ath9k: fix custom regulatory call position
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         const struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %d\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Only calibrate if awake */
333         if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
334                 goto set_timer;
335
336         ath9k_ps_wakeup(sc);
337
338         /* Long calibration runs independently of short calibration. */
339         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
340                 longcal = true;
341                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
342                 sc->ani.longcal_timer = timestamp;
343         }
344
345         /* Short calibration applies only while caldone is false */
346         if (!sc->ani.caldone) {
347                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
348                         shortcal = true;
349                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
350                         sc->ani.shortcal_timer = timestamp;
351                         sc->ani.resetcal_timer = timestamp;
352                 }
353         } else {
354                 if ((timestamp - sc->ani.resetcal_timer) >=
355                     ATH_RESTART_CALINTERVAL) {
356                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
357                         if (sc->ani.caldone)
358                                 sc->ani.resetcal_timer = timestamp;
359                 }
360         }
361
362         /* Verify whether we must check ANI */
363         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
364                 aniflag = true;
365                 sc->ani.checkani_timer = timestamp;
366         }
367
368         /* Skip all processing if there's nothing to do. */
369         if (longcal || shortcal || aniflag) {
370                 /* Call ANI routine if necessary */
371                 if (aniflag)
372                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
373
374                 /* Perform calibration if necessary */
375                 if (longcal || shortcal) {
376                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
377                                                      sc->rx_chainmask, longcal);
378
379                         if (longcal)
380                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
381                                                                      ah->curchan);
382
383                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
384                                 ah->curchan->channel, ah->curchan->channelFlags,
385                                 sc->ani.noise_floor);
386                 }
387         }
388
389         ath9k_ps_restore(sc);
390
391 set_timer:
392         /*
393         * Set timer interval based on previous results.
394         * The interval must be the shortest necessary to satisfy ANI,
395         * short calibration and long calibration.
396         */
397         cal_interval = ATH_LONG_CALINTERVAL;
398         if (sc->sc_ah->config.enable_ani)
399                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
400         if (!sc->ani.caldone)
401                 cal_interval = min(cal_interval, (u32)short_cal_interval);
402
403         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
404 }
405
406 static void ath_start_ani(struct ath_softc *sc)
407 {
408         unsigned long timestamp = jiffies_to_msecs(jiffies);
409
410         sc->ani.longcal_timer = timestamp;
411         sc->ani.shortcal_timer = timestamp;
412         sc->ani.checkani_timer = timestamp;
413
414         mod_timer(&sc->ani.timer,
415                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
416 }
417
418 /*
419  * Update tx/rx chainmask. For legacy association,
420  * hard code chainmask to 1x1, for 11n association, use
421  * the chainmask configuration, for bt coexistence, use
422  * the chainmask configuration even in legacy mode.
423  */
424 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
425 {
426         if (is_ht ||
427             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
428                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
429                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
430         } else {
431                 sc->tx_chainmask = 1;
432                 sc->rx_chainmask = 1;
433         }
434
435         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
436                 sc->tx_chainmask, sc->rx_chainmask);
437 }
438
439 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
440 {
441         struct ath_node *an;
442
443         an = (struct ath_node *)sta->drv_priv;
444
445         if (sc->sc_flags & SC_OP_TXAGGR) {
446                 ath_tx_node_init(sc, an);
447                 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
448                                      sta->ht_cap.ampdu_factor);
449                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
450         }
451 }
452
453 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
454 {
455         struct ath_node *an = (struct ath_node *)sta->drv_priv;
456
457         if (sc->sc_flags & SC_OP_TXAGGR)
458                 ath_tx_node_cleanup(sc, an);
459 }
460
461 static void ath9k_tasklet(unsigned long data)
462 {
463         struct ath_softc *sc = (struct ath_softc *)data;
464         u32 status = sc->intrstatus;
465
466         ath9k_ps_wakeup(sc);
467
468         if (status & ATH9K_INT_FATAL) {
469                 ath_reset(sc, false);
470                 ath9k_ps_restore(sc);
471                 return;
472         }
473
474         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
475                 spin_lock_bh(&sc->rx.rxflushlock);
476                 ath_rx_tasklet(sc, 0);
477                 spin_unlock_bh(&sc->rx.rxflushlock);
478         }
479
480         if (status & ATH9K_INT_TX)
481                 ath_tx_tasklet(sc);
482
483         if ((status & ATH9K_INT_TSFOOR) &&
484             (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
485                 /*
486                  * TSF sync does not look correct; remain awake to sync with
487                  * the next Beacon.
488                  */
489                 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
490                 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
491         }
492
493         /* re-enable hardware interrupt */
494         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
495         ath9k_ps_restore(sc);
496 }
497
498 irqreturn_t ath_isr(int irq, void *dev)
499 {
500 #define SCHED_INTR (                            \
501                 ATH9K_INT_FATAL |               \
502                 ATH9K_INT_RXORN |               \
503                 ATH9K_INT_RXEOL |               \
504                 ATH9K_INT_RX |                  \
505                 ATH9K_INT_TX |                  \
506                 ATH9K_INT_BMISS |               \
507                 ATH9K_INT_CST |                 \
508                 ATH9K_INT_TSFOOR)
509
510         struct ath_softc *sc = dev;
511         struct ath_hw *ah = sc->sc_ah;
512         enum ath9k_int status;
513         bool sched = false;
514
515         /*
516          * The hardware is not ready/present, don't
517          * touch anything. Note this can happen early
518          * on if the IRQ is shared.
519          */
520         if (sc->sc_flags & SC_OP_INVALID)
521                 return IRQ_NONE;
522
523
524         /* shared irq, not for us */
525
526         if (!ath9k_hw_intrpend(ah))
527                 return IRQ_NONE;
528
529         /*
530          * Figure out the reason(s) for the interrupt.  Note
531          * that the hal returns a pseudo-ISR that may include
532          * bits we haven't explicitly enabled so we mask the
533          * value to insure we only process bits we requested.
534          */
535         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
536         status &= sc->imask;    /* discard unasked-for bits */
537
538         /*
539          * If there are no status bits set, then this interrupt was not
540          * for me (should have been caught above).
541          */
542         if (!status)
543                 return IRQ_NONE;
544
545         /* Cache the status */
546         sc->intrstatus = status;
547
548         if (status & SCHED_INTR)
549                 sched = true;
550
551         /*
552          * If a FATAL or RXORN interrupt is received, we have to reset the
553          * chip immediately.
554          */
555         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
556                 goto chip_reset;
557
558         if (status & ATH9K_INT_SWBA)
559                 tasklet_schedule(&sc->bcon_tasklet);
560
561         if (status & ATH9K_INT_TXURN)
562                 ath9k_hw_updatetxtriglevel(ah, true);
563
564         if (status & ATH9K_INT_MIB) {
565                 /*
566                  * Disable interrupts until we service the MIB
567                  * interrupt; otherwise it will continue to
568                  * fire.
569                  */
570                 ath9k_hw_set_interrupts(ah, 0);
571                 /*
572                  * Let the hal handle the event. We assume
573                  * it will clear whatever condition caused
574                  * the interrupt.
575                  */
576                 ath9k_hw_procmibevent(ah, &sc->nodestats);
577                 ath9k_hw_set_interrupts(ah, sc->imask);
578         }
579
580         if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
581                 if (status & ATH9K_INT_TIM_TIMER) {
582                         /* Clear RxAbort bit so that we can
583                          * receive frames */
584                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
585                         ath9k_hw_setrxabort(sc->sc_ah, 0);
586                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
587                 }
588
589 chip_reset:
590
591         ath_debug_stat_interrupt(sc, status);
592
593         if (sched) {
594                 /* turn off every interrupt except SWBA */
595                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
596                 tasklet_schedule(&sc->intr_tq);
597         }
598
599         return IRQ_HANDLED;
600
601 #undef SCHED_INTR
602 }
603
604 static u32 ath_get_extchanmode(struct ath_softc *sc,
605                                struct ieee80211_channel *chan,
606                                enum nl80211_channel_type channel_type)
607 {
608         u32 chanmode = 0;
609
610         switch (chan->band) {
611         case IEEE80211_BAND_2GHZ:
612                 switch(channel_type) {
613                 case NL80211_CHAN_NO_HT:
614                 case NL80211_CHAN_HT20:
615                         chanmode = CHANNEL_G_HT20;
616                         break;
617                 case NL80211_CHAN_HT40PLUS:
618                         chanmode = CHANNEL_G_HT40PLUS;
619                         break;
620                 case NL80211_CHAN_HT40MINUS:
621                         chanmode = CHANNEL_G_HT40MINUS;
622                         break;
623                 }
624                 break;
625         case IEEE80211_BAND_5GHZ:
626                 switch(channel_type) {
627                 case NL80211_CHAN_NO_HT:
628                 case NL80211_CHAN_HT20:
629                         chanmode = CHANNEL_A_HT20;
630                         break;
631                 case NL80211_CHAN_HT40PLUS:
632                         chanmode = CHANNEL_A_HT40PLUS;
633                         break;
634                 case NL80211_CHAN_HT40MINUS:
635                         chanmode = CHANNEL_A_HT40MINUS;
636                         break;
637                 }
638                 break;
639         default:
640                 break;
641         }
642
643         return chanmode;
644 }
645
646 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
647                            struct ath9k_keyval *hk, const u8 *addr,
648                            bool authenticator)
649 {
650         const u8 *key_rxmic;
651         const u8 *key_txmic;
652
653         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
654         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
655
656         if (addr == NULL) {
657                 /*
658                  * Group key installation - only two key cache entries are used
659                  * regardless of splitmic capability since group key is only
660                  * used either for TX or RX.
