Merge branch 'for-linus' of git://git.infradead.org/users/sameo/mfd-2.6
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23         return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28         return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35         struct ath_common *common = ath9k_hw_common(ah);
36         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37         int addr, eep_start_loc = 64;
38
39         for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40                 if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41                         ath_dbg(common, ATH_DBG_EEPROM,
42                                 "Unable to read eeprom region\n");
43                         return false;
44                 }
45                 eep_data++;
46         }
47
48         return true;
49 }
50
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53         u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54
55         ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56
57         return true;
58 }
59
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62         struct ath_common *common = ath9k_hw_common(ah);
63
64         if (!ath9k_hw_use_flash(ah)) {
65                 ath_dbg(common, ATH_DBG_EEPROM,
66                         "Reading from EEPROM, not flash\n");
67         }
68
69         if (common->bus_ops->ath_bus_type == ATH_USB)
70                 return __ath9k_hw_usb_4k_fill_eeprom(ah);
71         else
72                 return __ath9k_hw_4k_fill_eeprom(ah);
73 }
74
75 #undef SIZE_EEPROM_4K
76
77 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
78 {
79 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
80         struct ath_common *common = ath9k_hw_common(ah);
81         struct ar5416_eeprom_4k *eep =
82                 (struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
83         u16 *eepdata, temp, magic, magic2;
84         u32 sum = 0, el;
85         bool need_swap = false;
86         int i, addr;
87
88
89         if (!ath9k_hw_use_flash(ah)) {
90                 if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
91                                          &magic)) {
92                         ath_err(common, "Reading Magic # failed\n");
93                         return false;
94                 }
95
96                 ath_dbg(common, ATH_DBG_EEPROM,
97                         "Read Magic = 0x%04X\n", magic);
98
99                 if (magic != AR5416_EEPROM_MAGIC) {
100                         magic2 = swab16(magic);
101
102                         if (magic2 == AR5416_EEPROM_MAGIC) {
103                                 need_swap = true;
104                                 eepdata = (u16 *) (&ah->eeprom);
105
106                                 for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
107                                         temp = swab16(*eepdata);
108                                         *eepdata = temp;
109                                         eepdata++;
110                                 }
111                         } else {
112                                 ath_err(common,
113                                         "Invalid EEPROM Magic. Endianness mismatch.\n");
114                                 return -EINVAL;
115                         }
116                 }
117         }
118
119         ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
120                 need_swap ? "True" : "False");
121
122         if (need_swap)
123                 el = swab16(ah->eeprom.map4k.baseEepHeader.length);
124         else
125                 el = ah->eeprom.map4k.baseEepHeader.length;
126
127         if (el > sizeof(struct ar5416_eeprom_4k))
128                 el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
129         else
130                 el = el / sizeof(u16);
131
132         eepdata = (u16 *)(&ah->eeprom);
133
134         for (i = 0; i < el; i++)
135                 sum ^= *eepdata++;
136
137         if (need_swap) {
138                 u32 integer;
139                 u16 word;
140
141                 ath_dbg(common, ATH_DBG_EEPROM,
142                         "EEPROM Endianness is not native.. Changing\n");
143
144                 word = swab16(eep->baseEepHeader.length);
145                 eep->baseEepHeader.length = word;
146
147                 word = swab16(eep->baseEepHeader.checksum);
148                 eep->baseEepHeader.checksum = word;
149
150                 word = swab16(eep->baseEepHeader.version);
151                 eep->baseEepHeader.version = word;
152
153                 word = swab16(eep->baseEepHeader.regDmn[0]);
154                 eep->baseEepHeader.regDmn[0] = word;
155
156                 word = swab16(eep->baseEepHeader.regDmn[1]);
157                 eep->baseEepHeader.regDmn[1] = word;
158
159                 word = swab16(eep->baseEepHeader.rfSilent);
160                 eep->baseEepHeader.rfSilent = word;
161
162                 word = swab16(eep->baseEepHeader.blueToothOptions);
163                 eep->baseEepHeader.blueToothOptions = word;
164
165                 word = swab16(eep->baseEepHeader.deviceCap);
166                 eep->baseEepHeader.deviceCap = word;
167
168                 integer = swab32(eep->modalHeader.antCtrlCommon);
169                 eep->modalHeader.antCtrlCommon = integer;
170
171                 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
172                         integer = swab32(eep->modalHeader.antCtrlChain[i]);
173                         eep->modalHeader.antCtrlChain[i] = integer;
174                 }
175
176                 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
177                         word = swab16(eep->modalHeader.spurChans[i].spurChan);
178                         eep->modalHeader.spurChans[i].spurChan = word;
179                 }
180         }
181
182         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
183             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
184                 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
185                         sum, ah->eep_ops->get_eeprom_ver(ah));
186                 return -EINVAL;
187         }
188
189         return 0;
190 #undef EEPROM_4K_SIZE
191 }
192
193 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
194                                   enum eeprom_param param)
195 {
196         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
197         struct modal_eep_4k_header *pModal = &eep->modalHeader;
198         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
199         u16 ver_minor;
200
201         ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
202
203         switch (param) {
204         case EEP_NFTHRESH_2:
205                 return pModal->noiseFloorThreshCh[0];
206         case EEP_MAC_LSW:
207                 return get_unaligned_be16(pBase->macAddr);
208         case EEP_MAC_MID:
