:
224                          * Michael MIC TX/RX keys in the same key cache entry
225                          * (idx = main index + 64):
226                          * key0 [31:0] = RX key [31:0]
227                          * key1 [15:0] = TX key [31:16]
228                          * key1 [31:16] = reserved
229                          * key2 [31:0] = RX key [63:32]
230                          * key3 [15:0] = TX key [15:0]
231                          * key3 [31:16] = reserved
232                          * key4 [31:0] = TX key [63:32]
233                          */
234                         u32 mic0, mic1, mic2, mic3, mic4;
235
236                         mic0 = get_unaligned_le32(k->kv_mic + 0);
237                         mic2 = get_unaligned_le32(k->kv_mic + 4);
238                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
239                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
240                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
241
242                         ENABLE_REGWRITE_BUFFER(ah);
243
244                         /* Write RX[31:0] and TX[31:16] */
245                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
246                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
247
248                         /* Write RX[63:32] and TX[15:0] */
249                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
250                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
251
252                         /* Write TX[63:32] and keyType(reserved) */
253                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
254                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
255                                   AR_KEYTABLE_TYPE_CLR);
256
257                         REGWRITE_BUFFER_FLUSH(ah);
258
259                 } else {
260                         /*
261                          * TKIP uses four key cache entries (two for group
262                          * keys):
263                          * Michael MIC TX/RX keys are in different key cache
264                          * entries (idx = main index + 64 for TX and
265                          * main index + 32 + 96 for RX):
266                          * key0 [31:0] = TX/RX MIC key [31:0]
267                          * key1 [31:0] = reserved
268                          * key2 [31:0] = TX/RX MIC key [63:32]
269                          * key3 [31:0] = reserved
270                          * key4 [31:0] = reserved
271                          *
272                          * Upper layer code will call this function separately
273                          * for TX and RX keys when these registers offsets are
274                          * used.
275                          */
276                         u32 mic0, mic2;
277
278                         mic0 = get_unaligned_le32(k->kv_mic + 0);
279                         mic2 = get_unaligned_le32(k->kv_mic + 4);
280
281                         ENABLE_REGWRITE_BUFFER(ah);
282
283                         /* Write MIC key[31:0] */
284                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
285                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
286
287                         /* Write MIC key[63:32] */
288                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
289                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
290
291                         /* Write TX[63:32] and keyType(reserved) */
292                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
293                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
294                                   AR_KEYTABLE_TYPE_CLR);
295
296                         REGWRITE_BUFFER_FLUSH(ah);
297                 }
298
299                 ENABLE_REGWRITE_BUFFER(ah);
300
301                 /* MAC address registers are reserved for the MIC entry */
302                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
303                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
304
305                 /*
306                  * Write the correct (un-inverted) key[47:0] last to enable
307                  * TKIP now that all other registers are set with correct
308                  * values.
309                  */
310                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
311                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
312
313                 REGWRITE_BUFFER_FLUSH(ah);
314         } else {
315                 ENABLE_REGWRITE_BUFFER(ah);
316
317                 /* Write key[47:0] */
318                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
319                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
320
321                 /* Write key[95:48] */
322                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
323                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
324
325                 /* Write key[127:96] and key type */
326                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
327                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
328
329                 REGWRITE_BUFFER_FLUSH(ah);
330
331                 /* Write MAC address for the entry */
332                 (void) ath_hw_keysetmac(common, entry, mac);
333         }
334
335         return true;
336 }
337
338 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
339                            struct ath_keyval *hk, const u8 *addr,
340                            bool authenticator)
341 {
342         const u8 *key_rxmic;
343         const u8 *key_txmic;
344
345         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
346         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
347
348         if (addr == NULL) {
349                 /*
350                  * Group key installation - only two key cache entries are used
351                  * regardless of splitmic capability since group key is only
352                  * used either for TX or RX.
