sfc: Fix search for flush completion events
[pandora-kernel.git] / drivers / net / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2008 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/i2c-algo-bit.h>
18 #include <linux/mii.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "mac.h"
23 #include "spi.h"
24 #include "falcon.h"
25 #include "falcon_hwdefs.h"
26 #include "falcon_io.h"
27 #include "mdio_10g.h"
28 #include "phy.h"
29 #include "boards.h"
30 #include "workarounds.h"
31
32 /* Falcon hardware control.
33  * Falcon is the internal codename for the SFC4000 controller that is
34  * present in SFE400X evaluation boards
35  */
36
37 /**
38  * struct falcon_nic_data - Falcon NIC state
39  * @next_buffer_table: First available buffer table id
40  * @pci_dev2: The secondary PCI device if present
41  * @i2c_data: Operations and state for I2C bit-bashing algorithm
42  */
43 struct falcon_nic_data {
44         unsigned next_buffer_table;
45         struct pci_dev *pci_dev2;
46         struct i2c_algo_bit_data i2c_data;
47 };
48
49 /**************************************************************************
50  *
51  * Configurable values
52  *
53  **************************************************************************
54  */
55
56 static int disable_dma_stats;
57
58 /* This is set to 16 for a good reason.  In summary, if larger than
59  * 16, the descriptor cache holds more than a default socket
60  * buffer's worth of packets (for UDP we can only have at most one
61  * socket buffer's worth outstanding).  This combined with the fact
62  * that we only get 1 TX event per descriptor cache means the NIC
63  * goes idle.
64  */
65 #define TX_DC_ENTRIES 16
66 #define TX_DC_ENTRIES_ORDER 0
67 #define TX_DC_BASE 0x130000
68
69 #define RX_DC_ENTRIES 64
70 #define RX_DC_ENTRIES_ORDER 2
71 #define RX_DC_BASE 0x100000
72
73 static const unsigned int
74 /* "Large" EEPROM device: Atmel AT25640 or similar
75  * 8 KB, 16-bit address, 32 B write block */
76 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
77                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
78                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
79 /* Default flash device: Atmel AT25F1024
80  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
81 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
82                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
83                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
84                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
85                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
86
87 /* RX FIFO XOFF watermark
88  *
89  * When the amount of the RX FIFO increases used increases past this
90  * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
91  * This also has an effect on RX/TX arbitration
92  */
93 static int rx_xoff_thresh_bytes = -1;
94 module_param(rx_xoff_thresh_bytes, int, 0644);
95 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
96
97 /* RX FIFO XON watermark
98  *
99  * When the amount of the RX FIFO used decreases below this
100  * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
101  * This also has an effect on RX/TX arbitration
102  */
103 static int rx_xon_thresh_bytes = -1;
104 module_param(rx_xon_thresh_bytes, int, 0644);
105 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
106
107 /* TX descriptor ring size - min 512 max 4k */
108 #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
109 #define FALCON_TXD_RING_SIZE 1024
110 #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
111
112 /* RX descriptor ring size - min 512 max 4k */
113 #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
114 #define FALCON_RXD_RING_SIZE 1024
115 #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
116
117 /* Event queue size - max 32k */
118 #define FALCON_EVQ_ORDER EVQ_SIZE_4K
119 #define FALCON_EVQ_SIZE 4096
120 #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
121
122 /* Max number of internal errors. After this resets will not be performed */
123 #define FALCON_MAX_INT_ERRORS 4
124
125 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
126  */
127 #define FALCON_FLUSH_INTERVAL 10
128 #define FALCON_FLUSH_POLL_COUNT 100
129
130 /**************************************************************************
131  *
132  * Falcon constants
133  *
134  **************************************************************************
135  */
136
137 /* DMA address mask */
138 #define FALCON_DMA_MASK DMA_BIT_MASK(46)
139
140 /* TX DMA length mask (13-bit) */
141 #define FALCON_TX_DMA_MASK (4096 - 1)
142
143 /* Size and alignment of special buffers (4KB) */
144 #define FALCON_BUF_SIZE 4096
145
146 /* Dummy SRAM size code */
147 #define SRM_NB_BSZ_ONCHIP_ONLY (-1)
148
149 /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
150 #define PCI_EXP_DEVCAP_PWR_VAL_LBN      18
151 #define PCI_EXP_DEVCAP_PWR_SCL_LBN      26
152 #define PCI_EXP_DEVCTL_PAYLOAD_LBN      5
153 #define PCI_EXP_LNKSTA_LNK_WID          0x3f0
154 #define PCI_EXP_LNKSTA_LNK_WID_LBN      4
155
156 #define FALCON_IS_DUAL_FUNC(efx)                \
157         (falcon_rev(efx) < FALCON_REV_B0)
158
159 /**************************************************************************
160  *
161  * Falcon hardware access
162  *
163  **************************************************************************/
164
165 /* Read the current event from the event queue */
166 static inline efx_qword_t *falcon_event(struct efx_channel *channel,
167                                         unsigned int index)
168 {
169         return (((efx_qword_t *) (channel->eventq.addr)) + index);
170 }
171
172 /* See if an event is present
173  *
174  * We check both the high and low dword of the event for all ones.  We
175  * wrote all ones when we cleared the event, and no valid event can
176  * have all ones in either its high or low dwords.  This approach is
177  * robust against reordering.
178  *
179  * Note that using a single 64-bit comparison is incorrect; even
180  * though the CPU read will be atomic, the DMA write may not be.
181  */
182 static inline int falcon_event_present(efx_qword_t *event)
183 {
184         return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
185                   EFX_DWORD_IS_ALL_ONES(event->dword[1])));
186 }
187
188 /**************************************************************************
189  *
190  * I2C bus - this is a bit-bashing interface using GPIO pins
191  * Note that it uses the output enables to tristate the outputs
192  * SDA is the data pin and SCL is the clock
193  *
194  **************************************************************************
195  */
196 static void falcon_setsda(void *data, int state)
197 {
198         struct efx_nic *efx = (struct efx_nic *)data;
199         efx_oword_t reg;
200
201         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
202         EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
203         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
204 }
205
206 static void falcon_setscl(void *data, int state)
207 {
208         struct efx_nic *efx = (struct efx_nic *)data;
209         efx_oword_t reg;
210
211         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
212         EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
213         falcon_write(efx, &reg, GPIO_CTL_REG_KER);
214 }
215
216 static int falcon_getsda(void *data)
217 {
218         struct efx_nic *efx = (struct efx_nic *)data;
219         efx_oword_t reg;
220
221         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
222         return EFX_OWORD_FIELD(reg, GPIO3_IN);
223 }
224
225 static int falcon_getscl(void *data)
226 {
227         struct efx_nic *efx = (struct efx_nic *)data;
228         efx_oword_t reg;
229
230         falcon_read(efx, &reg, GPIO_CTL_REG_KER);
231         return EFX_OWORD_FIELD(reg, GPIO0_IN);
232 }
233
234 static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
235         .setsda         = falcon_setsda,
236         .setscl         = falcon_setscl,
237         .getsda         = falcon_getsda,
238         .getscl         = falcon_getscl,
239         .udelay         = 5,
240         /* Wait up to 50 ms for slave to let us pull SCL high */
241         .timeout        = DIV_ROUND_UP(HZ, 20),
242 };
243
244 /**************************************************************************
245  *
246  * Falcon special buffer handling
247  * Special buffers are used for event queues and the TX and RX
248  * descriptor rings.
249  *
250  *************************************************************************/
251
252 /*
253  * Initialise a Falcon special buffer
254  *
255  * This will define a buffer (previously allocated via
256  * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
257  * it to be used for event queues, descriptor rings etc.
258  */
259 static void
260 falcon_init_special_buffer(struct efx_nic *efx,
261                            struct efx_special_buffer *buffer)
262 {
263         efx_qword_t buf_desc;
264         int index;
265         dma_addr_t dma_addr;
266         int i;
267
268         EFX_BUG_ON_PARANOID(!buffer->addr);
269
270         /* Write buffer descriptors to NIC */
271         for (i = 0; i < buffer->entries; i++) {
272                 index = buffer->index + i;
273                 dma_addr = buffer->dma_addr + (i * 4096);
274                 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
275                         index, (unsigned long long)dma_addr);
276                 EFX_POPULATE_QWORD_4(buf_desc,
277                                      IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
278                                      BUF_ADR_REGION, 0,
279                                      BUF_ADR_FBUF, (dma_addr >> 12),
280                                      BUF_OWNER_ID_FBUF, 0);
281                 falcon_write_sram(efx, &buf_desc, index);
282         }
283 }
284
285 /* Unmaps a buffer from Falcon and clears the buffer table entries */
286 static void
287 falcon_fini_special_buffer(struct efx_nic *efx,
288                            struct efx_special_buffer *buffer)
289 {
290         efx_oword_t buf_tbl_upd;
291         unsigned int start = buffer->index;
292         unsigned int end = (buffer->index + buffer->entries - 1);
293
294         if (!buffer->entries)
295                 return;
296
297         EFX_LOG(efx, "unmapping special buffers %d-%d\n",
298                 buffer->index, buffer->index + buffer->entries - 1);
299
300         EFX_POPULATE_OWORD_4(buf_tbl_upd,
301                              BUF_UPD_CMD, 0,
302                              BUF_CLR_CMD, 1,
303                              BUF_CLR_END_ID, end,
304                              BUF_CLR_START_ID, start);
305         falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
306 }
307
308 /*
309  * Allocate a new Falcon special buffer
310  *
311  * This allocates memory for a new buffer, clears it and allocates a
312  * new buffer ID range.  It does not write into Falcon's buffer table.
313  *
314  * This call will allocate 4KB buffers, since Falcon can't use 8KB
315  * buffers for event queues and descriptor rings.
316  */
317 static int falcon_alloc_special_buffer(struct efx_nic *efx,
318                                        struct efx_special_buffer *buffer,
319                                        unsigned int len)
320 {
321         struct falcon_nic_data *nic_data = efx->nic_data;
322
323         len = ALIGN(len, FALCON_BUF_SIZE);
324
325         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
326                                             &buffer->dma_addr);
327         if (!buffer->addr)
328                 return -ENOMEM;
329         buffer->len = len;
330         buffer->entries = len / FALCON_BUF_SIZE;
331         BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
332
333         /* All zeros is a potentially valid event so memset to 0xff */
334         memset(buffer->addr, 0xff, len);
335
336         /* Select new buffer ID */
337         buffer->index = nic_data->next_buffer_table;
338         nic_data->next_buffer_table += buffer->entries;
339
340         EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
341                 "(virt %p phys %lx)\n", buffer->index,
342                 buffer->index + buffer->entries - 1,
343                 (unsigned long long)buffer->dma_addr, len,
344                 buffer->addr, virt_to_phys(buffer->addr));
345
346         return 0;
347 }
348
349 static void falcon_free_special_buffer(struct efx_nic *efx,
350                                        struct efx_special_buffer *buffer)
351 {
352         if (!buffer->addr)
353                 return;
354
355         EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
356                 "(virt %p phys %lx)\n", buffer->index,
357                 buffer->index + buffer->entries - 1,
358                 (unsigned long long)buffer->dma_addr, buffer->len,
359                 buffer->addr, virt_to_phys(buffer->addr));
360
361         pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
362                             buffer->dma_addr);
363         buffer->addr = NULL;
364         buffer->entries = 0;
365 }
366
367 /**************************************************************************
368  *
369  * Falcon generic buffer handling
370  * These buffers are used for interrupt status and MAC stats
371  *
372  **************************************************************************/
373
374 static int falcon_alloc_buffer(struct efx_nic *efx,
375                                struct efx_buffer *buffer, unsigned int len)
376 {
377         buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
378                                             &buffer->dma_addr);
379         if (!buffer->addr)
380                 return -ENOMEM;
381         buffer->len = len;
382         memset(buffer->addr, 0, len);
383         return 0;
384 }
385
386 static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
387 {
388         if (buffer->addr) {
389                 pci_free_consistent(efx->pci_dev, buffer->len,
390                                     buffer->addr, buffer->dma_addr);
391                 buffer->addr = NULL;
392         }
393 }
394
395 /**************************************************************************
396  *
397  * Falcon TX path
398  *
399  **************************************************************************/
400
401 /* Returns a pointer to the specified transmit descriptor in the TX
402  * descriptor queue belonging to the specified channel.
403  */
404 static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
405                                                unsigned int index)
406 {
407         return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
408 }
409
410 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
411 static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
412 {
413         unsigned write_ptr;
414         efx_dword_t reg;
415
416         write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
417         EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
418         falcon_writel_page(tx_queue->efx, &reg,
419                            TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
420 }
421
422
423 /* For each entry inserted into the software descriptor ring, create a
424  * descriptor in the hardware TX descriptor ring (in host memory), and
425  * write a doorbell.
