Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[pandora-kernel.git] / drivers / net / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/if_ether.h>
16 #include <linux/highmem.h>
17 #include "net_driver.h"
18 #include "tx.h"
19 #include "efx.h"
20 #include "falcon.h"
21 #include "workarounds.h"
22
23 /*
24  * TX descriptor ring full threshold
25  *
26  * The tx_queue descriptor ring fill-level must fall below this value
27  * before we restart the netif queue
28  */
29 #define EFX_NETDEV_TX_THRESHOLD(_tx_queue)      \
30         (_tx_queue->efx->type->txd_ring_mask / 2u)
31
32 /* We want to be able to nest calls to netif_stop_queue(), since each
33  * channel can have an individual stop on the queue.
34  */
35 void efx_stop_queue(struct efx_nic *efx)
36 {
37         spin_lock_bh(&efx->netif_stop_lock);
38         EFX_TRACE(efx, "stop TX queue\n");
39
40         atomic_inc(&efx->netif_stop_count);
41         netif_stop_queue(efx->net_dev);
42
43         spin_unlock_bh(&efx->netif_stop_lock);
44 }
45
46 /* Wake netif's TX queue
47  * We want to be able to nest calls to netif_stop_queue(), since each
48  * channel can have an individual stop on the queue.
49  */
50 void efx_wake_queue(struct efx_nic *efx)
51 {
52         local_bh_disable();
53         if (atomic_dec_and_lock(&efx->netif_stop_count,
54                                 &efx->netif_stop_lock)) {
55                 EFX_TRACE(efx, "waking TX queue\n");
56                 netif_wake_queue(efx->net_dev);
57                 spin_unlock(&efx->netif_stop_lock);
58         }
59         local_bh_enable();
60 }
61
62 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
63                                struct efx_tx_buffer *buffer)
64 {
65         if (buffer->unmap_len) {
66                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
67                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
68                                          buffer->unmap_len);
69                 if (buffer->unmap_single)
70                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
71                                          PCI_DMA_TODEVICE);
72                 else
73                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
74                                        PCI_DMA_TODEVICE);
75                 buffer->unmap_len = 0;
76                 buffer->unmap_single = false;
77         }
78
79         if (buffer->skb) {
80                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
81                 buffer->skb = NULL;
82                 EFX_TRACE(tx_queue->efx, "TX queue %d transmission id %x "
83                           "complete\n", tx_queue->queue, read_ptr);
84         }
85 }
86
87 /**
88  * struct efx_tso_header - a DMA mapped buffer for packet headers
89  * @next: Linked list of free ones.
90  *      The list is protected by the TX queue lock.
91  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
92  * @dma_addr: The DMA address of the header below.
93  *
94  * This controls the memory used for a TSO header.  Use TSOH_DATA()
95  * to find the packet header data.  Use TSOH_SIZE() to calculate the
96  * total size required for a given packet header length.  TSO headers
97  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
98  */
99 struct efx_tso_header {
100         union {
101                 struct efx_tso_header *next;
102                 size_t unmap_len;
103         };
104         dma_addr_t dma_addr;
105 };
106
107 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
108                                struct sk_buff *skb);
109 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
110 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
111                                struct efx_tso_header *tsoh);
112
113 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
114                           struct efx_tx_buffer *buffer)
115 {
116         if (buffer->tsoh) {
117                 if (likely(!buffer->tsoh->unmap_len)) {
118                         buffer->tsoh->next = tx_queue->tso_headers_free;
119                         tx_queue->tso_headers_free = buffer->tsoh;
120                 } else {
121                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
122                 }
123                 buffer->tsoh = NULL;
124         }
125 }
126
127
128 /*
129  * Add a socket buffer to a TX queue
130  *
131  * This maps all fragments of a socket buffer for DMA and adds them to
132  * the TX queue.  The queue's insert pointer will be incremented by
133  * the number of fragments in the socket buffer.
134  *
135  * If any DMA mapping fails, any mapped fragments will be unmapped,
136  * the queue's insert pointer will be restored to its original value.
137  *
138  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
139  * You must hold netif_tx_lock() to call this function.