209                 return get_unaligned_be16(pBase->macAddr + 2);
210         case EEP_MAC_MSW:
211                 return get_unaligned_be16(pBase->macAddr + 4);
212         case EEP_REG_0:
213                 return pBase->regDmn[0];
214         case EEP_REG_1:
215                 return pBase->regDmn[1];
216         case EEP_OP_CAP:
217                 return pBase->deviceCap;
218         case EEP_OP_MODE:
219                 return pBase->opCapFlags;
220         case EEP_RF_SILENT:
221                 return pBase->rfSilent;
222         case EEP_OB_2:
223                 return pModal->ob_0;
224         case EEP_DB_2:
225                 return pModal->db1_1;
226         case EEP_MINOR_REV:
227                 return ver_minor;
228         case EEP_TX_MASK:
229                 return pBase->txMask;
230         case EEP_RX_MASK:
231                 return pBase->rxMask;
232         case EEP_FRAC_N_5G:
233                 return 0;
234         case EEP_PWR_TABLE_OFFSET:
235                 return AR5416_PWR_TABLE_OFFSET_DB;
236         case EEP_MODAL_VER:
237                 return pModal->version;
238         case EEP_ANT_DIV_CTL1:
239                 return pModal->antdiv_ctl1;
240         case EEP_TXGAIN_TYPE:
241                 if (ver_minor >= AR5416_EEP_MINOR_VER_19)
242                         return pBase->txGainType;
243                 else
244                         return AR5416_EEP_TXGAIN_ORIGINAL;
245         default:
246                 return 0;
247         }
248 }
249
250 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
251                                   struct ath9k_channel *chan,
252                                   int16_t *pTxPowerIndexOffset)
253 {
254         struct ath_common *common = ath9k_hw_common(ah);
255         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
256         struct cal_data_per_freq_4k *pRawDataset;
257         u8 *pCalBChans = NULL;
258         u16 pdGainOverlap_t2;
259         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
260         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
261         u16 numPiers, i, j;
262         u16 numXpdGain, xpdMask;
263         u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
264         u32 reg32, regOffset, regChainOffset;
265
266         xpdMask = pEepData->modalHeader.xpdGain;
267
268         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
269             AR5416_EEP_MINOR_VER_2) {
270                 pdGainOverlap_t2 =
271                         pEepData->modalHeader.pdGainOverlap;
272         } else {
273                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
274                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
275         }
276
277         pCalBChans = pEepData->calFreqPier2G;
278         numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
279
280         numXpdGain = 0;
281
282         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
283                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
284                         if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
285                                 break;
286                         xpdGainValues[numXpdGain] =
287                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
288                         numXpdGain++;
289                 }
290         }
291
292         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
293                       (numXpdGain - 1) & 0x3);
294         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
295                       xpdGainValues[0]);
296         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
297                       xpdGainValues[1]);
298         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
299
300         for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
301                 if (AR_SREV_5416_20_OR_LATER(ah) &&
302                     (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
303                     (i != 0)) {
304                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
305                 } else
306                         regChainOffset = i * 0x1000;
307
308                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
309                         pRawDataset = pEepData->calPierData2G[i];
310
311                         ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
312                                             pRawDataset, pCalBChans,
313                                             numPiers, pdGainOverlap_t2,
314                                             gainBoundaries,
315                                             pdadcValues, numXpdGain);
316
317                         ENABLE_REGWRITE_BUFFER(ah);
318
319                         if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
320                                 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
321                                           SM(pdGainOverlap_t2,
322                                              AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
323                                           | SM(gainBoundaries[0],
324                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
325                                           | SM(gainBoundaries[1],
326                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
327                                           | SM(gainBoundaries[2],
328                                                AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
329                                           | SM(gainBoundaries[3],
330                                        AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
331                         }
332
333                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
334                         for (j = 0; j < 32; j++) {
335                                 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
336                                 REG_WRITE(ah, regOffset, reg32);
337
338                                 ath_dbg(common, ATH_DBG_EEPROM,
339                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
340                                         i, regChainOffset, regOffset,
341                                         reg32);
342                                 ath_dbg(common, ATH_DBG_EEPROM,
343                                         "PDADC: Chain %d | "
344                                         "PDADC %3d Value %3d | "
345                                         "PDADC %3d Value %3d | "
346                                         "PDADC %3d Value %3d | "
347                                         "PDADC %3d Value %3d |\n",
348                                         i, 4 * j, pdadcValues[4 * j],
349                                         4 * j + 1, pdadcValues[4 * j + 1],
350                                         4 * j + 2, pdadcValues[4 * j + 2],