426  */
427 void falcon_push_buffers(struct efx_tx_queue *tx_queue)
428 {
429
430         struct efx_tx_buffer *buffer;
431         efx_qword_t *txd;
432         unsigned write_ptr;
433
434         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
435
436         do {
437                 write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
438                 buffer = &tx_queue->buffer[write_ptr];
439                 txd = falcon_tx_desc(tx_queue, write_ptr);
440                 ++tx_queue->write_count;
441
442                 /* Create TX descriptor ring entry */
443                 EFX_POPULATE_QWORD_5(*txd,
444                                      TX_KER_PORT, 0,
445                                      TX_KER_CONT, buffer->continuation,
446                                      TX_KER_BYTE_CNT, buffer->len,
447                                      TX_KER_BUF_REGION, 0,
448                                      TX_KER_BUF_ADR, buffer->dma_addr);
449         } while (tx_queue->write_count != tx_queue->insert_count);
450
451         wmb(); /* Ensure descriptors are written before they are fetched */
452         falcon_notify_tx_desc(tx_queue);
453 }
454
455 /* Allocate hardware resources for a TX queue */
456 int falcon_probe_tx(struct efx_tx_queue *tx_queue)
457 {
458         struct efx_nic *efx = tx_queue->efx;
459         return falcon_alloc_special_buffer(efx, &tx_queue->txd,
460                                            FALCON_TXD_RING_SIZE *
461                                            sizeof(efx_qword_t));
462 }
463
464 void falcon_init_tx(struct efx_tx_queue *tx_queue)
465 {
466         efx_oword_t tx_desc_ptr;
467         struct efx_nic *efx = tx_queue->efx;
468
469         tx_queue->flushed = false;
470
471         /* Pin TX descriptor ring */
472         falcon_init_special_buffer(efx, &tx_queue->txd);
473
474         /* Push TX descriptor ring to card */
475         EFX_POPULATE_OWORD_10(tx_desc_ptr,
476                               TX_DESCQ_EN, 1,
477                               TX_ISCSI_DDIG_EN, 0,
478                               TX_ISCSI_HDIG_EN, 0,
479                               TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
480                               TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
481                               TX_DESCQ_OWNER_ID, 0,
482                               TX_DESCQ_LABEL, tx_queue->queue,
483                               TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
484                               TX_DESCQ_TYPE, 0,
485                               TX_NON_IP_DROP_DIS_B0, 1);
486
487         if (falcon_rev(efx) >= FALCON_REV_B0) {
488                 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
489                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
490                 EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
491         }
492
493         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
494                            tx_queue->queue);
495
496         if (falcon_rev(efx) < FALCON_REV_B0) {
497                 efx_oword_t reg;
498
499                 /* Only 128 bits in this register */
500                 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
501
502                 falcon_read(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
503                 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
504                         clear_bit_le(tx_queue->queue, (void *)&reg);
505                 else
506                         set_bit_le(tx_queue->queue, (void *)&reg);
507                 falcon_write(efx, &reg, TX_CHKSM_CFG_REG_KER_A1);
508         }
509 }
510
511 static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
512 {
513         struct efx_nic *efx = tx_queue->efx;
514         efx_oword_t tx_flush_descq;
515
516         /* Post a flush command */
517         EFX_POPULATE_OWORD_2(tx_flush_descq,
518                              TX_FLUSH_DESCQ_CMD, 1,
519                              TX_FLUSH_DESCQ, tx_queue->queue);
520         falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
521 }
522
523 void falcon_fini_tx(struct efx_tx_queue *tx_queue)
524 {
525         struct efx_nic *efx = tx_queue->efx;
526         efx_oword_t tx_desc_ptr;
527
528         /* The queue should have been flushed */
529         WARN_ON(!tx_queue->flushed);
530
531         /* Remove TX descriptor ring from card */
532         EFX_ZERO_OWORD(tx_desc_ptr);
533         falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
534                            tx_queue->queue);
535
536         /* Unpin TX descriptor ring */
537         falcon_fini_special_buffer(efx, &tx_queue->txd);
538 }
539
540 /* Free buffers backing TX queue */
541 void falcon_remove_tx(struct efx_tx_queue *tx_queue)
542 {
543         falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
544 }
545
546 /**************************************************************************
547  *
548  * Falcon RX path
549  *
550  **************************************************************************/
551
552 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
553 static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
554                                                unsigned int index)
555 {
556         return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
557 }
558
559 /* This creates an entry in the RX descriptor queue */
560 static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
561                                         unsigned index)
562 {
563         struct efx_rx_buffer *rx_buf;
564         efx_qword_t *rxd;
565
566         rxd = falcon_rx_desc(rx_queue, index);
567         rx_buf = efx_rx_buffer(rx_queue, index);
568         EFX_POPULATE_QWORD_3(*rxd,
569                              RX_KER_BUF_SIZE,
570                              rx_buf->len -
571                              rx_queue->efx->type->rx_buffer_padding,
572                              RX_KER_BUF_REGION, 0,
573                              RX_KER_BUF_ADR, rx_buf->dma_addr);
574 }
575
576 /* This writes to the RX_DESC_WPTR register for the specified receive
577  * descriptor ring.
578  */
579 void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
580 {
581         efx_dword_t reg;
582         unsigned write_ptr;
583
584         while (rx_queue->notified_count != rx_queue->added_count) {
585                 falcon_build_rx_desc(rx_queue,
586                                      rx_queue->notified_count &
587                                      FALCON_RXD_RING_MASK);
588                 ++rx_queue->notified_count;
589         }
590
591         wmb();
592         write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
593         EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
594         falcon_writel_page(rx_queue->efx, &reg,
595                            RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
596 }
597
598 int falcon_probe_rx(struct efx_rx_queue *rx_queue)
599 {
600         struct efx_nic *efx = rx_queue->efx;
601         return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
602                                            FALCON_RXD_RING_SIZE *
603                                            sizeof(efx_qword_t));
604 }
605
606 void falcon_init_rx(struct efx_rx_queue *rx_queue)
607 {
608         efx_oword_t rx_desc_ptr;
609         struct efx_nic *efx = rx_queue->efx;
610         bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
611         bool iscsi_digest_en = is_b0;
612
613         EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
614                 rx_queue->queue, rx_queue->rxd.index,
615                 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
616
617         rx_queue->flushed = false;
618
619         /* Pin RX descriptor ring */
620         falcon_init_special_buffer(efx, &rx_queue->rxd);
621
622         /* Push RX descriptor ring to card */
623         EFX_POPULATE_OWORD_10(rx_desc_ptr,
624                               RX_ISCSI_DDIG_EN, iscsi_digest_en,
625                               RX_ISCSI_HDIG_EN, iscsi_digest_en,
626                               RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
627                               RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
628                               RX_DESCQ_OWNER_ID, 0,
629                               RX_DESCQ_LABEL, rx_queue->queue,
630                               RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
631                               RX_DESCQ_TYPE, 0 /* kernel queue */ ,
632                               /* For >=B0 this is scatter so disable */
633                               RX_DESCQ_JUMBO, !is_b0,
634                               RX_DESCQ_EN, 1);
635         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
636                            rx_queue->queue);
637 }
638
639 static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
640 {
641         struct efx_nic *efx = rx_queue->efx;
642         efx_oword_t rx_flush_descq;
643
644         /* Post a flush command */
645         EFX_POPULATE_OWORD_2(rx_flush_descq,
646                              RX_FLUSH_DESCQ_CMD, 1,
647                              RX_FLUSH_DESCQ, rx_queue->queue);
648         falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
649 }
650
651 void falcon_fini_rx(struct efx_rx_queue *rx_queue)
652 {
653         efx_oword_t rx_desc_ptr;
654         struct efx_nic *efx = rx_queue->efx;
655
656         /* The queue should already have been flushed */
657         WARN_ON(!rx_queue->flushed);
658
659         /* Remove RX descriptor ring from card */
660         EFX_ZERO_OWORD(rx_desc_ptr);
661         falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
662                            rx_queue->queue);
663
664         /* Unpin RX descriptor ring */
665         falcon_fini_special_buffer(efx, &rx_queue->rxd);
666 }
667
668 /* Free buffers backing RX queue */
669 void falcon_remove_rx(struct efx_rx_queue *rx_queue)
670 {
671         falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
672 }
673
674 /**************************************************************************
675  *
676  * Falcon event queue processing
677  * Event queues are processed by per-channel tasklets.
678  *
679  **************************************************************************/
680
681 /* Update a channel's event queue's read pointer (RPTR) register
682  *
683  * This writes the EVQ_RPTR_REG register for the specified channel's
684  * event queue.
685  *
686  * Note that EVQ_RPTR_REG contains the index of the "last read" event,
687  * whereas channel->eventq_read_ptr contains the index of the "next to
688  * read" event.
689  */
690 void falcon_eventq_read_ack(struct efx_channel *channel)
691 {
692         efx_dword_t reg;
693         struct efx_nic *efx = channel->efx;
694
695         EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
696         falcon_writel_table(efx, &reg, efx->type->evq_rptr_tbl_base,
697                             channel->channel);
698 }
699
700 /* Use HW to insert a SW defined event */
701 void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
702 {
703         efx_oword_t drv_ev_reg;
704
705         EFX_POPULATE_OWORD_2(drv_ev_reg,
706                              DRV_EV_QID, channel->channel,
707                              DRV_EV_DATA,
708                              EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
709         falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
710 }
711
712 /* Handle a transmit completion event
713  *
714  * Falcon batches TX completion events; the message we receive is of
715  * the form "complete all TX events up to this index".
716  */
717 static void falcon_handle_tx_event(struct efx_channel *channel,
718                                    efx_qword_t *event)
719 {
720         unsigned int tx_ev_desc_ptr;
721         unsigned int tx_ev_q_label;
722         struct efx_tx_queue *tx_queue;
723         struct efx_nic *efx = channel->efx;
724
725         if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
726                 /* Transmit completion */
727                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
728                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
729                 tx_queue = &efx->tx_queue[tx_ev_q_label];
730                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
731         } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
732                 /* Rewrite the FIFO write pointer */
733                 tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
734                 tx_queue = &efx->tx_queue[tx_ev_q_label];
735
736                 if (efx_dev_registered(efx))
737                         netif_tx_lock(efx->net_dev);
738                 falcon_notify_tx_desc(tx_queue);
739                 if (efx_dev_registered(efx))
740                         netif_tx_unlock(efx->net_dev);
741         } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
742                    EFX_WORKAROUND_10727(efx)) {
743                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
744         } else {
745                 EFX_ERR(efx, "channel %d unexpected TX event "
746                         EFX_QWORD_FMT"\n", channel->channel,
747                         EFX_QWORD_VAL(*event));
748         }
749 }
750
751 /* Detect errors included in the rx_evt_pkt_ok bit. */
752 static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
753                                     const efx_qword_t *event,
754                                     bool *rx_ev_pkt_ok,
755                                     bool *discard)
756 {
757         struct efx_nic *efx = rx_queue->efx;
758         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
759         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
760         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
761         bool rx_ev_other_err, rx_ev_pause_frm;
762         bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
763         unsigned rx_ev_pkt_type;
764
765         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
766         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
767         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
768         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
769         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
770                                                  RX_EV_BUF_OWNER_ID_ERR);
771         rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
772         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
773                                                   RX_EV_IP_HDR_CHKSUM_ERR);
774         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
775                                                    RX_EV_TCP_UDP_CHKSUM_ERR);
776         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
777         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
778         rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
779                           0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
780         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
781
782         /* Every error apart from tobe_disc and pause_frm */
783         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
784                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
785                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
786
787         /* Count errors that are not in MAC stats.  Ignore expected
788          * checksum errors during self-test. */
789         if (rx_ev_frm_trunc)
790                 ++rx_queue->channel->n_rx_frm_trunc;
791         else if (rx_ev_tobe_disc)
792                 ++rx_queue->channel->n_rx_tobe_disc;
793         else if (!efx->loopback_selftest) {
794                 if (rx_ev_ip_hdr_chksum_err)
795                         ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
796                 else if (rx_ev_tcp_udp_chksum_err)
797                         ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
798         }
799         if (rx_ev_ip_frag_err)
800                 ++rx_queue->channel->n_rx_ip_frag_err;
801
802         /* The frame must be discarded if any of these are true. */
803         *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
804                     rx_ev_tobe_disc | rx_ev_pause_frm);
805
806         /* TOBE_DISC is expected on unicast mismatches; don't print out an
807          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
808          * to a FIFO overflow.
809          */
810 #ifdef EFX_ENABLE_DEBUG
811         if (rx_ev_other_err) {
812                 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
813                             EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
814                             rx_queue->queue, EFX_QWORD_VAL(*event),
815                             rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
816                             rx_ev_ip_hdr_chksum_err ?
817                             " [IP_HDR_CHKSUM_ERR]" : "",
818                             rx_ev_tcp_udp_chksum_err ?
