Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / main.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
19
20 #define ATH_PCI_VERSION "0.1"
21
22 static char *dev_info = "ath9k";
23
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
28
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
32
33 /* We use the hw_value as an index into our private channel structure */
34
35 #define CHAN2G(_freq, _idx)  { \
36         .center_freq = (_freq), \
37         .hw_value = (_idx), \
38         .max_power = 30, \
39 }
40
41 #define CHAN5G(_freq, _idx) { \
42         .band = IEEE80211_BAND_5GHZ, \
43         .center_freq = (_freq), \
44         .hw_value = (_idx), \
45         .max_power = 30, \
46 }
47
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49  * on 5 MHz steps, we support the channels which we know
50  * we have calibration data for all cards though to make
51  * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53         CHAN2G(2412, 0), /* Channel 1 */
54         CHAN2G(2417, 1), /* Channel 2 */
55         CHAN2G(2422, 2), /* Channel 3 */
56         CHAN2G(2427, 3), /* Channel 4 */
57         CHAN2G(2432, 4), /* Channel 5 */
58         CHAN2G(2437, 5), /* Channel 6 */
59         CHAN2G(2442, 6), /* Channel 7 */
60         CHAN2G(2447, 7), /* Channel 8 */
61         CHAN2G(2452, 8), /* Channel 9 */
62         CHAN2G(2457, 9), /* Channel 10 */
63         CHAN2G(2462, 10), /* Channel 11 */
64         CHAN2G(2467, 11), /* Channel 12 */
65         CHAN2G(2472, 12), /* Channel 13 */
66         CHAN2G(2484, 13), /* Channel 14 */
67 };
68
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70  * on 5 MHz steps, we support the channels which we know
71  * we have calibration data for all cards though to make
72  * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74         /* _We_ call this UNII 1 */
75         CHAN5G(5180, 14), /* Channel 36 */
76         CHAN5G(5200, 15), /* Channel 40 */
77         CHAN5G(5220, 16), /* Channel 44 */
78         CHAN5G(5240, 17), /* Channel 48 */
79         /* _We_ call this UNII 2 */
80         CHAN5G(5260, 18), /* Channel 52 */
81         CHAN5G(5280, 19), /* Channel 56 */
82         CHAN5G(5300, 20), /* Channel 60 */
83         CHAN5G(5320, 21), /* Channel 64 */
84         /* _We_ call this "Middle band" */
85         CHAN5G(5500, 22), /* Channel 100 */
86         CHAN5G(5520, 23), /* Channel 104 */
87         CHAN5G(5540, 24), /* Channel 108 */
88         CHAN5G(5560, 25), /* Channel 112 */
89         CHAN5G(5580, 26), /* Channel 116 */
90         CHAN5G(5600, 27), /* Channel 120 */
91         CHAN5G(5620, 28), /* Channel 124 */
92         CHAN5G(5640, 29), /* Channel 128 */
93         CHAN5G(5660, 30), /* Channel 132 */
94         CHAN5G(5680, 31), /* Channel 136 */
95         CHAN5G(5700, 32), /* Channel 140 */
96         /* _We_ call this UNII 3 */
97         CHAN5G(5745, 33), /* Channel 149 */
98         CHAN5G(5765, 34), /* Channel 153 */
99         CHAN5G(5785, 35), /* Channel 157 */
100         CHAN5G(5805, 36), /* Channel 161 */
101         CHAN5G(5825, 37), /* Channel 165 */
102 };
103
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105                                 struct ieee80211_conf *conf)
106 {
107         switch (conf->channel->band) {
108         case IEEE80211_BAND_2GHZ:
109                 if (conf_is_ht20(conf))
110                         sc->cur_rate_table =
111                           sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112                 else if (conf_is_ht40_minus(conf))
113                         sc->cur_rate_table =
114                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115                 else if (conf_is_ht40_plus(conf))
116                         sc->cur_rate_table =
117                           sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118                 else
119                         sc->cur_rate_table =
120                           sc->hw_rate_table[ATH9K_MODE_11G];
121                 break;
122         case IEEE80211_BAND_5GHZ:
123                 if (conf_is_ht20(conf))
124                         sc->cur_rate_table =
125                           sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126                 else if (conf_is_ht40_minus(conf))
127                         sc->cur_rate_table =
128                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129                 else if (conf_is_ht40_plus(conf))
130                         sc->cur_rate_table =
131                           sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132                 else
133                         sc->cur_rate_table =
134                           sc->hw_rate_table[ATH9K_MODE_11A];
135                 break;
136         default:
137                 BUG_ON(1);
138                 break;
139         }
140 }
141
142 static void ath_update_txpow(struct ath_softc *sc)
143 {
144         struct ath_hw *ah = sc->sc_ah;
145         u32 txpow;
146
147         if (sc->curtxpow != sc->config.txpowlimit) {
148                 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149                 /* read back in case value is clamped */
150                 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151                 sc->curtxpow = txpow;
152         }
153 }
154
155 static u8 parse_mpdudensity(u8 mpdudensity)
156 {
157         /*
158          * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159          *   0 for no restriction
160          *   1 for 1/4 us
161          *   2 for 1/2 us
162          *   3 for 1 us
163          *   4 for 2 us
164          *   5 for 4 us
165          *   6 for 8 us
166          *   7 for 16 us
167          */
168         switch (mpdudensity) {
169         case 0:
170                 return 0;
171         case 1:
172         case 2:
173         case 3:
174                 /* Our lower layer calculations limit our precision to
175                    1 microsecond */
176                 return 1;
177         case 4:
178                 return 2;
179         case 5:
180                 return 4;
181         case 6:
182                 return 8;
183         case 7:
184                 return 16;
185         default:
186                 return 0;
187         }
188 }
189
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
191 {
192         struct ath_rate_table *rate_table = NULL;
193         struct ieee80211_supported_band *sband;
194         struct ieee80211_rate *rate;
195         int i, maxrates;
196
197         switch (band) {
198         case IEEE80211_BAND_2GHZ:
199                 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200                 break;
201         case IEEE80211_BAND_5GHZ:
202                 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203                 break;
204         default:
205                 break;
206         }
207
208         if (rate_table == NULL)
209                 return;
210
211         sband = &sc->sbands[band];
212         rate = sc->rates[band];
213
214         if (rate_table->rate_cnt > ATH_RATE_MAX)
215                 maxrates = ATH_RATE_MAX;
216         else
217                 maxrates = rate_table->rate_cnt;
218
219         for (i = 0; i < maxrates; i++) {
220                 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221                 rate[i].hw_value = rate_table->info[i].ratecode;
222                 if (rate_table->info[i].short_preamble) {
223                         rate[i].hw_value_short = rate_table->info[i].ratecode |
224                                 rate_table->info[i].short_preamble;
225                         rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
226                 }
227                 sband->n_bitrates++;
228
229                 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230                         rate[i].bitrate / 10, rate[i].hw_value);
231         }
232 }
233
234 /*
235  * Set/change channels.  If the channel is really being changed, it's done
236  * by reseting the chip.  To accomplish this we must first cleanup any pending
237  * DMA, then restart stuff.
238 */
239 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
240                     struct ath9k_channel *hchan)
241 {
242         struct ath_hw *ah = sc->sc_ah;
243         bool fastcc = true, stopped;
244         struct ieee80211_channel *channel = hw->conf.channel;
245         int r;
246
247         if (sc->sc_flags & SC_OP_INVALID)
248                 return -EIO;
249
250         ath9k_ps_wakeup(sc);
251
252         /*
253          * This is only performed if the channel settings have
254          * actually changed.
255          *
256          * To switch channels clear any pending DMA operations;
257          * wait long enough for the RX fifo to drain, reset the
258          * hardware at the new frequency, and then re-enable
259          * the relevant bits of the h/w.
260          */
261         ath9k_hw_set_interrupts(ah, 0);
262         ath_drain_all_txq(sc, false);
263         stopped = ath_stoprecv(sc);
264
265         /* XXX: do not flush receive queue here. We don't want
266          * to flush data frames already in queue because of
267          * changing channel. */
268
269         if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
270                 fastcc = false;
271
272         DPRINTF(sc, ATH_DBG_CONFIG,
273                 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
274                 sc->sc_ah->curchan->channel,
275                 channel->center_freq, sc->tx_chan_width);
276
277         spin_lock_bh(&sc->sc_resetlock);
278
279         r = ath9k_hw_reset(ah, hchan, fastcc);
280         if (r) {
281                 DPRINTF(sc, ATH_DBG_FATAL,
282                         "Unable to reset channel (%u Mhz) "
283                         "reset status %u\n",
284                         channel->center_freq, r);
285                 spin_unlock_bh(&sc->sc_resetlock);
286                 return r;
287         }
288         spin_unlock_bh(&sc->sc_resetlock);
289
290         sc->sc_flags &= ~SC_OP_FULL_RESET;
291
292         if (ath_startrecv(sc) != 0) {
293                 DPRINTF(sc, ATH_DBG_FATAL,
294                         "Unable to restart recv logic\n");
295                 return -EIO;
296         }
297
298         ath_cache_conf_rate(sc, &hw->conf);
299         ath_update_txpow(sc);
300         ath9k_hw_set_interrupts(ah, sc->imask);
301         ath9k_ps_restore(sc);
302         return 0;
303 }
304
305 /*
306  *  This routine performs the periodic noise floor calibration function
307  *  that is used to adjust and optimize the chip performance.  This
308  *  takes environmental changes (location, temperature) into account.
309  *  When the task is complete, it reschedules itself depending on the
310  *  appropriate interval that was calculated.
311  */
312 static void ath_ani_calibrate(unsigned long data)
313 {
314         struct ath_softc *sc = (struct ath_softc *)data;
315         struct ath_hw *ah = sc->sc_ah;
316         bool longcal = false;
317         bool shortcal = false;
318         bool aniflag = false;
319         unsigned int timestamp = jiffies_to_msecs(jiffies);
320         u32 cal_interval, short_cal_interval;
321
322         short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
323                 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
324
325         /*
326         * don't calibrate when we're scanning.
327         * we are most likely not on our home channel.
328         */
329         if (sc->sc_flags & SC_OP_SCANNING)
330                 goto set_timer;
331
332         /* Long calibration runs independently of short calibration. */
333         if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
334                 longcal = true;
335                 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
336                 sc->ani.longcal_timer = timestamp;
337         }
338
339         /* Short calibration applies only while caldone is false */
340         if (!sc->ani.caldone) {
341                 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
342                         shortcal = true;
343                         DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
344                         sc->ani.shortcal_timer = timestamp;
345                         sc->ani.resetcal_timer = timestamp;
346                 }
347         } else {
348                 if ((timestamp - sc->ani.resetcal_timer) >=
349                     ATH_RESTART_CALINTERVAL) {
350                         sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
351                         if (sc->ani.caldone)
352                                 sc->ani.resetcal_timer = timestamp;
353                 }
354         }
355
356         /* Verify whether we must check ANI */
357         if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
358                 aniflag = true;
359                 sc->ani.checkani_timer = timestamp;
360         }
361
362         /* Skip all processing if there's nothing to do. */
363         if (longcal || shortcal || aniflag) {
364                 /* Call ANI routine if necessary */
365                 if (aniflag)
366                         ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
367
368                 /* Perform calibration if necessary */
369                 if (longcal || shortcal) {
370                         sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
371                                                      sc->rx_chainmask, longcal);
372
373                         if (longcal)
374                                 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
375                                                                      ah->curchan);
376
377                         DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
378                                 ah->curchan->channel, ah->curchan->channelFlags,
379                                 sc->ani.noise_floor);
380                 }
381         }
382
383 set_timer:
384         /*
385         * Set timer interval based on previous results.