351                                         4 * j + 3, pdadcValues[4 * j + 3]);
352
353                                 regOffset += 4;
354                         }
355
356                         REGWRITE_BUFFER_FLUSH(ah);
357                 }
358         }
359
360         *pTxPowerIndexOffset = 0;
361 }
362
363 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
364                                                  struct ath9k_channel *chan,
365                                                  int16_t *ratesArray,
366                                                  u16 cfgCtl,
367                                                  u16 AntennaReduction,
368                                                  u16 twiceMaxRegulatoryPower,
369                                                  u16 powerLimit)
370 {
371 #define CMP_TEST_GRP \
372         (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==  \
373          pEepData->ctlIndex[i])                                         \
374         || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
375             ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
376
377         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
378         int i;
379         int16_t twiceLargestAntenna;
380         u16 twiceMinEdgePower;
381         u16 twiceMaxEdgePower = MAX_RATE_POWER;
382         u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
383         u16 numCtlModes;
384         const u16 *pCtlMode;
385         u16 ctlMode, freq;
386         struct chan_centers centers;
387         struct cal_ctl_data_4k *rep;
388         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
389         static const u16 tpScaleReductionTable[5] =
390                 { 0, 3, 6, 9, MAX_RATE_POWER };
391         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
392                 0, { 0, 0, 0, 0}
393         };
394         struct cal_target_power_leg targetPowerOfdmExt = {
395                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
396                 0, { 0, 0, 0, 0 }
397         };
398         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
399                 0, {0, 0, 0, 0}
400         };
401         static const u16 ctlModesFor11g[] = {
402                 CTL_11B, CTL_11G, CTL_2GHT20,
403                 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
404         };
405
406         ath9k_hw_get_channel_centers(ah, chan, &centers);
407
408         twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
409         twiceLargestAntenna = (int16_t)min(AntennaReduction -
410                                            twiceLargestAntenna, 0);
411
412         maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
413         if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
414                 maxRegAllowedPower -=
415                         (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
416         }
417
418         scaledPower = min(powerLimit, maxRegAllowedPower);
419         scaledPower = max((u16)0, scaledPower);
420
421         numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
422         pCtlMode = ctlModesFor11g;
423
424         ath9k_hw_get_legacy_target_powers(ah, chan,
425                         pEepData->calTargetPowerCck,
426                         AR5416_NUM_2G_CCK_TARGET_POWERS,
427                         &targetPowerCck, 4, false);
428         ath9k_hw_get_legacy_target_powers(ah, chan,
429                         pEepData->calTargetPower2G,
430                         AR5416_NUM_2G_20_TARGET_POWERS,
431                         &targetPowerOfdm, 4, false);
432         ath9k_hw_get_target_powers(ah, chan,
433                         pEepData->calTargetPower2GHT20,
434                         AR5416_NUM_2G_20_TARGET_POWERS,
435                         &targetPowerHt20, 8, false);
436
437         if (IS_CHAN_HT40(chan)) {
438                 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
439                 ath9k_hw_get_target_powers(ah, chan,
440                                 pEepData->calTargetPower2GHT40,
441                                 AR5416_NUM_2G_40_TARGET_POWERS,
442                                 &targetPowerHt40, 8, true);
443                 ath9k_hw_get_legacy_target_powers(ah, chan,
444                                 pEepData->calTargetPowerCck,
445                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
446                                 &targetPowerCckExt, 4, true);
447                 ath9k_hw_get_legacy_target_powers(ah, chan,
448                                 pEepData->calTargetPower2G,
449                                 AR5416_NUM_2G_20_TARGET_POWERS,
450                                 &targetPowerOfdmExt, 4, true);
451         }
452
453         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
454                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
455                         (pCtlMode[ctlMode] == CTL_2GHT40);
456
457                 if (isHt40CtlMode)
458                         freq = centers.synth_center;
459                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
460                         freq = centers.ext_center;
461                 else
462                         freq = centers.ctl_center;
463
464                 if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
465                     ah->eep_ops->get_eeprom_rev(ah) <= 2)
466                         twiceMaxEdgePower = MAX_RATE_POWER;
467
468                 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
469                              pEepData->ctlIndex[i]; i++) {
470
471                         if (CMP_TEST_GRP) {
472                                 rep = &(pEepData->ctlData[i]);
473
474                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
475                                         freq,
476                                         rep->ctlEdges[
477                                         ar5416_get_ntxchains(ah->txchainmask) - 1],
478                                         IS_CHAN_2GHZ(chan),
479                                         AR5416_EEP4K_NUM_BAND_EDGES);
480
481                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
482                                         twiceMaxEdgePower =
483                                                 min(twiceMaxEdgePower,
484                                                     twiceMinEdgePower);
485                                 } else {
486                                         twiceMaxEdgePower = twiceMinEdgePower;
487                                         break;
488                                 }
489                         }
490                 }
491
492                 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
493
494                 switch (pCtlMode[ctlMode]) {
495                 case CTL_11B:
496                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