819                             " [TCP_UDP_CHKSUM_ERR]" : "",
820                             rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
821                             rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
822                             rx_ev_drib_nib ? " [DRIB_NIB]" : "",
823                             rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
824                             rx_ev_pause_frm ? " [PAUSE]" : "");
825         }
826 #endif
827 }
828
829 /* Handle receive events that are not in-order. */
830 static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
831                                        unsigned index)
832 {
833         struct efx_nic *efx = rx_queue->efx;
834         unsigned expected, dropped;
835
836         expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
837         dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
838                    FALCON_RXD_RING_MASK);
839         EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
840                 dropped, index, expected);
841
842         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
843                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
844 }
845
846 /* Handle a packet received event
847  *
848  * Falcon silicon gives a "discard" flag if it's a unicast packet with the
849  * wrong destination address
850  * Also "is multicast" and "matches multicast filter" flags can be used to
851  * discard non-matching multicast packets.
852  */
853 static void falcon_handle_rx_event(struct efx_channel *channel,
854                                    const efx_qword_t *event)
855 {
856         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
857         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
858         unsigned expected_ptr;
859         bool rx_ev_pkt_ok, discard = false, checksummed;
860         struct efx_rx_queue *rx_queue;
861         struct efx_nic *efx = channel->efx;
862
863         /* Basic packet information */
864         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
865         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
866         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
867         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
868         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
869         WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
870
871         rx_queue = &efx->rx_queue[channel->channel];
872
873         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
874         expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
875         if (unlikely(rx_ev_desc_ptr != expected_ptr))
876                 falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
877
878         if (likely(rx_ev_pkt_ok)) {
879                 /* If packet is marked as OK and packet type is TCP/IPv4 or
880                  * UDP/IPv4, then we can rely on the hardware checksum.
881                  */
882                 checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
883         } else {
884                 falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
885                                         &discard);
886                 checksummed = false;
887         }
888
889         /* Detect multicast packets that didn't match the filter */
890         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
891         if (rx_ev_mcast_pkt) {
892                 unsigned int rx_ev_mcast_hash_match =
893                         EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
894
895                 if (unlikely(!rx_ev_mcast_hash_match))
896                         discard = true;
897         }
898
899         /* Handle received packet */
900         efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
901                       checksummed, discard);
902 }
903
904 /* Global events are basically PHY events */
905 static void falcon_handle_global_event(struct efx_channel *channel,
906                                        efx_qword_t *event)
907 {
908         struct efx_nic *efx = channel->efx;
909         bool handled = false;
910
911         if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
912             EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
913             EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
914             EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
915                 efx->phy_op->clear_interrupt(efx);
916                 queue_work(efx->workqueue, &efx->phy_work);
917                 handled = true;
918         }
919
920         if ((falcon_rev(efx) >= FALCON_REV_B0) &&
921             EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
922                 queue_work(efx->workqueue, &efx->mac_work);
923                 handled = true;
924         }
925
926         if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
927                 EFX_ERR(efx, "channel %d seen global RX_RESET "
928                         "event. Resetting.\n", channel->channel);
929
930                 atomic_inc(&efx->rx_reset);
931                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
932                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
933                 handled = true;
934         }
935
936         if (!handled)
937                 EFX_ERR(efx, "channel %d unknown global event "
938                         EFX_QWORD_FMT "\n", channel->channel,
939                         EFX_QWORD_VAL(*event));
940 }
941
942 static void falcon_handle_driver_event(struct efx_channel *channel,
943                                        efx_qword_t *event)
944 {
945         struct efx_nic *efx = channel->efx;
946         unsigned int ev_sub_code;
947         unsigned int ev_sub_data;
948
949         ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
950         ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
951
952         switch (ev_sub_code) {
953         case TX_DESCQ_FLS_DONE_EV_DECODE:
954                 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
955                           channel->channel, ev_sub_data);
956                 break;
957         case RX_DESCQ_FLS_DONE_EV_DECODE:
958                 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
959                           channel->channel, ev_sub_data);
960                 break;
961         case EVQ_INIT_DONE_EV_DECODE:
962                 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
963                         channel->channel, ev_sub_data);
964                 break;
965         case SRM_UPD_DONE_EV_DECODE:
966                 EFX_TRACE(efx, "channel %d SRAM update done\n",
967                           channel->channel);
968                 break;
969         case WAKE_UP_EV_DECODE:
970                 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
971                           channel->channel, ev_sub_data);
972                 break;
973         case TIMER_EV_DECODE:
974                 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
975                           channel->channel, ev_sub_data);
976                 break;
977         case RX_RECOVERY_EV_DECODE:
978                 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
979                         "Resetting.\n", channel->channel);
980                 atomic_inc(&efx->rx_reset);
981                 efx_schedule_reset(efx,
982                                    EFX_WORKAROUND_6555(efx) ?
983                                    RESET_TYPE_RX_RECOVERY :
984                                    RESET_TYPE_DISABLE);
985                 break;
986         case RX_DSC_ERROR_EV_DECODE:
987                 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
988                         " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
989                 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
990                 break;
991         case TX_DSC_ERROR_EV_DECODE:
992                 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
993                         " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
994                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
995                 break;
996         default:
997                 EFX_TRACE(efx, "channel %d unknown driver event code %d "
998                           "data %04x\n", channel->channel, ev_sub_code,
999                           ev_sub_data);
1000                 break;
1001         }
1002 }
1003
1004 int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
1005 {
1006         unsigned int read_ptr;
1007         efx_qword_t event, *p_event;
1008         int ev_code;
1009         int rx_packets = 0;
1010
1011         read_ptr = channel->eventq_read_ptr;
1012
1013         do {
1014                 p_event = falcon_event(channel, read_ptr);
1015                 event = *p_event;
1016
1017                 if (!falcon_event_present(&event))
1018                         /* End of events */
1019                         break;
1020
1021                 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
1022                           channel->channel, EFX_QWORD_VAL(event));
1023
1024                 /* Clear this event by marking it all ones */
1025                 EFX_SET_QWORD(*p_event);
1026
1027                 ev_code = EFX_QWORD_FIELD(event, EV_CODE);
1028
1029                 switch (ev_code) {
1030                 case RX_IP_EV_DECODE:
1031                         falcon_handle_rx_event(channel, &event);
1032                         ++rx_packets;
1033                         break;
1034                 case TX_IP_EV_DECODE:
1035                         falcon_handle_tx_event(channel, &event);
1036                         break;
1037                 case DRV_GEN_EV_DECODE:
1038                         channel->eventq_magic
1039                                 = EFX_QWORD_FIELD(event, EVQ_MAGIC);
1040                         EFX_LOG(channel->efx, "channel %d received generated "
1041                                 "event "EFX_QWORD_FMT"\n", channel->channel,
1042                                 EFX_QWORD_VAL(event));
1043                         break;
1044                 case GLOBAL_EV_DECODE:
1045                         falcon_handle_global_event(channel, &event);
1046                         break;
1047                 case DRIVER_EV_DECODE:
1048                         falcon_handle_driver_event(channel, &event);
1049                         break;
1050                 default:
1051                         EFX_ERR(channel->efx, "channel %d unknown event type %d"
1052                                 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1053                                 ev_code, EFX_QWORD_VAL(event));
1054                 }
1055
1056                 /* Increment read pointer */
1057                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1058
1059         } while (rx_packets < rx_quota);
1060
1061         channel->eventq_read_ptr = read_ptr;
1062         return rx_packets;
1063 }
1064
1065 void falcon_set_int_moderation(struct efx_channel *channel)
1066 {
1067         efx_dword_t timer_cmd;
1068         struct efx_nic *efx = channel->efx;
1069
1070         /* Set timer register */
1071         if (channel->irq_moderation) {
1072                 /* Round to resolution supported by hardware.  The value we
1073                  * program is based at 0.  So actual interrupt moderation
1074                  * achieved is ((x + 1) * res).
1075                  */
1076                 unsigned int res = 5;
1077                 channel->irq_moderation -= (channel->irq_moderation % res);
1078                 if (channel->irq_moderation < res)
1079                         channel->irq_moderation = res;
1080                 EFX_POPULATE_DWORD_2(timer_cmd,
1081                                      TIMER_MODE, TIMER_MODE_INT_HLDOFF,
1082                                      TIMER_VAL,
1083                                      (channel->irq_moderation / res) - 1);
1084         } else {
1085                 EFX_POPULATE_DWORD_2(timer_cmd,
1086                                      TIMER_MODE, TIMER_MODE_DIS,
1087                                      TIMER_VAL, 0);
1088         }
1089         falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
1090                                   channel->channel);
1091
1092 }
1093
1094 /* Allocate buffer table entries for event queue */
1095 int falcon_probe_eventq(struct efx_channel *channel)
1096 {
1097         struct efx_nic *efx = channel->efx;
1098         unsigned int evq_size;
1099
1100         evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
1101         return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
1102 }
1103
1104 void falcon_init_eventq(struct efx_channel *channel)
1105 {
1106         efx_oword_t evq_ptr;
1107         struct efx_nic *efx = channel->efx;
1108
1109         EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1110                 channel->channel, channel->eventq.index,
1111                 channel->eventq.index + channel->eventq.entries - 1);
1112
1113         /* Pin event queue buffer */
1114         falcon_init_special_buffer(efx, &channel->eventq);
1115
1116         /* Fill event queue with all ones (i.e. empty events) */
1117         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1118
1119         /* Push event queue to card */
1120         EFX_POPULATE_OWORD_3(evq_ptr,
1121                              EVQ_EN, 1,
1122                              EVQ_SIZE, FALCON_EVQ_ORDER,
1123                              EVQ_BUF_BASE_ID, channel->eventq.index);
1124         falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
1125                            channel->channel);
1126
1127         falcon_set_int_moderation(channel);
1128 }
1129
1130 void falcon_fini_eventq(struct efx_channel *channel)
1131 {
1132         efx_oword_t eventq_ptr;
1133         struct efx_nic *efx = channel->efx;
1134
1135         /* Remove event queue from card */
1136         EFX_ZERO_OWORD(eventq_ptr);
1137         falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
1138                            channel->channel);
1139
1140         /* Unpin event queue */
1141         falcon_fini_special_buffer(efx, &channel->eventq);
1142 }
1143
1144 /* Free buffers backing event queue */
1145 void falcon_remove_eventq(struct efx_channel *channel)
1146 {
1147         falcon_free_special_buffer(channel->efx, &channel->eventq);
1148 }
1149
1150
1151 /* Generates a test event on the event queue.  A subsequent call to
1152  * process_eventq() should pick up the event and place the value of
1153  * "magic" into channel->eventq_magic;
1154  */
1155 void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
1156 {
1157         efx_qword_t test_event;
1158
1159         EFX_POPULATE_QWORD_2(test_event,
1160                              EV_CODE, DRV_GEN_EV_DECODE,
1161                              EVQ_MAGIC, magic);
1162         falcon_generate_event(channel, &test_event);
1163 }
1164
1165 void falcon_sim_phy_event(struct efx_nic *efx)
1166 {
1167         efx_qword_t phy_event;
1168
1169         EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
1170         if (EFX_IS10G(efx))
1171                 EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
1172         else
1173                 EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
1174
1175         falcon_generate_event(&efx->channel[0], &phy_event);
1176 }
1177
1178 /**************************************************************************
1179  *
1180  * Flush handling
1181  *
1182  **************************************************************************/
1183
1184
1185 static void falcon_poll_flush_events(struct efx_nic *efx)
1186 {
1187         struct efx_channel *channel = &efx->channel[0];
1188         struct efx_tx_queue *tx_queue;
1189         struct efx_rx_queue *rx_queue;
1190         unsigned int read_ptr = channel->eventq_read_ptr;
1191         unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
1192
1193         do {
1194                 efx_qword_t *event = falcon_event(channel, read_ptr);
1195                 int ev_code, ev_sub_code, ev_queue;
1196                 bool ev_failed;
1197
1198                 if (!falcon_event_present(event))
1199                         break;
1200
1201                 ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
1202                 ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
1203                 if (ev_code == DRIVER_EV_DECODE &&
1204                     ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
1205                         ev_queue = EFX_QWORD_FIELD(*event,
1206                                                    DRIVER_EV_TX_DESCQ_ID);
1207                         if (ev_queue < EFX_TX_QUEUE_COUNT) {
1208                                 tx_queue = efx->tx_queue + ev_queue;
1209                                 tx_queue->flushed = true;
1210                         }
1211                 } else if (ev_code == DRIVER_EV_DECODE &&
1212                            ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
1213                         ev_queue = EFX_QWORD_FIELD(*event,
1214                                                    DRIVER_EV_RX_DESCQ_ID);
1215                         ev_failed = EFX_QWORD_FIELD(*event,
1216                                                     DRIVER_EV_RX_FLUSH_FAIL);
1217                         if (ev_queue < efx->n_rx_queues) {
1218                                 rx_queue = efx->rx_queue + ev_queue;
1219
1220                                 /* retry the rx flush */
1221                                 if (ev_failed)
1222                                         falcon_flush_rx_queue(rx_queue);
1223                                 else
1224                                         rx_queue->flushed = true;
1225                         }
1226                 }
1227
1228                 read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
1229         } while (read_ptr != end_ptr);
1230 }
1231
1232 /* Handle tx and rx flushes at the same time, since they run in
1233  * parallel in the hardware and there's no reason for us to
1234  * serialise them */
1235 int falcon_flush_queues(struct efx_nic *efx)
1236 {
1237         struct efx_rx_queue *rx_queue;
1238         struct efx_tx_queue *tx_queue;
1239         int i;
1240         bool outstanding;
1241
1242         /* Issue flush requests */
1243         efx_for_each_tx_queue(tx_queue, efx) {
1244                 tx_queue->flushed = false;
1245                 falcon_flush_tx_queue(tx_queue);
1246         }
1247         efx_for_each_rx_queue(rx_queue, efx) {
1248                 rx_queue->flushed = false;
1249                 falcon_flush_rx_queue(rx_queue);
1250         }
1251
1252         /* Poll the evq looking for flush completions. Since we're not pushing
1253          * any more rx or tx descriptors at this point, we're in no danger of
1254          * overflowing the evq whilst we wait */
1255         for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
1256                 msleep(FALCON_FLUSH_INTERVAL);
1257                 falcon_poll_flush_events(efx);
1258
1259                 /* Check if every queue has been succesfully flushed */
1260                 outstanding = false;
1261                 efx_for_each_tx_queue(tx_queue, efx)
1262                         outstanding |= !tx_queue->flushed;
1263                 efx_for_each_rx_queue(rx_queue, efx)
1264                         outstanding |= !rx_queue->flushed;
1265                 if (!outstanding)
1266                         return 0;
1267         }
1268
1269         /* Mark the queues as all flushed. We're going to return failure
1270          * leading to a reset, or fake up success anyway. "flushed" now
1271          * indicates that we tried to flush. */
1272         efx_for_each_tx_queue(tx_queue, efx) {
1273                 if (!tx_queue->flushed)
1274                         EFX_ERR(efx, "tx queue %d flush command timed out\n",
1275                                 tx_queue->queue);
1276                 tx_queue->flushed = true;
1277         }
1278         efx_for_each_rx_queue(rx_queue, efx) {
1279                 if (!rx_queue->flushed)
1280                         EFX_ERR(efx, "rx queue %d flush command timed out\n",
1281                                 rx_queue->queue);
1282                 rx_queue->flushed = true;
1283         }
1284
1285         if (EFX_WORKAROUND_7803(efx))
1286                 return 0;
1287
1288         return -ETIMEDOUT;
1289 }
1290
1291 /**************************************************************************
1292  *
1293  * Falcon hardware interrupts
1294  * The hardware interrupt handler does very little work; all the event
1295  * queue processing is carried out by per-channel tasklets.