386         * The interval must be the shortest necessary to satisfy ANI,
387         * short calibration and long calibration.
388         */
389         cal_interval = ATH_LONG_CALINTERVAL;
390         if (sc->sc_ah->config.enable_ani)
391                 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
392         if (!sc->ani.caldone)
393                 cal_interval = min(cal_interval, (u32)short_cal_interval);
394
395         mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
396 }
397
398 static void ath_start_ani(struct ath_softc *sc)
399 {
400         unsigned long timestamp = jiffies_to_msecs(jiffies);
401
402         sc->ani.longcal_timer = timestamp;
403         sc->ani.shortcal_timer = timestamp;
404         sc->ani.checkani_timer = timestamp;
405
406         mod_timer(&sc->ani.timer,
407                   jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
408 }
409
410 /*
411  * Update tx/rx chainmask. For legacy association,
412  * hard code chainmask to 1x1, for 11n association, use
413  * the chainmask configuration, for bt coexistence, use
414  * the chainmask configuration even in legacy mode.
415  */
416 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
417 {
418         if (is_ht ||
419             (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
420                 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
421                 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
422         } else {
423                 sc->tx_chainmask = 1;
424                 sc->rx_chainmask = 1;
425         }
426
427         DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
428                 sc->tx_chainmask, sc->rx_chainmask);
429 }
430
431 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
432 {
433         struct ath_node *an;
434
435         an = (struct ath_node *)sta->drv_priv;
436
437         if (sc->sc_flags & SC_OP_TXAGGR) {
438                 ath_tx_node_init(sc, an);
439                 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
440                                      sta->ht_cap.ampdu_factor);
441                 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
442         }
443 }
444
445 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
446 {
447         struct ath_node *an = (struct ath_node *)sta->drv_priv;
448
449         if (sc->sc_flags & SC_OP_TXAGGR)
450                 ath_tx_node_cleanup(sc, an);
451 }
452
453 static void ath9k_tasklet(unsigned long data)
454 {
455         struct ath_softc *sc = (struct ath_softc *)data;
456         u32 status = sc->intrstatus;
457
458         if (status & ATH9K_INT_FATAL) {
459                 ath_reset(sc, false);
460                 return;
461         }
462
463         if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
464                 spin_lock_bh(&sc->rx.rxflushlock);
465                 ath_rx_tasklet(sc, 0);
466                 spin_unlock_bh(&sc->rx.rxflushlock);
467         }
468
469         if (status & ATH9K_INT_TX)
470                 ath_tx_tasklet(sc);
471
472         /* re-enable hardware interrupt */
473         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
474 }
475
476 irqreturn_t ath_isr(int irq, void *dev)
477 {
478 #define SCHED_INTR (                            \
479                 ATH9K_INT_FATAL |               \
480                 ATH9K_INT_RXORN |               \
481                 ATH9K_INT_RXEOL |               \
482                 ATH9K_INT_RX |                  \
483                 ATH9K_INT_TX |                  \
484                 ATH9K_INT_BMISS |               \
485                 ATH9K_INT_CST |                 \
486                 ATH9K_INT_TSFOOR)
487
488         struct ath_softc *sc = dev;
489         struct ath_hw *ah = sc->sc_ah;
490         enum ath9k_int status;
491         bool sched = false;
492
493         /*
494          * The hardware is not ready/present, don't
495          * touch anything. Note this can happen early
496          * on if the IRQ is shared.
497          */
498         if (sc->sc_flags & SC_OP_INVALID)
499                 return IRQ_NONE;
500
501         ath9k_ps_wakeup(sc);
502
503         /* shared irq, not for us */
504
505         if (!ath9k_hw_intrpend(ah)) {
506                 ath9k_ps_restore(sc);
507                 return IRQ_NONE;
508         }
509
510         /*
511          * Figure out the reason(s) for the interrupt.  Note
512          * that the hal returns a pseudo-ISR that may include
513          * bits we haven't explicitly enabled so we mask the
514          * value to insure we only process bits we requested.
515          */
516         ath9k_hw_getisr(ah, &status);   /* NB: clears ISR too */
517         status &= sc->imask;    /* discard unasked-for bits */
518
519         /*
520          * If there are no status bits set, then this interrupt was not
521          * for me (should have been caught above).
522          */
523         if (!status) {
524                 ath9k_ps_restore(sc);
525                 return IRQ_NONE;
526         }
527
528         /* Cache the status */
529         sc->intrstatus = status;
530
531         if (status & SCHED_INTR)
532                 sched = true;
533
534         /*
535          * If a FATAL or RXORN interrupt is received, we have to reset the
536          * chip immediately.
537          */
538         if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
539                 goto chip_reset;
540
541         if (status & ATH9K_INT_SWBA)
542                 tasklet_schedule(&sc->bcon_tasklet);
543
544         if (status & ATH9K_INT_TXURN)
545                 ath9k_hw_updatetxtriglevel(ah, true);
546
547         if (status & ATH9K_INT_MIB) {
548                 /*
549                  * Disable interrupts until we service the MIB
550                  * interrupt; otherwise it will continue to
551                  * fire.
552                  */
553                 ath9k_hw_set_interrupts(ah, 0);
554                 /*
555                  * Let the hal handle the event. We assume
556                  * it will clear whatever condition caused
557                  * the interrupt.
558                  */
559                 ath9k_hw_procmibevent(ah, &sc->nodestats);
560                 ath9k_hw_set_interrupts(ah, sc->imask);
561         }
562
563         if (status & ATH9K_INT_TIM_TIMER) {
564                 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
565                         /* Clear RxAbort bit so that we can
566                          * receive frames */
567                         ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
568                         ath9k_hw_setrxabort(ah, 0);
569                         sched = true;
570                         sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
571                 }
572         }
573
574 chip_reset:
575
576         ath9k_ps_restore(sc);
577         ath_debug_stat_interrupt(sc, status);
578
579         if (sched) {
580                 /* turn off every interrupt except SWBA */
581                 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
582                 tasklet_schedule(&sc->intr_tq);
583         }
584
585         return IRQ_HANDLED;
586
587 #undef SCHED_INTR
588 }
589
590 static u32 ath_get_extchanmode(struct ath_softc *sc,
591                                struct ieee80211_channel *chan,
592                                enum nl80211_channel_type channel_type)
593 {
594         u32 chanmode = 0;
595
596         switch (chan->band) {
597         case IEEE80211_BAND_2GHZ:
598                 switch(channel_type) {
599                 case NL80211_CHAN_NO_HT:
600                 case NL80211_CHAN_HT20:
601                         chanmode = CHANNEL_G_HT20;
602                         break;
603                 case NL80211_CHAN_HT40PLUS:
604                         chanmode = CHANNEL_G_HT40PLUS;
605                         break;
606                 case NL80211_CHAN_HT40MINUS:
607                         chanmode = CHANNEL_G_HT40MINUS;
608                         break;
609                 }
610                 break;
611         case IEEE80211_BAND_5GHZ:
612                 switch(channel_type) {
613                 case NL80211_CHAN_NO_HT:
614                 case NL80211_CHAN_HT20:
615                         chanmode = CHANNEL_A_HT20;
616                         break;
617                 case NL80211_CHAN_HT40PLUS:
618                         chanmode = CHANNEL_A_HT40PLUS;
619                         break;
620                 case NL80211_CHAN_HT40MINUS:
621                         chanmode = CHANNEL_A_HT40MINUS;
622                         break;
623                 }
624                 break;
625         default:
626                 break;
627         }
628
629         return chanmode;
630 }
631
632 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
633                            struct ath9k_keyval *hk, const u8 *addr,
634                            bool authenticator)
635 {
636         const u8 *key_rxmic;
637         const u8 *key_txmic;
638
639         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
640         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
641
642         if (addr == NULL) {
643                 /*
644                  * Group key installation - only two key cache entries are used
645                  * regardless of splitmic capability since group key is only
646                  * used either for TX or RX.
