ath9k: fix RSSI dummy marker value
[pandora-kernel.git] / drivers / net / wireless / ath / key.c
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/export.h>
19 #include <asm/unaligned.h>
20 #include <net/mac80211.h>
21
22 #include "ath.h"
23 #include "reg.h"
24
25 #define REG_READ                        (common->ops->read)
26 #define REG_WRITE(_ah, _reg, _val)      (common->ops->write)(_ah, _val, _reg)
27 #define ENABLE_REGWRITE_BUFFER(_ah)                     \
28         if (common->ops->enable_write_buffer)           \
29                 common->ops->enable_write_buffer((_ah));
30
31 #define REGWRITE_BUFFER_FLUSH(_ah)                      \
32         if (common->ops->write_flush)                   \
33                 common->ops->write_flush((_ah));
34
35
36 #define IEEE80211_WEP_NKID      4       /* number of key ids */
37
38 /************************/
39 /* Key Cache Management */
40 /************************/
41
42 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
43 {
44         u32 keyType;
45         void *ah = common->ah;
46
47         if (entry >= common->keymax) {
48                 ath_err(common, "keycache entry %u out of range\n", entry);
49                 return false;
50         }
51
52         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
53
54         ENABLE_REGWRITE_BUFFER(ah);
55
56         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
57         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
58         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
59         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
60         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
61         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
62         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
63         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
64
65         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
66                 u16 micentry = entry + 64;
67
68                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
69                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
70                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
71                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
72                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
73                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
74                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
75                                   AR_KEYTABLE_TYPE_CLR);
76                 }
77
78         }
79
80         REGWRITE_BUFFER_FLUSH(ah);
81
82         return true;
83 }
84 EXPORT_SYMBOL(ath_hw_keyreset);
85
86 static bool ath_hw_keysetmac(struct ath_common *common,
87                              u16 entry, const u8 *mac)
88 {
89         u32 macHi, macLo;
90         u32 unicast_flag = AR_KEYTABLE_VALID;
91         void *ah = common->ah;
92
93         if (entry >= common->keymax) {
94                 ath_err(common, "keycache entry %u out of range\n", entry);
95                 return false;
96         }
97
98         if (mac != NULL) {
99                 /*
100                  * AR_KEYTABLE_VALID indicates that the address is a unicast
101                  * address, which must match the transmitter address for
102                  * decrypting frames.
103                  * Not setting this bit allows the hardware to use the key
104                  * for multicast frame decryption.
105                  */
106                 if (mac[0] & 0x01)
107                         unicast_flag = 0;
108
109                 macLo = get_unaligned_le32(mac);
110                 macHi = get_unaligned_le16(mac + 4);
111                 macLo >>= 1;
112                 macLo |= (macHi & 1) << 31;
113                 macHi >>= 1;
114         } else {
115                 macLo = macHi = 0;
116         }
117         ENABLE_REGWRITE_BUFFER(ah);
118
119         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
120         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
121
122         REGWRITE_BUFFER_FLUSH(ah);
123
124         return true;
125 }
126
127 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
128                                       const struct ath_keyval *k,
129                                       const u8 *mac)
130 {
131         void *ah = common->ah;
132         u32 key0, key1, key2, key3, key4;
133         u32 keyType;
134
135         if (entry >= common->keymax) {
136                 ath_err(common, "keycache entry %u out of range\n", entry);
137                 return false;
138         }
139
140         switch (k->kv_type) {
141         case ATH_CIPHER_AES_OCB:
142                 keyType = AR_KEYTABLE_TYPE_AES;
143                 break;
144         case ATH_CIPHER_AES_CCM:
145                 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
146                         ath_dbg(common, ATH_DBG_ANY,
147                                 "AES-CCM not supported by this mac rev\n");
148                         return false;
149                 }
150                 keyType = AR_KEYTABLE_TYPE_CCM;
151                 break;
152         case ATH_CIPHER_TKIP:
153                 keyType = AR_KEYTABLE_TYPE_TKIP;
154                 if (entry + 64 >= common->keymax) {
155                         ath_dbg(common, ATH_DBG_ANY,
156                                 "entry %u inappropriate for TKIP\n", entry);
157                         return false;
158                 }
159                 break;
160         case ATH_CIPHER_WEP:
161                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
162                         ath_dbg(common, ATH_DBG_ANY,
163                                 "WEP key length %u too small\n", k->kv_len);
164                         return false;
165                 }
166                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
167                         keyType = AR_KEYTABLE_TYPE_40;
168                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
169                         keyType = AR_KEYTABLE_TYPE_104;
170                 else
171                         keyType = AR_KEYTABLE_TYPE_128;
172                 break;
173         case ATH_CIPHER_CLR:
174                 keyType = AR_KEYTABLE_TYPE_CLR;
175                 break;
176         default:
177                 ath_err(common, "cipher %u not supported\n", k->kv_type);
178                 return false;
179         }
180
181         key0 = get_unaligned_le32(k->kv_val + 0);
182         key1 = get_unaligned_le16(k->kv_val + 4);
183         key2 = get_unaligned_le32(k->kv_val + 6);
184         key3 = get_unaligned_le16(k->kv_val + 10);
185         key4 = get_unaligned_le32(k->kv_val + 12);
186         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
187                 key4 &= 0xff;
188
189         /*
190          * Note: Key cache registers access special memory area that requires
191          * two 32-bit writes to actually update the values in the internal
192          * memory. Consequently, the exact order and pairs used here must be
193          * maintained.