661                  */
662                 if (authenticator) {
663                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
664                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
665                 } else {
666                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
667                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
668                 }
669                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
670         }
671         if (!sc->splitmic) {
672                 /* TX and RX keys share the same key cache entry. */
673                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
674                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
675                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
676         }
677
678         /* Separate key cache entries for TX and RX */
679
680         /* TX key goes at first index, RX key at +32. */
681         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
682         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
683                 /* TX MIC entry failed. No need to proceed further */
684                 DPRINTF(sc, ATH_DBG_FATAL,
685                         "Setting TX MIC Key Failed\n");
686                 return 0;
687         }
688
689         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690         /* XXX delete tx key on failure? */
691         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
692 }
693
694 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
695 {
696         int i;
697
698         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
699                 if (test_bit(i, sc->keymap) ||
700                     test_bit(i + 64, sc->keymap))
701                         continue; /* At least one part of TKIP key allocated */
702                 if (sc->splitmic &&
703                     (test_bit(i + 32, sc->keymap) ||
704                      test_bit(i + 64 + 32, sc->keymap)))
705                         continue; /* At least one part of TKIP key allocated */
706
707                 /* Found a free slot for a TKIP key */
708                 return i;
709         }
710         return -1;
711 }
712
713 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
714 {
715         int i;
716
717         /* First, try to find slots that would not be available for TKIP. */
718         if (sc->splitmic) {
719                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
720                         if (!test_bit(i, sc->keymap) &&
721                             (test_bit(i + 32, sc->keymap) ||
722                              test_bit(i + 64, sc->keymap) ||
723                              test_bit(i + 64 + 32, sc->keymap)))
724                                 return i;
725                         if (!test_bit(i + 32, sc->keymap) &&
726                             (test_bit(i, sc->keymap) ||
727                              test_bit(i + 64, sc->keymap) ||
728                              test_bit(i + 64 + 32, sc->keymap)))
729                                 return i + 32;
730                         if (!test_bit(i + 64, sc->keymap) &&
731                             (test_bit(i , sc->keymap) ||
732                              test_bit(i + 32, sc->keymap) ||
733                              test_bit(i + 64 + 32, sc->keymap)))
734                                 return i + 64;
735                         if (!test_bit(i + 64 + 32, sc->keymap) &&
736                             (test_bit(i, sc->keymap) ||
737                              test_bit(i + 32, sc->keymap) ||
738                              test_bit(i + 64, sc->keymap)))
739                                 return i + 64 + 32;
740                 }
741         } else {
742                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
743                         if (!test_bit(i, sc->keymap) &&
744                             test_bit(i + 64, sc->keymap))
745                                 return i;
746                         if (test_bit(i, sc->keymap) &&
747                             !test_bit(i + 64, sc->keymap))
748                                 return i + 64;
749                 }
750         }
751
752         /* No partially used TKIP slots, pick any available slot */
753         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
754                 /* Do not allow slots that could be needed for TKIP group keys
755                  * to be used. This limitation could be removed if we know that
756                  * TKIP will not be used. */
757                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
758                         continue;
759                 if (sc->splitmic) {
760                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
761                                 continue;
762                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
763                                 continue;
764                 }
765
766                 if (!test_bit(i, sc->keymap))
767                         return i; /* Found a free slot for a key */
768         }
769
770         /* No free slot found */
771         return -1;
772 }
773
774 static int ath_key_config(struct ath_softc *sc,
775                           struct ieee80211_vif *vif,
776                           struct ieee80211_sta *sta,
777                           struct ieee80211_key_conf *key)
778 {
779         struct ath9k_keyval hk;
780         const u8 *mac = NULL;
781         int ret = 0;
782         int idx;
783
784         memset(&hk, 0, sizeof(hk));
785
786         switch (key->alg) {
787         case ALG_WEP:
788                 hk.kv_type = ATH9K_CIPHER_WEP;
789                 break;
790         case ALG_TKIP:
791                 hk.kv_type = ATH9K_CIPHER_TKIP;
792                 break;
793         case ALG_CCMP:
794                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
795                 break;
796         default:
797                 return -EOPNOTSUPP;
798         }
799
800         hk.kv_len = key->keylen;
801         memcpy(hk.kv_val, key->key, key->keylen);
802
803         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
804                 /* For now, use the default keys for broadcast keys. This may
805                  * need to change with virtual interfaces. */
806                 idx = key->keyidx;
807         } else if (key->keyidx) {
808                 if (WARN_ON(!sta))
809                         return -EOPNOTSUPP;
810                 mac = sta->addr;
811
812                 if (vif->type != NL80211_IFTYPE_AP) {
813                         /* Only keyidx 0 should be used with unicast key, but
814                          * allow this for client mode for now. */
815                         idx = key->keyidx;
816                 } else
817                         return -EIO;
818         } else {
819                 if (WARN_ON(!sta))
820                         return -EOPNOTSUPP;
821                 mac = sta->addr;
822
823                 if (key->alg == ALG_TKIP)
824                         idx = ath_reserve_key_cache_slot_tkip(sc);
825                 else
826                         idx = ath_reserve_key_cache_slot(sc);
827                 if (idx < 0)
828                         return -ENOSPC; /* no free key cache entries */
829         }
830
831         if (key->alg == ALG_TKIP)
832                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
833                                       vif->type == NL80211_IFTYPE_AP);
834         else
835                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
836
837         if (!ret)
838                 return -EIO;
839
840         set_bit(idx, sc->keymap);
841         if (key->alg == ALG_TKIP) {
842                 set_bit(idx + 64, sc->keymap);
843                 if (sc->splitmic) {
844                         set_bit(idx + 32, sc->keymap);
845                         set_bit(idx + 64 + 32, sc->keymap);
846                 }
847         }
848
849         return idx;
850 }
851
852 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
853 {
854         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
855         if (key->hw_key_idx < IEEE80211_WEP_NKID)
856                 return;
857
858         clear_bit(key->hw_key_idx, sc->keymap);
859         if (key->alg != ALG_TKIP)
860                 return;
861
862         clear_bit(key->hw_key_idx + 64, sc->keymap);
863         if (sc->splitmic) {
864                 clear_bit(key->hw_key_idx + 32, sc->keymap);
865                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
866         }
867 }
868
869 static void setup_ht_cap(struct ath_softc *sc,
870                          struct ieee80211_sta_ht_cap *ht_info)
871 {
872 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
873 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
874
875         ht_info->ht_supported = true;
876         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
877                        IEEE80211_HT_CAP_SM_PS |
878                        IEEE80211_HT_CAP_SGI_40 |
879                        IEEE80211_HT_CAP_DSSSCCK40;
880
881         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
882         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
883
884         /* set up supported mcs set */
885         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
886
887         switch(sc->rx_chainmask) {
888         case 1:
889                 ht_info->mcs.rx_mask[0] = 0xff;
890                 break;
891         case 3:
892         case 5:
893         case 7:
894         default:
895                 ht_info->mcs.rx_mask[0] = 0xff;
896                 ht_info->mcs.rx_mask[1] = 0xff;
897                 break;
898         }
899
900         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
901 }
902
903 static void ath9k_bss_assoc_info(struct ath_softc *sc,
904                                  struct ieee80211_vif *vif,
905                                  struct ieee80211_bss_conf *bss_conf)
906 {
907         struct ath_vif *avp = (void *)vif->drv_priv;
908
909         if (bss_conf->assoc) {
910                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
911                         bss_conf->aid, sc->curbssid);
912
913                 /* New association, store aid */
914                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
915                         sc->curaid = bss_conf->aid;
916                         ath9k_hw_write_associd(sc);
917                 }
918
919                 /* Configure the beacon */
920                 ath_beacon_config(sc, vif);
921
922                 /* Reset rssi stats */
923                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
924                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
925                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
926                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
927
928                 ath_start_ani(sc);
929         } else {
930                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
931                 sc->curaid = 0;
932         }
933 }
934
935 /********************************/
936 /*       LED functions          */
937 /********************************/
938
939 static void ath_led_blink_work(struct work_struct *work)
940 {
941         struct ath_softc *sc = container_of(work, struct ath_softc,
942                                             ath_led_blink_work.work);
943
944         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
945                 return;
946
947         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
948             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
949                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
950         else
951                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
952                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
953
954         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
955                            (sc->sc_flags & SC_OP_LED_ON) ?
956                            msecs_to_jiffies(sc->led_off_duration) :
957                            msecs_to_jiffies(sc->led_on_duration));
958
959         sc->led_on_duration = sc->led_on_cnt ?
960                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
961                         ATH_LED_ON_DURATION_IDLE;
962         sc->led_off_duration = sc->led_off_cnt ?