647                  */
648                 if (authenticator) {
649                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
650                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
651                 } else {
652                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
653                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
654                 }
655                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
656         }
657         if (!sc->splitmic) {
658                 /* TX and RX keys share the same key cache entry. */
659                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
660                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
661                 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
662         }
663
664         /* Separate key cache entries for TX and RX */
665
666         /* TX key goes at first index, RX key at +32. */
667         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
668         if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
669                 /* TX MIC entry failed. No need to proceed further */
670                 DPRINTF(sc, ATH_DBG_FATAL,
671                         "Setting TX MIC Key Failed\n");
672                 return 0;
673         }
674
675         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
676         /* XXX delete tx key on failure? */
677         return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
678 }
679
680 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
681 {
682         int i;
683
684         for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
685                 if (test_bit(i, sc->keymap) ||
686                     test_bit(i + 64, sc->keymap))
687                         continue; /* At least one part of TKIP key allocated */
688                 if (sc->splitmic &&
689                     (test_bit(i + 32, sc->keymap) ||
690                      test_bit(i + 64 + 32, sc->keymap)))
691                         continue; /* At least one part of TKIP key allocated */
692
693                 /* Found a free slot for a TKIP key */
694                 return i;
695         }
696         return -1;
697 }
698
699 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
700 {
701         int i;
702
703         /* First, try to find slots that would not be available for TKIP. */
704         if (sc->splitmic) {
705                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
706                         if (!test_bit(i, sc->keymap) &&
707                             (test_bit(i + 32, sc->keymap) ||
708                              test_bit(i + 64, sc->keymap) ||
709                              test_bit(i + 64 + 32, sc->keymap)))
710                                 return i;
711                         if (!test_bit(i + 32, sc->keymap) &&
712                             (test_bit(i, sc->keymap) ||
713                              test_bit(i + 64, sc->keymap) ||
714                              test_bit(i + 64 + 32, sc->keymap)))
715                                 return i + 32;
716                         if (!test_bit(i + 64, sc->keymap) &&
717                             (test_bit(i , sc->keymap) ||
718                              test_bit(i + 32, sc->keymap) ||
719                              test_bit(i + 64 + 32, sc->keymap)))
720                                 return i + 64;
721                         if (!test_bit(i + 64 + 32, sc->keymap) &&
722                             (test_bit(i, sc->keymap) ||
723                              test_bit(i + 32, sc->keymap) ||
724                              test_bit(i + 64, sc->keymap)))
725                                 return i + 64 + 32;
726                 }
727         } else {
728                 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
729                         if (!test_bit(i, sc->keymap) &&
730                             test_bit(i + 64, sc->keymap))
731                                 return i;
732                         if (test_bit(i, sc->keymap) &&
733                             !test_bit(i + 64, sc->keymap))
734                                 return i + 64;
735                 }
736         }
737
738         /* No partially used TKIP slots, pick any available slot */
739         for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
740                 /* Do not allow slots that could be needed for TKIP group keys
741                  * to be used. This limitation could be removed if we know that
742                  * TKIP will not be used. */
743                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
744                         continue;
745                 if (sc->splitmic) {
746                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
747                                 continue;
748                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
749                                 continue;
750                 }
751
752                 if (!test_bit(i, sc->keymap))
753                         return i; /* Found a free slot for a key */
754         }
755
756         /* No free slot found */
757         return -1;
758 }
759
760 static int ath_key_config(struct ath_softc *sc,
761                           struct ieee80211_vif *vif,
762                           struct ieee80211_sta *sta,
763                           struct ieee80211_key_conf *key)
764 {
765         struct ath9k_keyval hk;
766         const u8 *mac = NULL;
767         int ret = 0;
768         int idx;
769
770         memset(&hk, 0, sizeof(hk));
771
772         switch (key->alg) {
773         case ALG_WEP:
774                 hk.kv_type = ATH9K_CIPHER_WEP;
775                 break;
776         case ALG_TKIP:
777                 hk.kv_type = ATH9K_CIPHER_TKIP;
778                 break;
779         case ALG_CCMP:
780                 hk.kv_type = ATH9K_CIPHER_AES_CCM;
781                 break;
782         default:
783                 return -EOPNOTSUPP;
784         }
785
786         hk.kv_len = key->keylen;
787         memcpy(hk.kv_val, key->key, key->keylen);
788
789         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
790                 /* For now, use the default keys for broadcast keys. This may
791                  * need to change with virtual interfaces. */
792                 idx = key->keyidx;
793         } else if (key->keyidx) {
794                 if (WARN_ON(!sta))
795                         return -EOPNOTSUPP;
796                 mac = sta->addr;
797
798                 if (vif->type != NL80211_IFTYPE_AP) {
799                         /* Only keyidx 0 should be used with unicast key, but
800                          * allow this for client mode for now. */
801                         idx = key->keyidx;
802                 } else
803                         return -EIO;
804         } else {
805                 if (WARN_ON(!sta))
806                         return -EOPNOTSUPP;
807                 mac = sta->addr;
808
809                 if (key->alg == ALG_TKIP)
810                         idx = ath_reserve_key_cache_slot_tkip(sc);
811                 else
812                         idx = ath_reserve_key_cache_slot(sc);
813                 if (idx < 0)
814                         return -ENOSPC; /* no free key cache entries */
815         }
816
817         if (key->alg == ALG_TKIP)
818                 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
819                                       vif->type == NL80211_IFTYPE_AP);
820         else
821                 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
822
823         if (!ret)
824                 return -EIO;
825
826         set_bit(idx, sc->keymap);
827         if (key->alg == ALG_TKIP) {
828                 set_bit(idx + 64, sc->keymap);
829                 if (sc->splitmic) {
830                         set_bit(idx + 32, sc->keymap);
831                         set_bit(idx + 64 + 32, sc->keymap);
832                 }
833         }
834
835         return idx;
836 }
837
838 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
839 {
840         ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
841         if (key->hw_key_idx < IEEE80211_WEP_NKID)
842                 return;
843
844         clear_bit(key->hw_key_idx, sc->keymap);
845         if (key->alg != ALG_TKIP)
846                 return;
847
848         clear_bit(key->hw_key_idx + 64, sc->keymap);
849         if (sc->splitmic) {
850                 clear_bit(key->hw_key_idx + 32, sc->keymap);
851                 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
852         }
853 }
854
855 static void setup_ht_cap(struct ath_softc *sc,
856                          struct ieee80211_sta_ht_cap *ht_info)
857 {
858 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3       /* 2 ^ 16 */
859 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6          /* 8 usec */
860
861         ht_info->ht_supported = true;
862         ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
863                        IEEE80211_HT_CAP_SM_PS |
864                        IEEE80211_HT_CAP_SGI_40 |
865                        IEEE80211_HT_CAP_DSSSCCK40;
866
867         ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
868         ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
869
870         /* set up supported mcs set */
871         memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
872
873         switch(sc->rx_chainmask) {
874         case 1:
875                 ht_info->mcs.rx_mask[0] = 0xff;
876                 break;
877         case 3:
878         case 5:
879         case 7:
880         default:
881                 ht_info->mcs.rx_mask[0] = 0xff;
882                 ht_info->mcs.rx_mask[1] = 0xff;
883                 break;
884         }
885
886         ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
887 }
888
889 static void ath9k_bss_assoc_info(struct ath_softc *sc,
890                                  struct ieee80211_vif *vif,
891                                  struct ieee80211_bss_conf *bss_conf)
892 {
893         struct ath_vif *avp = (void *)vif->drv_priv;
894
895         if (bss_conf->assoc) {
896                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
897                         bss_conf->aid, sc->curbssid);
898
899                 /* New association, store aid */
900                 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
901                         sc->curaid = bss_conf->aid;
902                         ath9k_hw_write_associd(sc);
903                 }
904
905                 /* Configure the beacon */
906                 ath_beacon_config(sc, vif);
907
908                 /* Reset rssi stats */
909                 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
910                 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
911                 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
912                 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
913
914                 ath_start_ani(sc);
915         } else {
916                 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
917                 sc->curaid = 0;
918         }
919 }
920
921 /********************************/
922 /*       LED functions          */
923 /********************************/
924
925 static void ath_led_blink_work(struct work_struct *work)
926 {
927         struct ath_softc *sc = container_of(work, struct ath_softc,
928                                             ath_led_blink_work.work);
929
930         if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
931                 return;
932
933         if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
934             (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
935                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
936         else
937                 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
938                                   (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
939
940         queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
941                            (sc->sc_flags & SC_OP_LED_ON) ?
942                            msecs_to_jiffies(sc->led_off_duration) :
943                            msecs_to_jiffies(sc->led_on_duration));
944
945         sc->led_on_duration = sc->led_on_cnt ?
946                         max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
947                         ATH_LED_ON_DURATION_IDLE;
948         sc->led_off_duration = sc->led_off_cnt ?
949                         max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
950                         ATH_LED_OFF_DURATION_IDLE;
951         sc->led_on_cnt = sc->led_off_cnt = 0;
952         if (sc->sc_flags & SC_OP_LED_ON)
953                 sc->sc_flags &= ~SC_OP_LED_ON;
954         else
955                 sc->sc_flags |= SC_OP_LED_ON;
956 }
957
958 static void ath_led_brightness(struct led_classdev *led_cdev,
959                                enum led_brightness brightness)
960 {
961         struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
962         struct ath_softc *sc = led->sc;
963
964         switch (brightness) {
965         case LED_OFF:
966                 if (led->led_type == ATH_LED_ASSOC ||
967                     led->led_type == ATH_LED_RADIO) {
968                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
969                                 (led->led_type == ATH_LED_RADIO));
970                         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
971                         if (led->led_type == ATH_LED_RADIO)
972                                 sc->sc_flags &= ~SC_OP_LED_ON;
973                 } else {
974                         sc->led_off_cnt++;
975                 }
976                 break;
977         case LED_FULL:
978                 if (led->led_type == ATH_LED_ASSOC) {
979                         sc->sc_flags |= SC_OP_LED_ASSOCIATED;
980                         queue_delayed_work(sc->hw->workqueue,
981                                            &sc->ath_led_blink_work, 0);
982                 } else if (led->led_type == ATH_LED_RADIO) {
983                         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
984                         sc->sc_flags |= SC_OP_LED_ON;
985                 } else {
986                         sc->led_on_cnt++;
987                 }
988                 break;
989         default:
990                 break;
991         }
992 }
993
994 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
995                             char *trigger)
996 {
997         int ret;
998
999         led->sc = sc;
1000         led->led_cdev.name = led->name;
1001         led->led_cdev.default_trigger = trigger;
1002         led->led_cdev.brightness_set = ath_led_brightness;
1003
1004         ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1005         if (ret)
1006                 DPRINTF(sc, ATH_DBG_FATAL,
1007                         "Failed to register led:%s", led->name);
1008         else
1009                 led->registered = 1;
1010         return ret;
1011 }
1012
1013 static void ath_unregister_led(struct ath_led *led)
1014 {
1015         if (led->registered) {
1016                 led_classdev_unregister(&led->led_cdev);
1017                 led->registered = 0;
1018         }
1019 }
1020
1021 static void ath_deinit_leds(struct ath_softc *sc)
1022 {
1023         cancel_delayed_work_sync(&sc->ath_led_blink_work);
1024         ath_unregister_led(&sc->assoc_led);
1025         sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1026         ath_unregister_led(&sc->tx_led);
1027         ath_unregister_led(&sc->rx_led);
1028         ath_unregister_led(&sc->radio_led);