497                                 targetPowerCck.tPow2x[i] =
498                                         min((u16)targetPowerCck.tPow2x[i],
499                                             minCtlPower);
500                         }
501                         break;
502                 case CTL_11G:
503                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
504                                 targetPowerOfdm.tPow2x[i] =
505                                         min((u16)targetPowerOfdm.tPow2x[i],
506                                             minCtlPower);
507                         }
508                         break;
509                 case CTL_2GHT20:
510                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
511                                 targetPowerHt20.tPow2x[i] =
512                                         min((u16)targetPowerHt20.tPow2x[i],
513                                             minCtlPower);
514                         }
515                         break;
516                 case CTL_11B_EXT:
517                         targetPowerCckExt.tPow2x[0] =
518                                 min((u16)targetPowerCckExt.tPow2x[0],
519                                     minCtlPower);
520                         break;
521                 case CTL_11G_EXT:
522                         targetPowerOfdmExt.tPow2x[0] =
523                                 min((u16)targetPowerOfdmExt.tPow2x[0],
524                                     minCtlPower);
525                         break;
526                 case CTL_2GHT40:
527                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
528                                 targetPowerHt40.tPow2x[i] =
529                                         min((u16)targetPowerHt40.tPow2x[i],
530                                             minCtlPower);
531                         }
532                         break;
533                 default:
534                         break;
535                 }
536         }
537
538         ratesArray[rate6mb] =
539         ratesArray[rate9mb] =
540         ratesArray[rate12mb] =
541         ratesArray[rate18mb] =
542         ratesArray[rate24mb] =
543         targetPowerOfdm.tPow2x[0];
544
545         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
546         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
547         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
548         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
549
550         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
551                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
552
553         ratesArray[rate1l] = targetPowerCck.tPow2x[0];
554         ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
555         ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
556         ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
557
558         if (IS_CHAN_HT40(chan)) {
559                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
560                         ratesArray[rateHt40_0 + i] =
561                                 targetPowerHt40.tPow2x[i];
562                 }
563                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
564                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
565                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
566                 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
567         }
568
569 #undef CMP_TEST_GRP
570 }
571
572 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
573                                     struct ath9k_channel *chan,
574                                     u16 cfgCtl,
575                                     u8 twiceAntennaReduction,
576                                     u8 twiceMaxRegulatoryPower,
577                                     u8 powerLimit, bool test)
578 {
579         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
580         struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
581         struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
582         int16_t ratesArray[Ar5416RateSize];
583         int16_t txPowerIndexOffset = 0;
584         u8 ht40PowerIncForPdadc = 2;
585         int i;
586
587         memset(ratesArray, 0, sizeof(ratesArray));
588
589         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
590             AR5416_EEP_MINOR_VER_2) {
591                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
592         }
593
594         ath9k_hw_set_4k_power_per_rate_table(ah, chan,
595                                              &ratesArray[0], cfgCtl,
596                                              twiceAntennaReduction,
597                                              twiceMaxRegulatoryPower,
598                                              powerLimit);
599
600         ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset);
601
602         regulatory->max_power_level = 0;
603         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
604                 ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
605                 if (ratesArray[i] > MAX_RATE_POWER)
606                         ratesArray[i] = MAX_RATE_POWER;
607
608                 if (ratesArray[i] > regulatory->max_power_level)
609                         regulatory->max_power_level = ratesArray[i];
610         }
611
612         if (test)
613             return;
614
615         /* Update regulatory */
616         i = rate6mb;
617         if (IS_CHAN_HT40(chan))
618                 i = rateHt40_0;
619         else if (IS_CHAN_HT20(chan))
620                 i = rateHt20_0;
621
622         regulatory->max_power_level = ratesArray[i];
623
624         if (AR_SREV_9280_20_OR_LATER(ah)) {
625                 for (i = 0; i < Ar5416RateSize; i++)
626                         ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
627         }
628
629         ENABLE_REGWRITE_BUFFER(ah);
630
631         /* OFDM power per rate */
632         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
633                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
634                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
635                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
636                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
637         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
638                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
639                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
640                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
641                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
642
643         /* CCK power per rate */
644         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
645                   ATH9K_POW_SM(ratesArray[rate2s], 24)
646                   | ATH9K_POW_SM(ratesArray[rate2l], 16)
647                   | ATH9K_POW_SM(ratesArray[rateXr], 8)
