drm/radeon/kms: enable use of unmappable VRAM V2
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23
24 #define ATH9K_CLOCK_RATE_CCK            22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
27
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31                               struct ar5416_eeprom_def *pEepData,
32                               u32 reg, u32 value);
33
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38
39 static int __init ath9k_init(void)
40 {
41         return 0;
42 }
43 module_init(ath9k_init);
44
45 static void __exit ath9k_exit(void)
46 {
47         return;
48 }
49 module_exit(ath9k_exit);
50
51 /********************/
52 /* Helper Functions */
53 /********************/
54
55 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
56 {
57         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58
59         if (!ah->curchan) /* should really check for CCK instead */
60                 return usecs *ATH9K_CLOCK_RATE_CCK;
61         if (conf->channel->band == IEEE80211_BAND_2GHZ)
62                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
63         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
64 }
65
66 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
69
70         if (conf_is_ht40(conf))
71                 return ath9k_hw_mac_clks(ah, usecs) * 2;
72         else
73                 return ath9k_hw_mac_clks(ah, usecs);
74 }
75
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78         int i;
79
80         BUG_ON(timeout < AH_TIME_QUANTUM);
81
82         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83                 if ((REG_READ(ah, reg) & mask) == val)
84                         return true;
85
86                 udelay(AH_TIME_QUANTUM);
87         }
88
89         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
90                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91                   timeout, reg, REG_READ(ah, reg), mask, val);
92
93         return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96
97 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
98 {
99         u32 retval;
100         int i;
101
102         for (i = 0, retval = 0; i < n; i++) {
103                 retval = (retval << 1) | (val & 1);
104                 val >>= 1;
105         }
106         return retval;
107 }
108
109 bool ath9k_get_channel_edges(struct ath_hw *ah,
110                              u16 flags, u16 *low,
111                              u16 *high)
112 {
113         struct ath9k_hw_capabilities *pCap = &ah->caps;
114
115         if (flags & CHANNEL_5GHZ) {
116                 *low = pCap->low_5ghz_chan;
117                 *high = pCap->high_5ghz_chan;
118                 return true;
119         }
120         if ((flags & CHANNEL_2GHZ)) {
121                 *low = pCap->low_2ghz_chan;
122                 *high = pCap->high_2ghz_chan;
123                 return true;
124         }
125         return false;
126 }
127
128 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
129                            u8 phy, int kbps,
130                            u32 frameLen, u16 rateix,
131                            bool shortPreamble)
132 {
133         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
134
135         if (kbps == 0)
136                 return 0;
137
138         switch (phy) {
139         case WLAN_RC_PHY_CCK:
140                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
141                 if (shortPreamble)
142                         phyTime >>= 1;
143                 numBits = frameLen << 3;
144                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
145                 break;
146         case WLAN_RC_PHY_OFDM:
147                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
148                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
149                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
150                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
151                         txTime = OFDM_SIFS_TIME_QUARTER
152                                 + OFDM_PREAMBLE_TIME_QUARTER
153                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
154                 } else if (ah->curchan &&
155                            IS_CHAN_HALF_RATE(ah->curchan)) {
156                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
157                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
158                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159                         txTime = OFDM_SIFS_TIME_HALF +
160                                 OFDM_PREAMBLE_TIME_HALF
161                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
162                 } else {
163                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
164                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
165                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
167                                 + (numSymbols * OFDM_SYMBOL_TIME);
168                 }
169                 break;
170         default:
171                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
172                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
173                 txTime = 0;
174                 break;
175         }
176
177         return txTime;
178 }
179 EXPORT_SYMBOL(ath9k_hw_computetxtime);
180
181 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
182                                   struct ath9k_channel *chan,
183                                   struct chan_centers *centers)
184 {
185         int8_t extoff;
186
187         if (!IS_CHAN_HT40(chan)) {
188                 centers->ctl_center = centers->ext_center =
189                         centers->synth_center = chan->channel;
190                 return;
191         }
192
193         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
194             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
195                 centers->synth_center =
196                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
197                 extoff = 1;
198         } else {
199                 centers->synth_center =
200                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
201                 extoff = -1;
202         }
203
204         centers->ctl_center =
205                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
206         /* 25 MHz spacing is supported by hw but not on upper layers */
207         centers->ext_center =
208                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
209 }
210
211 /******************/
212 /* Chip Revisions */
213 /******************/
214
215 static void ath9k_hw_read_revisions(struct ath_hw *ah)
216 {
217         u32 val;
218
219         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
220
221         if (val == 0xFF) {
222                 val = REG_READ(ah, AR_SREV);
223                 ah->hw_version.macVersion =
224                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
225                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
226                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
227         } else {
228                 if (!AR_SREV_9100(ah))
229                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
230
231                 ah->hw_version.macRev = val & AR_SREV_REVISION;
232
233                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
234                         ah->is_pciexpress = true;
235         }
236 }
237
238 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
239 {
240         u32 val;
241         int i;
242
243         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
244
245         for (i = 0; i < 8; i++)
246                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
247         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
248         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
249
250         return ath9k_hw_reverse_bits(val, 8);
251 }
252
253 /************************************/
254 /* HW Attach, Detach, Init Routines */
255 /************************************/
256
257 static void ath9k_hw_disablepcie(struct ath_hw *ah)
258 {
259         if (AR_SREV_9100(ah))
260                 return;
261
262         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
263         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
264         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
265         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
266         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
267         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
268         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
269         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
270         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
271
272         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
273 }
274
275 static bool ath9k_hw_chip_test(struct ath_hw *ah)
276 {
277         struct ath_common *common = ath9k_hw_common(ah);
278         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
279         u32 regHold[2];
280         u32 patternData[4] = { 0x55555555,
281                                0xaaaaaaaa,
282                                0x66666666,
283                                0x99999999 };
284         int i, j;
285
286         for (i = 0; i < 2; i++) {
287                 u32 addr = regAddr[i];
288                 u32 wrData, rdData;
289
290                 regHold[i] = REG_READ(ah, addr);
291                 for (j = 0; j < 0x100; j++) {
292                         wrData = (j << 16) | j;
293                         REG_WRITE(ah, addr, wrData);
294                         rdData = REG_READ(ah, addr);
295                         if (rdData != wrData) {
296                                 ath_print(common, ATH_DBG_FATAL,
297                                           "address test failed "
298                                           "addr: 0x%08x - wr:0x%08x != "
299                                           "rd:0x%08x\n",
300                                           addr, wrData, rdData);
301                                 return false;
302                         }
303                 }
304                 for (j = 0; j < 4; j++) {
305                         wrData = patternData[j];
306                         REG_WRITE(ah, addr, wrData);
307                         rdData = REG_READ(ah, addr);
308                         if (wrData != rdData) {
309                                 ath_print(common, ATH_DBG_FATAL,
310                                           "address test failed "
311                                           "addr: 0x%08x - wr:0x%08x != "
312                                           "rd:0x%08x\n",
313                                           addr, wrData, rdData);
314                                 return false;
315                         }
316                 }
317                 REG_WRITE(ah, regAddr[i], regHold[i]);
318         }
319         udelay(100);
320
321         return true;
322 }
323
324 static void ath9k_hw_init_config(struct ath_hw *ah)
325 {
326         int i;
327
328         ah->config.dma_beacon_response_time = 2;
329         ah->config.sw_beacon_response_time = 10;
330         ah->config.additional_swba_backoff = 0;
331         ah->config.ack_6mb = 0x0;
332         ah->config.cwm_ignore_extcca = 0;
333         ah->config.pcie_powersave_enable = 0;
334         ah->config.pcie_clock_req = 0;
335         ah->config.pcie_waen = 0;
336         ah->config.analog_shiftreg = 1;
337         ah->config.ofdm_trig_low = 200;
338         ah->config.ofdm_trig_high = 500;
339         ah->config.cck_trig_high = 200;
340         ah->config.cck_trig_low = 100;
341         ah->config.enable_ani = 1;
342
343         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
344                 ah->config.spurchans[i][0] = AR_NO_SPUR;
345                 ah->config.spurchans[i][1] = AR_NO_SPUR;
346         }
347
348         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
349                 ah->config.ht_enable = 1;
350         else
351                 ah->config.ht_enable = 0;
352
353         ah->config.rx_intr_mitigation = true;
354
355         /*
356          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
357          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
358          * This means we use it for all AR5416 devices, and the few
359          * minor PCI AR9280 devices out there.
360          *
361          * Serialization is required because these devices do not handle
362          * well the case of two concurrent reads/writes due to the latency
363          * involved. During one read/write another read/write can be issued
364          * on another CPU while the previous read/write may still be working
365          * on our hardware, if we hit this case the hardware poops in a loop.
366          * We prevent this by serializing reads and writes.
367          *
368          * This issue is not present on PCI-Express devices or pre-AR5416
369          * devices (legacy, 802.11abg).
370          */
371         if (num_possible_cpus() > 1)
372                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
373 }
374 EXPORT_SYMBOL(ath9k_hw_init);
375
376 static void ath9k_hw_init_defaults(struct ath_hw *ah)
377 {
378         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
379
380         regulatory->country_code = CTRY_DEFAULT;
381         regulatory->power_limit = MAX_RATE_POWER;
382         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
383
384         ah->hw_version.magic = AR5416_MAGIC;
385         ah->hw_version.subvendorid = 0;
386
387         ah->ah_flags = 0;
388         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
389                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
390         if (!AR_SREV_9100(ah))
391                 ah->ah_flags = AH_USE_EEPROM;
392
393         ah->atim_window = 0;
394         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
395         ah->beacon_interval = 100;
396         ah->enable_32kHz_clock = DONT_USE_32KHZ;
397         ah->slottime = (u32) -1;
398         ah->globaltxtimeout = (u32) -1;
399         ah->power_mode = ATH9K_PM_UNDEFINED;
400 }
401
402 static int ath9k_hw_rf_claim(struct ath_hw *ah)
403 {
404         u32 val;
405
406         REG_WRITE(ah, AR_PHY(0), 0x00000007);
407
408         val = ath9k_hw_get_radiorev(ah);
409         switch (val & AR_RADIO_SREV_MAJOR) {
410         case 0:
411                 val = AR_RAD5133_SREV_MAJOR;
412                 break;
413         case AR_RAD5133_SREV_MAJOR:
414         case AR_RAD5122_SREV_MAJOR:
415         case AR_RAD2133_SREV_MAJOR:
416         case AR_RAD2122_SREV_MAJOR:
417                 break;
418         default:
419                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
420                           "Radio Chip Rev 0x%02X not supported\n",
421                           val & AR_RADIO_SREV_MAJOR);
422                 return -EOPNOTSUPP;
423         }
424
425         ah->hw_version.analog5GhzRev = val;
426
427         return 0;
428 }
429
430 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
431 {
432         struct ath_common *common = ath9k_hw_common(ah);
433         u32 sum;
434         int i;
435         u16 eeval;
436
437         sum = 0;
438         for (i = 0; i < 3; i++) {
439                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
440                 sum += eeval;
441                 common->macaddr[2 * i] = eeval >> 8;
442                 common->macaddr[2 * i + 1] = eeval & 0xff;
443         }
444         if (sum == 0 || sum == 0xffff * 3)
445                 return -EADDRNOTAVAIL;
446
447         return 0;
448 }
449
450 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
451 {
452         u32 rxgain_type;
453
454         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
455                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
456
457                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
458                         INIT_INI_ARRAY(&ah->iniModesRxGain,
459                         ar9280Modes_backoff_13db_rxgain_9280_2,
460                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
461                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
462                         INIT_INI_ARRAY(&ah->iniModesRxGain,
463                         ar9280Modes_backoff_23db_rxgain_9280_2,
464                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
465                 else
466                         INIT_INI_ARRAY(&ah->iniModesRxGain,
467                         ar9280Modes_original_rxgain_9280_2,
468                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
469         } else {
470                 INIT_INI_ARRAY(&ah->iniModesRxGain,
471                         ar9280Modes_original_rxgain_9280_2,
472                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
473         }
474 }
475
476 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
477 {
478         u32 txgain_type;
479
480         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
481                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
482
483                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
484                         INIT_INI_ARRAY(&ah->iniModesTxGain,
485                         ar9280Modes_high_power_tx_gain_9280_2,
486                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
487                 else
488                         INIT_INI_ARRAY(&ah->iniModesTxGain,
489                         ar9280Modes_original_tx_gain_9280_2,
490                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
491         } else {
492                 INIT_INI_ARRAY(&ah->iniModesTxGain,
493                 ar9280Modes_original_tx_gain_9280_2,
494                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
495         }
496 }
497
498 static int ath9k_hw_post_init(struct ath_hw *ah)
499 {
500         int ecode;
501
502         if (!ath9k_hw_chip_test(ah))
503                 return -ENODEV;
504
505         ecode = ath9k_hw_rf_claim(ah);
506         if (ecode != 0)
507                 return ecode;
508
509         ecode = ath9k_hw_eeprom_init(ah);
510         if (ecode != 0)
511                 return ecode;
512
513         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
514                   "Eeprom VER: %d, REV: %d\n",
515                   ah->eep_ops->get_eeprom_ver(ah),
516                   ah->eep_ops->get_eeprom_rev(ah));
517
518         if (!AR_SREV_9280_10_OR_LATER(ah)) {
519                 ecode = ath9k_hw_rf_alloc_ext_banks(ah);
520                 if (ecode) {
521                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
522                                   "Failed allocating banks for "
523                                   "external radio\n");
524                         return ecode;
525                 }
526         }
527
528         if (!AR_SREV_9100(ah)) {
529                 ath9k_hw_ani_setup(ah);
530                 ath9k_hw_ani_init(ah);
531         }
532
533         return 0;
534 }
535
536 static bool ath9k_hw_devid_supported(u16 devid)
537 {
538         switch (devid) {
539         case AR5416_DEVID_PCI:
540         case AR5416_DEVID_PCIE:
541         case AR5416_AR9100_DEVID:
542         case AR9160_DEVID_PCI:
543         case AR9280_DEVID_PCI:
544         case AR9280_DEVID_PCIE:
545         case AR9285_DEVID_PCIE:
546         case AR5416_DEVID_AR9287_PCI:
547         case AR5416_DEVID_AR9287_PCIE:
548         case AR9271_USB:
549         case AR2427_DEVID_PCIE:
550                 return true;
551         default:
552                 break;
553         }
554         return false;
555 }
556
557 static bool ath9k_hw_macversion_supported(u32 macversion)
558 {
559         switch (macversion) {
560         case AR_SREV_VERSION_5416_PCI:
561         case AR_SREV_VERSION_5416_PCIE:
562         case AR_SREV_VERSION_9160:
563         case AR_SREV_VERSION_9100:
564         case AR_SREV_VERSION_9280:
565         case AR_SREV_VERSION_9285:
566         case AR_SREV_VERSION_9287:
567         case AR_SREV_VERSION_9271:
568                 return true;
569         default:
570                 break;
571         }
572         return false;
573 }
574
575 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
576 {
577         if (AR_SREV_9160_10_OR_LATER(ah)) {
578                 if (AR_SREV_9280_10_OR_LATER(ah)) {
579                         ah->iq_caldata.calData = &iq_cal_single_sample;
580                         ah->adcgain_caldata.calData =
581                                 &adc_gain_cal_single_sample;
582                         ah->adcdc_caldata.calData =
583                                 &adc_dc_cal_single_sample;
584                         ah->adcdc_calinitdata.calData =
585                                 &adc_init_dc_cal;
586                 } else {
587                         ah->iq_caldata.calData = &iq_cal_multi_sample;
588                         ah->adcgain_caldata.calData =
589                                 &adc_gain_cal_multi_sample;
590                         ah->adcdc_caldata.calData =
591                                 &adc_dc_cal_multi_sample;
592                         ah->adcdc_calinitdata.calData =
593                                 &adc_init_dc_cal;
594                 }
595                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
596         }
597 }
598
599 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
600 {
601         if (AR_SREV_9271(ah)) {
602                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
603                                ARRAY_SIZE(ar9271Modes_9271), 6);
604                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
605                                ARRAY_SIZE(ar9271Common_9271), 2);
606                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
607                                ar9271Modes_9271_1_0_only,
608                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
609                 return;
610         }
611
612         if (AR_SREV_9287_11_OR_LATER(ah)) {
613                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
614                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
615                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
616                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
617                 if (ah->config.pcie_clock_req)
618                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