194          */
195
196         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
197                 u16 micentry = entry + 64;
198
199                 /*
200                  * Write inverted key[47:0] first to avoid Michael MIC errors
201                  * on frames that could be sent or received at the same time.
202                  * The correct key will be written in the end once everything
203                  * else is ready.
204                  */
205                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
206                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
207
208                 /* Write key[95:48] */
209                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
210                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
211
212                 /* Write key[127:96] and key type */
213                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
214                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
215
216                 /* Write MAC address for the entry */
217                 (void) ath_hw_keysetmac(common, entry, mac);
218
219                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
220                         /*
221                          * TKIP uses two key cache entries:
222                          * Michael MIC TX/RX keys in the same key cache entry
223                          * (idx = main index + 64):
224                          * key0 [31:0] = RX key [31:0]
225                          * key1 [15:0] = TX key [31:16]
226                          * key1 [31:16] = reserved
227                          * key2 [31:0] = RX key [63:32]
228                          * key3 [15:0] = TX key [15:0]
229                          * key3 [31:16] = reserved
230                          * key4 [31:0] = TX key [63:32]
231                          */
232                         u32 mic0, mic1, mic2, mic3, mic4;
233
234                         mic0 = get_unaligned_le32(k->kv_mic + 0);
235                         mic2 = get_unaligned_le32(k->kv_mic + 4);
236                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
237                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
238                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
239
240                         ENABLE_REGWRITE_BUFFER(ah);
241
242                         /* Write RX[31:0] and TX[31:16] */
243                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
244                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
245
246                         /* Write RX[63:32] and TX[15:0] */
247                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
248                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
249
250                         /* Write TX[63:32] and keyType(reserved) */
251                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
252                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
253                                   AR_KEYTABLE_TYPE_CLR);
254
255                         REGWRITE_BUFFER_FLUSH(ah);
256
257                 } else {
258                         /*
259                          * TKIP uses four key cache entries (two for group
260                          * keys):
261                          * Michael MIC TX/RX keys are in different key cache
262                          * entries (idx = main index + 64 for TX and
263                          * main index + 32 + 96 for RX):
264                          * key0 [31:0] = TX/RX MIC key [31:0]
265                          * key1 [31:0] = reserved
266                          * key2 [31:0] = TX/RX MIC key [63:32]
267                          * key3 [31:0] = reserved
268                          * key4 [31:0] = reserved
269                          *
270                          * Upper layer code will call this function separately
271                          * for TX and RX keys when these registers offsets are
272                          * used.
273                          */
274                         u32 mic0, mic2;
275
276                         mic0 = get_unaligned_le32(k->kv_mic + 0);
277                         mic2 = get_unaligned_le32(k->kv_mic + 4);
278
279                         ENABLE_REGWRITE_BUFFER(ah);
280
281                         /* Write MIC key[31:0] */
282                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
283                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
284
285                         /* Write MIC key[63:32] */
286                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
287                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
288
289                         /* Write TX[63:32] and keyType(reserved) */
290                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
291                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
292                                   AR_KEYTABLE_TYPE_CLR);
293
294                         REGWRITE_BUFFER_FLUSH(ah);
295                 }
296
297                 ENABLE_REGWRITE_BUFFER(ah);
298
299                 /* MAC address registers are reserved for the MIC entry */
300                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
301                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
302
303                 /*
304                  * Write the correct (un-inverted) key[47:0] last to enable
305                  * TKIP now that all other registers are set with correct
306                  * values.