648                   | ATH9K_POW_SM(ratesArray[rate1l], 0));
649         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
650                   ATH9K_POW_SM(ratesArray[rate11s], 24)
651                   | ATH9K_POW_SM(ratesArray[rate11l], 16)
652                   | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
653                   | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
654
655         /* HT20 power per rate */
656         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
657                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
658                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
659                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
660                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
661         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
662                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
663                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
664                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
665                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
666
667         /* HT40 power per rate */
668         if (IS_CHAN_HT40(chan)) {
669                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
670                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
671                                        ht40PowerIncForPdadc, 24)
672                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
673                                          ht40PowerIncForPdadc, 16)
674                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
675                                          ht40PowerIncForPdadc, 8)
676                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
677                                          ht40PowerIncForPdadc, 0));
678                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
679                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
680                                        ht40PowerIncForPdadc, 24)
681                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
682                                          ht40PowerIncForPdadc, 16)
683                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
684                                          ht40PowerIncForPdadc, 8)
685                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
686                                          ht40PowerIncForPdadc, 0));
687                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
688                           ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
689                           | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
690                           | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
691                           | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
692         }
693
694         REGWRITE_BUFFER_FLUSH(ah);
695 }
696
697 static void ath9k_hw_4k_set_addac(struct ath_hw *ah,
698                                   struct ath9k_channel *chan)
699 {
700         struct modal_eep_4k_header *pModal;
701         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
702         u8 biaslevel;
703
704         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
705                 return;
706
707         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
708                 return;
709
710         pModal = &eep->modalHeader;
711
712         if (pModal->xpaBiasLvl != 0xff) {
713                 biaslevel = pModal->xpaBiasLvl;
714                 INI_RA(&ah->iniAddac, 7, 1) =
715                   (INI_RA(&ah->iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
716         }
717 }
718
719 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
720                                  struct modal_eep_4k_header *pModal,
721                                  struct ar5416_eeprom_4k *eep,
722                                  u8 txRxAttenLocal)
723 {
724         REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
725                   pModal->antCtrlChain[0]);
726
727         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
728                   (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
729                    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
730                      AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
731                   SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
732                   SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
733
734         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
735             AR5416_EEP_MINOR_VER_3) {
736                 txRxAttenLocal = pModal->txRxAttenCh[0];
737
738                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
739                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
740                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
741                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
742                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
744                               pModal->xatten2Margin[0]);
745                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
746                               AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
747
748                 /* Set the block 1 value to block 0 value */
749                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
750                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
751                               pModal->bswMargin[0]);
752                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
753                               AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
754                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
755                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
756                               pModal->xatten2Margin[0]);
757                 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
758                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
759                               pModal->xatten2Db[0]);
760         }
761
762         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
763                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
764         REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
765                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
766
767         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
768                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
769         REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
770                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
771 }
772
773 /*
774  * Read EEPROM header info and program the device for correct operation
775  * given the channel value.