619                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
620                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
621                 else
622                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
623                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
624                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
625                                         2);
626         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
627                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
628                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
629                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
630                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
631
632                 if (ah->config.pcie_clock_req)
633                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
634                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
635                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
636                 else
637                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
638                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
639                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
640                                   2);
641         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
642
643
644                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
645                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
646                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
647                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
648
649                 if (ah->config.pcie_clock_req) {
650                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
651                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
652                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
653                 } else {
654                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
655                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
656                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
657                                   2);
658                 }
659         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
660                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
661                                ARRAY_SIZE(ar9285Modes_9285), 6);
662                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
663                                ARRAY_SIZE(ar9285Common_9285), 2);
664
665                 if (ah->config.pcie_clock_req) {
666                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
667                         ar9285PciePhy_clkreq_off_L1_9285,
668                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
669                 } else {
670                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
671                         ar9285PciePhy_clkreq_always_on_L1_9285,
672                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
673                 }
674         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
675                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
676                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
677                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
678                                ARRAY_SIZE(ar9280Common_9280_2), 2);
679
680                 if (ah->config.pcie_clock_req) {
681                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
682                                ar9280PciePhy_clkreq_off_L1_9280,
683                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
684                 } else {
685                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
686                                ar9280PciePhy_clkreq_always_on_L1_9280,
687                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
688                 }
689                 INIT_INI_ARRAY(&ah->iniModesAdditional,
690                                ar9280Modes_fast_clock_9280_2,
691                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
692         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
693                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
694                                ARRAY_SIZE(ar9280Modes_9280), 6);
695                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
696                                ARRAY_SIZE(ar9280Common_9280), 2);
697         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
698                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
699                                ARRAY_SIZE(ar5416Modes_9160), 6);
700                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
701                                ARRAY_SIZE(ar5416Common_9160), 2);
702                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
703                                ARRAY_SIZE(ar5416Bank0_9160), 2);
704                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
705                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
706                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
707                                ARRAY_SIZE(ar5416Bank1_9160), 2);
708                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
709                                ARRAY_SIZE(ar5416Bank2_9160), 2);
710                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
711                                ARRAY_SIZE(ar5416Bank3_9160), 3);
712                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
713                                ARRAY_SIZE(ar5416Bank6_9160), 3);
714                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
715                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
716                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
717                                ARRAY_SIZE(ar5416Bank7_9160), 2);
718                 if (AR_SREV_9160_11(ah)) {
719                         INIT_INI_ARRAY(&ah->iniAddac,
720                                        ar5416Addac_91601_1,
721                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
722                 } else {
723                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
724                                        ARRAY_SIZE(ar5416Addac_9160), 2);
725                 }
726         } else if (AR_SREV_9100_OR_LATER(ah)) {
727                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
728                                ARRAY_SIZE(ar5416Modes_9100), 6);
729                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
730                                ARRAY_SIZE(ar5416Common_9100), 2);
731                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
732                                ARRAY_SIZE(ar5416Bank0_9100), 2);
733                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
734                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
735                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
736                                ARRAY_SIZE(ar5416Bank1_9100), 2);
737                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
738                                ARRAY_SIZE(ar5416Bank2_9100), 2);
739                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
740                                ARRAY_SIZE(ar5416Bank3_9100), 3);
741                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
742                                ARRAY_SIZE(ar5416Bank6_9100), 3);
743                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
744                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
745                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
746                                ARRAY_SIZE(ar5416Bank7_9100), 2);
747                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
748                                ARRAY_SIZE(ar5416Addac_9100), 2);
749         } else {
750                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
751                                ARRAY_SIZE(ar5416Modes), 6);
752                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
753                                ARRAY_SIZE(ar5416Common), 2);
754                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
755                                ARRAY_SIZE(ar5416Bank0), 2);
756                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
757                                ARRAY_SIZE(ar5416BB_RfGain), 3);
758                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
759                                ARRAY_SIZE(ar5416Bank1), 2);
760                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
761                                ARRAY_SIZE(ar5416Bank2), 2);
762                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
763                                ARRAY_SIZE(ar5416Bank3), 3);
764                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
765                                ARRAY_SIZE(ar5416Bank6), 3);
766                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
767                                ARRAY_SIZE(ar5416Bank6TPC), 3);
768                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
769                                ARRAY_SIZE(ar5416Bank7), 2);
770                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
771                                ARRAY_SIZE(ar5416Addac), 2);
772         }
773 }
774
775 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
776 {
777         if (AR_SREV_9287_11_OR_LATER(ah))
778                 INIT_INI_ARRAY(&ah->iniModesRxGain,
779                 ar9287Modes_rx_gain_9287_1_1,
780                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
781         else if (AR_SREV_9287_10(ah))
782                 INIT_INI_ARRAY(&ah->iniModesRxGain,
783                 ar9287Modes_rx_gain_9287_1_0,
784                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
785         else if (AR_SREV_9280_20(ah))
786                 ath9k_hw_init_rxgain_ini(ah);
787
788         if (AR_SREV_9287_11_OR_LATER(ah)) {
789                 INIT_INI_ARRAY(&ah->iniModesTxGain,
790                 ar9287Modes_tx_gain_9287_1_1,
791                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
792         } else if (AR_SREV_9287_10(ah)) {
793                 INIT_INI_ARRAY(&ah->iniModesTxGain,
794                 ar9287Modes_tx_gain_9287_1_0,
795                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
796         } else if (AR_SREV_9280_20(ah)) {
797                 ath9k_hw_init_txgain_ini(ah);
798         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
799                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
800
801                 /* txgain table */
802                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
803                         INIT_INI_ARRAY(&ah->iniModesTxGain,
804                         ar9285Modes_high_power_tx_gain_9285_1_2,
805                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
806                 } else {
807                         INIT_INI_ARRAY(&ah->iniModesTxGain,
808                         ar9285Modes_original_tx_gain_9285_1_2,
809                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
810                 }
811
812         }
813 }
814
815 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
816 {
817         u32 i, j;
818
819         if (ah->hw_version.devid == AR9280_DEVID_PCI) {
820
821                 /* EEPROM Fixup */
822                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
823                         u32 reg = INI_RA(&ah->iniModes, i, 0);
824
825                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
826                                 u32 val = INI_RA(&ah->iniModes, i, j);
827
828                                 INI_RA(&ah->iniModes, i, j) =
829                                         ath9k_hw_ini_fixup(ah,
830                                                            &ah->eeprom.def,
831                                                            reg, val);
832                         }
833                 }
834         }
835 }
836
837 int ath9k_hw_init(struct ath_hw *ah)
838 {
839         struct ath_common *common = ath9k_hw_common(ah);
840         int r = 0;
841
842         if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
843                 ath_print(common, ATH_DBG_FATAL,
844                           "Unsupported device ID: 0x%0x\n",
845                           ah->hw_version.devid);
846                 return -EOPNOTSUPP;
847         }
848
849         ath9k_hw_init_defaults(ah);
850         ath9k_hw_init_config(ah);
851
852         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
853                 ath_print(common, ATH_DBG_FATAL,
854                           "Couldn't reset chip\n");
855                 return -EIO;
856         }
857
858         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
859                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
860                 return -EIO;
861         }
862
863         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
864                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
865                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
866                         ah->config.serialize_regmode =
867                                 SER_REG_MODE_ON;
868                 } else {
869                         ah->config.serialize_regmode =
870                                 SER_REG_MODE_OFF;
871                 }
872         }
873
874         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
875                 ah->config.serialize_regmode);
876
877         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
878                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
879         else
880                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
881
882         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
883                 ath_print(common, ATH_DBG_FATAL,
884                           "Mac Chip Rev 0x%02x.%x is not supported by "
885                           "this driver\n", ah->hw_version.macVersion,
886                           ah->hw_version.macRev);
887                 return -EOPNOTSUPP;
888         }
889
890         if (AR_SREV_9100(ah)) {
891                 ah->iq_caldata.calData = &iq_cal_multi_sample;
892                 ah->supp_cals = IQ_MISMATCH_CAL;
893                 ah->is_pciexpress = false;
894         }
895
896         if (AR_SREV_9271(ah))
897                 ah->is_pciexpress = false;
898
899         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
900
901         ath9k_hw_init_cal_settings(ah);
902
903         ah->ani_function = ATH9K_ANI_ALL;
904         if (AR_SREV_9280_10_OR_LATER(ah)) {
905                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
906                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
907                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
908         } else {
909                 ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
910                 ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
911         }
912
913         ath9k_hw_init_mode_regs(ah);
914
915         if (ah->is_pciexpress)
916                 ath9k_hw_configpcipowersave(ah, 0, 0);
917         else
918                 ath9k_hw_disablepcie(ah);
919
920         /* Support for Japan ch.14 (2484) spread */
921         if (AR_SREV_9287_11_OR_LATER(ah)) {
922                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
923                        ar9287Common_normal_cck_fir_coeff_92871_1,
924                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
925                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
926                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
927                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
928         }
929
930         r = ath9k_hw_post_init(ah);
931         if (r)
932                 return r;
933
934         ath9k_hw_init_mode_gain_regs(ah);
935         r = ath9k_hw_fill_cap_info(ah);
936         if (r)
937                 return r;
938
939         ath9k_hw_init_eeprom_fix(ah);
940
941         r = ath9k_hw_init_macaddr(ah);
942         if (r) {
943                 ath_print(common, ATH_DBG_FATAL,
944                           "Failed to initialize MAC address\n");
945                 return r;
946         }
947
948         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
949                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
950         else
951                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
952
953         ath9k_init_nfcal_hist_buffer(ah);
954
955         common->state = ATH_HW_INITIALIZED;
956
957         return 0;
958 }
959
960 static void ath9k_hw_init_bb(struct ath_hw *ah,
961                              struct ath9k_channel *chan)
962 {
963         u32 synthDelay;
964
965         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
966         if (IS_CHAN_B(chan))
967                 synthDelay = (4 * synthDelay) / 22;
968         else
969                 synthDelay /= 10;
970
971         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
972
973         udelay(synthDelay + BASE_ACTIVATE_DELAY);
974 }
975
976 static void ath9k_hw_init_qos(struct ath_hw *ah)
977 {
978         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
979         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
980
981         REG_WRITE(ah, AR_QOS_NO_ACK,
982                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
983                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
984                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
985
986         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
987         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
988         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
989         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
990         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
991 }
992
993 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
994 {
995         u32 lcr;
996         u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
997
998         lcr = REG_READ(ah , 0x5100c);
999         lcr |= 0x80;
1000
1001         REG_WRITE(ah, 0x5100c, lcr);
1002         REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1003         REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1004
1005         lcr &= ~0x80;
1006         REG_WRITE(ah, 0x5100c, lcr);
1007 }
1008
1009 static void ath9k_hw_init_pll(struct ath_hw *ah,
1010                               struct ath9k_channel *chan)
1011 {
1012         u32 pll;
1013
1014         if (AR_SREV_9100(ah)) {
1015                 if (chan && IS_CHAN_5GHZ(chan))
1016                         pll = 0x1450;
1017                 else
1018                         pll = 0x1458;
1019         } else {
1020                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1021                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1022
1023                         if (chan && IS_CHAN_HALF_RATE(chan))
1024                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1025                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1026                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1027
1028                         if (chan && IS_CHAN_5GHZ(chan)) {
1029                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1030
1031
1032                                 if (AR_SREV_9280_20(ah)) {
1033                                         if (((chan->channel % 20) == 0)
1034                                             || ((chan->channel % 10) == 0))
1035                                                 pll = 0x2850;
1036                                         else
1037                                                 pll = 0x142c;
1038                                 }
1039                         } else {
1040                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1041                         }
1042
1043                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1044
1045                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1046
1047                         if (chan && IS_CHAN_HALF_RATE(chan))
1048                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1049                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1050                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1051
1052                         if (chan && IS_CHAN_5GHZ(chan))
1053                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1054                         else
1055                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1056                 } else {
1057                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1058
1059                         if (chan && IS_CHAN_HALF_RATE(chan))
1060                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1061                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1062                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1063
1064                         if (chan && IS_CHAN_5GHZ(chan))
1065                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1066                         else
1067                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1068                 }
1069         }
1070         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1071
1072         /* Switch the core clock for ar9271 to 117Mhz */
1073         if (AR_SREV_9271(ah)) {
1074                 if ((pll == 0x142c) || (pll == 0x2850) ) {
1075                         udelay(500);
1076                         /* set CLKOBS to output AHB clock */
1077                         REG_WRITE(ah, 0x7020, 0xe);
1078                         /*
1079                          * 0x304: 117Mhz, ahb_ratio: 1x1
1080                          * 0x306: 40Mhz, ahb_ratio: 1x1
1081                          */
1082                         REG_WRITE(ah, 0x50040, 0x304);
1083                         /*
1084                          * makes adjustments for the baud dividor to keep the
1085                          * targetted baud rate based on the used core clock.