963                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
964                         ATH_LED_OFF_DURATION_IDLE;
965         sc->led_on_cnt = sc->led_off_cnt = 0;
966         if (sc->sc_flags & SC_OP_LED_ON)
967                 sc->sc_flags &= ~SC_OP_LED_ON;
968         else
969                 sc->sc_flags |= SC_OP_LED_ON;
970 }
971
972 static void ath_led_brightness(struct led_classdev *led_cdev,
973                                enum led_brightness brightness)
974 {
975         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
976         struct ath_softc *sc = led->sc;
977
978         switch (brightness) {
979         case LED_OFF:
980                 if (led->led_type == ATH_LED_ASSOC ||
981                     led->led_type == ATH_LED_RADIO) {
982                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
983                                 (led->led_type == ATH_LED_RADIO));
984                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
985                         if (led->led_type == ATH_LED_RADIO)
986                                 sc->sc_flags &= ~SC_OP_LED_ON;
987                 } else {
988                         sc->led_off_cnt++;
989                 }
990                 break;
991         case LED_FULL:
992                 if (led->led_type == ATH_LED_ASSOC) {
993                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
994                         queue_delayed_work(sc->hw->workqueue,
995                                            &sc->ath_led_blink_work, 0);
996                 } else if (led->led_type == ATH_LED_RADIO) {
997                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
998                         sc->sc_flags |= SC_OP_LED_ON;
999                 } else {
1000                         sc->led_on_cnt++;
1001                 }
1002                 break;
1003         default:
1004                 break;
1005         }
1006 }
1007
1008 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1009                             char *trigger)
1010 {
1011         int ret;
1012
1013         led->sc = sc;
1014         led->led_cdev.name = led->name;
1015         led->led_cdev.default_trigger = trigger;
1016         led->led_cdev.brightness_set = ath_led_brightness;
1017
1018         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1019         if (ret)
1020                 DPRINTF(sc, ATH_DBG_FATAL,
1021                         "Failed to register led:%s", led->name);
1022         else
1023                 led->registered = 1;
1024         return ret;
1025 }
1026
1027 static void ath_unregister_led(struct ath_led *led)
1028 {
1029         if (led->registered) {
1030                 led_classdev_unregister(&led->led_cdev);
1031                 led->registered = 0;
1032         }
1033 }
1034
1035 static void ath_deinit_leds(struct ath_softc *sc)
1036 {
1037         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1038         ath_unregister_led(&sc->assoc_led);
1039         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1040         ath_unregister_led(&sc->tx_led);
1041         ath_unregister_led(&sc->rx_led);
1042         ath_unregister_led(&sc->radio_led);
1043         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1044 }
1045
1046 static void ath_init_leds(struct ath_softc *sc)
1047 {
1048         char *trigger;
1049         int ret;
1050
1051         /* Configure gpio 1 for output */
1052         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1053                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1054         /* LED off, active low */
1055         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1056
1057         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1058
1059         trigger = ieee80211_get_radio_led_name(sc->hw);
1060         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1061                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1062         ret = ath_register_led(sc, &sc->radio_led, trigger);
1063         sc->radio_led.led_type = ATH_LED_RADIO;
1064         if (ret)
1065                 goto fail;
1066
1067         trigger = ieee80211_get_assoc_led_name(sc->hw);
1068         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1069                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1070         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1071         sc->assoc_led.led_type = ATH_LED_ASSOC;
1072         if (ret)
1073                 goto fail;
1074
1075         trigger = ieee80211_get_tx_led_name(sc->hw);
1076         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1077                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1078         ret = ath_register_led(sc, &sc->tx_led, trigger);
1079         sc->tx_led.led_type = ATH_LED_TX;
1080         if (ret)
1081                 goto fail;
1082
1083         trigger = ieee80211_get_rx_led_name(sc->hw);
1084         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1085                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1086         ret = ath_register_led(sc, &sc->rx_led, trigger);
1087         sc->rx_led.led_type = ATH_LED_RX;
1088         if (ret)
1089                 goto fail;
1090
1091         return;
1092
1093 fail:
1094         ath_deinit_leds(sc);
1095 }
1096
1097 void ath_radio_enable(struct ath_softc *sc)
1098 {
1099         struct ath_hw *ah = sc->sc_ah;
1100         struct ieee80211_channel *channel = sc->hw->conf.channel;
1101         int r;
1102
1103         ath9k_ps_wakeup(sc);
1104         ath9k_hw_configpcipowersave(ah, 0);
1105
1106         spin_lock_bh(&sc->sc_resetlock);
1107         r = ath9k_hw_reset(ah, ah->curchan, false);
1108         if (r) {
1109                 DPRINTF(sc, ATH_DBG_FATAL,
1110                         "Unable to reset channel %u (%uMhz) ",
1111                         "reset status %d\n",
1112                         channel->center_freq, r);
1113         }
1114         spin_unlock_bh(&sc->sc_resetlock);
1115
1116         ath_update_txpow(sc);
1117         if (ath_startrecv(sc) != 0) {
1118                 DPRINTF(sc, ATH_DBG_FATAL,
1119                         "Unable to restart recv logic\n");
1120                 return;
1121         }
1122
1123         if (sc->sc_flags & SC_OP_BEACONS)
1124                 ath_beacon_config(sc, NULL);    /* restart beacons */
1125
1126         /* Re-Enable  interrupts */
1127         ath9k_hw_set_interrupts(ah, sc->imask);
1128
1129         /* Enable LED */
1130         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1131                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1132         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1133
1134         ieee80211_wake_queues(sc->hw);
1135         ath9k_ps_restore(sc);
1136 }
1137
1138 void ath_radio_disable(struct ath_softc *sc)
1139 {
1140         struct ath_hw *ah = sc->sc_ah;
1141         struct ieee80211_channel *channel = sc->hw->conf.channel;
1142         int r;
1143
1144         ath9k_ps_wakeup(sc);
1145         ieee80211_stop_queues(sc->hw);
1146
1147         /* Disable LED */
1148         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1149         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1150
1151         /* Disable interrupts */
1152         ath9k_hw_set_interrupts(ah, 0);
1153
1154         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1155         ath_stoprecv(sc);               /* turn off frame recv */
1156         ath_flushrecv(sc);              /* flush recv queue */
1157
1158         spin_lock_bh(&sc->sc_resetlock);
1159         r = ath9k_hw_reset(ah, ah->curchan, false);
1160         if (r) {
1161                 DPRINTF(sc, ATH_DBG_FATAL,
1162                         "Unable to reset channel %u (%uMhz) "
1163                         "reset status %d\n",
1164                         channel->center_freq, r);
1165         }
1166         spin_unlock_bh(&sc->sc_resetlock);
1167
1168         ath9k_hw_phy_disable(ah);
1169         ath9k_hw_configpcipowersave(ah, 1);
1170         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1171         ath9k_ps_restore(sc);
1172 }
1173
1174 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1175
1176 /*******************/
1177 /*      Rfkill     */
1178 /*******************/
1179
1180 static bool ath_is_rfkill_set(struct ath_softc *sc)
1181 {
1182         struct ath_hw *ah = sc->sc_ah;
1183
1184         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1185                                   ah->rfkill_polarity;
1186 }
1187
1188 /* h/w rfkill poll function */
1189 static void ath_rfkill_poll(struct work_struct *work)
1190 {
1191         struct ath_softc *sc = container_of(work, struct ath_softc,
1192                                             rf_kill.rfkill_poll.work);
1193         bool radio_on;
1194
1195         if (sc->sc_flags & SC_OP_INVALID)
1196                 return;
1197
1198         radio_on = !ath_is_rfkill_set(sc);
1199
1200         /*
1201          * enable/disable radio only when there is a
1202          * state change in RF switch
1203          */
1204         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1205                 enum rfkill_state state;
1206
1207                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1208                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1209                                 : RFKILL_STATE_HARD_BLOCKED;
1210                 } else if (radio_on) {
1211                         ath_radio_enable(sc);
1212                         state = RFKILL_STATE_UNBLOCKED;
1213                 } else {
1214                         ath_radio_disable(sc);
1215                         state = RFKILL_STATE_HARD_BLOCKED;
1216                 }
1217
1218                 if (state == RFKILL_STATE_HARD_BLOCKED)
1219                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1220                 else
1221                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1222
1223                 rfkill_force_state(sc->rf_kill.rfkill, state);
1224         }
1225
1226         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1227                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1228 }
1229
1230 /* s/w rfkill handler */
1231 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1232 {
1233         struct ath_softc *sc = data;
1234
1235         switch (state) {
1236         case RFKILL_STATE_SOFT_BLOCKED:
1237                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1238                     SC_OP_RFKILL_SW_BLOCKED)))
1239                         ath_radio_disable(sc);
1240                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1241                 return 0;
1242         case RFKILL_STATE_UNBLOCKED:
1243                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1244                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1245                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1246                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1247                                         "radio as it is disabled by h/w\n");
1248                                 return -EPERM;
1249                         }
1250                         ath_radio_enable(sc);
1251                 }
1252                 return 0;
1253         default:
1254                 return -EINVAL;
1255         }
1256 }
1257
1258 /* Init s/w rfkill */
1259 static int ath_init_sw_rfkill(struct ath_softc *sc)
1260 {
1261         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1262                                              RFKILL_TYPE_WLAN);
1263         if (!sc->rf_kill.rfkill) {
1264                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1265                 return -ENOMEM;
1266         }
1267
1268         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1269                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1270         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1271         sc->rf_kill.rfkill->data = sc;
1272         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1273         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1274
1275         return 0;
1276 }
1277
1278 /* Deinitialize rfkill */
1279 static void ath_deinit_rfkill(struct ath_softc *sc)
1280 {
1281         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1282                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1283
1284         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1285                 rfkill_unregister(sc->rf_kill.rfkill);
1286                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1287                 sc->rf_kill.rfkill = NULL;
1288         }
1289 }
1290
1291 static int ath_start_rfkill_poll(struct ath_softc *sc)
1292 {
1293         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1294                 queue_delayed_work(sc->hw->workqueue,
1295                                    &sc->rf_kill.rfkill_poll, 0);
1296
1297         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1298                 if (rfkill_register(sc->rf_kill.rfkill)) {
1299                         DPRINTF(sc, ATH_DBG_FATAL,
1300                                 "Unable to register rfkill\n");
1301                         rfkill_free(sc->rf_kill.rfkill);
1302
1303                         /* Deinitialize the device */
1304                         ath_cleanup(sc);
1305                         return -EIO;
1306                 } else {
1307                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1308                 }
1309         }
1310
1311         return 0;
1312 }
1313 #endif /* CONFIG_RFKILL */
1314
1315 void ath_cleanup(struct ath_softc *sc)
1316 {
1317         ath_detach(sc);
1318         free_irq(sc->irq, sc);
1319         ath_bus_cleanup(sc);
1320         kfree(sc->sec_wiphy);
1321         ieee80211_free_hw(sc->hw);
1322 }
1323
1324 void ath_detach(struct ath_softc *sc)
1325 {
1326         struct ieee80211_hw *hw = sc->hw;
1327         int i = 0;
1328
1329         ath9k_ps_wakeup(sc);
1330
1331         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1332
1333 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1334         ath_deinit_rfkill(sc);
1335 #endif
1336         ath_deinit_leds(sc);
1337         cancel_work_sync(&sc->chan_work);
1338         cancel_delayed_work_sync(&sc->wiphy_work);
1339
1340         for (i = 0; i < sc->num_sec_wiphy; i++) {
1341                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1342                 if (aphy == NULL)
1343                         continue;
1344                 sc->sec_wiphy[i] = NULL;
1345                 ieee80211_unregister_hw(aphy->hw);
1346                 ieee80211_free_hw(aphy->hw);
1347         }
1348         ieee80211_unregister_hw(hw);
1349         ath_rx_cleanup(sc);
1350         ath_tx_cleanup(sc);
1351
1352         tasklet_kill(&sc->intr_tq);
1353         tasklet_kill(&sc->bcon_tasklet);
1354
1355         if (!(sc->sc_flags & SC_OP_INVALID))
1356                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1357
1358         /* cleanup tx queues */
1359         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1360                 if (ATH_TXQ_SETUP(sc, i))
1361                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1362
1363         ath9k_hw_detach(sc->sc_ah);
1364         ath9k_exit_debug(sc);
1365         ath9k_ps_restore(sc);
1366 }
1367
1368 static int ath9k_reg_notifier(struct wiphy *wiphy,
1369                               struct regulatory_request *request)
1370 {
1371         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1372         struct ath_wiphy *aphy = hw->priv;
1373         struct ath_softc *sc = aphy->sc;
1374         struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1375
1376         return ath_reg_notifier_apply(wiphy, request, reg);
1377 }
1378
1379 static int ath_init(u16 devid, struct ath_softc *sc)
1380 {
1381         struct ath_hw *ah = NULL;
1382         int status;
1383         int error = 0, i;
1384         int csz = 0;
1385
1386         /* XXX: hardware will not be ready until ath_open() being called */
1387         sc->sc_flags |= SC_OP_INVALID;
1388
1389         if (ath9k_init_debug(sc) < 0)
1390                 printk(KERN_ERR "Unable to create debugfs files\n");
1391
1392         spin_lock_init(&sc->wiphy_lock);
1393         spin_lock_init(&sc->sc_resetlock);
1394         spin_lock_init(&sc->sc_serial_rw);
1395         mutex_init(&sc->mutex);
1396         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1397         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1398                      (unsigned long)sc);
1399
1400         /*
1401          * Cache line size is used to size and align various
1402          * structures used to communicate with the hardware.
