drm/radeon/kms: enable use of unmappable VRAM V2
[pandora-kernel.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/ip.h>
14 #include <linux/tcp.h>
15 #include <linux/udp.h>
16 #include <net/ip.h>
17 #include <net/checksum.h>
18 #include "net_driver.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "selftest.h"
22 #include "workarounds.h"
23
24 /* Number of RX descriptors pushed at once. */
25 #define EFX_RX_BATCH  8
26
27 /* Size of buffer allocated for skb header area. */
28 #define EFX_SKB_HEADERS  64u
29
30 /*
31  * rx_alloc_method - RX buffer allocation method
32  *
33  * This driver supports two methods for allocating and using RX buffers:
34  * each RX buffer may be backed by an skb or by an order-n page.
35  *
36  * When LRO is in use then the second method has a lower overhead,
37  * since we don't have to allocate then free skbs on reassembled frames.
38  *
39  * Values:
40  *   - RX_ALLOC_METHOD_AUTO = 0
41  *   - RX_ALLOC_METHOD_SKB  = 1
42  *   - RX_ALLOC_METHOD_PAGE = 2
43  *
44  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
45  * controlled by the parameters below.
46  *
47  *   - Since pushing and popping descriptors are separated by the rx_queue
48  *     size, so the watermarks should be ~rxd_size.
49  *   - The performance win by using page-based allocation for LRO is less
50  *     than the performance hit of using page-based allocation of non-LRO,
51  *     so the watermarks should reflect this.
52  *
53  * Per channel we maintain a single variable, updated by each channel:
54  *
55  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
56  *                      RX_ALLOC_FACTOR_SKB)
57  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
58  * limits the hysteresis), and update the allocation strategy:
59  *
60  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
61  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
62  */
63 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
64
65 #define RX_ALLOC_LEVEL_LRO 0x2000
66 #define RX_ALLOC_LEVEL_MAX 0x3000
67 #define RX_ALLOC_FACTOR_LRO 1
68 #define RX_ALLOC_FACTOR_SKB (-2)
69
70 /* This is the percentage fill level below which new RX descriptors
71  * will be added to the RX descriptor ring.
72  */
73 static unsigned int rx_refill_threshold = 90;
74
75 /* This is the percentage fill level to which an RX queue will be refilled
76  * when the "RX refill threshold" is reached.
77  */
78 static unsigned int rx_refill_limit = 95;
79
80 /*
81  * RX maximum head room required.
82  *
83  * This must be at least 1 to prevent overflow and at least 2 to allow
84  * pipelined receives.
85  */
86 #define EFX_RXD_HEAD_ROOM 2
87
88 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
89 {
90         /* Offset is always within one page, so we don't need to consider
91          * the page order.
92          */
93         return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
94 }
95 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
96 {
97         return PAGE_SIZE << efx->rx_buffer_order;
98 }
99
100
101 /**
102  * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
103  *
104  * @rx_queue:           Efx RX queue
105  * @rx_buf:             RX buffer structure to populate
106  *
107  * This allocates memory for a new receive buffer, maps it for DMA,
108  * and populates a struct efx_rx_buffer with the relevant
109  * information.  Return a negative error code or 0 on success.
110  */
111 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
112                                   struct efx_rx_buffer *rx_buf)
113 {
114         struct efx_nic *efx = rx_queue->efx;
115         struct net_device *net_dev = efx->net_dev;
116         int skb_len = efx->rx_buffer_len;
117
118         rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
119         if (unlikely(!rx_buf->skb))
120                 return -ENOMEM;
121
122         /* Adjust the SKB for padding and checksum */
123         skb_reserve(rx_buf->skb, NET_IP_ALIGN);
124         rx_buf->len = skb_len - NET_IP_ALIGN;
125         rx_buf->data = (char *)rx_buf->skb->data;
126         rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
127
128         rx_buf->dma_addr = pci_map_single(efx->pci_dev,
129                                           rx_buf->data, rx_buf->len,
130                                           PCI_DMA_FROMDEVICE);
131
132         if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
133                 dev_kfree_skb_any(rx_buf->skb);
134                 rx_buf->skb = NULL;
135                 return -EIO;
136         }
137
138         return 0;
139 }
140
141 /**
142  * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
143  *
144  * @rx_queue:           Efx RX queue
145  * @rx_buf:             RX buffer structure to populate
146  *
147  * This allocates memory for a new receive buffer, maps it for DMA,
148  * and populates a struct efx_rx_buffer with the relevant
149  * information.  Return a negative error code or 0 on success.