1086                          */
1087                         ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1088                                                     AR9271_TARGET_BAUD_RATE);
1089                 }
1090         }
1091
1092         udelay(RTC_PLL_SETTLE_DELAY);
1093
1094         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1095 }
1096
1097 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1098 {
1099         int rx_chainmask, tx_chainmask;
1100
1101         rx_chainmask = ah->rxchainmask;
1102         tx_chainmask = ah->txchainmask;
1103
1104         switch (rx_chainmask) {
1105         case 0x5:
1106                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1107                             AR_PHY_SWAP_ALT_CHAIN);
1108         case 0x3:
1109                 if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1110                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1111                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1112                         break;
1113                 }
1114         case 0x1:
1115         case 0x2:
1116         case 0x7:
1117                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1118                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1119                 break;
1120         default:
1121                 break;
1122         }
1123
1124         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1125         if (tx_chainmask == 0x5) {
1126                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1127                             AR_PHY_SWAP_ALT_CHAIN);
1128         }
1129         if (AR_SREV_9100(ah))
1130                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1131                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1132 }
1133
1134 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1135                                           enum nl80211_iftype opmode)
1136 {
1137         ah->mask_reg = AR_IMR_TXERR |
1138                 AR_IMR_TXURN |
1139                 AR_IMR_RXERR |
1140                 AR_IMR_RXORN |
1141                 AR_IMR_BCNMISC;
1142
1143         if (ah->config.rx_intr_mitigation)
1144                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1145         else
1146                 ah->mask_reg |= AR_IMR_RXOK;
1147
1148         ah->mask_reg |= AR_IMR_TXOK;
1149
1150         if (opmode == NL80211_IFTYPE_AP)
1151                 ah->mask_reg |= AR_IMR_MIB;
1152
1153         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1154         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1155
1156         if (!AR_SREV_9100(ah)) {
1157                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1158                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1159                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1160         }
1161 }
1162
1163 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1164 {
1165         u32 val = ath9k_hw_mac_to_clks(ah, us);
1166         val = min(val, (u32) 0xFFFF);
1167         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1168 }
1169
1170 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1171 {
1172         u32 val = ath9k_hw_mac_to_clks(ah, us);
1173         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1174         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1175 }
1176
1177 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1178 {
1179         u32 val = ath9k_hw_mac_to_clks(ah, us);
1180         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1181         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1182 }
1183
1184 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1185 {
1186         if (tu > 0xFFFF) {
1187                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1188                           "bad global tx timeout %u\n", tu);
1189                 ah->globaltxtimeout = (u32) -1;
1190                 return false;
1191         } else {
1192                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1193                 ah->globaltxtimeout = tu;
1194                 return true;
1195         }
1196 }
1197
1198 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1199 {
1200         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1201         int acktimeout;
1202         int slottime;
1203         int sifstime;
1204
1205         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1206                   ah->misc_mode);
1207
1208         if (ah->misc_mode != 0)
1209                 REG_WRITE(ah, AR_PCU_MISC,
1210                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1211
1212         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1213                 sifstime = 16;
1214         else
1215                 sifstime = 10;
1216
1217         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1218         slottime = ah->slottime + 3 * ah->coverage_class;
1219         acktimeout = slottime + sifstime;
1220
1221         /*
1222          * Workaround for early ACK timeouts, add an offset to match the
1223          * initval's 64us ack timeout value.
1224          * This was initially only meant to work around an issue with delayed
1225          * BA frames in some implementations, but it has been found to fix ACK
1226          * timeout issues in other cases as well.
1227          */
1228         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1229                 acktimeout += 64 - sifstime - ah->slottime;
1230
1231         ath9k_hw_setslottime(ah, slottime);
1232         ath9k_hw_set_ack_timeout(ah, acktimeout);
1233         ath9k_hw_set_cts_timeout(ah, acktimeout);
1234         if (ah->globaltxtimeout != (u32) -1)
1235                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1236 }
1237 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1238
1239 void ath9k_hw_deinit(struct ath_hw *ah)
1240 {
1241         struct ath_common *common = ath9k_hw_common(ah);
1242
1243         if (common->state <= ATH_HW_INITIALIZED)
1244                 goto free_hw;
1245
1246         if (!AR_SREV_9100(ah))
1247                 ath9k_hw_ani_disable(ah);
1248
1249         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1250
1251 free_hw:
1252         if (!AR_SREV_9280_10_OR_LATER(ah))
1253                 ath9k_hw_rf_free_ext_banks(ah);
1254         kfree(ah);
1255         ah = NULL;
1256 }
1257 EXPORT_SYMBOL(ath9k_hw_deinit);
1258
1259 /*******/
1260 /* INI */
1261 /*******/
1262
1263 static void ath9k_hw_override_ini(struct ath_hw *ah,
1264                                   struct ath9k_channel *chan)
1265 {
1266         u32 val;
1267
1268         if (AR_SREV_9271(ah)) {
1269                 /*
1270                  * Enable spectral scan to solution for issues with stuck
1271                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1272                  * AR9271 1.1
1273                  */
1274                 if (AR_SREV_9271_10(ah)) {
1275                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1276                               AR_PHY_SPECTRAL_SCAN_ENABLE;
1277                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1278                 }
1279                 else if (AR_SREV_9271_11(ah))
1280                         /*
1281                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1282                          * present on AR9271 1.1
1283                          */
1284                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1285                 return;
1286         }
1287
1288         /*
1289          * Set the RX_ABORT and RX_DIS and clear if off only after
1290          * RXE is set for MAC. This prevents frames with corrupted
1291          * descriptor status.
1292          */
1293         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1294
1295         if (AR_SREV_9280_10_OR_LATER(ah)) {
1296                 val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1297                                (~AR_PCU_MISC_MODE2_HWWAR1);
1298
1299                 if (AR_SREV_9287_10_OR_LATER(ah))
1300                         val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1301
1302                 REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1303         }
1304
1305         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1306             AR_SREV_9280_10_OR_LATER(ah))
1307                 return;
1308         /*
1309          * Disable BB clock gating
1310          * Necessary to avoid issues on AR5416 2.0
1311          */
1312         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1313
1314         /*
1315          * Disable RIFS search on some chips to avoid baseband
1316          * hang issues.
1317          */
1318         if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1319                 val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1320                 val &= ~AR_PHY_RIFS_INIT_DELAY;
1321                 REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1322         }
1323 }
1324
1325 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1326                               struct ar5416_eeprom_def *pEepData,
1327                               u32 reg, u32 value)
1328 {
1329         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1330         struct ath_common *common = ath9k_hw_common(ah);
1331
1332         switch (ah->hw_version.devid) {
1333         case AR9280_DEVID_PCI:
1334                 if (reg == 0x7894) {
1335                         ath_print(common, ATH_DBG_EEPROM,
1336                                 "ini VAL: %x  EEPROM: %x\n", value,
1337                                 (pBase->version & 0xff));
1338
1339                         if ((pBase->version & 0xff) > 0x0a) {
1340                                 ath_print(common, ATH_DBG_EEPROM,
1341                                           "PWDCLKIND: %d\n",
1342                                           pBase->pwdclkind);
1343                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1344                                 value |= AR_AN_TOP2_PWDCLKIND &
1345                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1346                         } else {
1347                                 ath_print(common, ATH_DBG_EEPROM,
1348                                           "PWDCLKIND Earlier Rev\n");
1349                         }
1350
1351                         ath_print(common, ATH_DBG_EEPROM,
1352                                   "final ini VAL: %x\n", value);
1353                 }
1354                 break;
1355         }
1356
1357         return value;
1358 }
1359
1360 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1361                               struct ar5416_eeprom_def *pEepData,
1362                               u32 reg, u32 value)
1363 {
1364         if (ah->eep_map == EEP_MAP_4KBITS)
1365                 return value;
1366         else
1367                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1368 }
1369
1370 static void ath9k_olc_init(struct ath_hw *ah)
1371 {
1372         u32 i;
1373
1374         if (OLC_FOR_AR9287_10_LATER) {
1375                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1376                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1377                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1378                                 AR9287_AN_TXPC0_TXPCMODE,
1379                                 AR9287_AN_TXPC0_TXPCMODE_S,
1380                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1381                 udelay(100);
1382         } else {
1383                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1384                         ah->originalGain[i] =
1385                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1386                                                 AR_PHY_TX_GAIN);
1387                 ah->PDADCdelta = 0;
1388         }
1389 }
1390
1391 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1392                               struct ath9k_channel *chan)
1393 {
1394         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1395
1396         if (IS_CHAN_B(chan))
1397                 ctl |= CTL_11B;
1398         else if (IS_CHAN_G(chan))
1399                 ctl |= CTL_11G;
1400         else
1401                 ctl |= CTL_11A;
1402
1403         return ctl;
1404 }
1405
1406 static int ath9k_hw_process_ini(struct ath_hw *ah,
1407                                 struct ath9k_channel *chan)
1408 {
1409         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1410         int i, regWrites = 0;
1411         struct ieee80211_channel *channel = chan->chan;
1412         u32 modesIndex, freqIndex;
1413
1414         switch (chan->chanmode) {
1415         case CHANNEL_A:
1416         case CHANNEL_A_HT20:
1417                 modesIndex = 1;
1418                 freqIndex = 1;
1419                 break;
1420         case CHANNEL_A_HT40PLUS:
1421         case CHANNEL_A_HT40MINUS:
1422                 modesIndex = 2;
1423                 freqIndex = 1;
1424                 break;
1425         case CHANNEL_G:
1426         case CHANNEL_G_HT20:
1427         case CHANNEL_B:
1428                 modesIndex = 4;
1429                 freqIndex = 2;
1430                 break;
1431         case CHANNEL_G_HT40PLUS:
1432         case CHANNEL_G_HT40MINUS:
1433                 modesIndex = 3;
1434                 freqIndex = 2;
1435                 break;
1436
1437         default:
1438                 return -EINVAL;
1439         }
1440
1441         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1442         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1443         ah->eep_ops->set_addac(ah, chan);
1444
1445         if (AR_SREV_5416_22_OR_LATER(ah)) {
1446                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1447         } else {
1448                 struct ar5416IniArray temp;
1449                 u32 addacSize =
1450                         sizeof(u32) * ah->iniAddac.ia_rows *
1451                         ah->iniAddac.ia_columns;
1452
1453                 memcpy(ah->addac5416_21,
1454                        ah->iniAddac.ia_array, addacSize);
1455
1456                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1457
1458                 temp.ia_array = ah->addac5416_21;
1459                 temp.ia_columns = ah->iniAddac.ia_columns;
1460                 temp.ia_rows = ah->iniAddac.ia_rows;
1461                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1462         }
1463
1464         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1465
1466         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1467                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1468                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1469
1470                 REG_WRITE(ah, reg, val);
1471
1472                 if (reg >= 0x7800 && reg < 0x78a0
1473                     && ah->config.analog_shiftreg) {
1474                         udelay(100);
1475                 }
1476
1477                 DO_DELAY(regWrites);
1478         }
1479
1480         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1481                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1482
1483         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1484             AR_SREV_9287_10_OR_LATER(ah))
1485                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1486
1487         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1488                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1489                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1490
1491                 REG_WRITE(ah, reg, val);
1492
1493                 if (reg >= 0x7800 && reg < 0x78a0
1494                     && ah->config.analog_shiftreg) {
1495                         udelay(100);
1496                 }
1497
1498                 DO_DELAY(regWrites);
1499         }
1500
1501         ath9k_hw_write_regs(ah, freqIndex, regWrites);
1502
1503         if (AR_SREV_9271_10(ah))
1504                 REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1505                                 modesIndex, regWrites);
1506
1507         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1508                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1509                                 regWrites);
1510         }
1511
1512         ath9k_hw_override_ini(ah, chan);
1513         ath9k_hw_set_regs(ah, chan);
1514         ath9k_hw_init_chain_masks(ah);
1515
1516         if (OLC_FOR_AR9280_20_LATER)
1517                 ath9k_olc_init(ah);
1518
1519         ah->eep_ops->set_txpower(ah, chan,
1520                                  ath9k_regd_get_ctl(regulatory, chan),
1521                                  channel->max_antenna_gain * 2,
1522                                  channel->max_power * 2,
1523                                  min((u32) MAX_RATE_POWER,
1524                                  (u32) regulatory->power_limit));
1525
1526         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1527                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1528                           "ar5416SetRfRegs failed\n");
1529                 return -EIO;
1530         }
1531
1532         return 0;
1533 }
1534
1535 /****************************************/
1536 /* Reset and Channel Switching Routines */
1537 /****************************************/
1538
1539 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1540 {
1541         u32 rfMode = 0;
1542
1543         if (chan == NULL)
1544                 return;
1545
1546         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1547                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1548
1549         if (!AR_SREV_9280_10_OR_LATER(ah))
1550                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1551                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1552
1553         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1554                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1555
1556         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1557 }
1558
1559 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1560 {
1561         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1562 }
1563
1564 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1565 {
1566         u32 regval;
1567
1568         /*
1569          * set AHB_MODE not to do cacheline prefetches
1570         */
1571         regval = REG_READ(ah, AR_AHB_MODE);
1572         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1573
1574         /*
1575          * let mac dma reads be in 128 byte chunks
1576          */
1577         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1578         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1579
1580         /*
1581          * Restore TX Trigger Level to its pre-reset value.