1403          */
1404         ath_read_cachesize(sc, &csz);
1405         /* XXX assert csz is non-zero */
1406         sc->cachelsz = csz << 2;        /* convert to bytes */
1407
1408         ah = ath9k_hw_attach(devid, sc, &status);
1409         if (ah == NULL) {
1410                 DPRINTF(sc, ATH_DBG_FATAL,
1411                         "Unable to attach hardware; HAL status %d\n", status);
1412                 error = -ENXIO;
1413                 goto bad;
1414         }
1415         sc->sc_ah = ah;
1416
1417         /* Get the hardware key cache size. */
1418         sc->keymax = ah->caps.keycache_size;
1419         if (sc->keymax > ATH_KEYMAX) {
1420                 DPRINTF(sc, ATH_DBG_ANY,
1421                         "Warning, using only %u entries in %u key cache\n",
1422                         ATH_KEYMAX, sc->keymax);
1423                 sc->keymax = ATH_KEYMAX;
1424         }
1425
1426         /*
1427          * Reset the key cache since some parts do not
1428          * reset the contents on initial power up.
1429          */
1430         for (i = 0; i < sc->keymax; i++)
1431                 ath9k_hw_keyreset(ah, (u16) i);
1432
1433         if (error)
1434                 goto bad;
1435
1436         /* default to MONITOR mode */
1437         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1438
1439         /* Setup rate tables */
1440
1441         ath_rate_attach(sc);
1442         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1443         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1444
1445         /*
1446          * Allocate hardware transmit queues: one queue for
1447          * beacon frames and one data queue for each QoS
1448          * priority.  Note that the hal handles reseting
1449          * these queues at the needed time.
1450          */
1451         sc->beacon.beaconq = ath_beaconq_setup(ah);
1452         if (sc->beacon.beaconq == -1) {
1453                 DPRINTF(sc, ATH_DBG_FATAL,
1454                         "Unable to setup a beacon xmit queue\n");
1455                 error = -EIO;
1456                 goto bad2;
1457         }
1458         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1459         if (sc->beacon.cabq == NULL) {
1460                 DPRINTF(sc, ATH_DBG_FATAL,
1461                         "Unable to setup CAB xmit queue\n");
1462                 error = -EIO;
1463                 goto bad2;
1464         }
1465
1466         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1467         ath_cabq_update(sc);
1468
1469         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1470                 sc->tx.hwq_map[i] = -1;
1471
1472         /* Setup data queues */
1473         /* NB: ensure BK queue is the lowest priority h/w queue */
1474         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1475                 DPRINTF(sc, ATH_DBG_FATAL,
1476                         "Unable to setup xmit queue for BK traffic\n");
1477                 error = -EIO;
1478                 goto bad2;
1479         }
1480
1481         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1482                 DPRINTF(sc, ATH_DBG_FATAL,
1483                         "Unable to setup xmit queue for BE traffic\n");
1484                 error = -EIO;
1485                 goto bad2;
1486         }
1487         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1488                 DPRINTF(sc, ATH_DBG_FATAL,
1489                         "Unable to setup xmit queue for VI traffic\n");
1490                 error = -EIO;
1491                 goto bad2;
1492         }
1493         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1494                 DPRINTF(sc, ATH_DBG_FATAL,
1495                         "Unable to setup xmit queue for VO traffic\n");
1496                 error = -EIO;
1497                 goto bad2;
1498         }
1499
1500         /* Initializes the noise floor to a reasonable default value.
1501          * Later on this will be updated during ANI processing. */
1502
1503         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1504         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1505
1506         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1507                                    ATH9K_CIPHER_TKIP, NULL)) {
1508                 /*
1509                  * Whether we should enable h/w TKIP MIC.
1510                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1511                  * report WMM capable, so it's always safe to turn on
1512                  * TKIP MIC in this case.
1513                  */
1514                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1515                                        0, 1, NULL);
1516         }
1517
1518         /*
1519          * Check whether the separate key cache entries
1520          * are required to handle both tx+rx MIC keys.
1521          * With split mic keys the number of stations is limited
1522          * to 27 otherwise 59.
1523          */
1524         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1525                                    ATH9K_CIPHER_TKIP, NULL)
1526             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1527                                       ATH9K_CIPHER_MIC, NULL)
1528             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1529                                       0, NULL))
1530                 sc->splitmic = 1;
1531
1532         /* turn on mcast key search if possible */
1533         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1534                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1535                                              1, NULL);
1536
1537         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1538
1539         /* 11n Capabilities */
1540         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1541                 sc->sc_flags |= SC_OP_TXAGGR;
1542                 sc->sc_flags |= SC_OP_RXAGGR;
1543         }
1544
1545         sc->tx_chainmask = ah->caps.tx_chainmask;
1546         sc->rx_chainmask = ah->caps.rx_chainmask;
1547
1548         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1549         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1550
1551         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1552                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1553
1554         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1555
1556         /* initialize beacon slots */
1557         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1558                 sc->beacon.bslot[i] = NULL;
1559                 sc->beacon.bslot_aphy[i] = NULL;
1560         }
1561
1562         /* setup channels and rates */
1563
1564         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1565         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1566                 sc->rates[IEEE80211_BAND_2GHZ];
1567         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1568         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1569                 ARRAY_SIZE(ath9k_2ghz_chantable);
1570
1571         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1572                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1573                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1574                         sc->rates[IEEE80211_BAND_5GHZ];
1575                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1576                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1577                         ARRAY_SIZE(ath9k_5ghz_chantable);
1578         }
1579
1580         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1581                 ath9k_hw_btcoex_enable(sc->sc_ah);
1582
1583         return 0;
1584 bad2:
1585         /* cleanup tx queues */
1586         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1587                 if (ATH_TXQ_SETUP(sc, i))
1588                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1589 bad:
1590         if (ah)
1591                 ath9k_hw_detach(ah);
1592         ath9k_exit_debug(sc);
1593
1594         return error;
1595 }
1596
1597 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1598 {
1599         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1600                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1601                 IEEE80211_HW_SIGNAL_DBM |
1602                 IEEE80211_HW_AMPDU_AGGREGATION |
1603                 IEEE80211_HW_SUPPORTS_PS |
1604                 IEEE80211_HW_PS_NULLFUNC_STACK |
1605                 IEEE80211_HW_SPECTRUM_MGMT;
1606
1607         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1608                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1609
1610         hw->wiphy->interface_modes =
1611                 BIT(NL80211_IFTYPE_AP) |
1612                 BIT(NL80211_IFTYPE_STATION) |
1613                 BIT(NL80211_IFTYPE_ADHOC) |
1614                 BIT(NL80211_IFTYPE_MESH_POINT);
1615
1616         hw->queues = 4;
1617         hw->max_rates = 4;
1618         hw->channel_change_time = 5000;
1619         hw->max_listen_interval = 10;
1620         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1621         hw->sta_data_size = sizeof(struct ath_node);
1622         hw->vif_data_size = sizeof(struct ath_vif);
1623
1624         hw->rate_control_algorithm = "ath9k_rate_control";
1625
1626         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1627                 &sc->sbands[IEEE80211_BAND_2GHZ];
1628         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1629                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1630                         &sc->sbands[IEEE80211_BAND_5GHZ];
1631 }
1632
1633 int ath_attach(u16 devid, struct ath_softc *sc)
1634 {
1635         struct ieee80211_hw *hw = sc->hw;
1636         int error = 0, i;
1637         struct ath_regulatory *reg;
1638
1639         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1640
1641         error = ath_init(devid, sc);
1642         if (error != 0)
1643                 return error;
1644
1645         /* get mac address from hardware and set in mac80211 */
1646
1647         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1648
1649         ath_set_hw_capab(sc, hw);
1650
1651         error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1652                               ath9k_reg_notifier);
1653         if (error)
1654                 return error;
1655
1656         reg = &sc->sc_ah->regulatory;
1657
1658         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1659                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1660                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1661                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1662         }
1663
1664         /* initialize tx/rx engine */
1665         error = ath_tx_init(sc, ATH_TXBUF);
1666         if (error != 0)
1667                 goto error_attach;
1668
1669         error = ath_rx_init(sc, ATH_RXBUF);
1670         if (error != 0)
1671                 goto error_attach;
1672
1673 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1674         /* Initialze h/w Rfkill */
1675         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1676                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1677
1678         /* Initialize s/w rfkill */
1679         error = ath_init_sw_rfkill(sc);
1680         if (error)
1681                 goto error_attach;
1682 #endif
1683
1684         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1685         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1686         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1687
1688         error = ieee80211_register_hw(hw);
1689
1690         if (!ath_is_world_regd(reg)) {
1691                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1692                 if (error)
1693                         goto error_attach;
1694         }
1695
1696         /* Initialize LED control */
1697         ath_init_leds(sc);
1698
1699
1700         return 0;
1701
1702 error_attach:
1703         /* cleanup tx queues */
1704         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1705                 if (ATH_TXQ_SETUP(sc, i))
1706                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1707
1708         ath9k_hw_detach(sc->sc_ah);
1709         ath9k_exit_debug(sc);
1710
1711         return error;
1712 }
1713
1714 int ath_reset(struct ath_softc *sc, bool retry_tx)
1715 {
1716         struct ath_hw *ah = sc->sc_ah;
1717         struct ieee80211_hw *hw = sc->hw;
1718         int r;
1719
1720         ath9k_hw_set_interrupts(ah, 0);
1721         ath_drain_all_txq(sc, retry_tx);
1722         ath_stoprecv(sc);
1723         ath_flushrecv(sc);
1724
1725         spin_lock_bh(&sc->sc_resetlock);
1726         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1727         if (r)
1728                 DPRINTF(sc, ATH_DBG_FATAL,
1729                         "Unable to reset hardware; reset status %d\n", r);
1730         spin_unlock_bh(&sc->sc_resetlock);
1731
1732         if (ath_startrecv(sc) != 0)
1733                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1734
1735         /*
1736          * We may be doing a reset in response to a request
1737          * that changes the channel so update any state that
1738          * might change as a result.