1029         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1030 }
1031
1032 static void ath_init_leds(struct ath_softc *sc)
1033 {
1034         char *trigger;
1035         int ret;
1036
1037         /* Configure gpio 1 for output */
1038         ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1039                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1040         /* LED off, active low */
1041         ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1042
1043         INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1044
1045         trigger = ieee80211_get_radio_led_name(sc->hw);
1046         snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1047                 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1048         ret = ath_register_led(sc, &sc->radio_led, trigger);
1049         sc->radio_led.led_type = ATH_LED_RADIO;
1050         if (ret)
1051                 goto fail;
1052
1053         trigger = ieee80211_get_assoc_led_name(sc->hw);
1054         snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1055                 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1056         ret = ath_register_led(sc, &sc->assoc_led, trigger);
1057         sc->assoc_led.led_type = ATH_LED_ASSOC;
1058         if (ret)
1059                 goto fail;
1060
1061         trigger = ieee80211_get_tx_led_name(sc->hw);
1062         snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1063                 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1064         ret = ath_register_led(sc, &sc->tx_led, trigger);
1065         sc->tx_led.led_type = ATH_LED_TX;
1066         if (ret)
1067                 goto fail;
1068
1069         trigger = ieee80211_get_rx_led_name(sc->hw);
1070         snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1071                 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1072         ret = ath_register_led(sc, &sc->rx_led, trigger);
1073         sc->rx_led.led_type = ATH_LED_RX;
1074         if (ret)
1075                 goto fail;
1076
1077         return;
1078
1079 fail:
1080         ath_deinit_leds(sc);
1081 }
1082
1083 void ath_radio_enable(struct ath_softc *sc)
1084 {
1085         struct ath_hw *ah = sc->sc_ah;
1086         struct ieee80211_channel *channel = sc->hw->conf.channel;
1087         int r;
1088
1089         ath9k_ps_wakeup(sc);
1090         ath9k_hw_configpcipowersave(ah, 0);
1091
1092         spin_lock_bh(&sc->sc_resetlock);
1093         r = ath9k_hw_reset(ah, ah->curchan, false);
1094         if (r) {
1095                 DPRINTF(sc, ATH_DBG_FATAL,
1096                         "Unable to reset channel %u (%uMhz) ",
1097                         "reset status %u\n",
1098                         channel->center_freq, r);
1099         }
1100         spin_unlock_bh(&sc->sc_resetlock);
1101
1102         ath_update_txpow(sc);
1103         if (ath_startrecv(sc) != 0) {
1104                 DPRINTF(sc, ATH_DBG_FATAL,
1105                         "Unable to restart recv logic\n");
1106                 return;
1107         }
1108
1109         if (sc->sc_flags & SC_OP_BEACONS)
1110                 ath_beacon_config(sc, NULL);    /* restart beacons */
1111
1112         /* Re-Enable  interrupts */
1113         ath9k_hw_set_interrupts(ah, sc->imask);
1114
1115         /* Enable LED */
1116         ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1117                             AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1118         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1119
1120         ieee80211_wake_queues(sc->hw);
1121         ath9k_ps_restore(sc);
1122 }
1123
1124 void ath_radio_disable(struct ath_softc *sc)
1125 {
1126         struct ath_hw *ah = sc->sc_ah;
1127         struct ieee80211_channel *channel = sc->hw->conf.channel;
1128         int r;
1129
1130         ath9k_ps_wakeup(sc);
1131         ieee80211_stop_queues(sc->hw);
1132
1133         /* Disable LED */
1134         ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1135         ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1136
1137         /* Disable interrupts */
1138         ath9k_hw_set_interrupts(ah, 0);
1139
1140         ath_drain_all_txq(sc, false);   /* clear pending tx frames */
1141         ath_stoprecv(sc);               /* turn off frame recv */
1142         ath_flushrecv(sc);              /* flush recv queue */
1143
1144         spin_lock_bh(&sc->sc_resetlock);
1145         r = ath9k_hw_reset(ah, ah->curchan, false);
1146         if (r) {
1147                 DPRINTF(sc, ATH_DBG_FATAL,
1148                         "Unable to reset channel %u (%uMhz) "
1149                         "reset status %u\n",
1150                         channel->center_freq, r);
1151         }
1152         spin_unlock_bh(&sc->sc_resetlock);
1153
1154         ath9k_hw_phy_disable(ah);
1155         ath9k_hw_configpcipowersave(ah, 1);
1156         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1157         ath9k_ps_restore(sc);
1158 }
1159
1160 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1161
1162 /*******************/
1163 /*      Rfkill     */
1164 /*******************/
1165
1166 static bool ath_is_rfkill_set(struct ath_softc *sc)
1167 {
1168         struct ath_hw *ah = sc->sc_ah;
1169
1170         return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1171                                   ah->rfkill_polarity;
1172 }
1173
1174 /* h/w rfkill poll function */
1175 static void ath_rfkill_poll(struct work_struct *work)
1176 {
1177         struct ath_softc *sc = container_of(work, struct ath_softc,
1178                                             rf_kill.rfkill_poll.work);
1179         bool radio_on;
1180
1181         if (sc->sc_flags & SC_OP_INVALID)
1182                 return;
1183
1184         radio_on = !ath_is_rfkill_set(sc);
1185
1186         /*
1187          * enable/disable radio only when there is a
1188          * state change in RF switch
1189          */
1190         if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1191                 enum rfkill_state state;
1192
1193                 if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1194                         state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1195                                 : RFKILL_STATE_HARD_BLOCKED;
1196                 } else if (radio_on) {
1197                         ath_radio_enable(sc);
1198                         state = RFKILL_STATE_UNBLOCKED;
1199                 } else {
1200                         ath_radio_disable(sc);
1201                         state = RFKILL_STATE_HARD_BLOCKED;
1202                 }
1203
1204                 if (state == RFKILL_STATE_HARD_BLOCKED)
1205                         sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1206                 else
1207                         sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1208
1209                 rfkill_force_state(sc->rf_kill.rfkill, state);
1210         }
1211
1212         queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1213                            msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1214 }
1215
1216 /* s/w rfkill handler */
1217 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1218 {
1219         struct ath_softc *sc = data;
1220
1221         switch (state) {
1222         case RFKILL_STATE_SOFT_BLOCKED:
1223                 if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1224                     SC_OP_RFKILL_SW_BLOCKED)))
1225                         ath_radio_disable(sc);
1226                 sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1227                 return 0;
1228         case RFKILL_STATE_UNBLOCKED:
1229                 if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1230                         sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1231                         if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1232                                 DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1233                                         "radio as it is disabled by h/w\n");
1234                                 return -EPERM;
1235                         }
1236                         ath_radio_enable(sc);
1237                 }
1238                 return 0;
1239         default:
1240                 return -EINVAL;
1241         }
1242 }
1243
1244 /* Init s/w rfkill */
1245 static int ath_init_sw_rfkill(struct ath_softc *sc)
1246 {
1247         sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1248                                              RFKILL_TYPE_WLAN);
1249         if (!sc->rf_kill.rfkill) {
1250                 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1251                 return -ENOMEM;
1252         }
1253
1254         snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1255                 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1256         sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1257         sc->rf_kill.rfkill->data = sc;
1258         sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1259         sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1260
1261         return 0;
1262 }
1263
1264 /* Deinitialize rfkill */
1265 static void ath_deinit_rfkill(struct ath_softc *sc)
1266 {
1267         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1268                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1269
1270         if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1271                 rfkill_unregister(sc->rf_kill.rfkill);
1272                 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1273                 sc->rf_kill.rfkill = NULL;
1274         }
1275 }
1276
1277 static int ath_start_rfkill_poll(struct ath_softc *sc)
1278 {
1279         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1280                 queue_delayed_work(sc->hw->workqueue,
1281                                    &sc->rf_kill.rfkill_poll, 0);
1282
1283         if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1284                 if (rfkill_register(sc->rf_kill.rfkill)) {
1285                         DPRINTF(sc, ATH_DBG_FATAL,
1286                                 "Unable to register rfkill\n");
1287                         rfkill_free(sc->rf_kill.rfkill);
1288
1289                         /* Deinitialize the device */
1290                         ath_cleanup(sc);
1291                         return -EIO;
1292                 } else {
1293                         sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1294                 }
1295         }
1296
1297         return 0;
1298 }
1299 #endif /* CONFIG_RFKILL */
1300
1301 void ath_cleanup(struct ath_softc *sc)
1302 {
1303         ath_detach(sc);
1304         free_irq(sc->irq, sc);
1305         ath_bus_cleanup(sc);
1306         kfree(sc->sec_wiphy);
1307         ieee80211_free_hw(sc->hw);
1308 }
1309
1310 void ath_detach(struct ath_softc *sc)
1311 {
1312         struct ieee80211_hw *hw = sc->hw;
1313         int i = 0;
1314
1315         ath9k_ps_wakeup(sc);
1316
1317         DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1318
1319 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1320         ath_deinit_rfkill(sc);
1321 #endif
1322         ath_deinit_leds(sc);
1323         cancel_work_sync(&sc->chan_work);
1324         cancel_delayed_work_sync(&sc->wiphy_work);
1325
1326         for (i = 0; i < sc->num_sec_wiphy; i++) {
1327                 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1328                 if (aphy == NULL)
1329                         continue;
1330                 sc->sec_wiphy[i] = NULL;
1331                 ieee80211_unregister_hw(aphy->hw);
1332                 ieee80211_free_hw(aphy->hw);
1333         }
1334         ieee80211_unregister_hw(hw);
1335         ath_rx_cleanup(sc);
1336         ath_tx_cleanup(sc);
1337
1338         tasklet_kill(&sc->intr_tq);
1339         tasklet_kill(&sc->bcon_tasklet);
1340
1341         if (!(sc->sc_flags & SC_OP_INVALID))
1342                 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1343
1344         /* cleanup tx queues */
1345         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1346                 if (ATH_TXQ_SETUP(sc, i))
1347                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1348
1349         ath9k_hw_detach(sc->sc_ah);
1350         ath9k_exit_debug(sc);
1351         ath9k_ps_restore(sc);
1352 }
1353
1354 static int ath9k_reg_notifier(struct wiphy *wiphy,
1355                               struct regulatory_request *request)
1356 {
1357         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1358         struct ath_wiphy *aphy = hw->priv;
1359         struct ath_softc *sc = aphy->sc;
1360         struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1361
1362         return ath_reg_notifier_apply(wiphy, request, reg);
1363 }
1364
1365 static int ath_init(u16 devid, struct ath_softc *sc)
1366 {
1367         struct ath_hw *ah = NULL;
1368         int status;
1369         int error = 0, i;
1370         int csz = 0;
1371
1372         /* XXX: hardware will not be ready until ath_open() being called */
1373         sc->sc_flags |= SC_OP_INVALID;
1374
1375         if (ath9k_init_debug(sc) < 0)
1376                 printk(KERN_ERR "Unable to create debugfs files\n");
1377
1378         spin_lock_init(&sc->wiphy_lock);
1379         spin_lock_init(&sc->sc_resetlock);
1380         spin_lock_init(&sc->sc_serial_rw);
1381         mutex_init(&sc->mutex);
1382         tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1383         tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1384                      (unsigned long)sc);
1385
1386         /*
1387          * Cache line size is used to size and align various
1388          * structures used to communicate with the hardware.
1389          */
1390         ath_read_cachesize(sc, &csz);
1391         /* XXX assert csz is non-zero */
1392         sc->cachelsz = csz << 2;        /* convert to bytes */
1393
1394         ah = ath9k_hw_attach(devid, sc, &status);
1395         if (ah == NULL) {
1396                 DPRINTF(sc, ATH_DBG_FATAL,
1397                         "Unable to attach hardware; HAL status %d\n", status);
1398                 error = -ENXIO;
1399                 goto bad;
1400         }
1401         sc->sc_ah = ah;
1402
1403         /* Get the hardware key cache size. */
1404         sc->keymax = ah->caps.keycache_size;
1405         if (sc->keymax > ATH_KEYMAX) {
1406                 DPRINTF(sc, ATH_DBG_ANY,
1407                         "Warning, using only %u entries in %u key cache\n",
1408                         ATH_KEYMAX, sc->keymax);
1409                 sc->keymax = ATH_KEYMAX;
1410         }
1411
1412         /*
1413          * Reset the key cache since some parts do not
1414          * reset the contents on initial power up.
1415          */
1416         for (i = 0; i < sc->keymax; i++)
1417                 ath9k_hw_keyreset(ah, (u16) i);
1418
1419         error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1420                               ath9k_reg_notifier);
1421         if (error)
1422                 goto bad;
1423
1424         /* default to MONITOR mode */
1425         sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1426
1427         /* Setup rate tables */
1428
1429         ath_rate_attach(sc);
1430         ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1431         ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1432
1433         /*
1434          * Allocate hardware transmit queues: one queue for
1435          * beacon frames and one data queue for each QoS
1436          * priority.  Note that the hal handles reseting
1437          * these queues at the needed time.
