S2IO: Removing 3 buffer mode support from the driver
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.23.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135         "Register test\t(offline)",
136         "Eeprom test\t(offline)",
137         "Link test\t(online)",
138         "RLDRAM test\t(offline)",
139         "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143         {"tmac_frms"},
144         {"tmac_data_octets"},
145         {"tmac_drop_frms"},
146         {"tmac_mcst_frms"},
147         {"tmac_bcst_frms"},
148         {"tmac_pause_ctrl_frms"},
149         {"tmac_ttl_octets"},
150         {"tmac_ucst_frms"},
151         {"tmac_nucst_frms"},
152         {"tmac_any_err_frms"},
153         {"tmac_ttl_less_fb_octets"},
154         {"tmac_vld_ip_octets"},
155         {"tmac_vld_ip"},
156         {"tmac_drop_ip"},
157         {"tmac_icmp"},
158         {"tmac_rst_tcp"},
159         {"tmac_tcp"},
160         {"tmac_udp"},
161         {"rmac_vld_frms"},
162         {"rmac_data_octets"},
163         {"rmac_fcs_err_frms"},
164         {"rmac_drop_frms"},
165         {"rmac_vld_mcst_frms"},
166         {"rmac_vld_bcst_frms"},
167         {"rmac_in_rng_len_err_frms"},
168         {"rmac_out_rng_len_err_frms"},
169         {"rmac_long_frms"},
170         {"rmac_pause_ctrl_frms"},
171         {"rmac_unsup_ctrl_frms"},
172         {"rmac_ttl_octets"},
173         {"rmac_accepted_ucst_frms"},
174         {"rmac_accepted_nucst_frms"},
175         {"rmac_discarded_frms"},
176         {"rmac_drop_events"},
177         {"rmac_ttl_less_fb_octets"},
178         {"rmac_ttl_frms"},
179         {"rmac_usized_frms"},
180         {"rmac_osized_frms"},
181         {"rmac_frag_frms"},
182         {"rmac_jabber_frms"},
183         {"rmac_ttl_64_frms"},
184         {"rmac_ttl_65_127_frms"},
185         {"rmac_ttl_128_255_frms"},
186         {"rmac_ttl_256_511_frms"},
187         {"rmac_ttl_512_1023_frms"},
188         {"rmac_ttl_1024_1518_frms"},
189         {"rmac_ip"},
190         {"rmac_ip_octets"},
191         {"rmac_hdr_err_ip"},
192         {"rmac_drop_ip"},
193         {"rmac_icmp"},
194         {"rmac_tcp"},
195         {"rmac_udp"},
196         {"rmac_err_drp_udp"},
197         {"rmac_xgmii_err_sym"},
198         {"rmac_frms_q0"},
199         {"rmac_frms_q1"},
200         {"rmac_frms_q2"},
201         {"rmac_frms_q3"},
202         {"rmac_frms_q4"},
203         {"rmac_frms_q5"},
204         {"rmac_frms_q6"},
205         {"rmac_frms_q7"},
206         {"rmac_full_q0"},
207         {"rmac_full_q1"},
208         {"rmac_full_q2"},
209         {"rmac_full_q3"},
210         {"rmac_full_q4"},
211         {"rmac_full_q5"},
212         {"rmac_full_q6"},
213         {"rmac_full_q7"},
214         {"rmac_pause_cnt"},
215         {"rmac_xgmii_data_err_cnt"},
216         {"rmac_xgmii_ctrl_err_cnt"},
217         {"rmac_accepted_ip"},
218         {"rmac_err_tcp"},
219         {"rd_req_cnt"},
220         {"new_rd_req_cnt"},
221         {"new_rd_req_rtry_cnt"},
222         {"rd_rtry_cnt"},
223         {"wr_rtry_rd_ack_cnt"},
224         {"wr_req_cnt"},
225         {"new_wr_req_cnt"},
226         {"new_wr_req_rtry_cnt"},
227         {"wr_rtry_cnt"},
228         {"wr_disc_cnt"},
229         {"rd_rtry_wr_ack_cnt"},
230         {"txp_wr_cnt"},
231         {"txd_rd_cnt"},
232         {"txd_wr_cnt"},
233         {"rxd_rd_cnt"},
234         {"rxd_wr_cnt"},
235         {"txf_rd_cnt"},
236         {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240         {"rmac_ttl_1519_4095_frms"},
241         {"rmac_ttl_4096_8191_frms"},
242         {"rmac_ttl_8192_max_frms"},
243         {"rmac_ttl_gt_max_frms"},
244         {"rmac_osized_alt_frms"},
245         {"rmac_jabber_alt_frms"},
246         {"rmac_gt_max_alt_frms"},
247         {"rmac_vlan_frms"},
248         {"rmac_len_discard"},
249         {"rmac_fcs_discard"},
250         {"rmac_pf_discard"},
251         {"rmac_da_discard"},
252         {"rmac_red_discard"},
253         {"rmac_rts_discard"},
254         {"rmac_ingm_full_discard"},
255         {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259         {"\n DRIVER STATISTICS"},
260         {"single_bit_ecc_errs"},
261         {"double_bit_ecc_errs"},
262         {"parity_err_cnt"},
263         {"serious_err_cnt"},
264         {"soft_reset_cnt"},
265         {"fifo_full_cnt"},
266         {"ring_full_cnt"},
267         ("alarm_transceiver_temp_high"),
268         ("alarm_transceiver_temp_low"),
269         ("alarm_laser_bias_current_high"),
270         ("alarm_laser_bias_current_low"),
271         ("alarm_laser_output_power_high"),
272         ("alarm_laser_output_power_low"),
273         ("warn_transceiver_temp_high"),
274         ("warn_transceiver_temp_low"),
275         ("warn_laser_bias_current_high"),
276         ("warn_laser_bias_current_low"),
277         ("warn_laser_output_power_high"),
278         ("warn_laser_output_power_low"),
279         ("lro_aggregated_pkts"),
280         ("lro_flush_both_count"),
281         ("lro_out_of_sequence_pkts"),
282         ("lro_flush_due_to_max_pkts"),
283         ("lro_avg_aggr_pkts"),
284         ("mem_alloc_fail_cnt"),
285         ("watchdog_timer_cnt"),
286         ("mem_allocated"),
287         ("mem_freed"),
288         ("link_up_cnt"),
289         ("link_down_cnt"),
290         ("link_up_time"),
291         ("link_down_time"),
292         ("tx_tcode_buf_abort_cnt"),
293         ("tx_tcode_desc_abort_cnt"),
294         ("tx_tcode_parity_err_cnt"),
295         ("tx_tcode_link_loss_cnt"),
296         ("tx_tcode_list_proc_err_cnt"),
297         ("rx_tcode_parity_err_cnt"),
298         ("rx_tcode_abort_cnt"),
299         ("rx_tcode_parity_abort_cnt"),
300         ("rx_tcode_rda_fail_cnt"),
301         ("rx_tcode_unkn_prot_cnt"),
302         ("rx_tcode_fcs_err_cnt"),
303         ("rx_tcode_buf_size_err_cnt"),
304         ("rx_tcode_rxd_corrupt_cnt"),
305         ("rx_tcode_unkn_err_cnt")
306 };
307
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
310                                         ETH_GSTRING_LEN
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
312
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
315
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
318
319 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
321
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
323                         init_timer(&timer);                     \
324                         timer.function = handle;                \
325                         timer.data = (unsigned long) arg;       \
326                         mod_timer(&timer, (jiffies + exp))      \
327
328 /* Add the vlan */
329 static void s2io_vlan_rx_register(struct net_device *dev,
330                                         struct vlan_group *grp)
331 {
332         struct s2io_nic *nic = dev->priv;
333         unsigned long flags;
334
335         spin_lock_irqsave(&nic->tx_lock, flags);
336         nic->vlgrp = grp;
337         spin_unlock_irqrestore(&nic->tx_lock, flags);
338 }
339
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
342
343 /*
344  * Constants to be programmed into the Xena's registers, to configure
345  * the XAUI.
346  */
347
348 #define END_SIGN        0x0
349 static const u64 herc_act_dtx_cfg[] = {
350         /* Set address */
351         0x8000051536750000ULL, 0x80000515367500E0ULL,
352         /* Write data */
353         0x8000051536750004ULL, 0x80000515367500E4ULL,
354         /* Set address */
355         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
356         /* Write data */
357         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
358         /* Set address */
359         0x801205150D440000ULL, 0x801205150D4400E0ULL,
360         /* Write data */
361         0x801205150D440004ULL, 0x801205150D4400E4ULL,
362         /* Set address */
363         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
364         /* Write data */
365         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
366         /* Done */
367         END_SIGN
368 };
369
370 static const u64 xena_dtx_cfg[] = {
371         /* Set address */
372         0x8000051500000000ULL, 0x80000515000000E0ULL,
373         /* Write data */
374         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
375         /* Set address */
376         0x8001051500000000ULL, 0x80010515000000E0ULL,
377         /* Write data */
378         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
379         /* Set address */
380         0x8002051500000000ULL, 0x80020515000000E0ULL,
381         /* Write data */
382         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
383         END_SIGN
384 };
385
386 /*
387  * Constants for Fixing the MacAddress problem seen mostly on
388  * Alpha machines.
389  */
390 static const u64 fix_mac[] = {
391         0x0060000000000000ULL, 0x0060600000000000ULL,
392         0x0040600000000000ULL, 0x0000600000000000ULL,
393         0x0020600000000000ULL, 0x0060600000000000ULL,
394         0x0020600000000000ULL, 0x0060600000000000ULL,
395         0x0020600000000000ULL, 0x0060600000000000ULL,
396         0x0020600000000000ULL, 0x0060600000000000ULL,
397         0x0020600000000000ULL, 0x0060600000000000ULL,
398         0x0020600000000000ULL, 0x0060600000000000ULL,
399         0x0020600000000000ULL, 0x0060600000000000ULL,
400         0x0020600000000000ULL, 0x0060600000000000ULL,
401         0x0020600000000000ULL, 0x0060600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0000600000000000ULL,
404         0x0040600000000000ULL, 0x0060600000000000ULL,
405         END_SIGN
406 };
407
408 MODULE_LICENSE("GPL");
409 MODULE_VERSION(DRV_VERSION);
410
411
412 /* Module Loadable parameters. */
413 S2IO_PARM_INT(tx_fifo_num, 1);
414 S2IO_PARM_INT(rx_ring_num, 1);
415
416
417 S2IO_PARM_INT(rx_ring_mode, 1);
418 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419 S2IO_PARM_INT(rmac_pause_time, 0x100);
420 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422 S2IO_PARM_INT(shared_splits, 0);
423 S2IO_PARM_INT(tmac_util_period, 5);
424 S2IO_PARM_INT(rmac_util_period, 5);
425 S2IO_PARM_INT(bimodal, 0);
426 S2IO_PARM_INT(l3l4hdr_size, 128);
427 /* Frequency of Rx desc syncs expressed as power of 2 */
428 S2IO_PARM_INT(rxsync_frequency, 3);
429 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
430 S2IO_PARM_INT(intr_type, 0);
431 /* Large receive offload feature */
432 S2IO_PARM_INT(lro, 0);
433 /* Max pkts to be aggregated by LRO at one time. If not specified,
434  * aggregation happens until we hit max IP pkt size(64K)
435  */
436 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
437 S2IO_PARM_INT(indicate_max_pkts, 0);
438
439 S2IO_PARM_INT(napi, 1);
440 S2IO_PARM_INT(ufo, 0);
441 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
442
443 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447 static unsigned int rts_frm_len[MAX_RX_RINGS] =
448     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
449
450 module_param_array(tx_fifo_len, uint, NULL, 0);
451 module_param_array(rx_ring_sz, uint, NULL, 0);
452 module_param_array(rts_frm_len, uint, NULL, 0);
453
454 /*
455  * S2IO device table.
456  * This table lists all the devices that this driver supports.
457  */
458 static struct pci_device_id s2io_tbl[] __devinitdata = {
459         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460          PCI_ANY_ID, PCI_ANY_ID},
461         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462          PCI_ANY_ID, PCI_ANY_ID},
463         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
464          PCI_ANY_ID, PCI_ANY_ID},
465         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466          PCI_ANY_ID, PCI_ANY_ID},
467         {0,}
468 };
469
470 MODULE_DEVICE_TABLE(pci, s2io_tbl);
471
472 static struct pci_error_handlers s2io_err_handler = {
473         .error_detected = s2io_io_error_detected,
474         .slot_reset = s2io_io_slot_reset,
475         .resume = s2io_io_resume,
476 };
477
478 static struct pci_driver s2io_driver = {
479       .name = "S2IO",
480       .id_table = s2io_tbl,
481       .probe = s2io_init_nic,
482       .remove = __devexit_p(s2io_rem_nic),
483       .err_handler = &s2io_err_handler,
484 };
485
486 /* A simplifier macro used both by init and free shared_mem Fns(). */
487 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
488
489 /**
490  * init_shared_mem - Allocation and Initialization of Memory
491  * @nic: Device private variable.
492  * Description: The function allocates all the memory areas shared
493  * between the NIC and the driver. This includes Tx descriptors,
494  * Rx descriptors and the statistics block.
495  */
496
497 static int init_shared_mem(struct s2io_nic *nic)
498 {
499         u32 size;
500         void *tmp_v_addr, *tmp_v_addr_next;
501         dma_addr_t tmp_p_addr, tmp_p_addr_next;
502         struct RxD_block *pre_rxd_blk = NULL;
503         int i, j, blk_cnt;
504         int lst_size, lst_per_page;
505         struct net_device *dev = nic->dev;
506         unsigned long tmp;
507         struct buffAdd *ba;
508
509         struct mac_info *mac_control;
510         struct config_param *config;
511         unsigned long long mem_allocated = 0;
512
513         mac_control = &nic->mac_control;
514         config = &nic->config;
515
516
517         /* Allocation and initialization of TXDLs in FIOFs */
518         size = 0;
519         for (i = 0; i < config->tx_fifo_num; i++) {
520                 size += config->tx_cfg[i].fifo_len;
521         }
522         if (size > MAX_AVAILABLE_TXDS) {
523                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
524                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
525                 return -EINVAL;
526         }
527
528         lst_size = (sizeof(struct TxD) * config->max_txds);
529         lst_per_page = PAGE_SIZE / lst_size;
530
531         for (i = 0; i < config->tx_fifo_num; i++) {
532                 int fifo_len = config->tx_cfg[i].fifo_len;
533                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
534                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
535                                                           GFP_KERNEL);
536                 if (!mac_control->fifos[i].list_info) {
537                         DBG_PRINT(INFO_DBG,
538                                   "Malloc failed for list_info\n");
539                         return -ENOMEM;
540                 }
541                 mem_allocated += list_holder_size;
542                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
543         }
544         for (i = 0; i < config->tx_fifo_num; i++) {
545                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
546                                                 lst_per_page);
547                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
548                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
549                     config->tx_cfg[i].fifo_len - 1;
550                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
551                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
552                     config->tx_cfg[i].fifo_len - 1;
553                 mac_control->fifos[i].fifo_no = i;
554                 mac_control->fifos[i].nic = nic;
555                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
556
557                 for (j = 0; j < page_num; j++) {
558                         int k = 0;
559                         dma_addr_t tmp_p;
560                         void *tmp_v;
561                         tmp_v = pci_alloc_consistent(nic->pdev,
562                                                      PAGE_SIZE, &tmp_p);
563                         if (!tmp_v) {
564                                 DBG_PRINT(INFO_DBG,
565                                           "pci_alloc_consistent ");
566                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
567                                 return -ENOMEM;
568                         }
569                         /* If we got a zero DMA address(can happen on
570                          * certain platforms like PPC), reallocate.
571                          * Store virtual address of page we don't want,
572                          * to be freed later.
573                          */
574                         if (!tmp_p) {
575                                 mac_control->zerodma_virt_addr = tmp_v;
576                                 DBG_PRINT(INIT_DBG,
577                                 "%s: Zero DMA address for TxDL. ", dev->name);
578                                 DBG_PRINT(INIT_DBG,
579                                 "Virtual address %p\n", tmp_v);
580                                 tmp_v = pci_alloc_consistent(nic->pdev,
581                                                      PAGE_SIZE, &tmp_p);
582                                 if (!tmp_v) {
583                                         DBG_PRINT(INFO_DBG,
584                                           "pci_alloc_consistent ");
585                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
586                                         return -ENOMEM;
587                                 }
588                                 mem_allocated += PAGE_SIZE;
589                         }
590                         while (k < lst_per_page) {
591                                 int l = (j * lst_per_page) + k;
592                                 if (l == config->tx_cfg[i].fifo_len)
593                                         break;
594                                 mac_control->fifos[i].list_info[l].list_virt_addr =
595                                     tmp_v + (k * lst_size);
596                                 mac_control->fifos[i].list_info[l].list_phy_addr =
597                                     tmp_p + (k * lst_size);
598                                 k++;
599                         }
600                 }
601         }
602
603         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
604         if (!nic->ufo_in_band_v)
605                 return -ENOMEM;
606          mem_allocated += (size * sizeof(u64));
607
608         /* Allocation and initialization of RXDs in Rings */
609         size = 0;
610         for (i = 0; i < config->rx_ring_num; i++) {
611                 if (config->rx_cfg[i].num_rxd %
612                     (rxd_count[nic->rxd_mode] + 1)) {
613                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
614                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
615                                   i);
616                         DBG_PRINT(ERR_DBG, "RxDs per Block");
617                         return FAILURE;
618                 }
619                 size += config->rx_cfg[i].num_rxd;
620                 mac_control->rings[i].block_count =
621                         config->rx_cfg[i].num_rxd /
622                         (rxd_count[nic->rxd_mode] + 1 );
623                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
624                         mac_control->rings[i].block_count;
625         }
626         if (nic->rxd_mode == RXD_MODE_1)
627                 size = (size * (sizeof(struct RxD1)));
628         else
629                 size = (size * (sizeof(struct RxD3)));
630
631         for (i = 0; i < config->rx_ring_num; i++) {
632                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
633                 mac_control->rings[i].rx_curr_get_info.offset = 0;
634                 mac_control->rings[i].rx_curr_get_info.ring_len =
635                     config->rx_cfg[i].num_rxd - 1;
636                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
637                 mac_control->rings[i].rx_curr_put_info.offset = 0;
638                 mac_control->rings[i].rx_curr_put_info.ring_len =
639                     config->rx_cfg[i].num_rxd - 1;
640                 mac_control->rings[i].nic = nic;
641                 mac_control->rings[i].ring_no = i;
642
643                 blk_cnt = config->rx_cfg[i].num_rxd /
644                                 (rxd_count[nic->rxd_mode] + 1);
645                 /*  Allocating all the Rx blocks */
646                 for (j = 0; j < blk_cnt; j++) {
647                         struct rx_block_info *rx_blocks;
648                         int l;
649
650                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
651                         size = SIZE_OF_BLOCK; //size is always page size
652                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
653                                                           &tmp_p_addr);
654                         if (tmp_v_addr == NULL) {
655                                 /*
656                                  * In case of failure, free_shared_mem()
657                                  * is called, which should free any
658                                  * memory that was alloced till the
659                                  * failure happened.
660                                  */
661                                 rx_blocks->block_virt_addr = tmp_v_addr;
662                                 return -ENOMEM;
663                         }
664                         mem_allocated += size;
665                         memset(tmp_v_addr, 0, size);
666                         rx_blocks->block_virt_addr = tmp_v_addr;
667                         rx_blocks->block_dma_addr = tmp_p_addr;
668                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
669                                                   rxd_count[nic->rxd_mode],
670                                                   GFP_KERNEL);
671                         if (!rx_blocks->rxds)
672                                 return -ENOMEM;
673                         mem_allocated += 
674                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
675                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
676                                 rx_blocks->rxds[l].virt_addr =
677                                         rx_blocks->block_virt_addr +
678                                         (rxd_size[nic->rxd_mode] * l);
679                                 rx_blocks->rxds[l].dma_addr =
680                                         rx_blocks->block_dma_addr +
681                                         (rxd_size[nic->rxd_mode] * l);
682                         }
683                 }
684                 /* Interlinking all Rx Blocks */
685                 for (j = 0; j < blk_cnt; j++) {
686                         tmp_v_addr =
687                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
688                         tmp_v_addr_next =
689                                 mac_control->rings[i].rx_blocks[(j + 1) %
690                                               blk_cnt].block_virt_addr;
691                         tmp_p_addr =
692                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
693                         tmp_p_addr_next =
694                                 mac_control->rings[i].rx_blocks[(j + 1) %
695                                               blk_cnt].block_dma_addr;
696
697                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
698                         pre_rxd_blk->reserved_2_pNext_RxD_block =
699                             (unsigned long) tmp_v_addr_next;
700                         pre_rxd_blk->pNext_RxD_Blk_physical =
701                             (u64) tmp_p_addr_next;
702                 }
703         }
704         if (nic->rxd_mode == RXD_MODE_3B) {
705                 /*
706                  * Allocation of Storages for buffer addresses in 2BUFF mode
707                  * and the buffers as well.
708                  */
709                 for (i = 0; i < config->rx_ring_num; i++) {
710                         blk_cnt = config->rx_cfg[i].num_rxd /
711                            (rxd_count[nic->rxd_mode]+ 1);
712                         mac_control->rings[i].ba =
713                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
714                                      GFP_KERNEL);
715                         if (!mac_control->rings[i].ba)
716                                 return -ENOMEM;
717                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
718                         for (j = 0; j < blk_cnt; j++) {
719                                 int k = 0;
720                                 mac_control->rings[i].ba[j] =
721                                         kmalloc((sizeof(struct buffAdd) *
722                                                 (rxd_count[nic->rxd_mode] + 1)),
723                                                 GFP_KERNEL);
724                                 if (!mac_control->rings[i].ba[j])
725                                         return -ENOMEM;
726                                 mem_allocated += (sizeof(struct buffAdd) *  \
727                                         (rxd_count[nic->rxd_mode] + 1));
728                                 while (k != rxd_count[nic->rxd_mode]) {
729                                         ba = &mac_control->rings[i].ba[j][k];
730
731                                         ba->ba_0_org = (void *) kmalloc
732                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
733                                         if (!ba->ba_0_org)
734                                                 return -ENOMEM;
735                                         mem_allocated += 
736                                                 (BUF0_LEN + ALIGN_SIZE);
737                                         tmp = (unsigned long)ba->ba_0_org;
738                                         tmp += ALIGN_SIZE;
739                                         tmp &= ~((unsigned long) ALIGN_SIZE);
740                                         ba->ba_0 = (void *) tmp;
741
742                                         ba->ba_1_org = (void *) kmalloc
743                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
744                                         if (!ba->ba_1_org)
745                                                 return -ENOMEM;
746                                         mem_allocated 
747                                                 += (BUF1_LEN + ALIGN_SIZE);
748                                         tmp = (unsigned long) ba->ba_1_org;
749                                         tmp += ALIGN_SIZE;
750                                         tmp &= ~((unsigned long) ALIGN_SIZE);
751                                         ba->ba_1 = (void *) tmp;
752                                         k++;
753                                 }
754                         }
755                 }
756         }
757
758         /* Allocation and initialization of Statistics block */
759         size = sizeof(struct stat_block);
760         mac_control->stats_mem = pci_alloc_consistent
761             (nic->pdev, size, &mac_control->stats_mem_phy);
762
763         if (!mac_control->stats_mem) {
764                 /*
765                  * In case of failure, free_shared_mem() is called, which
766                  * should free any memory that was alloced till the
767                  * failure happened.
768                  */
769                 return -ENOMEM;
770         }
771         mem_allocated += size;
772         mac_control->stats_mem_sz = size;
773
774         tmp_v_addr = mac_control->stats_mem;
775         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
776         memset(tmp_v_addr, 0, size);
777         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
778                   (unsigned long long) tmp_p_addr);
779         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
780         return SUCCESS;
781 }
782
783 /**
784  * free_shared_mem - Free the allocated Memory
785  * @nic:  Device private variable.
786  * Description: This function is to free all memory locations allocated by
787  * the init_shared_mem() function and return it to the kernel.
788  */
789
790 static void free_shared_mem(struct s2io_nic *nic)
791 {
792         int i, j, blk_cnt, size;
793         u32 ufo_size = 0;
794         void *tmp_v_addr;
795         dma_addr_t tmp_p_addr;
796         struct mac_info *mac_control;
797         struct config_param *config;
798         int lst_size, lst_per_page;
799         struct net_device *dev;
800         int page_num = 0;
801
802         if (!nic)
803                 return;
804
805         dev = nic->dev;
806
807         mac_control = &nic->mac_control;
808         config = &nic->config;
809
810         lst_size = (sizeof(struct TxD) * config->max_txds);
811         lst_per_page = PAGE_SIZE / lst_size;
812
813         for (i = 0; i < config->tx_fifo_num; i++) {
814                 ufo_size += config->tx_cfg[i].fifo_len;
815                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
816                                                         lst_per_page);
817                 for (j = 0; j < page_num; j++) {
818                         int mem_blks = (j * lst_per_page);
819                         if (!mac_control->fifos[i].list_info)
820                                 return;
821                         if (!mac_control->fifos[i].list_info[mem_blks].
822                                  list_virt_addr)
823                                 break;
824                         pci_free_consistent(nic->pdev, PAGE_SIZE,
825                                             mac_control->fifos[i].
826                                             list_info[mem_blks].