307                  */
308                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
309                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
310
311                 REGWRITE_BUFFER_FLUSH(ah);
312         } else {
313                 ENABLE_REGWRITE_BUFFER(ah);
314
315                 /* Write key[47:0] */
316                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
317                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
318
319                 /* Write key[95:48] */
320                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
321                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
322
323                 /* Write key[127:96] and key type */
324                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
325                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
326
327                 REGWRITE_BUFFER_FLUSH(ah);
328
329                 /* Write MAC address for the entry */
330                 (void) ath_hw_keysetmac(common, entry, mac);
331         }
332
333         return true;
334 }
335
336 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
337                            struct ath_keyval *hk, const u8 *addr,
338                            bool authenticator)
339 {
340         const u8 *key_rxmic;
341         const u8 *key_txmic;
342
343         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
344         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
345
346         if (addr == NULL) {
347                 /*
348                  * Group key installation - only two key cache entries are used
349                  * regardless of splitmic capability since group key is only
350                  * used either for TX or RX.
351                  */
352                 if (authenticator) {
353                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
354                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
355                 } else {
356                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
357                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
358                 }
359                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
360         }
361         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
362                 /* TX and RX keys share the same key cache entry. */
363                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
364                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
365                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
366         }
367
368         /* Separate key cache entries for TX and RX */
369
370         /* TX key goes at first index, RX key at +32. */
371         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
372         if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
373                 /* TX MIC entry failed. No need to proceed further */
374                 ath_err(common, "Setting TX MIC Key Failed\n");
375                 return 0;
376         }
377
378         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
379         /* XXX delete tx key on failure? */
380         return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
381 }
382
383 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
384 {
385         int i;
386
387         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
388                 if (test_bit(i, common->keymap) ||
389                     test_bit(i + 64, common->keymap))
390                         continue; /* At least one part of TKIP key allocated */
391                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
392                     (test_bit(i + 32, common->keymap) ||
393                      test_bit(i + 64 + 32, common->keymap)))
394                         continue; /* At least one part of TKIP key allocated */
395
396                 /* Found a free slot for a TKIP key */
397                 return i;
398         }
399         return -1;
400 }
401
402 static int ath_reserve_key_cache_slot(struct ath_common *common,
403                                       u32 cipher)
404 {
405         int i;
406
407         if (cipher == WLAN_CIPHER_SUITE_TKIP)
408                 return ath_reserve_key_cache_slot_tkip(common);
409
410         /* First, try to find slots that would not be available for TKIP. */
411         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
412                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
413                         if (!test_bit(i, common->keymap) &&
414                             (test_bit(i + 32, common->keymap) ||
415                              test_bit(i + 64, common->keymap) ||
416                              test_bit(i + 64 + 32, common->keymap)))
417                                 return i;
418                         if (!test_bit(i + 32, common->keymap) &&
419                             (test_bit(i, common->keymap) ||
420                              test_bit(i + 64, common->keymap) ||
421                              test_bit(i + 64 + 32, common->keymap)))
422                                 return i + 32;
423                         if (!test_bit(i + 64, common->keymap) &&
424                             (test_bit(i , common->keymap) ||
425                              test_bit(i + 32, common->keymap) ||
426                              test_bit(i + 64 + 32, common->keymap)))
427                                 return i + 64;
428                         if (!test_bit(i + 64 + 32, common->keymap) &&
429                             (test_bit(i, common->keymap) ||
430                              test_bit(i + 32, common->keymap) ||
431                              test_bit(i + 64, common->keymap)))
432                                 return i + 64 + 32;
433                 }
434         } else {
435                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
436                         if (!test_bit(i, common->keymap) &&
437                             test_bit(i + 64, common->keymap))
438                                 return i;
439                         if (test_bit(i, common->keymap) &&
440                             !test_bit(i + 64, common->keymap))
441                                 return i + 64;
442                 }
443         }
444
445         /* No partially used TKIP slots, pick any available slot */
446         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
447                 /* Do not allow slots that could be needed for TKIP group keys
448                  * to be used. This limitation could be removed if we know that
449                  * TKIP will not be used. */
450                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
451                         continue;
452                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
453                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
454                                 continue;
455                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
456                                 continue;
457                 }
458
459                 if (!test_bit(i, common->keymap))
460                         return i; /* Found a free slot for a key */
461         }
462
463         /* No free slot found */
464         return -1;
465 }
466
467 /*
468  * Configure encryption in the HW.