1582          * The initial value depends on whether aggregation is enabled, and is
1583          * adjusted whenever underruns are detected.
1584          */
1585         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1586
1587         /*
1588          * let mac dma writes be in 128 byte chunks
1589          */
1590         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1591         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1592
1593         /*
1594          * Setup receive FIFO threshold to hold off TX activities
1595          */
1596         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1597
1598         /*
1599          * reduce the number of usable entries in PCU TXBUF to avoid
1600          * wrap around issues.
1601          */
1602         if (AR_SREV_9285(ah)) {
1603                 /* For AR9285 the number of Fifos are reduced to half.
1604                  * So set the usable tx buf size also to half to
1605                  * avoid data/delimiter underruns
1606                  */
1607                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1608                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1609         } else if (!AR_SREV_9271(ah)) {
1610                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1611                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1612         }
1613 }
1614
1615 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1616 {
1617         u32 val;
1618
1619         val = REG_READ(ah, AR_STA_ID1);
1620         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1621         switch (opmode) {
1622         case NL80211_IFTYPE_AP:
1623                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1624                           | AR_STA_ID1_KSRCH_MODE);
1625                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1626                 break;
1627         case NL80211_IFTYPE_ADHOC:
1628         case NL80211_IFTYPE_MESH_POINT:
1629                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1630                           | AR_STA_ID1_KSRCH_MODE);
1631                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1632                 break;
1633         case NL80211_IFTYPE_STATION:
1634         case NL80211_IFTYPE_MONITOR:
1635                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1636                 break;
1637         }
1638 }
1639
1640 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1641                                                  u32 coef_scaled,
1642                                                  u32 *coef_mantissa,
1643                                                  u32 *coef_exponent)
1644 {
1645         u32 coef_exp, coef_man;
1646
1647         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1648                 if ((coef_scaled >> coef_exp) & 0x1)
1649                         break;
1650
1651         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1652
1653         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1654
1655         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1656         *coef_exponent = coef_exp - 16;
1657 }
1658
1659 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1660                                      struct ath9k_channel *chan)
1661 {
1662         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1663         u32 clockMhzScaled = 0x64000000;
1664         struct chan_centers centers;
1665
1666         if (IS_CHAN_HALF_RATE(chan))
1667                 clockMhzScaled = clockMhzScaled >> 1;
1668         else if (IS_CHAN_QUARTER_RATE(chan))
1669                 clockMhzScaled = clockMhzScaled >> 2;
1670
1671         ath9k_hw_get_channel_centers(ah, chan, &centers);
1672         coef_scaled = clockMhzScaled / centers.synth_center;
1673
1674         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1675                                       &ds_coef_exp);
1676
1677         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1678                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1679         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1680                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1681
1682         coef_scaled = (9 * coef_scaled) / 10;
1683
1684         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1685                                       &ds_coef_exp);
1686
1687         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1688                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1689         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1690                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1691 }
1692
1693 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1694 {
1695         u32 rst_flags;
1696         u32 tmpReg;
1697
1698         if (AR_SREV_9100(ah)) {
1699                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1700                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1701                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1702                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1703                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1704         }
1705
1706         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1707                   AR_RTC_FORCE_WAKE_ON_INT);
1708
1709         if (AR_SREV_9100(ah)) {
1710                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1711                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1712         } else {
1713                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1714                 if (tmpReg &
1715                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1716                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1717                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1718                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1719                 } else {
1720                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1721                 }
1722
1723                 rst_flags = AR_RTC_RC_MAC_WARM;
1724                 if (type == ATH9K_RESET_COLD)
1725                         rst_flags |= AR_RTC_RC_MAC_COLD;
1726         }
1727
1728         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1729         udelay(50);
1730
1731         REG_WRITE(ah, AR_RTC_RC, 0);
1732         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1733                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1734                           "RTC stuck in MAC reset\n");
1735                 return false;
1736         }
1737
1738         if (!AR_SREV_9100(ah))
1739                 REG_WRITE(ah, AR_RC, 0);
1740
1741         if (AR_SREV_9100(ah))
1742                 udelay(50);
1743
1744         return true;
1745 }
1746
1747 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1748 {
1749         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1750                   AR_RTC_FORCE_WAKE_ON_INT);
1751
1752         if (!AR_SREV_9100(ah))
1753                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1754
1755         REG_WRITE(ah, AR_RTC_RESET, 0);
1756         udelay(2);
1757
1758         if (!AR_SREV_9100(ah))
1759                 REG_WRITE(ah, AR_RC, 0);
1760
1761         REG_WRITE(ah, AR_RTC_RESET, 1);
1762
1763         if (!ath9k_hw_wait(ah,
1764                            AR_RTC_STATUS,
1765                            AR_RTC_STATUS_M,
1766                            AR_RTC_STATUS_ON,
1767                            AH_WAIT_TIMEOUT)) {
1768                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1769                           "RTC not waking up\n");
1770                 return false;
1771         }
1772
1773         ath9k_hw_read_revisions(ah);
1774
1775         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1776 }
1777
1778 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1779 {
1780         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1781                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1782
1783         switch (type) {
1784         case ATH9K_RESET_POWER_ON:
1785                 return ath9k_hw_set_reset_power_on(ah);
1786         case ATH9K_RESET_WARM:
1787         case ATH9K_RESET_COLD:
1788                 return ath9k_hw_set_reset(ah, type);
1789         default:
1790                 return false;
1791         }
1792 }
1793
1794 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1795 {
1796         u32 phymode;
1797         u32 enableDacFifo = 0;
1798
1799         if (AR_SREV_9285_10_OR_LATER(ah))
1800                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1801                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1802
1803         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1804                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1805
1806         if (IS_CHAN_HT40(chan)) {
1807                 phymode |= AR_PHY_FC_DYN2040_EN;
1808
1809                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1810                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1811                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1812
1813         }
1814         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1815
1816         ath9k_hw_set11nmac2040(ah);
1817
1818         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1819         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1820 }
1821
1822 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1823                                 struct ath9k_channel *chan)
1824 {
1825         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1826                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1827                         return false;
1828         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1829                 return false;
1830
1831         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1832                 return false;
1833
1834         ah->chip_fullsleep = false;
1835         ath9k_hw_init_pll(ah, chan);
1836         ath9k_hw_set_rfmode(ah, chan);
1837
1838         return true;
1839 }
1840
1841 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1842                                     struct ath9k_channel *chan)
1843 {
1844         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1845         struct ath_common *common = ath9k_hw_common(ah);
1846         struct ieee80211_channel *channel = chan->chan;
1847         u32 synthDelay, qnum;
1848         int r;
1849
1850         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1851                 if (ath9k_hw_numtxpending(ah, qnum)) {
1852                         ath_print(common, ATH_DBG_QUEUE,
1853                                   "Transmit frames pending on "
1854                                   "queue %d\n", qnum);
1855                         return false;
1856                 }
1857         }
1858
1859         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1860         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1861                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1862                 ath_print(common, ATH_DBG_FATAL,
1863                           "Could not kill baseband RX\n");
1864                 return false;
1865         }
1866
1867         ath9k_hw_set_regs(ah, chan);
1868
1869         r = ah->ath9k_hw_rf_set_freq(ah, chan);
1870         if (r) {
1871                 ath_print(common, ATH_DBG_FATAL,
1872                           "Failed to set channel\n");
1873                 return false;
1874         }
1875
1876         ah->eep_ops->set_txpower(ah, chan,
1877                              ath9k_regd_get_ctl(regulatory, chan),
1878                              channel->max_antenna_gain * 2,
1879                              channel->max_power * 2,
1880                              min((u32) MAX_RATE_POWER,
1881                              (u32) regulatory->power_limit));
1882
1883         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1884         if (IS_CHAN_B(chan))
1885                 synthDelay = (4 * synthDelay) / 22;
1886         else
1887                 synthDelay /= 10;
1888
1889         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1890
1891         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1892
1893         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1894                 ath9k_hw_set_delta_slope(ah, chan);
1895
1896         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1897
1898         if (!chan->oneTimeCalsDone)
1899                 chan->oneTimeCalsDone = true;
1900
1901         return true;
1902 }
1903
1904 static void ath9k_enable_rfkill(struct ath_hw *ah)
1905 {
1906         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1907                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1908
1909         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1910                     AR_GPIO_INPUT_MUX2_RFSILENT);
1911
1912         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1913         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1914 }
1915
1916 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1917                     bool bChannelChange)
1918 {
1919         struct ath_common *common = ath9k_hw_common(ah);
1920         u32 saveLedState;
1921         struct ath9k_channel *curchan = ah->curchan;
1922         u32 saveDefAntenna;
1923         u32 macStaId1;
1924         u64 tsf = 0;
1925         int i, rx_chainmask, r;
1926
1927         ah->txchainmask = common->tx_chainmask;
1928         ah->rxchainmask = common->rx_chainmask;
1929
1930         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1931                 return -EIO;
1932
1933         if (curchan && !ah->chip_fullsleep)
1934                 ath9k_hw_getnf(ah, curchan);
1935
1936         if (bChannelChange &&
1937             (ah->chip_fullsleep != true) &&
1938             (ah->curchan != NULL) &&
1939             (chan->channel != ah->curchan->channel) &&
1940             ((chan->channelFlags & CHANNEL_ALL) ==
1941              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1942              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1943              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1944
1945                 if (ath9k_hw_channel_change(ah, chan)) {
1946                         ath9k_hw_loadnf(ah, ah->curchan);
1947                         ath9k_hw_start_nfcal(ah);
1948                         return 0;
1949                 }
1950         }
1951
1952         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1953         if (saveDefAntenna == 0)
1954                 saveDefAntenna = 1;
1955
1956         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1957
1958         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1959         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1960                 tsf = ath9k_hw_gettsf64(ah);
1961
1962         saveLedState = REG_READ(ah, AR_CFG_LED) &
1963                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1964                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1965
1966         ath9k_hw_mark_phy_inactive(ah);
1967
1968         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1969                 REG_WRITE(ah,
1970                           AR9271_RESET_POWER_DOWN_CONTROL,
1971                           AR9271_RADIO_RF_RST);
1972                 udelay(50);
1973         }
1974
1975         if (!ath9k_hw_chip_reset(ah, chan)) {
1976                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1977                 return -EINVAL;
1978         }
1979
1980         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1981                 ah->htc_reset_init = false;
1982                 REG_WRITE(ah,
1983                           AR9271_RESET_POWER_DOWN_CONTROL,
1984                           AR9271_GATE_MAC_CTL);
1985                 udelay(50);
1986         }
1987
1988         /* Restore TSF */
1989         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1990                 ath9k_hw_settsf64(ah, tsf);
1991
1992         if (AR_SREV_9280_10_OR_LATER(ah))
1993                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1994
1995         if (AR_SREV_9287_12_OR_LATER(ah)) {
1996                 /* Enable ASYNC FIFO */
1997                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1998                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
1999                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2000                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2001                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2002                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2003                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2004         }
2005         r = ath9k_hw_process_ini(ah, chan);
2006         if (r)
2007                 return r;
2008
2009         /* Setup MFP options for CCMP */
2010         if (AR_SREV_9280_20_OR_LATER(ah)) {
2011                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2012                  * frames when constructing CCMP AAD. */
2013                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2014                               0xc7ff);
2015                 ah->sw_mgmt_crypto = false;
2016         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2017                 /* Disable hardware crypto for management frames */
2018                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2019                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2020                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2021                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2022                 ah->sw_mgmt_crypto = true;
2023         } else
2024                 ah->sw_mgmt_crypto = true;
2025
2026         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2027                 ath9k_hw_set_delta_slope(ah, chan);
2028
2029         ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2030         ah->eep_ops->set_board_values(ah, chan);
2031
2032         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2033         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2034                   | macStaId1
2035                   | AR_STA_ID1_RTS_USE_DEF
2036                   | (ah->config.