1438          */
1439         sc->beacon.beaconq = ath_beaconq_setup(ah);
1440         if (sc->beacon.beaconq == -1) {
1441                 DPRINTF(sc, ATH_DBG_FATAL,
1442                         "Unable to setup a beacon xmit queue\n");
1443                 error = -EIO;
1444                 goto bad2;
1445         }
1446         sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1447         if (sc->beacon.cabq == NULL) {
1448                 DPRINTF(sc, ATH_DBG_FATAL,
1449                         "Unable to setup CAB xmit queue\n");
1450                 error = -EIO;
1451                 goto bad2;
1452         }
1453
1454         sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1455         ath_cabq_update(sc);
1456
1457         for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1458                 sc->tx.hwq_map[i] = -1;
1459
1460         /* Setup data queues */
1461         /* NB: ensure BK queue is the lowest priority h/w queue */
1462         if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1463                 DPRINTF(sc, ATH_DBG_FATAL,
1464                         "Unable to setup xmit queue for BK traffic\n");
1465                 error = -EIO;
1466                 goto bad2;
1467         }
1468
1469         if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1470                 DPRINTF(sc, ATH_DBG_FATAL,
1471                         "Unable to setup xmit queue for BE traffic\n");
1472                 error = -EIO;
1473                 goto bad2;
1474         }
1475         if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1476                 DPRINTF(sc, ATH_DBG_FATAL,
1477                         "Unable to setup xmit queue for VI traffic\n");
1478                 error = -EIO;
1479                 goto bad2;
1480         }
1481         if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1482                 DPRINTF(sc, ATH_DBG_FATAL,
1483                         "Unable to setup xmit queue for VO traffic\n");
1484                 error = -EIO;
1485                 goto bad2;
1486         }
1487
1488         /* Initializes the noise floor to a reasonable default value.
1489          * Later on this will be updated during ANI processing. */
1490
1491         sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1492         setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1493
1494         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1495                                    ATH9K_CIPHER_TKIP, NULL)) {
1496                 /*
1497                  * Whether we should enable h/w TKIP MIC.
1498                  * XXX: if we don't support WME TKIP MIC, then we wouldn't
1499                  * report WMM capable, so it's always safe to turn on
1500                  * TKIP MIC in this case.
1501                  */
1502                 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1503                                        0, 1, NULL);
1504         }
1505
1506         /*
1507          * Check whether the separate key cache entries
1508          * are required to handle both tx+rx MIC keys.
1509          * With split mic keys the number of stations is limited
1510          * to 27 otherwise 59.
1511          */
1512         if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1513                                    ATH9K_CIPHER_TKIP, NULL)
1514             && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1515                                       ATH9K_CIPHER_MIC, NULL)
1516             && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1517                                       0, NULL))
1518                 sc->splitmic = 1;
1519
1520         /* turn on mcast key search if possible */
1521         if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1522                 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1523                                              1, NULL);
1524
1525         sc->config.txpowlimit = ATH_TXPOWER_MAX;
1526
1527         /* 11n Capabilities */
1528         if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1529                 sc->sc_flags |= SC_OP_TXAGGR;
1530                 sc->sc_flags |= SC_OP_RXAGGR;
1531         }
1532
1533         sc->tx_chainmask = ah->caps.tx_chainmask;
1534         sc->rx_chainmask = ah->caps.rx_chainmask;
1535
1536         ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1537         sc->rx.defant = ath9k_hw_getdefantenna(ah);
1538
1539         if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1540                 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1541
1542         sc->beacon.slottime = ATH9K_SLOT_TIME_9;        /* default to short slot time */
1543
1544         /* initialize beacon slots */
1545         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1546                 sc->beacon.bslot[i] = NULL;
1547                 sc->beacon.bslot_aphy[i] = NULL;
1548         }
1549
1550         /* setup channels and rates */
1551
1552         sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1553         sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1554                 sc->rates[IEEE80211_BAND_2GHZ];
1555         sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1556         sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1557                 ARRAY_SIZE(ath9k_2ghz_chantable);
1558
1559         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1560                 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1561                 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1562                         sc->rates[IEEE80211_BAND_5GHZ];
1563                 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1564                 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1565                         ARRAY_SIZE(ath9k_5ghz_chantable);
1566         }
1567
1568         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1569                 ath9k_hw_btcoex_enable(sc->sc_ah);
1570
1571         return 0;
1572 bad2:
1573         /* cleanup tx queues */
1574         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1575                 if (ATH_TXQ_SETUP(sc, i))
1576                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1577 bad:
1578         if (ah)
1579                 ath9k_hw_detach(ah);
1580         ath9k_exit_debug(sc);
1581
1582         return error;
1583 }
1584
1585 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1586 {
1587         hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1588                 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1589                 IEEE80211_HW_SIGNAL_DBM |
1590                 IEEE80211_HW_AMPDU_AGGREGATION |
1591                 IEEE80211_HW_SUPPORTS_PS |
1592                 IEEE80211_HW_PS_NULLFUNC_STACK |
1593                 IEEE80211_HW_SPECTRUM_MGMT;
1594
1595         if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1596                 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1597
1598         hw->wiphy->interface_modes =
1599                 BIT(NL80211_IFTYPE_AP) |
1600                 BIT(NL80211_IFTYPE_STATION) |
1601                 BIT(NL80211_IFTYPE_ADHOC) |
1602                 BIT(NL80211_IFTYPE_MESH_POINT);
1603
1604         hw->queues = 4;
1605         hw->max_rates = 4;
1606         hw->channel_change_time = 5000;
1607         hw->max_listen_interval = 10;
1608         hw->max_rate_tries = ATH_11N_TXMAXTRY;
1609         hw->sta_data_size = sizeof(struct ath_node);
1610         hw->vif_data_size = sizeof(struct ath_vif);
1611
1612         hw->rate_control_algorithm = "ath9k_rate_control";
1613
1614         hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1615                 &sc->sbands[IEEE80211_BAND_2GHZ];
1616         if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1617                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1618                         &sc->sbands[IEEE80211_BAND_5GHZ];
1619 }
1620
1621 int ath_attach(u16 devid, struct ath_softc *sc)
1622 {
1623         struct ieee80211_hw *hw = sc->hw;
1624         int error = 0, i;
1625         struct ath_regulatory *reg;
1626
1627         DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1628
1629         error = ath_init(devid, sc);
1630         if (error != 0)
1631                 return error;
1632
1633         reg = &sc->sc_ah->regulatory;
1634
1635         /* get mac address from hardware and set in mac80211 */
1636
1637         SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1638
1639         ath_set_hw_capab(sc, hw);
1640
1641         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1642                 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1643                 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1644                         setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1645         }
1646
1647         /* initialize tx/rx engine */
1648         error = ath_tx_init(sc, ATH_TXBUF);
1649         if (error != 0)
1650                 goto error_attach;
1651
1652         error = ath_rx_init(sc, ATH_RXBUF);
1653         if (error != 0)
1654                 goto error_attach;
1655
1656 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1657         /* Initialze h/w Rfkill */
1658         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1659                 INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1660
1661         /* Initialize s/w rfkill */
1662         error = ath_init_sw_rfkill(sc);
1663         if (error)
1664                 goto error_attach;
1665 #endif
1666
1667         INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1668         INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1669         sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1670
1671         error = ieee80211_register_hw(hw);
1672
1673         if (!ath_is_world_regd(reg)) {
1674                 error = regulatory_hint(hw->wiphy, reg->alpha2);
1675                 if (error)
1676                         goto error_attach;
1677         }
1678
1679         /* Initialize LED control */
1680         ath_init_leds(sc);
1681
1682
1683         return 0;
1684
1685 error_attach:
1686         /* cleanup tx queues */
1687         for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1688                 if (ATH_TXQ_SETUP(sc, i))
1689                         ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1690
1691         ath9k_hw_detach(sc->sc_ah);
1692         ath9k_exit_debug(sc);
1693
1694         return error;
1695 }
1696
1697 int ath_reset(struct ath_softc *sc, bool retry_tx)
1698 {
1699         struct ath_hw *ah = sc->sc_ah;
1700         struct ieee80211_hw *hw = sc->hw;
1701         int r;
1702
1703         ath9k_hw_set_interrupts(ah, 0);
1704         ath_drain_all_txq(sc, retry_tx);
1705         ath_stoprecv(sc);
1706         ath_flushrecv(sc);
1707
1708         spin_lock_bh(&sc->sc_resetlock);
1709         r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1710         if (r)
1711                 DPRINTF(sc, ATH_DBG_FATAL,
1712                         "Unable to reset hardware; reset status %u\n", r);
1713         spin_unlock_bh(&sc->sc_resetlock);
1714
1715         if (ath_startrecv(sc) != 0)
1716                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1717
1718         /*
1719          * We may be doing a reset in response to a request
1720          * that changes the channel so update any state that
1721          * might change as a result.
1722          */
1723         ath_cache_conf_rate(sc, &hw->conf);
1724
1725         ath_update_txpow(sc);
1726
1727         if (sc->sc_flags & SC_OP_BEACONS)
1728                 ath_beacon_config(sc, NULL);    /* restart beacons */
1729
1730         ath9k_hw_set_interrupts(ah, sc->imask);
1731
1732         if (retry_tx) {
1733                 int i;
1734                 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1735                         if (ATH_TXQ_SETUP(sc, i)) {
1736                                 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1737                                 ath_txq_schedule(sc, &sc->tx.txq[i]);
1738                                 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1739                         }
1740                 }
1741         }
1742
1743         return r;
1744 }
1745
1746 /*
1747  *  This function will allocate both the DMA descriptor structure, and the
1748  *  buffers it contains.  These are used to contain the descriptors used
1749  *  by the system.
1750 */
1751 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1752                       struct list_head *head, const char *name,
1753                       int nbuf, int ndesc)
1754 {
1755 #define DS2PHYS(_dd, _ds)                                               \
1756         ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1757 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1758 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1759
1760         struct ath_desc *ds;
1761         struct ath_buf *bf;
1762         int i, bsize, error;
1763
1764         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1765                 name, nbuf, ndesc);
1766
1767         INIT_LIST_HEAD(head);
1768         /* ath_desc must be a multiple of DWORDs */
1769         if ((sizeof(struct ath_desc) % 4) != 0) {
1770                 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1771                 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1772                 error = -ENOMEM;
1773                 goto fail;
1774         }
1775
1776         dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1777
1778         /*
1779          * Need additional DMA memory because we can't use
1780          * descriptors that cross the 4K page boundary. Assume
1781          * one skipped descriptor per 4K page.
1782          */
1783         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1784                 u32 ndesc_skipped =
1785                         ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1786                 u32 dma_len;
1787
1788                 while (ndesc_skipped) {
1789                         dma_len = ndesc_skipped * sizeof(struct ath_desc);
1790                         dd->dd_desc_len += dma_len;
1791
1792                         ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1793                 };
1794         }
1795
1796         /* allocate descriptors */
1797         dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1798                                          &dd->dd_desc_paddr, GFP_KERNEL);
1799         if (dd->dd_desc == NULL) {
1800                 error = -ENOMEM;
1801                 goto fail;
1802         }
1803         ds = dd->dd_desc;
1804         DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1805                 name, ds, (u32) dd->dd_desc_len,
1806                 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1807
1808         /* allocate buffers */
1809         bsize = sizeof(struct ath_buf) * nbuf;
1810         bf = kzalloc(bsize, GFP_KERNEL);
1811         if (bf == NULL) {
1812                 error = -ENOMEM;
1813                 goto fail2;
1814         }
1815         dd->dd_bufptr = bf;
1816
1817         for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1818                 bf->bf_desc = ds;
1819                 bf->bf_daddr = DS2PHYS(dd, ds);
1820
1821                 if (!(sc->sc_ah->caps.hw_caps &
1822                       ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1823                         /*
1824                          * Skip descriptor addresses which can cause 4KB
1825                          * boundary crossing (addr + length) with a 32 dword
1826                          * descriptor fetch.