1296  *
1297  **************************************************************************/
1298
1299 /* Enable/disable/generate Falcon interrupts */
1300 static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
1301                                      int force)
1302 {
1303         efx_oword_t int_en_reg_ker;
1304
1305         EFX_POPULATE_OWORD_2(int_en_reg_ker,
1306                              KER_INT_KER, force,
1307                              DRV_INT_EN_KER, enabled);
1308         falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
1309 }
1310
1311 void falcon_enable_interrupts(struct efx_nic *efx)
1312 {
1313         efx_oword_t int_adr_reg_ker;
1314         struct efx_channel *channel;
1315
1316         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1317         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1318
1319         /* Program address */
1320         EFX_POPULATE_OWORD_2(int_adr_reg_ker,
1321                              NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
1322                              INT_ADR_KER, efx->irq_status.dma_addr);
1323         falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
1324
1325         /* Enable interrupts */
1326         falcon_interrupts(efx, 1, 0);
1327
1328         /* Force processing of all the channels to get the EVQ RPTRs up to
1329            date */
1330         efx_for_each_channel(channel, efx)
1331                 efx_schedule_channel(channel);
1332 }
1333
1334 void falcon_disable_interrupts(struct efx_nic *efx)
1335 {
1336         /* Disable interrupts */
1337         falcon_interrupts(efx, 0, 0);
1338 }
1339
1340 /* Generate a Falcon test interrupt
1341  * Interrupt must already have been enabled, otherwise nasty things
1342  * may happen.
1343  */
1344 void falcon_generate_interrupt(struct efx_nic *efx)
1345 {
1346         falcon_interrupts(efx, 1, 1);
1347 }
1348
1349 /* Acknowledge a legacy interrupt from Falcon
1350  *
1351  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1352  *
1353  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1354  * BIU. Interrupt acknowledge is read sensitive so must write instead
1355  * (then read to ensure the BIU collector is flushed)
1356  *
1357  * NB most hardware supports MSI interrupts
1358  */
1359 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
1360 {
1361         efx_dword_t reg;
1362
1363         EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
1364         falcon_writel(efx, &reg, INT_ACK_REG_KER_A1);
1365         falcon_readl(efx, &reg, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
1366 }
1367
1368 /* Process a fatal interrupt
1369  * Disable bus mastering ASAP and schedule a reset
1370  */
1371 static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
1372 {
1373         struct falcon_nic_data *nic_data = efx->nic_data;
1374         efx_oword_t *int_ker = efx->irq_status.addr;
1375         efx_oword_t fatal_intr;
1376         int error, mem_perr;
1377         static int n_int_errors;
1378
1379         falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
1380         error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
1381
1382         EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1383                 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1384                 EFX_OWORD_VAL(fatal_intr),
1385                 error ? "disabling bus mastering" : "no recognised error");
1386         if (error == 0)
1387                 goto out;
1388
1389         /* If this is a memory parity error dump which blocks are offending */
1390         mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
1391         if (mem_perr) {
1392                 efx_oword_t reg;
1393                 falcon_read(efx, &reg, MEM_STAT_REG_KER);
1394                 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1395                         EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1396         }
1397
1398         /* Disable both devices */
1399         pci_clear_master(efx->pci_dev);
1400         if (FALCON_IS_DUAL_FUNC(efx))
1401                 pci_clear_master(nic_data->pci_dev2);
1402         falcon_disable_interrupts(efx);
1403
1404         if (++n_int_errors < FALCON_MAX_INT_ERRORS) {
1405                 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1406                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1407         } else {
1408                 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1409                         "NIC will be disabled\n");
1410                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1411         }
1412 out:
1413         return IRQ_HANDLED;
1414 }
1415
1416 /* Handle a legacy interrupt from Falcon
1417  * Acknowledges the interrupt and schedule event queue processing.
1418  */
1419 static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
1420 {
1421         struct efx_nic *efx = dev_id;
1422         efx_oword_t *int_ker = efx->irq_status.addr;
1423         struct efx_channel *channel;
1424         efx_dword_t reg;
1425         u32 queues;
1426         int syserr;
1427
1428         /* Read the ISR which also ACKs the interrupts */
1429         falcon_readl(efx, &reg, INT_ISR0_B0);
1430         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1431
1432         /* Check to see if we have a serious error condition */
1433         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1434         if (unlikely(syserr))
1435                 return falcon_fatal_interrupt(efx);
1436
1437         if (queues == 0)
1438                 return IRQ_NONE;
1439
1440         efx->last_irq_cpu = raw_smp_processor_id();
1441         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1442                   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1443
1444         /* Schedule processing of any interrupting queues */
1445         channel = &efx->channel[0];
1446         while (queues) {
1447                 if (queues & 0x01)
1448                         efx_schedule_channel(channel);
1449                 channel++;
1450                 queues >>= 1;
1451         }
1452
1453         return IRQ_HANDLED;
1454 }
1455
1456
1457 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
1458 {
1459         struct efx_nic *efx = dev_id;
1460         efx_oword_t *int_ker = efx->irq_status.addr;
1461         struct efx_channel *channel;
1462         int syserr;
1463         int queues;
1464
1465         /* Check to see if this is our interrupt.  If it isn't, we
1466          * exit without having touched the hardware.
1467          */
1468         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
1469                 EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
1470                           raw_smp_processor_id());
1471                 return IRQ_NONE;
1472         }
1473         efx->last_irq_cpu = raw_smp_processor_id();
1474         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1475                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1476
1477         /* Check to see if we have a serious error condition */
1478         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1479         if (unlikely(syserr))
1480                 return falcon_fatal_interrupt(efx);
1481
1482         /* Determine interrupting queues, clear interrupt status
1483          * register and acknowledge the device interrupt.
1484          */
1485         BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
1486         queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
1487         EFX_ZERO_OWORD(*int_ker);
1488         wmb(); /* Ensure the vector is cleared before interrupt ack */
1489         falcon_irq_ack_a1(efx);
1490
1491         /* Schedule processing of any interrupting queues */
1492         channel = &efx->channel[0];
1493         while (queues) {
1494                 if (queues & 0x01)
1495                         efx_schedule_channel(channel);
1496                 channel++;
1497                 queues >>= 1;
1498         }
1499
1500         return IRQ_HANDLED;
1501 }
1502
1503 /* Handle an MSI interrupt from Falcon
1504  *
1505  * Handle an MSI hardware interrupt.  This routine schedules event
1506  * queue processing.  No interrupt acknowledgement cycle is necessary.
1507  * Also, we never need to check that the interrupt is for us, since
1508  * MSI interrupts cannot be shared.
1509  */
1510 static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
1511 {
1512         struct efx_channel *channel = dev_id;
1513         struct efx_nic *efx = channel->efx;
1514         efx_oword_t *int_ker = efx->irq_status.addr;
1515         int syserr;
1516
1517         efx->last_irq_cpu = raw_smp_processor_id();
1518         EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1519                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1520
1521         /* Check to see if we have a serious error condition */
1522         syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
1523         if (unlikely(syserr))
1524                 return falcon_fatal_interrupt(efx);
1525
1526         /* Schedule processing of the channel */
1527         efx_schedule_channel(channel);
1528
1529         return IRQ_HANDLED;
1530 }
1531
1532
1533 /* Setup RSS indirection table.
1534  * This maps from the hash value of the packet to RXQ
1535  */
1536 static void falcon_setup_rss_indir_table(struct efx_nic *efx)
1537 {
1538         int i = 0;
1539         unsigned long offset;
1540         efx_dword_t dword;
1541
1542         if (falcon_rev(efx) < FALCON_REV_B0)
1543                 return;
1544
1545         for (offset = RX_RSS_INDIR_TBL_B0;
1546              offset < RX_RSS_INDIR_TBL_B0 + 0x800;
1547              offset += 0x10) {
1548                 EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
1549                                      i % efx->n_rx_queues);
1550                 falcon_writel(efx, &dword, offset);
1551                 i++;
1552         }
1553 }
1554
1555 /* Hook interrupt handler(s)
1556  * Try MSI and then legacy interrupts.