1739          */
1740         ath_cache_conf_rate(sc, &hw->conf);
1741
1742         ath_update_txpow(sc);
1743
1744         if (sc->sc_flags & SC_OP_BEACONS)
1745                 ath_beacon_config(sc, NULL);    /* restart beacons */
1746
1747         ath9k_hw_set_interrupts(ah, sc->imask);
1748
1749         if (retry_tx) {
1750                 int i;
1751                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1752                         if (ATH_TXQ_SETUP(sc, i)) {
1753                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1754                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1755                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1756                         }
1757                 }
1758         }
1759
1760         return r;
1761 }
1762
1763 /*
1764  *  This function will allocate both the DMA descriptor structure, and the
1765  *  buffers it contains.  These are used to contain the descriptors used
1766  *  by the system.
1767 */
1768 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1769                       struct list_head *head, const char *name,
1770                       int nbuf, int ndesc)
1771 {
1772 #define DS2PHYS(_dd, _ds)                                               \
1773         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1774 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1775 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1776
1777         struct ath_desc *ds;
1778         struct ath_buf *bf;
1779         int i, bsize, error;
1780
1781         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1782                 name, nbuf, ndesc);
1783
1784         INIT_LIST_HEAD(head);
1785         /* ath_desc must be a multiple of DWORDs */
1786         if ((sizeof(struct ath_desc) % 4) != 0) {
1787                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1788                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1789                 error = -ENOMEM;
1790                 goto fail;
1791         }
1792
1793         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1794
1795         /*
1796          * Need additional DMA memory because we can't use
1797          * descriptors that cross the 4K page boundary. Assume
1798          * one skipped descriptor per 4K page.
1799          */
1800         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1801                 u32 ndesc_skipped =
1802                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1803                 u32 dma_len;
1804
1805                 while (ndesc_skipped) {
1806                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1807                         dd->dd_desc_len += dma_len;
1808
1809                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1810                 };
1811         }
1812
1813         /* allocate descriptors */
1814         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1815                                          &dd->dd_desc_paddr, GFP_KERNEL);
1816         if (dd->dd_desc == NULL) {
1817                 error = -ENOMEM;
1818                 goto fail;
1819         }
1820         ds = dd->dd_desc;
1821         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1822                 name, ds, (u32) dd->dd_desc_len,
1823                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1824
1825         /* allocate buffers */
1826         bsize = sizeof(struct ath_buf) * nbuf;
1827         bf = kzalloc(bsize, GFP_KERNEL);
1828         if (bf == NULL) {
1829                 error = -ENOMEM;
1830                 goto fail2;
1831         }
1832         dd->dd_bufptr = bf;
1833
1834         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1835                 bf->bf_desc = ds;
1836                 bf->bf_daddr = DS2PHYS(dd, ds);
1837
1838                 if (!(sc->sc_ah->caps.hw_caps &
1839                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1840                         /*
1841                          * Skip descriptor addresses which can cause 4KB
1842                          * boundary crossing (addr + length) with a 32 dword
1843                          * descriptor fetch.
1844                          */
1845                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1846                                 ASSERT((caddr_t) bf->bf_desc <
1847                                        ((caddr_t) dd->dd_desc +
1848                                         dd->dd_desc_len));
1849
1850                                 ds += ndesc;
1851                                 bf->bf_desc = ds;
1852                                 bf->bf_daddr = DS2PHYS(dd, ds);
1853                         }
1854                 }
1855                 list_add_tail(&bf->list, head);
1856         }
1857         return 0;
1858 fail2:
1859         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1860                           dd->dd_desc_paddr);
1861 fail:
1862         memset(dd, 0, sizeof(*dd));
1863         return error;
1864 #undef ATH_DESC_4KB_BOUND_CHECK
1865 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1866 #undef DS2PHYS
1867 }
1868
1869 void ath_descdma_cleanup(struct ath_softc *sc,
1870                          struct ath_descdma *dd,
1871                          struct list_head *head)
1872 {
1873         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1874                           dd->dd_desc_paddr);
1875
1876         INIT_LIST_HEAD(head);
1877         kfree(dd->dd_bufptr);
1878         memset(dd, 0, sizeof(*dd));
1879 }
1880
1881 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1882 {
1883         int qnum;
1884
1885         switch (queue) {
1886         case 0:
1887                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1888                 break;
1889         case 1:
1890                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1891                 break;
1892         case 2:
1893                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1894                 break;
1895         case 3:
1896                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1897                 break;
1898         default:
1899                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1900                 break;
1901         }
1902
1903         return qnum;
1904 }
1905
1906 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1907 {
1908         int qnum;
1909
1910         switch (queue) {
1911         case ATH9K_WME_AC_VO:
1912                 qnum = 0;
1913                 break;
1914         case ATH9K_WME_AC_VI:
1915                 qnum = 1;
1916                 break;
1917         case ATH9K_WME_AC_BE:
1918                 qnum = 2;
1919                 break;
1920         case ATH9K_WME_AC_BK:
1921                 qnum = 3;
1922                 break;
1923         default:
1924                 qnum = -1;
1925                 break;
1926         }
1927
1928         return qnum;
1929 }
1930
1931 /* XXX: Remove me once we don't depend on ath9k_channel for all
1932  * this redundant data */
1933 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1934                            struct ath9k_channel *ichan)
1935 {
1936         struct ieee80211_channel *chan = hw->conf.channel;
1937         struct ieee80211_conf *conf = &hw->conf;
1938
1939         ichan->channel = chan->center_freq;
1940         ichan->chan = chan;
1941
1942         if (chan->band == IEEE80211_BAND_2GHZ) {
1943                 ichan->chanmode = CHANNEL_G;
1944                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1945         } else {
1946                 ichan->chanmode = CHANNEL_A;
1947                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1948         }
1949
1950         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1951
1952         if (conf_is_ht(conf)) {
1953                 if (conf_is_ht40(conf))
1954                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1955
1956                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1957                                             conf->channel_type);
1958         }
1959 }
1960
1961 /**********************/
1962 /* mac80211 callbacks */
1963 /**********************/
1964
1965 static int ath9k_start(struct ieee80211_hw *hw)
1966 {
1967         struct ath_wiphy *aphy = hw->priv;
1968         struct ath_softc *sc = aphy->sc;
1969         struct ieee80211_channel *curchan = hw->conf.channel;
1970         struct ath9k_channel *init_channel;
1971         int r, pos;
1972
1973         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1974                 "initial channel: %d MHz\n", curchan->center_freq);
1975
1976         mutex_lock(&sc->mutex);
1977
1978         if (ath9k_wiphy_started(sc)) {
1979                 if (sc->chan_idx == curchan->hw_value) {
1980                         /*
1981                          * Already on the operational channel, the new wiphy
1982                          * can be marked active.
1983                          */
1984                         aphy->state = ATH_WIPHY_ACTIVE;
1985                         ieee80211_wake_queues(hw);
1986                 } else {
1987                         /*
1988                          * Another wiphy is on another channel, start the new
1989                          * wiphy in paused state.