140  */
141 static int efx_enqueue_skb(struct efx_tx_queue *tx_queue,
142                            struct sk_buff *skb)
143 {
144         struct efx_nic *efx = tx_queue->efx;
145         struct pci_dev *pci_dev = efx->pci_dev;
146         struct efx_tx_buffer *buffer;
147         skb_frag_t *fragment;
148         struct page *page;
149         int page_offset;
150         unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign;
151         dma_addr_t dma_addr, unmap_addr = 0;
152         unsigned int dma_len;
153         bool unmap_single;
154         int q_space, i = 0;
155         int rc = NETDEV_TX_OK;
156
157         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
158
159         if (skb_shinfo((struct sk_buff *)skb)->gso_size)
160                 return efx_enqueue_skb_tso(tx_queue, skb);
161
162         /* Get size of the initial fragment */
163         len = skb_headlen(skb);
164
165         /* Pad if necessary */
166         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
167                 EFX_BUG_ON_PARANOID(skb->data_len);
168                 len = 32 + 1;
169                 if (skb_pad(skb, len - skb->len))
170                         return NETDEV_TX_OK;
171         }
172
173         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
174         q_space = efx->type->txd_ring_mask - 1 - fill_level;
175
176         /* Map for DMA.  Use pci_map_single rather than pci_map_page
177          * since this is more efficient on machines with sparse
178          * memory.
179          */
180         unmap_single = true;
181         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
182
183         /* Process all fragments */
184         while (1) {
185                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
186                         goto pci_err;
187
188                 /* Store fields for marking in the per-fragment final
189                  * descriptor */
190                 unmap_len = len;
191                 unmap_addr = dma_addr;
192
193                 /* Add to TX queue, splitting across DMA boundaries */
194                 do {
195                         if (unlikely(q_space-- <= 0)) {
196                                 /* It might be that completions have
197                                  * happened since the xmit path last
198                                  * checked.  Update the xmit path's
199                                  * copy of read_count.
200                                  */
201                                 ++tx_queue->stopped;
202                                 /* This memory barrier protects the
203                                  * change of stopped from the access
204                                  * of read_count. */
205                                 smp_mb();
206                                 tx_queue->old_read_count =
207                                         *(volatile unsigned *)
208                                         &tx_queue->read_count;
209                                 fill_level = (tx_queue->insert_count
210                                               - tx_queue->old_read_count);
211                                 q_space = (efx->type->txd_ring_mask - 1 -
212                                            fill_level);
213                                 if (unlikely(q_space-- <= 0))
214                                         goto stop;
215                                 smp_mb();
216                                 --tx_queue->stopped;
217                         }
218
219                         insert_ptr = (tx_queue->insert_count &
220                                       efx->type->txd_ring_mask);
221                         buffer = &tx_queue->buffer[insert_ptr];
222                         efx_tsoh_free(tx_queue, buffer);
223                         EFX_BUG_ON_PARANOID(buffer->tsoh);
224                         EFX_BUG_ON_PARANOID(buffer->skb);
225                         EFX_BUG_ON_PARANOID(buffer->len);
226                         EFX_BUG_ON_PARANOID(!buffer->continuation);
227                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
228
229                         dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1);
230                         if (likely(dma_len > len))
231                                 dma_len = len;
232
233                         misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
234                         if (misalign && dma_len + misalign > 512)
235                                 dma_len = 512 - misalign;
236
237                         /* Fill out per descriptor fields */
238                         buffer->len = dma_len;
239                         buffer->dma_addr = dma_addr;
240                         len -= dma_len;
241                         dma_addr += dma_len;
242                         ++tx_queue->insert_count;
243                 } while (len);
244
245                 /* Transfer ownership of the unmapping to the final buffer */
246                 buffer->unmap_single = unmap_single;
247                 buffer->unmap_len = unmap_len;
248                 unmap_len = 0;
249
250                 /* Get address and size of next fragment */
251                 if (i >= skb_shinfo(skb)->nr_frags)
252                         break;
253                 fragment = &skb_shinfo(skb)->frags[i];
254                 len = fragment->size;
255                 page = fragment->page;
256                 page_offset = fragment->page_offset;
257                 i++;
258                 /* Map for DMA */
259                 unmap_single = false;
260                 dma_addr = pci_map_page(pci_dev, page, page_offset, len,
261                                         PCI_DMA_TODEVICE);
262         }
263
264         /* Transfer ownership of the skb to the final buffer */
265         buffer->skb = skb;
266         buffer->continuation = false;
267
268         /* Pass off to hardware */
269         falcon_push_buffers(tx_queue);
270
271         return NETDEV_TX_OK;
272
273  pci_err:
274         EFX_ERR_RL(efx, " TX queue %d could not map skb with %d bytes %d "
275                    "fragments for DMA\n", tx_queue->queue, skb->len,
276                    skb_shinfo(skb)->nr_frags + 1);
277
278         /* Mark the packet as transmitted, and free the SKB ourselves */
279         dev_kfree_skb_any((struct sk_buff *)skb);
280         goto unwind;
281
282  stop:
283         rc = NETDEV_TX_BUSY;
284
285         if (tx_queue->stopped == 1)
286                 efx_stop_queue(efx);
287
288  unwind:
289         /* Work backwards until we hit the original insert pointer value */
290         while (tx_queue->insert_count != tx_queue->write_count) {
291                 --tx_queue->insert_count;
292                 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
293                 buffer = &tx_queue->buffer[insert_ptr];
294                 efx_dequeue_buffer(tx_queue, buffer);
295                 buffer->len = 0;
296         }
297
298         /* Free the fragment we were mid-way through pushing */
299         if (unmap_len) {
300                 if (unmap_single)
301                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
302                                          PCI_DMA_TODEVICE);
303                 else
304                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
305                                        PCI_DMA_TODEVICE);
306         }
307
308         return rc;
309 }
310
311 /* Remove packets from the TX queue
312  *
313  * This removes packets from the TX queue, up to and including the
314  * specified index.