1827                          */
1828                         while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1829                                 ASSERT((caddr_t) bf->bf_desc <
1830                                        ((caddr_t) dd->dd_desc +
1831                                         dd->dd_desc_len));
1832
1833                                 ds += ndesc;
1834                                 bf->bf_desc = ds;
1835                                 bf->bf_daddr = DS2PHYS(dd, ds);
1836                         }
1837                 }
1838                 list_add_tail(&bf->list, head);
1839         }
1840         return 0;
1841 fail2:
1842         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1843                           dd->dd_desc_paddr);
1844 fail:
1845         memset(dd, 0, sizeof(*dd));
1846         return error;
1847 #undef ATH_DESC_4KB_BOUND_CHECK
1848 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1849 #undef DS2PHYS
1850 }
1851
1852 void ath_descdma_cleanup(struct ath_softc *sc,
1853                          struct ath_descdma *dd,
1854                          struct list_head *head)
1855 {
1856         dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1857                           dd->dd_desc_paddr);
1858
1859         INIT_LIST_HEAD(head);
1860         kfree(dd->dd_bufptr);
1861         memset(dd, 0, sizeof(*dd));
1862 }
1863
1864 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1865 {
1866         int qnum;
1867
1868         switch (queue) {
1869         case 0:
1870                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1871                 break;
1872         case 1:
1873                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1874                 break;
1875         case 2:
1876                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1877                 break;
1878         case 3:
1879                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1880                 break;
1881         default:
1882                 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1883                 break;
1884         }
1885
1886         return qnum;
1887 }
1888
1889 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1890 {
1891         int qnum;
1892
1893         switch (queue) {
1894         case ATH9K_WME_AC_VO:
1895                 qnum = 0;
1896                 break;
1897         case ATH9K_WME_AC_VI:
1898                 qnum = 1;
1899                 break;
1900         case ATH9K_WME_AC_BE:
1901                 qnum = 2;
1902                 break;
1903         case ATH9K_WME_AC_BK:
1904                 qnum = 3;
1905                 break;
1906         default:
1907                 qnum = -1;
1908                 break;
1909         }
1910
1911         return qnum;
1912 }
1913
1914 /* XXX: Remove me once we don't depend on ath9k_channel for all
1915  * this redundant data */
1916 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1917                            struct ath9k_channel *ichan)
1918 {
1919         struct ieee80211_channel *chan = hw->conf.channel;
1920         struct ieee80211_conf *conf = &hw->conf;
1921
1922         ichan->channel = chan->center_freq;
1923         ichan->chan = chan;
1924
1925         if (chan->band == IEEE80211_BAND_2GHZ) {
1926                 ichan->chanmode = CHANNEL_G;
1927                 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1928         } else {
1929                 ichan->chanmode = CHANNEL_A;
1930                 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1931         }
1932
1933         sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1934
1935         if (conf_is_ht(conf)) {
1936                 if (conf_is_ht40(conf))
1937                         sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1938
1939                 ichan->chanmode = ath_get_extchanmode(sc, chan,
1940                                             conf->channel_type);
1941         }
1942 }
1943
1944 /**********************/
1945 /* mac80211 callbacks */
1946 /**********************/
1947
1948 static int ath9k_start(struct ieee80211_hw *hw)
1949 {
1950         struct ath_wiphy *aphy = hw->priv;
1951         struct ath_softc *sc = aphy->sc;
1952         struct ieee80211_channel *curchan = hw->conf.channel;
1953         struct ath9k_channel *init_channel;
1954         int r, pos;
1955
1956         DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1957                 "initial channel: %d MHz\n", curchan->center_freq);
1958
1959         mutex_lock(&sc->mutex);
1960
1961         if (ath9k_wiphy_started(sc)) {
1962                 if (sc->chan_idx == curchan->hw_value) {
1963                         /*
1964                          * Already on the operational channel, the new wiphy
1965                          * can be marked active.
1966                          */
1967                         aphy->state = ATH_WIPHY_ACTIVE;
1968                         ieee80211_wake_queues(hw);
1969                 } else {
1970                         /*
1971                          * Another wiphy is on another channel, start the new
1972                          * wiphy in paused state.
1973                          */
1974                         aphy->state = ATH_WIPHY_PAUSED;
1975                         ieee80211_stop_queues(hw);
1976                 }
1977                 mutex_unlock(&sc->mutex);
1978                 return 0;
1979         }
1980         aphy->state = ATH_WIPHY_ACTIVE;
1981
1982         /* setup initial channel */
1983
1984         pos = curchan->hw_value;
1985
1986         sc->chan_idx = pos;
1987         init_channel = &sc->sc_ah->channels[pos];
1988         ath9k_update_ichannel(sc, hw, init_channel);
1989
1990         /* Reset SERDES registers */
1991         ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1992
1993         /*
1994          * The basic interface to setting the hardware in a good
1995          * state is ``reset''.  On return the hardware is known to
1996          * be powered up and with interrupts disabled.  This must
1997          * be followed by initialization of the appropriate bits
1998          * and then setup of the interrupt mask.
1999          */
2000         spin_lock_bh(&sc->sc_resetlock);
2001         r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
2002         if (r) {
2003                 DPRINTF(sc, ATH_DBG_FATAL,
2004                         "Unable to reset hardware; reset status %u "
2005                         "(freq %u MHz)\n", r,
2006                         curchan->center_freq);
2007                 spin_unlock_bh(&sc->sc_resetlock);
2008                 goto mutex_unlock;
2009         }
2010         spin_unlock_bh(&sc->sc_resetlock);
2011
2012         /*
2013          * This is needed only to setup initial state
2014          * but it's best done after a reset.
2015          */
2016         ath_update_txpow(sc);
2017
2018         /*
2019          * Setup the hardware after reset:
2020          * The receive engine is set going.
2021          * Frame transmit is handled entirely
2022          * in the frame output path; there's nothing to do
2023          * here except setup the interrupt mask.
2024          */
2025         if (ath_startrecv(sc) != 0) {
2026                 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2027                 r = -EIO;
2028                 goto mutex_unlock;
2029         }
2030
2031         /* Setup our intr mask. */
2032         sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2033                 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2034                 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2035
2036         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2037                 sc->imask |= ATH9K_INT_GTT;
2038
2039         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2040                 sc->imask |= ATH9K_INT_CST;
2041
2042         ath_cache_conf_rate(sc, &hw->conf);
2043
2044         sc->sc_flags &= ~SC_OP_INVALID;
2045
2046         /* Disable BMISS interrupt when we're not associated */
2047         sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2048         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2049
2050         ieee80211_wake_queues(hw);
2051
2052 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2053         r = ath_start_rfkill_poll(sc);
2054 #endif
2055
2056 mutex_unlock:
2057         mutex_unlock(&sc->mutex);
2058
2059         return r;
2060 }
2061
2062 static int ath9k_tx(struct ieee80211_hw *hw,
2063                     struct sk_buff *skb)
2064 {
2065         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2066         struct ath_wiphy *aphy = hw->priv;
2067         struct ath_softc *sc = aphy->sc;
2068         struct ath_tx_control txctl;
2069         int hdrlen, padsize;
2070
2071         if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2072                 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2073                        "%d\n", wiphy_name(hw->wiphy), aphy->state);
2074                 goto exit;
2075         }
2076
2077         memset(&txctl, 0, sizeof(struct ath_tx_control));
2078
2079         /*
2080          * As a temporary workaround, assign seq# here; this will likely need
2081          * to be cleaned up to work better with Beacon transmission and virtual
2082          * BSSes.
2083          */
2084         if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2085                 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2086                 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2087                         sc->tx.seq_no += 0x10;
2088                 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2089                 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2090         }
2091
2092         /* Add the padding after the header if this is not already done */
2093         hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2094         if (hdrlen & 3) {
2095                 padsize = hdrlen % 4;
2096                 if (skb_headroom(skb) < padsize)
2097                         return -1;
2098                 skb_push(skb, padsize);
2099                 memmove(skb->data, skb->data + padsize, hdrlen);
2100         }
2101
2102         /* Check if a tx queue is available */
2103
2104         txctl.txq = ath_test_get_txq(sc, skb);
2105         if (!txctl.txq)
2106                 goto exit;
2107
2108         DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2109
2110         if (ath_tx_start(hw, skb, &txctl) != 0) {
2111                 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2112                 goto exit;
2113         }
2114
2115         return 0;
2116 exit:
2117         dev_kfree_skb_any(skb);
2118         return 0;
2119 }
2120
2121 static void ath9k_stop(struct ieee80211_hw *hw)
2122 {
2123         struct ath_wiphy *aphy = hw->priv;
2124         struct ath_softc *sc = aphy->sc;
2125
2126         aphy->state = ATH_WIPHY_INACTIVE;
2127
2128         if (sc->sc_flags & SC_OP_INVALID) {
2129                 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2130                 return;
2131         }
2132
2133         mutex_lock(&sc->mutex);
2134
2135         ieee80211_stop_queues(hw);
2136
2137         if (ath9k_wiphy_started(sc)) {
2138                 mutex_unlock(&sc->mutex);
2139                 return; /* another wiphy still in use */
2140         }
2141
2142         /* make sure h/w will not generate any interrupt
2143          * before setting the invalid flag. */
2144         ath9k_hw_set_interrupts(sc->sc_ah, 0);
2145
2146         if (!(sc->sc_flags & SC_OP_INVALID)) {
2147                 ath_drain_all_txq(sc, false);
2148                 ath_stoprecv(sc);
2149                 ath9k_hw_phy_disable(sc->sc_ah);
2150         } else
2151                 sc->rx.rxlink = NULL;
2152
2153 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2154         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2155                 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2156 #endif
2157         /* disable HAL and put h/w to sleep */
2158         ath9k_hw_disable(sc->sc_ah);
2159         ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2160
2161         sc->sc_flags |= SC_OP_INVALID;
2162
2163         mutex_unlock(&sc->mutex);
2164
2165         DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2166 }
2167
2168 static int ath9k_add_interface(struct ieee80211_hw *hw,
2169                                struct ieee80211_if_init_conf *conf)
2170 {
2171         struct ath_wiphy *aphy = hw->priv;
2172         struct ath_softc *sc = aphy->sc;
2173         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2174         enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2175         int ret = 0;
2176
2177         mutex_lock(&sc->mutex);
2178
2179         if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2180             sc->nvifs > 0) {
2181                 ret = -ENOBUFS;
2182                 goto out;
2183         }
2184
2185         switch (conf->type) {
2186         case NL80211_IFTYPE_STATION:
2187                 ic_opmode = NL80211_IFTYPE_STATION;
2188                 break;
2189         case NL80211_IFTYPE_ADHOC:
2190         case NL80211_IFTYPE_AP:
2191         case NL80211_IFTYPE_MESH_POINT:
2192                 if (sc->nbcnvifs >= ATH_BCBUF) {
2193                         ret = -ENOBUFS;
2194                         goto out;
2195                 }
2196                 ic_opmode = conf->type;
2197                 break;
2198         default:
2199                 DPRINTF(sc, ATH_DBG_FATAL,
2200                         "Interface type %d not yet supported\n", conf->type);
2201                 ret = -EOPNOTSUPP;
2202                 goto out;
2203         }
2204
2205         DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2206
2207         /* Set the VIF opmode */
2208         avp->av_opmode = ic_opmode;
2209         avp->av_bslot = -1;
2210
2211         sc->nvifs++;
2212
2213         if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2214                 ath9k_set_bssid_mask(hw);
2215
2216         if (sc->nvifs > 1)
2217                 goto out; /* skip global settings for secondary vif */
2218
2219         if (ic_opmode == NL80211_IFTYPE_AP) {
2220                 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2221                 sc->sc_flags |= SC_OP_TSF_RESET;
2222         }
2223
2224         /* Set the device opmode */
2225         sc->sc_ah->opmode = ic_opmode;
2226
2227         /*
2228          * Enable MIB interrupts when there are hardware phy counters.