2037                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2038                   | ah->sta_id1_defaults);
2039         ath9k_hw_set_operating_mode(ah, ah->opmode);
2040
2041         ath_hw_setbssidmask(common);
2042
2043         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2044
2045         ath9k_hw_write_associd(ah);
2046
2047         REG_WRITE(ah, AR_ISR, ~0);
2048
2049         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2050
2051         r = ah->ath9k_hw_rf_set_freq(ah, chan);
2052         if (r)
2053                 return r;
2054
2055         for (i = 0; i < AR_NUM_DCU; i++)
2056                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2057
2058         ah->intr_txqs = 0;
2059         for (i = 0; i < ah->caps.total_queues; i++)
2060                 ath9k_hw_resettxqueue(ah, i);
2061
2062         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2063         ath9k_hw_init_qos(ah);
2064
2065         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2066                 ath9k_enable_rfkill(ah);
2067
2068         ath9k_hw_init_global_settings(ah);
2069
2070         if (AR_SREV_9287_12_OR_LATER(ah)) {
2071                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2072                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2073                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2074                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2075                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2076                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2077
2078                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2079                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2080
2081                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2082                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2083                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2084                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2085         }
2086         if (AR_SREV_9287_12_OR_LATER(ah)) {
2087                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2088                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2089         }
2090
2091         REG_WRITE(ah, AR_STA_ID1,
2092                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2093
2094         ath9k_hw_set_dma(ah);
2095
2096         REG_WRITE(ah, AR_OBS, 8);
2097
2098         if (ah->config.rx_intr_mitigation) {
2099                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2100                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2101         }
2102
2103         ath9k_hw_init_bb(ah, chan);
2104
2105         if (!ath9k_hw_init_cal(ah, chan))
2106                 return -EIO;
2107
2108         rx_chainmask = ah->rxchainmask;
2109         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2110                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2111                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2112         }
2113
2114         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2115
2116         /*
2117          * For big endian systems turn on swapping for descriptors
2118          */
2119         if (AR_SREV_9100(ah)) {
2120                 u32 mask;
2121                 mask = REG_READ(ah, AR_CFG);
2122                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2123                         ath_print(common, ATH_DBG_RESET,
2124                                 "CFG Byte Swap Set 0x%x\n", mask);
2125                 } else {
2126                         mask =
2127                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2128                         REG_WRITE(ah, AR_CFG, mask);
2129                         ath_print(common, ATH_DBG_RESET,
2130                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2131                 }
2132         } else {
2133                 /* Configure AR9271 target WLAN */
2134                 if (AR_SREV_9271(ah))
2135                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2136 #ifdef __BIG_ENDIAN
2137                 else
2138                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2139 #endif
2140         }
2141
2142         if (ah->btcoex_hw.enabled)
2143                 ath9k_hw_btcoex_enable(ah);
2144
2145         return 0;
2146 }
2147 EXPORT_SYMBOL(ath9k_hw_reset);
2148
2149 /************************/
2150 /* Key Cache Management */
2151 /************************/
2152
2153 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2154 {
2155         u32 keyType;
2156
2157         if (entry >= ah->caps.keycache_size) {
2158                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2159                           "keychache entry %u out of range\n", entry);
2160                 return false;
2161         }
2162
2163         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2164
2165         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2166         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2167         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2168         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2169         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2170         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2171         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2172         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2173
2174         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2175                 u16 micentry = entry + 64;
2176
2177                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2178                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2179                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2180                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2181
2182         }
2183
2184         return true;
2185 }
2186 EXPORT_SYMBOL(ath9k_hw_keyreset);
2187
2188 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2189 {
2190         u32 macHi, macLo;
2191
2192         if (entry >= ah->caps.keycache_size) {
2193                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2194                           "keychache entry %u out of range\n", entry);
2195                 return false;
2196         }
2197
2198         if (mac != NULL) {
2199                 macHi = (mac[5] << 8) | mac[4];
2200                 macLo = (mac[3] << 24) |
2201                         (mac[2] << 16) |
2202                         (mac[1] << 8) |
2203                         mac[0];
2204                 macLo >>= 1;
2205                 macLo |= (macHi & 1) << 31;
2206                 macHi >>= 1;
2207         } else {
2208                 macLo = macHi = 0;
2209         }
2210         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2211         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2212
2213         return true;
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2216
2217 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2218                                  const struct ath9k_keyval *k,
2219                                  const u8 *mac)
2220 {
2221         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2222         struct ath_common *common = ath9k_hw_common(ah);
2223         u32 key0, key1, key2, key3, key4;
2224         u32 keyType;
2225
2226         if (entry >= pCap->keycache_size) {
2227                 ath_print(common, ATH_DBG_FATAL,
2228                           "keycache entry %u out of range\n", entry);
2229                 return false;
2230         }
2231
2232         switch (k->kv_type) {
2233         case ATH9K_CIPHER_AES_OCB:
2234                 keyType = AR_KEYTABLE_TYPE_AES;
2235                 break;
2236         case ATH9K_CIPHER_AES_CCM:
2237                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2238                         ath_print(common, ATH_DBG_ANY,
2239                                   "AES-CCM not supported by mac rev 0x%x\n",
2240                                   ah->hw_version.macRev);
2241                         return false;
2242                 }
2243                 keyType = AR_KEYTABLE_TYPE_CCM;
2244                 break;
2245         case ATH9K_CIPHER_TKIP:
2246                 keyType = AR_KEYTABLE_TYPE_TKIP;
2247                 if (ATH9K_IS_MIC_ENABLED(ah)
2248                     && entry + 64 >= pCap->keycache_size) {
2249                         ath_print(common, ATH_DBG_ANY,
2250                                   "entry %u inappropriate for TKIP\n", entry);
2251                         return false;
2252                 }
2253                 break;
2254         case ATH9K_CIPHER_WEP:
2255                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2256                         ath_print(common, ATH_DBG_ANY,
2257                                   "WEP key length %u too small\n", k->kv_len);
2258                         return false;
2259                 }
2260                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2261                         keyType = AR_KEYTABLE_TYPE_40;
2262                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2263                         keyType = AR_KEYTABLE_TYPE_104;
2264                 else
2265                         keyType = AR_KEYTABLE_TYPE_128;
2266                 break;
2267         case ATH9K_CIPHER_CLR:
2268                 keyType = AR_KEYTABLE_TYPE_CLR;
2269                 break;
2270         default:
2271                 ath_print(common, ATH_DBG_FATAL,
2272                           "cipher %u not supported\n", k->kv_type);
2273                 return false;
2274         }
2275
2276         key0 = get_unaligned_le32(k->kv_val + 0);
2277         key1 = get_unaligned_le16(k->kv_val + 4);
2278         key2 = get_unaligned_le32(k->kv_val + 6);
2279         key3 = get_unaligned_le16(k->kv_val + 10);
2280         key4 = get_unaligned_le32(k->kv_val + 12);
2281         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2282                 key4 &= 0xff;
2283
2284         /*
2285          * Note: Key cache registers access special memory area that requires
2286          * two 32-bit writes to actually update the values in the internal
2287          * memory. Consequently, the exact order and pairs used here must be
2288          * maintained.
2289          */
2290
2291         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2292                 u16 micentry = entry + 64;
2293
2294                 /*
2295                  * Write inverted key[47:0] first to avoid Michael MIC errors
2296                  * on frames that could be sent or received at the same time.
2297                  * The correct key will be written in the end once everything
2298                  * else is ready.
2299                  */
2300                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2301                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2302
2303                 /* Write key[95:48] */
2304                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2305                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2306
2307                 /* Write key[127:96] and key type */
2308                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2309                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2310
2311                 /* Write MAC address for the entry */
2312                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2313
2314                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2315                         /*
2316                          * TKIP uses two key cache entries:
2317                          * Michael MIC TX/RX keys in the same key cache entry
2318                          * (idx = main index + 64):
2319                          * key0 [31:0] = RX key [31:0]
2320                          * key1 [15:0] = TX key [31:16]
2321                          * key1 [31:16] = reserved
2322                          * key2 [31:0] = RX key [63:32]
2323                          * key3 [15:0] = TX key [15:0]
2324                          * key3 [31:16] = reserved
2325                          * key4 [31:0] = TX key [63:32]
2326                          */
2327                         u32 mic0, mic1, mic2, mic3, mic4;
2328
2329                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2330                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2331                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2332                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2333                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2334
2335                         /* Write RX[31:0] and TX[31:16] */
2336                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2337                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2338
2339                         /* Write RX[63:32] and TX[15:0] */
2340                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2341                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2342
2343                         /* Write TX[63:32] and keyType(reserved) */
2344                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2345                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2346                                   AR_KEYTABLE_TYPE_CLR);
2347
2348                 } else {
2349                         /*
2350                          * TKIP uses four key cache entries (two for group
2351                          * keys):
2352                          * Michael MIC TX/RX keys are in different key cache
2353                          * entries (idx = main index + 64 for TX and
2354                          * main index + 32 + 96 for RX):
2355                          * key0 [31:0] = TX/RX MIC key [31:0]
2356                          * key1 [31:0] = reserved
2357                          * key2 [31:0] = TX/RX MIC key [63:32]
2358                          * key3 [31:0] = reserved
2359                          * key4 [31:0] = reserved
2360                          *
2361                          * Upper layer code will call this function separately
2362                          * for TX and RX keys when these registers offsets are
2363                          * used.
2364                          */
2365                         u32 mic0, mic2;
2366
2367                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2368                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2369
2370                         /* Write MIC key[31:0] */
2371                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2372                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2373
2374                         /* Write MIC key[63:32] */
2375                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2376                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2377
2378                         /* Write TX[63:32] and keyType(reserved) */
2379                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2380                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2381                                   AR_KEYTABLE_TYPE_CLR);
2382                 }
2383
2384                 /* MAC address registers are reserved for the MIC entry */
2385                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2386                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2387
2388                 /*
2389                  * Write the correct (un-inverted) key[47:0] last to enable
2390                  * TKIP now that all other registers are set with correct
2391                  * values.