315  */
316 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
317                                 unsigned int index)
318 {
319         struct efx_nic *efx = tx_queue->efx;
320         unsigned int stop_index, read_ptr;
321         unsigned int mask = tx_queue->efx->type->txd_ring_mask;
322
323         stop_index = (index + 1) & mask;
324         read_ptr = tx_queue->read_count & mask;
325
326         while (read_ptr != stop_index) {
327                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
328                 if (unlikely(buffer->len == 0)) {
329                         EFX_ERR(tx_queue->efx, "TX queue %d spurious TX "
330                                 "completion id %x\n", tx_queue->queue,
331                                 read_ptr);
332                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
333                         return;
334                 }
335
336                 efx_dequeue_buffer(tx_queue, buffer);
337                 buffer->continuation = true;
338                 buffer->len = 0;
339
340                 ++tx_queue->read_count;
341                 read_ptr = tx_queue->read_count & mask;
342         }
343 }
344
345 /* Initiate a packet transmission on the specified TX queue.
346  * Note that returning anything other than NETDEV_TX_OK will cause the
347  * OS to free the skb.
348  *
349  * This function is split out from efx_hard_start_xmit to allow the
350  * loopback test to direct packets via specific TX queues.  It is
351  * therefore a non-static inline, so as not to penalise performance
352  * for non-loopback transmissions.
353  *
354  * Context: netif_tx_lock held
355  */
356 inline int efx_xmit(struct efx_nic *efx,
357                     struct efx_tx_queue *tx_queue, struct sk_buff *skb)
358 {
359         int rc;
360
361         /* Map fragments for DMA and add to TX queue */
362         rc = efx_enqueue_skb(tx_queue, skb);
363         return rc;
364 }
365
366 /* Initiate a packet transmission.  We use one channel per CPU
367  * (sharing when we have more CPUs than channels).  On Falcon, the TX
368  * completion events will be directed back to the CPU that transmitted
369  * the packet, which should be cache-efficient.
370  *
371  * Context: non-blocking.
372  * Note that returning anything other than NETDEV_TX_OK will cause the
373  * OS to free the skb.
374  */
375 int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
376 {
377         struct efx_nic *efx = netdev_priv(net_dev);
378         struct efx_tx_queue *tx_queue;
379
380         if (unlikely(efx->port_inhibited))
381                 return NETDEV_TX_BUSY;
382
383         if (likely(skb->ip_summed == CHECKSUM_PARTIAL))
384                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM];
385         else
386                 tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM];
387
388         return efx_xmit(efx, tx_queue, skb);
389 }
390
391 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
392 {
393         unsigned fill_level;
394         struct efx_nic *efx = tx_queue->efx;
395
396         EFX_BUG_ON_PARANOID(index > efx->type->txd_ring_mask);
397
398         efx_dequeue_buffers(tx_queue, index);
399
400         /* See if we need to restart the netif queue.  This barrier
401          * separates the update of read_count from the test of
402          * stopped. */
403         smp_mb();
404         if (unlikely(tx_queue->stopped) && likely(efx->port_enabled)) {
405                 fill_level = tx_queue->insert_count - tx_queue->read_count;
406                 if (fill_level < EFX_NETDEV_TX_THRESHOLD(tx_queue)) {
407                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
408
409                         /* Do this under netif_tx_lock(), to avoid racing
410                          * with efx_xmit(). */
411                         netif_tx_lock(efx->net_dev);
412                         if (tx_queue->stopped) {
413                                 tx_queue->stopped = 0;
414                                 efx_wake_queue(efx);
415                         }
416                         netif_tx_unlock(efx->net_dev);
417                 }
418         }
419 }
420
421 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
422 {
423         struct efx_nic *efx = tx_queue->efx;
424         unsigned int txq_size;
425         int i, rc;
426
427         EFX_LOG(efx, "creating TX queue %d\n", tx_queue->queue);
428
429         /* Allocate software ring */