776  */
777 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
778                                          struct ath9k_channel *chan)
779 {
780         struct modal_eep_4k_header *pModal;
781         struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
782         struct base_eep_header_4k *pBase = &eep->baseEepHeader;
783         u8 txRxAttenLocal;
784         u8 ob[5], db1[5], db2[5];
785         u8 ant_div_control1, ant_div_control2;
786         u32 regVal;
787
788         pModal = &eep->modalHeader;
789         txRxAttenLocal = 23;
790
791         REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
792
793         /* Single chain for 4K EEPROM*/
794         ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
795
796         /* Initialize Ant Diversity settings from EEPROM */
797         if (pModal->version >= 3) {
798                 ant_div_control1 = pModal->antdiv_ctl1;
799                 ant_div_control2 = pModal->antdiv_ctl2;
800
801                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
802                 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
803
804                 regVal |= SM(ant_div_control1,
805                              AR_PHY_9285_ANT_DIV_CTL);
806                 regVal |= SM(ant_div_control2,
807                              AR_PHY_9285_ANT_DIV_ALT_LNACONF);
808                 regVal |= SM((ant_div_control2 >> 2),
809                              AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
810                 regVal |= SM((ant_div_control1 >> 1),
811                              AR_PHY_9285_ANT_DIV_ALT_GAINTB);
812                 regVal |= SM((ant_div_control1 >> 2),
813                              AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
814
815
816                 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
817                 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
818                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
819                 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
820                 regVal |= SM((ant_div_control1 >> 3),
821                              AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
822
823                 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
824                 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
825         }
826
827         if (pModal->version >= 2) {
828                 ob[0] = pModal->ob_0;
829                 ob[1] = pModal->ob_1;
830                 ob[2] = pModal->ob_2;
831                 ob[3] = pModal->ob_3;
832                 ob[4] = pModal->ob_4;
833
834                 db1[0] = pModal->db1_0;
835                 db1[1] = pModal->db1_1;
836                 db1[2] = pModal->db1_2;
837                 db1[3] = pModal->db1_3;
838                 db1[4] = pModal->db1_4;
839
840                 db2[0] = pModal->db2_0;
841                 db2[1] = pModal->db2_1;
842                 db2[2] = pModal->db2_2;
843                 db2[3] = pModal->db2_3;
844                 db2[4] = pModal->db2_4;
845         } else if (pModal->version == 1) {
846                 ob[0] = pModal->ob_0;
847                 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
848                 db1[0] = pModal->db1_0;
849                 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
850                 db2[0] = pModal->db2_0;
851                 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
852         } else {
853                 int i;
854
855                 for (i = 0; i < 5; i++) {
856                         ob[i] = pModal->ob_0;
857                         db1[i] = pModal->db1_0;
858                         db2[i] = pModal->db1_0;
859                 }
860         }
861
862         if (AR_SREV_9271(ah)) {
863                 ath9k_hw_analog_shift_rmw(ah,
864                                           AR9285_AN_RF2G3,
865                                           AR9271_AN_RF2G3_OB_cck,
866                                           AR9271_AN_RF2G3_OB_cck_S,
867                                           ob[0]);
868                 ath9k_hw_analog_shift_rmw(ah,
869                                           AR9285_AN_RF2G3,
870                                           AR9271_AN_RF2G3_OB_psk,
871                                           AR9271_AN_RF2G3_OB_psk_S,
872                                           ob[1]);
873                 ath9k_hw_analog_shift_rmw(ah,
874                                           AR9285_AN_RF2G3,
875                                           AR9271_AN_RF2G3_OB_qam,
876                                           AR9271_AN_RF2G3_OB_qam_S,
877                                           ob[2]);
878                 ath9k_hw_analog_shift_rmw(ah,
879                                           AR9285_AN_RF2G3,
880                                           AR9271_AN_RF2G3_DB_1,
881                                           AR9271_AN_RF2G3_DB_1_S,