1557  */
1558 int falcon_init_interrupt(struct efx_nic *efx)
1559 {
1560         struct efx_channel *channel;
1561         int rc;
1562
1563         if (!EFX_INT_MODE_USE_MSI(efx)) {
1564                 irq_handler_t handler;
1565                 if (falcon_rev(efx) >= FALCON_REV_B0)
1566                         handler = falcon_legacy_interrupt_b0;
1567                 else
1568                         handler = falcon_legacy_interrupt_a1;
1569
1570                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1571                                  efx->name, efx);
1572                 if (rc) {
1573                         EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1574                                 efx->pci_dev->irq);
1575                         goto fail1;
1576                 }
1577                 return 0;
1578         }
1579
1580         /* Hook MSI or MSI-X interrupt */
1581         efx_for_each_channel(channel, efx) {
1582                 rc = request_irq(channel->irq, falcon_msi_interrupt,
1583                                  IRQF_PROBE_SHARED, /* Not shared */
1584                                  channel->name, channel);
1585                 if (rc) {
1586                         EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1587                         goto fail2;
1588                 }
1589         }
1590
1591         return 0;
1592
1593  fail2:
1594         efx_for_each_channel(channel, efx)
1595                 free_irq(channel->irq, channel);
1596  fail1:
1597         return rc;
1598 }
1599
1600 void falcon_fini_interrupt(struct efx_nic *efx)
1601 {
1602         struct efx_channel *channel;
1603         efx_oword_t reg;
1604
1605         /* Disable MSI/MSI-X interrupts */
1606         efx_for_each_channel(channel, efx) {
1607                 if (channel->irq)
1608                         free_irq(channel->irq, channel);
1609         }
1610
1611         /* ACK legacy interrupt */
1612         if (falcon_rev(efx) >= FALCON_REV_B0)
1613                 falcon_read(efx, &reg, INT_ISR0_B0);
1614         else
1615                 falcon_irq_ack_a1(efx);
1616
1617         /* Disable legacy interrupt */
1618         if (efx->legacy_irq)
1619                 free_irq(efx->legacy_irq, efx);
1620 }
1621
1622 /**************************************************************************
1623  *
1624  * EEPROM/flash
1625  *
1626  **************************************************************************
1627  */
1628
1629 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1630
1631 static int falcon_spi_poll(struct efx_nic *efx)
1632 {
1633         efx_oword_t reg;
1634         falcon_read(efx, &reg, EE_SPI_HCMD_REG_KER);
1635         return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
1636 }
1637
1638 /* Wait for SPI command completion */
1639 static int falcon_spi_wait(struct efx_nic *efx)
1640 {
1641         /* Most commands will finish quickly, so we start polling at
1642          * very short intervals.  Sometimes the command may have to
1643          * wait for VPD or expansion ROM access outside of our
1644          * control, so we allow up to 100 ms. */
1645         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
1646         int i;
1647
1648         for (i = 0; i < 10; i++) {
1649                 if (!falcon_spi_poll(efx))
1650                         return 0;
1651                 udelay(10);
1652         }
1653
1654         for (;;) {
1655                 if (!falcon_spi_poll(efx))
1656                         return 0;
1657                 if (time_after_eq(jiffies, timeout)) {
1658                         EFX_ERR(efx, "timed out waiting for SPI\n");
1659                         return -ETIMEDOUT;
1660                 }
1661                 schedule_timeout_uninterruptible(1);
1662         }
1663 }
1664
1665 int falcon_spi_cmd(const struct efx_spi_device *spi,
1666                    unsigned int command, int address,
1667                    const void *in, void *out, size_t len)
1668 {
1669         struct efx_nic *efx = spi->efx;
1670         bool addressed = (address >= 0);
1671         bool reading = (out != NULL);
1672         efx_oword_t reg;
1673         int rc;
1674
1675         /* Input validation */
1676         if (len > FALCON_SPI_MAX_LEN)
1677                 return -EINVAL;
1678         BUG_ON(!mutex_is_locked(&efx->spi_lock));
1679
1680         /* Check that previous command is not still running */
1681         rc = falcon_spi_poll(efx);
1682         if (rc)
1683                 return rc;
1684
1685         /* Program address register, if we have an address */
1686         if (addressed) {
1687                 EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
1688                 falcon_write(efx, &reg, EE_SPI_HADR_REG_KER);
1689         }
1690
1691         /* Program data register, if we have data */
1692         if (in != NULL) {
1693                 memcpy(&reg, in, len);
1694                 falcon_write(efx, &reg, EE_SPI_HDATA_REG_KER);
1695         }
1696
1697         /* Issue read/write command */
1698         EFX_POPULATE_OWORD_7(reg,
1699                              EE_SPI_HCMD_CMD_EN, 1,
1700                              EE_SPI_HCMD_SF_SEL, spi->device_id,
1701                              EE_SPI_HCMD_DABCNT, len,
1702                              EE_SPI_HCMD_READ, reading,
1703                              EE_SPI_HCMD_DUBCNT, 0,
1704                              EE_SPI_HCMD_ADBCNT,
1705                              (addressed ? spi->addr_len : 0),
1706                              EE_SPI_HCMD_ENC, command);
1707         falcon_write(efx, &reg, EE_SPI_HCMD_REG_KER);
1708
1709         /* Wait for read/write to complete */
1710         rc = falcon_spi_wait(efx);
1711         if (rc)
1712                 return rc;
1713
1714         /* Read data */
1715         if (out != NULL) {
1716                 falcon_read(efx, &reg, EE_SPI_HDATA_REG_KER);
1717                 memcpy(out, &reg, len);
1718         }
1719
1720         return 0;
1721 }
1722
1723 static size_t
1724 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
1725 {
1726         return min(FALCON_SPI_MAX_LEN,
1727                    (spi->block_size - (start & (spi->block_size - 1))));
1728 }
1729
1730 static inline u8
1731 efx_spi_munge_command(const struct efx_spi_device *spi,
1732                       const u8 command, const unsigned int address)
1733 {
1734         return command | (((address >> 8) & spi->munge_address) << 3);
1735 }
1736
1737 /* Wait up to 10 ms for buffered write completion */
1738 int falcon_spi_wait_write(const struct efx_spi_device *spi)
1739 {
1740         struct efx_nic *efx = spi->efx;
1741         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
1742         u8 status;
1743         int rc;
1744
1745         for (;;) {
1746                 rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
1747                                     &status, sizeof(status));
1748                 if (rc)
1749                         return rc;
1750                 if (!(status & SPI_STATUS_NRDY))
1751                         return 0;
1752                 if (time_after_eq(jiffies, timeout)) {
1753                         EFX_ERR(efx, "SPI write timeout on device %d"
1754                                 " last status=0x%02x\n",
1755                                 spi->device_id, status);
1756                         return -ETIMEDOUT;
1757                 }
1758                 schedule_timeout_uninterruptible(1);
1759         }
1760 }
1761
1762 int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
1763                     size_t len, size_t *retlen, u8 *buffer)
1764 {
1765         size_t block_len, pos = 0;
1766         unsigned int command;
1767         int rc = 0;
1768
1769         while (pos < len) {
1770                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
1771
1772                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1773                 rc = falcon_spi_cmd(spi, command, start + pos, NULL,
1774                                     buffer + pos, block_len);
1775                 if (rc)
1776                         break;
1777                 pos += block_len;
1778
1779                 /* Avoid locking up the system */
1780                 cond_resched();
1781                 if (signal_pending(current)) {
1782                         rc = -EINTR;
1783                         break;
1784                 }
1785         }
1786
1787         if (retlen)
1788                 *retlen = pos;
1789         return rc;
1790 }
1791
1792 int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
1793                      size_t len, size_t *retlen, const u8 *buffer)
1794 {
1795         u8 verify_buffer[FALCON_SPI_MAX_LEN];
1796         size_t block_len, pos = 0;
1797         unsigned int command;
1798         int rc = 0;
1799
1800         while (pos < len) {
1801                 rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
1802                 if (rc)
1803                         break;
1804
1805                 block_len = min(len - pos,
1806                                 falcon_spi_write_limit(spi, start + pos));
1807                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
1808                 rc = falcon_spi_cmd(spi, command, start + pos,
1809                                     buffer + pos, NULL, block_len);
1810                 if (rc)
1811                         break;
1812
1813                 rc = falcon_spi_wait_write(spi);
1814                 if (rc)
1815                         break;
1816
1817                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
1818                 rc = falcon_spi_cmd(spi, command, start + pos,
1819                                     NULL, verify_buffer, block_len);
1820                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
1821                         rc = -EIO;
1822                         break;
1823                 }
1824
1825                 pos += block_len;
1826
1827                 /* Avoid locking up the system */
1828                 cond_resched();
1829                 if (signal_pending(current)) {
1830                         rc = -EINTR;
1831                         break;
1832                 }
1833         }
1834
1835         if (retlen)
1836                 *retlen = pos;
1837         return rc;
1838 }
1839
1840 /**************************************************************************
1841  *
1842  * MAC wrapper
1843  *
1844  **************************************************************************
1845  */
1846
1847 static int falcon_reset_macs(struct efx_nic *efx)
1848 {
1849         efx_oword_t reg;
1850         int count;
1851
1852         if (falcon_rev(efx) < FALCON_REV_B0) {
1853                 /* It's not safe to use GLB_CTL_REG to reset the
1854                  * macs, so instead use the internal MAC resets
1855                  */
1856                 if (!EFX_IS10G(efx)) {
1857                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
1858                         falcon_write(efx, &reg, GM_CFG1_REG);
1859                         udelay(1000);
1860
1861                         EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
1862                         falcon_write(efx, &reg, GM_CFG1_REG);
1863                         udelay(1000);
1864                         return 0;
1865                 } else {
1866                         EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
1867                         falcon_write(efx, &reg, XM_GLB_CFG_REG);
1868
1869                         for (count = 0; count < 10000; count++) {
1870                                 falcon_read(efx, &reg, XM_GLB_CFG_REG);
1871                                 if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
1872                                         return 0;
1873                                 udelay(10);
1874                         }
1875
1876                         EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
1877                         return -ETIMEDOUT;
1878                 }
1879         }
1880
1881         /* MAC stats will fail whilst the TX fifo is draining. Serialise
1882          * the drain sequence with the statistics fetch */
1883         efx_stats_disable(efx);
1884
1885         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1886         EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
1887         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1888
1889         falcon_read(efx, &reg, GLB_CTL_REG_KER);
1890         EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
1891         EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
1892         EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
1893         falcon_write(efx, &reg, GLB_CTL_REG_KER);
1894
1895         count = 0;
1896         while (1) {
1897                 falcon_read(efx, &reg, GLB_CTL_REG_KER);
1898                 if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
1899                     !EFX_OWORD_FIELD(reg, RST_XGRX) &&
1900                     !EFX_OWORD_FIELD(reg, RST_EM)) {
1901                         EFX_LOG(efx, "Completed MAC reset after %d loops\n",
1902                                 count);
1903                         break;
1904                 }
1905                 if (count > 20) {
1906                         EFX_ERR(efx, "MAC reset failed\n");
1907                         break;
1908                 }
1909                 count++;
1910                 udelay(10);
1911         }
1912
1913         efx_stats_enable(efx);
1914
1915         /* If we've reset the EM block and the link is up, then
1916          * we'll have to kick the XAUI link so the PHY can recover */
1917         if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
1918                 falcon_reset_xaui(efx);
1919
1920         return 0;
1921 }
1922
1923 void falcon_drain_tx_fifo(struct efx_nic *efx)
1924 {
1925         efx_oword_t reg;
1926
1927         if ((falcon_rev(efx) < FALCON_REV_B0) ||
1928             (efx->loopback_mode != LOOPBACK_NONE))
1929                 return;
1930
1931         falcon_read(efx, &reg, MAC0_CTRL_REG_KER);
1932         /* There is no point in draining more than once */
1933         if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
1934                 return;
1935
1936         falcon_reset_macs(efx);
1937 }
1938
1939 void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1940 {
1941         efx_oword_t reg;
1942
1943         if (falcon_rev(efx) < FALCON_REV_B0)
1944                 return;
1945
1946         /* Isolate the MAC -> RX */
1947         falcon_read(efx, &reg, RX_CFG_REG_KER);
1948         EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
1949         falcon_write(efx, &reg, RX_CFG_REG_KER);
1950
1951         if (!efx->link_up)
1952                 falcon_drain_tx_fifo(efx);
1953 }
1954
1955 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1956 {
1957         efx_oword_t reg;
1958         int link_speed;
1959         bool tx_fc;
1960
1961         switch (efx->link_speed) {
1962         case 10000: link_speed = 3; break;
1963         case 1000:  link_speed = 2; break;
1964         case 100:   link_speed = 1; break;
1965         default:    link_speed = 0; break;
1966         }
1967         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1968          * as advertised.  Disable to ensure packets are not
1969          * indefinitely held and TX queue can be flushed at any point
1970          * while the link is down. */
1971         EFX_POPULATE_OWORD_5(reg,
1972                              MAC_XOFF_VAL, 0xffff /* max pause time */,
1973                              MAC_BCAD_ACPT, 1,
1974                              MAC_UC_PROM, efx->promiscuous,
1975                              MAC_LINK_STATUS, 1, /* always set */
1976                              MAC_SPEED, link_speed);
1977         /* On B0, MAC backpressure can be disabled and packets get
1978          * discarded. */
1979         if (falcon_rev(efx) >= FALCON_REV_B0) {
1980                 EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
1981                                     !efx->link_up);
1982         }
1983
1984         falcon_write(efx, &reg, MAC0_CTRL_REG_KER);
1985
1986         /* Restore the multicast hash registers. */
1987         falcon_set_multicast_hash(efx);
1988
1989         /* Transmission of pause frames when RX crosses the threshold is
1990          * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1991          * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1992         tx_fc = !!(efx->link_fc & EFX_FC_TX);
1993         falcon_read(efx, &reg, RX_CFG_REG_KER);
1994         EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
1995
1996         /* Unisolate the MAC -> RX */
1997         if (falcon_rev(efx) >= FALCON_REV_B0)
1998                 EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
1999         falcon_write(efx, &reg, RX_CFG_REG_KER);
2000 }
2001
2002 int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
2003 {
2004         efx_oword_t reg;
2005         u32 *dma_done;
2006         int i;
2007
2008         if (disable_dma_stats)
2009                 return 0;
2010
2011         /* Statistics fetch will fail if the MAC is in TX drain */
2012         if (falcon_rev(efx) >= FALCON_REV_B0) {
2013                 efx_oword_t temp;
2014                 falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
2015                 if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
2016                         return 0;
2017         }
2018
2019         dma_done = (efx->stats_buffer.addr + done_offset);
2020         *dma_done = FALCON_STATS_NOT_DONE;
2021         wmb(); /* ensure done flag is clear */
2022
2023         /* Initiate DMA transfer of stats */
2024         EFX_POPULATE_OWORD_2(reg,
2025                              MAC_STAT_DMA_CMD, 1,
2026                              MAC_STAT_DMA_ADR,
2027                              efx->stats_buffer.dma_addr);
2028         falcon_write(efx, &reg, MAC0_STAT_DMA_REG_KER);
2029
2030         /* Wait for transfer to complete */
2031         for (i = 0; i < 400; i++) {
2032                 if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
2033                         rmb(); /* Ensure the stats are valid. */
2034                         return 0;
2035                 }
2036                 udelay(10);
2037         }
2038
2039         EFX_ERR(efx, "timed out waiting for statistics\n");
2040         return -ETIMEDOUT;
2041 }
2042
2043 /**************************************************************************
2044  *
2045  * PHY access via GMII
2046  *
2047  **************************************************************************
2048  */
2049
2050 /* Use the top bit of the MII PHY id to indicate the PHY type
2051  * (1G/10G), with the remaining bits as the actual PHY id.