2392                  */
2393                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2394                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2395         } else {
2396                 /* Write key[47:0] */
2397                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2398                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2399
2400                 /* Write key[95:48] */
2401                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2402                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2403
2404                 /* Write key[127:96] and key type */
2405                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2406                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2407
2408                 /* Write MAC address for the entry */
2409                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2410         }
2411
2412         return true;
2413 }
2414 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2415
2416 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2417 {
2418         if (entry < ah->caps.keycache_size) {
2419                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2420                 if (val & AR_KEYTABLE_VALID)
2421                         return true;
2422         }
2423         return false;
2424 }
2425 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2426
2427 /******************************/
2428 /* Power Management (Chipset) */
2429 /******************************/
2430
2431 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2432 {
2433         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2434         if (setChip) {
2435                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2436                             AR_RTC_FORCE_WAKE_EN);
2437                 if (!AR_SREV_9100(ah))
2438                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2439
2440                 if(!AR_SREV_5416(ah))
2441                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2442                                     AR_RTC_RESET_EN);
2443         }
2444 }
2445
2446 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2447 {
2448         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2449         if (setChip) {
2450                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2451
2452                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2453                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2454                                   AR_RTC_FORCE_WAKE_ON_INT);
2455                 } else {
2456                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2457                                     AR_RTC_FORCE_WAKE_EN);
2458                 }
2459         }
2460 }
2461
2462 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2463 {
2464         u32 val;
2465         int i;
2466
2467         if (setChip) {
2468                 if ((REG_READ(ah, AR_RTC_STATUS) &
2469                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2470                         if (ath9k_hw_set_reset_reg(ah,
2471                                            ATH9K_RESET_POWER_ON) != true) {
2472                                 return false;
2473                         }
2474                         ath9k_hw_init_pll(ah, NULL);
2475                 }
2476                 if (AR_SREV_9100(ah))
2477                         REG_SET_BIT(ah, AR_RTC_RESET,
2478                                     AR_RTC_RESET_EN);
2479
2480                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2481                             AR_RTC_FORCE_WAKE_EN);
2482                 udelay(50);
2483
2484                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2485                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2486                         if (val == AR_RTC_STATUS_ON)
2487                                 break;
2488                         udelay(50);
2489                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2490                                     AR_RTC_FORCE_WAKE_EN);
2491                 }
2492                 if (i == 0) {
2493                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2494                                   "Failed to wakeup in %uus\n",
2495                                   POWER_UP_TIME / 20);
2496                         return false;
2497                 }
2498         }
2499
2500         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2501
2502         return true;
2503 }
2504
2505 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2506 {
2507         struct ath_common *common = ath9k_hw_common(ah);
2508         int status = true, setChip = true;
2509         static const char *modes[] = {
2510                 "AWAKE",
2511                 "FULL-SLEEP",
2512                 "NETWORK SLEEP",
2513                 "UNDEFINED"
2514         };
2515
2516         if (ah->power_mode == mode)
2517                 return status;
2518
2519         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2520                   modes[ah->power_mode], modes[mode]);
2521
2522         switch (mode) {
2523         case ATH9K_PM_AWAKE:
2524                 status = ath9k_hw_set_power_awake(ah, setChip);
2525                 break;
2526         case ATH9K_PM_FULL_SLEEP:
2527                 ath9k_set_power_sleep(ah, setChip);
2528                 ah->chip_fullsleep = true;
2529                 break;
2530         case ATH9K_PM_NETWORK_SLEEP:
2531                 ath9k_set_power_network_sleep(ah, setChip);
2532                 break;
2533         default:
2534                 ath_print(common, ATH_DBG_FATAL,
2535                           "Unknown power mode %u\n", mode);
2536                 return false;
2537         }
2538         ah->power_mode = mode;
2539
2540         return status;
2541 }
2542 EXPORT_SYMBOL(ath9k_hw_setpower);
2543
2544 /*
2545  * Helper for ASPM support.
2546  *
2547  * Disable PLL when in L0s as well as receiver clock when in L1.
2548  * This power saving option must be enabled through the SerDes.
2549  *
2550  * Programming the SerDes must go through the same 288 bit serial shift
2551  * register as the other analog registers.  Hence the 9 writes.
2552  */
2553 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2554 {
2555         u8 i;
2556         u32 val;
2557
2558         if (ah->is_pciexpress != true)
2559                 return;
2560
2561         /* Do not touch SerDes registers */
2562         if (ah->config.pcie_powersave_enable == 2)
2563                 return;
2564
2565         /* Nothing to do on restore for 11N */
2566         if (!restore) {
2567                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2568                         /*
2569                          * AR9280 2.0 or later chips use SerDes values from the
2570                          * initvals.h initialized depending on chipset during
2571                          * ath9k_hw_init()
2572                          */
2573                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2574                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2575                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2576                         }
2577                 } else if (AR_SREV_9280(ah) &&
2578                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2579                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2580                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2581
2582                         /* RX shut off when elecidle is asserted */
2583                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2584                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2585                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2586
2587                         /* Shut off CLKREQ active in L1 */
2588                         if (ah->config.pcie_clock_req)
2589                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2590                         else
2591                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2592
2593                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2594                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2595                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2596
2597                         /* Load the new settings */
2598                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2599
2600                 } else {
2601                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2602                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2603
2604                         /* RX shut off when elecidle is asserted */
2605                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2606                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2607                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2608
2609                         /*
2610                          * Ignore ah->ah_config.pcie_clock_req setting for
2611                          * pre-AR9280 11n
2612                          */
2613                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2614
2615                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2616                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2617                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2618
2619                         /* Load the new settings */
2620                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2621                 }
2622
2623                 udelay(1000);
2624
2625                 /* set bit 19 to allow forcing of pcie core into L1 state */
2626                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2627
2628                 /* Several PCIe massages to ensure proper behaviour */
2629                 if (ah->config.pcie_waen) {
2630                         val = ah->config.pcie_waen;
2631                         if (!power_off)
2632                                 val &= (~AR_WA_D3_L1_DISABLE);
2633                 } else {
2634                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2635                             AR_SREV_9287(ah)) {
2636                                 val = AR9285_WA_DEFAULT;
2637                                 if (!power_off)
2638                                         val &= (~AR_WA_D3_L1_DISABLE);
2639                         } else if (AR_SREV_9280(ah)) {
2640                                 /*
2641                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2642                                  * set otherwise card may disappear.
2643                                  */
2644                                 val = AR9280_WA_DEFAULT;
2645                                 if (!power_off)
2646                                         val &= (~AR_WA_D3_L1_DISABLE);
2647                         } else
2648                                 val = AR_WA_DEFAULT;
2649                 }
2650
2651                 REG_WRITE(ah, AR_WA, val);
2652         }
2653
2654         if (power_off) {
2655                 /*
2656                  * Set PCIe workaround bits
2657                  * bit 14 in WA register (disable L1) should only
2658                  * be set when device enters D3 and be cleared
2659                  * when device comes back to D0.
2660                  */
2661                 if (ah->config.pcie_waen) {
2662                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2663                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2664                 } else {
2665                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2666                               AR_SREV_9287(ah)) &&
2667                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2668                             (AR_SREV_9280(ah) &&
2669                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2670                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2671                         }
2672                 }
2673         }
2674 }
2675 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2676
2677 /**********************/
2678 /* Interrupt Handling */
2679 /**********************/
2680
2681 bool ath9k_hw_intrpend(struct ath_hw *ah)
2682 {
2683         u32 host_isr;
2684
2685         if (AR_SREV_9100(ah))
2686                 return true;
2687
2688         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2689         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2690                 return true;
2691
2692         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2693         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2694             && (host_isr != AR_INTR_SPURIOUS))
2695                 return true;
2696
2697         return false;
2698 }
2699 EXPORT_SYMBOL(ath9k_hw_intrpend);
2700
2701 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2702 {
2703         u32 isr = 0;
2704         u32 mask2 = 0;
2705         struct ath9k_hw_capabilities *pCap = &ah->caps;
2706         u32 sync_cause = 0;
2707         bool fatal_int = false;
2708         struct ath_common *common = ath9k_hw_common(ah);
2709
2710         if (!AR_SREV_9100(ah)) {
2711                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2712                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2713                             == AR_RTC_STATUS_ON) {
2714                                 isr = REG_READ(ah, AR_ISR);
2715                         }
2716                 }
2717
2718                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2719                         AR_INTR_SYNC_DEFAULT;
2720
2721                 *masked = 0;
2722
2723                 if (!isr && !sync_cause)
2724                         return false;
2725         } else {
2726                 *masked = 0;
2727                 isr = REG_READ(ah, AR_ISR);
2728         }
2729
2730         if (isr) {
2731                 if (isr & AR_ISR_BCNMISC) {
2732                         u32 isr2;
2733                         isr2 = REG_READ(ah, AR_ISR_S2);
2734                         if (isr2 & AR_ISR_S2_TIM)
2735                                 mask2 |= ATH9K_INT_TIM;
2736                         if (isr2 & AR_ISR_S2_DTIM)
2737                                 mask2 |= ATH9K_INT_DTIM;
2738                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2739                                 mask2 |= ATH9K_INT_DTIMSYNC;
2740                         if (isr2 & (AR_ISR_S2_CABEND))
2741                                 mask2 |= ATH9K_INT_CABEND;
2742                         if (isr2 & AR_ISR_S2_GTT)
2743                                 mask2 |= ATH9K_INT_GTT;
2744                         if (isr2 & AR_ISR_S2_CST)
2745                                 mask2 |= ATH9K_INT_CST;
2746                         if (isr2 & AR_ISR_S2_TSFOOR)
2747                                 mask2 |= ATH9K_INT_TSFOOR;
2748                 }
2749
2750                 isr = REG_READ(ah, AR_ISR_RAC);
2751                 if (isr == 0xffffffff) {
2752                         *masked = 0;
2753                         return false;
2754                 }
2755
2756                 *masked = isr & ATH9K_INT_COMMON;
2757
2758                 if (ah->config.rx_intr_mitigation) {
2759                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2760                                 *masked |= ATH9K_INT_RX;
2761                 }
2762
2763                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2764                         *masked |= ATH9K_INT_RX;
2765                 if (isr &
2766                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2767                      AR_ISR_TXEOL)) {
2768                         u32 s0_s, s1_s;
2769
2770                         *masked |= ATH9K_INT_TX;
2771
2772                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2773                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2774                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2775
2776                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2777                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2778                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2779                 }
2780
2781                 if (isr & AR_ISR_RXORN) {
2782                         ath_print(common, ATH_DBG_INTERRUPT,
2783                                   "receive FIFO overrun interrupt\n");
2784                 }
2785
2786                 if (!AR_SREV_9100(ah)) {
2787                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2788                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2789                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2790                                         *masked |= ATH9K_INT_TIM_TIMER;
2791                         }
2792                 }
2793
2794                 *masked |= mask2;
2795         }
2796
2797         if (AR_SREV_9100(ah))
2798                 return true;
2799
2800         if (isr & AR_ISR_GENTMR) {
2801                 u32 s5_s;
2802
2803                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2804                 if (isr & AR_ISR_GENTMR) {
2805                         ah->intr_gen_timer_trigger =
2806                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2807
2808                         ah->intr_gen_timer_thresh =
2809                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2810
2811                         if (ah->intr_gen_timer_trigger)
2812                                 *masked |= ATH9K_INT_GENTIMER;
2813
2814                 }
2815         }
2816
2817         if (sync_cause) {
2818                 fatal_int =
2819                         (sync_cause &
2820                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2821                         ? true : false;
2822
2823                 if (fatal_int) {
2824                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2825                                 ath_print(common, ATH_DBG_ANY,
2826                                           "received PCI FATAL interrupt\n");
2827                         }
2828                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2829                                 ath_print(common, ATH_DBG_ANY,
2830                                           "received PCI PERR interrupt\n");
2831                         }
2832                         *masked |= ATH9K_INT_FATAL;
2833                 }
2834                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2835                         ath_print(common, ATH_DBG_INTERRUPT,
2836                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2837                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2838                         REG_WRITE(ah, AR_RC, 0);
2839                         *masked |= ATH9K_INT_FATAL;
2840                 }
2841                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2842                         ath_print(common, ATH_DBG_INTERRUPT,
2843                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2844                 }
2845
2846                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2847                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2848         }
2849
2850         return true;
2851 }
2852 EXPORT_SYMBOL(ath9k_hw_getisr);
2853
2854 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2855 {
2856         u32 omask = ah->mask_reg;
2857         u32 mask, mask2;
2858         struct ath9k_hw_capabilities *pCap = &ah->caps;
2859         struct ath_common *common = ath9k_hw_common(ah);
2860
2861         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2862
2863         if (omask & ATH9K_INT_GLOBAL) {
2864                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2865                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2866                 (void) REG_READ(ah, AR_IER);
2867                 if (!AR_SREV_9100(ah)) {
2868                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2869                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2870
2871                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2872                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2873                 }
2874         }
2875
2876         mask = ints & ATH9K_INT_COMMON;
2877         mask2 = 0;
2878
2879         if (ints & ATH9K_INT_TX) {
2880                 if (ah->txok_interrupt_mask)
2881                         mask |= AR_IMR_TXOK;
2882                 if (ah->txdesc_interrupt_mask)
2883                         mask |= AR_IMR_TXDESC;
2884                 if (ah->txerr_interrupt_mask)
2885                         mask |= AR_IMR_TXERR;
2886                 if (ah->txeol_interrupt_mask)
2887                         mask |= AR_IMR_TXEOL;
2888         }
2889         if (ints & ATH9K_INT_RX) {
2890                 mask |= AR_IMR_RXERR;
2891                 if (ah->config.rx_intr_mitigation)
2892                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2893                 else
2894                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2895                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2896                         mask |= AR_IMR_GENTMR;
2897         }
2898
2899         if (ints & (ATH9K_INT_BMISC)) {
2900                 mask |= AR_IMR_BCNMISC;
2901                 if (ints & ATH9K_INT_TIM)
2902                         mask2 |= AR_IMR_S2_TIM;
2903                 if (ints & ATH9K_INT_DTIM)
2904                         mask2 |= AR_IMR_S2_DTIM;
2905                 if (ints & ATH9K_INT_DTIMSYNC)
2906                         mask2 |= AR_IMR_S2_DTIMSYNC;
2907                 if (ints & ATH9K_INT_CABEND)
2908                         mask2 |= AR_IMR_S2_CABEND;
2909                 if (ints & ATH9K_INT_TSFOOR)
2910                         mask2 |= AR_IMR_S2_TSFOOR;
2911         }
2912
2913         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2914                 mask |= AR_IMR_BCNMISC;
2915                 if (ints & ATH9K_INT_GTT)
2916                         mask2 |= AR_IMR_S2_GTT;
2917                 if (ints & ATH9K_INT_CST)
2918                         mask2 |= AR_IMR_S2_CST;
2919         }
2920
2921         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2922         REG_WRITE(ah, AR_IMR, mask);
2923         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2924                                            AR_IMR_S2_DTIM |
2925                                            AR_IMR_S2_DTIMSYNC |
2926                                            AR_IMR_S2_CABEND |
2927                                            AR_IMR_S2_CABTO |
2928                                            AR_IMR_S2_TSFOOR |
2929                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
2930         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2931         ah->mask_reg = ints;
2932
2933         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2934                 if (ints & ATH9K_INT_TIM_TIMER)
2935                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2936                 else
2937                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2938         }
2939
2940         if (ints & ATH9K_INT_GLOBAL) {
2941                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2942                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2943                 if (!AR_SREV_9100(ah)) {
2944                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2945                                   AR_INTR_MAC_IRQ);
2946                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2947
2948
2949                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2950                                   AR_INTR_SYNC_DEFAULT);
2951                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2952                                   AR_INTR_SYNC_DEFAULT);
2953                 }
2954                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2955                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2956         }
2957
2958         return omask;
2959 }
2960 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2961
2962 /*******************/
2963 /* Beacon Handling */
2964 /*******************/
2965
2966 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2967 {
2968         int flags = 0;
2969
2970         ah->beacon_interval = beacon_period;
2971
2972         switch (ah->opmode) {
2973         case NL80211_IFTYPE_STATION:
2974         case NL80211_IFTYPE_MONITOR:
2975                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2976                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2977                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2978                 flags |= AR_TBTT_TIMER_EN;
2979                 break;
2980         case NL80211_IFTYPE_ADHOC:
2981         case NL80211_IFTYPE_MESH_POINT:
2982                 REG_SET_BIT(ah, AR_TXCFG,
2983                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2984                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2985                           TU_TO_USEC(next_beacon +
2986                                      (ah->atim_window ? ah->
2987                                       atim_window : 1)));
2988                 flags |= AR_NDP_TIMER_EN;
2989         case NL80211_IFTYPE_AP:
2990                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2991                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2992                           TU_TO_USEC(next_beacon -
2993                                      ah->config.