2229          * Note we only do this (at the moment) for station mode.
2230          */
2231         if ((conf->type == NL80211_IFTYPE_STATION) ||
2232             (conf->type == NL80211_IFTYPE_ADHOC) ||
2233             (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2234                 if (ath9k_hw_phycounters(sc->sc_ah))
2235                         sc->imask |= ATH9K_INT_MIB;
2236                 sc->imask |= ATH9K_INT_TSFOOR;
2237         }
2238
2239         ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2240
2241         if (conf->type == NL80211_IFTYPE_AP)
2242                 ath_start_ani(sc);
2243
2244 out:
2245         mutex_unlock(&sc->mutex);
2246         return ret;
2247 }
2248
2249 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2250                                    struct ieee80211_if_init_conf *conf)
2251 {
2252         struct ath_wiphy *aphy = hw->priv;
2253         struct ath_softc *sc = aphy->sc;
2254         struct ath_vif *avp = (void *)conf->vif->drv_priv;
2255         int i;
2256
2257         DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2258
2259         mutex_lock(&sc->mutex);
2260
2261         /* Stop ANI */
2262         del_timer_sync(&sc->ani.timer);
2263
2264         /* Reclaim beacon resources */
2265         if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2266             (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2267             (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2268                 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2269                 ath_beacon_return(sc, avp);
2270         }
2271
2272         sc->sc_flags &= ~SC_OP_BEACONS;
2273
2274         for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2275                 if (sc->beacon.bslot[i] == conf->vif) {
2276                         printk(KERN_DEBUG "%s: vif had allocated beacon "
2277                                "slot\n", __func__);
2278                         sc->beacon.bslot[i] = NULL;
2279                         sc->beacon.bslot_aphy[i] = NULL;
2280                 }
2281         }
2282
2283         sc->nvifs--;
2284
2285         mutex_unlock(&sc->mutex);
2286 }
2287
2288 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2289 {
2290         struct ath_wiphy *aphy = hw->priv;
2291         struct ath_softc *sc = aphy->sc;
2292         struct ieee80211_conf *conf = &hw->conf;
2293         struct ath_hw *ah = sc->sc_ah;
2294
2295         mutex_lock(&sc->mutex);
2296
2297         if (changed & IEEE80211_CONF_CHANGE_PS) {
2298                 if (conf->flags & IEEE80211_CONF_PS) {
2299                         if (!(ah->caps.hw_caps &
2300                               ATH9K_HW_CAP_AUTOSLEEP)) {
2301                                 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2302                                         sc->imask |= ATH9K_INT_TIM_TIMER;
2303                                         ath9k_hw_set_interrupts(sc->sc_ah,
2304                                                         sc->imask);
2305                                 }
2306                                 ath9k_hw_setrxabort(sc->sc_ah, 1);
2307                         }
2308                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2309                 } else {
2310                         ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2311                         if (!(ah->caps.hw_caps &
2312                               ATH9K_HW_CAP_AUTOSLEEP)) {
2313                                 ath9k_hw_setrxabort(sc->sc_ah, 0);
2314                                 sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
2315                                 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2316                                         sc->imask &= ~ATH9K_INT_TIM_TIMER;
2317                                         ath9k_hw_set_interrupts(sc->sc_ah,
2318                                                         sc->imask);
2319                                 }
2320                         }
2321                 }
2322         }
2323
2324         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2325                 struct ieee80211_channel *curchan = hw->conf.channel;
2326                 int pos = curchan->hw_value;
2327
2328                 aphy->chan_idx = pos;
2329                 aphy->chan_is_ht = conf_is_ht(conf);
2330
2331                 if (aphy->state == ATH_WIPHY_SCAN ||
2332                     aphy->state == ATH_WIPHY_ACTIVE)
2333                         ath9k_wiphy_pause_all_forced(sc, aphy);
2334                 else {
2335                         /*
2336                          * Do not change operational channel based on a paused
2337                          * wiphy changes.
2338                          */
2339                         goto skip_chan_change;
2340                 }
2341
2342                 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2343                         curchan->center_freq);
2344
2345                 /* XXX: remove me eventualy */
2346                 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2347
2348                 ath_update_chainmask(sc, conf_is_ht(conf));
2349
2350                 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2351                         DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2352                         mutex_unlock(&sc->mutex);
2353                         return -EINVAL;
2354                 }
2355         }
2356
2357 skip_chan_change:
2358         if (changed & IEEE80211_CONF_CHANGE_POWER)
2359                 sc->config.txpowlimit = 2 * conf->power_level;
2360
2361         /*
2362          * The HW TSF has to be reset when the beacon interval changes.
2363          * We set the flag here, and ath_beacon_config_ap() would take this
2364          * into account when it gets called through the subsequent
2365          * config_interface() call - with IFCC_BEACON in the changed field.
2366          */
2367
2368         if (changed & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
2369                 sc->sc_flags |= SC_OP_TSF_RESET;
2370
2371         mutex_unlock(&sc->mutex);
2372
2373         return 0;
2374 }
2375
2376 static int ath9k_config_interface(struct ieee80211_hw *hw,
2377                                   struct ieee80211_vif *vif,
2378                                   struct ieee80211_if_conf *conf)
2379 {
2380         struct ath_wiphy *aphy = hw->priv;
2381         struct ath_softc *sc = aphy->sc;
2382         struct ath_hw *ah = sc->sc_ah;
2383         struct ath_vif *avp = (void *)vif->drv_priv;
2384         u32 rfilt = 0;
2385         int error, i;
2386
2387         mutex_lock(&sc->mutex);
2388
2389         /* TODO: Need to decide which hw opmode to use for multi-interface
2390          * cases */
2391         if (vif->type == NL80211_IFTYPE_AP &&
2392             ah->opmode != NL80211_IFTYPE_AP) {
2393                 ah->opmode = NL80211_IFTYPE_STATION;
2394                 ath9k_hw_setopmode(ah);
2395                 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2396                 sc->curaid = 0;
2397                 ath9k_hw_write_associd(sc);
2398                 /* Request full reset to get hw opmode changed properly */
2399                 sc->sc_flags |= SC_OP_FULL_RESET;
2400         }
2401
2402         if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2403             !is_zero_ether_addr(conf->bssid)) {
2404                 switch (vif->type) {
2405                 case NL80211_IFTYPE_STATION:
2406                 case NL80211_IFTYPE_ADHOC:
2407                 case NL80211_IFTYPE_MESH_POINT:
2408                         /* Set BSSID */
2409                         memcpy(sc->curbssid, conf->bssid, ETH_ALEN);
2410                         memcpy(avp->bssid, conf->bssid, ETH_ALEN);
2411                         sc->curaid = 0;
2412                         ath9k_hw_write_associd(sc);
2413
2414                         /* Set aggregation protection mode parameters */
2415                         sc->config.ath_aggr_prot = 0;
2416
2417                         DPRINTF(sc, ATH_DBG_CONFIG,
2418                                 "RX filter 0x%x bssid %pM aid 0x%x\n",
2419                                 rfilt, sc->curbssid, sc->curaid);
2420
2421                         /* need to reconfigure the beacon */
2422                         sc->sc_flags &= ~SC_OP_BEACONS ;
2423
2424                         break;
2425                 default:
2426                         break;
2427                 }
2428         }
2429
2430         if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2431             (vif->type == NL80211_IFTYPE_AP) ||
2432             (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2433                 if ((conf->changed & IEEE80211_IFCC_BEACON) ||
2434                     (conf->changed & IEEE80211_IFCC_BEACON_ENABLED &&
2435                      conf->enable_beacon)) {
2436                         /*
2437                          * Allocate and setup the beacon frame.
2438                          *
2439                          * Stop any previous beacon DMA.  This may be
2440                          * necessary, for example, when an ibss merge
2441                          * causes reconfiguration; we may be called
2442                          * with beacon transmission active.