150  */
151 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
152                                    struct efx_rx_buffer *rx_buf)
153 {
154         struct efx_nic *efx = rx_queue->efx;
155         int bytes, space, offset;
156
157         bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
158
159         /* If there is space left in the previously allocated page,
160          * then use it. Otherwise allocate a new one */
161         rx_buf->page = rx_queue->buf_page;
162         if (rx_buf->page == NULL) {
163                 dma_addr_t dma_addr;
164
165                 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
166                                            efx->rx_buffer_order);
167                 if (unlikely(rx_buf->page == NULL))
168                         return -ENOMEM;
169
170                 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
171                                         0, efx_rx_buf_size(efx),
172                                         PCI_DMA_FROMDEVICE);
173
174                 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
175                         __free_pages(rx_buf->page, efx->rx_buffer_order);
176                         rx_buf->page = NULL;
177                         return -EIO;
178                 }
179
180                 rx_queue->buf_page = rx_buf->page;
181                 rx_queue->buf_dma_addr = dma_addr;
182                 rx_queue->buf_data = (page_address(rx_buf->page) +
183                                       EFX_PAGE_IP_ALIGN);
184         }
185
186         rx_buf->len = bytes;
187         rx_buf->data = rx_queue->buf_data;
188         offset = efx_rx_buf_offset(rx_buf);
189         rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
190
191         /* Try to pack multiple buffers per page */
192         if (efx->rx_buffer_order == 0) {
193                 /* The next buffer starts on the next 512 byte boundary */
194                 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
195                 offset += ((bytes + 0x1ff) & ~0x1ff);
196
197                 space = efx_rx_buf_size(efx) - offset;
198                 if (space >= bytes) {
199                         /* Refs dropped on kernel releasing each skb */
200                         get_page(rx_queue->buf_page);
201                         goto out;
202                 }
203         }
204
205         /* This is the final RX buffer for this page, so mark it for
206          * unmapping */
207         rx_queue->buf_page = NULL;
208         rx_buf->unmap_addr = rx_queue->buf_dma_addr;
209
210  out:
211         return 0;
212 }
213
214 /* This allocates memory for a new receive buffer, maps it for DMA,
215  * and populates a struct efx_rx_buffer with the relevant
216  * information.
217  */
218 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
219                               struct efx_rx_buffer *new_rx_buf)
220 {
221         int rc = 0;
222
223         if (rx_queue->channel->rx_alloc_push_pages) {
224                 new_rx_buf->skb = NULL;
225                 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
226                 rx_queue->alloc_page_count++;
227         } else {
228                 new_rx_buf->page = NULL;
229                 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
230                 rx_queue->alloc_skb_count++;
231         }
232
233         if (unlikely(rc < 0))
234                 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
235                            rx_queue->queue, rc);
236         return rc;
237 }
238
239 static void efx_unmap_rx_buffer(struct efx_nic *efx,
240                                 struct efx_rx_buffer *rx_buf)
241 {
242         if (rx_buf->page) {
243                 EFX_BUG_ON_PARANOID(rx_buf->skb);
244                 if (rx_buf->unmap_addr) {
245                         pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
246                                        efx_rx_buf_size(efx),
247                                        PCI_DMA_FROMDEVICE);
248                         rx_buf->unmap_addr = 0;
249                 }
250         } else if (likely(rx_buf->skb)) {
251                 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
252                                  rx_buf->len, PCI_DMA_FROMDEVICE);
253         }
254 }
255
256 static void efx_free_rx_buffer(struct efx_nic *efx,
257                                struct efx_rx_buffer *rx_buf)
258 {
259         if (rx_buf->page) {
260                 __free_pages(rx_buf->page, efx->rx_buffer_order);
261                 rx_buf->page = NULL;
262         } else if (likely(rx_buf->skb)) {
263                 dev_kfree_skb_any(rx_buf->skb);
264                 rx_buf->skb = NULL;
265         }
266 }
267
268 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
269                                struct efx_rx_buffer *rx_buf)
270 {
271         efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
272         efx_free_rx_buffer(rx_queue->efx, rx_buf);
273 }
274
275 /**
276  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
277  * @rx_queue:           RX descriptor queue
278  * @retry:              Recheck the fill level
279  * This will aim to fill the RX descriptor queue up to
280  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
281  * memory to do so, the caller should retry.
282  */
283 static int __efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue,
284                                           int retry)
285 {
286         struct efx_rx_buffer *rx_buf;
287         unsigned fill_level, index;
288         int i, space, rc = 0;
289
290         /* Calculate current fill level.  Do this outside the lock,
291          * because most of the time we'll end up not wanting to do the
292          * fill anyway.