2052  *
2053  * This allows us to avoid leaking information from the mii_if_info
2054  * structure into other data structures.
2055  */
2056 #define FALCON_PHY_ID_ID_WIDTH  EFX_WIDTH(MD_PRT_DEV_ADR)
2057 #define FALCON_PHY_ID_ID_MASK   ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
2058 #define FALCON_PHY_ID_WIDTH     (FALCON_PHY_ID_ID_WIDTH + 1)
2059 #define FALCON_PHY_ID_MASK      ((1 << FALCON_PHY_ID_WIDTH) - 1)
2060 #define FALCON_PHY_ID_10G       (1 << (FALCON_PHY_ID_WIDTH - 1))
2061
2062
2063 /* Packing the clause 45 port and device fields into a single value */
2064 #define MD_PRT_ADR_COMP_LBN   (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
2065 #define MD_PRT_ADR_COMP_WIDTH  MD_PRT_ADR_WIDTH
2066 #define MD_DEV_ADR_COMP_LBN    0
2067 #define MD_DEV_ADR_COMP_WIDTH  MD_DEV_ADR_WIDTH
2068
2069
2070 /* Wait for GMII access to complete */
2071 static int falcon_gmii_wait(struct efx_nic *efx)
2072 {
2073         efx_dword_t md_stat;
2074         int count;
2075
2076         /* wait upto 50ms - taken max from datasheet */
2077         for (count = 0; count < 5000; count++) {
2078                 falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
2079                 if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
2080                         if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
2081                             EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
2082                                 EFX_ERR(efx, "error from GMII access "
2083                                         EFX_DWORD_FMT"\n",
2084                                         EFX_DWORD_VAL(md_stat));
2085                                 return -EIO;
2086                         }
2087                         return 0;
2088                 }
2089                 udelay(10);
2090         }
2091         EFX_ERR(efx, "timed out waiting for GMII\n");
2092         return -ETIMEDOUT;
2093 }
2094
2095 /* Writes a GMII register of a PHY connected to Falcon using MDIO. */
2096 static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
2097                               int addr, int value)
2098 {
2099         struct efx_nic *efx = netdev_priv(net_dev);
2100         unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
2101         efx_oword_t reg;
2102
2103         /* The 'generic' prt/dev packing in mdio_10g.h is conveniently
2104          * chosen so that the only current user, Falcon, can take the
2105          * packed value and use them directly.
2106          * Fail to build if this assumption is broken.
2107          */
2108         BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
2109         BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
2110         BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
2111         BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
2112
2113         if (phy_id2 == PHY_ADDR_INVALID)
2114                 return;
2115
2116         /* See falcon_mdio_read for an explanation. */
2117         if (!(phy_id & FALCON_PHY_ID_10G)) {
2118                 int mmd = ffs(efx->phy_op->mmds) - 1;
2119                 EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
2120                 phy_id2 = mdio_clause45_pack(phy_id2, mmd)
2121                         & FALCON_PHY_ID_ID_MASK;
2122         }
2123
2124         EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
2125                     addr, value);
2126
2127         spin_lock_bh(&efx->phy_lock);
2128
2129         /* Check MII not currently being accessed */
2130         if (falcon_gmii_wait(efx) != 0)
2131                 goto out;
2132
2133         /* Write the address/ID register */
2134         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2135         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2136
2137         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
2138         falcon_write(efx, &reg, MD_ID_REG_KER);
2139
2140         /* Write data */
2141         EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
2142         falcon_write(efx, &reg, MD_TXD_REG_KER);
2143
2144         EFX_POPULATE_OWORD_2(reg,
2145                              MD_WRC, 1,
2146                              MD_GC, 0);
2147         falcon_write(efx, &reg, MD_CS_REG_KER);
2148
2149         /* Wait for data to be written */
2150         if (falcon_gmii_wait(efx) != 0) {
2151                 /* Abort the write operation */
2152                 EFX_POPULATE_OWORD_2(reg,
2153                                      MD_WRC, 0,
2154                                      MD_GC, 1);
2155                 falcon_write(efx, &reg, MD_CS_REG_KER);
2156                 udelay(10);
2157         }
2158
2159  out:
2160         spin_unlock_bh(&efx->phy_lock);
2161 }
2162
2163 /* Reads a GMII register from a PHY connected to Falcon.  If no value
2164  * could be read, -1 will be returned. */
2165 static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
2166 {
2167         struct efx_nic *efx = netdev_priv(net_dev);
2168         unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
2169         efx_oword_t reg;
2170         int value = -1;
2171
2172         if (phy_addr == PHY_ADDR_INVALID)
2173                 return -1;
2174
2175         /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
2176          * but the generic Linux code does not make any distinction or have
2177          * any state for this.
2178          * We spot the case where someone tried to talk 22 to a 45 PHY and
2179          * redirect the request to the lowest numbered MMD as a clause45
2180          * request. This is enough to allow simple queries like id and link
2181          * state to succeed. TODO: We may need to do more in future.
2182          */
2183         if (!(phy_id & FALCON_PHY_ID_10G)) {
2184                 int mmd = ffs(efx->phy_op->mmds) - 1;
2185                 EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
2186                 phy_addr = mdio_clause45_pack(phy_addr, mmd)
2187                         & FALCON_PHY_ID_ID_MASK;
2188         }
2189
2190         spin_lock_bh(&efx->phy_lock);
2191
2192         /* Check MII not currently being accessed */
2193         if (falcon_gmii_wait(efx) != 0)
2194                 goto out;
2195
2196         EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
2197         falcon_write(efx, &reg, MD_PHY_ADR_REG_KER);
2198
2199         EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
2200         falcon_write(efx, &reg, MD_ID_REG_KER);
2201
2202         /* Request data to be read */
2203         EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
2204         falcon_write(efx, &reg, MD_CS_REG_KER);
2205
2206         /* Wait for data to become available */
2207         value = falcon_gmii_wait(efx);
2208         if (value == 0) {
2209                 falcon_read(efx, &reg, MD_RXD_REG_KER);
2210                 value = EFX_OWORD_FIELD(reg, MD_RXD);
2211                 EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
2212                             phy_id, addr, value);
2213         } else {
2214                 /* Abort the read operation */
2215                 EFX_POPULATE_OWORD_2(reg,
2216                                      MD_RIC, 0,
2217                                      MD_GC, 1);
2218                 falcon_write(efx, &reg, MD_CS_REG_KER);
2219
2220                 EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
2221                         "error %d\n", phy_id, addr, value);
2222         }
2223
2224  out:
2225         spin_unlock_bh(&efx->phy_lock);
2226
2227         return value;
2228 }
2229
2230 static void falcon_init_mdio(struct mii_if_info *gmii)
2231 {
2232         gmii->mdio_read = falcon_mdio_read;
2233         gmii->mdio_write = falcon_mdio_write;
2234         gmii->phy_id_mask = FALCON_PHY_ID_MASK;
2235         gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
2236 }
2237
2238 static int falcon_probe_phy(struct efx_nic *efx)
2239 {
2240         switch (efx->phy_type) {
2241         case PHY_TYPE_SFX7101:
2242                 efx->phy_op = &falcon_sfx7101_phy_ops;
2243                 break;
2244         case PHY_TYPE_SFT9001A:
2245         case PHY_TYPE_SFT9001B:
2246                 efx->phy_op = &falcon_sft9001_phy_ops;
2247                 break;
2248         case PHY_TYPE_QT2022C2:
2249         case PHY_TYPE_QT2025C:
2250                 efx->phy_op = &falcon_xfp_phy_ops;
2251                 break;
2252         default:
2253                 EFX_ERR(efx, "Unknown PHY type %d\n",
2254                         efx->phy_type);
2255                 return -1;
2256         }
2257
2258         if (efx->phy_op->macs & EFX_XMAC)
2259                 efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
2260                                         (1 << LOOPBACK_XGXS) |
2261                                         (1 << LOOPBACK_XAUI));
2262         if (efx->phy_op->macs & EFX_GMAC)
2263                 efx->loopback_modes |= (1 << LOOPBACK_GMAC);
2264         efx->loopback_modes |= efx->phy_op->loopbacks;
2265
2266         return 0;
2267 }
2268
2269 int falcon_switch_mac(struct efx_nic *efx)
2270 {
2271         struct efx_mac_operations *old_mac_op = efx->mac_op;
2272         efx_oword_t nic_stat;
2273         unsigned strap_val;
2274         int rc = 0;
2275
2276         /* Don't try to fetch MAC stats while we're switching MACs */
2277         efx_stats_disable(efx);
2278
2279         /* Internal loopbacks override the phy speed setting */
2280         if (efx->loopback_mode == LOOPBACK_GMAC) {
2281                 efx->link_speed = 1000;
2282                 efx->link_fd = true;
2283         } else if (LOOPBACK_INTERNAL(efx)) {
2284                 efx->link_speed = 10000;
2285                 efx->link_fd = true;
2286         }
2287
2288         WARN_ON(!mutex_is_locked(&efx->mac_lock));
2289         efx->mac_op = (EFX_IS10G(efx) ?
2290                        &falcon_xmac_operations : &falcon_gmac_operations);
2291
2292         /* Always push the NIC_STAT_REG setting even if the mac hasn't
2293          * changed, because this function is run post online reset */
2294         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2295         strap_val = EFX_IS10G(efx) ? 5 : 3;
2296         if (falcon_rev(efx) >= FALCON_REV_B0) {
2297                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
2298                 EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
2299                 falcon_write(efx, &nic_stat, NIC_STAT_REG);
2300         } else {
2301                 /* Falcon A1 does not support 1G/10G speed switching
2302                  * and must not be used with a PHY that does. */
2303                 BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
2304         }
2305
2306         if (old_mac_op == efx->mac_op)
2307                 goto out;
2308
2309         EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
2310         /* Not all macs support a mac-level link state */
2311         efx->mac_up = true;
2312
2313         rc = falcon_reset_macs(efx);
2314 out:
2315         efx_stats_enable(efx);
2316         return rc;
2317 }
2318
2319 /* This call is responsible for hooking in the MAC and PHY operations */
2320 int falcon_probe_port(struct efx_nic *efx)
2321 {
2322         int rc;
2323
2324         /* Hook in PHY operations table */
2325         rc = falcon_probe_phy(efx);
2326         if (rc)
2327                 return rc;
2328
2329         /* Set up GMII structure for PHY */
2330         efx->mii.supports_gmii = true;
2331         falcon_init_mdio(&efx->mii);
2332
2333         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2334         if (falcon_rev(efx) >= FALCON_REV_B0)
2335                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
2336         else
2337                 efx->wanted_fc = EFX_FC_RX;
2338
2339         /* Allocate buffer for stats */
2340         rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
2341                                  FALCON_MAC_STATS_SIZE);
2342         if (rc)
2343                 return rc;
2344         EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
2345                 (unsigned long long)efx->stats_buffer.dma_addr,
2346                 efx->stats_buffer.addr,
2347                 virt_to_phys(efx->stats_buffer.addr));
2348
2349         return 0;
2350 }
2351
2352 void falcon_remove_port(struct efx_nic *efx)
2353 {
2354         falcon_free_buffer(efx, &efx->stats_buffer);
2355 }
2356
2357 /**************************************************************************
2358  *
2359  * Multicast filtering
2360  *
2361  **************************************************************************
2362  */
2363
2364 void falcon_set_multicast_hash(struct efx_nic *efx)
2365 {
2366         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2367
2368         /* Broadcast packets go through the multicast hash filter.
2369          * ether_crc_le() of the broadcast address is 0xbe2612ff
2370          * so we always add bit 0xff to the mask.