2443                          */
2444                         ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2445
2446                         error = ath_beacon_alloc(aphy, vif);
2447                         if (error != 0) {
2448                                 mutex_unlock(&sc->mutex);
2449                                 return error;
2450                         }
2451
2452                         ath_beacon_config(sc, vif);
2453                 }
2454         }
2455
2456         /* Check for WLAN_CAPABILITY_PRIVACY ? */
2457         if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2458                 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2459                         if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2460                                 ath9k_hw_keysetmac(sc->sc_ah,
2461                                                    (u16)i,
2462                                                    sc->curbssid);
2463         }
2464
2465         /* Only legacy IBSS for now */
2466         if (vif->type == NL80211_IFTYPE_ADHOC)
2467                 ath_update_chainmask(sc, 0);
2468
2469         mutex_unlock(&sc->mutex);
2470
2471         return 0;
2472 }
2473
2474 #define SUPPORTED_FILTERS                       \
2475         (FIF_PROMISC_IN_BSS |                   \
2476         FIF_ALLMULTI |                          \
2477         FIF_CONTROL |                           \
2478         FIF_OTHER_BSS |                         \
2479         FIF_BCN_PRBRESP_PROMISC |               \
2480         FIF_FCSFAIL)
2481
2482 /* FIXME: sc->sc_full_reset ? */
2483 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2484                                    unsigned int changed_flags,
2485                                    unsigned int *total_flags,
2486                                    int mc_count,
2487                                    struct dev_mc_list *mclist)
2488 {
2489         struct ath_wiphy *aphy = hw->priv;
2490         struct ath_softc *sc = aphy->sc;
2491         u32 rfilt;
2492
2493         changed_flags &= SUPPORTED_FILTERS;
2494         *total_flags &= SUPPORTED_FILTERS;
2495
2496         sc->rx.rxfilter = *total_flags;
2497         rfilt = ath_calcrxfilter(sc);
2498         ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2499
2500         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2501 }
2502
2503 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2504                              struct ieee80211_vif *vif,
2505                              enum sta_notify_cmd cmd,
2506                              struct ieee80211_sta *sta)
2507 {
2508         struct ath_wiphy *aphy = hw->priv;
2509         struct ath_softc *sc = aphy->sc;
2510
2511         switch (cmd) {
2512         case STA_NOTIFY_ADD:
2513                 ath_node_attach(sc, sta);
2514                 break;
2515         case STA_NOTIFY_REMOVE:
2516                 ath_node_detach(sc, sta);
2517                 break;
2518         default:
2519                 break;
2520         }
2521 }
2522
2523 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2524                          const struct ieee80211_tx_queue_params *params)
2525 {
2526         struct ath_wiphy *aphy = hw->priv;
2527         struct ath_softc *sc = aphy->sc;
2528         struct ath9k_tx_queue_info qi;
2529         int ret = 0, qnum;
2530
2531         if (queue >= WME_NUM_AC)
2532                 return 0;
2533
2534         mutex_lock(&sc->mutex);
2535
2536         memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2537
2538         qi.tqi_aifs = params->aifs;
2539         qi.tqi_cwmin = params->cw_min;
2540         qi.tqi_cwmax = params->cw_max;
2541         qi.tqi_burstTime = params->txop;
2542         qnum = ath_get_hal_qnum(queue, sc);
2543
2544         DPRINTF(sc, ATH_DBG_CONFIG,
2545                 "Configure tx [queue/halq] [%d/%d],  "
2546                 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2547                 queue, qnum, params->aifs, params->cw_min,
2548                 params->cw_max, params->txop);
2549
2550         ret = ath_txq_update(sc, qnum, &qi);
2551         if (ret)
2552                 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2553
2554         mutex_unlock(&sc->mutex);
2555
2556         return ret;
2557 }
2558
2559 static int ath9k_set_key(struct ieee80211_hw *hw,
2560                          enum set_key_cmd cmd,
2561                          struct ieee80211_vif *vif,
2562                          struct ieee80211_sta *sta,
2563                          struct ieee80211_key_conf *key)
2564 {
2565         struct ath_wiphy *aphy = hw->priv;
2566         struct ath_softc *sc = aphy->sc;
2567         int ret = 0;
2568
2569         if (modparam_nohwcrypt)
2570                 return -ENOSPC;
2571
2572         mutex_lock(&sc->mutex);
2573         ath9k_ps_wakeup(sc);
2574         DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2575
2576         switch (cmd) {
2577         case SET_KEY:
2578                 ret = ath_key_config(sc, vif, sta, key);
2579                 if (ret >= 0) {
2580                         key->hw_key_idx = ret;
2581                         /* push IV and Michael MIC generation to stack */
2582                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2583                         if (key->alg == ALG_TKIP)
2584                                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2585                         if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2586                                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2587                         ret = 0;
2588                 }
2589                 break;
2590         case DISABLE_KEY:
2591                 ath_key_delete(sc, key);
2592                 break;
2593         default:
2594                 ret = -EINVAL;
2595         }
2596
2597         ath9k_ps_restore(sc);
2598         mutex_unlock(&sc->mutex);
2599
2600         return ret;
2601 }
2602
2603 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2604                                    struct ieee80211_vif *vif,
2605                                    struct ieee80211_bss_conf *bss_conf,
2606                                    u32 changed)
2607 {
2608         struct ath_wiphy *aphy = hw->priv;
2609         struct ath_softc *sc = aphy->sc;
2610
2611         mutex_lock(&sc->mutex);
2612
2613         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2614                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2615                         bss_conf->use_short_preamble);
2616                 if (bss_conf->use_short_preamble)
2617                         sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2618                 else
2619                         sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2620         }
2621
2622         if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2623                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2624                         bss_conf->use_cts_prot);
2625                 if (bss_conf->use_cts_prot &&
2626                     hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2627                         sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2628                 else
2629                         sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2630         }
2631
2632         if (changed & BSS_CHANGED_ASSOC) {
2633                 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2634                         bss_conf->assoc);
2635                 ath9k_bss_assoc_info(sc, vif, bss_conf);
2636         }
2637
2638         mutex_unlock(&sc->mutex);
2639 }
2640
2641 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2642 {
2643         u64 tsf;
2644         struct ath_wiphy *aphy = hw->priv;
2645         struct ath_softc *sc = aphy->sc;
2646
2647         mutex_lock(&sc->mutex);
2648         tsf = ath9k_hw_gettsf64(sc->sc_ah);
2649         mutex_unlock(&sc->mutex);
2650
2651         return tsf;
2652 }
2653
2654 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2655 {
2656         struct ath_wiphy *aphy = hw->priv;
2657         struct ath_softc *sc = aphy->sc;
2658
2659         mutex_lock(&sc->mutex);
2660         ath9k_hw_settsf64(sc->sc_ah, tsf);
2661         mutex_unlock(&sc->mutex);
2662 }
2663
2664 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2665 {
2666         struct ath_wiphy *aphy = hw->priv;
2667         struct ath_softc *sc = aphy->sc;
2668
2669         mutex_lock(&sc->mutex);
2670         ath9k_hw_reset_tsf(sc->sc_ah);
2671         mutex_unlock(&sc->mutex);
2672 }
2673
2674 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2675                               enum ieee80211_ampdu_mlme_action action,
2676                               struct ieee80211_sta *sta,
2677                               u16 tid, u16 *ssn)
2678 {
2679         struct ath_wiphy *aphy = hw->priv;
2680         struct ath_softc *sc = aphy->sc;
2681         int ret = 0;
2682
2683         switch (action) {
2684         case IEEE80211_AMPDU_RX_START:
2685                 if (!(sc->sc_flags & SC_OP_RXAGGR))
2686                         ret = -ENOTSUPP;
2687                 break;
2688         case IEEE80211_AMPDU_RX_STOP:
2689                 break;
2690         case IEEE80211_AMPDU_TX_START:
2691                 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2692                 if (ret < 0)
2693                         DPRINTF(sc, ATH_DBG_FATAL,
2694                                 "Unable to start TX aggregation\n");
2695                 else
2696                         ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2697                 break;
2698         case IEEE80211_AMPDU_TX_STOP:
2699                 ret = ath_tx_aggr_stop(sc, sta, tid);
2700                 if (ret < 0)
2701                         DPRINTF(sc, ATH_DBG_FATAL,
2702                                 "Unable to stop TX aggregation\n");
2703
2704                 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2705                 break;
2706         case IEEE80211_AMPDU_TX_OPERATIONAL:
2707                 ath_tx_aggr_resume(sc, sta, tid);
2708                 break;
2709         default:
2710                 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2711         }
2712
2713         return ret;
2714 }
2715
2716 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2717 {
2718         struct ath_wiphy *aphy = hw->priv;
2719         struct ath_softc *sc = aphy->sc;
2720
2721         if (ath9k_wiphy_scanning(sc)) {
2722                 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2723                        "same time\n");
2724                 /*
2725                  * Do not allow the concurrent scanning state for now. This
2726                  * could be improved with scanning control moved into ath9k.
2727                  */
2728                 return;
2729         }
2730
2731         aphy->state = ATH_WIPHY_SCAN;
2732         ath9k_wiphy_pause_all_forced(sc, aphy);
2733
2734         mutex_lock(&sc->mutex);
2735         sc->sc_flags |= SC_OP_SCANNING;
2736         mutex_unlock(&sc->mutex);
2737 }
2738
2739 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2740 {
2741         struct ath_wiphy *aphy = hw->priv;
2742         struct ath_softc *sc = aphy->sc;
2743
2744         mutex_lock(&sc->mutex);
2745         aphy->state = ATH_WIPHY_ACTIVE;
2746         sc->sc_flags &= ~SC_OP_SCANNING;
2747         sc->sc_flags |= SC_OP_FULL_RESET;
2748         mutex_unlock(&sc->mutex);
2749 }
2750
2751 struct ieee80211_ops ath9k_ops = {
2752         .tx                 = ath9k_tx,
2753         .start              = ath9k_start,
2754         .stop               = ath9k_stop,
2755         .add_interface      = ath9k_add_interface,
2756         .remove_interface   = ath9k_remove_interface,
2757         .config             = ath9k_config,
2758         .config_interface   = ath9k_config_interface,
2759         .configure_filter   = ath9k_configure_filter,
2760         .sta_notify         = ath9k_sta_notify,
2761         .conf_tx            = ath9k_conf_tx,
2762         .bss_info_changed   = ath9k_bss_info_changed,
2763         .set_key            = ath9k_set_key,
2764         .get_tsf            = ath9k_get_tsf,
2765         .set_tsf            = ath9k_set_tsf,
2766         .reset_tsf          = ath9k_reset_tsf,
2767         .ampdu_action       = ath9k_ampdu_action,
2768         .sw_scan_start      = ath9k_sw_scan_start,
2769         .sw_scan_complete   = ath9k_sw_scan_complete,
2770 };
2771
2772 static struct {
2773         u32 version;
2774         const char * name;
2775 } ath_mac_bb_names[] = {
2776         { AR_SREV_VERSION_5416_PCI,     "5416" },
2777         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2778         { AR_SREV_VERSION_9100,         "9100" },
2779         { AR_SREV_VERSION_9160,         "9160" },
2780         { AR_SREV_VERSION_9280,         "9280" },
2781         { AR_SREV_VERSION_9285,         "9285" }
2782 };
2783
2784 static struct {
2785         u16 version;
2786         const char * name;
2787 } ath_rf_names[] = {
2788         { 0,                            "5133" },
2789         { AR_RAD5133_SREV_MAJOR,        "5133" },
2790         { AR_RAD5122_SREV_MAJOR,        "5122" },
2791         { AR_RAD2133_SREV_MAJOR,        "2133" },
2792         { AR_RAD2122_SREV_MAJOR,        "2122" }
2793 };
2794
2795 /*
2796  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2797  */
2798 const char *
2799 ath_mac_bb_name(u32 mac_bb_version)
2800 {
2801         int i;
2802
2803         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2804                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2805                         return ath_mac_bb_names[i].name;
2806                 }
2807         }
2808
2809         return "????";
2810 }
2811
2812 /*
2813  * Return the RF name. "????" is returned if the RF is unknown.
2814  */
2815 const char *
2816 ath_rf_name(u16 rf_version)
2817 {
2818         int i;
2819
2820         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2821                 if (ath_rf_names[i].version == rf_version) {
2822                         return ath_rf_names[i].name;
2823                 }
2824         }
2825
2826         return "????";
2827 }
2828
2829 static int __init ath9k_init(void)
2830 {
2831         int error;
2832
2833         /* Register rate control algorithm */
2834         error = ath_rate_control_register();
2835         if (error != 0) {
2836                 printk(KERN_ERR
2837                         "ath9k: Unable to register rate control "
2838                         "algorithm: %d\n",
2839                         error);
2840                 goto err_out;
2841         }
2842
2843         error = ath9k_debug_create_root();
2844         if (error) {
2845                 printk(KERN_ERR
2846                         "ath9k: Unable to create debugfs root: %d\n",
2847                         error);
2848                 goto err_rate_unregister;
2849         }
2850
2851         error = ath_pci_init();
2852         if (error < 0) {
2853                 printk(KERN_ERR
2854                         "ath9k: No PCI devices found, driver not installed.\n");
2855                 error = -ENODEV;
2856                 goto err_remove_root;
2857         }
2858
2859         error = ath_ahb_init();
2860         if (error < 0) {
2861                 error = -ENODEV;
2862                 goto err_pci_exit;
2863         }
2864
2865         return 0;
2866
2867  err_pci_exit:
2868         ath_pci_exit();
2869
2870  err_remove_root:
2871         ath9k_debug_remove_root();
2872  err_rate_unregister:
2873         ath_rate_control_unregister();
2874  err_out:
2875         return error;
2876 }
2877 module_init(ath9k_init);
2878
2879 static void __exit ath9k_exit(void)
2880 {
2881         ath_ahb_exit();
2882         ath_pci_exit();
2883         ath9k_debug_remove_root();
2884         ath_rate_control_unregister();
2885         printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2886 }
2887 module_exit(ath9k_exit);