827                                             list_virt_addr,
828                                             mac_control->fifos[i].
829                                             list_info[mem_blks].
830                                             list_phy_addr);
831                         nic->mac_control.stats_info->sw_stat.mem_freed 
832                                                 += PAGE_SIZE;
833                 }
834                 /* If we got a zero DMA address during allocation,
835                  * free the page now
836                  */
837                 if (mac_control->zerodma_virt_addr) {
838                         pci_free_consistent(nic->pdev, PAGE_SIZE,
839                                             mac_control->zerodma_virt_addr,
840                                             (dma_addr_t)0);
841                         DBG_PRINT(INIT_DBG,
842                                 "%s: Freeing TxDL with zero DMA addr. ",
843                                 dev->name);
844                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
845                                 mac_control->zerodma_virt_addr);
846                         nic->mac_control.stats_info->sw_stat.mem_freed 
847                                                 += PAGE_SIZE;
848                 }
849                 kfree(mac_control->fifos[i].list_info);
850                 nic->mac_control.stats_info->sw_stat.mem_freed += 
851                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
852         }
853
854         size = SIZE_OF_BLOCK;
855         for (i = 0; i < config->rx_ring_num; i++) {
856                 blk_cnt = mac_control->rings[i].block_count;
857                 for (j = 0; j < blk_cnt; j++) {
858                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
859                                 block_virt_addr;
860                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
861                                 block_dma_addr;
862                         if (tmp_v_addr == NULL)
863                                 break;
864                         pci_free_consistent(nic->pdev, size,
865                                             tmp_v_addr, tmp_p_addr);
866                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
867                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
868                         nic->mac_control.stats_info->sw_stat.mem_freed += 
869                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
870                 }
871         }
872
873         if (nic->rxd_mode == RXD_MODE_3B) {
874                 /* Freeing buffer storage addresses in 2BUFF mode. */
875                 for (i = 0; i < config->rx_ring_num; i++) {
876                         blk_cnt = config->rx_cfg[i].num_rxd /
877                             (rxd_count[nic->rxd_mode] + 1);
878                         for (j = 0; j < blk_cnt; j++) {
879                                 int k = 0;
880                                 if (!mac_control->rings[i].ba[j])
881                                         continue;
882                                 while (k != rxd_count[nic->rxd_mode]) {
883                                         struct buffAdd *ba =
884                                                 &mac_control->rings[i].ba[j][k];
885                                         kfree(ba->ba_0_org);
886                                         nic->mac_control.stats_info->sw_stat.\
887                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
888                                         kfree(ba->ba_1_org);
889                                         nic->mac_control.stats_info->sw_stat.\
890                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
891                                         k++;
892                                 }
893                                 kfree(mac_control->rings[i].ba[j]);
894                                 nic->mac_control.stats_info->sw_stat.mem_freed                          += (sizeof(struct buffAdd) * 
895                                 (rxd_count[nic->rxd_mode] + 1));
896                         }
897                         kfree(mac_control->rings[i].ba);
898                         nic->mac_control.stats_info->sw_stat.mem_freed += 
899                         (sizeof(struct buffAdd *) * blk_cnt);
900                 }
901         }
902
903         if (mac_control->stats_mem) {
904                 pci_free_consistent(nic->pdev,
905                                     mac_control->stats_mem_sz,
906                                     mac_control->stats_mem,
907                                     mac_control->stats_mem_phy);
908                 nic->mac_control.stats_info->sw_stat.mem_freed += 
909                         mac_control->stats_mem_sz;
910         }
911         if (nic->ufo_in_band_v) {
912                 kfree(nic->ufo_in_band_v);
913                 nic->mac_control.stats_info->sw_stat.mem_freed 
914                         += (ufo_size * sizeof(u64));
915         }
916 }
917
918 /**
919  * s2io_verify_pci_mode -
920  */
921
922 static int s2io_verify_pci_mode(struct s2io_nic *nic)
923 {
924         struct XENA_dev_config __iomem *bar0 = nic->bar0;
925         register u64 val64 = 0;
926         int     mode;
927
928         val64 = readq(&bar0->pci_mode);
929         mode = (u8)GET_PCI_MODE(val64);
930
931         if ( val64 & PCI_MODE_UNKNOWN_MODE)
932                 return -1;      /* Unknown PCI mode */
933         return mode;
934 }
935
936 #define NEC_VENID   0x1033
937 #define NEC_DEVID   0x0125
938 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
939 {
940         struct pci_dev *tdev = NULL;
941         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
942                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
943                         if (tdev->bus == s2io_pdev->bus->parent)
944                                 pci_dev_put(tdev);
945                                 return 1;
946                 }
947         }
948         return 0;
949 }
950
951 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
952 /**
953  * s2io_print_pci_mode -
954  */
955 static int s2io_print_pci_mode(struct s2io_nic *nic)
956 {
957         struct XENA_dev_config __iomem *bar0 = nic->bar0;
958         register u64 val64 = 0;
959         int     mode;
960         struct config_param *config = &nic->config;
961
962         val64 = readq(&bar0->pci_mode);
963         mode = (u8)GET_PCI_MODE(val64);
964
965         if ( val64 & PCI_MODE_UNKNOWN_MODE)
966                 return -1;      /* Unknown PCI mode */
967
968         config->bus_speed = bus_speed[mode];
969
970         if (s2io_on_nec_bridge(nic->pdev)) {
971                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
972                                                         nic->dev->name);
973                 return mode;
974         }
975
976         if (val64 & PCI_MODE_32_BITS) {
977                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
978         } else {
979                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
980         }
981
982         switch(mode) {
983                 case PCI_MODE_PCI_33:
984                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
985                         break;
986                 case PCI_MODE_PCI_66:
987                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
988                         break;
989                 case PCI_MODE_PCIX_M1_66:
990                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
991                         break;
992                 case PCI_MODE_PCIX_M1_100:
993                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
994                         break;
995                 case PCI_MODE_PCIX_M1_133:
996                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
997                         break;
998                 case PCI_MODE_PCIX_M2_66:
999                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1000                         break;
1001                 case PCI_MODE_PCIX_M2_100:
1002                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1003                         break;
1004                 case PCI_MODE_PCIX_M2_133:
1005                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1006                         break;
1007                 default:
1008                         return -1;      /* Unsupported bus speed */
1009         }
1010
1011         return mode;
1012 }
1013
1014 /**
1015  *  init_nic - Initialization of hardware
1016  *  @nic: device peivate variable
1017  *  Description: The function sequentially configures every block
1018  *  of the H/W from their reset values.
1019  *  Return Value:  SUCCESS on success and
1020  *  '-1' on failure (endian settings incorrect).
1021  */
1022
1023 static int init_nic(struct s2io_nic *nic)
1024 {
1025         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1026         struct net_device *dev = nic->dev;
1027         register u64 val64 = 0;
1028         void __iomem *add;
1029         u32 time;
1030         int i, j;
1031         struct mac_info *mac_control;
1032         struct config_param *config;
1033         int dtx_cnt = 0;
1034         unsigned long long mem_share;
1035         int mem_size;
1036
1037         mac_control = &nic->mac_control;
1038         config = &nic->config;
1039
1040         /* to set the swapper controle on the card */
1041         if(s2io_set_swapper(nic)) {
1042                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1043                 return -1;
1044         }
1045
1046         /*
1047          * Herc requires EOI to be removed from reset before XGXS, so..
1048          */
1049         if (nic->device_type & XFRAME_II_DEVICE) {
1050                 val64 = 0xA500000000ULL;
1051                 writeq(val64, &bar0->sw_reset);
1052                 msleep(500);
1053                 val64 = readq(&bar0->sw_reset);
1054         }
1055
1056         /* Remove XGXS from reset state */
1057         val64 = 0;
1058         writeq(val64, &bar0->sw_reset);
1059         msleep(500);
1060         val64 = readq(&bar0->sw_reset);
1061
1062         /*  Enable Receiving broadcasts */
1063         add = &bar0->mac_cfg;
1064         val64 = readq(&bar0->mac_cfg);
1065         val64 |= MAC_RMAC_BCAST_ENABLE;
1066         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1067         writel((u32) val64, add);
1068         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1069         writel((u32) (val64 >> 32), (add + 4));
1070
1071         /* Read registers in all blocks */
1072         val64 = readq(&bar0->mac_int_mask);
1073         val64 = readq(&bar0->mc_int_mask);
1074         val64 = readq(&bar0->xgxs_int_mask);
1075
1076         /*  Set MTU */
1077         val64 = dev->mtu;
1078         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1079
1080         if (nic->device_type & XFRAME_II_DEVICE) {
1081                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1082                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1083                                           &bar0->dtx_control, UF);
1084                         if (dtx_cnt & 0x1)
1085                                 msleep(1); /* Necessary!! */
1086                         dtx_cnt++;
1087                 }
1088         } else {
1089                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1090                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1091                                           &bar0->dtx_control, UF);
1092                         val64 = readq(&bar0->dtx_control);
1093                         dtx_cnt++;
1094                 }
1095         }
1096
1097         /*  Tx DMA Initialization */
1098         val64 = 0;
1099         writeq(val64, &bar0->tx_fifo_partition_0);
1100         writeq(val64, &bar0->tx_fifo_partition_1);
1101         writeq(val64, &bar0->tx_fifo_partition_2);
1102         writeq(val64, &bar0->tx_fifo_partition_3);
1103
1104
1105         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1106                 val64 |=
1107                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1108                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1109                                     ((i * 32) + 5), 3);
1110
1111                 if (i == (config->tx_fifo_num - 1)) {
1112                         if (i % 2 == 0)
1113                                 i++;
1114                 }
1115
1116                 switch (i) {
1117                 case 1:
1118                         writeq(val64, &bar0->tx_fifo_partition_0);
1119                         val64 = 0;
1120                         break;
1121                 case 3:
1122                         writeq(val64, &bar0->tx_fifo_partition_1);
1123                         val64 = 0;
1124                         break;
1125                 case 5:
1126                         writeq(val64, &bar0->tx_fifo_partition_2);
1127                         val64 = 0;
1128                         break;
1129                 case 7:
1130                         writeq(val64, &bar0->tx_fifo_partition_3);
1131                         break;
1132                 }
1133         }
1134
1135         /*
1136          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1137          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1138          */
1139         if ((nic->device_type == XFRAME_I_DEVICE) &&
1140                 (nic->pdev->revision < 4))
1141                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1142
1143         val64 = readq(&bar0->tx_fifo_partition_0);
1144         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1145                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1146
1147         /*
1148          * Initialization of Tx_PA_CONFIG register to ignore packet
1149          * integrity checking.
1150          */
1151         val64 = readq(&bar0->tx_pa_cfg);
1152         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1153             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1154         writeq(val64, &bar0->tx_pa_cfg);
1155
1156         /* Rx DMA intialization. */
1157         val64 = 0;
1158         for (i = 0; i < config->rx_ring_num; i++) {
1159                 val64 |=
1160                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1161                          3);
1162         }
1163         writeq(val64, &bar0->rx_queue_priority);
1164
1165         /*
1166          * Allocating equal share of memory to all the
1167          * configured Rings.
1168          */
1169         val64 = 0;
1170         if (nic->device_type & XFRAME_II_DEVICE)
1171                 mem_size = 32;
1172         else
1173                 mem_size = 64;
1174
1175         for (i = 0; i < config->rx_ring_num; i++) {
1176                 switch (i) {
1177                 case 0:
1178                         mem_share = (mem_size / config->rx_ring_num +
1179                                      mem_size % config->rx_ring_num);
1180                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1181                         continue;
1182                 case 1:
1183                         mem_share = (mem_size / config->rx_ring_num);
1184                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1185                         continue;
1186                 case 2:
1187                         mem_share = (mem_size / config->rx_ring_num);
1188                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1189                         continue;
1190                 case 3:
1191                         mem_share = (mem_size / config->rx_ring_num);
1192                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1193                         continue;
1194                 case 4:
1195                         mem_share = (mem_size / config->rx_ring_num);
1196                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1197                         continue;
1198                 case 5:
1199                         mem_share = (mem_size / config->rx_ring_num);
1200                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1201                         continue;
1202                 case 6:
1203                         mem_share = (mem_size / config->rx_ring_num);
1204                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1205                         continue;
1206                 case 7:
1207                         mem_share = (mem_size / config->rx_ring_num);
1208                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1209                         continue;
1210                 }
1211         }
1212         writeq(val64, &bar0->rx_queue_cfg);
1213
1214         /*
1215          * Filling Tx round robin registers
1216          * as per the number of FIFOs
1217          */
1218         switch (config->tx_fifo_num) {
1219         case 1:
1220                 val64 = 0x0000000000000000ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_0);
1222                 writeq(val64, &bar0->tx_w_round_robin_1);
1223                 writeq(val64, &bar0->tx_w_round_robin_2);
1224                 writeq(val64, &bar0->tx_w_round_robin_3);
1225                 writeq(val64, &bar0->tx_w_round_robin_4);
1226                 break;
1227         case 2:
1228                 val64 = 0x0000010000010000ULL;
1229                 writeq(val64, &bar0->tx_w_round_robin_0);
1230                 val64 = 0x0100000100000100ULL;
1231                 writeq(val64, &bar0->tx_w_round_robin_1);
1232                 val64 = 0x0001000001000001ULL;
1233                 writeq(val64, &bar0->tx_w_round_robin_2);
1234                 val64 = 0x0000010000010000ULL;
1235                 writeq(val64, &bar0->tx_w_round_robin_3);
1236                 val64 = 0x0100000000000000ULL;
1237                 writeq(val64, &bar0->tx_w_round_robin_4);
1238                 break;
1239         case 3:
1240                 val64 = 0x0001000102000001ULL;
1241                 writeq(val64, &bar0->tx_w_round_robin_0);
1242                 val64 = 0x0001020000010001ULL;
1243                 writeq(val64, &bar0->tx_w_round_robin_1);
1244                 val64 = 0x0200000100010200ULL;
1245                 writeq(val64, &bar0->tx_w_round_robin_2);
1246                 val64 = 0x0001000102000001ULL;
1247                 writeq(val64, &bar0->tx_w_round_robin_3);
1248                 val64 = 0x0001020000000000ULL;
1249                 writeq(val64, &bar0->tx_w_round_robin_4);
1250                 break;
1251         case 4:
1252                 val64 = 0x0001020300010200ULL;
1253                 writeq(val64, &bar0->tx_w_round_robin_0);
1254                 val64 = 0x0100000102030001ULL;
1255                 writeq(val64, &bar0->tx_w_round_robin_1);
1256                 val64 = 0x0200010000010203ULL;
1257                 writeq(val64, &bar0->tx_w_round_robin_2);
1258                 val64 = 0x0001020001000001ULL;
1259                 writeq(val64, &bar0->tx_w_round_robin_3);
1260                 val64 = 0x0203000100000000ULL;
1261                 writeq(val64, &bar0->tx_w_round_robin_4);
1262                 break;
1263         case 5:
1264                 val64 = 0x0001000203000102ULL;
1265                 writeq(val64, &bar0->tx_w_round_robin_0);
1266                 val64 = 0x0001020001030004ULL;
1267                 writeq(val64, &bar0->tx_w_round_robin_1);
1268                 val64 = 0x0001000203000102ULL;
1269                 writeq(val64, &bar0->tx_w_round_robin_2);
1270                 val64 = 0x0001020001030004ULL;
1271                 writeq(val64, &bar0->tx_w_round_robin_3);
1272                 val64 = 0x0001000000000000ULL;
1273                 writeq(val64, &bar0->tx_w_round_robin_4);
1274                 break;
1275         case 6:
1276                 val64 = 0x0001020304000102ULL;
1277                 writeq(val64, &bar0->tx_w_round_robin_0);
1278                 val64 = 0x0304050001020001ULL;
1279                 writeq(val64, &bar0->tx_w_round_robin_1);
1280                 val64 = 0x0203000100000102ULL;
1281                 writeq(val64, &bar0->tx_w_round_robin_2);
1282                 val64 = 0x0304000102030405ULL;
1283                 writeq(val64, &bar0->tx_w_round_robin_3);
1284                 val64 = 0x0001000200000000ULL;
1285                 writeq(val64, &bar0->tx_w_round_robin_4);
1286                 break;
1287         case 7:
1288                 val64 = 0x0001020001020300ULL;
1289                 writeq(val64, &bar0->tx_w_round_robin_0);
1290                 val64 = 0x0102030400010203ULL;
1291                 writeq(val64, &bar0->tx_w_round_robin_1);
1292                 val64 = 0x0405060001020001ULL;
1293                 writeq(val64, &bar0->tx_w_round_robin_2);
1294                 val64 = 0x0304050000010200ULL;
1295                 writeq(val64, &bar0->tx_w_round_robin_3);
1296                 val64 = 0x0102030000000000ULL;
1297                 writeq(val64, &bar0->tx_w_round_robin_4);
1298                 break;
1299         case 8:
1300                 val64 = 0x0001020300040105ULL;
1301                 writeq(val64, &bar0->tx_w_round_robin_0);
1302                 val64 = 0x0200030106000204ULL;
1303                 writeq(val64, &bar0->tx_w_round_robin_1);
1304                 val64 = 0x0103000502010007ULL;
1305                 writeq(val64, &bar0->tx_w_round_robin_2);
1306                 val64 = 0x0304010002060500ULL;
1307                 writeq(val64, &bar0->tx_w_round_robin_3);
1308                 val64 = 0x0103020400000000ULL;
1309                 writeq(val64, &bar0->tx_w_round_robin_4);
1310                 break;
1311         }
1312
1313         /* Enable all configured Tx FIFO partitions */
1314         val64 = readq(&bar0->tx_fifo_partition_0);
1315         val64 |= (TX_FIFO_PARTITION_EN);
1316         writeq(val64, &bar0->tx_fifo_partition_0);
1317
1318         /* Filling the Rx round robin registers as per the
1319          * number of Rings and steering based on QoS.
1320          */
1321         switch (config->rx_ring_num) {
1322         case 1:
1323                 val64 = 0x8080808080808080ULL;
1324                 writeq(val64, &bar0->rts_qos_steering);
1325                 break;
1326         case 2:
1327                 val64 = 0x0000010000010000ULL;
1328                 writeq(val64, &bar0->rx_w_round_robin_0);
1329                 val64 = 0x0100000100000100ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_1);
1331                 val64 = 0x0001000001000001ULL;
1332                 writeq(val64, &bar0->rx_w_round_robin_2);
1333                 val64 = 0x0000010000010000ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_3);
1335                 val64 = 0x0100000000000000ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_4);
1337
1338                 val64 = 0x8080808040404040ULL;
1339                 writeq(val64, &bar0->rts_qos_steering);
1340                 break;
1341         case 3:
1342                 val64 = 0x0001000102000001ULL;
1343                 writeq(val64, &bar0->rx_w_round_robin_0);
1344                 val64 = 0x0001020000010001ULL;
1345                 writeq(val64, &bar0->rx_w_round_robin_1);
1346                 val64 = 0x0200000100010200ULL;
1347                 writeq(val64, &bar0->rx_w_round_robin_2);
1348                 val64 = 0x0001000102000001ULL;
1349                 writeq(val64, &bar0->rx_w_round_robin_3);
1350                 val64 = 0x0001020000000000ULL;
1351                 writeq(val64, &bar0->rx_w_round_robin_4);
1352
1353                 val64 = 0x8080804040402020ULL;
1354                 writeq(val64, &bar0->rts_qos_steering);
1355                 break;
1356         case 4:
1357                 val64 = 0x0001020300010200ULL;
1358                 writeq(val64, &bar0->rx_w_round_robin_0);
1359                 val64 = 0x0100000102030001ULL;
1360                 writeq(val64, &bar0->rx_w_round_robin_1);
1361                 val64 = 0x0200010000010203ULL;
1362                 writeq(val64, &bar0->rx_w_round_robin_2);
1363                 val64 = 0x0001020001000001ULL;
1364                 writeq(val64, &bar0->rx_w_round_robin_3);
1365                 val64 = 0x0203000100000000ULL;
1366                 writeq(val64, &bar0->rx_w_round_robin_4);
1367
1368                 val64 = 0x8080404020201010ULL;
1369                 writeq(val64, &bar0->rts_qos_steering);
1370                 break;
1371         case 5:
1372                 val64 = 0x0001000203000102ULL;
1373                 writeq(val64, &bar0->rx_w_round_robin_0);
1374                 val64 = 0x0001020001030004ULL;
1375                 writeq(val64, &bar0->rx_w_round_robin_1);
1376                 val64 = 0x0001000203000102ULL;
1377                 writeq(val64, &bar0->rx_w_round_robin_2);
1378                 val64 = 0x0001020001030004ULL;
1379                 writeq(val64, &bar0->rx_w_round_robin_3);
1380                 val64 = 0x0001000000000000ULL;
1381                 writeq(val64, &bar0->rx_w_round_robin_4);
1382
1383                 val64 = 0x8080404020201008ULL;
1384                 writeq(val64, &bar0->rts_qos_steering);
1385                 break;
1386         case 6:
1387                 val64 = 0x0001020304000102ULL;
1388                 writeq(val64, &bar0->rx_w_round_robin_0);
1389                 val64 = 0x0304050001020001ULL;
1390                 writeq(val64, &bar0->rx_w_round_robin_1);
1391                 val64 = 0x0203000100000102ULL;
1392                 writeq(val64, &bar0->rx_w_round_robin_2);
1393                 val64 = 0x0304000102030405ULL;
1394                 writeq(val64, &bar0->rx_w_round_robin_3);
1395                 val64 = 0x0001000200000000ULL;
1396                 writeq(val64, &bar0->rx_w_round_robin_4);
1397
1398                 val64 = 0x8080404020100804ULL;
1399                 writeq(val64, &bar0->rts_qos_steering);
1400                 break;
1401         case 7:
1402                 val64 = 0x0001020001020300ULL;
1403                 writeq(val64, &bar0->rx_w_round_robin_0);
1404                 val64 = 0x0102030400010203ULL;
1405                 writeq(val64, &bar0->rx_w_round_robin_1);
1406                 val64 = 0x0405060001020001ULL;
1407                 writeq(val64, &bar0->rx_w_round_robin_2);
1408                 val64 = 0x0304050000010200ULL;
1409                 writeq(val64, &bar0->rx_w_round_robin_3);
1410                 val64 = 0x0102030000000000ULL;
1411                 writeq(val64, &bar0->rx_w_round_robin_4);
1412
1413                 val64 = 0x8080402010080402ULL;
1414                 writeq(val64, &bar0->rts_qos_steering);
1415                 break;
1416         case 8:
1417                 val64 = 0x0001020300040105ULL;
1418                 writeq(val64, &bar0->rx_w_round_robin_0);
1419                 val64 = 0x0200030106000204ULL;
1420                 writeq(val64, &bar0->rx_w_round_robin_1);
1421                 val64 = 0x0103000502010007ULL;
1422                 writeq(val64, &bar0->rx_w_round_robin_2);
1423                 val64 = 0x0304010002060500ULL;
1424                 writeq(val64, &bar0->rx_w_round_robin_3);
1425                 val64 = 0x0103020400000000ULL;
1426                 writeq(val64, &bar0->rx_w_round_robin_4);
1427
1428                 val64 = 0x8040201008040201ULL;
1429                 writeq(val64, &bar0->rts_qos_steering);
1430                 break;
1431         }
1432
1433         /* UDP Fix */
1434         val64 = 0;
1435         for (i = 0; i < 8; i++)
1436                 writeq(val64, &bar0->rts_frm_len_n[i]);
1437
1438         /* Set the default rts frame length for the rings configured */
1439         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1440         for (i = 0 ; i < config->rx_ring_num ; i++)
1441                 writeq(val64, &bar0->rts_frm_len_n[i]);
1442
1443         /* Set the frame length for the configured rings
1444          * desired by the user
1445          */
1446         for (i = 0; i < config->rx_ring_num; i++) {
1447                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1448                  * specified frame length steering.
1449                  * If the user provides the frame length then program
1450                  * the rts_frm_len register for those values or else
1451                  * leave it as it is.
1452                  */
1453                 if (rts_frm_len[i] != 0) {
1454                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1455                                 &bar0->rts_frm_len_n[i]);
1456                 }
1457         }
1458         
1459         /* Disable differentiated services steering logic */
1460         for (i = 0; i < 64; i++) {
1461                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1462                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1463                                 dev->name);
1464                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1465                         return FAILURE;
1466                 }
1467         }
1468
1469         /* Program statistics memory */
1470         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1471
1472         if (nic->device_type == XFRAME_II_DEVICE) {
1473                 val64 = STAT_BC(0x320);
1474                 writeq(val64, &bar0->stat_byte_cnt);
1475         }
1476
1477         /*
1478          * Initializing the sampling rate for the device to calculate the
1479          * bandwidth utilization.
1480          */
1481         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1482             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1483         writeq(val64, &bar0->mac_link_util);
1484
1485
1486         /*
1487          * Initializing the Transmit and Receive Traffic Interrupt
1488          * Scheme.
1489          */
1490         /*
1491          * TTI Initialization. Default Tx timer gets us about
1492          * 250 interrupts per sec. Continuous interrupts are enabled
1493          * by default.