430         txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer);
431         tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL);
432         if (!tx_queue->buffer)
433                 return -ENOMEM;
434         for (i = 0; i <= efx->type->txd_ring_mask; ++i)
435                 tx_queue->buffer[i].continuation = true;
436
437         /* Allocate hardware ring */
438         rc = falcon_probe_tx(tx_queue);
439         if (rc)
440                 goto fail;
441
442         return 0;
443
444  fail:
445         kfree(tx_queue->buffer);
446         tx_queue->buffer = NULL;
447         return rc;
448 }
449
450 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
451 {
452         EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue);
453
454         tx_queue->insert_count = 0;
455         tx_queue->write_count = 0;
456         tx_queue->read_count = 0;
457         tx_queue->old_read_count = 0;
458         BUG_ON(tx_queue->stopped);
459
460         /* Set up TX descriptor ring */
461         falcon_init_tx(tx_queue);
462 }
463
464 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
465 {
466         struct efx_tx_buffer *buffer;
467
468         if (!tx_queue->buffer)
469                 return;
470
471         /* Free any buffers left in the ring */
472         while (tx_queue->read_count != tx_queue->write_count) {
473                 buffer = &tx_queue->buffer[tx_queue->read_count &
474                                            tx_queue->efx->type->txd_ring_mask];
475                 efx_dequeue_buffer(tx_queue, buffer);
476                 buffer->continuation = true;
477                 buffer->len = 0;
478
479                 ++tx_queue->read_count;
480         }
481 }
482
483 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
484 {
485         EFX_LOG(tx_queue->efx, "shutting down TX queue %d\n", tx_queue->queue);
486
487         /* Flush TX queue, remove descriptor ring */
488         falcon_fini_tx(tx_queue);
489
490         efx_release_tx_buffers(tx_queue);
491
492         /* Free up TSO header cache */
493         efx_fini_tso(tx_queue);
494
495         /* Release queue's stop on port, if any */
496         if (tx_queue->stopped) {
497                 tx_queue->stopped = 0;
498                 efx_wake_queue(tx_queue->efx);
499         }
500 }
501
502 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
503 {
504         EFX_LOG(tx_queue->efx, "destroying TX queue %d\n", tx_queue->queue);
505         falcon_remove_tx(tx_queue);
506
507         kfree(tx_queue->buffer);
508         tx_queue->buffer = NULL;
509 }
510
511
512 /* Efx TCP segmentation acceleration.
513  *
514  * Why?  Because by doing it here in the driver we can go significantly
515  * faster than the GSO.
516  *
517  * Requires TX checksum offload support.
518  */
519
520 /* Number of bytes inserted at the start of a TSO header buffer,
521  * similar to NET_IP_ALIGN.
522  */
523 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
524 #define TSOH_OFFSET     0
525 #else
526 #define TSOH_OFFSET     NET_IP_ALIGN
527 #endif
528
529 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
530
531 /* Total size of struct efx_tso_header, buffer and padding */
532 #define TSOH_SIZE(hdr_len)                                      \
533         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
534
535 /* Size of blocks on free list.  Larger blocks must be allocated from
536  * the heap.
537  */
538 #define TSOH_STD_SIZE           128
539
540 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
541 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
542 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
543 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
544
545 /**
546  * struct tso_state - TSO state for an SKB
547  * @out_len: Remaining length in current segment
548  * @seqnum: Current sequence number
549  * @ipv4_id: Current IPv4 ID, host endian
550  * @packet_space: Remaining space in current packet
551  * @dma_addr: DMA address of current position
552  * @in_len: Remaining length in current SKB fragment
553  * @unmap_len: Length of SKB fragment
554  * @unmap_addr: DMA address of SKB fragment
555  * @unmap_single: DMA single vs page mapping flag
556  * @header_len: Number of bytes of header
557  * @full_packet_size: Number of bytes to put in each outgoing segment
558  *
559  * The state used during segmentation.  It is put into this data structure
560  * just to make it easy to pass into inline functions.