353                  */
354                 if (authenticator) {
355                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
356                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
357                 } else {
358                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
359                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
360                 }
361                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
362         }
363         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
364                 /* TX and RX keys share the same key cache entry. */
365                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
366                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
367                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
368         }
369
370         /* Separate key cache entries for TX and RX */
371
372         /* TX key goes at first index, RX key at +32. */
373         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
374         if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
375                 /* TX MIC entry failed. No need to proceed further */
376                 ath_err(common, "Setting TX MIC Key Failed\n");
377                 return 0;
378         }
379
380         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
381         /* XXX delete tx key on failure? */
382         return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
383 }
384
385 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
386 {
387         int i;
388
389         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
390                 if (test_bit(i, common->keymap) ||
391                     test_bit(i + 64, common->keymap))
392                         continue; /* At least one part of TKIP key allocated */
393                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
394                     (test_bit(i + 32, common->keymap) ||
395                      test_bit(i + 64 + 32, common->keymap)))
396                         continue; /* At least one part of TKIP key allocated */
397
398                 /* Found a free slot for a TKIP key */
399                 return i;
400         }
401         return -1;
402 }
403
404 static int ath_reserve_key_cache_slot(struct ath_common *common,
405                                       u32 cipher)
406 {
407         int i;
408
409         if (cipher == WLAN_CIPHER_SUITE_TKIP)
410                 return ath_reserve_key_cache_slot_tkip(common);
411
412         /* First, try to find slots that would not be available for TKIP. */
413         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
414                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
415                         if (!test_bit(i, common->keymap) &&
416                             (test_bit(i + 32, common->keymap) ||
417                              test_bit(i + 64, common->keymap) ||
418                              test_bit(i + 64 + 32, common->keymap)))
419                                 return i;
420                         if (!test_bit(i + 32, common->keymap) &&
421                             (test_bit(i, common->keymap) ||
422                              test_bit(i + 64, common->keymap) ||
423                              test_bit(i + 64 + 32, common->keymap)))
424                                 return i + 32;
425                         if (!test_bit(i + 64, common->keymap) &&
426                             (test_bit(i , common->keymap) ||
427                              test_bit(i + 32, common->keymap) ||
428                              test_bit(i + 64 + 32, common->keymap)))
429                                 return i + 64;
430                         if (!test_bit(i + 64 + 32, common->keymap) &&
431                             (test_bit(i, common->keymap) ||
432                              test_bit(i + 32, common->keymap) ||
433                              test_bit(i + 64, common->keymap)))
434                                 return i + 64 + 32;
435                 }
436         } else {
437                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
438                         if (!test_bit(i, common->keymap) &&
439                             test_bit(i + 64, common->keymap))
440                                 return i;
441                         if (test_bit(i, common->keymap) &&
442                             !test_bit(i + 64, common->keymap))
443                                 return i + 64;
444                 }
445         }
446
447         /* No partially used TKIP slots, pick any available slot */
448         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
449                 /* Do not allow slots that could be needed for TKIP group keys
450                  * to be used. This limitation could be removed if we know that
451                  * TKIP will not be used. */
452                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
453                         continue;
454                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
455                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
456                                 continue;
457                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
458                                 continue;
459                 }
460
461                 if (!test_bit(i, common->keymap))
462                         return i; /* Found a free slot for a key */
463         }
464
465         /* No free slot found */
466         return -1;
467 }
468
469 /*
470  * Configure encryption in the HW.