1494          */
1495         if (nic->device_type == XFRAME_II_DEVICE) {
1496                 int count = (nic->config.bus_speed * 125)/2;
1497                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1498         } else {
1499
1500                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1501         }
1502         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1503             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1504             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1505                 if (use_continuous_tx_intrs)
1506                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1507         writeq(val64, &bar0->tti_data1_mem);
1508
1509         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1510             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1511             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1512         writeq(val64, &bar0->tti_data2_mem);
1513
1514         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1515         writeq(val64, &bar0->tti_command_mem);
1516
1517         /*
1518          * Once the operation completes, the Strobe bit of the command
1519          * register will be reset. We poll for this particular condition
1520          * We wait for a maximum of 500ms for the operation to complete,
1521          * if it's not complete by then we return error.
1522          */
1523         time = 0;
1524         while (TRUE) {
1525                 val64 = readq(&bar0->tti_command_mem);
1526                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1527                         break;
1528                 }
1529                 if (time > 10) {
1530                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1531                                   dev->name);
1532                         return -1;
1533                 }
1534                 msleep(50);
1535                 time++;
1536         }
1537
1538         if (nic->config.bimodal) {
1539                 int k = 0;
1540                 for (k = 0; k < config->rx_ring_num; k++) {
1541                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1542                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1543                         writeq(val64, &bar0->tti_command_mem);
1544
1545                 /*
1546                  * Once the operation completes, the Strobe bit of the command
1547                  * register will be reset. We poll for this particular condition
1548                  * We wait for a maximum of 500ms for the operation to complete,
1549                  * if it's not complete by then we return error.
1550                 */
1551                         time = 0;
1552                         while (TRUE) {
1553                                 val64 = readq(&bar0->tti_command_mem);
1554                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1555                                         break;
1556                                 }
1557                                 if (time > 10) {
1558                                         DBG_PRINT(ERR_DBG,
1559                                                 "%s: TTI init Failed\n",
1560                                         dev->name);
1561                                         return -1;
1562                                 }
1563                                 time++;
1564                                 msleep(50);
1565                         }
1566                 }
1567         } else {
1568
1569                 /* RTI Initialization */
1570                 if (nic->device_type == XFRAME_II_DEVICE) {
1571                         /*
1572                          * Programmed to generate Apprx 500 Intrs per
1573                          * second
1574                          */
1575                         int count = (nic->config.bus_speed * 125)/4;
1576                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1577                 } else {
1578                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1579                 }
1580                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1581                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1582                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1583
1584                 writeq(val64, &bar0->rti_data1_mem);
1585
1586                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1587                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1588                 if (nic->intr_type == MSI_X)
1589                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1590                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1591                 else
1592                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1593                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1594                 writeq(val64, &bar0->rti_data2_mem);
1595
1596                 for (i = 0; i < config->rx_ring_num; i++) {
1597                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1598                                         | RTI_CMD_MEM_OFFSET(i);
1599                         writeq(val64, &bar0->rti_command_mem);
1600
1601                         /*
1602                          * Once the operation completes, the Strobe bit of the
1603                          * command register will be reset. We poll for this
1604                          * particular condition. We wait for a maximum of 500ms
1605                          * for the operation to complete, if it's not complete
1606                          * by then we return error.
1607                          */
1608                         time = 0;
1609                         while (TRUE) {
1610                                 val64 = readq(&bar0->rti_command_mem);
1611                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1612                                         break;
1613                                 }
1614                                 if (time > 10) {
1615                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1616                                                   dev->name);
1617                                         return -1;
1618                                 }
1619                                 time++;
1620                                 msleep(50);
1621                         }
1622                 }
1623         }
1624
1625         /*
1626          * Initializing proper values as Pause threshold into all
1627          * the 8 Queues on Rx side.
1628          */
1629         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1630         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1631
1632         /* Disable RMAC PAD STRIPPING */
1633         add = &bar0->mac_cfg;
1634         val64 = readq(&bar0->mac_cfg);
1635         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1636         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1637         writel((u32) (val64), add);
1638         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1639         writel((u32) (val64 >> 32), (add + 4));
1640         val64 = readq(&bar0->mac_cfg);
1641
1642         /* Enable FCS stripping by adapter */
1643         add = &bar0->mac_cfg;
1644         val64 = readq(&bar0->mac_cfg);
1645         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1646         if (nic->device_type == XFRAME_II_DEVICE)
1647                 writeq(val64, &bar0->mac_cfg);
1648         else {
1649                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1650                 writel((u32) (val64), add);
1651                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1652                 writel((u32) (val64 >> 32), (add + 4));
1653         }
1654
1655         /*
1656          * Set the time value to be inserted in the pause frame
1657          * generated by xena.
1658          */
1659         val64 = readq(&bar0->rmac_pause_cfg);
1660         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1661         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1662         writeq(val64, &bar0->rmac_pause_cfg);
1663
1664         /*
1665          * Set the Threshold Limit for Generating the pause frame
1666          * If the amount of data in any Queue exceeds ratio of
1667          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1668          * pause frame is generated
1669          */
1670         val64 = 0;
1671         for (i = 0; i < 4; i++) {
1672                 val64 |=
1673                     (((u64) 0xFF00 | nic->mac_control.
1674                       mc_pause_threshold_q0q3)
1675                      << (i * 2 * 8));
1676         }
1677         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1678
1679         val64 = 0;
1680         for (i = 0; i < 4; i++) {
1681                 val64 |=
1682                     (((u64) 0xFF00 | nic->mac_control.
1683                       mc_pause_threshold_q4q7)
1684                      << (i * 2 * 8));
1685         }
1686         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1687
1688         /*
1689          * TxDMA will stop Read request if the number of read split has
1690          * exceeded the limit pointed by shared_splits
1691          */
1692         val64 = readq(&bar0->pic_control);
1693         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1694         writeq(val64, &bar0->pic_control);
1695
1696         if (nic->config.bus_speed == 266) {
1697                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1698                 writeq(0x0, &bar0->read_retry_delay);
1699                 writeq(0x0, &bar0->write_retry_delay);
1700         }
1701
1702         /*
1703          * Programming the Herc to split every write transaction
1704          * that does not start on an ADB to reduce disconnects.
1705          */
1706         if (nic->device_type == XFRAME_II_DEVICE) {
1707                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1708                         MISC_LINK_STABILITY_PRD(3);
1709                 writeq(val64, &bar0->misc_control);
1710                 val64 = readq(&bar0->pic_control2);
1711                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1712                 writeq(val64, &bar0->pic_control2);
1713         }
1714         if (strstr(nic->product_name, "CX4")) {
1715                 val64 = TMAC_AVG_IPG(0x17);
1716                 writeq(val64, &bar0->tmac_avg_ipg);
1717         }
1718
1719         return SUCCESS;
1720 }
1721 #define LINK_UP_DOWN_INTERRUPT          1
1722 #define MAC_RMAC_ERR_TIMER              2
1723
1724 static int s2io_link_fault_indication(struct s2io_nic *nic)
1725 {
1726         if (nic->intr_type != INTA)
1727                 return MAC_RMAC_ERR_TIMER;
1728         if (nic->device_type == XFRAME_II_DEVICE)
1729                 return LINK_UP_DOWN_INTERRUPT;
1730         else
1731                 return MAC_RMAC_ERR_TIMER;
1732 }
1733
1734 /**
1735  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1736  *  @nic: device private variable,
1737  *  @mask: A mask indicating which Intr block must be modified and,
1738  *  @flag: A flag indicating whether to enable or disable the Intrs.
1739  *  Description: This function will either disable or enable the interrupts
1740  *  depending on the flag argument. The mask argument can be used to
1741  *  enable/disable any Intr block.
1742  *  Return Value: NONE.
1743  */
1744
1745 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1746 {
1747         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1748         register u64 val64 = 0, temp64 = 0;
1749
1750         /*  Top level interrupt classification */
1751         /*  PIC Interrupts */
1752         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1753                 /*  Enable PIC Intrs in the general intr mask register */
1754                 val64 = TXPIC_INT_M;
1755                 if (flag == ENABLE_INTRS) {
1756                         temp64 = readq(&bar0->general_int_mask);
1757                         temp64 &= ~((u64) val64);
1758                         writeq(temp64, &bar0->general_int_mask);
1759                         /*
1760                          * If Hercules adapter enable GPIO otherwise
1761                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1762                          * interrupts for now.
1763                          * TODO
1764                          */
1765                         if (s2io_link_fault_indication(nic) ==
1766                                         LINK_UP_DOWN_INTERRUPT ) {
1767                                 temp64 = readq(&bar0->pic_int_mask);
1768                                 temp64 &= ~((u64) PIC_INT_GPIO);
1769                                 writeq(temp64, &bar0->pic_int_mask);
1770                                 temp64 = readq(&bar0->gpio_int_mask);
1771                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1772                                 writeq(temp64, &bar0->gpio_int_mask);
1773                         } else {
1774                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1775                         }
1776                         /*
1777                          * No MSI Support is available presently, so TTI and
1778                          * RTI interrupts are also disabled.
1779                          */
1780                 } else if (flag == DISABLE_INTRS) {
1781                         /*
1782                          * Disable PIC Intrs in the general
1783                          * intr mask register
1784                          */
1785                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1786                         temp64 = readq(&bar0->general_int_mask);
1787                         val64 |= temp64;
1788                         writeq(val64, &bar0->general_int_mask);
1789                 }
1790         }
1791
1792         /*  MAC Interrupts */
1793         /*  Enabling/Disabling MAC interrupts */
1794         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1795                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1796                 if (flag == ENABLE_INTRS) {
1797                         temp64 = readq(&bar0->general_int_mask);
1798                         temp64 &= ~((u64) val64);
1799                         writeq(temp64, &bar0->general_int_mask);
1800                         /*
1801                          * All MAC block error interrupts are disabled for now
1802                          * TODO
1803                          */
1804                 } else if (flag == DISABLE_INTRS) {
1805                         /*
1806                          * Disable MAC Intrs in the general intr mask register
1807                          */
1808                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1809                         writeq(DISABLE_ALL_INTRS,
1810                                &bar0->mac_rmac_err_mask);
1811
1812                         temp64 = readq(&bar0->general_int_mask);
1813                         val64 |= temp64;
1814                         writeq(val64, &bar0->general_int_mask);
1815                 }
1816         }
1817
1818         /*  Tx traffic interrupts */
1819         if (mask & TX_TRAFFIC_INTR) {
1820                 val64 = TXTRAFFIC_INT_M;
1821                 if (flag == ENABLE_INTRS) {
1822                         temp64 = readq(&bar0->general_int_mask);
1823                         temp64 &= ~((u64) val64);
1824                         writeq(temp64, &bar0->general_int_mask);
1825                         /*
1826                          * Enable all the Tx side interrupts
1827                          * writing 0 Enables all 64 TX interrupt levels
1828                          */
1829                         writeq(0x0, &bar0->tx_traffic_mask);
1830                 } else if (flag == DISABLE_INTRS) {
1831                         /*
1832                          * Disable Tx Traffic Intrs in the general intr mask
1833                          * register.
1834                          */
1835                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1836                         temp64 = readq(&bar0->general_int_mask);
1837                         val64 |= temp64;
1838                         writeq(val64, &bar0->general_int_mask);
1839                 }
1840         }
1841
1842         /*  Rx traffic interrupts */
1843         if (mask & RX_TRAFFIC_INTR) {
1844                 val64 = RXTRAFFIC_INT_M;
1845                 if (flag == ENABLE_INTRS) {
1846                         temp64 = readq(&bar0->general_int_mask);
1847                         temp64 &= ~((u64) val64);
1848                         writeq(temp64, &bar0->general_int_mask);
1849                         /* writing 0 Enables all 8 RX interrupt levels */
1850                         writeq(0x0, &bar0->rx_traffic_mask);
1851                 } else if (flag == DISABLE_INTRS) {
1852                         /*
1853                          * Disable Rx Traffic Intrs in the general intr mask
1854                          * register.
1855                          */
1856                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1857                         temp64 = readq(&bar0->general_int_mask);
1858                         val64 |= temp64;
1859                         writeq(val64, &bar0->general_int_mask);
1860                 }
1861         }
1862 }
1863
1864 /**
1865  *  verify_pcc_quiescent- Checks for PCC quiescent state
1866  *  Return: 1 If PCC is quiescence
1867  *          0 If PCC is not quiescence
1868  */
1869 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1870 {
1871         int ret = 0, herc;
1872         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1873         u64 val64 = readq(&bar0->adapter_status);
1874         
1875         herc = (sp->device_type == XFRAME_II_DEVICE);
1876
1877         if (flag == FALSE) {
1878                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1879                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1880                                 ret = 1;
1881                 } else {
1882                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1883                                 ret = 1;
1884                 }
1885         } else {
1886                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1887                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1888                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1889                                 ret = 1;
1890                 } else {
1891                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1892                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1893                                 ret = 1;
1894                 }
1895         }
1896
1897         return ret;
1898 }
1899 /**
1900  *  verify_xena_quiescence - Checks whether the H/W is ready
1901  *  Description: Returns whether the H/W is ready to go or not. Depending
1902  *  on whether adapter enable bit was written or not the comparison
1903  *  differs and the calling function passes the input argument flag to
1904  *  indicate this.
1905  *  Return: 1 If xena is quiescence
1906  *          0 If Xena is not quiescence
1907  */
1908
1909 static int verify_xena_quiescence(struct s2io_nic *sp)
1910 {
1911         int  mode;
1912         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1913         u64 val64 = readq(&bar0->adapter_status);
1914         mode = s2io_verify_pci_mode(sp);
1915
1916         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1917                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1918                 return 0;
1919         }
1920         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1921         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1922                 return 0;
1923         }
1924         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1925                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1926                 return 0;
1927         }
1928         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1929                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1930                 return 0;
1931         }
1932         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1933                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1934                 return 0;
1935         }
1936         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1937                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1938                 return 0;
1939         }
1940         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1941                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1942                 return 0;
1943         }
1944         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1945                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1946                 return 0;
1947         }
1948
1949         /*
1950          * In PCI 33 mode, the P_PLL is not used, and therefore,
1951          * the the P_PLL_LOCK bit in the adapter_status register will
1952          * not be asserted.
1953          */
1954         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1955                 sp->device_type == XFRAME_II_DEVICE && mode !=
1956                 PCI_MODE_PCI_33) {
1957                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1958                 return 0;
1959         }
1960         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1961                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1962                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1963                 return 0;
1964         }
1965         return 1;
1966 }
1967
1968 /**
1969  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1970  * @sp: Pointer to device specifc structure
1971  * Description :
1972  * New procedure to clear mac address reading  problems on Alpha platforms
1973  *
1974  */
1975
1976 static void fix_mac_address(struct s2io_nic * sp)
1977 {
1978         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1979         u64 val64;
1980         int i = 0;
1981
1982         while (fix_mac[i] != END_SIGN) {
1983                 writeq(fix_mac[i++], &bar0->gpio_control);
1984                 udelay(10);
1985                 val64 = readq(&bar0->gpio_control);
1986         }
1987 }
1988
1989 /**
1990  *  start_nic - Turns the device on
1991  *  @nic : device private variable.
1992  *  Description:
1993  *  This function actually turns the device on. Before this  function is
1994  *  called,all Registers are configured from their reset states
1995  *  and shared memory is allocated but the NIC is still quiescent. On
1996  *  calling this function, the device interrupts are cleared and the NIC is
1997  *  literally switched on by writing into the adapter control register.
1998  *  Return Value:
1999  *  SUCCESS on success and -1 on failure.
2000  */
2001
2002 static int start_nic(struct s2io_nic *nic)
2003 {
2004         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2005         struct net_device *dev = nic->dev;
2006         register u64 val64 = 0;
2007         u16 subid, i;
2008         struct mac_info *mac_control;
2009         struct config_param *config;
2010
2011         mac_control = &nic->mac_control;
2012         config = &nic->config;
2013
2014         /*  PRC Initialization and configuration */
2015         for (i = 0; i < config->rx_ring_num; i++) {
2016                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2017                        &bar0->prc_rxd0_n[i]);
2018
2019                 val64 = readq(&bar0->prc_ctrl_n[i]);
2020                 if (nic->config.bimodal)
2021                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2022                 if (nic->rxd_mode == RXD_MODE_1)
2023                         val64 |= PRC_CTRL_RC_ENABLED;
2024                 else
2025                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2026                 if (nic->device_type == XFRAME_II_DEVICE)
2027                         val64 |= PRC_CTRL_GROUP_READS;
2028                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2029                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2030                 writeq(val64, &bar0->prc_ctrl_n[i]);
2031         }
2032
2033         if (nic->rxd_mode == RXD_MODE_3B) {
2034                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2035                 val64 = readq(&bar0->rx_pa_cfg);
2036                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2037                 writeq(val64, &bar0->rx_pa_cfg);
2038         }
2039
2040         if (vlan_tag_strip == 0) {
2041                 val64 = readq(&bar0->rx_pa_cfg);
2042                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2043                 writeq(val64, &bar0->rx_pa_cfg);
2044                 vlan_strip_flag = 0;
2045         }
2046
2047         /*
2048          * Enabling MC-RLDRAM. After enabling the device, we timeout
2049          * for around 100ms, which is approximately the time required
2050          * for the device to be ready for operation.
2051          */
2052         val64 = readq(&bar0->mc_rldram_mrs);
2053         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2054         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2055         val64 = readq(&bar0->mc_rldram_mrs);
2056
2057         msleep(100);    /* Delay by around 100 ms. */
2058
2059         /* Enabling ECC Protection. */
2060         val64 = readq(&bar0->adapter_control);
2061         val64 &= ~ADAPTER_ECC_EN;
2062         writeq(val64, &bar0->adapter_control);
2063
2064         /*
2065          * Clearing any possible Link state change interrupts that
2066          * could have popped up just before Enabling the card.
2067          */
2068         val64 = readq(&bar0->mac_rmac_err_reg);
2069         if (val64)
2070                 writeq(val64, &bar0->mac_rmac_err_reg);
2071
2072         /*
2073          * Verify if the device is ready to be enabled, if so enable
2074          * it.
2075          */
2076         val64 = readq(&bar0->adapter_status);
2077         if (!verify_xena_quiescence(nic)) {
2078                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2079                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2080                           (unsigned long long) val64);
2081                 return FAILURE;
2082         }
2083
2084         /*
2085          * With some switches, link might be already up at this point.
2086          * Because of this weird behavior, when we enable laser,
2087          * we may not get link. We need to handle this. We cannot
2088          * figure out which switch is misbehaving. So we are forced to
2089          * make a global change.
2090          */
2091
2092         /* Enabling Laser. */
2093         val64 = readq(&bar0->adapter_control);
2094         val64 |= ADAPTER_EOI_TX_ON;
2095         writeq(val64, &bar0->adapter_control);
2096
2097         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2098                 /*
2099                  * Dont see link state interrupts initally on some switches,
2100                  * so directly scheduling the link state task here.
2101                  */
2102                 schedule_work(&nic->set_link_task);
2103         }
2104         /* SXE-002: Initialize link and activity LED */
2105         subid = nic->pdev->subsystem_device;
2106         if (((subid & 0xFF) >= 0x07) &&
2107             (nic->device_type == XFRAME_I_DEVICE)) {
2108                 val64 = readq(&bar0->gpio_control);
2109                 val64 |= 0x0000800000000000ULL;
2110                 writeq(val64, &bar0->gpio_control);
2111                 val64 = 0x0411040400000000ULL;
2112                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2113         }
2114
2115         return SUCCESS;
2116 }
2117 /**
2118  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2119  */
2120 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2121                                         TxD *txdlp, int get_off)
2122 {
2123         struct s2io_nic *nic = fifo_data->nic;
2124         struct sk_buff *skb;
2125         struct TxD *txds;
2126         u16 j, frg_cnt;
2127
2128         txds = txdlp;
2129         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2130                 pci_unmap_single(nic->pdev, (dma_addr_t)
2131                         txds->Buffer_Pointer, sizeof(u64),
2132                         PCI_DMA_TODEVICE);
2133                 txds++;
2134         }
2135
2136         skb = (struct sk_buff *) ((unsigned long)
2137                         txds->Host_Control);
2138         if (!skb) {
2139                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2140                 return NULL;
2141         }
2142         pci_unmap_single(nic->pdev, (dma_addr_t)
2143                          txds->Buffer_Pointer,
2144                          skb->len - skb->data_len,
2145                          PCI_DMA_TODEVICE);
2146         frg_cnt = skb_shinfo(skb)->nr_frags;
2147         if (frg_cnt) {
2148                 txds++;
2149                 for (j = 0; j < frg_cnt; j++, txds++) {
2150                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2151                         if (!txds->Buffer_Pointer)
2152                                 break;
2153                         pci_unmap_page(nic->pdev, (dma_addr_t)
2154                                         txds->Buffer_Pointer,
2155                                        frag->size, PCI_DMA_TODEVICE);
2156                 }
2157         }
2158         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2159         return(skb);
2160 }
2161
2162 /**
2163  *  free_tx_buffers - Free all queued Tx buffers
2164  *  @nic : device private variable.
2165  *  Description:
2166  *  Free all queued Tx buffers.
2167  *  Return Value: void
2168 */
2169
2170 static void free_tx_buffers(struct s2io_nic *nic)
2171 {
2172         struct net_device *dev = nic->dev;
2173         struct sk_buff *skb;
2174         struct TxD *txdp;
2175         int i, j;
2176         struct mac_info *mac_control;
2177         struct config_param *config;
2178         int cnt = 0;
2179
2180         mac_control = &nic->mac_control;
2181         config = &nic->config;
2182
2183         for (i = 0; i < config->tx_fifo_num; i++) {
2184                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2185                         txdp = (struct TxD *) \
2186                         mac_control->fifos[i].list_info[j].list_virt_addr;
2187                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2188                         if (skb) {
2189                                 nic->mac_control.stats_info->sw_stat.mem_freed 
2190                                         += skb->truesize;
2191                                 dev_kfree_skb(skb);
2192                                 cnt++;
2193                         }
2194                 }
2195                 DBG_PRINT(INTR_DBG,
2196                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2197                           dev->name, cnt, i);
2198                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2199                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2200         }
2201 }
2202
2203 /**
2204  *   stop_nic -  To stop the nic
2205  *   @nic ; device private variable.
2206  *   Description:
2207  *   This function does exactly the opposite of what the start_nic()
2208  *   function does. This function is called to stop the device.
2209  *   Return Value:
2210  *   void.
2211  */
2212
2213 static void stop_nic(struct s2io_nic *nic)
2214 {
2215         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2216         register u64 val64 = 0;
2217         u16 interruptible;
2218         struct mac_info *mac_control;
2219         struct config_param *config;
2220
2221         mac_control = &nic->mac_control;
2222         config = &nic->config;
2223
2224         /*  Disable all interrupts */
2225         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2226         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2227         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2228         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2229
2230         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2231         val64 = readq(&bar0->adapter_control);
2232         val64 &= ~(ADAPTER_CNTL_EN);
2233         writeq(val64, &bar0->adapter_control);
2234 }
2235
2236 /**
2237  *  fill_rx_buffers - Allocates the Rx side skbs
2238  *  @nic:  device private variable
2239  *  @ring_no: ring number
2240  *  Description:
2241  *  The function allocates Rx side skbs and puts the physical
2242  *  address of these buffers into the RxD buffer pointers, so that the NIC
2243  *  can DMA the received frame into these locations.
2244  *  The NIC supports 3 receive modes, viz
2245  *  1. single buffer,
2246  *  2. three buffer and
2247  *  3. Five buffer modes.
2248  *  Each mode defines how many fragments the received frame will be split
2249  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2250  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2251  *  is split into 3 fragments. As of now only single buffer mode is
2252  *  supported.
2253  *   Return Value:
2254  *  SUCCESS on success or an appropriate -ve value on failure.
2255  */
2256
2257 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2258 {
2259         struct net_device *dev = nic->dev;
2260         struct sk_buff *skb;
2261         struct RxD_t *rxdp;
2262         int off, off1, size, block_no, block_no1;
2263         u32 alloc_tab = 0;
2264         u32 alloc_cnt;
2265         struct mac_info *mac_control;
2266         struct config_param *config;
2267         u64 tmp;
2268         struct buffAdd *ba;
2269         unsigned long flags;
2270         struct RxD_t *first_rxdp = NULL;
2271         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2272         struct RxD1 *rxdp1;
2273         struct RxD3 *rxdp3;
2274
2275         mac_control = &nic->mac_control;
2276         config = &nic->config;
2277         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2278             atomic_read(&nic->rx_bufs_left[ring_no]);
2279
2280         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2281         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2282         while (alloc_tab < alloc_cnt) {
2283                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2284                     block_index;
2285                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2286
2287                 rxdp = mac_control->rings[ring_no].
2288                                 rx_blocks[block_no].rxds[off].virt_addr;
2289
2290                 if ((block_no == block_no1) && (off == off1) &&
2291                                         (rxdp->Host_Control)) {
2292                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2293                                   dev->name);
2294                         DBG_PRINT(INTR_DBG, " info equated\n");
2295                         goto end;
2296                 }
2297                 if (off && (off == rxd_count[nic->rxd_mode])) {
2298                         mac_control->rings[ring_no].rx_curr_put_info.
2299                             block_index++;
2300                         if (mac_control->rings[ring_no].rx_curr_put_info.
2301                             block_index == mac_control->rings[ring_no].
2302                                         block_count)
2303                                 mac_control->rings[ring_no].rx_curr_put_info.
2304                                         block_index = 0;
2305                         block_no = mac_control->rings[ring_no].