293          */
294         fill_level = (rx_queue->added_count - rx_queue->removed_count);
295         EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
296
297         /* Don't fill if we don't need to */
298         if (fill_level >= rx_queue->fast_fill_trigger)
299                 return 0;
300
301         /* Record minimum fill level */
302         if (unlikely(fill_level < rx_queue->min_fill)) {
303                 if (fill_level)
304                         rx_queue->min_fill = fill_level;
305         }
306
307         /* Acquire RX add lock.  If this lock is contended, then a fast
308          * fill must already be in progress (e.g. in the refill
309          * tasklet), so we don't need to do anything
310          */
311         if (!spin_trylock_bh(&rx_queue->add_lock))
312                 return -1;
313
314  retry:
315         /* Recalculate current fill level now that we have the lock */
316         fill_level = (rx_queue->added_count - rx_queue->removed_count);
317         EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
318         space = rx_queue->fast_fill_limit - fill_level;
319         if (space < EFX_RX_BATCH)
320                 goto out_unlock;
321
322         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
323                   " level %d to level %d using %s allocation\n",
324                   rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
325                   rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
326
327         do {
328                 for (i = 0; i < EFX_RX_BATCH; ++i) {
329                         index = rx_queue->added_count & EFX_RXQ_MASK;
330                         rx_buf = efx_rx_buffer(rx_queue, index);
331                         rc = efx_init_rx_buffer(rx_queue, rx_buf);
332                         if (unlikely(rc))
333                                 goto out;
334                         ++rx_queue->added_count;
335                 }
336         } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
337
338         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
339                   "to level %d\n", rx_queue->queue,
340                   rx_queue->added_count - rx_queue->removed_count);
341
342  out:
343         /* Send write pointer to card. */
344         efx_nic_notify_rx_desc(rx_queue);
345
346         /* If the fast fill is running inside from the refill tasklet, then
347          * for SMP systems it may be running on a different CPU to
348          * RX event processing, which means that the fill level may now be
349          * out of date. */
350         if (unlikely(retry && (rc == 0)))
351                 goto retry;
352
353  out_unlock:
354         spin_unlock_bh(&rx_queue->add_lock);
355
356         return rc;
357 }
358
359 /**
360  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
361  * @rx_queue:           RX descriptor queue
362  *
363  * This will aim to fill the RX descriptor queue up to
364  * @rx_queue->@fast_fill_limit.  If there is insufficient memory to do so,
365  * it will schedule a work item to immediately continue the fast fill
366  */
367 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
368 {
369         int rc;
370
371         rc = __efx_fast_push_rx_descriptors(rx_queue, 0);
372         if (unlikely(rc)) {
373                 /* Schedule the work item to run immediately. The hope is
374                  * that work is immediately pending to free some memory
375                  * (e.g. an RX event or TX completion)
376                  */
377                 efx_schedule_slow_fill(rx_queue, 0);
378         }
379 }
380
381 void efx_rx_work(struct work_struct *data)
382 {
383         struct efx_rx_queue *rx_queue;
384         int rc;
385
386         rx_queue = container_of(data, struct efx_rx_queue, work.work);
387
388         if (unlikely(!rx_queue->channel->enabled))
389                 return;
390
391         EFX_TRACE(rx_queue->efx, "RX queue %d worker thread executing on CPU "
392                   "%d\n", rx_queue->queue, raw_smp_processor_id());
393
394         ++rx_queue->slow_fill_count;
395         /* Push new RX descriptors, allowing at least 1 jiffy for
396          * the kernel to free some more memory. */
397         rc = __efx_fast_push_rx_descriptors(rx_queue, 1);
398         if (rc)
399                 efx_schedule_slow_fill(rx_queue, 1);
400 }
401
402 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
403                                      struct efx_rx_buffer *rx_buf,
404                                      int len, bool *discard,
405                                      bool *leak_packet)
406 {
407         struct efx_nic *efx = rx_queue->efx;
408         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
409
410         if (likely(len <= max_len))
411                 return;
412
413         /* The packet must be discarded, but this is only a fatal error
414          * if the caller indicated it was
415          */
416         *discard = true;
417
418         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
419                 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
420                            "RX event (0x%x > 0x%x+0x%x). Leaking\n",
421                            rx_queue->queue, len, max_len,
422                            efx->type->rx_buffer_padding);
423                 /* If this buffer was skb-allocated, then the meta
424                  * data at the end of the skb will be trashed. So
425                  * we have no choice but to leak the fragment.