1990                          */
1991                         aphy->state = ATH_WIPHY_PAUSED;
1992                         ieee80211_stop_queues(hw);
1993                 }
1994                 mutex_unlock(&sc->mutex);
1995                 return 0;
1996         }
1997         aphy->state = ATH_WIPHY_ACTIVE;
1998
1999         /* setup initial channel */
2000
2001         pos = curchan->hw_value;
2002
2003         sc->chan_idx = pos;
2004         init_channel = &sc->sc_ah->channels[pos];
2005         ath9k_update_ichannel(sc, hw, init_channel);
2006
2007         /* Reset SERDES registers */
2008         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
2009
2010         /*
2011          * The basic interface to setting the hardware in a good
2012          * state is ``reset''.  On return the hardware is known to
2013          * be powered up and with interrupts disabled.  This must
2014          * be followed by initialization of the appropriate bits
2015          * and then setup of the interrupt mask.
2016          */
2017         spin_lock_bh(&sc->sc_resetlock);
2018         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2019         if (r) {
2020                 DPRINTF(sc, ATH_DBG_FATAL,
2021                         "Unable to reset hardware; reset status %d "
2022                         "(freq %u MHz)\n", r,
2023                         curchan->center_freq);
2024                 spin_unlock_bh(&sc->sc_resetlock);
2025                 goto mutex_unlock;
2026         }
2027         spin_unlock_bh(&sc->sc_resetlock);
2028
2029         /*
2030          * This is needed only to setup initial state
2031          * but it's best done after a reset.
2032          */
2033         ath_update_txpow(sc);
2034
2035         /*
2036          * Setup the hardware after reset:
2037          * The receive engine is set going.
2038          * Frame transmit is handled entirely
2039          * in the frame output path; there's nothing to do
2040          * here except setup the interrupt mask.
2041          */
2042         if (ath_startrecv(sc) != 0) {
2043                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2044                 r = -EIO;
2045                 goto mutex_unlock;
2046         }
2047
2048         /* Setup our intr mask. */
2049         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2050                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2051                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2052
2053         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2054                 sc->imask |= ATH9K_INT_GTT;
2055
2056         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2057                 sc->imask |= ATH9K_INT_CST;
2058
2059         ath_cache_conf_rate(sc, &hw->conf);
2060
2061         sc->sc_flags &= ~SC_OP_INVALID;
2062
2063         /* Disable BMISS interrupt when we're not associated */
2064         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2065         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2066
2067         ieee80211_wake_queues(hw);
2068
2069 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2070         r = ath_start_rfkill_poll(sc);
2071 #endif
2072
2073 mutex_unlock:
2074         mutex_unlock(&sc->mutex);
2075
2076         return r;
2077 }
2078
2079 static int ath9k_tx(struct ieee80211_hw *hw,
2080                     struct sk_buff *skb)
2081 {
2082         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2083         struct ath_wiphy *aphy = hw->priv;
2084         struct ath_softc *sc = aphy->sc;
2085         struct ath_tx_control txctl;
2086         int hdrlen, padsize;
2087
2088         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2089                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2090                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2091                 goto exit;
2092         }
2093
2094         if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
2095                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2096                 /*
2097                  * mac80211 does not set PM field for normal data frames, so we
2098                  * need to update that based on the current PS mode.
2099                  */
2100                 if (ieee80211_is_data(hdr->frame_control) &&
2101                     !ieee80211_is_nullfunc(hdr->frame_control) &&
2102                     !ieee80211_has_pm(hdr->frame_control)) {
2103                         DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2104                                 "while in PS mode\n");
2105                         hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2106                 }
2107         }
2108
2109         if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2110                 /*
2111                  * We are using PS-Poll and mac80211 can request TX while in
2112                  * power save mode. Need to wake up hardware for the TX to be
2113                  * completed and if needed, also for RX of buffered frames.
2114                  */
2115                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2116                 ath9k_ps_wakeup(sc);
2117                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2118                 if (ieee80211_is_pspoll(hdr->frame_control)) {
2119                         DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2120                                 "buffered frame\n");
2121                         sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2122                 } else {
2123                         DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2124                         sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2125                 }
2126                 /*
2127                  * The actual restore operation will happen only after
2128                  * the sc_flags bit is cleared. We are just dropping
2129                  * the ps_usecount here.
2130                  */
2131                 ath9k_ps_restore(sc);
2132         }
2133
2134         memset(&txctl, 0, sizeof(struct ath_tx_control));
2135
2136         /*
2137          * As a temporary workaround, assign seq# here; this will likely need
2138          * to be cleaned up to work better with Beacon transmission and virtual
2139          * BSSes.
2140          */
2141         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2142                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2143                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2144                         sc->tx.seq_no += 0x10;
2145                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2146                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2147         }
2148
2149         /* Add the padding after the header if this is not already done */
2150         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2151         if (hdrlen & 3) {
2152                 padsize = hdrlen % 4;
2153                 if (skb_headroom(skb) < padsize)
2154                         return -1;
2155                 skb_push(skb, padsize);
2156                 memmove(skb->data, skb->data + padsize, hdrlen);
2157         }
2158
2159         /* Check if a tx queue is available */
2160
2161         txctl.txq = ath_test_get_txq(sc, skb);
2162         if (!txctl.txq)
2163                 goto exit;
2164
2165         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2166
2167         if (ath_tx_start(hw, skb, &txctl) != 0) {
2168                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2169                 goto exit;
2170         }
2171
2172         return 0;
2173 exit:
2174         dev_kfree_skb_any(skb);
2175         return 0;
2176 }
2177
2178 static void ath9k_stop(struct ieee80211_hw *hw)
2179 {
2180         struct ath_wiphy *aphy = hw->priv;
2181         struct ath_softc *sc = aphy->sc;
2182
2183         aphy->state = ATH_WIPHY_INACTIVE;
2184
2185         if (sc->sc_flags & SC_OP_INVALID) {
2186                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2187                 return;
2188         }
2189
2190         mutex_lock(&sc->mutex);
2191
2192         ieee80211_stop_queues(hw);
2193
2194         if (ath9k_wiphy_started(sc)) {
2195                 mutex_unlock(&sc->mutex);
2196                 return; /* another wiphy still in use */
2197         }
2198
2199         /* make sure h/w will not generate any interrupt
2200          * before setting the invalid flag. */
2201         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2202
2203         if (!(sc->sc_flags & SC_OP_INVALID)) {
2204                 ath_drain_all_txq(sc, false);
2205                 ath_stoprecv(sc);
2206                 ath9k_hw_phy_disable(sc->sc_ah);
2207         } else
2208                 sc->rx.rxlink = NULL;
2209
2210 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2211         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2212                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2213 #endif
2214         /* disable HAL and put h/w to sleep */
2215         ath9k_hw_disable(sc->sc_ah);
2216         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2217
2218         sc->sc_flags |= SC_OP_INVALID;
2219
2220         mutex_unlock(&sc->mutex);
2221
2222         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2223 }
2224
2225 static int ath9k_add_interface(struct ieee80211_hw *hw,
2226                                struct ieee80211_if_init_conf *conf)
2227 {
2228         struct ath_wiphy *aphy = hw->priv;
2229         struct ath_softc *sc = aphy->sc;
2230         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2231         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2232         int ret = 0;
2233
2234         mutex_lock(&sc->mutex);
2235
2236         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2237             sc->nvifs > 0) {
2238                 ret = -ENOBUFS;
2239                 goto out;
2240         }
2241
2242         switch (conf->type) {
2243         case NL80211_IFTYPE_STATION:
2244                 ic_opmode = NL80211_IFTYPE_STATION;
2245                 break;
2246         case NL80211_IFTYPE_ADHOC:
2247         case NL80211_IFTYPE_AP:
2248         case NL80211_IFTYPE_MESH_POINT:
2249                 if (sc->nbcnvifs >= ATH_BCBUF) {
2250                         ret = -ENOBUFS;
2251                         goto out;
2252                 }
2253                 ic_opmode = conf->type;
2254                 break;
2255         default:
2256                 DPRINTF(sc, ATH_DBG_FATAL,
2257                         "Interface type %d not yet supported\n", conf->type);
2258                 ret = -EOPNOTSUPP;
2259                 goto out;
2260         }
2261
2262         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2263
2264         /* Set the VIF opmode */
2265         avp->av_opmode = ic_opmode;
2266         avp->av_bslot = -1;
2267
2268         sc->nvifs++;
2269
2270         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2271                 ath9k_set_bssid_mask(hw);
2272
2273         if (sc->nvifs > 1)
2274                 goto out; /* skip global settings for secondary vif */
2275
2276         if (ic_opmode == NL80211_IFTYPE_AP) {
2277                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2278                 sc->sc_flags |= SC_OP_TSF_RESET;
2279         }
2280
2281         /* Set the device opmode */
2282         sc->sc_ah->opmode = ic_opmode;
2283
2284         /*
2285          * Enable MIB interrupts when there are hardware phy counters.
2286          * Note we only do this (at the moment) for station mode.