561  */
562 struct tso_state {
563         /* Output position */
564         unsigned out_len;
565         unsigned seqnum;
566         unsigned ipv4_id;
567         unsigned packet_space;
568
569         /* Input position */
570         dma_addr_t dma_addr;
571         unsigned in_len;
572         unsigned unmap_len;
573         dma_addr_t unmap_addr;
574         bool unmap_single;
575
576         unsigned header_len;
577         int full_packet_size;
578 };
579
580
581 /*
582  * Verify that our various assumptions about sk_buffs and the conditions
583  * under which TSO will be attempted hold true.
584  */
585 static void efx_tso_check_safe(struct sk_buff *skb)
586 {
587         __be16 protocol = skb->protocol;
588
589         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
590                             protocol);
591         if (protocol == htons(ETH_P_8021Q)) {
592                 /* Find the encapsulated protocol; reset network header
593                  * and transport header based on that. */
594                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
595                 protocol = veh->h_vlan_encapsulated_proto;
596                 skb_set_network_header(skb, sizeof(*veh));
597                 if (protocol == htons(ETH_P_IP))
598                         skb_set_transport_header(skb, sizeof(*veh) +
599                                                  4 * ip_hdr(skb)->ihl);
600         }
601
602         EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IP));
603         EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
604         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
605                              + (tcp_hdr(skb)->doff << 2u)) >
606                             skb_headlen(skb));
607 }
608
609
610 /*
611  * Allocate a page worth of efx_tso_header structures, and string them
612  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
613  */
614 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
615 {
616
617         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
618         struct efx_tso_header *tsoh;
619         dma_addr_t dma_addr;
620         u8 *base_kva, *kva;
621
622         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
623         if (base_kva == NULL) {
624                 EFX_ERR(tx_queue->efx, "Unable to allocate page for TSO"
625                         " headers\n");
626                 return -ENOMEM;
627         }
628
629         /* pci_alloc_consistent() allocates pages. */
630         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
631
632         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
633                 tsoh = (struct efx_tso_header *)kva;
634                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
635                 tsoh->next = tx_queue->tso_headers_free;
636                 tx_queue->tso_headers_free = tsoh;
637         }
638
639         return 0;
640 }
641
642
643 /* Free up a TSO header, and all others in the same page. */
644 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
645                                 struct efx_tso_header *tsoh,
646                                 struct pci_dev *pci_dev)
647 {
648         struct efx_tso_header **p;
649         unsigned long base_kva;
650         dma_addr_t base_dma;
651
652         base_kva = (unsigned long)tsoh & PAGE_MASK;
653         base_dma = tsoh->dma_addr & PAGE_MASK;
654
655         p = &tx_queue->tso_headers_free;
656         while (*p != NULL) {
657                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
658                         *p = (*p)->next;
659                 else
660                         p = &(*p)->next;
661         }
662
663         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
664 }
665
666 static struct efx_tso_header *
667 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
668 {
669         struct efx_tso_header *tsoh;
670
671         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
672         if (unlikely(!tsoh))
673                 return NULL;
674
675         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
676                                         TSOH_BUFFER(tsoh), header_len,
677                                         PCI_DMA_TODEVICE);
678         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
679                                            tsoh->dma_addr))) {
680                 kfree(tsoh);
681                 return NULL;
682         }
683
684         tsoh->unmap_len = header_len;
685         return tsoh;
686 }
687
688 static void
689 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
690 {
691         pci_unmap_single(tx_queue->efx->pci_dev,
692                          tsoh->dma_addr, tsoh->unmap_len,
693                          PCI_DMA_TODEVICE);
694         kfree(tsoh);
695 }
696
697 /**
698  * efx_tx_queue_insert - push descriptors onto the TX queue
699  * @tx_queue:           Efx TX queue
700  * @dma_addr:           DMA address of fragment
701  * @len:                Length of fragment
702  * @final_buffer:       The final buffer inserted into the queue
703  *
704  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
705  * @tx_queue full.
706  */
707 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
708                                dma_addr_t dma_addr, unsigned len,
709                                struct efx_tx_buffer **final_buffer)
710 {
711         struct efx_tx_buffer *buffer;
712         struct efx_nic *efx = tx_queue->efx;
713         unsigned dma_len, fill_level, insert_ptr, misalign;
714         int q_space;
715
716         EFX_BUG_ON_PARANOID(len <= 0);
717
718         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
719         /* -1 as there is no way to represent all descriptors used */
720         q_space = efx->type->txd_ring_mask - 1 - fill_level;
721
722         while (1) {
723                 if (unlikely(q_space-- <= 0)) {
724                         /* It might be that completions have happened
725                          * since the xmit path last checked.  Update
726                          * the xmit path's copy of read_count.