2371          */
2372         set_bit_le(0xff, mc_hash->byte);
2373
2374         falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
2375         falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
2376 }
2377
2378
2379 /**************************************************************************
2380  *
2381  * Falcon test code
2382  *
2383  **************************************************************************/
2384
2385 int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
2386 {
2387         struct falcon_nvconfig *nvconfig;
2388         struct efx_spi_device *spi;
2389         void *region;
2390         int rc, magic_num, struct_ver;
2391         __le16 *word, *limit;
2392         u32 csum;
2393
2394         spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
2395         if (!spi)
2396                 return -EINVAL;
2397
2398         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
2399         if (!region)
2400                 return -ENOMEM;
2401         nvconfig = region + NVCONFIG_OFFSET;
2402
2403         mutex_lock(&efx->spi_lock);
2404         rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
2405         mutex_unlock(&efx->spi_lock);
2406         if (rc) {
2407                 EFX_ERR(efx, "Failed to read %s\n",
2408                         efx->spi_flash ? "flash" : "EEPROM");
2409                 rc = -EIO;
2410                 goto out;
2411         }
2412
2413         magic_num = le16_to_cpu(nvconfig->board_magic_num);
2414         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
2415
2416         rc = -EINVAL;
2417         if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
2418                 EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
2419                 goto out;
2420         }
2421         if (struct_ver < 2) {
2422                 EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
2423                 goto out;
2424         } else if (struct_ver < 4) {
2425                 word = &nvconfig->board_magic_num;
2426                 limit = (__le16 *) (nvconfig + 1);
2427         } else {
2428                 word = region;
2429                 limit = region + FALCON_NVCONFIG_END;
2430         }
2431         for (csum = 0; word < limit; ++word)
2432                 csum += le16_to_cpu(*word);
2433
2434         if (~csum & 0xffff) {
2435                 EFX_ERR(efx, "NVRAM has incorrect checksum\n");
2436                 goto out;
2437         }
2438
2439         rc = 0;
2440         if (nvconfig_out)
2441                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
2442
2443  out:
2444         kfree(region);
2445         return rc;
2446 }
2447
2448 /* Registers tested in the falcon register test */
2449 static struct {
2450         unsigned address;
2451         efx_oword_t mask;
2452 } efx_test_registers[] = {
2453         { ADR_REGION_REG_KER,
2454           EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2455         { RX_CFG_REG_KER,
2456           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2457         { TX_CFG_REG_KER,
2458           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2459         { TX_CFG2_REG_KER,
2460           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2461         { MAC0_CTRL_REG_KER,
2462           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2463         { SRM_TX_DC_CFG_REG_KER,
2464           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2465         { RX_DC_CFG_REG_KER,
2466           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2467         { RX_DC_PF_WM_REG_KER,
2468           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2469         { DP_CTRL_REG,
2470           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2471         { GM_CFG2_REG,
2472           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2473         { GMF_CFG0_REG,
2474           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2475         { XM_GLB_CFG_REG,
2476           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2477         { XM_TX_CFG_REG,
2478           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2479         { XM_RX_CFG_REG,
2480           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2481         { XM_RX_PARAM_REG,
2482           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2483         { XM_FC_REG,
2484           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2485         { XM_ADR_LO_REG,
2486           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2487         { XX_SD_CTL_REG,
2488           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2489 };
2490
2491 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
2492                                      const efx_oword_t *mask)
2493 {
2494         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
2495                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
2496 }
2497
2498 int falcon_test_registers(struct efx_nic *efx)
2499 {
2500         unsigned address = 0, i, j;
2501         efx_oword_t mask, imask, original, reg, buf;
2502
2503         /* Falcon should be in loopback to isolate the XMAC from the PHY */
2504         WARN_ON(!LOOPBACK_INTERNAL(efx));
2505
2506         for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
2507                 address = efx_test_registers[i].address;
2508                 mask = imask = efx_test_registers[i].mask;
2509                 EFX_INVERT_OWORD(imask);
2510
2511                 falcon_read(efx, &original, address);
2512
2513                 /* bit sweep on and off */
2514                 for (j = 0; j < 128; j++) {
2515                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
2516                                 continue;
2517
2518                         /* Test this testable bit can be set in isolation */
2519                         EFX_AND_OWORD(reg, original, mask);
2520                         EFX_SET_OWORD32(reg, j, j, 1);
2521
2522                         falcon_write(efx, &reg, address);
2523                         falcon_read(efx, &buf, address);
2524
2525                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2526                                 goto fail;
2527
2528                         /* Test this testable bit can be cleared in isolation */
2529                         EFX_OR_OWORD(reg, original, mask);
2530                         EFX_SET_OWORD32(reg, j, j, 0);
2531
2532                         falcon_write(efx, &reg, address);
2533                         falcon_read(efx, &buf, address);
2534
2535                         if (efx_masked_compare_oword(&reg, &buf, &mask))
2536                                 goto fail;
2537                 }
2538
2539                 falcon_write(efx, &original, address);
2540         }
2541
2542         return 0;
2543
2544 fail:
2545         EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
2546                 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
2547                 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
2548         return -EIO;
2549 }
2550
2551 /**************************************************************************
2552  *
2553  * Device reset
2554  *
2555  **************************************************************************
2556  */
2557
2558 /* Resets NIC to known state.  This routine must be called in process
2559  * context and is allowed to sleep. */
2560 int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2561 {
2562         struct falcon_nic_data *nic_data = efx->nic_data;
2563         efx_oword_t glb_ctl_reg_ker;
2564         int rc;
2565
2566         EFX_LOG(efx, "performing hardware reset (%d)\n", method);
2567
2568         /* Initiate device reset */
2569         if (method == RESET_TYPE_WORLD) {
2570                 rc = pci_save_state(efx->pci_dev);
2571                 if (rc) {
2572                         EFX_ERR(efx, "failed to backup PCI state of primary "
2573                                 "function prior to hardware reset\n");
2574                         goto fail1;
2575                 }
2576                 if (FALCON_IS_DUAL_FUNC(efx)) {
2577                         rc = pci_save_state(nic_data->pci_dev2);
2578                         if (rc) {
2579                                 EFX_ERR(efx, "failed to backup PCI state of "
2580                                         "secondary function prior to "
2581                                         "hardware reset\n");
2582                                 goto fail2;
2583                         }
2584                 }
2585
2586                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
2587                                      EXT_PHY_RST_DUR, 0x7,
2588                                      SWRST, 1);
2589         } else {
2590                 int reset_phy = (method == RESET_TYPE_INVISIBLE ?
2591                                  EXCLUDE_FROM_RESET : 0);
2592
2593                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
2594                                      EXT_PHY_RST_CTL, reset_phy,
2595                                      PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
2596                                      PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
2597                                      PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
2598                                      EE_RST_CTL, EXCLUDE_FROM_RESET,
2599                                      EXT_PHY_RST_DUR, 0x7 /* 10ms */,
2600                                      SWRST, 1);
2601         }
2602         falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2603
2604         EFX_LOG(efx, "waiting for hardware reset\n");
2605         schedule_timeout_uninterruptible(HZ / 20);
2606
2607         /* Restore PCI configuration if needed */
2608         if (method == RESET_TYPE_WORLD) {
2609                 if (FALCON_IS_DUAL_FUNC(efx)) {
2610                         rc = pci_restore_state(nic_data->pci_dev2);
2611                         if (rc) {
2612                                 EFX_ERR(efx, "failed to restore PCI config for "
2613                                         "the secondary function\n");
2614                                 goto fail3;
2615                         }
2616                 }
2617                 rc = pci_restore_state(efx->pci_dev);
2618                 if (rc) {
2619                         EFX_ERR(efx, "failed to restore PCI config for the "
2620                                 "primary function\n");
2621                         goto fail4;
2622                 }
2623                 EFX_LOG(efx, "successfully restored PCI config\n");
2624         }
2625
2626         /* Assert that reset complete */
2627         falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
2628         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
2629                 rc = -ETIMEDOUT;
2630                 EFX_ERR(efx, "timed out waiting for hardware reset\n");
2631                 goto fail5;
2632         }
2633         EFX_LOG(efx, "hardware reset complete\n");
2634
2635         return 0;
2636
2637         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2638 fail2:
2639 fail3:
2640         pci_restore_state(efx->pci_dev);
2641 fail1:
2642 fail4:
2643 fail5:
2644         return rc;
2645 }
2646
2647 /* Zeroes out the SRAM contents.  This routine must be called in
2648  * process context and is allowed to sleep.
2649  */
2650 static int falcon_reset_sram(struct efx_nic *efx)
2651 {
2652         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2653         int count;
2654
2655         /* Set the SRAM wake/sleep GPIO appropriately. */
2656         falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2657         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
2658         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
2659         falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
2660
2661         /* Initiate SRAM reset */
2662         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2663                              SRAM_OOB_BT_INIT_EN, 1,
2664                              SRM_NUM_BANKS_AND_BANK_SIZE, 0);
2665         falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2666
2667         /* Wait for SRAM reset to complete */
2668         count = 0;
2669         do {
2670                 EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
2671
2672                 /* SRAM reset is slow; expect around 16ms */
2673                 schedule_timeout_uninterruptible(HZ / 50);
2674
2675                 /* Check for reset complete */
2676                 falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
2677                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
2678                         EFX_LOG(efx, "SRAM reset complete\n");
2679
2680                         return 0;
2681                 }
2682         } while (++count < 20); /* wait upto 0.4 sec */
2683
2684         EFX_ERR(efx, "timed out waiting for SRAM reset\n");
2685         return -ETIMEDOUT;
2686 }
2687
2688 static int falcon_spi_device_init(struct efx_nic *efx,
2689                                   struct efx_spi_device **spi_device_ret,
2690                                   unsigned int device_id, u32 device_type)
2691 {
2692         struct efx_spi_device *spi_device;
2693
2694         if (device_type != 0) {
2695                 spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
2696                 if (!spi_device)
2697                         return -ENOMEM;
2698                 spi_device->device_id = device_id;
2699                 spi_device->size =
2700                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2701                 spi_device->addr_len =
2702                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2703                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2704                                              spi_device->addr_len == 1);
2705                 spi_device->erase_command =
2706                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2707                 spi_device->erase_size =
2708                         1 << SPI_DEV_TYPE_FIELD(device_type,
2709                                                 SPI_DEV_TYPE_ERASE_SIZE);
2710                 spi_device->block_size =
2711                         1 << SPI_DEV_TYPE_FIELD(device_type,
2712                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2713
2714                 spi_device->efx = efx;
2715         } else {
2716                 spi_device = NULL;
2717         }
2718
2719         kfree(*spi_device_ret);
2720         *spi_device_ret = spi_device;
2721         return 0;
2722 }
2723
2724
2725 static void falcon_remove_spi_devices(struct efx_nic *efx)
2726 {
2727         kfree(efx->spi_eeprom);
2728         efx->spi_eeprom = NULL;
2729         kfree(efx->spi_flash);
2730         efx->spi_flash = NULL;
2731 }
2732
2733 /* Extract non-volatile configuration */
2734 static int falcon_probe_nvconfig(struct efx_nic *efx)
2735 {
2736         struct falcon_nvconfig *nvconfig;
2737         int board_rev;
2738         int rc;
2739
2740         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2741         if (!nvconfig)
2742                 return -ENOMEM;
2743
2744         rc = falcon_read_nvram(efx, nvconfig);
2745         if (rc == -EINVAL) {
2746                 EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
2747                 efx->phy_type = PHY_TYPE_NONE;
2748                 efx->mii.phy_id = PHY_ADDR_INVALID;
2749                 board_rev = 0;
2750                 rc = 0;
2751         } else if (rc) {
2752                 goto fail1;
2753         } else {
2754                 struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
2755                 struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
2756
2757                 efx->phy_type = v2->port0_phy_type;
2758                 efx->mii.phy_id = v2->port0_phy_addr;
2759                 board_rev = le16_to_cpu(v2->board_revision);
2760
2761                 if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2762                         __le32 fl = v3->spi_device_type[EE_SPI_FLASH];
2763                         __le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
2764                         rc = falcon_spi_device_init(efx, &efx->spi_flash,
2765                                                     EE_SPI_FLASH,
2766                                                     le32_to_cpu(fl));
2767                         if (rc)
2768                                 goto fail2;
2769                         rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
2770                                                     EE_SPI_EEPROM,
2771                                                     le32_to_cpu(ee));
2772                         if (rc)
2773                                 goto fail2;
2774                 }
2775         }
2776
2777         /* Read the MAC addresses */
2778         memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
2779
2780         EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
2781
2782         efx_set_board_info(efx, board_rev);
2783
2784         kfree(nvconfig);
2785         return 0;
2786
2787  fail2:
2788         falcon_remove_spi_devices(efx);
2789  fail1:
2790         kfree(nvconfig);
2791         return rc;
2792 }
2793
2794 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2795  * count, port speed).  Set workaround and feature flags accordingly.