882                                           db1[0]);
883                 ath9k_hw_analog_shift_rmw(ah,
884                                           AR9285_AN_RF2G4,
885                                           AR9271_AN_RF2G4_DB_2,
886                                           AR9271_AN_RF2G4_DB_2_S,
887                                           db2[0]);
888         } else {
889                 ath9k_hw_analog_shift_rmw(ah,
890                                           AR9285_AN_RF2G3,
891                                           AR9285_AN_RF2G3_OB_0,
892                                           AR9285_AN_RF2G3_OB_0_S,
893                                           ob[0]);
894                 ath9k_hw_analog_shift_rmw(ah,
895                                           AR9285_AN_RF2G3,
896                                           AR9285_AN_RF2G3_OB_1,
897                                           AR9285_AN_RF2G3_OB_1_S,
898                                           ob[1]);
899                 ath9k_hw_analog_shift_rmw(ah,
900                                           AR9285_AN_RF2G3,
901                                           AR9285_AN_RF2G3_OB_2,
902                                           AR9285_AN_RF2G3_OB_2_S,
903                                           ob[2]);
904                 ath9k_hw_analog_shift_rmw(ah,
905                                           AR9285_AN_RF2G3,
906                                           AR9285_AN_RF2G3_OB_3,
907                                           AR9285_AN_RF2G3_OB_3_S,
908                                           ob[3]);
909                 ath9k_hw_analog_shift_rmw(ah,
910                                           AR9285_AN_RF2G3,
911                                           AR9285_AN_RF2G3_OB_4,
912                                           AR9285_AN_RF2G3_OB_4_S,
913                                           ob[4]);
914
915                 ath9k_hw_analog_shift_rmw(ah,
916                                           AR9285_AN_RF2G3,
917                                           AR9285_AN_RF2G3_DB1_0,
918                                           AR9285_AN_RF2G3_DB1_0_S,
919                                           db1[0]);
920                 ath9k_hw_analog_shift_rmw(ah,
921                                           AR9285_AN_RF2G3,
922                                           AR9285_AN_RF2G3_DB1_1,
923                                           AR9285_AN_RF2G3_DB1_1_S,
924                                           db1[1]);
925                 ath9k_hw_analog_shift_rmw(ah,
926                                           AR9285_AN_RF2G3,
927                                           AR9285_AN_RF2G3_DB1_2,
928                                           AR9285_AN_RF2G3_DB1_2_S,
929                                           db1[2]);
930                 ath9k_hw_analog_shift_rmw(ah,
931                                           AR9285_AN_RF2G4,
932                                           AR9285_AN_RF2G4_DB1_3,
933                                           AR9285_AN_RF2G4_DB1_3_S,
934                                           db1[3]);
935                 ath9k_hw_analog_shift_rmw(ah,
936                                           AR9285_AN_RF2G4,
937                                           AR9285_AN_RF2G4_DB1_4,
938                                           AR9285_AN_RF2G4_DB1_4_S, db1[4]);
939
940                 ath9k_hw_analog_shift_rmw(ah,
941                                           AR9285_AN_RF2G4,
942                                           AR9285_AN_RF2G4_DB2_0,
943                                           AR9285_AN_RF2G4_DB2_0_S,
944                                           db2[0]);
945                 ath9k_hw_analog_shift_rmw(ah,
946                                           AR9285_AN_RF2G4,
947                                           AR9285_AN_RF2G4_DB2_1,
948                                           AR9285_AN_RF2G4_DB2_1_S,
949                                           db2[1]);
950                 ath9k_hw_analog_shift_rmw(ah,
951                                           AR9285_AN_RF2G4,
952                                           AR9285_AN_RF2G4_DB2_2,
953                                           AR9285_AN_RF2G4_DB2_2_S,
954                                           db2[2]);
955                 ath9k_hw_analog_shift_rmw(ah,
956                                           AR9285_AN_RF2G4,
957                                           AR9285_AN_RF2G4_DB2_3,
958                                           AR9285_AN_RF2G4_DB2_3_S,
959                                           db2[3]);
960                 ath9k_hw_analog_shift_rmw(ah,
961                                           AR9285_AN_RF2G4,
962                                           AR9285_AN_RF2G4_DB2_4,
963                                           AR9285_AN_RF2G4_DB2_4_S,
964                                           db2[4]);
965         }
966
967
968         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