2994                                      dma_beacon_response_time));
2995                 REG_WRITE(ah, AR_NEXT_SWBA,
2996                           TU_TO_USEC(next_beacon -
2997                                      ah->config.
2998                                      sw_beacon_response_time));
2999                 flags |=
3000                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3001                 break;
3002         default:
3003                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3004                           "%s: unsupported opmode: %d\n",
3005                           __func__, ah->opmode);
3006                 return;
3007                 break;
3008         }
3009
3010         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3011         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3012         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3013         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3014
3015         beacon_period &= ~ATH9K_BEACON_ENA;
3016         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3017                 ath9k_hw_reset_tsf(ah);
3018         }
3019
3020         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3021 }
3022 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3023
3024 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3025                                     const struct ath9k_beacon_state *bs)
3026 {
3027         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3028         struct ath9k_hw_capabilities *pCap = &ah->caps;
3029         struct ath_common *common = ath9k_hw_common(ah);
3030
3031         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3032
3033         REG_WRITE(ah, AR_BEACON_PERIOD,
3034                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3035         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3036                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3037
3038         REG_RMW_FIELD(ah, AR_RSSI_THR,
3039                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3040
3041         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3042
3043         if (bs->bs_sleepduration > beaconintval)
3044                 beaconintval = bs->bs_sleepduration;
3045
3046         dtimperiod = bs->bs_dtimperiod;
3047         if (bs->bs_sleepduration > dtimperiod)
3048                 dtimperiod = bs->bs_sleepduration;
3049
3050         if (beaconintval == dtimperiod)
3051                 nextTbtt = bs->bs_nextdtim;
3052         else
3053                 nextTbtt = bs->bs_nexttbtt;
3054
3055         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3056         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3057         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3058         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3059
3060         REG_WRITE(ah, AR_NEXT_DTIM,
3061                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3062         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3063
3064         REG_WRITE(ah, AR_SLEEP1,
3065                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3066                   | AR_SLEEP1_ASSUME_DTIM);
3067
3068         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3069                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3070         else
3071                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3072
3073         REG_WRITE(ah, AR_SLEEP2,
3074                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3075
3076         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3077         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3078
3079         REG_SET_BIT(ah, AR_TIMER_MODE,
3080                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3081                     AR_DTIM_TIMER_EN);
3082
3083         /* TSF Out of Range Threshold */
3084         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3085 }
3086 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3087
3088 /*******************/
3089 /* HW Capabilities */
3090 /*******************/
3091
3092 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3093 {
3094         struct ath9k_hw_capabilities *pCap = &ah->caps;
3095         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3096         struct ath_common *common = ath9k_hw_common(ah);
3097         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3098
3099         u16 capField = 0, eeval;
3100
3101         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3102         regulatory->current_rd = eeval;
3103
3104         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3105         if (AR_SREV_9285_10_OR_LATER(ah))
3106                 eeval |= AR9285_RDEXT_DEFAULT;
3107         regulatory->current_rd_ext = eeval;
3108
3109         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3110
3111         if (ah->opmode != NL80211_IFTYPE_AP &&
3112             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3113                 if (regulatory->current_rd == 0x64 ||
3114                     regulatory->current_rd == 0x65)
3115                         regulatory->current_rd += 5;
3116                 else if (regulatory->current_rd == 0x41)
3117                         regulatory->current_rd = 0x43;
3118                 ath_print(common, ATH_DBG_REGULATORY,
3119                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
3120         }
3121
3122         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3123         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3124                 ath_print(common, ATH_DBG_FATAL,
3125                           "no band has been marked as supported in EEPROM.\n");
3126                 return -EINVAL;
3127         }
3128
3129         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3130
3131         if (eeval & AR5416_OPFLAGS_11A) {
3132                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3133                 if (ah->config.ht_enable) {
3134                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3135                                 set_bit(ATH9K_MODE_11NA_HT20,
3136                                         pCap->wireless_modes);
3137                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3138                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
3139                                         pCap->wireless_modes);
3140                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
3141                                         pCap->wireless_modes);
3142                         }
3143                 }
3144         }
3145
3146         if (eeval & AR5416_OPFLAGS_11G) {
3147                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3148                 if (ah->config.ht_enable) {
3149                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3150                                 set_bit(ATH9K_MODE_11NG_HT20,
3151                                         pCap->wireless_modes);
3152                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3153                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
3154                                         pCap->wireless_modes);
3155                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
3156                                         pCap->wireless_modes);
3157                         }
3158                 }
3159         }
3160
3161         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3162         /*
3163          * For AR9271 we will temporarilly uses the rx chainmax as read from
3164          * the EEPROM.
3165          */
3166         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3167             !(eeval & AR5416_OPFLAGS_11A) &&
3168             !(AR_SREV_9271(ah)))
3169                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3170                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3171         else
3172                 /* Use rx_chainmask from EEPROM. */
3173                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3174
3175         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3176                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3177
3178         pCap->low_2ghz_chan = 2312;
3179         pCap->high_2ghz_chan = 2732;
3180
3181         pCap->low_5ghz_chan = 4920;
3182         pCap->high_5ghz_chan = 6100;
3183
3184         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3185         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3186         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3187
3188         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3189         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3190         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3191
3192         if (ah->config.ht_enable)
3193                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
3194         else
3195                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3196
3197         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3198         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3199         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3200         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3201
3202         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3203                 pCap->total_queues =
3204                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3205         else
3206                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3207
3208         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3209                 pCap->keycache_size =
3210                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3211         else
3212                 pCap->keycache_size = AR_KEYTABLE_SIZE;
3213
3214         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3215
3216         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3217                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3218         else
3219                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3220
3221         if (AR_SREV_9285_10_OR_LATER(ah))
3222                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
3223         else if (AR_SREV_9280_10_OR_LATER(ah))
3224                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
3225         else
3226                 pCap->num_gpio_pins = AR_NUM_GPIO;
3227
3228         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3229                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
3230                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3231         } else {
3232                 pCap->rts_aggr_limit = (8 * 1024);
3233         }
3234
3235         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3236
3237 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3238         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3239         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3240                 ah->rfkill_gpio =
3241                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3242                 ah->rfkill_polarity =
3243                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3244
3245                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3246         }
3247 #endif
3248
3249         pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3250
3251         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3252                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3253         else
3254                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3255
3256         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3257                 pCap->reg_cap =
3258                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3259                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3260                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
3261                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3262         } else {
3263                 pCap->reg_cap =
3264                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3265                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3266         }
3267
3268         /* Advertise midband for AR5416 with FCC midband set in eeprom */
3269         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3270             AR_SREV_5416(ah))
3271                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3272
3273         pCap->num_antcfg_5ghz =
3274                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3275         pCap->num_antcfg_2ghz =
3276                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3277
3278         if (AR_SREV_9280_10_OR_LATER(ah) &&
3279             ath9k_hw_btcoex_supported(ah)) {
3280                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3281                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3282
3283                 if (AR_SREV_9285(ah)) {
3284                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3285                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3286                 } else {
3287                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3288                 }
3289         } else {
3290                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3291         }
3292
3293         return 0;
3294 }
3295
3296 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3297                             u32 capability, u32 *result)
3298 {
3299         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3300         switch (type) {
3301         case ATH9K_CAP_CIPHER:
3302                 switch (capability) {
3303                 case ATH9K_CIPHER_AES_CCM:
3304                 case ATH9K_CIPHER_AES_OCB:
3305                 case ATH9K_CIPHER_TKIP:
3306                 case ATH9K_CIPHER_WEP:
3307                 case ATH9K_CIPHER_MIC:
3308                 case ATH9K_CIPHER_CLR:
3309                         return true;
3310                 default:
3311                         return false;
3312                 }
3313         case ATH9K_CAP_TKIP_MIC:
3314                 switch (capability) {
3315                 case 0:
3316                         return true;
3317                 case 1:
3318                         return (ah->sta_id1_defaults &
3319                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3320                         false;
3321                 }
3322         case ATH9K_CAP_TKIP_SPLIT:
3323                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3324                         false : true;
3325         case ATH9K_CAP_DIVERSITY:
3326                 return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3327                         AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3328                         true : false;
3329         case ATH9K_CAP_MCAST_KEYSRCH:
3330                 switch (capability) {
3331                 case 0:
3332                         return true;
3333                 case 1:
3334                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3335                                 return false;
3336                         } else {
3337                                 return (ah->sta_id1_defaults &
3338                                         AR_STA_ID1_MCAST_KSRCH) ? true :
3339                                         false;
3340                         }
3341                 }
3342                 return false;
3343         case ATH9K_CAP_TXPOW:
3344                 switch (capability) {
3345                 case 0:
3346                         return 0;
3347                 case 1:
3348                         *result = regulatory->power_limit;
3349                         return 0;
3350                 case 2:
3351                         *result = regulatory->max_power_level;
3352                         return 0;
3353                 case 3:
3354                         *result = regulatory->tp_scale;
3355                         return 0;
3356                 }
3357                 return false;
3358         case ATH9K_CAP_DS:
3359                 return (AR_SREV_9280_20_OR_LATER(ah) &&
3360                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3361                         ? false : true;
3362         default:
3363                 return false;
3364         }
3365 }
3366 EXPORT_SYMBOL(ath9k_hw_getcapability);
3367
3368 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3369                             u32 capability, u32 setting, int *status)
3370 {
3371         u32 v;
3372
3373         switch (type) {
3374         case ATH9K_CAP_TKIP_MIC:
3375                 if (setting)
3376                         ah->sta_id1_defaults |=
3377                                 AR_STA_ID1_CRPT_MIC_ENABLE;
3378                 else
3379                         ah->sta_id1_defaults &=
3380                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
3381                 return true;
3382         case ATH9K_CAP_DIVERSITY:
3383                 v = REG_READ(ah, AR_PHY_CCK_DETECT);
3384                 if (setting)
3385                         v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3386                 else
3387                         v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3388                 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3389                 return true;
3390         case ATH9K_CAP_MCAST_KEYSRCH:
3391                 if (setting)
3392                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3393                 else
3394                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3395                 return true;
3396         default:
3397                 return false;
3398         }
3399 }
3400 EXPORT_SYMBOL(ath9k_hw_setcapability);
3401
3402 /****************************/
3403 /* GPIO / RFKILL / Antennae */
3404 /****************************/
3405
3406 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3407                                          u32 gpio, u32 type)
3408 {
3409         int addr;
3410         u32 gpio_shift, tmp;
3411
3412         if (gpio > 11)
3413                 addr = AR_GPIO_OUTPUT_MUX3;
3414         else if (gpio > 5)
3415                 addr = AR_GPIO_OUTPUT_MUX2;
3416         else
3417                 addr = AR_GPIO_OUTPUT_MUX1;
3418
3419         gpio_shift = (gpio % 6) * 5;
3420
3421         if (AR_SREV_9280_20_OR_LATER(ah)
3422             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3423                 REG_RMW(ah, addr, (type << gpio_shift),
3424                         (0x1f << gpio_shift));
3425         } else {
3426                 tmp = REG_READ(ah, addr);
3427                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3428                 tmp &= ~(0x1f << gpio_shift);
3429                 tmp |= (type << gpio_shift);
3430                 REG_WRITE(ah, addr, tmp);
3431         }
3432 }
3433
3434 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3435 {