2306                                         rx_curr_put_info.block_index;
2307                         if (off == rxd_count[nic->rxd_mode])
2308                                 off = 0;
2309                         mac_control->rings[ring_no].rx_curr_put_info.
2310                                 offset = off;
2311                         rxdp = mac_control->rings[ring_no].
2312                                 rx_blocks[block_no].block_virt_addr;
2313                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2314                                   dev->name, rxdp);
2315                 }
2316                 if(!napi) {
2317                         spin_lock_irqsave(&nic->put_lock, flags);
2318                         mac_control->rings[ring_no].put_pos =
2319                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2320                         spin_unlock_irqrestore(&nic->put_lock, flags);
2321                 } else {
2322                         mac_control->rings[ring_no].put_pos =
2323                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2324                 }
2325                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2326                         ((nic->rxd_mode == RXD_MODE_3B) &&
2327                                 (rxdp->Control_2 & BIT(0)))) {
2328                         mac_control->rings[ring_no].rx_curr_put_info.
2329                                         offset = off;
2330                         goto end;
2331                 }
2332                 /* calculate size of skb based on ring mode */
2333                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2334                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2335                 if (nic->rxd_mode == RXD_MODE_1)
2336                         size += NET_IP_ALIGN;
2337                 else
2338                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2339
2340                 /* allocate skb */
2341                 skb = dev_alloc_skb(size);
2342                 if(!skb) {
2343                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2344                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2345                         if (first_rxdp) {
2346                                 wmb();
2347                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2348                         }
2349                         nic->mac_control.stats_info->sw_stat. \
2350                                 mem_alloc_fail_cnt++;
2351                         return -ENOMEM ;
2352                 }
2353                 nic->mac_control.stats_info->sw_stat.mem_allocated 
2354                         += skb->truesize;
2355                 if (nic->rxd_mode == RXD_MODE_1) {
2356                         /* 1 buffer mode - normal operation mode */
2357                         rxdp1 = (struct RxD1*)rxdp;
2358                         memset(rxdp, 0, sizeof(struct RxD1));
2359                         skb_reserve(skb, NET_IP_ALIGN);
2360                         rxdp1->Buffer0_ptr = pci_map_single
2361                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2362                                 PCI_DMA_FROMDEVICE);
2363                         rxdp->Control_2 = 
2364                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2365
2366                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2367                         /*
2368                          * 2 buffer mode -
2369                          * 2 buffer mode provides 128
2370                          * byte aligned receive buffers.
2371                          */
2372
2373                         rxdp3 = (struct RxD3*)rxdp;
2374                         /* save buffer pointers to avoid frequent dma mapping */
2375                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2376                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2377                         memset(rxdp, 0, sizeof(struct RxD3));
2378                         /* restore the buffer pointers for dma sync*/
2379                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2380                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2381
2382                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2383                         skb_reserve(skb, BUF0_LEN);
2384                         tmp = (u64)(unsigned long) skb->data;
2385                         tmp += ALIGN_SIZE;
2386                         tmp &= ~ALIGN_SIZE;
2387                         skb->data = (void *) (unsigned long)tmp;
2388                         skb_reset_tail_pointer(skb);
2389
2390                         if (!(rxdp3->Buffer0_ptr))
2391                                 rxdp3->Buffer0_ptr =
2392                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2393                                            PCI_DMA_FROMDEVICE);
2394                         else
2395                                 pci_dma_sync_single_for_device(nic->pdev,
2396                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2397                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2398                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2399                         if (nic->rxd_mode == RXD_MODE_3B) {
2400                                 /* Two buffer mode */
2401
2402                                 /*
2403                                  * Buffer2 will have L3/L4 header plus
2404                                  * L4 payload
2405                                  */
2406                                 rxdp3->Buffer2_ptr = pci_map_single
2407                                 (nic->pdev, skb->data, dev->mtu + 4,
2408                                                 PCI_DMA_FROMDEVICE);
2409
2410                                 /* Buffer-1 will be dummy buffer. Not used */
2411                                 if (!(rxdp3->Buffer1_ptr)) {
2412                                         rxdp3->Buffer1_ptr =
2413                                                 pci_map_single(nic->pdev,
2414                                                 ba->ba_1, BUF1_LEN,
2415                                                 PCI_DMA_FROMDEVICE);
2416                                 }
2417                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2418                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2419                                                                 (dev->mtu + 4);
2420                         }
2421                         rxdp->Control_2 |= BIT(0);
2422                 }
2423                 rxdp->Host_Control = (unsigned long) (skb);
2424                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2425                         rxdp->Control_1 |= RXD_OWN_XENA;
2426                 off++;
2427                 if (off == (rxd_count[nic->rxd_mode] + 1))
2428                         off = 0;
2429                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2430
2431                 rxdp->Control_2 |= SET_RXD_MARKER;
2432                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2433                         if (first_rxdp) {
2434                                 wmb();
2435                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2436                         }
2437                         first_rxdp = rxdp;
2438                 }
2439                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2440                 alloc_tab++;
2441         }
2442
2443       end:
2444         /* Transfer ownership of first descriptor to adapter just before
2445          * exiting. Before that, use memory barrier so that ownership
2446          * and other fields are seen by adapter correctly.
2447          */
2448         if (first_rxdp) {
2449                 wmb();
2450                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2451         }
2452
2453         return SUCCESS;
2454 }
2455
2456 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2457 {
2458         struct net_device *dev = sp->dev;
2459         int j;
2460         struct sk_buff *skb;
2461         struct RxD_t *rxdp;
2462         struct mac_info *mac_control;
2463         struct buffAdd *ba;
2464         struct RxD1 *rxdp1;
2465         struct RxD3 *rxdp3;
2466
2467         mac_control = &sp->mac_control;
2468         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2469                 rxdp = mac_control->rings[ring_no].
2470                                 rx_blocks[blk].rxds[j].virt_addr;
2471                 skb = (struct sk_buff *)
2472                         ((unsigned long) rxdp->Host_Control);
2473                 if (!skb) {
2474                         continue;
2475                 }
2476                 if (sp->rxd_mode == RXD_MODE_1) {
2477                         rxdp1 = (struct RxD1*)rxdp;
2478                         pci_unmap_single(sp->pdev, (dma_addr_t)
2479                                 rxdp1->Buffer0_ptr,
2480                                 dev->mtu +
2481                                 HEADER_ETHERNET_II_802_3_SIZE
2482                                 + HEADER_802_2_SIZE +
2483                                 HEADER_SNAP_SIZE,
2484                                 PCI_DMA_FROMDEVICE);
2485                         memset(rxdp, 0, sizeof(struct RxD1));
2486                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2487                         rxdp3 = (struct RxD3*)rxdp;
2488                         ba = &mac_control->rings[ring_no].
2489                                 ba[blk][j];
2490                         pci_unmap_single(sp->pdev, (dma_addr_t)
2491                                 rxdp3->Buffer0_ptr,
2492                                 BUF0_LEN,
2493                                 PCI_DMA_FROMDEVICE);
2494                         pci_unmap_single(sp->pdev, (dma_addr_t)
2495                                 rxdp3->Buffer1_ptr,
2496                                 BUF1_LEN,
2497                                 PCI_DMA_FROMDEVICE);
2498                         pci_unmap_single(sp->pdev, (dma_addr_t)
2499                                 rxdp3->Buffer2_ptr,
2500                                 dev->mtu + 4,
2501                                 PCI_DMA_FROMDEVICE);
2502                         memset(rxdp, 0, sizeof(struct RxD3));
2503                 }
2504                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2505                 dev_kfree_skb(skb);
2506                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2507         }
2508 }
2509
2510 /**
2511  *  free_rx_buffers - Frees all Rx buffers
2512  *  @sp: device private variable.
2513  *  Description:
2514  *  This function will free all Rx buffers allocated by host.
2515  *  Return Value:
2516  *  NONE.
2517  */
2518
2519 static void free_rx_buffers(struct s2io_nic *sp)
2520 {
2521         struct net_device *dev = sp->dev;
2522         int i, blk = 0, buf_cnt = 0;
2523         struct mac_info *mac_control;
2524         struct config_param *config;
2525
2526         mac_control = &sp->mac_control;
2527         config = &sp->config;
2528
2529         for (i = 0; i < config->rx_ring_num; i++) {
2530                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2531                         free_rxd_blk(sp,i,blk);
2532
2533                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2534                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2535                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2536                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2537                 atomic_set(&sp->rx_bufs_left[i], 0);
2538                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2539                           dev->name, buf_cnt, i);
2540         }
2541 }
2542
2543 /**
2544  * s2io_poll - Rx interrupt handler for NAPI support
2545  * @dev : pointer to the device structure.
2546  * @budget : The number of packets that were budgeted to be processed
2547  * during  one pass through the 'Poll" function.
2548  * Description:
2549  * Comes into picture only if NAPI support has been incorporated. It does
2550  * the same thing that rx_intr_handler does, but not in a interrupt context
2551  * also It will process only a given number of packets.
2552  * Return value:
2553  * 0 on success and 1 if there are No Rx packets to be processed.
2554  */
2555
2556 static int s2io_poll(struct net_device *dev, int *budget)
2557 {
2558         struct s2io_nic *nic = dev->priv;
2559         int pkt_cnt = 0, org_pkts_to_process;
2560         struct mac_info *mac_control;
2561         struct config_param *config;
2562         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2563         int i;
2564
2565         atomic_inc(&nic->isr_cnt);
2566         mac_control = &nic->mac_control;
2567         config = &nic->config;
2568
2569         nic->pkts_to_process = *budget;
2570         if (nic->pkts_to_process > dev->quota)
2571                 nic->pkts_to_process = dev->quota;
2572         org_pkts_to_process = nic->pkts_to_process;
2573
2574         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2575         readl(&bar0->rx_traffic_int);
2576
2577         for (i = 0; i < config->rx_ring_num; i++) {
2578                 rx_intr_handler(&mac_control->rings[i]);
2579                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2580                 if (!nic->pkts_to_process) {
2581                         /* Quota for the current iteration has been met */
2582                         goto no_rx;
2583                 }
2584         }
2585         if (!pkt_cnt)
2586                 pkt_cnt = 1;
2587
2588         dev->quota -= pkt_cnt;
2589         *budget -= pkt_cnt;
2590         netif_rx_complete(dev);
2591
2592         for (i = 0; i < config->rx_ring_num; i++) {
2593                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2594                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2595                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2596                         break;
2597                 }
2598         }
2599         /* Re enable the Rx interrupts. */
2600         writeq(0x0, &bar0->rx_traffic_mask);
2601         readl(&bar0->rx_traffic_mask);
2602         atomic_dec(&nic->isr_cnt);
2603         return 0;
2604
2605 no_rx:
2606         dev->quota -= pkt_cnt;
2607         *budget -= pkt_cnt;
2608
2609         for (i = 0; i < config->rx_ring_num; i++) {
2610                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2611                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2612                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2613                         break;
2614                 }
2615         }
2616         atomic_dec(&nic->isr_cnt);
2617         return 1;
2618 }
2619
2620 #ifdef CONFIG_NET_POLL_CONTROLLER
2621 /**
2622  * s2io_netpoll - netpoll event handler entry point
2623  * @dev : pointer to the device structure.
2624  * Description:
2625  *      This function will be called by upper layer to check for events on the
2626  * interface in situations where interrupts are disabled. It is used for
2627  * specific in-kernel networking tasks, such as remote consoles and kernel
2628  * debugging over the network (example netdump in RedHat).
2629  */
2630 static void s2io_netpoll(struct net_device *dev)
2631 {
2632         struct s2io_nic *nic = dev->priv;
2633         struct mac_info *mac_control;
2634         struct config_param *config;
2635         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2636         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2637         int i;
2638
2639         if (pci_channel_offline(nic->pdev))
2640                 return;
2641
2642         disable_irq(dev->irq);
2643
2644         atomic_inc(&nic->isr_cnt);
2645         mac_control = &nic->mac_control;
2646         config = &nic->config;
2647
2648         writeq(val64, &bar0->rx_traffic_int);
2649         writeq(val64, &bar0->tx_traffic_int);
2650
2651         /* we need to free up the transmitted skbufs or else netpoll will
2652          * run out of skbs and will fail and eventually netpoll application such
2653          * as netdump will fail.
2654          */
2655         for (i = 0; i < config->tx_fifo_num; i++)
2656                 tx_intr_handler(&mac_control->fifos[i]);
2657
2658         /* check for received packet and indicate up to network */
2659         for (i = 0; i < config->rx_ring_num; i++)
2660                 rx_intr_handler(&mac_control->rings[i]);
2661
2662         for (i = 0; i < config->rx_ring_num; i++) {
2663                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2664                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2665                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2666                         break;
2667                 }
2668         }
2669         atomic_dec(&nic->isr_cnt);
2670         enable_irq(dev->irq);
2671         return;
2672 }
2673 #endif
2674
2675 /**
2676  *  rx_intr_handler - Rx interrupt handler
2677  *  @nic: device private variable.
2678  *  Description:
2679  *  If the interrupt is because of a received frame or if the
2680  *  receive ring contains fresh as yet un-processed frames,this function is
2681  *  called. It picks out the RxD at which place the last Rx processing had
2682  *  stopped and sends the skb to the OSM's Rx handler and then increments
2683  *  the offset.
2684  *  Return Value:
2685  *  NONE.
2686  */
2687 static void rx_intr_handler(struct ring_info *ring_data)
2688 {
2689         struct s2io_nic *nic = ring_data->nic;
2690         struct net_device *dev = (struct net_device *) nic->dev;
2691         int get_block, put_block, put_offset;
2692         struct rx_curr_get_info get_info, put_info;
2693         struct RxD_t *rxdp;
2694         struct sk_buff *skb;
2695         int pkt_cnt = 0;
2696         int i;
2697         struct RxD1* rxdp1;
2698         struct RxD3* rxdp3;
2699
2700         spin_lock(&nic->rx_lock);
2701         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2702                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2703                           __FUNCTION__, dev->name);
2704                 spin_unlock(&nic->rx_lock);
2705                 return;
2706         }
2707
2708         get_info = ring_data->rx_curr_get_info;
2709         get_block = get_info.block_index;
2710         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2711         put_block = put_info.block_index;
2712         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2713         if (!napi) {
2714                 spin_lock(&nic->put_lock);
2715                 put_offset = ring_data->put_pos;
2716                 spin_unlock(&nic->put_lock);
2717         } else
2718                 put_offset = ring_data->put_pos;
2719
2720         while (RXD_IS_UP2DT(rxdp)) {
2721                 /*
2722                  * If your are next to put index then it's
2723                  * FIFO full condition
2724                  */
2725                 if ((get_block == put_block) &&
2726                     (get_info.offset + 1) == put_info.offset) {
2727                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2728                         break;
2729                 }
2730                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2731                 if (skb == NULL) {
2732                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2733                                   dev->name);
2734                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2735                         spin_unlock(&nic->rx_lock);
2736                         return;
2737                 }
2738                 if (nic->rxd_mode == RXD_MODE_1) {
2739                         rxdp1 = (struct RxD1*)rxdp;
2740                         pci_unmap_single(nic->pdev, (dma_addr_t)
2741                                 rxdp1->Buffer0_ptr,
2742                                 dev->mtu +
2743                                 HEADER_ETHERNET_II_802_3_SIZE +
2744                                 HEADER_802_2_SIZE +
2745                                 HEADER_SNAP_SIZE,
2746                                 PCI_DMA_FROMDEVICE);
2747                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2748                         rxdp3 = (struct RxD3*)rxdp;
2749                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2750                                 rxdp3->Buffer0_ptr,
2751                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2752                         pci_unmap_single(nic->pdev, (dma_addr_t)
2753                                 rxdp3->Buffer2_ptr,
2754                                 dev->mtu + 4,
2755                                 PCI_DMA_FROMDEVICE);
2756                 }
2757                 prefetch(skb->data);
2758                 rx_osm_handler(ring_data, rxdp);
2759                 get_info.offset++;
2760                 ring_data->rx_curr_get_info.offset = get_info.offset;
2761                 rxdp = ring_data->rx_blocks[get_block].
2762                                 rxds[get_info.offset].virt_addr;
2763                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2764                         get_info.offset = 0;
2765                         ring_data->rx_curr_get_info.offset = get_info.offset;
2766                         get_block++;
2767                         if (get_block == ring_data->block_count)
2768                                 get_block = 0;
2769                         ring_data->rx_curr_get_info.block_index = get_block;
2770                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2771                 }
2772
2773                 nic->pkts_to_process -= 1;
2774                 if ((napi) && (!nic->pkts_to_process))
2775                         break;
2776                 pkt_cnt++;
2777                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2778                         break;
2779         }
2780         if (nic->lro) {
2781                 /* Clear all LRO sessions before exiting */
2782                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2783                         struct lro *lro = &nic->lro0_n[i];
2784                         if (lro->in_use) {
2785                                 update_L3L4_header(nic, lro);
2786                                 queue_rx_frame(lro->parent);
2787                                 clear_lro_session(lro);
2788                         }
2789                 }
2790         }
2791
2792         spin_unlock(&nic->rx_lock);
2793 }
2794
2795 /**
2796  *  tx_intr_handler - Transmit interrupt handler
2797  *  @nic : device private variable
2798  *  Description:
2799  *  If an interrupt was raised to indicate DMA complete of the
2800  *  Tx packet, this function is called. It identifies the last TxD
2801  *  whose buffer was freed and frees all skbs whose data have already
2802  *  DMA'ed into the NICs internal memory.
2803  *  Return Value:
2804  *  NONE
2805  */
2806
2807 static void tx_intr_handler(struct fifo_info *fifo_data)
2808 {
2809         struct s2io_nic *nic = fifo_data->nic;
2810         struct net_device *dev = (struct net_device *) nic->dev;
2811         struct tx_curr_get_info get_info, put_info;
2812         struct sk_buff *skb;
2813         struct TxD *txdlp;
2814         u8 err_mask;
2815
2816         get_info = fifo_data->tx_curr_get_info;
2817         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2818         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2819             list_virt_addr;
2820         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2821                (get_info.offset != put_info.offset) &&
2822                (txdlp->Host_Control)) {
2823                 /* Check for TxD errors */
2824                 if (txdlp->Control_1 & TXD_T_CODE) {
2825                         unsigned long long err;
2826                         err = txdlp->Control_1 & TXD_T_CODE;
2827                         if (err & 0x1) {
2828                                 nic->mac_control.stats_info->sw_stat.
2829                                                 parity_err_cnt++;
2830                         }
2831
2832                         /* update t_code statistics */
2833                         err_mask = err >> 48;
2834                         switch(err_mask) {
2835                                 case 2:
2836                                         nic->mac_control.stats_info->sw_stat.
2837                                                         tx_buf_abort_cnt++;
2838                                 break;
2839
2840                                 case 3:
2841                                         nic->mac_control.stats_info->sw_stat.
2842                                                         tx_desc_abort_cnt++;
2843                                 break;
2844
2845                                 case 7:
2846                                         nic->mac_control.stats_info->sw_stat.
2847                                                         tx_parity_err_cnt++;
2848                                 break;
2849
2850                                 case 10:
2851                                         nic->mac_control.stats_info->sw_stat.
2852                                                         tx_link_loss_cnt++;
2853                                 break;
2854
2855                                 case 15:
2856                                         nic->mac_control.stats_info->sw_stat.
2857                                                         tx_list_proc_err_cnt++;
2858                                 break;
2859                         }
2860                 }
2861
2862                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2863                 if (skb == NULL) {
2864                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2865                         __FUNCTION__);
2866                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2867                         return;
2868                 }
2869
2870                 /* Updating the statistics block */
2871                 nic->stats.tx_bytes += skb->len;
2872                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2873                 dev_kfree_skb_irq(skb);
2874
2875                 get_info.offset++;
2876                 if (get_info.offset == get_info.fifo_len + 1)
2877                         get_info.offset = 0;
2878                 txdlp = (struct TxD *) fifo_data->list_info
2879                     [get_info.offset].list_virt_addr;
2880                 fifo_data->tx_curr_get_info.offset =
2881                     get_info.offset;
2882         }
2883
2884         spin_lock(&nic->tx_lock);
2885         if (netif_queue_stopped(dev))
2886                 netif_wake_queue(dev);
2887         spin_unlock(&nic->tx_lock);
2888 }
2889
2890 /**
2891  *  s2io_mdio_write - Function to write in to MDIO registers
2892  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2893  *  @addr     : address value
2894  *  @value    : data value
2895  *  @dev      : pointer to net_device structure
2896  *  Description:
2897  *  This function is used to write values to the MDIO registers
2898  *  NONE
2899  */
2900 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2901 {
2902         u64 val64 = 0x0;
2903         struct s2io_nic *sp = dev->priv;
2904         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2905
2906         //address transaction
2907         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2908                         | MDIO_MMD_DEV_ADDR(mmd_type)
2909                         | MDIO_MMS_PRT_ADDR(0x0);
2910         writeq(val64, &bar0->mdio_control);
2911         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2912         writeq(val64, &bar0->mdio_control);
2913         udelay(100);
2914
2915         //Data transaction
2916         val64 = 0x0;
2917         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2918                         | MDIO_MMD_DEV_ADDR(mmd_type)
2919                         | MDIO_MMS_PRT_ADDR(0x0)
2920                         | MDIO_MDIO_DATA(value)
2921                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2922         writeq(val64, &bar0->mdio_control);
2923         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2924         writeq(val64, &bar0->mdio_control);
2925         udelay(100);
2926
2927         val64 = 0x0;
2928         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2929         | MDIO_MMD_DEV_ADDR(mmd_type)
2930         | MDIO_MMS_PRT_ADDR(0x0)
2931         | MDIO_OP(MDIO_OP_READ_TRANS);
2932         writeq(val64, &bar0->mdio_control);
2933         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2934         writeq(val64, &bar0->mdio_control);
2935         udelay(100);
2936
2937 }
2938
2939 /**
2940  *  s2io_mdio_read - Function to write in to MDIO registers
2941  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2942  *  @addr     : address value
2943  *  @dev      : pointer to net_device structure
2944  *  Description:
2945  *  This function is used to read values to the MDIO registers
2946  *  NONE
2947  */
2948 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2949 {
2950         u64 val64 = 0x0;
2951         u64 rval64 = 0x0;
2952         struct s2io_nic *sp = dev->priv;
2953         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2954
2955         /* address transaction */
2956         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2957                         | MDIO_MMD_DEV_ADDR(mmd_type)
2958                         | MDIO_MMS_PRT_ADDR(0x0);
2959         writeq(val64, &bar0->mdio_control);
2960         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2961         writeq(val64, &bar0->mdio_control);
2962         udelay(100);
2963
2964         /* Data transaction */
2965         val64 = 0x0;
2966         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2967                         | MDIO_MMD_DEV_ADDR(mmd_type)
2968                         | MDIO_MMS_PRT_ADDR(0x0)
2969                         | MDIO_OP(MDIO_OP_READ_TRANS);
2970         writeq(val64, &bar0->mdio_control);
2971         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2972         writeq(val64, &bar0->mdio_control);
2973         udelay(100);
2974
2975         /* Read the value from regs */
2976         rval64 = readq(&bar0->mdio_control);
2977         rval64 = rval64 & 0xFFFF0000;
2978         rval64 = rval64 >> 16;
2979         return rval64;
2980 }
2981 /**
2982  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2983  *  @counter      : couter value to be updated
2984  *  @flag         : flag to indicate the status
2985  *  @type         : counter type
2986  *  Description:
2987  *  This function is to check the status of the xpak counters value
2988  *  NONE
2989  */
2990
2991 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2992 {
2993         u64 mask = 0x3;
2994         u64 val64;
2995         int i;
2996         for(i = 0; i <index; i++)
2997                 mask = mask << 0x2;
2998
2999         if(flag > 0)
3000         {
3001                 *counter = *counter + 1;
3002                 val64 = *regs_stat & mask;
3003                 val64 = val64 >> (index * 0x2);
3004                 val64 = val64 + 1;
3005                 if(val64 == 3)
3006                 {
3007                         switch(type)
3008                         {
3009                         case 1:
3010                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3011                                           "service. Excessive temperatures may "
3012                                           "result in premature transceiver "
3013                                           "failure \n");
3014                         break;
3015                         case 2:
3016                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3017                                           "service Excessive bias currents may "
3018                                           "indicate imminent laser diode "
3019                                           "failure \n");
3020                         break;
3021                         case 3:
3022                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3023                                           "service Excessive laser output "
3024                                           "power may saturate far-end "
3025                                           "receiver\n");
3026                         break;
3027                         default:
3028                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3029                                           "type \n");
3030                         }
3031                         val64 = 0x0;
3032                 }
3033                 val64 = val64 << (index * 0x2);
3034                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3035
3036         } else {
3037                 *regs_stat = *regs_stat & (~mask);
3038         }
3039 }
3040
3041 /**
3042  *  s2io_updt_xpak_counter - Function to update the xpak counters
3043  *  @dev         : pointer to net_device struct
3044  *  Description:
3045  *  This function is to upate the status of the xpak counters value
3046  *  NONE
3047  */
3048 static void s2io_updt_xpak_counter(struct net_device *dev)
3049 {
3050         u16 flag  = 0x0;
3051         u16 type  = 0x0;
3052         u16 val16 = 0x0;
3053         u64 val64 = 0x0;
3054         u64 addr  = 0x0;
3055
3056         struct s2io_nic *sp = dev->priv;
3057         struct stat_block *stat_info = sp->mac_control.stats_info;
3058
3059         /* Check the communication with the MDIO slave */
3060         addr = 0x0000;
3061         val64 = 0x0;
3062         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3063         if((val64 == 0xFFFF) || (val64 == 0x0000))
3064         {
3065                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3066                           "Returned %llx\n", (unsigned long long)val64);
3067                 return;
3068         }
3069
3070         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3071         if(val64 != 0x2040)
3072         {
3073                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3074                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3075                           (unsigned long long)val64);
3076                 return;
3077         }
3078
3079         /* Loading the DOM register to MDIO register */
3080         addr = 0xA100;
3081         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3082         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3083
3084         /* Reading the Alarm flags */
3085         addr = 0xA070;
3086         val64 = 0x0;
3087         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3088
3089         flag = CHECKBIT(val64, 0x7);
3090         type = 1;
3091         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3092                                 &stat_info->xpak_stat.xpak_regs_stat,
3093                                 0x0, flag, type);
3094
3095         if(CHECKBIT(val64, 0x6))
3096                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3097
3098         flag = CHECKBIT(val64, 0x3);
3099         type = 2;
3100         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3101                                 &stat_info->xpak_stat.xpak_regs_stat,
3102                                 0x2, flag, type);
3103
3104         if(CHECKBIT(val64, 0x2))
3105                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3106
3107         flag = CHECKBIT(val64, 0x1);
3108         type = 3;
3109         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3110                                 &stat_info->xpak_stat.xpak_regs_stat,
3111                                 0x4, flag, type);
3112
3113         if(CHECKBIT(val64, 0x0))
3114                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3115
3116         /* Reading the Warning flags */
3117         addr = 0xA074;
3118         val64 = 0x0;
3119         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3120
3121         if(CHECKBIT(val64, 0x7))
3122                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3123
3124         if(CHECKBIT(val64, 0x6))
3125                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3126
3127         if(CHECKBIT(val64, 0x3))
3128                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3129
3130         if(CHECKBIT(val64, 0x2))
3131                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3132
3133         if(CHECKBIT(val64, 0x1))
3134                 stat_info->xpak_stat.warn_laser_output_power_high++;
3135
3136         if(CHECKBIT(val64, 0x0))
3137                 stat_info->xpak_stat.warn_laser_output_power_low++;
3138 }
3139
3140 /**
3141  *  alarm_intr_handler - Alarm Interrrupt handler
3142  *  @nic: device private variable
3143  *  Description: If the interrupt was neither because of Rx packet or Tx
3144  *  complete, this function is called. If the interrupt was to indicate
3145  *  a loss of link, the OSM link status handler is invoked for any other
3146  *  alarm interrupt the block that raised the interrupt is displayed
3147  *  and a H/W reset is issued.