727                          */
728                         ++tx_queue->stopped;
729                         /* This memory barrier protects the change of
730                          * stopped from the access of read_count. */
731                         smp_mb();
732                         tx_queue->old_read_count =
733                                 *(volatile unsigned *)&tx_queue->read_count;
734                         fill_level = (tx_queue->insert_count
735                                       - tx_queue->old_read_count);
736                         q_space = efx->type->txd_ring_mask - 1 - fill_level;
737                         if (unlikely(q_space-- <= 0)) {
738                                 *final_buffer = NULL;
739                                 return 1;
740                         }
741                         smp_mb();
742                         --tx_queue->stopped;
743                 }
744
745                 insert_ptr = tx_queue->insert_count & efx->type->txd_ring_mask;
746                 buffer = &tx_queue->buffer[insert_ptr];
747                 ++tx_queue->insert_count;
748
749                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
750                                     tx_queue->read_count >
751                                     efx->type->txd_ring_mask);
752
753                 efx_tsoh_free(tx_queue, buffer);
754                 EFX_BUG_ON_PARANOID(buffer->len);
755                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
756                 EFX_BUG_ON_PARANOID(buffer->skb);
757                 EFX_BUG_ON_PARANOID(!buffer->continuation);
758                 EFX_BUG_ON_PARANOID(buffer->tsoh);
759
760                 buffer->dma_addr = dma_addr;
761
762                 /* Ensure we do not cross a boundary unsupported by H/W */
763                 dma_len = (~dma_addr & efx->type->tx_dma_mask) + 1;
764
765                 misalign = (unsigned)dma_addr & efx->type->bug5391_mask;
766                 if (misalign && dma_len + misalign > 512)
767                         dma_len = 512 - misalign;
768
769                 /* If there is enough space to send then do so */
770                 if (dma_len >= len)
771                         break;
772
773                 buffer->len = dma_len; /* Don't set the other members */
774                 dma_addr += dma_len;
775                 len -= dma_len;
776         }
777
778         EFX_BUG_ON_PARANOID(!len);
779         buffer->len = len;
780         *final_buffer = buffer;
781         return 0;
782 }
783
784
785 /*
786  * Put a TSO header into the TX queue.
787  *
788  * This is special-cased because we know that it is small enough to fit in
789  * a single fragment, and we know it doesn't cross a page boundary.  It
790  * also allows us to not worry about end-of-packet etc.
791  */
792 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
793                                struct efx_tso_header *tsoh, unsigned len)
794 {
795         struct efx_tx_buffer *buffer;
796
797         buffer = &tx_queue->buffer[tx_queue->insert_count &
798                                    tx_queue->efx->type->txd_ring_mask];
799         efx_tsoh_free(tx_queue, buffer);
800         EFX_BUG_ON_PARANOID(buffer->len);
801         EFX_BUG_ON_PARANOID(buffer->unmap_len);
802         EFX_BUG_ON_PARANOID(buffer->skb);
803         EFX_BUG_ON_PARANOID(!buffer->continuation);
804         EFX_BUG_ON_PARANOID(buffer->tsoh);
805         buffer->len = len;
806         buffer->dma_addr = tsoh->dma_addr;
807         buffer->tsoh = tsoh;
808
809         ++tx_queue->insert_count;
810 }
811
812
813 /* Remove descriptors put into a tx_queue. */
814 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
815 {
816         struct efx_tx_buffer *buffer;
817         dma_addr_t unmap_addr;
818
819         /* Work backwards until we hit the original insert pointer value */
820         while (tx_queue->insert_count != tx_queue->write_count) {
821                 --tx_queue->insert_count;
822                 buffer = &tx_queue->buffer[tx_queue->insert_count &
823                                            tx_queue->efx->type->txd_ring_mask];
824                 efx_tsoh_free(tx_queue, buffer);
825                 EFX_BUG_ON_PARANOID(buffer->skb);
826                 buffer->len = 0;
827                 buffer->continuation = true;
828                 if (buffer->unmap_len) {
829                         unmap_addr = (buffer->dma_addr + buffer->len -
830                                       buffer->unmap_len);
831                         if (buffer->unmap_single)
832                                 pci_unmap_single(tx_queue->efx->pci_dev,
833                                                  unmap_addr, buffer->unmap_len,
834                                                  PCI_DMA_TODEVICE);
835                         else
836                                 pci_unmap_page(tx_queue->efx->pci_dev,
837                                                unmap_addr, buffer->unmap_len,
838                                                PCI_DMA_TODEVICE);
839                         buffer->unmap_len = 0;
840                 }
841         }
842 }
843
844
845 /* Parse the SKB header and initialise state. */
846 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
847 {
848         /* All ethernet/IP/TCP headers combined size is TCP header size
849          * plus offset of TCP header relative to start of packet.