471  */
472 int ath_key_config(struct ath_common *common,
473                           struct ieee80211_vif *vif,
474                           struct ieee80211_sta *sta,
475                           struct ieee80211_key_conf *key)
476 {
477         struct ath_keyval hk;
478         const u8 *mac = NULL;
479         u8 gmac[ETH_ALEN];
480         int ret = 0;
481         int idx;
482
483         memset(&hk, 0, sizeof(hk));
484
485         switch (key->cipher) {
486         case 0:
487                 hk.kv_type = ATH_CIPHER_CLR;
488                 break;
489         case WLAN_CIPHER_SUITE_WEP40:
490         case WLAN_CIPHER_SUITE_WEP104:
491                 hk.kv_type = ATH_CIPHER_WEP;
492                 break;
493         case WLAN_CIPHER_SUITE_TKIP:
494                 hk.kv_type = ATH_CIPHER_TKIP;
495                 break;
496         case WLAN_CIPHER_SUITE_CCMP:
497                 hk.kv_type = ATH_CIPHER_AES_CCM;
498                 break;
499         default:
500                 return -EOPNOTSUPP;
501         }
502
503         hk.kv_len = key->keylen;
504         if (key->keylen)
505                 memcpy(hk.kv_val, key->key, key->keylen);
506
507         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
508                 switch (vif->type) {
509                 case NL80211_IFTYPE_AP:
510                         memcpy(gmac, vif->addr, ETH_ALEN);
511                         gmac[0] |= 0x01;
512                         mac = gmac;
513                         idx = ath_reserve_key_cache_slot(common, key->cipher);
514                         break;
515                 case NL80211_IFTYPE_ADHOC:
516                         if (!sta) {
517                                 idx = key->keyidx;
518                                 break;
519                         }
520                         memcpy(gmac, sta->addr, ETH_ALEN);
521                         gmac[0] |= 0x01;
522                         mac = gmac;
523                         idx = ath_reserve_key_cache_slot(common, key->cipher);
524                         break;
525                 default:
526                         idx = key->keyidx;
527                         break;
528                 }
529         } else if (key->keyidx) {
530                 if (WARN_ON(!sta))
531                         return -EOPNOTSUPP;
532                 mac = sta->addr;
533
534                 if (vif->type != NL80211_IFTYPE_AP) {
535                         /* Only keyidx 0 should be used with unicast key, but
536                          * allow this for client mode for now. */
537                         idx = key->keyidx;
538                 } else
539                         return -EIO;
540         } else {
541                 if (WARN_ON(!sta))
542                         return -EOPNOTSUPP;
543                 mac = sta->addr;
544
545                 idx = ath_reserve_key_cache_slot(common, key->cipher);
546         }
547
548         if (idx < 0)
549                 return -ENOSPC; /* no free key cache entries */
550
551         if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
552                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
553                                       vif->type == NL80211_IFTYPE_AP);
554         else
555                 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
556
557         if (!ret)
558                 return -EIO;
559
560         set_bit(idx, common->keymap);
561         if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
562                 set_bit(idx + 64, common->keymap);
563                 set_bit(idx, common->tkip_keymap);
564                 set_bit(idx + 64, common->tkip_keymap);
565                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
566                         set_bit(idx + 32, common->keymap);
567                         set_bit(idx + 64 + 32, common->keymap);
568                         set_bit(idx + 32, common->tkip_keymap);
569                         set_bit(idx + 64 + 32, common->tkip_keymap);
570                 }
571         }
572
573         return idx;
574 }
575 EXPORT_SYMBOL(ath_key_config);
576
577 /*
578  * Delete Key.
579  */
580 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
581 {
582         ath_hw_keyreset(common, key->hw_key_idx);
583         if (key->hw_key_idx < IEEE80211_WEP_NKID)
584                 return;
585
586         clear_bit(key->hw_key_idx, common->keymap);
587         if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
588                 return;
589
590         clear_bit(key->hw_key_idx + 64, common->keymap);
591
592         clear_bit(key->hw_key_idx, common->tkip_keymap);
593         clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
594
595         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
596                 ath_hw_keyreset(common, key->hw_key_idx + 32);
597                 clear_bit(key->hw_key_idx + 32, common->keymap);
598                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
599
600                 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
601                 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
602         }
603 }
604 EXPORT_SYMBOL(ath_key_delete);