3148  *  Return Value:
3149  *  NONE
3150 */
3151
3152 static void alarm_intr_handler(struct s2io_nic *nic)
3153 {
3154         struct net_device *dev = (struct net_device *) nic->dev;
3155         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3156         register u64 val64 = 0, err_reg = 0;
3157         u64 cnt;
3158         int i;
3159         if (atomic_read(&nic->card_state) == CARD_DOWN)
3160                 return;
3161         if (pci_channel_offline(nic->pdev))
3162                 return;
3163         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3164         /* Handling the XPAK counters update */
3165         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3166                 /* waiting for an hour */
3167                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3168         } else {
3169                 s2io_updt_xpak_counter(dev);
3170                 /* reset the count to zero */
3171                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3172         }
3173
3174         /* Handling link status change error Intr */
3175         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3176                 err_reg = readq(&bar0->mac_rmac_err_reg);
3177                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3178                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3179                         schedule_work(&nic->set_link_task);
3180                 }
3181         }
3182
3183         /* Handling Ecc errors */
3184         val64 = readq(&bar0->mc_err_reg);
3185         writeq(val64, &bar0->mc_err_reg);
3186         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3187                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3188                         nic->mac_control.stats_info->sw_stat.
3189                                 double_ecc_errs++;
3190                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3191                                   dev->name);
3192                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3193                         if (nic->device_type != XFRAME_II_DEVICE) {
3194                                 /* Reset XframeI only if critical error */
3195                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3196                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3197                                         netif_stop_queue(dev);
3198                                         schedule_work(&nic->rst_timer_task);
3199                                         nic->mac_control.stats_info->sw_stat.
3200                                                         soft_reset_cnt++;
3201                                 }
3202                         }
3203                 } else {
3204                         nic->mac_control.stats_info->sw_stat.
3205                                 single_ecc_errs++;
3206                 }
3207         }
3208
3209         /* In case of a serious error, the device will be Reset. */
3210         val64 = readq(&bar0->serr_source);
3211         if (val64 & SERR_SOURCE_ANY) {
3212                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3213                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3214                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3215                           (unsigned long long)val64);
3216                 netif_stop_queue(dev);
3217                 schedule_work(&nic->rst_timer_task);
3218                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3219         }
3220
3221         /*
3222          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3223          * Error occurs, the adapter will be recycled by disabling the
3224          * adapter enable bit and enabling it again after the device
3225          * becomes Quiescent.
3226          */
3227         val64 = readq(&bar0->pcc_err_reg);
3228         writeq(val64, &bar0->pcc_err_reg);
3229         if (val64 & PCC_FB_ECC_DB_ERR) {
3230                 u64 ac = readq(&bar0->adapter_control);
3231                 ac &= ~(ADAPTER_CNTL_EN);
3232                 writeq(ac, &bar0->adapter_control);
3233                 ac = readq(&bar0->adapter_control);
3234                 schedule_work(&nic->set_link_task);
3235         }
3236         /* Check for data parity error */
3237         val64 = readq(&bar0->pic_int_status);
3238         if (val64 & PIC_INT_GPIO) {
3239                 val64 = readq(&bar0->gpio_int_reg);
3240                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3241                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3242                         schedule_work(&nic->rst_timer_task);
3243                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3244                 }
3245         }
3246
3247         /* Check for ring full counter */
3248         if (nic->device_type & XFRAME_II_DEVICE) {
3249                 val64 = readq(&bar0->ring_bump_counter1);
3250                 for (i=0; i<4; i++) {
3251                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3252                         cnt >>= 64 - ((i+1)*16);
3253                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3254                                 += cnt;
3255                 }
3256
3257                 val64 = readq(&bar0->ring_bump_counter2);
3258                 for (i=0; i<4; i++) {
3259                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3260                         cnt >>= 64 - ((i+1)*16);
3261                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3262                                 += cnt;
3263                 }
3264         }
3265
3266         /* Other type of interrupts are not being handled now,  TODO */
3267 }
3268
3269 /**
3270  *  wait_for_cmd_complete - waits for a command to complete.
3271  *  @sp : private member of the device structure, which is a pointer to the
3272  *  s2io_nic structure.
3273  *  Description: Function that waits for a command to Write into RMAC
3274  *  ADDR DATA registers to be completed and returns either success or
3275  *  error depending on whether the command was complete or not.
3276  *  Return value:
3277  *   SUCCESS on success and FAILURE on failure.
3278  */
3279
3280 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3281                                 int bit_state)
3282 {
3283         int ret = FAILURE, cnt = 0, delay = 1;
3284         u64 val64;
3285
3286         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3287                 return FAILURE;
3288
3289         do {
3290                 val64 = readq(addr);
3291                 if (bit_state == S2IO_BIT_RESET) {
3292                         if (!(val64 & busy_bit)) {
3293                                 ret = SUCCESS;
3294                                 break;
3295                         }
3296                 } else {
3297                         if (!(val64 & busy_bit)) {
3298                                 ret = SUCCESS;
3299                                 break;
3300                         }
3301                 }
3302
3303                 if(in_interrupt())
3304                         mdelay(delay);
3305                 else
3306                         msleep(delay);
3307
3308                 if (++cnt >= 10)
3309                         delay = 50;
3310         } while (cnt < 20);
3311         return ret;
3312 }
3313 /*
3314  * check_pci_device_id - Checks if the device id is supported
3315  * @id : device id
3316  * Description: Function to check if the pci device id is supported by driver.
3317  * Return value: Actual device id if supported else PCI_ANY_ID
3318  */
3319 static u16 check_pci_device_id(u16 id)
3320 {
3321         switch (id) {
3322         case PCI_DEVICE_ID_HERC_WIN:
3323         case PCI_DEVICE_ID_HERC_UNI:
3324                 return XFRAME_II_DEVICE;
3325         case PCI_DEVICE_ID_S2IO_UNI:
3326         case PCI_DEVICE_ID_S2IO_WIN:
3327                 return XFRAME_I_DEVICE;
3328         default:
3329                 return PCI_ANY_ID;
3330         }
3331 }
3332
3333 /**
3334  *  s2io_reset - Resets the card.
3335  *  @sp : private member of the device structure.
3336  *  Description: Function to Reset the card. This function then also
3337  *  restores the previously saved PCI configuration space registers as
3338  *  the card reset also resets the configuration space.
3339  *  Return value:
3340  *  void.
3341  */
3342
3343 static void s2io_reset(struct s2io_nic * sp)
3344 {
3345         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3346         u64 val64;
3347         u16 subid, pci_cmd;
3348         int i;
3349         u16 val16;
3350         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3351         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3352
3353         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3354                         __FUNCTION__, sp->dev->name);
3355
3356         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3357         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3358
3359         if (sp->device_type == XFRAME_II_DEVICE) {
3360                 int ret;
3361                 ret = pci_set_power_state(sp->pdev, 3);
3362                 if (!ret)
3363                         ret = pci_set_power_state(sp->pdev, 0);
3364                 else {
3365                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3366                                         __FUNCTION__);
3367                         goto old_way;
3368                 }
3369                 msleep(20);
3370                 goto new_way;
3371         }
3372 old_way:
3373         val64 = SW_RESET_ALL;
3374         writeq(val64, &bar0->sw_reset);
3375 new_way:
3376         if (strstr(sp->product_name, "CX4")) {
3377                 msleep(750);
3378         }
3379         msleep(250);
3380         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3381
3382                 /* Restore the PCI state saved during initialization. */
3383                 pci_restore_state(sp->pdev);
3384                 pci_read_config_word(sp->pdev, 0x2, &val16);
3385                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3386                         break;
3387                 msleep(200);
3388         }
3389
3390         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3391                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3392         }
3393
3394         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3395
3396         s2io_init_pci(sp);
3397
3398         /* Set swapper to enable I/O register access */
3399         s2io_set_swapper(sp);
3400
3401         /* Restore the MSIX table entries from local variables */
3402         restore_xmsi_data(sp);
3403
3404         /* Clear certain PCI/PCI-X fields after reset */
3405         if (sp->device_type == XFRAME_II_DEVICE) {
3406                 /* Clear "detected parity error" bit */
3407                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3408
3409                 /* Clearing PCIX Ecc status register */
3410                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3411
3412                 /* Clearing PCI_STATUS error reflected here */
3413                 writeq(BIT(62), &bar0->txpic_int_reg);
3414         }
3415
3416         /* Reset device statistics maintained by OS */
3417         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3418         
3419         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3420         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3421         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3422         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3423         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3424         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3425         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3426         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3427         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3428         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3429         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3430         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3431         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3432         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3433         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3434         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3435         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3436         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3437         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3438
3439         /* SXE-002: Configure link and activity LED to turn it off */
3440         subid = sp->pdev->subsystem_device;
3441         if (((subid & 0xFF) >= 0x07) &&
3442             (sp->device_type == XFRAME_I_DEVICE)) {
3443                 val64 = readq(&bar0->gpio_control);
3444                 val64 |= 0x0000800000000000ULL;
3445                 writeq(val64, &bar0->gpio_control);
3446                 val64 = 0x0411040400000000ULL;
3447                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3448         }
3449
3450         /*
3451          * Clear spurious ECC interrupts that would have occured on
3452          * XFRAME II cards after reset.
3453          */
3454         if (sp->device_type == XFRAME_II_DEVICE) {
3455                 val64 = readq(&bar0->pcc_err_reg);
3456                 writeq(val64, &bar0->pcc_err_reg);
3457         }
3458
3459         /* restore the previously assigned mac address */
3460         s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3461
3462         sp->device_enabled_once = FALSE;
3463 }
3464
3465 /**
3466  *  s2io_set_swapper - to set the swapper controle on the card
3467  *  @sp : private member of the device structure,
3468  *  pointer to the s2io_nic structure.
3469  *  Description: Function to set the swapper control on the card
3470  *  correctly depending on the 'endianness' of the system.
3471  *  Return value:
3472  *  SUCCESS on success and FAILURE on failure.
3473  */
3474
3475 static int s2io_set_swapper(struct s2io_nic * sp)
3476 {
3477         struct net_device *dev = sp->dev;
3478         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3479         u64 val64, valt, valr;
3480
3481         /*
3482          * Set proper endian settings and verify the same by reading
3483          * the PIF Feed-back register.
3484          */
3485
3486         val64 = readq(&bar0->pif_rd_swapper_fb);
3487         if (val64 != 0x0123456789ABCDEFULL) {
3488                 int i = 0;
3489                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3490                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3491                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3492                                 0};                     /* FE=0, SE=0 */
3493
3494                 while(i<4) {
3495                         writeq(value[i], &bar0->swapper_ctrl);
3496                         val64 = readq(&bar0->pif_rd_swapper_fb);
3497                         if (val64 == 0x0123456789ABCDEFULL)
3498                                 break;
3499                         i++;
3500                 }
3501                 if (i == 4) {
3502                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3503                                 dev->name);
3504                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3505                                 (unsigned long long) val64);
3506                         return FAILURE;
3507                 }
3508                 valr = value[i];
3509         } else {
3510                 valr = readq(&bar0->swapper_ctrl);
3511         }
3512
3513         valt = 0x0123456789ABCDEFULL;
3514         writeq(valt, &bar0->xmsi_address);
3515         val64 = readq(&bar0->xmsi_address);
3516
3517         if(val64 != valt) {
3518                 int i = 0;
3519                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3520                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3521                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3522                                 0};                     /* FE=0, SE=0 */
3523
3524                 while(i<4) {
3525                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3526                         writeq(valt, &bar0->xmsi_address);
3527                         val64 = readq(&bar0->xmsi_address);
3528                         if(val64 == valt)
3529                                 break;
3530                         i++;
3531                 }
3532                 if(i == 4) {
3533                         unsigned long long x = val64;
3534                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3535                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3536                         return FAILURE;
3537                 }
3538         }
3539         val64 = readq(&bar0->swapper_ctrl);
3540         val64 &= 0xFFFF000000000000ULL;
3541
3542 #ifdef  __BIG_ENDIAN
3543         /*
3544          * The device by default set to a big endian format, so a
3545          * big endian driver need not set anything.
3546          */
3547         val64 |= (SWAPPER_CTRL_TXP_FE |
3548                  SWAPPER_CTRL_TXP_SE |
3549                  SWAPPER_CTRL_TXD_R_FE |
3550                  SWAPPER_CTRL_TXD_W_FE |
3551                  SWAPPER_CTRL_TXF_R_FE |
3552                  SWAPPER_CTRL_RXD_R_FE |
3553                  SWAPPER_CTRL_RXD_W_FE |
3554                  SWAPPER_CTRL_RXF_W_FE |
3555                  SWAPPER_CTRL_XMSI_FE |
3556                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3557         if (sp->intr_type == INTA)
3558                 val64 |= SWAPPER_CTRL_XMSI_SE;
3559         writeq(val64, &bar0->swapper_ctrl);
3560 #else
3561         /*
3562          * Initially we enable all bits to make it accessible by the
3563          * driver, then we selectively enable only those bits that
3564          * we want to set.
3565          */
3566         val64 |= (SWAPPER_CTRL_TXP_FE |
3567                  SWAPPER_CTRL_TXP_SE |
3568                  SWAPPER_CTRL_TXD_R_FE |
3569                  SWAPPER_CTRL_TXD_R_SE |
3570                  SWAPPER_CTRL_TXD_W_FE |
3571                  SWAPPER_CTRL_TXD_W_SE |
3572                  SWAPPER_CTRL_TXF_R_FE |
3573                  SWAPPER_CTRL_RXD_R_FE |
3574                  SWAPPER_CTRL_RXD_R_SE |
3575                  SWAPPER_CTRL_RXD_W_FE |
3576                  SWAPPER_CTRL_RXD_W_SE |
3577                  SWAPPER_CTRL_RXF_W_FE |
3578                  SWAPPER_CTRL_XMSI_FE |
3579                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3580         if (sp->intr_type == INTA)
3581                 val64 |= SWAPPER_CTRL_XMSI_SE;
3582         writeq(val64, &bar0->swapper_ctrl);
3583 #endif
3584         val64 = readq(&bar0->swapper_ctrl);
3585
3586         /*
3587          * Verifying if endian settings are accurate by reading a
3588          * feedback register.
3589          */
3590         val64 = readq(&bar0->pif_rd_swapper_fb);
3591         if (val64 != 0x0123456789ABCDEFULL) {
3592                 /* Endian settings are incorrect, calls for another dekko. */
3593                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3594                           dev->name);
3595                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3596                           (unsigned long long) val64);
3597                 return FAILURE;
3598         }
3599
3600         return SUCCESS;
3601 }
3602
3603 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3604 {
3605         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3606         u64 val64;
3607         int ret = 0, cnt = 0;
3608
3609         do {
3610                 val64 = readq(&bar0->xmsi_access);
3611                 if (!(val64 & BIT(15)))
3612                         break;
3613                 mdelay(1);
3614                 cnt++;
3615         } while(cnt < 5);
3616         if (cnt == 5) {
3617                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3618                 ret = 1;
3619         }
3620
3621         return ret;
3622 }
3623
3624 static void restore_xmsi_data(struct s2io_nic *nic)
3625 {
3626         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3627         u64 val64;
3628         int i;
3629
3630         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3631                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3632                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3633                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3634                 writeq(val64, &bar0->xmsi_access);
3635                 if (wait_for_msix_trans(nic, i)) {
3636                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3637                         continue;
3638                 }
3639         }
3640 }
3641
3642 static void store_xmsi_data(struct s2io_nic *nic)
3643 {
3644         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3645         u64 val64, addr, data;
3646         int i;
3647
3648         /* Store and display */
3649         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3650                 val64 = (BIT(15) | vBIT(i, 26, 6));
3651                 writeq(val64, &bar0->xmsi_access);
3652                 if (wait_for_msix_trans(nic, i)) {
3653                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3654                         continue;
3655                 }
3656                 addr = readq(&bar0->xmsi_address);
3657                 data = readq(&bar0->xmsi_data);
3658                 if (addr && data) {
3659                         nic->msix_info[i].addr = addr;
3660                         nic->msix_info[i].data = data;
3661                 }
3662         }
3663 }
3664
3665 int s2io_enable_msi(struct s2io_nic *nic)
3666 {
3667         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668         u16 msi_ctrl, msg_val;
3669         struct config_param *config = &nic->config;
3670         struct net_device *dev = nic->dev;
3671         u64 val64, tx_mat, rx_mat;
3672         int i, err;
3673
3674         val64 = readq(&bar0->pic_control);
3675         val64 &= ~BIT(1);
3676         writeq(val64, &bar0->pic_control);
3677
3678         err = pci_enable_msi(nic->pdev);
3679         if (err) {
3680                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3681                           nic->dev->name);
3682                 return err;
3683         }
3684
3685         /*
3686          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3687          * for interrupt handling.
3688          */
3689         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3690         msg_val ^= 0x1;
3691         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3692         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3693
3694         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3695         msi_ctrl |= 0x10;
3696         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3697
3698         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3699         tx_mat = readq(&bar0->tx_mat0_n[0]);
3700         for (i=0; i<config->tx_fifo_num; i++) {
3701                 tx_mat |= TX_MAT_SET(i, 1);
3702         }
3703         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3704
3705         rx_mat = readq(&bar0->rx_mat);
3706         for (i=0; i<config->rx_ring_num; i++) {
3707                 rx_mat |= RX_MAT_SET(i, 1);
3708         }
3709         writeq(rx_mat, &bar0->rx_mat);
3710
3711         dev->irq = nic->pdev->irq;
3712         return 0;
3713 }
3714
3715 static int s2io_enable_msi_x(struct s2io_nic *nic)
3716 {
3717         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3718         u64 tx_mat, rx_mat;
3719         u16 msi_control; /* Temp variable */
3720         int ret, i, j, msix_indx = 1;
3721
3722         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3723                                GFP_KERNEL);
3724         if (nic->entries == NULL) {
3725                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3726                         __FUNCTION__);
3727                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3728                 return -ENOMEM;
3729         }
3730         nic->mac_control.stats_info->sw_stat.mem_allocated 
3731                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3732         memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3733
3734         nic->s2io_entries =
3735                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3736                                    GFP_KERNEL);
3737         if (nic->s2io_entries == NULL) {
3738                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 
3739                         __FUNCTION__);
3740                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3741                 kfree(nic->entries);
3742                 nic->mac_control.stats_info->sw_stat.mem_freed 
3743                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3744                 return -ENOMEM;
3745         }
3746          nic->mac_control.stats_info->sw_stat.mem_allocated 
3747                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3748         memset(nic->s2io_entries, 0,
3749                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3750
3751         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3752                 nic->entries[i].entry = i;
3753                 nic->s2io_entries[i].entry = i;
3754                 nic->s2io_entries[i].arg = NULL;
3755                 nic->s2io_entries[i].in_use = 0;
3756         }
3757
3758         tx_mat = readq(&bar0->tx_mat0_n[0]);
3759         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3760                 tx_mat |= TX_MAT_SET(i, msix_indx);
3761                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3762                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3763                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3764         }
3765         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3766
3767         if (!nic->config.bimodal) {
3768                 rx_mat = readq(&bar0->rx_mat);
3769                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3770                         rx_mat |= RX_MAT_SET(j, msix_indx);
3771                         nic->s2io_entries[msix_indx].arg 
3772                                 = &nic->mac_control.rings[j];
3773                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3774                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3775                 }
3776                 writeq(rx_mat, &bar0->rx_mat);
3777         } else {
3778                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3779                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3780                         tx_mat |= TX_MAT_SET(i, msix_indx);
3781                         nic->s2io_entries[msix_indx].arg 
3782                                 = &nic->mac_control.rings[j];
3783                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3784                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3785                 }
3786                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3787         }
3788
3789         nic->avail_msix_vectors = 0;
3790         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3791         /* We fail init if error or we get less vectors than min required */
3792         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3793                 nic->avail_msix_vectors = ret;
3794                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3795         }
3796         if (ret) {
3797                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3798                 kfree(nic->entries);
3799                 nic->mac_control.stats_info->sw_stat.mem_freed 
3800                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3801                 kfree(nic->s2io_entries);
3802                 nic->mac_control.stats_info->sw_stat.mem_freed 
3803                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3804                 nic->entries = NULL;
3805                 nic->s2io_entries = NULL;
3806                 nic->avail_msix_vectors = 0;
3807                 return -ENOMEM;
3808         }
3809         if (!nic->avail_msix_vectors)
3810                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3811
3812         /*
3813          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3814          * in the herc NIC. (Temp change, needs to be removed later)
3815          */
3816         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3817         msi_control |= 0x1; /* Enable MSI */
3818         pci_write_config_word(nic->pdev, 0x42, msi_control);
3819
3820         return 0;
3821 }
3822
3823 /* ********************************************************* *
3824  * Functions defined below concern the OS part of the driver *
3825  * ********************************************************* */
3826
3827 /**
3828  *  s2io_open - open entry point of the driver
3829  *  @dev : pointer to the device structure.
3830  *  Description:
3831  *  This function is the open entry point of the driver. It mainly calls a
3832  *  function to allocate Rx buffers and inserts them into the buffer
3833  *  descriptors and then enables the Rx part of the NIC.
3834  *  Return value:
3835  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3836  *   file on failure.
3837  */
3838
3839 static int s2io_open(struct net_device *dev)
3840 {
3841         struct s2io_nic *sp = dev->priv;
3842         int err = 0;
3843
3844         /*
3845          * Make sure you have link off by default every time
3846          * Nic is initialized
3847          */
3848         netif_carrier_off(dev);
3849         sp->last_link_state = 0;
3850
3851         /* Initialize H/W and enable interrupts */
3852         err = s2io_card_up(sp);
3853         if (err) {
3854                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3855                           dev->name);
3856                 goto hw_init_failed;
3857         }
3858
3859         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3860                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3861                 s2io_card_down(sp);
3862                 err = -ENODEV;
3863                 goto hw_init_failed;
3864         }
3865
3866         netif_start_queue(dev);
3867         return 0;
3868
3869 hw_init_failed:
3870         if (sp->intr_type == MSI_X) {
3871                 if (sp->entries) {
3872                         kfree(sp->entries);
3873                         sp->mac_control.stats_info->sw_stat.mem_freed 
3874                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3875                 }
3876                 if (sp->s2io_entries) {
3877                         kfree(sp->s2io_entries);
3878                         sp->mac_control.stats_info->sw_stat.mem_freed 
3879                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3880                 }
3881         }
3882         return err;
3883 }
3884
3885 /**
3886  *  s2io_close -close entry point of the driver
3887  *  @dev : device pointer.
3888  *  Description:
3889  *  This is the stop entry point of the driver. It needs to undo exactly
3890  *  whatever was done by the open entry point,thus it's usually referred to
3891  *  as the close function.Among other things this function mainly stops the
3892  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3893  *  Return value:
3894  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3895  *  file on failure.