469  */
470 int ath_key_config(struct ath_common *common,
471                           struct ieee80211_vif *vif,
472                           struct ieee80211_sta *sta,
473                           struct ieee80211_key_conf *key)
474 {
475         struct ath_keyval hk;
476         const u8 *mac = NULL;
477         u8 gmac[ETH_ALEN];
478         int ret = 0;
479         int idx;
480
481         memset(&hk, 0, sizeof(hk));
482
483         switch (key->cipher) {
484         case 0:
485                 hk.kv_type = ATH_CIPHER_CLR;
486                 break;
487         case WLAN_CIPHER_SUITE_WEP40:
488         case WLAN_CIPHER_SUITE_WEP104:
489                 hk.kv_type = ATH_CIPHER_WEP;
490                 break;
491         case WLAN_CIPHER_SUITE_TKIP:
492                 hk.kv_type = ATH_CIPHER_TKIP;
493                 break;
494         case WLAN_CIPHER_SUITE_CCMP:
495                 hk.kv_type = ATH_CIPHER_AES_CCM;
496                 break;
497         default:
498                 return -EOPNOTSUPP;
499         }
500
501         hk.kv_len = key->keylen;
502         if (key->keylen)
503                 memcpy(hk.kv_val, key->key, key->keylen);
504
505         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
506                 switch (vif->type) {
507                 case NL80211_IFTYPE_AP:
508                         memcpy(gmac, vif->addr, ETH_ALEN);
509                         gmac[0] |= 0x01;
510                         mac = gmac;
511                         idx = ath_reserve_key_cache_slot(common, key->cipher);
512                         break;
513                 case NL80211_IFTYPE_ADHOC:
514                         if (!sta) {
515                                 idx = key->keyidx;
516                                 break;
517                         }
518                         memcpy(gmac, sta->addr, ETH_ALEN);
519                         gmac[0] |= 0x01;
520                         mac = gmac;
521                         idx = ath_reserve_key_cache_slot(common, key->cipher);
522                         break;
523                 default:
524                         idx = key->keyidx;
525                         break;
526                 }
527         } else if (key->keyidx) {
528                 if (WARN_ON(!sta))
529                         return -EOPNOTSUPP;
530                 mac = sta->addr;
531
532                 if (vif->type != NL80211_IFTYPE_AP) {
533                         /* Only keyidx 0 should be used with unicast key, but
534                          * allow this for client mode for now. */
535                         idx = key->keyidx;
536                 } else
537                         return -EIO;
538         } else {
539                 if (WARN_ON(!sta))
540                         return -EOPNOTSUPP;
541                 mac = sta->addr;
542
543                 idx = ath_reserve_key_cache_slot(common, key->cipher);
544         }
545
546         if (idx < 0)
547                 return -ENOSPC; /* no free key cache entries */
548
549         if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
550                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
551                                       vif->type == NL80211_IFTYPE_AP);
552         else
553                 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
554
555         if (!ret)
556                 return -EIO;
557
558         set_bit(idx, common->keymap);
559         if (key->cipher == WLAN_CIPHER_SUITE_CCMP)
560                 set_bit(idx, common->ccmp_keymap);
561
562         if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
563                 set_bit(idx + 64, common->keymap);
564                 set_bit(idx, common->tkip_keymap);
565                 set_bit(idx + 64, common->tkip_keymap);
566                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
567                         set_bit(idx + 32, common->keymap);
568                         set_bit(idx + 64 + 32, common->keymap);
569                         set_bit(idx + 32, common->tkip_keymap);
570                         set_bit(idx + 64 + 32, common->tkip_keymap);
571                 }
572         }
573
574         return idx;
575 }
576 EXPORT_SYMBOL(ath_key_config);
577
578 /*
579  * Delete Key.
580  */
581 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
582 {
583         ath_hw_keyreset(common, key->hw_key_idx);
584         if (key->hw_key_idx < IEEE80211_WEP_NKID)
585                 return;
586
587         clear_bit(key->hw_key_idx, common->keymap);
588         clear_bit(key->hw_key_idx, common->ccmp_keymap);
589         if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
590                 return;
591
592         clear_bit(key->hw_key_idx + 64, common->keymap);
593
594         clear_bit(key->hw_key_idx, common->tkip_keymap);
595         clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
596
597         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
598                 ath_hw_keyreset(common, key->hw_key_idx + 32);
599                 clear_bit(key->hw_key_idx + 32, common->keymap);
600                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
601
602                 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
603                 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
604         }
605 }
606 EXPORT_SYMBOL(ath_key_delete);