2287          */
2288         if ((conf->type == NL80211_IFTYPE_STATION) ||
2289             (conf->type == NL80211_IFTYPE_ADHOC) ||
2290             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2291                 if (ath9k_hw_phycounters(sc->sc_ah))
2292                         sc->imask |= ATH9K_INT_MIB;
2293                 sc->imask |= ATH9K_INT_TSFOOR;
2294         }
2295
2296         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2297
2298         if (conf->type == NL80211_IFTYPE_AP)
2299                 ath_start_ani(sc);
2300
2301 out:
2302         mutex_unlock(&sc->mutex);
2303         return ret;
2304 }
2305
2306 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2307                                    struct ieee80211_if_init_conf *conf)
2308 {
2309         struct ath_wiphy *aphy = hw->priv;
2310         struct ath_softc *sc = aphy->sc;
2311         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2312         int i;
2313
2314         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2315
2316         mutex_lock(&sc->mutex);
2317
2318         /* Stop ANI */
2319         del_timer_sync(&sc->ani.timer);
2320
2321         /* Reclaim beacon resources */
2322         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2323             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2324             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2325                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2326                 ath_beacon_return(sc, avp);
2327         }
2328
2329         sc->sc_flags &= ~SC_OP_BEACONS;
2330
2331         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2332                 if (sc->beacon.bslot[i] == conf->vif) {
2333                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2334                                "slot\n", __func__);
2335                         sc->beacon.bslot[i] = NULL;
2336                         sc->beacon.bslot_aphy[i] = NULL;
2337                 }
2338         }
2339
2340         sc->nvifs--;
2341
2342         mutex_unlock(&sc->mutex);
2343 }
2344
2345 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2346 {
2347         struct ath_wiphy *aphy = hw->priv;
2348         struct ath_softc *sc = aphy->sc;
2349         struct ieee80211_conf *conf = &hw->conf;
2350         struct ath_hw *ah = sc->sc_ah;
2351
2352         mutex_lock(&sc->mutex);
2353
2354         if (changed & IEEE80211_CONF_CHANGE_PS) {
2355                 if (conf->flags & IEEE80211_CONF_PS) {
2356                         if (!(ah->caps.hw_caps &
2357                               ATH9K_HW_CAP_AUTOSLEEP)) {
2358                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2359                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2360                                         ath9k_hw_set_interrupts(sc->sc_ah,
2361                                                         sc->imask);
2362                                 }
2363                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2364                         }
2365                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2366                 } else {
2367                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2368                         if (!(ah->caps.hw_caps &
2369                               ATH9K_HW_CAP_AUTOSLEEP)) {
2370                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2371                                 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2372                                                   SC_OP_WAIT_FOR_CAB |
2373                                                   SC_OP_WAIT_FOR_PSPOLL_DATA |
2374                                                   SC_OP_WAIT_FOR_TX_ACK);
2375                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2376                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2377                                         ath9k_hw_set_interrupts(sc->sc_ah,
2378                                                         sc->imask);
2379                                 }
2380                         }
2381                 }
2382         }
2383
2384         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2385                 struct ieee80211_channel *curchan = hw->conf.channel;
2386                 int pos = curchan->hw_value;
2387
2388                 aphy->chan_idx = pos;
2389                 aphy->chan_is_ht = conf_is_ht(conf);
2390
2391                 if (aphy->state == ATH_WIPHY_SCAN ||
2392                     aphy->state == ATH_WIPHY_ACTIVE)
2393                         ath9k_wiphy_pause_all_forced(sc, aphy);
2394                 else {
2395                         /*
2396                          * Do not change operational channel based on a paused
2397                          * wiphy changes.
2398                          */
2399                         goto skip_chan_change;
2400                 }
2401
2402                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2403                         curchan->center_freq);
2404
2405                 /* XXX: remove me eventualy */
2406                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2407
2408                 ath_update_chainmask(sc, conf_is_ht(conf));
2409
2410                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2411                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2412                         mutex_unlock(&sc->mutex);
2413                         return -EINVAL;
2414                 }
2415         }
2416
2417 skip_chan_change:
2418         if (changed & IEEE80211_CONF_CHANGE_POWER)
2419                 sc->config.txpowlimit = 2 * conf->power_level;
2420
2421         mutex_unlock(&sc->mutex);
2422
2423         return 0;
2424 }
2425
2426 #define SUPPORTED_FILTERS                       \
2427         (FIF_PROMISC_IN_BSS |                   \
2428         FIF_ALLMULTI |                          \
2429         FIF_CONTROL |                           \
2430         FIF_OTHER_BSS |                         \
2431         FIF_BCN_PRBRESP_PROMISC |               \
2432         FIF_FCSFAIL)
2433
2434 /* FIXME: sc->sc_full_reset ? */
2435 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2436                                    unsigned int changed_flags,
2437                                    unsigned int *total_flags,
2438                                    int mc_count,
2439                                    struct dev_mc_list *mclist)
2440 {
2441         struct ath_wiphy *aphy = hw->priv;
2442         struct ath_softc *sc = aphy->sc;
2443         u32 rfilt;
2444
2445         changed_flags &= SUPPORTED_FILTERS;
2446         *total_flags &= SUPPORTED_FILTERS;
2447
2448         sc->rx.rxfilter = *total_flags;
2449         ath9k_ps_wakeup(sc);
2450         rfilt = ath_calcrxfilter(sc);
2451         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2452         ath9k_ps_restore(sc);
2453
2454         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2455 }
2456
2457 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2458                              struct ieee80211_vif *vif,
2459                              enum sta_notify_cmd cmd,
2460                              struct ieee80211_sta *sta)
2461 {
2462         struct ath_wiphy *aphy = hw->priv;
2463         struct ath_softc *sc = aphy->sc;
2464
2465         switch (cmd) {
2466         case STA_NOTIFY_ADD:
2467                 ath_node_attach(sc, sta);
2468                 break;
2469         case STA_NOTIFY_REMOVE:
2470                 ath_node_detach(sc, sta);
2471                 break;
2472         default:
2473                 break;
2474         }
2475 }
2476
2477 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2478                          const struct ieee80211_tx_queue_params *params)
2479 {
2480         struct ath_wiphy *aphy = hw->priv;
2481         struct ath_softc *sc = aphy->sc;
2482         struct ath9k_tx_queue_info qi;
2483         int ret = 0, qnum;
2484
2485         if (queue >= WME_NUM_AC)
2486                 return 0;
2487
2488         mutex_lock(&sc->mutex);
2489
2490         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2491
2492         qi.tqi_aifs = params->aifs;
2493         qi.tqi_cwmin = params->cw_min;
2494         qi.tqi_cwmax = params->cw_max;
2495         qi.tqi_burstTime = params->txop;
2496         qnum = ath_get_hal_qnum(queue, sc);
2497
2498         DPRINTF(sc, ATH_DBG_CONFIG,
2499                 "Configure tx [queue/halq] [%d/%d],  "
2500                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2501                 queue, qnum, params->aifs, params->cw_min,
2502                 params->cw_max, params->txop);
2503
2504         ret = ath_txq_update(sc, qnum, &qi);
2505         if (ret)
2506                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2507
2508         mutex_unlock(&sc->mutex);
2509
2510         return ret;
2511 }
2512
2513 static int ath9k_set_key(struct ieee80211_hw *hw,
2514                          enum set_key_cmd cmd,
2515                          struct ieee80211_vif *vif,
2516                          struct ieee80211_sta *sta,
2517                          struct ieee80211_key_conf *key)
2518 {
2519         struct ath_wiphy *aphy = hw->priv;
2520         struct ath_softc *sc = aphy->sc;
2521         int ret = 0;
2522
2523         if (modparam_nohwcrypt)
2524                 return -ENOSPC;
2525
2526         mutex_lock(&sc->mutex);
2527         ath9k_ps_wakeup(sc);
2528         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2529
2530         switch (cmd) {
2531         case SET_KEY:
2532                 ret = ath_key_config(sc, vif, sta, key);
2533                 if (ret >= 0) {
2534                         key->hw_key_idx = ret;
2535                         /* push IV and Michael MIC generation to stack */
2536                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2537                         if (key->alg == ALG_TKIP)
2538                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2539                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2540                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2541                         ret = 0;
2542                 }
2543                 break;
2544         case DISABLE_KEY:
2545                 ath_key_delete(sc, key);
2546                 break;
2547         default:
2548                 ret = -EINVAL;
2549         }
2550
2551         ath9k_ps_restore(sc);
2552         mutex_unlock(&sc->mutex);
2553
2554         return ret;
2555 }
2556
2557 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2558                                    struct ieee80211_vif *vif,
2559                                    struct ieee80211_bss_conf *bss_conf,
2560                                    u32 changed)
2561 {
2562         struct ath_wiphy *aphy = hw->priv;
2563         struct ath_softc *sc = aphy->sc;
2564         struct ath_hw *ah = sc->sc_ah;
2565         struct ath_vif *avp = (void *)vif->drv_priv;
2566         u32 rfilt = 0;
2567         int error, i;
2568
2569         mutex_lock(&sc->mutex);
2570
2571         /*
2572          * TODO: Need to decide which hw opmode to use for
2573          *       multi-interface cases
2574          * XXX: This belongs into add_interface!
2575          */
2576         if (vif->type == NL80211_IFTYPE_AP &&
2577             ah->opmode != NL80211_IFTYPE_AP) {
2578                 ah->opmode = NL80211_IFTYPE_STATION;
2579                 ath9k_hw_setopmode(ah);
2580                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2581                 sc->curaid = 0;
2582                 ath9k_hw_write_associd(sc);
2583                 /* Request full reset to get hw opmode changed properly */
2584                 sc->sc_flags |= SC_OP_FULL_RESET;
2585         }
2586
2587         if ((changed & BSS_CHANGED_BSSID) &&
2588             !is_zero_ether_addr(bss_conf->bssid)) {
2589                 switch (vif->type) {
2590                 case NL80211_IFTYPE_STATION:
2591                 case NL80211_IFTYPE_ADHOC:
2592                 case NL80211_IFTYPE_MESH_POINT:
2593                         /* Set BSSID */
2594                         memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2595                         memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2596                         sc->curaid = 0;
2597                         ath9k_hw_write_associd(sc);
2598
2599                         /* Set aggregation protection mode parameters */
2600                         sc->config.ath_aggr_prot = 0;
2601
2602                         DPRINTF(sc, ATH_DBG_CONFIG,
2603                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2604                                 rfilt, sc->curbssid, sc->curaid);
2605
2606                         /* need to reconfigure the beacon */
2607                         sc->sc_flags &= ~SC_OP_BEACONS ;
2608
2609                         break;
2610                 default:
2611                         break;
2612                 }
2613         }
2614
2615         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2616             (vif->type == NL80211_IFTYPE_AP) ||
2617             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2618                 if ((changed & BSS_CHANGED_BEACON) ||
2619                     (changed & BSS_CHANGED_BEACON_ENABLED &&
2620                      bss_conf->enable_beacon)) {
2621                         /*
2622                          * Allocate and setup the beacon frame.