3896  */
3897
3898 static int s2io_close(struct net_device *dev)
3899 {
3900         struct s2io_nic *sp = dev->priv;
3901
3902         netif_stop_queue(dev);
3903         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3904         s2io_card_down(sp);
3905
3906         return 0;
3907 }
3908
3909 /**
3910  *  s2io_xmit - Tx entry point of te driver
3911  *  @skb : the socket buffer containing the Tx data.
3912  *  @dev : device pointer.
3913  *  Description :
3914  *  This function is the Tx entry point of the driver. S2IO NIC supports
3915  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3916  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3917  *  not be upadted.
3918  *  Return value:
3919  *  0 on success & 1 on failure.
3920  */
3921
3922 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3923 {
3924         struct s2io_nic *sp = dev->priv;
3925         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3926         register u64 val64;
3927         struct TxD *txdp;
3928         struct TxFIFO_element __iomem *tx_fifo;
3929         unsigned long flags;
3930         u16 vlan_tag = 0;
3931         int vlan_priority = 0;
3932         struct mac_info *mac_control;
3933         struct config_param *config;
3934         int offload_type;
3935
3936         mac_control = &sp->mac_control;
3937         config = &sp->config;
3938
3939         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3940
3941         if (unlikely(skb->len <= 0)) {
3942                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3943                 dev_kfree_skb_any(skb);
3944                 return 0;
3945 }
3946
3947         spin_lock_irqsave(&sp->tx_lock, flags);
3948         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3949                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3950                           dev->name);
3951                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3952                 dev_kfree_skb(skb);
3953                 return 0;
3954         }
3955
3956         queue = 0;
3957         /* Get Fifo number to Transmit based on vlan priority */
3958         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3959                 vlan_tag = vlan_tx_tag_get(skb);
3960                 vlan_priority = vlan_tag >> 13;
3961                 queue = config->fifo_mapping[vlan_priority];
3962         }
3963
3964         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3965         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3966         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3967                 list_virt_addr;
3968
3969         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3970         /* Avoid "put" pointer going beyond "get" pointer */
3971         if (txdp->Host_Control ||
3972                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3973                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3974                 netif_stop_queue(dev);
3975                 dev_kfree_skb(skb);
3976                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3977                 return 0;
3978         }
3979
3980         offload_type = s2io_offload_type(skb);
3981         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3982                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3983                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3984         }
3985         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3986                 txdp->Control_2 |=
3987                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3988                      TXD_TX_CKO_UDP_EN);
3989         }
3990         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3991         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3992         txdp->Control_2 |= config->tx_intr_type;
3993
3994         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3995                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3996                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3997         }
3998
3999         frg_len = skb->len - skb->data_len;
4000         if (offload_type == SKB_GSO_UDP) {
4001                 int ufo_size;
4002
4003                 ufo_size = s2io_udp_mss(skb);
4004                 ufo_size &= ~7;
4005                 txdp->Control_1 |= TXD_UFO_EN;
4006                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4007                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4008 #ifdef __BIG_ENDIAN
4009                 sp->ufo_in_band_v[put_off] =
4010                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4011 #else
4012                 sp->ufo_in_band_v[put_off] =
4013                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4014 #endif
4015                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4016                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4017                                         sp->ufo_in_band_v,
4018                                         sizeof(u64), PCI_DMA_TODEVICE);
4019                 txdp++;
4020         }
4021
4022         txdp->Buffer_Pointer = pci_map_single
4023             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4024         txdp->Host_Control = (unsigned long) skb;
4025         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4026         if (offload_type == SKB_GSO_UDP)
4027                 txdp->Control_1 |= TXD_UFO_EN;
4028
4029         frg_cnt = skb_shinfo(skb)->nr_frags;
4030         /* For fragmented SKB. */
4031         for (i = 0; i < frg_cnt; i++) {
4032                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4033                 /* A '0' length fragment will be ignored */
4034                 if (!frag->size)
4035                         continue;
4036                 txdp++;
4037                 txdp->Buffer_Pointer = (u64) pci_map_page
4038                     (sp->pdev, frag->page, frag->page_offset,
4039                      frag->size, PCI_DMA_TODEVICE);
4040                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4041                 if (offload_type == SKB_GSO_UDP)
4042                         txdp->Control_1 |= TXD_UFO_EN;
4043         }
4044         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4045
4046         if (offload_type == SKB_GSO_UDP)
4047                 frg_cnt++; /* as Txd0 was used for inband header */
4048
4049         tx_fifo = mac_control->tx_FIFO_start[queue];
4050         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4051         writeq(val64, &tx_fifo->TxDL_Pointer);
4052
4053         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4054                  TX_FIFO_LAST_LIST);
4055         if (offload_type)
4056                 val64 |= TX_FIFO_SPECIAL_FUNC;
4057
4058         writeq(val64, &tx_fifo->List_Control);
4059
4060         mmiowb();
4061
4062         put_off++;
4063         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4064                 put_off = 0;
4065         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4066
4067         /* Avoid "put" pointer going beyond "get" pointer */
4068         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4069                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4070                 DBG_PRINT(TX_DBG,
4071                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4072                           put_off, get_off);
4073                 netif_stop_queue(dev);
4074         }
4075         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4076         dev->trans_start = jiffies;
4077         spin_unlock_irqrestore(&sp->tx_lock, flags);
4078
4079         return 0;
4080 }
4081
4082 static void
4083 s2io_alarm_handle(unsigned long data)
4084 {
4085         struct s2io_nic *sp = (struct s2io_nic *)data;
4086
4087         alarm_intr_handler(sp);
4088         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4089 }
4090
4091 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4092 {
4093         int rxb_size, level;
4094
4095         if (!sp->lro) {
4096                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4097                 level = rx_buffer_level(sp, rxb_size, rng_n);
4098
4099                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4100                         int ret;
4101                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4102                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4103                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4104                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4105                                           __FUNCTION__);
4106                                 clear_bit(0, (&sp->tasklet_status));
4107                                 return -1;
4108                         }
4109                         clear_bit(0, (&sp->tasklet_status));
4110                 } else if (level == LOW)
4111                         tasklet_schedule(&sp->task);
4112
4113         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4114                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4115                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4116         }
4117         return 0;
4118 }
4119
4120 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4121 {
4122         struct net_device *dev = (struct net_device *) dev_id;
4123         struct s2io_nic *sp = dev->priv;
4124         int i;
4125         struct mac_info *mac_control;
4126         struct config_param *config;
4127
4128         atomic_inc(&sp->isr_cnt);
4129         mac_control = &sp->mac_control;
4130         config = &sp->config;
4131         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4132
4133         /* If Intr is because of Rx Traffic */
4134         for (i = 0; i < config->rx_ring_num; i++)
4135                 rx_intr_handler(&mac_control->rings[i]);
4136
4137         /* If Intr is because of Tx Traffic */
4138         for (i = 0; i < config->tx_fifo_num; i++)
4139                 tx_intr_handler(&mac_control->fifos[i]);
4140
4141         /*
4142          * If the Rx buffer count is below the panic threshold then
4143          * reallocate the buffers from the interrupt handler itself,
4144          * else schedule a tasklet to reallocate the buffers.
4145          */
4146         for (i = 0; i < config->rx_ring_num; i++)
4147                 s2io_chk_rx_buffers(sp, i);
4148
4149         atomic_dec(&sp->isr_cnt);
4150         return IRQ_HANDLED;
4151 }
4152
4153 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4154 {
4155         struct ring_info *ring = (struct ring_info *)dev_id;
4156         struct s2io_nic *sp = ring->nic;
4157
4158         atomic_inc(&sp->isr_cnt);
4159
4160         rx_intr_handler(ring);
4161         s2io_chk_rx_buffers(sp, ring->ring_no);
4162
4163         atomic_dec(&sp->isr_cnt);
4164         return IRQ_HANDLED;
4165 }
4166
4167 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4168 {
4169         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4170         struct s2io_nic *sp = fifo->nic;
4171
4172         atomic_inc(&sp->isr_cnt);
4173         tx_intr_handler(fifo);
4174         atomic_dec(&sp->isr_cnt);
4175         return IRQ_HANDLED;
4176 }
4177 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4178 {
4179         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4180         u64 val64;
4181
4182         val64 = readq(&bar0->pic_int_status);
4183         if (val64 & PIC_INT_GPIO) {
4184                 val64 = readq(&bar0->gpio_int_reg);
4185                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4186                     (val64 & GPIO_INT_REG_LINK_UP)) {
4187                         /*
4188                          * This is unstable state so clear both up/down
4189                          * interrupt and adapter to re-evaluate the link state.
4190                          */
4191                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4192                         val64 |= GPIO_INT_REG_LINK_UP;
4193                         writeq(val64, &bar0->gpio_int_reg);
4194                         val64 = readq(&bar0->gpio_int_mask);
4195                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4196                                    GPIO_INT_MASK_LINK_DOWN);
4197                         writeq(val64, &bar0->gpio_int_mask);
4198                 }
4199                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4200                         val64 = readq(&bar0->adapter_status);
4201                                 /* Enable Adapter */
4202                         val64 = readq(&bar0->adapter_control);
4203                         val64 |= ADAPTER_CNTL_EN;
4204                         writeq(val64, &bar0->adapter_control);
4205                         val64 |= ADAPTER_LED_ON;
4206                         writeq(val64, &bar0->adapter_control);
4207                         if (!sp->device_enabled_once)
4208                                 sp->device_enabled_once = 1;
4209
4210                         s2io_link(sp, LINK_UP);
4211                         /*
4212                          * unmask link down interrupt and mask link-up
4213                          * intr
4214                          */
4215                         val64 = readq(&bar0->gpio_int_mask);
4216                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4217                         val64 |= GPIO_INT_MASK_LINK_UP;
4218                         writeq(val64, &bar0->gpio_int_mask);
4219
4220                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4221                         val64 = readq(&bar0->adapter_status);
4222                         s2io_link(sp, LINK_DOWN);
4223                         /* Link is down so unmaks link up interrupt */
4224                         val64 = readq(&bar0->gpio_int_mask);
4225                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4226                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4227                         writeq(val64, &bar0->gpio_int_mask);
4228
4229                         /* turn off LED */
4230                         val64 = readq(&bar0->adapter_control);
4231                         val64 = val64 &(~ADAPTER_LED_ON);
4232                         writeq(val64, &bar0->adapter_control);
4233                 }
4234         }
4235         val64 = readq(&bar0->gpio_int_mask);
4236 }
4237
4238 /**
4239  *  s2io_isr - ISR handler of the device .
4240  *  @irq: the irq of the device.
4241  *  @dev_id: a void pointer to the dev structure of the NIC.
4242  *  Description:  This function is the ISR handler of the device. It
4243  *  identifies the reason for the interrupt and calls the relevant
4244  *  service routines. As a contongency measure, this ISR allocates the
4245  *  recv buffers, if their numbers are below the panic value which is
4246  *  presently set to 25% of the original number of rcv buffers allocated.
4247  *  Return value:
4248  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4249  *   IRQ_NONE: will be returned if interrupt is not from our device
4250  */
4251 static irqreturn_t s2io_isr(int irq, void *dev_id)
4252 {
4253         struct net_device *dev = (struct net_device *) dev_id;
4254         struct s2io_nic *sp = dev->priv;
4255         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4256         int i;
4257         u64 reason = 0;
4258         struct mac_info *mac_control;
4259         struct config_param *config;
4260
4261         /* Pretend we handled any irq's from a disconnected card */
4262         if (pci_channel_offline(sp->pdev))
4263                 return IRQ_NONE;
4264
4265         atomic_inc(&sp->isr_cnt);
4266         mac_control = &sp->mac_control;
4267         config = &sp->config;
4268
4269         /*
4270          * Identify the cause for interrupt and call the appropriate
4271          * interrupt handler. Causes for the interrupt could be;
4272          * 1. Rx of packet.
4273          * 2. Tx complete.
4274          * 3. Link down.
4275          * 4. Error in any functional blocks of the NIC.
4276          */
4277         reason = readq(&bar0->general_int_status);
4278
4279         if (!reason) {
4280                 /* The interrupt was not raised by us. */
4281                 atomic_dec(&sp->isr_cnt);
4282                 return IRQ_NONE;
4283         }
4284         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4285                 /* Disable device and get out */
4286                 atomic_dec(&sp->isr_cnt);
4287                 return IRQ_NONE;
4288         }
4289
4290         if (napi) {
4291                 if (reason & GEN_INTR_RXTRAFFIC) {
4292                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4293                                 __netif_rx_schedule(dev);
4294                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4295                         }
4296                         else
4297                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4298                 }
4299         } else {
4300                 /*
4301                  * Rx handler is called by default, without checking for the
4302                  * cause of interrupt.
4303                  * rx_traffic_int reg is an R1 register, writing all 1's
4304                  * will ensure that the actual interrupt causing bit get's
4305                  * cleared and hence a read can be avoided.
4306                  */
4307                 if (reason & GEN_INTR_RXTRAFFIC)
4308                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4309
4310                 for (i = 0; i < config->rx_ring_num; i++) {
4311                         rx_intr_handler(&mac_control->rings[i]);
4312                 }
4313         }
4314
4315         /*
4316          * tx_traffic_int reg is an R1 register, writing all 1's
4317          * will ensure that the actual interrupt causing bit get's
4318          * cleared and hence a read can be avoided.
4319          */
4320         if (reason & GEN_INTR_TXTRAFFIC)
4321                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4322
4323         for (i = 0; i < config->tx_fifo_num; i++)
4324                 tx_intr_handler(&mac_control->fifos[i]);
4325
4326         if (reason & GEN_INTR_TXPIC)
4327                 s2io_txpic_intr_handle(sp);
4328         /*
4329          * If the Rx buffer count is below the panic threshold then
4330          * reallocate the buffers from the interrupt handler itself,
4331          * else schedule a tasklet to reallocate the buffers.
4332          */
4333         if (!napi) {
4334                 for (i = 0; i < config->rx_ring_num; i++)
4335                         s2io_chk_rx_buffers(sp, i);
4336         }
4337
4338         writeq(0, &bar0->general_int_mask);
4339         readl(&bar0->general_int_status);
4340
4341         atomic_dec(&sp->isr_cnt);
4342         return IRQ_HANDLED;
4343 }
4344
4345 /**
4346  * s2io_updt_stats -
4347  */
4348 static void s2io_updt_stats(struct s2io_nic *sp)
4349 {
4350         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4351         u64 val64;
4352         int cnt = 0;
4353
4354         if (atomic_read(&sp->card_state) == CARD_UP) {
4355                 /* Apprx 30us on a 133 MHz bus */
4356                 val64 = SET_UPDT_CLICKS(10) |
4357                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4358                 writeq(val64, &bar0->stat_cfg);
4359                 do {
4360                         udelay(100);
4361                         val64 = readq(&bar0->stat_cfg);
4362                         if (!(val64 & BIT(0)))
4363                                 break;
4364                         cnt++;
4365                         if (cnt == 5)
4366                                 break; /* Updt failed */
4367                 } while(1);
4368         } 
4369 }
4370
4371 /**
4372  *  s2io_get_stats - Updates the device statistics structure.
4373  *  @dev : pointer to the device structure.
4374  *  Description:
4375  *  This function updates the device statistics structure in the s2io_nic
4376  *  structure and returns a pointer to the same.
4377  *  Return value:
4378  *  pointer to the updated net_device_stats structure.
4379  */
4380
4381 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4382 {
4383         struct s2io_nic *sp = dev->priv;
4384         struct mac_info *mac_control;
4385         struct config_param *config;
4386
4387
4388         mac_control = &sp->mac_control;
4389         config = &sp->config;
4390
4391         /* Configure Stats for immediate updt */
4392         s2io_updt_stats(sp);
4393
4394         sp->stats.tx_packets =
4395                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4396         sp->stats.tx_errors =
4397                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4398         sp->stats.rx_errors =
4399                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4400         sp->stats.multicast =
4401                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4402         sp->stats.rx_length_errors =
4403                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4404
4405         return (&sp->stats);
4406 }
4407
4408 /**
4409  *  s2io_set_multicast - entry point for multicast address enable/disable.
4410  *  @dev : pointer to the device structure
4411  *  Description:
4412  *  This function is a driver entry point which gets called by the kernel
4413  *  whenever multicast addresses must be enabled/disabled. This also gets
4414  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4415  *  determine, if multicast address must be enabled or if promiscuous mode
4416  *  is to be disabled etc.
4417  *  Return value:
4418  *  void.
4419  */
4420
4421 static void s2io_set_multicast(struct net_device *dev)
4422 {
4423         int i, j, prev_cnt;
4424         struct dev_mc_list *mclist;
4425         struct s2io_nic *sp = dev->priv;
4426         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4427         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4428             0xfeffffffffffULL;
4429         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4430         void __iomem *add;
4431
4432         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4433                 /*  Enable all Multicast addresses */
4434                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4435                        &bar0->rmac_addr_data0_mem);
4436                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4437                        &bar0->rmac_addr_data1_mem);
4438                 val64 = RMAC_ADDR_CMD_MEM_WE |
4439                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4440                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4441                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4442                 /* Wait till command completes */
4443                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4444                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4445                                         S2IO_BIT_RESET);
4446
4447                 sp->m_cast_flg = 1;
4448                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4449         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4450                 /*  Disable all Multicast addresses */
4451                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4452                        &bar0->rmac_addr_data0_mem);
4453                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4454                        &bar0->rmac_addr_data1_mem);
4455                 val64 = RMAC_ADDR_CMD_MEM_WE |
4456                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4457                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4458                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4459                 /* Wait till command completes */
4460                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4461                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4462                                         S2IO_BIT_RESET);
4463
4464                 sp->m_cast_flg = 0;
4465                 sp->all_multi_pos = 0;
4466         }
4467
4468         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4469                 /*  Put the NIC into promiscuous mode */
4470                 add = &bar0->mac_cfg;
4471                 val64 = readq(&bar0->mac_cfg);
4472                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4473
4474                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4475                 writel((u32) val64, add);
4476                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4477                 writel((u32) (val64 >> 32), (add + 4));
4478
4479                 if (vlan_tag_strip != 1) {
4480                         val64 = readq(&bar0->rx_pa_cfg);
4481                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4482                         writeq(val64, &bar0->rx_pa_cfg);
4483                         vlan_strip_flag = 0;
4484                 }
4485
4486                 val64 = readq(&bar0->mac_cfg);
4487                 sp->promisc_flg = 1;
4488                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4489                           dev->name);
4490         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4491                 /*  Remove the NIC from promiscuous mode */
4492                 add = &bar0->mac_cfg;
4493                 val64 = readq(&bar0->mac_cfg);
4494                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4495
4496                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4497                 writel((u32) val64, add);
4498                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4499                 writel((u32) (val64 >> 32), (add + 4));
4500
4501                 if (vlan_tag_strip != 0) {
4502                         val64 = readq(&bar0->rx_pa_cfg);
4503                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4504                         writeq(val64, &bar0->rx_pa_cfg);
4505                         vlan_strip_flag = 1;
4506                 }
4507
4508                 val64 = readq(&bar0->mac_cfg);
4509                 sp->promisc_flg = 0;
4510                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4511                           dev->name);
4512         }
4513
4514         /*  Update individual M_CAST address list */
4515         if ((!sp->m_cast_flg) && dev->mc_count) {
4516                 if (dev->mc_count >
4517                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4518                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4519                                   dev->name);
4520                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4521                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4522                         return;
4523                 }
4524
4525                 prev_cnt = sp->mc_addr_count;
4526                 sp->mc_addr_count = dev->mc_count;
4527
4528                 /* Clear out the previous list of Mc in the H/W. */
4529                 for (i = 0; i < prev_cnt; i++) {
4530                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4531                                &bar0->rmac_addr_data0_mem);
4532                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4533                                 &bar0->rmac_addr_data1_mem);
4534                         val64 = RMAC_ADDR_CMD_MEM_WE |
4535                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4536                             RMAC_ADDR_CMD_MEM_OFFSET
4537                             (MAC_MC_ADDR_START_OFFSET + i);
4538                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4539
4540                         /* Wait for command completes */
4541                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4542                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4543                                         S2IO_BIT_RESET)) {
4544                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4545                                           dev->name);
4546                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4547                                 return;
4548                         }
4549                 }
4550
4551                 /* Create the new Rx filter list and update the same in H/W. */
4552                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4553                      i++, mclist = mclist->next) {
4554                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4555                                ETH_ALEN);
4556                         mac_addr = 0;
4557                         for (j = 0; j < ETH_ALEN; j++) {
4558                                 mac_addr |= mclist->dmi_addr[j];
4559                                 mac_addr <<= 8;
4560                         }
4561                         mac_addr >>= 8;
4562                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4563                                &bar0->rmac_addr_data0_mem);
4564                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4565                                 &bar0->rmac_addr_data1_mem);
4566                         val64 = RMAC_ADDR_CMD_MEM_WE |
4567                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4568                             RMAC_ADDR_CMD_MEM_OFFSET
4569                             (i + MAC_MC_ADDR_START_OFFSET);
4570                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4571
4572                         /* Wait for command completes */
4573                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4574                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4575                                         S2IO_BIT_RESET)) {
4576                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4577                                           dev->name);
4578                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4579                                 return;
4580                         }
4581                 }
4582         }
4583 }
4584
4585 /**
4586  *  s2io_set_mac_addr - Programs the Xframe mac address
4587  *  @dev : pointer to the device structure.
4588  *  @addr: a uchar pointer to the new mac address which is to be set.
4589  *  Description : This procedure will program the Xframe to receive
4590  *  frames with new Mac Address
4591  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4592  *  as defined in errno.h file on failure.
4593  */
4594
4595 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4596 {
4597         struct s2io_nic *sp = dev->priv;
4598         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4599         register u64 val64, mac_addr = 0;
4600         int i;
4601         u64 old_mac_addr = 0;
4602
4603         /*
4604          * Set the new MAC address as the new unicast filter and reflect this
4605          * change on the device address registered with the OS. It will be
4606          * at offset 0.
4607          */
4608         for (i = 0; i < ETH_ALEN; i++) {
4609                 mac_addr <<= 8;
4610                 mac_addr |= addr[i];
4611                 old_mac_addr <<= 8;
4612                 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4613         }
4614
4615         if(0 == mac_addr)
4616                 return SUCCESS;
4617
4618         /* Update the internal structure with this new mac address */
4619         if(mac_addr != old_mac_addr) {
4620                 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4621                 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4622                 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4623                 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4624                 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4625                 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4626                 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4627         }
4628
4629         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4630                &bar0->rmac_addr_data0_mem);
4631
4632         val64 =
4633             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4634             RMAC_ADDR_CMD_MEM_OFFSET(0);
4635         writeq(val64, &bar0->rmac_addr_cmd_mem);
4636         /* Wait till command completes */
4637         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4638                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4639                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4640                 return FAILURE;
4641         }
4642
4643         return SUCCESS;
4644 }
4645
4646 /**
4647  * s2io_ethtool_sset - Sets different link parameters.
4648  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4649  * @info: pointer to the structure with parameters given by ethtool to set
4650  * link information.
4651  * Description:
4652  * The function sets different link parameters provided by the user onto
4653  * the NIC.
4654  * Return value:
4655  * 0 on success.
4656 */
4657
4658 static int s2io_ethtool_sset(struct net_device *dev,
4659                              struct ethtool_cmd *info)
4660 {
4661         struct s2io_nic *sp = dev->priv;
4662         if ((info->autoneg == AUTONEG_ENABLE) ||
4663             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4664                 return -EINVAL;
4665         else {
4666                 s2io_close(sp->dev);
4667                 s2io_open(sp->dev);
4668         }
4669
4670         return 0;
4671 }
4672
4673 /**
4674  * s2io_ethtol_gset - Return link specific information.
4675  * @sp : private member of the device structure, pointer to the
4676  *      s2io_nic structure.
4677  * @info : pointer to the structure with parameters given by ethtool
4678  * to return link information.
4679  * Description:
4680  * Returns link specific information like speed, duplex etc.. to ethtool.
4681  * Return value :
4682  * return 0 on success.
4683  */
4684
4685 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4686 {
4687         struct s2io_nic *sp = dev->priv;
4688         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4689         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4690         info->port = PORT_FIBRE;
4691         /* info->transceiver?? TODO */
4692
4693         if (netif_carrier_ok(sp->dev)) {
4694                 info->speed = 10000;
4695                 info->duplex = DUPLEX_FULL;
4696         } else {
4697                 info->speed = -1;
4698                 info->duplex = -1;
4699         }
4700
4701         info->autoneg = AUTONEG_DISABLE;
4702         return 0;
4703 }
4704
4705 /**
4706  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4707  * @sp : private member of the device structure, which is a pointer to the
4708  * s2io_nic structure.
4709  * @info : pointer to the structure with parameters given by ethtool to
4710  * return driver information.
4711  * Description:
4712  * Returns driver specefic information like name, version etc.. to ethtool.