3436         u32 gpio_shift;
3437
3438         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3439
3440         gpio_shift = gpio << 1;
3441
3442         REG_RMW(ah,
3443                 AR_GPIO_OE_OUT,
3444                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3445                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3446 }
3447 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3448
3449 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3450 {
3451 #define MS_REG_READ(x, y) \
3452         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3453
3454         if (gpio >= ah->caps.num_gpio_pins)
3455                 return 0xffffffff;
3456
3457         if (AR_SREV_9287_10_OR_LATER(ah))
3458                 return MS_REG_READ(AR9287, gpio) != 0;
3459         else if (AR_SREV_9285_10_OR_LATER(ah))
3460                 return MS_REG_READ(AR9285, gpio) != 0;
3461         else if (AR_SREV_9280_10_OR_LATER(ah))
3462                 return MS_REG_READ(AR928X, gpio) != 0;
3463         else
3464                 return MS_REG_READ(AR, gpio) != 0;
3465 }
3466 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3467
3468 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3469                          u32 ah_signal_type)
3470 {
3471         u32 gpio_shift;
3472
3473         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3474
3475         gpio_shift = 2 * gpio;
3476
3477         REG_RMW(ah,
3478                 AR_GPIO_OE_OUT,
3479                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3480                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3481 }
3482 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3483
3484 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3485 {
3486         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3487                 AR_GPIO_BIT(gpio));
3488 }
3489 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3490
3491 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3492 {
3493         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3494 }
3495 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3496
3497 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3498 {
3499         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3500 }
3501 EXPORT_SYMBOL(ath9k_hw_setantenna);
3502
3503 /*********************/
3504 /* General Operation */
3505 /*********************/
3506
3507 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3508 {
3509         u32 bits = REG_READ(ah, AR_RX_FILTER);
3510         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3511
3512         if (phybits & AR_PHY_ERR_RADAR)
3513                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3514         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3515                 bits |= ATH9K_RX_FILTER_PHYERR;
3516
3517         return bits;
3518 }
3519 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3520
3521 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3522 {
3523         u32 phybits;
3524
3525         REG_WRITE(ah, AR_RX_FILTER, bits);
3526
3527         phybits = 0;
3528         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3529                 phybits |= AR_PHY_ERR_RADAR;
3530         if (bits & ATH9K_RX_FILTER_PHYERR)
3531                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3532         REG_WRITE(ah, AR_PHY_ERR, phybits);
3533
3534         if (phybits)
3535                 REG_WRITE(ah, AR_RXCFG,
3536                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3537         else
3538                 REG_WRITE(ah, AR_RXCFG,
3539                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3540 }
3541 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3542
3543 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3544 {
3545         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3546                 return false;
3547
3548         ath9k_hw_init_pll(ah, NULL);
3549         return true;
3550 }
3551 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3552
3553 bool ath9k_hw_disable(struct ath_hw *ah)
3554 {
3555         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3556                 return false;
3557
3558         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3559                 return false;
3560
3561         ath9k_hw_init_pll(ah, NULL);
3562         return true;
3563 }
3564 EXPORT_SYMBOL(ath9k_hw_disable);
3565
3566 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3567 {
3568         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3569         struct ath9k_channel *chan = ah->curchan;
3570         struct ieee80211_channel *channel = chan->chan;
3571
3572         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3573
3574         ah->eep_ops->set_txpower(ah, chan,
3575                                  ath9k_regd_get_ctl(regulatory, chan),
3576                                  channel->max_antenna_gain * 2,
3577                                  channel->max_power * 2,
3578                                  min((u32) MAX_RATE_POWER,
3579                                  (u32) regulatory->power_limit));
3580 }
3581 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3582
3583 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3584 {
3585         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3586 }
3587 EXPORT_SYMBOL(ath9k_hw_setmac);
3588
3589 void ath9k_hw_setopmode(struct ath_hw *ah)
3590 {
3591         ath9k_hw_set_operating_mode(ah, ah->opmode);
3592 }
3593 EXPORT_SYMBOL(ath9k_hw_setopmode);
3594
3595 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3596 {
3597         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3598         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3599 }
3600 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3601
3602 void ath9k_hw_write_associd(struct ath_hw *ah)
3603 {
3604         struct ath_common *common = ath9k_hw_common(ah);
3605
3606         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3607         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3608                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3609 }
3610 EXPORT_SYMBOL(ath9k_hw_write_associd);
3611
3612 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3613 {
3614         u64 tsf;
3615
3616         tsf = REG_READ(ah, AR_TSF_U32);
3617         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3618
3619         return tsf;
3620 }
3621 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3622
3623 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3624 {
3625         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3626         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3627 }
3628 EXPORT_SYMBOL(ath9k_hw_settsf64);
3629
3630 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3631 {
3632         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3633                            AH_TSF_WRITE_TIMEOUT))
3634                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3635                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3636
3637         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3638 }
3639 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3640
3641 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3642 {
3643         if (setting)
3644                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3645         else
3646                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3647 }
3648 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3649
3650 /*
3651  *  Extend 15-bit time stamp from rx descriptor to
3652  *  a full 64-bit TSF using the current h/w TSF.
3653 */
3654 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3655 {
3656         u64 tsf;
3657
3658         tsf = ath9k_hw_gettsf64(ah);
3659         if ((tsf & 0x7fff) < rstamp)
3660                 tsf -= 0x8000;
3661         return (tsf & ~0x7fff) | rstamp;
3662 }
3663 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3664
3665 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3666 {
3667         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3668         u32 macmode;
3669
3670         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3671                 macmode = AR_2040_JOINED_RX_CLEAR;
3672         else
3673                 macmode = 0;
3674
3675         REG_WRITE(ah, AR_2040_MODE, macmode);
3676 }
3677
3678 /* HW Generic timers configuration */
3679
3680 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3681 {
3682         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3683         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3684         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3685         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3686         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3687         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3688         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3689         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3691         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3692                                 AR_NDP2_TIMER_MODE, 0x0002},
3693         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3694                                 AR_NDP2_TIMER_MODE, 0x0004},
3695         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3696                                 AR_NDP2_TIMER_MODE, 0x0008},
3697         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3698                                 AR_NDP2_TIMER_MODE, 0x0010},
3699         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3700                                 AR_NDP2_TIMER_MODE, 0x0020},
3701         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3702                                 AR_NDP2_TIMER_MODE, 0x0040},
3703         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3704                                 AR_NDP2_TIMER_MODE, 0x0080}
3705 };
3706
3707 /* HW generic timer primitives */
3708
3709 /* compute and clear index of rightmost 1 */
3710 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3711 {
3712         u32 b;
3713
3714         b = *mask;
3715         b &= (0-b);
3716         *mask &= ~b;
3717         b *= debruijn32;
3718         b >>= 27;
3719
3720         return timer_table->gen_timer_index[b];
3721 }
3722
3723 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3724 {
3725         return REG_READ(ah, AR_TSF_L32);
3726 }
3727 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3728
3729 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3730                                           void (*trigger)(void *),
3731                                           void (*overflow)(void *),
3732                                           void *arg,
3733                                           u8 timer_index)
3734 {
3735         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3736         struct ath_gen_timer *timer;
3737
3738         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3739
3740         if (timer == NULL) {
3741                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3742                           "Failed to allocate memory"
3743                           "for hw timer[%d]\n", timer_index);
3744                 return NULL;
3745         }
3746
3747         /* allocate a hardware generic timer slot */
3748         timer_table->timers[timer_index] = timer;
3749         timer->index = timer_index;
3750         timer->trigger = trigger;
3751         timer->overflow = overflow;
3752         timer->arg = arg;
3753
3754         return timer;
3755 }
3756 EXPORT_SYMBOL(ath_gen_timer_alloc);
3757
3758 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3759                               struct ath_gen_timer *timer,
3760                               u32 timer_next,
3761                               u32 timer_period)
3762 {
3763         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3764         u32 tsf;
3765
3766         BUG_ON(!timer_period);
3767
3768         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3769
3770         tsf = ath9k_hw_gettsf32(ah);
3771
3772         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3773                   "curent tsf %x period %x"
3774                   "timer_next %x\n", tsf, timer_period, timer_next);
3775
3776         /*
3777          * Pull timer_next forward if the current TSF already passed it
3778          * because of software latency
3779          */
3780         if (timer_next < tsf)
3781                 timer_next = tsf + timer_period;
3782
3783         /*
3784          * Program generic timer registers
3785          */
3786         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3787                  timer_next);
3788         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3789                   timer_period);
3790         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3791                     gen_tmr_configuration[timer->index].mode_mask);
3792
3793         /* Enable both trigger and thresh interrupt masks */
3794         REG_SET_BIT(ah, AR_IMR_S5,
3795                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3796                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3797 }
3798 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3799
3800 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3801 {
3802         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3803
3804         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3805                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3806                 return;
3807         }
3808
3809         /* Clear generic timer enable bits. */
3810         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3811                         gen_tmr_configuration[timer->index].mode_mask);
3812
3813         /* Disable both trigger and thresh interrupt masks */
3814         REG_CLR_BIT(ah, AR_IMR_S5,
3815                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3816                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3817
3818         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3819 }
3820 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3821
3822 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3823 {
3824         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3825
3826         /* free the hardware generic timer slot */
3827         timer_table->timers[timer->index] = NULL;
3828         kfree(timer);
3829 }
3830 EXPORT_SYMBOL(ath_gen_timer_free);
3831
3832 /*
3833  * Generic Timer Interrupts handling
3834  */
3835 void ath_gen_timer_isr(struct ath_hw *ah)
3836 {
3837         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3838         struct ath_gen_timer *timer;
3839         struct ath_common *common = ath9k_hw_common(ah);
3840         u32 trigger_mask, thresh_mask, index;
3841
3842         /* get hardware generic timer interrupt status */
3843         trigger_mask = ah->intr_gen_timer_trigger;
3844         thresh_mask = ah->intr_gen_timer_thresh;
3845         trigger_mask &= timer_table->timer_mask.val;
3846         thresh_mask &= timer_table->timer_mask.val;
3847
3848         trigger_mask &= ~thresh_mask;
3849
3850         while (thresh_mask) {
3851                 index = rightmost_index(timer_table, &thresh_mask);
3852                 timer = timer_table->timers[index];
3853                 BUG_ON(!timer);
3854                 ath_print(common, ATH_DBG_HWTIMER,
3855                           "TSF overflow for Gen timer %d\n", index);
3856                 timer->overflow(timer->arg);
3857         }
3858
3859         while (trigger_mask) {
3860                 index = rightmost_index(timer_table, &trigger_mask);
3861                 timer = timer_table->timers[index];
3862                 BUG_ON(!timer);
3863                 ath_print(common, ATH_DBG_HWTIMER,
3864                           "Gen timer[%d] trigger\n", index);
3865                 timer->trigger(timer->arg);
3866         }
3867 }
3868 EXPORT_SYMBOL(ath_gen_timer_isr);
3869
3870 static struct {
3871         u32 version;
3872         const char * name;
3873 } ath_mac_bb_names[] = {
3874         /* Devices with external radios */
3875         { AR_SREV_VERSION_5416_PCI,     "5416" },
3876         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3877         { AR_SREV_VERSION_9100,         "9100" },
3878         { AR_SREV_VERSION_9160,         "9160" },
3879         /* Single-chip solutions */
3880         { AR_SREV_VERSION_9280,         "9280" },
3881         { AR_SREV_VERSION_9285,         "9285" },
3882         { AR_SREV_VERSION_9287,         "9287" },
3883         { AR_SREV_VERSION_9271,         "9271" },
3884 };
3885
3886 /* For devices with external radios */
3887 static struct {
3888         u16 version;
3889         const char * name;
3890 } ath_rf_names[] = {
3891         { 0,                            "5133" },
3892         { AR_RAD5133_SREV_MAJOR,        "5133" },
3893         { AR_RAD5122_SREV_MAJOR,        "5122" },
3894         { AR_RAD2133_SREV_MAJOR,        "2133" },
3895         { AR_RAD2122_SREV_MAJOR,        "2122" }
3896 };
3897
3898 /*
3899  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3900  */
3901 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3902 {
3903         int i;
3904
3905         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3906                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3907                         return ath_mac_bb_names[i].name;
3908                 }
3909         }
3910
3911         return "????";
3912 }
3913
3914 /*
3915  * Return the RF name. "????" is returned if the RF is unknown.
3916  * Used for devices with external radios.
3917  */
3918 static const char *ath9k_hw_rf_name(u16 rf_version)
3919 {
3920         int i;
3921
3922         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3923                 if (ath_rf_names[i].version == rf_version) {
3924                         return ath_rf_names[i].name;
3925                 }
3926         }
3927
3928         return "????";
3929 }
3930
3931 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3932 {
3933         int used;
3934
3935         /* chipsets >= AR9280 are single-chip */
3936         if (AR_SREV_9280_10_OR_LATER(ah)) {
3937                 used = snprintf(hw_name, len,
3938                                "Atheros AR%s Rev:%x",
3939                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3940                                ah->hw_version.macRev);
3941         }
3942         else {
3943                 used = snprintf(hw_name, len,
3944                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3945                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3946                                ah->hw_version.macRev,
3947                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3948                                                 AR_RADIO_SREV_MAJOR)),
3949                                ah->hw_version.phyRev);
3950         }
3951
3952         hw_name[used] = '\0';
3953 }
3954 EXPORT_SYMBOL(ath9k_hw_name);