2623                          *
2624                          * Stop any previous beacon DMA.  This may be
2625                          * necessary, for example, when an ibss merge
2626                          * causes reconfiguration; we may be called
2627                          * with beacon transmission active.
2628                          */
2629                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2630
2631                         error = ath_beacon_alloc(aphy, vif);
2632                         if (!error)
2633                                 ath_beacon_config(sc, vif);
2634                 }
2635         }
2636
2637         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2638         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2639                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2640                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2641                                 ath9k_hw_keysetmac(sc->sc_ah,
2642                                                    (u16)i,
2643                                                    sc->curbssid);
2644         }
2645
2646         /* Only legacy IBSS for now */
2647         if (vif->type == NL80211_IFTYPE_ADHOC)
2648                 ath_update_chainmask(sc, 0);
2649
2650         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2651                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2652                         bss_conf->use_short_preamble);
2653                 if (bss_conf->use_short_preamble)
2654                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2655                 else
2656                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2657         }
2658
2659         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2660                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2661                         bss_conf->use_cts_prot);
2662                 if (bss_conf->use_cts_prot &&
2663                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2664                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2665                 else
2666                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2667         }
2668
2669         if (changed & BSS_CHANGED_ASSOC) {
2670                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2671                         bss_conf->assoc);
2672                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2673         }
2674
2675         /*
2676          * The HW TSF has to be reset when the beacon interval changes.
2677          * We set the flag here, and ath_beacon_config_ap() would take this
2678          * into account when it gets called through the subsequent
2679          * config_interface() call - with IFCC_BEACON in the changed field.
2680          */
2681
2682         if (changed & BSS_CHANGED_BEACON_INT) {
2683                 sc->sc_flags |= SC_OP_TSF_RESET;
2684                 sc->beacon_interval = bss_conf->beacon_int;
2685         }
2686
2687         mutex_unlock(&sc->mutex);
2688 }
2689
2690 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2691 {
2692         u64 tsf;
2693         struct ath_wiphy *aphy = hw->priv;
2694         struct ath_softc *sc = aphy->sc;
2695
2696         mutex_lock(&sc->mutex);
2697         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2698         mutex_unlock(&sc->mutex);
2699
2700         return tsf;
2701 }
2702
2703 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2704 {
2705         struct ath_wiphy *aphy = hw->priv;
2706         struct ath_softc *sc = aphy->sc;
2707
2708         mutex_lock(&sc->mutex);
2709         ath9k_hw_settsf64(sc->sc_ah, tsf);
2710         mutex_unlock(&sc->mutex);
2711 }
2712
2713 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2714 {
2715         struct ath_wiphy *aphy = hw->priv;
2716         struct ath_softc *sc = aphy->sc;
2717
2718         mutex_lock(&sc->mutex);
2719         ath9k_hw_reset_tsf(sc->sc_ah);
2720         mutex_unlock(&sc->mutex);
2721 }
2722
2723 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2724                               enum ieee80211_ampdu_mlme_action action,
2725                               struct ieee80211_sta *sta,
2726                               u16 tid, u16 *ssn)
2727 {
2728         struct ath_wiphy *aphy = hw->priv;
2729         struct ath_softc *sc = aphy->sc;
2730         int ret = 0;
2731
2732         switch (action) {
2733         case IEEE80211_AMPDU_RX_START:
2734                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2735                         ret = -ENOTSUPP;
2736                 break;
2737         case IEEE80211_AMPDU_RX_STOP:
2738                 break;
2739         case IEEE80211_AMPDU_TX_START:
2740                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2741                 if (ret < 0)
2742                         DPRINTF(sc, ATH_DBG_FATAL,
2743                                 "Unable to start TX aggregation\n");
2744                 else
2745                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2746                 break;
2747         case IEEE80211_AMPDU_TX_STOP:
2748                 ret = ath_tx_aggr_stop(sc, sta, tid);
2749                 if (ret < 0)
2750                         DPRINTF(sc, ATH_DBG_FATAL,
2751                                 "Unable to stop TX aggregation\n");
2752
2753                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2754                 break;
2755         case IEEE80211_AMPDU_TX_OPERATIONAL:
2756                 ath_tx_aggr_resume(sc, sta, tid);
2757                 break;
2758         default:
2759                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2760         }
2761
2762         return ret;
2763 }
2764
2765 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2766 {
2767         struct ath_wiphy *aphy = hw->priv;
2768         struct ath_softc *sc = aphy->sc;
2769
2770         if (ath9k_wiphy_scanning(sc)) {
2771                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2772                        "same time\n");
2773                 /*
2774                  * Do not allow the concurrent scanning state for now. This
2775                  * could be improved with scanning control moved into ath9k.
2776                  */
2777                 return;
2778         }
2779
2780         aphy->state = ATH_WIPHY_SCAN;
2781         ath9k_wiphy_pause_all_forced(sc, aphy);
2782
2783         mutex_lock(&sc->mutex);
2784         sc->sc_flags |= SC_OP_SCANNING;
2785         mutex_unlock(&sc->mutex);
2786 }
2787
2788 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2789 {
2790         struct ath_wiphy *aphy = hw->priv;
2791         struct ath_softc *sc = aphy->sc;
2792
2793         mutex_lock(&sc->mutex);
2794         aphy->state = ATH_WIPHY_ACTIVE;
2795         sc->sc_flags &= ~SC_OP_SCANNING;
2796         sc->sc_flags |= SC_OP_FULL_RESET;
2797         mutex_unlock(&sc->mutex);
2798 }
2799
2800 struct ieee80211_ops ath9k_ops = {
2801         .tx                 = ath9k_tx,
2802         .start              = ath9k_start,
2803         .stop               = ath9k_stop,
2804         .add_interface      = ath9k_add_interface,
2805         .remove_interface   = ath9k_remove_interface,
2806         .config             = ath9k_config,
2807         .configure_filter   = ath9k_configure_filter,
2808         .sta_notify         = ath9k_sta_notify,
2809         .conf_tx            = ath9k_conf_tx,
2810         .bss_info_changed   = ath9k_bss_info_changed,
2811         .set_key            = ath9k_set_key,
2812         .get_tsf            = ath9k_get_tsf,
2813         .set_tsf            = ath9k_set_tsf,
2814         .reset_tsf          = ath9k_reset_tsf,
2815         .ampdu_action       = ath9k_ampdu_action,
2816         .sw_scan_start      = ath9k_sw_scan_start,
2817         .sw_scan_complete   = ath9k_sw_scan_complete,
2818 };
2819
2820 static struct {
2821         u32 version;
2822         const char * name;
2823 } ath_mac_bb_names[] = {
2824         { AR_SREV_VERSION_5416_PCI,     "5416" },
2825         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2826         { AR_SREV_VERSION_9100,         "9100" },
2827         { AR_SREV_VERSION_9160,         "9160" },
2828         { AR_SREV_VERSION_9280,         "9280" },
2829         { AR_SREV_VERSION_9285,         "9285" }
2830 };
2831
2832 static struct {
2833         u16 version;
2834         const char * name;
2835 } ath_rf_names[] = {
2836         { 0,                            "5133" },
2837         { AR_RAD5133_SREV_MAJOR,        "5133" },
2838         { AR_RAD5122_SREV_MAJOR,        "5122" },
2839         { AR_RAD2133_SREV_MAJOR,        "2133" },
2840         { AR_RAD2122_SREV_MAJOR,        "2122" }
2841 };
2842
2843 /*
2844  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2845  */
2846 const char *
2847 ath_mac_bb_name(u32 mac_bb_version)
2848 {
2849         int i;
2850
2851         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2852                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2853                         return ath_mac_bb_names[i].name;
2854                 }
2855         }
2856
2857         return "????";
2858 }
2859
2860 /*
2861  * Return the RF name. "????" is returned if the RF is unknown.
2862  */
2863 const char *
2864 ath_rf_name(u16 rf_version)
2865 {
2866         int i;
2867
2868         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2869                 if (ath_rf_names[i].version == rf_version) {
2870                         return ath_rf_names[i].name;
2871                 }
2872         }
2873
2874         return "????";
2875 }
2876
2877 static int __init ath9k_init(void)
2878 {
2879         int error;
2880
2881         /* Register rate control algorithm */
2882         error = ath_rate_control_register();
2883         if (error != 0) {
2884                 printk(KERN_ERR
2885                         "ath9k: Unable to register rate control "
2886                         "algorithm: %d\n",
2887                         error);
2888                 goto err_out;
2889         }
2890
2891         error = ath9k_debug_create_root();
2892         if (error) {
2893                 printk(KERN_ERR
2894                         "ath9k: Unable to create debugfs root: %d\n",
2895                         error);
2896                 goto err_rate_unregister;
2897         }
2898
2899         error = ath_pci_init();
2900         if (error < 0) {
2901                 printk(KERN_ERR
2902                         "ath9k: No PCI devices found, driver not installed.\n");
2903                 error = -ENODEV;
2904                 goto err_remove_root;
2905         }
2906
2907         error = ath_ahb_init();
2908         if (error < 0) {
2909                 error = -ENODEV;
2910                 goto err_pci_exit;
2911         }
2912
2913         return 0;
2914
2915  err_pci_exit:
2916         ath_pci_exit();
2917
2918  err_remove_root:
2919         ath9k_debug_remove_root();
2920  err_rate_unregister:
2921         ath_rate_control_unregister();
2922  err_out:
2923         return error;
2924 }
2925 module_init(ath9k_init);
2926
2927 static void __exit ath9k_exit(void)
2928 {
2929         ath_ahb_exit();
2930         ath_pci_exit();
2931         ath9k_debug_remove_root();
2932         ath_rate_control_unregister();
2933         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2934 }
2935 module_exit(ath9k_exit);