426                  */
427                 *leak_packet = (rx_buf->skb != NULL);
428                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
429         } else {
430                 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
431                            "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
432         }
433
434         rx_queue->channel->n_rx_overlength++;
435 }
436
437 /* Pass a received packet up through the generic LRO stack
438  *
439  * Handles driverlink veto, and passes the fragment up via
440  * the appropriate LRO method
441  */
442 static void efx_rx_packet_lro(struct efx_channel *channel,
443                               struct efx_rx_buffer *rx_buf,
444                               bool checksummed)
445 {
446         struct napi_struct *napi = &channel->napi_str;
447         gro_result_t gro_result;
448
449         /* Pass the skb/page into the LRO engine */
450         if (rx_buf->page) {
451                 struct page *page = rx_buf->page;
452                 struct sk_buff *skb;
453
454                 EFX_BUG_ON_PARANOID(rx_buf->skb);
455                 rx_buf->page = NULL;
456
457                 skb = napi_get_frags(napi);
458                 if (!skb) {
459                         put_page(page);
460                         return;
461                 }
462
463                 skb_shinfo(skb)->frags[0].page = page;
464                 skb_shinfo(skb)->frags[0].page_offset =
465                         efx_rx_buf_offset(rx_buf);
466                 skb_shinfo(skb)->frags[0].size = rx_buf->len;
467                 skb_shinfo(skb)->nr_frags = 1;
468
469                 skb->len = rx_buf->len;
470                 skb->data_len = rx_buf->len;
471                 skb->truesize += rx_buf->len;
472                 skb->ip_summed =
473                         checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
474
475                 skb_record_rx_queue(skb, channel->channel);
476
477                 gro_result = napi_gro_frags(napi);
478         } else {
479                 struct sk_buff *skb = rx_buf->skb;
480
481                 EFX_BUG_ON_PARANOID(!skb);
482                 EFX_BUG_ON_PARANOID(!checksummed);
483                 rx_buf->skb = NULL;
484
485                 gro_result = napi_gro_receive(napi, skb);
486         }
487
488         if (gro_result == GRO_NORMAL) {
489                 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
490         } else if (gro_result != GRO_DROP) {
491                 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
492                 channel->irq_mod_score += 2;
493         }
494 }
495
496 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
497                    unsigned int len, bool checksummed, bool discard)
498 {
499         struct efx_nic *efx = rx_queue->efx;
500         struct efx_rx_buffer *rx_buf;
501         bool leak_packet = false;
502
503         rx_buf = efx_rx_buffer(rx_queue, index);
504         EFX_BUG_ON_PARANOID(!rx_buf->data);
505         EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
506         EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
507
508         /* This allows the refill path to post another buffer.
509          * EFX_RXD_HEAD_ROOM ensures that the slot we are using
510          * isn't overwritten yet.
511          */
512         rx_queue->removed_count++;
513
514         /* Validate the length encoded in the event vs the descriptor pushed */
515         efx_rx_packet__check_len(rx_queue, rx_buf, len,
516                                  &discard, &leak_packet);
517
518         EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
519                   rx_queue->queue, index,
520                   (unsigned long long)rx_buf->dma_addr, len,
521                   (checksummed ? " [SUMMED]" : ""),
522                   (discard ? " [DISCARD]" : ""));
523
524         /* Discard packet, if instructed to do so */
525         if (unlikely(discard)) {
526                 if (unlikely(leak_packet))
527                         rx_queue->channel->n_skbuff_leaks++;
528                 else
529                         /* We haven't called efx_unmap_rx_buffer yet,
530                          * so fini the entire rx_buffer here */
531                         efx_fini_rx_buffer(rx_queue, rx_buf);
532                 return;
533         }
534
535         /* Release card resources - assumes all RX buffers consumed in-order
536          * per RX queue
537          */
538         efx_unmap_rx_buffer(efx, rx_buf);
539
540         /* Prefetch nice and early so data will (hopefully) be in cache by
541          * the time we look at it.
542          */
543         prefetch(rx_buf->data);
544
545         /* Pipeline receives so that we give time for packet headers to be
546          * prefetched into cache.