850          */
851         st->header_len = ((tcp_hdr(skb)->doff << 2u)
852                           + PTR_DIFF(tcp_hdr(skb), skb->data));
853         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
854
855         st->ipv4_id = ntohs(ip_hdr(skb)->id);
856         st->seqnum = ntohl(tcp_hdr(skb)->seq);
857
858         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
859         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
860         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
861
862         st->packet_space = st->full_packet_size;
863         st->out_len = skb->len - st->header_len;
864         st->unmap_len = 0;
865         st->unmap_single = false;
866 }
867
868 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
869                             skb_frag_t *frag)
870 {
871         st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
872                                       frag->page_offset, frag->size,
873                                       PCI_DMA_TODEVICE);
874         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
875                 st->unmap_single = false;
876                 st->unmap_len = frag->size;
877                 st->in_len = frag->size;
878                 st->dma_addr = st->unmap_addr;
879                 return 0;
880         }
881         return -ENOMEM;
882 }
883
884 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
885                                  const struct sk_buff *skb)
886 {
887         int hl = st->header_len;
888         int len = skb_headlen(skb) - hl;
889
890         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
891                                         len, PCI_DMA_TODEVICE);
892         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
893                 st->unmap_single = true;
894                 st->unmap_len = len;
895                 st->in_len = len;
896                 st->dma_addr = st->unmap_addr;
897                 return 0;
898         }
899         return -ENOMEM;
900 }
901
902
903 /**
904  * tso_fill_packet_with_fragment - form descriptors for the current fragment
905  * @tx_queue:           Efx TX queue
906  * @skb:                Socket buffer
907  * @st:                 TSO state
908  *
909  * Form descriptors for the current fragment, until we reach the end
910  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
911  * space in @tx_queue.
912  */
913 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
914                                          const struct sk_buff *skb,
915                                          struct tso_state *st)
916 {
917         struct efx_tx_buffer *buffer;
918         int n, end_of_packet, rc;
919
920         if (st->in_len == 0)
921                 return 0;
922         if (st->packet_space == 0)
923                 return 0;
924
925         EFX_BUG_ON_PARANOID(st->in_len <= 0);
926         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
927
928         n = min(st->in_len, st->packet_space);
929
930         st->packet_space -= n;
931         st->out_len -= n;
932         st->in_len -= n;
933
934         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
935         if (likely(rc == 0)) {
936                 if (st->out_len == 0)
937                         /* Transfer ownership of the skb */
938                         buffer->skb = skb;
939
940                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
941                 buffer->continuation = !end_of_packet;
942
943                 if (st->in_len == 0) {
944                         /* Transfer ownership of the pci mapping */
945                         buffer->unmap_len = st->unmap_len;
946                         buffer->unmap_single = st->unmap_single;
947                         st->unmap_len = 0;
948                 }
949         }
950
951         st->dma_addr += n;
952         return rc;
953 }
954
955
956 /**
957  * tso_start_new_packet - generate a new header and prepare for the new packet
958  * @tx_queue:           Efx TX queue
959  * @skb:                Socket buffer
960  * @st:                 TSO state
961  *
962  * Generate a new header and prepare for the new packet.  Return 0 on
963  * success, or -1 if failed to alloc header.