969                       pModal->switchSettling);
970         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
971                       pModal->adcDesiredSize);
972
973         REG_WRITE(ah, AR_PHY_RF_CTL4,
974                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
975                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
976                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
977                   SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
978
979         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
980                       pModal->txEndToRxOn);
981
982         if (AR_SREV_9271_10(ah))
983                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
984                               pModal->txEndToRxOn);
985         REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
986                       pModal->thresh62);
987         REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
988                       pModal->thresh62);
989
990         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
991                                                 AR5416_EEP_MINOR_VER_2) {
992                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
993                               pModal->txFrameToDataStart);
994                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
995                               pModal->txFrameToPaOn);
996         }
997
998         if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
999                                                 AR5416_EEP_MINOR_VER_3) {
1000                 if (IS_CHAN_HT40(chan))
1001                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1002                                       AR_PHY_SETTLING_SWITCH,
1003                                       pModal->swSettleHt40);
1004         }
1005         if (AR_SREV_9271(ah) || AR_SREV_9285(ah)) {
1006                 u8 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1007                                 EEP_4K_BB_DESIRED_SCALE_MASK);
1008                 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1009                         u32 pwrctrl, mask, clr;
1010
1011                         mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1012                         pwrctrl = mask * bb_desired_scale;
1013                         clr = mask * 0x1f;
1014                         REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1015                         REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1016                         REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1017
1018                         mask = BIT(0)|BIT(5)|BIT(15);
1019                         pwrctrl = mask * bb_desired_scale;
1020                         clr = mask * 0x1f;
1021                         REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1022
1023                         mask = BIT(0)|BIT(5);
1024                         pwrctrl = mask * bb_desired_scale;
1025                         clr = mask * 0x1f;
1026                         REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1027                         REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1028                 }
1029         }
1030 }
1031
1032 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1033 {
1034 #define EEP_MAP4K_SPURCHAN \
1035         (ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1036         struct ath_common *common = ath9k_hw_common(ah);
1037
1038         u16 spur_val = AR_NO_SPUR;
1039
1040         ath_dbg(common, ATH_DBG_ANI,
1041                 "Getting spur idx:%d is2Ghz:%d val:%x\n",
1042                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1043
1044         switch (ah->config.spurmode) {
1045         case SPUR_DISABLE:
1046                 break;
1047         case SPUR_ENABLE_IOCTL:
1048                 spur_val = ah->config.spurchans[i][is2GHz];
1049                 ath_dbg(common, ATH_DBG_ANI,
1050                         "Getting spur val from new loc. %d\n", spur_val);
1051                 break;
1052         case SPUR_ENABLE_EEPROM:
1053                 spur_val = EEP_MAP4K_SPURCHAN;
1054                 break;
1055         }
1056
1057         return spur_val;
1058
1059 #undef EEP_MAP4K_SPURCHAN
1060 }
1061
1062 const struct eeprom_ops eep_4k_ops = {
1063         .check_eeprom           = ath9k_hw_4k_check_eeprom,
1064         .get_eeprom             = ath9k_hw_4k_get_eeprom,
1065         .fill_eeprom            = ath9k_hw_4k_fill_eeprom,
1066         .get_eeprom_ver         = ath9k_hw_4k_get_eeprom_ver,
1067         .get_eeprom_rev         = ath9k_hw_4k_get_eeprom_rev,
1068         .set_board_values       = ath9k_hw_4k_set_board_values,
1069         .set_addac              = ath9k_hw_4k_set_addac,
1070         .set_txpower            = ath9k_hw_4k_set_txpower,
1071         .get_spur_channel       = ath9k_hw_4k_get_spur_channel
1072 };