547          */
548         rx_buf->len = len;
549         if (rx_queue->channel->rx_pkt)
550                 __efx_rx_packet(rx_queue->channel,
551                                 rx_queue->channel->rx_pkt,
552                                 rx_queue->channel->rx_pkt_csummed);
553         rx_queue->channel->rx_pkt = rx_buf;
554         rx_queue->channel->rx_pkt_csummed = checksummed;
555 }
556
557 /* Handle a received packet.  Second half: Touches packet payload. */
558 void __efx_rx_packet(struct efx_channel *channel,
559                      struct efx_rx_buffer *rx_buf, bool checksummed)
560 {
561         struct efx_nic *efx = channel->efx;
562         struct sk_buff *skb;
563
564         /* If we're in loopback test, then pass the packet directly to the
565          * loopback layer, and free the rx_buf here
566          */
567         if (unlikely(efx->loopback_selftest)) {
568                 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
569                 efx_free_rx_buffer(efx, rx_buf);
570                 return;
571         }
572
573         if (rx_buf->skb) {
574                 prefetch(skb_shinfo(rx_buf->skb));
575
576                 skb_put(rx_buf->skb, rx_buf->len);
577
578                 /* Move past the ethernet header. rx_buf->data still points
579                  * at the ethernet header */
580                 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
581                                                        efx->net_dev);
582
583                 skb_record_rx_queue(rx_buf->skb, channel->channel);
584         }
585
586         if (likely(checksummed || rx_buf->page)) {
587                 efx_rx_packet_lro(channel, rx_buf, checksummed);
588                 return;
589         }
590
591         /* We now own the SKB */
592         skb = rx_buf->skb;
593         rx_buf->skb = NULL;
594         EFX_BUG_ON_PARANOID(!skb);
595
596         /* Set the SKB flags */
597         skb->ip_summed = CHECKSUM_NONE;
598
599         /* Pass the packet up */
600         netif_receive_skb(skb);
601
602         /* Update allocation strategy method */
603         channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
604 }
605
606 void efx_rx_strategy(struct efx_channel *channel)
607 {
608         enum efx_rx_alloc_method method = rx_alloc_method;
609
610         /* Only makes sense to use page based allocation if LRO is enabled */
611         if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
612                 method = RX_ALLOC_METHOD_SKB;
613         } else if (method == RX_ALLOC_METHOD_AUTO) {
614                 /* Constrain the rx_alloc_level */
615                 if (channel->rx_alloc_level < 0)
616                         channel->rx_alloc_level = 0;
617                 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
618                         channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
619
620                 /* Decide on the allocation method */
621                 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
622                           RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
623         }
624
625         /* Push the option */
626         channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
627 }
628
629 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
630 {
631         struct efx_nic *efx = rx_queue->efx;
632         unsigned int rxq_size;
633         int rc;
634
635         EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
636
637         /* Allocate RX buffers */
638         rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
639         rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
640         if (!rx_queue->buffer)
641                 return -ENOMEM;
642
643         rc = efx_nic_probe_rx(rx_queue);
644         if (rc) {
645                 kfree(rx_queue->buffer);
646                 rx_queue->buffer = NULL;
647         }
648         return rc;
649 }
650
651 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
652 {
653         unsigned int max_fill, trigger, limit;
654
655         EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
656
657         /* Initialise ptr fields */
658         rx_queue->added_count = 0;
659         rx_queue->notified_count = 0;
660         rx_queue->removed_count = 0;
661         rx_queue->min_fill = -1U;
662         rx_queue->min_overfill = -1U;
663
664         /* Initialise limit fields */
665         max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
666         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
667         limit = max_fill * min(rx_refill_limit, 100U) / 100U;
668
669         rx_queue->max_fill = max_fill;
670         rx_queue->fast_fill_trigger = trigger;
671         rx_queue->fast_fill_limit = limit;
672
673         /* Set up RX descriptor ring */
674         efx_nic_init_rx(rx_queue);
675 }
676
677 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
678 {
679         int i;
680         struct efx_rx_buffer *rx_buf;
681
682         EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
683
684         efx_nic_fini_rx(rx_queue);
685
686         /* Release RX buffers NB start at index 0 not current HW ptr */
687         if (rx_queue->buffer) {
688                 for (i = 0; i <= EFX_RXQ_MASK; i++) {
689                         rx_buf = efx_rx_buffer(rx_queue, i);
690                         efx_fini_rx_buffer(rx_queue, rx_buf);
691                 }
692         }
693
694         /* For a page that is part-way through splitting into RX buffers */
695         if (rx_queue->buf_page != NULL) {
696                 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
697                                efx_rx_buf_size(rx_queue->efx),
698                                PCI_DMA_FROMDEVICE);
699                 __free_pages(rx_queue->buf_page,
700                              rx_queue->efx->rx_buffer_order);
701                 rx_queue->buf_page = NULL;
702         }
703 }
704
705 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
706 {
707         EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
708
709         efx_nic_remove_rx(rx_queue);
710
711         kfree(rx_queue->buffer);
712         rx_queue->buffer = NULL;
713 }
714
715
716 module_param(rx_alloc_method, int, 0644);
717 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
718
719 module_param(rx_refill_threshold, uint, 0444);
720 MODULE_PARM_DESC(rx_refill_threshold,
721                  "RX descriptor ring fast/slow fill threshold (%)");
722