964  */
965 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
966                                 const struct sk_buff *skb,
967                                 struct tso_state *st)
968 {
969         struct efx_tso_header *tsoh;
970         struct iphdr *tsoh_iph;
971         struct tcphdr *tsoh_th;
972         unsigned ip_length;
973         u8 *header;
974
975         /* Allocate a DMA-mapped header buffer. */
976         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
977                 if (tx_queue->tso_headers_free == NULL) {
978                         if (efx_tsoh_block_alloc(tx_queue))
979                                 return -1;
980                 }
981                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
982                 tsoh = tx_queue->tso_headers_free;
983                 tx_queue->tso_headers_free = tsoh->next;
984                 tsoh->unmap_len = 0;
985         } else {
986                 tx_queue->tso_long_headers++;
987                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
988                 if (unlikely(!tsoh))
989                         return -1;
990         }
991
992         header = TSOH_BUFFER(tsoh);
993         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
994         tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb));
995
996         /* Copy and update the headers. */
997         memcpy(header, skb->data, st->header_len);
998
999         tsoh_th->seq = htonl(st->seqnum);
1000         st->seqnum += skb_shinfo(skb)->gso_size;
1001         if (st->out_len > skb_shinfo(skb)->gso_size) {
1002                 /* This packet will not finish the TSO burst. */
1003                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1004                 tsoh_th->fin = 0;
1005                 tsoh_th->psh = 0;
1006         } else {
1007                 /* This packet will be the last in the TSO burst. */
1008                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1009                 tsoh_th->fin = tcp_hdr(skb)->fin;
1010                 tsoh_th->psh = tcp_hdr(skb)->psh;
1011         }
1012         tsoh_iph->tot_len = htons(ip_length);
1013
1014         /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1015         tsoh_iph->id = htons(st->ipv4_id);
1016         st->ipv4_id++;
1017
1018         st->packet_space = skb_shinfo(skb)->gso_size;
1019         ++tx_queue->tso_packets;
1020
1021         /* Form a descriptor for this header. */
1022         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1023
1024         return 0;
1025 }
1026
1027
1028 /**
1029  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1030  * @tx_queue:           Efx TX queue
1031  * @skb:                Socket buffer
1032  *
1033  * Context: You must hold netif_tx_lock() to call this function.
1034  *
1035  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1036  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1037  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1038  */
1039 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1040                                struct sk_buff *skb)
1041 {
1042         struct efx_nic *efx = tx_queue->efx;
1043         int frag_i, rc, rc2 = NETDEV_TX_OK;
1044         struct tso_state state;
1045
1046         /* Verify TSO is safe - these checks should never fail. */
1047         efx_tso_check_safe(skb);
1048
1049         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1050
1051         tso_start(&state, skb);
1052
1053         /* Assume that skb header area contains exactly the headers, and
1054          * all payload is in the frag list.
1055          */
1056         if (skb_headlen(skb) == state.header_len) {
1057                 /* Grab the first payload fragment. */
1058                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1059                 frag_i = 0;
1060                 rc = tso_get_fragment(&state, efx,
1061                                       skb_shinfo(skb)->frags + frag_i);
1062                 if (rc)
1063                         goto mem_err;
1064         } else {
1065                 rc = tso_get_head_fragment(&state, efx, skb);
1066                 if (rc)
1067                         goto mem_err;
1068                 frag_i = -1;
1069         }
1070
1071         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1072                 goto mem_err;
1073
1074         while (1) {
1075                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1076                 if (unlikely(rc))
1077                         goto stop;
1078
1079                 /* Move onto the next fragment? */
1080                 if (state.in_len == 0) {
1081                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1082                                 /* End of payload reached. */
1083                                 break;
1084                         rc = tso_get_fragment(&state, efx,
1085                                               skb_shinfo(skb)->frags + frag_i);
1086                         if (rc)
1087                                 goto mem_err;
1088                 }
1089
1090                 /* Start at new packet? */
1091                 if (state.packet_space == 0 &&
1092                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1093                         goto mem_err;
1094         }
1095
1096         /* Pass off to hardware */
1097         falcon_push_buffers(tx_queue);
1098
1099         tx_queue->tso_bursts++;
1100         return NETDEV_TX_OK;
1101
1102  mem_err:
1103         EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n");
1104         dev_kfree_skb_any((struct sk_buff *)skb);
1105         goto unwind;
1106
1107  stop:
1108         rc2 = NETDEV_TX_BUSY;
1109
1110         /* Stop the queue if it wasn't stopped before. */
1111         if (tx_queue->stopped == 1)
1112                 efx_stop_queue(efx);
1113
1114  unwind:
1115         /* Free the DMA mapping we were in the process of writing out */
1116         if (state.unmap_len) {
1117                 if (state.unmap_single)
1118                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1119                                          state.unmap_len, PCI_DMA_TODEVICE);
1120                 else
1121                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1122                                        state.unmap_len, PCI_DMA_TODEVICE);
1123         }
1124
1125         efx_enqueue_unwind(tx_queue);
1126         return rc2;
1127 }
1128
1129
1130 /*
1131  * Free up all TSO datastructures associated with tx_queue. This
1132  * routine should be called only once the tx_queue is both empty and
1133  * will no longer be used.
1134  */
1135 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1136 {
1137         unsigned i;
1138
1139         if (tx_queue->buffer) {
1140                 for (i = 0; i <= tx_queue->efx->type->txd_ring_mask; ++i)
1141                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1142         }
1143
1144         while (tx_queue->tso_headers_free != NULL)
1145                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1146                                     tx_queue->efx->pci_dev);
1147 }