4713  * Return value:
4714  *  void
4715  */
4716
4717 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4718                                   struct ethtool_drvinfo *info)
4719 {
4720         struct s2io_nic *sp = dev->priv;
4721
4722         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4723         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4724         strncpy(info->fw_version, "", sizeof(info->fw_version));
4725         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4726         info->regdump_len = XENA_REG_SPACE;
4727         info->eedump_len = XENA_EEPROM_SPACE;
4728         info->testinfo_len = S2IO_TEST_LEN;
4729
4730         if (sp->device_type == XFRAME_I_DEVICE)
4731                 info->n_stats = XFRAME_I_STAT_LEN;
4732         else
4733                 info->n_stats = XFRAME_II_STAT_LEN;
4734 }
4735
4736 /**
4737  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4738  *  @sp: private member of the device structure, which is a pointer to the
4739  *  s2io_nic structure.
4740  *  @regs : pointer to the structure with parameters given by ethtool for
4741  *  dumping the registers.
4742  *  @reg_space: The input argumnet into which all the registers are dumped.
4743  *  Description:
4744  *  Dumps the entire register space of xFrame NIC into the user given
4745  *  buffer area.
4746  * Return value :
4747  * void .
4748 */
4749
4750 static void s2io_ethtool_gregs(struct net_device *dev,
4751                                struct ethtool_regs *regs, void *space)
4752 {
4753         int i;
4754         u64 reg;
4755         u8 *reg_space = (u8 *) space;
4756         struct s2io_nic *sp = dev->priv;
4757
4758         regs->len = XENA_REG_SPACE;
4759         regs->version = sp->pdev->subsystem_device;
4760
4761         for (i = 0; i < regs->len; i += 8) {
4762                 reg = readq(sp->bar0 + i);
4763                 memcpy((reg_space + i), &reg, 8);
4764         }
4765 }
4766
4767 /**
4768  *  s2io_phy_id  - timer function that alternates adapter LED.
4769  *  @data : address of the private member of the device structure, which
4770  *  is a pointer to the s2io_nic structure, provided as an u32.
4771  * Description: This is actually the timer function that alternates the
4772  * adapter LED bit of the adapter control bit to set/reset every time on
4773  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4774  *  once every second.
4775 */
4776 static void s2io_phy_id(unsigned long data)
4777 {
4778         struct s2io_nic *sp = (struct s2io_nic *) data;
4779         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4780         u64 val64 = 0;
4781         u16 subid;
4782
4783         subid = sp->pdev->subsystem_device;
4784         if ((sp->device_type == XFRAME_II_DEVICE) ||
4785                    ((subid & 0xFF) >= 0x07)) {
4786                 val64 = readq(&bar0->gpio_control);
4787                 val64 ^= GPIO_CTRL_GPIO_0;
4788                 writeq(val64, &bar0->gpio_control);
4789         } else {
4790                 val64 = readq(&bar0->adapter_control);
4791                 val64 ^= ADAPTER_LED_ON;
4792                 writeq(val64, &bar0->adapter_control);
4793         }
4794
4795         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4796 }
4797
4798 /**
4799  * s2io_ethtool_idnic - To physically identify the nic on the system.
4800  * @sp : private member of the device structure, which is a pointer to the
4801  * s2io_nic structure.
4802  * @id : pointer to the structure with identification parameters given by
4803  * ethtool.
4804  * Description: Used to physically identify the NIC on the system.
4805  * The Link LED will blink for a time specified by the user for
4806  * identification.
4807  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4808  * identification is possible only if it's link is up.
4809  * Return value:
4810  * int , returns 0 on success
4811  */
4812
4813 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4814 {
4815         u64 val64 = 0, last_gpio_ctrl_val;
4816         struct s2io_nic *sp = dev->priv;
4817         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4818         u16 subid;
4819
4820         subid = sp->pdev->subsystem_device;
4821         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4822         if ((sp->device_type == XFRAME_I_DEVICE) &&
4823                 ((subid & 0xFF) < 0x07)) {
4824                 val64 = readq(&bar0->adapter_control);
4825                 if (!(val64 & ADAPTER_CNTL_EN)) {
4826                         printk(KERN_ERR
4827                                "Adapter Link down, cannot blink LED\n");
4828                         return -EFAULT;
4829                 }
4830         }
4831         if (sp->id_timer.function == NULL) {
4832                 init_timer(&sp->id_timer);
4833                 sp->id_timer.function = s2io_phy_id;
4834                 sp->id_timer.data = (unsigned long) sp;
4835         }
4836         mod_timer(&sp->id_timer, jiffies);
4837         if (data)
4838                 msleep_interruptible(data * HZ);
4839         else
4840                 msleep_interruptible(MAX_FLICKER_TIME);
4841         del_timer_sync(&sp->id_timer);
4842
4843         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4844                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4845                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4846         }
4847
4848         return 0;
4849 }
4850
4851 static void s2io_ethtool_gringparam(struct net_device *dev,
4852                                     struct ethtool_ringparam *ering)
4853 {
4854         struct s2io_nic *sp = dev->priv;
4855         int i,tx_desc_count=0,rx_desc_count=0;
4856
4857         if (sp->rxd_mode == RXD_MODE_1)
4858                 ering->rx_max_pending = MAX_RX_DESC_1;
4859         else if (sp->rxd_mode == RXD_MODE_3B)
4860                 ering->rx_max_pending = MAX_RX_DESC_2;
4861
4862         ering->tx_max_pending = MAX_TX_DESC;
4863         for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4864                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4865         }
4866         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4867         ering->tx_pending = tx_desc_count;
4868         rx_desc_count = 0;
4869         for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4870                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4871         }
4872         ering->rx_pending = rx_desc_count;
4873
4874         ering->rx_mini_max_pending = 0;
4875         ering->rx_mini_pending = 0;
4876         if(sp->rxd_mode == RXD_MODE_1)
4877                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4878         else if (sp->rxd_mode == RXD_MODE_3B)
4879                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4880         ering->rx_jumbo_pending = rx_desc_count;
4881 }
4882
4883 /**
4884  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4885  * @sp : private member of the device structure, which is a pointer to the
4886  *      s2io_nic structure.
4887  * @ep : pointer to the structure with pause parameters given by ethtool.
4888  * Description:
4889  * Returns the Pause frame generation and reception capability of the NIC.
4890  * Return value:
4891  *  void
4892  */
4893 static void s2io_ethtool_getpause_data(struct net_device *dev,
4894                                        struct ethtool_pauseparam *ep)
4895 {
4896         u64 val64;
4897         struct s2io_nic *sp = dev->priv;
4898         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4899
4900         val64 = readq(&bar0->rmac_pause_cfg);
4901         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4902                 ep->tx_pause = TRUE;
4903         if (val64 & RMAC_PAUSE_RX_ENABLE)
4904                 ep->rx_pause = TRUE;
4905         ep->autoneg = FALSE;
4906 }
4907
4908 /**
4909  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4910  * @sp : private member of the device structure, which is a pointer to the
4911  *      s2io_nic structure.
4912  * @ep : pointer to the structure with pause parameters given by ethtool.
4913  * Description:
4914  * It can be used to set or reset Pause frame generation or reception
4915  * support of the NIC.
4916  * Return value:
4917  * int, returns 0 on Success
4918  */
4919
4920 static int s2io_ethtool_setpause_data(struct net_device *dev,
4921                                struct ethtool_pauseparam *ep)
4922 {
4923         u64 val64;
4924         struct s2io_nic *sp = dev->priv;
4925         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4926
4927         val64 = readq(&bar0->rmac_pause_cfg);
4928         if (ep->tx_pause)
4929                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4930         else
4931                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4932         if (ep->rx_pause)
4933                 val64 |= RMAC_PAUSE_RX_ENABLE;
4934         else
4935                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4936         writeq(val64, &bar0->rmac_pause_cfg);
4937         return 0;
4938 }
4939
4940 /**
4941  * read_eeprom - reads 4 bytes of data from user given offset.
4942  * @sp : private member of the device structure, which is a pointer to the
4943  *      s2io_nic structure.
4944  * @off : offset at which the data must be written
4945  * @data : Its an output parameter where the data read at the given
4946  *      offset is stored.
4947  * Description:
4948  * Will read 4 bytes of data from the user given offset and return the
4949  * read data.
4950  * NOTE: Will allow to read only part of the EEPROM visible through the
4951  *   I2C bus.
4952  * Return value:
4953  *  -1 on failure and 0 on success.
4954  */
4955
4956 #define S2IO_DEV_ID             5
4957 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4958 {
4959         int ret = -1;
4960         u32 exit_cnt = 0;
4961         u64 val64;
4962         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4963
4964         if (sp->device_type == XFRAME_I_DEVICE) {
4965                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4966                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4967                     I2C_CONTROL_CNTL_START;
4968                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4969
4970                 while (exit_cnt < 5) {
4971                         val64 = readq(&bar0->i2c_control);
4972                         if (I2C_CONTROL_CNTL_END(val64)) {
4973                                 *data = I2C_CONTROL_GET_DATA(val64);
4974                                 ret = 0;
4975                                 break;
4976                         }
4977                         msleep(50);
4978                         exit_cnt++;
4979                 }
4980         }
4981
4982         if (sp->device_type == XFRAME_II_DEVICE) {
4983                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4984                         SPI_CONTROL_BYTECNT(0x3) |
4985                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4986                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4987                 val64 |= SPI_CONTROL_REQ;
4988                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4989                 while (exit_cnt < 5) {
4990                         val64 = readq(&bar0->spi_control);
4991                         if (val64 & SPI_CONTROL_NACK) {
4992                                 ret = 1;
4993                                 break;
4994                         } else if (val64 & SPI_CONTROL_DONE) {
4995                                 *data = readq(&bar0->spi_data);
4996                                 *data &= 0xffffff;
4997                                 ret = 0;
4998                                 break;
4999                         }
5000                         msleep(50);
5001                         exit_cnt++;
5002                 }
5003         }
5004         return ret;
5005 }
5006
5007 /**
5008  *  write_eeprom - actually writes the relevant part of the data value.
5009  *  @sp : private member of the device structure, which is a pointer to the
5010  *       s2io_nic structure.
5011  *  @off : offset at which the data must be written
5012  *  @data : The data that is to be written
5013  *  @cnt : Number of bytes of the data that are actually to be written into
5014  *  the Eeprom. (max of 3)
5015  * Description:
5016  *  Actually writes the relevant part of the data value into the Eeprom
5017  *  through the I2C bus.
5018  * Return value:
5019  *  0 on success, -1 on failure.
5020  */
5021
5022 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5023 {
5024         int exit_cnt = 0, ret = -1;
5025         u64 val64;
5026         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5027
5028         if (sp->device_type == XFRAME_I_DEVICE) {
5029                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5030                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5031                     I2C_CONTROL_CNTL_START;
5032                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5033
5034                 while (exit_cnt < 5) {
5035                         val64 = readq(&bar0->i2c_control);
5036                         if (I2C_CONTROL_CNTL_END(val64)) {
5037                                 if (!(val64 & I2C_CONTROL_NACK))
5038                                         ret = 0;
5039                                 break;
5040                         }
5041                         msleep(50);
5042                         exit_cnt++;
5043                 }
5044         }
5045
5046         if (sp->device_type == XFRAME_II_DEVICE) {
5047                 int write_cnt = (cnt == 8) ? 0 : cnt;
5048                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5049
5050                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5051                         SPI_CONTROL_BYTECNT(write_cnt) |
5052                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5053                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5054                 val64 |= SPI_CONTROL_REQ;
5055                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5056                 while (exit_cnt < 5) {
5057                         val64 = readq(&bar0->spi_control);
5058                         if (val64 & SPI_CONTROL_NACK) {
5059                                 ret = 1;
5060                                 break;
5061                         } else if (val64 & SPI_CONTROL_DONE) {
5062                                 ret = 0;
5063                                 break;
5064                         }
5065                         msleep(50);
5066                         exit_cnt++;
5067                 }
5068         }
5069         return ret;
5070 }
5071 static void s2io_vpd_read(struct s2io_nic *nic)
5072 {
5073         u8 *vpd_data;
5074         u8 data;
5075         int i=0, cnt, fail = 0;
5076         int vpd_addr = 0x80;
5077
5078         if (nic->device_type == XFRAME_II_DEVICE) {
5079                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5080                 vpd_addr = 0x80;
5081         }
5082         else {
5083                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5084                 vpd_addr = 0x50;
5085         }
5086         strcpy(nic->serial_num, "NOT AVAILABLE");
5087
5088         vpd_data = kmalloc(256, GFP_KERNEL);
5089         if (!vpd_data) {
5090                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5091                 return;
5092         }
5093         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5094
5095         for (i = 0; i < 256; i +=4 ) {
5096                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5097                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5098                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5099                 for (cnt = 0; cnt <5; cnt++) {
5100                         msleep(2);
5101                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5102                         if (data == 0x80)
5103                                 break;
5104                 }
5105                 if (cnt >= 5) {
5106                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5107                         fail = 1;
5108                         break;
5109                 }
5110                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5111                                       (u32 *)&vpd_data[i]);
5112         }
5113
5114         if(!fail) {
5115                 /* read serial number of adapter */
5116                 for (cnt = 0; cnt < 256; cnt++) {
5117                 if ((vpd_data[cnt] == 'S') &&
5118                         (vpd_data[cnt+1] == 'N') &&
5119                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5120                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5121                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5122                                         vpd_data[cnt+2]);
5123                                 break;
5124                         }
5125                 }
5126         }
5127
5128         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5129                 memset(nic->product_name, 0, vpd_data[1]);
5130                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5131         }
5132         kfree(vpd_data);
5133         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5134 }
5135
5136 /**
5137  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5138  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5139  *  @eeprom : pointer to the user level structure provided by ethtool,
5140  *  containing all relevant information.
5141  *  @data_buf : user defined value to be written into Eeprom.
5142  *  Description: Reads the values stored in the Eeprom at given offset
5143  *  for a given length. Stores these values int the input argument data
5144  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5145  *  Return value:
5146  *  int  0 on success
5147  */
5148
5149 static int s2io_ethtool_geeprom(struct net_device *dev,
5150                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5151 {
5152         u32 i, valid;
5153         u64 data;
5154         struct s2io_nic *sp = dev->priv;
5155
5156         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5157
5158         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5159                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5160
5161         for (i = 0; i < eeprom->len; i += 4) {
5162                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5163                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5164                         return -EFAULT;
5165                 }
5166                 valid = INV(data);
5167                 memcpy((data_buf + i), &valid, 4);
5168         }
5169         return 0;
5170 }
5171
5172 /**
5173  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5174  *  @sp : private member of the device structure, which is a pointer to the
5175  *  s2io_nic structure.
5176  *  @eeprom : pointer to the user level structure provided by ethtool,
5177  *  containing all relevant information.
5178  *  @data_buf ; user defined value to be written into Eeprom.
5179  *  Description:
5180  *  Tries to write the user provided value in the Eeprom, at the offset
5181  *  given by the user.
5182  *  Return value:
5183  *  0 on success, -EFAULT on failure.
5184  */
5185
5186 static int s2io_ethtool_seeprom(struct net_device *dev,
5187                                 struct ethtool_eeprom *eeprom,
5188                                 u8 * data_buf)
5189 {
5190         int len = eeprom->len, cnt = 0;
5191         u64 valid = 0, data;
5192         struct s2io_nic *sp = dev->priv;
5193
5194         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5195                 DBG_PRINT(ERR_DBG,
5196                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5197                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5198                           eeprom->magic);
5199                 return -EFAULT;
5200         }
5201
5202         while (len) {
5203                 data = (u32) data_buf[cnt] & 0x000000FF;
5204                 if (data) {
5205                         valid = (u32) (data << 24);
5206                 } else
5207                         valid = data;
5208
5209                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5210                         DBG_PRINT(ERR_DBG,
5211                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5212                         DBG_PRINT(ERR_DBG,
5213                                   "write into the specified offset\n");
5214                         return -EFAULT;
5215                 }
5216                 cnt++;
5217                 len--;
5218         }
5219
5220         return 0;
5221 }
5222
5223 /**
5224  * s2io_register_test - reads and writes into all clock domains.
5225  * @sp : private member of the device structure, which is a pointer to the
5226  * s2io_nic structure.
5227  * @data : variable that returns the result of each of the test conducted b
5228  * by the driver.
5229  * Description:
5230  * Read and write into all clock domains. The NIC has 3 clock domains,
5231  * see that registers in all the three regions are accessible.
5232  * Return value:
5233  * 0 on success.
5234  */
5235
5236 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5237 {
5238         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5239         u64 val64 = 0, exp_val;
5240         int fail = 0;
5241
5242         val64 = readq(&bar0->pif_rd_swapper_fb);
5243         if (val64 != 0x123456789abcdefULL) {
5244                 fail = 1;
5245                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5246         }
5247
5248         val64 = readq(&bar0->rmac_pause_cfg);
5249         if (val64 != 0xc000ffff00000000ULL) {
5250                 fail = 1;
5251                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5252         }
5253
5254         val64 = readq(&bar0->rx_queue_cfg);
5255         if (sp->device_type == XFRAME_II_DEVICE)
5256                 exp_val = 0x0404040404040404ULL;
5257         else
5258                 exp_val = 0x0808080808080808ULL;
5259         if (val64 != exp_val) {
5260                 fail = 1;
5261                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5262         }
5263
5264         val64 = readq(&bar0->xgxs_efifo_cfg);
5265         if (val64 != 0x000000001923141EULL) {
5266                 fail = 1;
5267                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5268         }
5269
5270         val64 = 0x5A5A5A5A5A5A5A5AULL;
5271         writeq(val64, &bar0->xmsi_data);
5272         val64 = readq(&bar0->xmsi_data);
5273         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5274                 fail = 1;
5275                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5276         }
5277
5278         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5279         writeq(val64, &bar0->xmsi_data);
5280         val64 = readq(&bar0->xmsi_data);
5281         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5282                 fail = 1;
5283                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5284         }
5285
5286         *data = fail;
5287         return fail;
5288 }
5289
5290 /**
5291  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5292  * @sp : private member of the device structure, which is a pointer to the
5293  * s2io_nic structure.
5294  * @data:variable that returns the result of each of the test conducted by
5295  * the driver.
5296  * Description:
5297  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5298  * register.
5299  * Return value:
5300  * 0 on success.
5301  */
5302
5303 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5304 {
5305         int fail = 0;
5306         u64 ret_data, org_4F0, org_7F0;
5307         u8 saved_4F0 = 0, saved_7F0 = 0;
5308         struct net_device *dev = sp->dev;
5309
5310         /* Test Write Error at offset 0 */
5311         /* Note that SPI interface allows write access to all areas
5312          * of EEPROM. Hence doing all negative testing only for Xframe I.
5313          */
5314         if (sp->device_type == XFRAME_I_DEVICE)
5315                 if (!write_eeprom(sp, 0, 0, 3))
5316                         fail = 1;
5317
5318         /* Save current values at offsets 0x4F0 and 0x7F0 */
5319         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5320                 saved_4F0 = 1;
5321         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5322                 saved_7F0 = 1;
5323
5324         /* Test Write at offset 4f0 */
5325         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5326                 fail = 1;
5327         if (read_eeprom(sp, 0x4F0, &ret_data))
5328                 fail = 1;
5329
5330         if (ret_data != 0x012345) {
5331                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5332                         "Data written %llx Data read %llx\n",
5333                         dev->name, (unsigned long long)0x12345,
5334                         (unsigned long long)ret_data);
5335                 fail = 1;
5336         }
5337
5338         /* Reset the EEPROM data go FFFF */
5339         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5340
5341         /* Test Write Request Error at offset 0x7c */
5342         if (sp->device_type == XFRAME_I_DEVICE)
5343                 if (!write_eeprom(sp, 0x07C, 0, 3))
5344                         fail = 1;
5345
5346         /* Test Write Request at offset 0x7f0 */
5347         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5348                 fail = 1;
5349         if (read_eeprom(sp, 0x7F0, &ret_data))
5350                 fail = 1;
5351
5352         if (ret_data != 0x012345) {
5353                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5354                         "Data written %llx Data read %llx\n",
5355                         dev->name, (unsigned long long)0x12345,
5356                         (unsigned long long)ret_data);
5357                 fail = 1;
5358         }
5359
5360         /* Reset the EEPROM data go FFFF */
5361         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5362
5363         if (sp->device_type == XFRAME_I_DEVICE) {
5364                 /* Test Write Error at offset 0x80 */
5365                 if (!write_eeprom(sp, 0x080, 0, 3))
5366                         fail = 1;
5367
5368                 /* Test Write Error at offset 0xfc */
5369                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5370                         fail = 1;
5371
5372                 /* Test Write Error at offset 0x100 */
5373                 if (!write_eeprom(sp, 0x100, 0, 3))
5374                         fail = 1;
5375
5376                 /* Test Write Error at offset 4ec */
5377                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5378                         fail = 1;
5379         }
5380
5381         /* Restore values at offsets 0x4F0 and 0x7F0 */
5382         if (saved_4F0)
5383                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5384         if (saved_7F0)
5385                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5386
5387         *data = fail;
5388         return fail;
5389 }
5390
5391 /**
5392  * s2io_bist_test - invokes the MemBist test of the card .
5393  * @sp : private member of the device structure, which is a pointer to the
5394  * s2io_nic structure.
5395  * @data:variable that returns the result of each of the test conducted by
5396  * the driver.
5397  * Description:
5398  * This invokes the MemBist test of the card. We give around
5399  * 2 secs time for the Test to complete. If it's still not complete
5400  * within this peiod, we consider that the test failed.
5401  * Return value:
5402  * 0 on success and -1 on failure.
5403  */
5404
5405 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5406 {
5407         u8 bist = 0;
5408         int cnt = 0, ret = -1;
5409
5410         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5411         bist |= PCI_BIST_START;
5412         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5413
5414         while (cnt < 20) {
5415                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5416                 if (!(bist & PCI_BIST_START)) {
5417                         *data = (bist & PCI_BIST_CODE_MASK);
5418                         ret = 0;
5419                         break;
5420                 }
5421                 msleep(100);
5422                 cnt++;
5423         }
5424
5425         return ret;
5426 }
5427
5428 /**
5429  * s2io-link_test - verifies the link state of the nic
5430  * @sp ; private member of the device structure, which is a pointer to the
5431  * s2io_nic structure.
5432  * @data: variable that returns the result of each of the test conducted by
5433  * the driver.
5434  * Description:
5435  * The function verifies the link state of the NIC and updates the input
5436  * argument 'data' appropriately.
5437  * Return value:
5438  * 0 on success.
5439  */
5440
5441 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5442 {
5443         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5444         u64 val64;
5445
5446         val64 = readq(&bar0->adapter_status);
5447         if(!(LINK_IS_UP(val64)))
5448                 *data = 1;
5449         else
5450                 *data = 0;
5451
5452         return *data;
5453 }
5454
5455 /**
5456  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5457  * @sp - private member of the device structure, which is a pointer to the
5458  * s2io_nic structure.
5459  * @data - variable that returns the result of each of the test
5460  * conducted by the driver.
5461  * Description:
5462  *  This is one of the offline test that tests the read and write
5463  *  access to the RldRam chip on the NIC.
5464  * Return value:
5465  *  0 on success.
5466  */
5467
5468 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5469 {
5470         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5471         u64 val64;
5472         int cnt, iteration = 0, test_fail = 0;
5473
5474         val64 = readq(&bar0->adapter_control);
5475         val64 &= ~ADAPTER_ECC_EN;
5476         writeq(val64, &bar0->adapter_control);
5477
5478         val64 = readq(&bar0->mc_rldram_test_ctrl);
5479         val64 |= MC_RLDRAM_TEST_MODE;
5480         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5481
5482         val64 = readq(&bar0->mc_rldram_mrs);
5483         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5484         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5485
5486         val64 |= MC_RLDRAM_MRS_ENABLE;
5487         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5488
5489         while (iteration < 2) {
5490                 val64 = 0x55555555aaaa0000ULL;
5491                 if (iteration == 1) {
5492                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5493                 }
5494                 writeq(val64, &bar0->mc_rldram_test_d0);
5495
5496                 val64 = 0xaaaa5a5555550000ULL;
5497                 if (iteration == 1) {
5498                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5499                 }
5500                 writeq(val64, &bar0->mc_rldram_test_d1);
5501
5502                 val64 = 0x55aaaaaaaa5a0000ULL;
5503                 if (iteration == 1) {
5504                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5505                 }
5506                 writeq(val64, &bar0->mc_rldram_test_d2);
5507
5508                 val64 = (u64) (0x0000003ffffe0100ULL);
5509                 writeq(val64, &bar0->mc_rldram_test_add);
5510
5511                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5512                         MC_RLDRAM_TEST_GO;
5513                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5514
5515                 for (cnt = 0; cnt < 5; cnt++) {
5516                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5517                         if (val64 & MC_RLDRAM_TEST_DONE)
5518                                 break;
5519                         msleep(200);
5520                 }
5521
5522                 if (cnt == 5)
5523                         break;
5524
5525                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5526                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5527
5528                 for (cnt = 0; cnt < 5; cnt++) {
5529                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5530                         if (val64 & MC_RLDRAM_TEST_DONE)
5531                                 break;
5532                         msleep(500);
5533                 }
5534
5535                 if (cnt == 5)
5536                         break;
5537
5538                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5539                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5540                         test_fail = 1;
5541
5542                 iteration++;
5543         }
5544
5545         *data = test_fail;
5546
5547         /* Bring the adapter out of test mode */
5548         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5549
5550         return test_fail;
5551 }
5552
5553 /**
5554  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5555  *  @sp : private member of the device structure, which is a pointer to the
5556  *  s2io_nic structure.
5557  *  @ethtest : pointer to a ethtool command specific structure that will be
5558  *  returned to the user.