2796  */
2797 static int falcon_probe_nic_variant(struct efx_nic *efx)
2798 {
2799         efx_oword_t altera_build;
2800         efx_oword_t nic_stat;
2801
2802         falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
2803         if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
2804                 EFX_ERR(efx, "Falcon FPGA not supported\n");
2805                 return -ENODEV;
2806         }
2807
2808         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2809
2810         switch (falcon_rev(efx)) {
2811         case FALCON_REV_A0:
2812         case 0xff:
2813                 EFX_ERR(efx, "Falcon rev A0 not supported\n");
2814                 return -ENODEV;
2815
2816         case FALCON_REV_A1:
2817                 if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
2818                         EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
2819                         return -ENODEV;
2820                 }
2821                 break;
2822
2823         case FALCON_REV_B0:
2824                 break;
2825
2826         default:
2827                 EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
2828                 return -ENODEV;
2829         }
2830
2831         /* Initial assumed speed */
2832         efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
2833
2834         return 0;
2835 }
2836
2837 /* Probe all SPI devices on the NIC */
2838 static void falcon_probe_spi_devices(struct efx_nic *efx)
2839 {
2840         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2841         int boot_dev;
2842
2843         falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
2844         falcon_read(efx, &nic_stat, NIC_STAT_REG);
2845         falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2846
2847         if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
2848                 boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
2849                             EE_SPI_FLASH : EE_SPI_EEPROM);
2850                 EFX_LOG(efx, "Booted from %s\n",
2851                         boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
2852         } else {
2853                 /* Disable VPD and set clock dividers to safe
2854                  * values for initial programming. */
2855                 boot_dev = -1;
2856                 EFX_LOG(efx, "Booted from internal ASIC settings;"
2857                         " setting SPI config\n");
2858                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
2859                                      /* 125 MHz / 7 ~= 20 MHz */
2860                                      EE_SF_CLOCK_DIV, 7,
2861                                      /* 125 MHz / 63 ~= 2 MHz */
2862                                      EE_EE_CLOCK_DIV, 63);
2863                 falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
2864         }
2865
2866         if (boot_dev == EE_SPI_FLASH)
2867                 falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
2868                                        default_flash_type);
2869         if (boot_dev == EE_SPI_EEPROM)
2870                 falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
2871                                        large_eeprom_type);
2872 }
2873
2874 int falcon_probe_nic(struct efx_nic *efx)
2875 {
2876         struct falcon_nic_data *nic_data;
2877         int rc;
2878
2879         /* Allocate storage for hardware specific data */
2880         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2881         if (!nic_data)
2882                 return -ENOMEM;
2883         efx->nic_data = nic_data;
2884
2885         /* Determine number of ports etc. */
2886         rc = falcon_probe_nic_variant(efx);
2887         if (rc)
2888                 goto fail1;
2889
2890         /* Probe secondary function if expected */
2891         if (FALCON_IS_DUAL_FUNC(efx)) {
2892                 struct pci_dev *dev = pci_dev_get(efx->pci_dev);
2893
2894                 while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
2895                                              dev))) {
2896                         if (dev->bus == efx->pci_dev->bus &&
2897                             dev->devfn == efx->pci_dev->devfn + 1) {
2898                                 nic_data->pci_dev2 = dev;
2899                                 break;
2900                         }
2901                 }
2902                 if (!nic_data->pci_dev2) {
2903                         EFX_ERR(efx, "failed to find secondary function\n");
2904                         rc = -ENODEV;
2905                         goto fail2;
2906                 }
2907         }
2908
2909         /* Now we can reset the NIC */
2910         rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
2911         if (rc) {
2912                 EFX_ERR(efx, "failed to reset NIC\n");
2913                 goto fail3;
2914         }
2915
2916         /* Allocate memory for INT_KER */
2917         rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
2918         if (rc)
2919                 goto fail4;
2920         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2921
2922         EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
2923                 (unsigned long long)efx->irq_status.dma_addr,
2924                 efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
2925
2926         falcon_probe_spi_devices(efx);
2927
2928         /* Read in the non-volatile configuration */
2929         rc = falcon_probe_nvconfig(efx);
2930         if (rc)
2931                 goto fail5;
2932
2933         /* Initialise I2C adapter */
2934         efx->i2c_adap.owner = THIS_MODULE;
2935         nic_data->i2c_data = falcon_i2c_bit_operations;
2936         nic_data->i2c_data.data = efx;
2937         efx->i2c_adap.algo_data = &nic_data->i2c_data;
2938         efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
2939         strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
2940         rc = i2c_bit_add_bus(&efx->i2c_adap);
2941         if (rc)
2942                 goto fail5;
2943
2944         return 0;
2945
2946  fail5:
2947         falcon_remove_spi_devices(efx);
2948         falcon_free_buffer(efx, &efx->irq_status);
2949  fail4:
2950  fail3:
2951         if (nic_data->pci_dev2) {
2952                 pci_dev_put(nic_data->pci_dev2);
2953                 nic_data->pci_dev2 = NULL;
2954         }
2955  fail2:
2956  fail1:
2957         kfree(efx->nic_data);
2958         return rc;
2959 }
2960
2961 /* This call performs hardware-specific global initialisation, such as
2962  * defining the descriptor cache sizes and number of RSS channels.
2963  * It does not set up any buffers, descriptor rings or event queues.
2964  */
2965 int falcon_init_nic(struct efx_nic *efx)
2966 {
2967         efx_oword_t temp;
2968         unsigned thresh;
2969         int rc;
2970
2971         /* Use on-chip SRAM */
2972         falcon_read(efx, &temp, NIC_STAT_REG);
2973         EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
2974         falcon_write(efx, &temp, NIC_STAT_REG);
2975
2976         /* Set the source of the GMAC clock */
2977         if (falcon_rev(efx) == FALCON_REV_B0) {
2978                 falcon_read(efx, &temp, GPIO_CTL_REG_KER);
2979                 EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
2980                 falcon_write(efx, &temp, GPIO_CTL_REG_KER);
2981         }
2982
2983         /* Set buffer table mode */
2984         EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
2985         falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
2986
2987         rc = falcon_reset_sram(efx);
2988         if (rc)
2989                 return rc;
2990
2991         /* Set positions of descriptor caches in SRAM. */
2992         EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
2993         falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
2994         EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
2995         falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
2996
2997         /* Set TX descriptor cache size. */
2998         BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
2999         EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
3000         falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
3001
3002         /* Set RX descriptor cache size.  Set low watermark to size-8, as
3003          * this allows most efficient prefetching.
3004          */
3005         BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
3006         EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
3007         falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
3008         EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
3009         falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
3010
3011         /* Clear the parity enables on the TX data fifos as
3012          * they produce false parity errors because of timing issues
3013          */
3014         if (EFX_WORKAROUND_5129(efx)) {
3015                 falcon_read(efx, &temp, SPARE_REG_KER);
3016                 EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
3017                 falcon_write(efx, &temp, SPARE_REG_KER);
3018         }
3019
3020         /* Enable all the genuinely fatal interrupts.  (They are still
3021          * masked by the overall interrupt mask, controlled by
3022          * falcon_interrupts()).
3023          *
3024          * Note: All other fatal interrupts are enabled
3025          */
3026         EFX_POPULATE_OWORD_3(temp,
3027                              ILL_ADR_INT_KER_EN, 1,
3028                              RBUF_OWN_INT_KER_EN, 1,
3029                              TBUF_OWN_INT_KER_EN, 1);
3030         EFX_INVERT_OWORD(temp);
3031         falcon_write(efx, &temp, FATAL_INTR_REG_KER);
3032
3033         if (EFX_WORKAROUND_7244(efx)) {
3034                 falcon_read(efx, &temp, RX_FILTER_CTL_REG);
3035                 EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
3036                 EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
3037                 EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
3038                 EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
3039                 falcon_write(efx, &temp, RX_FILTER_CTL_REG);
3040         }
3041
3042         falcon_setup_rss_indir_table(efx);
3043
3044         /* Setup RX.  Wait for descriptor is broken and must
3045          * be disabled.  RXDP recovery shouldn't be needed, but is.
3046          */
3047         falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
3048         EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
3049         EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
3050         if (EFX_WORKAROUND_5583(efx))
3051                 EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
3052         falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
3053
3054         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3055          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3056          */
3057         falcon_read(efx, &temp, TX_CFG2_REG_KER);
3058         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
3059         EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
3060         EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
3061         EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
3062         EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
3063         /* Enable SW_EV to inherit in char driver - assume harmless here */
3064         EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
3065         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3066         EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
3067         /* Squash TX of packets of 16 bytes or less */
3068         if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
3069                 EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
3070         falcon_write(efx, &temp, TX_CFG2_REG_KER);
3071
3072         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3073          * descriptors (which is bad).
3074          */
3075         falcon_read(efx, &temp, TX_CFG_REG_KER);
3076         EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
3077         falcon_write(efx, &temp, TX_CFG_REG_KER);
3078
3079         /* RX config */
3080         falcon_read(efx, &temp, RX_CFG_REG_KER);
3081         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
3082         if (EFX_WORKAROUND_7575(efx))
3083                 EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
3084                                         (3 * 4096) / 32);
3085         if (falcon_rev(efx) >= FALCON_REV_B0)
3086                 EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
3087
3088         /* RX FIFO flow control thresholds */
3089         thresh = ((rx_xon_thresh_bytes >= 0) ?
3090                   rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
3091         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
3092         thresh = ((rx_xoff_thresh_bytes >= 0) ?
3093                   rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
3094         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
3095         /* RX control FIFO thresholds [32 entries] */
3096         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
3097         EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
3098         falcon_write(efx, &temp, RX_CFG_REG_KER);
3099
3100         /* Set destination of both TX and RX Flush events */
3101         if (falcon_rev(efx) >= FALCON_REV_B0) {
3102                 EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
3103                 falcon_write(efx, &temp, DP_CTRL_REG);
3104         }
3105
3106         return 0;
3107 }
3108
3109 void falcon_remove_nic(struct efx_nic *efx)
3110 {
3111         struct falcon_nic_data *nic_data = efx->nic_data;
3112         int rc;
3113
3114         /* Remove I2C adapter and clear it in preparation for a retry */
3115         rc = i2c_del_adapter(&efx->i2c_adap);
3116         BUG_ON(rc);
3117         memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
3118
3119         falcon_remove_spi_devices(efx);
3120         falcon_free_buffer(efx, &efx->irq_status);
3121
3122         falcon_reset_hw(efx, RESET_TYPE_ALL);
3123
3124         /* Release the second function after the reset */
3125         if (nic_data->pci_dev2) {
3126                 pci_dev_put(nic_data->pci_dev2);
3127                 nic_data->pci_dev2 = NULL;
3128         }
3129
3130         /* Tear down the private nic state */
3131         kfree(efx->nic_data);
3132         efx->nic_data = NULL;
3133 }
3134
3135 void falcon_update_nic_stats(struct efx_nic *efx)
3136 {
3137         efx_oword_t cnt;
3138
3139         falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
3140         efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
3141 }
3142
3143 /**************************************************************************
3144  *
3145  * Revision-dependent attributes used by efx.c
3146  *
3147  **************************************************************************
3148  */
3149
3150 struct efx_nic_type falcon_a_nic_type = {
3151         .mem_bar = 2,
3152         .mem_map_size = 0x20000,
3153         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
3154         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
3155         .buf_tbl_base = BUF_TBL_KER_A1,
3156         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
3157         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
3158         .txd_ring_mask = FALCON_TXD_RING_MASK,
3159         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3160         .evq_size = FALCON_EVQ_SIZE,
3161         .max_dma_mask = FALCON_DMA_MASK,
3162         .tx_dma_mask = FALCON_TX_DMA_MASK,
3163         .bug5391_mask = 0xf,
3164         .rx_xoff_thresh = 2048,
3165         .rx_xon_thresh = 512,
3166         .rx_buffer_padding = 0x24,
3167         .max_interrupt_mode = EFX_INT_MODE_MSI,
3168         .phys_addr_channels = 4,
3169 };
3170
3171 struct efx_nic_type falcon_b_nic_type = {
3172         .mem_bar = 2,
3173         /* Map everything up to and including the RSS indirection
3174          * table.  Don't map MSI-X table, MSI-X PBA since Linux
3175          * requires that they not be mapped.  */
3176         .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
3177         .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
3178         .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
3179         .buf_tbl_base = BUF_TBL_KER_B0,
3180         .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
3181         .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
3182         .txd_ring_mask = FALCON_TXD_RING_MASK,
3183         .rxd_ring_mask = FALCON_RXD_RING_MASK,
3184         .evq_size = FALCON_EVQ_SIZE,
3185         .max_dma_mask = FALCON_DMA_MASK,
3186         .tx_dma_mask = FALCON_TX_DMA_MASK,
3187         .bug5391_mask = 0,
3188         .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
3189         .rx_xon_thresh = 27648,  /* ~3*max MTU */
3190         .rx_buffer_padding = 0,
3191         .max_interrupt_mode = EFX_INT_MODE_MSIX,
3192         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
3193                                    * interrupt handler only supports 32
3194                                    * channels */
3195 };
3196