5559  *  @data : variable that returns the result of each of the test
5560  * conducted by the driver.
5561  * Description:
5562  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5563  *  the health of the card.
5564  * Return value:
5565  *  void
5566  */
5567
5568 static void s2io_ethtool_test(struct net_device *dev,
5569                               struct ethtool_test *ethtest,
5570                               uint64_t * data)
5571 {
5572         struct s2io_nic *sp = dev->priv;
5573         int orig_state = netif_running(sp->dev);
5574
5575         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5576                 /* Offline Tests. */
5577                 if (orig_state)
5578                         s2io_close(sp->dev);
5579
5580                 if (s2io_register_test(sp, &data[0]))
5581                         ethtest->flags |= ETH_TEST_FL_FAILED;
5582
5583                 s2io_reset(sp);
5584
5585                 if (s2io_rldram_test(sp, &data[3]))
5586                         ethtest->flags |= ETH_TEST_FL_FAILED;
5587
5588                 s2io_reset(sp);
5589
5590                 if (s2io_eeprom_test(sp, &data[1]))
5591                         ethtest->flags |= ETH_TEST_FL_FAILED;
5592
5593                 if (s2io_bist_test(sp, &data[4]))
5594                         ethtest->flags |= ETH_TEST_FL_FAILED;
5595
5596                 if (orig_state)
5597                         s2io_open(sp->dev);
5598
5599                 data[2] = 0;
5600         } else {
5601                 /* Online Tests. */
5602                 if (!orig_state) {
5603                         DBG_PRINT(ERR_DBG,
5604                                   "%s: is not up, cannot run test\n",
5605                                   dev->name);
5606                         data[0] = -1;
5607                         data[1] = -1;
5608                         data[2] = -1;
5609                         data[3] = -1;
5610                         data[4] = -1;
5611                 }
5612
5613                 if (s2io_link_test(sp, &data[2]))
5614                         ethtest->flags |= ETH_TEST_FL_FAILED;
5615
5616                 data[0] = 0;
5617                 data[1] = 0;
5618                 data[3] = 0;
5619                 data[4] = 0;
5620         }
5621 }
5622
5623 static void s2io_get_ethtool_stats(struct net_device *dev,
5624                                    struct ethtool_stats *estats,
5625                                    u64 * tmp_stats)
5626 {
5627         int i = 0;
5628         struct s2io_nic *sp = dev->priv;
5629         struct stat_block *stat_info = sp->mac_control.stats_info;
5630
5631         s2io_updt_stats(sp);
5632         tmp_stats[i++] =
5633                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5634                 le32_to_cpu(stat_info->tmac_frms);
5635         tmp_stats[i++] =
5636                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5637                 le32_to_cpu(stat_info->tmac_data_octets);
5638         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5639         tmp_stats[i++] =
5640                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5641                 le32_to_cpu(stat_info->tmac_mcst_frms);
5642         tmp_stats[i++] =
5643                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5644                 le32_to_cpu(stat_info->tmac_bcst_frms);
5645         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5646         tmp_stats[i++] =
5647                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5648                 le32_to_cpu(stat_info->tmac_ttl_octets);
5649         tmp_stats[i++] =
5650                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5651                 le32_to_cpu(stat_info->tmac_ucst_frms);
5652         tmp_stats[i++] =
5653                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5654                 le32_to_cpu(stat_info->tmac_nucst_frms);
5655         tmp_stats[i++] =
5656                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5657                 le32_to_cpu(stat_info->tmac_any_err_frms);
5658         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5659         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5660         tmp_stats[i++] =
5661                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5662                 le32_to_cpu(stat_info->tmac_vld_ip);
5663         tmp_stats[i++] =
5664                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5665                 le32_to_cpu(stat_info->tmac_drop_ip);
5666         tmp_stats[i++] =
5667                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5668                 le32_to_cpu(stat_info->tmac_icmp);
5669         tmp_stats[i++] =
5670                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5671                 le32_to_cpu(stat_info->tmac_rst_tcp);
5672         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5673         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5674                 le32_to_cpu(stat_info->tmac_udp);
5675         tmp_stats[i++] =
5676                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5677                 le32_to_cpu(stat_info->rmac_vld_frms);
5678         tmp_stats[i++] =
5679                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5680                 le32_to_cpu(stat_info->rmac_data_octets);
5681         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5682         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5683         tmp_stats[i++] =
5684                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5685                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5686         tmp_stats[i++] =
5687                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5688                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5689         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5690         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5691         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5692         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5693         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5694         tmp_stats[i++] =
5695                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5696                 le32_to_cpu(stat_info->rmac_ttl_octets);
5697         tmp_stats[i++] =
5698                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5699                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5700         tmp_stats[i++] =
5701                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5702                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5703         tmp_stats[i++] =
5704                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5705                 le32_to_cpu(stat_info->rmac_discarded_frms);
5706         tmp_stats[i++] =
5707                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5708                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5709         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5710         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5711         tmp_stats[i++] =
5712                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5713                 le32_to_cpu(stat_info->rmac_usized_frms);
5714         tmp_stats[i++] =
5715                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5716                 le32_to_cpu(stat_info->rmac_osized_frms);
5717         tmp_stats[i++] =
5718                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5719                 le32_to_cpu(stat_info->rmac_frag_frms);
5720         tmp_stats[i++] =
5721                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5722                 le32_to_cpu(stat_info->rmac_jabber_frms);
5723         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5724         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5725         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5726         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5727         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5728         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5729         tmp_stats[i++] =
5730                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5731                 le32_to_cpu(stat_info->rmac_ip);
5732         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5733         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5734         tmp_stats[i++] =
5735                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5736                 le32_to_cpu(stat_info->rmac_drop_ip);
5737         tmp_stats[i++] =
5738                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5739                 le32_to_cpu(stat_info->rmac_icmp);
5740         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5741         tmp_stats[i++] =
5742                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5743                 le32_to_cpu(stat_info->rmac_udp);
5744         tmp_stats[i++] =
5745                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5746                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5747         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5748         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5749         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5750         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5751         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5752         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5753         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5754         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5755         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5756         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5757         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5758         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5759         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5760         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5761         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5762         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5763         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5764         tmp_stats[i++] =
5765                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5766                 le32_to_cpu(stat_info->rmac_pause_cnt);
5767         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5768         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5769         tmp_stats[i++] =
5770                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5771                 le32_to_cpu(stat_info->rmac_accepted_ip);
5772         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5773         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5774         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5775         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5776         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5777         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5778         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5779         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5780         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5781         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5782         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5783         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5784         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5785         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5786         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5787         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5788         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5789         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5790         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5791
5792         /* Enhanced statistics exist only for Hercules */
5793         if(sp->device_type == XFRAME_II_DEVICE) {
5794                 tmp_stats[i++] =
5795                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5796                 tmp_stats[i++] =
5797                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5798                 tmp_stats[i++] =
5799                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5800                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5801                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5802                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5803                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5804                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5805                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5806                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5807                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5808                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5809                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5810                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5811                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5812                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5813         }
5814
5815         tmp_stats[i++] = 0;
5816         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5817         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5818         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5819         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5820         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5821         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5822         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5823         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5824         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5825         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5826         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5827         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5828         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5829         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5830         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5831         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5832         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5833         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5834         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5835         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5836         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5837         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5838         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5839         if (stat_info->sw_stat.num_aggregations) {
5840                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5841                 int count = 0;
5842                 /*
5843                  * Since 64-bit divide does not work on all platforms,
5844                  * do repeated subtraction.
5845                  */
5846                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5847                         tmp -= stat_info->sw_stat.num_aggregations;
5848                         count++;
5849                 }
5850                 tmp_stats[i++] = count;
5851         }
5852         else
5853                 tmp_stats[i++] = 0;
5854         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5855         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5856         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5857         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5858         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5859         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5860         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5861         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5862
5863         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5864         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5865         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5866         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5867         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5868
5869         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5870         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5871         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5872         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5873         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5874         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5875         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5876         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5877         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5878 }
5879
5880 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5881 {
5882         return (XENA_REG_SPACE);
5883 }
5884
5885
5886 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5887 {
5888         struct s2io_nic *sp = dev->priv;
5889
5890         return (sp->rx_csum);
5891 }
5892
5893 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5894 {
5895         struct s2io_nic *sp = dev->priv;
5896
5897         if (data)
5898                 sp->rx_csum = 1;
5899         else
5900                 sp->rx_csum = 0;
5901
5902         return 0;
5903 }
5904
5905 static int s2io_get_eeprom_len(struct net_device *dev)
5906 {
5907         return (XENA_EEPROM_SPACE);
5908 }
5909
5910 static int s2io_ethtool_self_test_count(struct net_device *dev)
5911 {
5912         return (S2IO_TEST_LEN);
5913 }
5914
5915 static void s2io_ethtool_get_strings(struct net_device *dev,
5916                                      u32 stringset, u8 * data)
5917 {
5918         int stat_size = 0;
5919         struct s2io_nic *sp = dev->priv;
5920
5921         switch (stringset) {
5922         case ETH_SS_TEST:
5923                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5924                 break;
5925         case ETH_SS_STATS:
5926                 stat_size = sizeof(ethtool_xena_stats_keys);
5927                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5928                 if(sp->device_type == XFRAME_II_DEVICE) {
5929                         memcpy(data + stat_size,
5930                                 &ethtool_enhanced_stats_keys,
5931                                 sizeof(ethtool_enhanced_stats_keys));
5932                         stat_size += sizeof(ethtool_enhanced_stats_keys);
5933                 }
5934
5935                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5936                         sizeof(ethtool_driver_stats_keys));
5937         }
5938 }
5939 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5940 {
5941         struct s2io_nic *sp = dev->priv;
5942         int stat_count = 0;
5943         switch(sp->device_type) {
5944         case XFRAME_I_DEVICE:
5945                 stat_count = XFRAME_I_STAT_LEN;
5946         break;
5947
5948         case XFRAME_II_DEVICE:
5949                 stat_count = XFRAME_II_STAT_LEN;
5950         break;
5951         }
5952
5953         return stat_count;
5954 }
5955
5956 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5957 {
5958         if (data)
5959                 dev->features |= NETIF_F_IP_CSUM;
5960         else
5961                 dev->features &= ~NETIF_F_IP_CSUM;
5962
5963         return 0;
5964 }
5965
5966 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5967 {
5968         return (dev->features & NETIF_F_TSO) != 0;
5969 }
5970 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5971 {
5972         if (data)
5973                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5974         else
5975                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5976
5977         return 0;
5978 }
5979
5980 static const struct ethtool_ops netdev_ethtool_ops = {
5981         .get_settings = s2io_ethtool_gset,
5982         .set_settings = s2io_ethtool_sset,
5983         .get_drvinfo = s2io_ethtool_gdrvinfo,
5984         .get_regs_len = s2io_ethtool_get_regs_len,
5985         .get_regs = s2io_ethtool_gregs,
5986         .get_link = ethtool_op_get_link,
5987         .get_eeprom_len = s2io_get_eeprom_len,
5988         .get_eeprom = s2io_ethtool_geeprom,
5989         .set_eeprom = s2io_ethtool_seeprom,
5990         .get_ringparam = s2io_ethtool_gringparam,
5991         .get_pauseparam = s2io_ethtool_getpause_data,
5992         .set_pauseparam = s2io_ethtool_setpause_data,
5993         .get_rx_csum = s2io_ethtool_get_rx_csum,
5994         .set_rx_csum = s2io_ethtool_set_rx_csum,
5995         .get_tx_csum = ethtool_op_get_tx_csum,
5996         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5997         .get_sg = ethtool_op_get_sg,
5998         .set_sg = ethtool_op_set_sg,
5999         .get_tso = s2io_ethtool_op_get_tso,
6000         .set_tso = s2io_ethtool_op_set_tso,
6001         .get_ufo = ethtool_op_get_ufo,
6002         .set_ufo = ethtool_op_set_ufo,
6003         .self_test_count = s2io_ethtool_self_test_count,
6004         .self_test = s2io_ethtool_test,
6005         .get_strings = s2io_ethtool_get_strings,
6006         .phys_id = s2io_ethtool_idnic,
6007         .get_stats_count = s2io_ethtool_get_stats_count,
6008         .get_ethtool_stats = s2io_get_ethtool_stats
6009 };
6010
6011 /**
6012  *  s2io_ioctl - Entry point for the Ioctl
6013  *  @dev :  Device pointer.
6014  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6015  *  a proprietary structure used to pass information to the driver.
6016  *  @cmd :  This is used to distinguish between the different commands that
6017  *  can be passed to the IOCTL functions.
6018  *  Description:
6019  *  Currently there are no special functionality supported in IOCTL, hence
6020  *  function always return EOPNOTSUPPORTED
6021  */
6022
6023 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6024 {
6025         return -EOPNOTSUPP;
6026 }
6027
6028 /**
6029  *  s2io_change_mtu - entry point to change MTU size for the device.
6030  *   @dev : device pointer.
6031  *   @new_mtu : the new MTU size for the device.
6032  *   Description: A driver entry point to change MTU size for the device.
6033  *   Before changing the MTU the device must be stopped.
6034  *  Return value:
6035  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6036  *   file on failure.
6037  */
6038
6039 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6040 {
6041         struct s2io_nic *sp = dev->priv;
6042
6043         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6044                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6045                           dev->name);
6046                 return -EPERM;
6047         }
6048
6049         dev->mtu = new_mtu;
6050         if (netif_running(dev)) {
6051                 s2io_card_down(sp);
6052                 netif_stop_queue(dev);
6053                 if (s2io_card_up(sp)) {
6054                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6055                                   __FUNCTION__);
6056                 }
6057                 if (netif_queue_stopped(dev))
6058                         netif_wake_queue(dev);
6059         } else { /* Device is down */
6060                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6061                 u64 val64 = new_mtu;
6062
6063                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6064         }
6065
6066         return 0;
6067 }
6068
6069 /**
6070  *  s2io_tasklet - Bottom half of the ISR.
6071  *  @dev_adr : address of the device structure in dma_addr_t format.
6072  *  Description:
6073  *  This is the tasklet or the bottom half of the ISR. This is
6074  *  an extension of the ISR which is scheduled by the scheduler to be run
6075  *  when the load on the CPU is low. All low priority tasks of the ISR can
6076  *  be pushed into the tasklet. For now the tasklet is used only to
6077  *  replenish the Rx buffers in the Rx buffer descriptors.
6078  *  Return value:
6079  *  void.
6080  */
6081
6082 static void s2io_tasklet(unsigned long dev_addr)
6083 {
6084         struct net_device *dev = (struct net_device *) dev_addr;
6085         struct s2io_nic *sp = dev->priv;
6086         int i, ret;
6087         struct mac_info *mac_control;
6088         struct config_param *config;
6089
6090         mac_control = &sp->mac_control;
6091         config = &sp->config;
6092
6093         if (!TASKLET_IN_USE) {
6094                 for (i = 0; i < config->rx_ring_num; i++) {
6095                         ret = fill_rx_buffers(sp, i);
6096                         if (ret == -ENOMEM) {
6097                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6098                                           dev->name);
6099                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6100                                 break;
6101                         } else if (ret == -EFILL) {
6102                                 DBG_PRINT(INFO_DBG,
6103                                           "%s: Rx Ring %d is full\n",
6104                                           dev->name, i);
6105                                 break;
6106                         }
6107                 }
6108                 clear_bit(0, (&sp->tasklet_status));
6109         }
6110 }
6111
6112 /**
6113  * s2io_set_link - Set the LInk status
6114  * @data: long pointer to device private structue
6115  * Description: Sets the link status for the adapter
6116  */
6117
6118 static void s2io_set_link(struct work_struct *work)
6119 {
6120         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6121         struct net_device *dev = nic->dev;
6122         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6123         register u64 val64;
6124         u16 subid;
6125
6126         rtnl_lock();
6127
6128         if (!netif_running(dev))
6129                 goto out_unlock;
6130
6131         if (test_and_set_bit(0, &(nic->link_state))) {
6132                 /* The card is being reset, no point doing anything */
6133                 goto out_unlock;
6134         }
6135
6136         subid = nic->pdev->subsystem_device;
6137         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6138                 /*
6139                  * Allow a small delay for the NICs self initiated
6140                  * cleanup to complete.
6141                  */
6142                 msleep(100);
6143         }
6144
6145         val64 = readq(&bar0->adapter_status);
6146         if (LINK_IS_UP(val64)) {
6147                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6148                         if (verify_xena_quiescence(nic)) {
6149                                 val64 = readq(&bar0->adapter_control);
6150                                 val64 |= ADAPTER_CNTL_EN;
6151                                 writeq(val64, &bar0->adapter_control);
6152                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6153                                         nic->device_type, subid)) {
6154                                         val64 = readq(&bar0->gpio_control);
6155                                         val64 |= GPIO_CTRL_GPIO_0;
6156                                         writeq(val64, &bar0->gpio_control);
6157                                         val64 = readq(&bar0->gpio_control);
6158                                 } else {
6159                                         val64 |= ADAPTER_LED_ON;
6160                                         writeq(val64, &bar0->adapter_control);
6161                                 }
6162                                 nic->device_enabled_once = TRUE;
6163                         } else {
6164                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6165                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6166                                 netif_stop_queue(dev);
6167                         }
6168                 }
6169                 val64 = readq(&bar0->adapter_status);
6170                 if (!LINK_IS_UP(val64)) {
6171                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6172                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6173                         DBG_PRINT(ERR_DBG, "device \n");
6174                 } else
6175                         s2io_link(nic, LINK_UP);
6176         } else {
6177                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6178                                                       subid)) {
6179                         val64 = readq(&bar0->gpio_control);
6180                         val64 &= ~GPIO_CTRL_GPIO_0;
6181                         writeq(val64, &bar0->gpio_control);
6182                         val64 = readq(&bar0->gpio_control);
6183                 }
6184                 s2io_link(nic, LINK_DOWN);
6185         }
6186         clear_bit(0, &(nic->link_state));
6187
6188 out_unlock:
6189         rtnl_unlock();
6190 }
6191
6192 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6193                                 struct buffAdd *ba,
6194                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6195                                 u64 *temp2, int size)
6196 {
6197         struct net_device *dev = sp->dev;
6198
6199         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6200                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6201                 /* allocate skb */
6202                 if (*skb) {
6203                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6204                         /*
6205                          * As Rx frame are not going to be processed,
6206                          * using same mapped address for the Rxd
6207                          * buffer pointer
6208                          */
6209                         rxdp1->Buffer0_ptr = *temp0;
6210                 } else {
6211                         *skb = dev_alloc_skb(size);
6212                         if (!(*skb)) {
6213                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6214                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6215                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6216                                 sp->mac_control.stats_info->sw_stat. \
6217                                         mem_alloc_fail_cnt++;
6218                                 return -ENOMEM ;
6219                         }
6220                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6221                                 += (*skb)->truesize;
6222                         /* storing the mapped addr in a temp variable
6223                          * such it will be used for next rxd whose
6224                          * Host Control is NULL
6225                          */
6226                         rxdp1->Buffer0_ptr = *temp0 =
6227                                 pci_map_single( sp->pdev, (*skb)->data,
6228                                         size - NET_IP_ALIGN,
6229                                         PCI_DMA_FROMDEVICE);
6230                         rxdp->Host_Control = (unsigned long) (*skb);
6231                 }
6232         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6233                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6234                 /* Two buffer Mode */
6235                 if (*skb) {
6236                         rxdp3->Buffer2_ptr = *temp2;
6237                         rxdp3->Buffer0_ptr = *temp0;
6238                         rxdp3->Buffer1_ptr = *temp1;
6239                 } else {
6240                         *skb = dev_alloc_skb(size);
6241                         if (!(*skb)) {
6242                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6243                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6244                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6245                                 sp->mac_control.stats_info->sw_stat. \
6246                                         mem_alloc_fail_cnt++;
6247                                 return -ENOMEM;
6248                         }
6249                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6250                                 += (*skb)->truesize;
6251                         rxdp3->Buffer2_ptr = *temp2 =
6252                                 pci_map_single(sp->pdev, (*skb)->data,
6253                                                dev->mtu + 4,
6254                                                PCI_DMA_FROMDEVICE);
6255                         rxdp3->Buffer0_ptr = *temp0 =
6256                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6257                                                 PCI_DMA_FROMDEVICE);
6258                         rxdp->Host_Control = (unsigned long) (*skb);
6259
6260                         /* Buffer-1 will be dummy buffer not used */
6261                         rxdp3->Buffer1_ptr = *temp1 =
6262                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6263                                                 PCI_DMA_FROMDEVICE);
6264                 }
6265         }
6266         return 0;
6267 }
6268 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6269                                 int size)
6270 {
6271         struct net_device *dev = sp->dev;
6272         if (sp->rxd_mode == RXD_MODE_1) {
6273                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6274         } else if (sp->rxd_mode == RXD_MODE_3B) {
6275                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6276                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6277                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6278         }
6279 }
6280
6281 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6282 {
6283         int i, j, k, blk_cnt = 0, size;
6284         struct mac_info * mac_control = &sp->mac_control;
6285         struct config_param *config = &sp->config;
6286         struct net_device *dev = sp->dev;
6287         struct RxD_t *rxdp = NULL;
6288         struct sk_buff *skb = NULL;
6289         struct buffAdd *ba = NULL;
6290         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6291
6292         /* Calculate the size based on ring mode */
6293         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6294                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6295         if (sp->rxd_mode == RXD_MODE_1)
6296                 size += NET_IP_ALIGN;
6297         else if (sp->rxd_mode == RXD_MODE_3B)
6298                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6299
6300         for (i = 0; i < config->rx_ring_num; i++) {
6301                 blk_cnt = config->rx_cfg[i].num_rxd /
6302                         (rxd_count[sp->rxd_mode] +1);
6303
6304                 for (j = 0; j < blk_cnt; j++) {
6305                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6306                                 rxdp = mac_control->rings[i].
6307                                         rx_blocks[j].rxds[k].virt_addr;
6308                                 if(sp->rxd_mode == RXD_MODE_3B)
6309                                         ba = &mac_control->rings[i].ba[j][k];
6310                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6311                                                        &skb,(u64 *)&temp0_64,
6312                                                        (u64 *)&temp1_64,
6313                                                        (u64 *)&temp2_64,
6314                                                         size) == ENOMEM) {
6315                                         return 0;
6316                                 }
6317
6318                                 set_rxd_buffer_size(sp, rxdp, size);
6319                                 wmb();
6320                                 /* flip the Ownership bit to Hardware */
6321                                 rxdp->Control_1 |= RXD_OWN_XENA;
6322                         }
6323                 }
6324         }
6325         return 0;
6326
6327 }
6328
6329 static int s2io_add_isr(struct s2io_nic * sp)
6330 {
6331         int ret = 0;
6332         struct net_device *dev = sp->dev;
6333         int err = 0;
6334
6335         if (sp->intr_type == MSI)
6336                 ret = s2io_enable_msi(sp);
6337         else if (sp->intr_type == MSI_X)
6338                 ret = s2io_enable_msi_x(sp);
6339         if (ret) {
6340                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6341                 sp->intr_type = INTA;
6342         }
6343
6344         /* Store the values of the MSIX table in the struct s2io_nic structure */
6345         store_xmsi_data(sp);
6346
6347         /* After proper initialization of H/W, register ISR */
6348         if (sp->intr_type == MSI) {
6349                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6350                         IRQF_SHARED, sp->name, dev);
6351                 if (err) {
6352                         pci_disable_msi(sp->pdev);
6353                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6354                                   dev->name);
6355                         return -1;
6356                 }
6357         }
6358         if (sp->intr_type == MSI_X) {
6359                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6360
6361                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6362                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6363                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6364                                         dev->name, i);
6365                                 err = request_irq(sp->entries[i].vector,
6366                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6367                                                   sp->s2io_entries[i].arg);
6368                                 /* If either data or addr is zero print it */
6369                                 if(!(sp->msix_info[i].addr &&
6370                                         sp->msix_info[i].data)) {
6371                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6372                                                 "Data:0x%lx\n",sp->desc[i],
6373                                                 (unsigned long long)
6374                                                 sp->msix_info[i].addr,
6375                                                 (unsigned long)
6376                                                 ntohl(sp->msix_info[i].data));
6377                                 } else {
6378                                         msix_tx_cnt++;
6379                                 }
6380                         } else {
6381                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6382                                         dev->name, i);
6383                                 err = request_irq(sp->entries[i].vector,
6384                                           s2io_msix_ring_handle, 0, sp->desc[i],
6385                                                   sp->s2io_entries[i].arg);
6386                                 /* If either data or addr is zero print it */
6387                                 if(!(sp->msix_info[i].addr &&
6388                                         sp->msix_info[i].data)) {
6389                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6390                                                 "Data:0x%lx\n",sp->desc[i],
6391                                                 (unsigned long long)
6392                                                 sp->msix_info[i].addr,
6393                                                 (unsigned long)
6394                                                 ntohl(sp->msix_info[i].data));
6395                                 } else {
6396                                         msix_rx_cnt++;
6397                                 }
6398                         }
6399                         if (err) {
6400                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6401                                           "failed\n", dev->name, i);
6402                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6403                                 return -1;
6404                         }
6405                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6406                 }
6407                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6408                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6409         }
6410         if (sp->intr_type == INTA) {
6411                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6412                                 sp->name, dev);
6413                 if (err) {
6414                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6415                                   dev->name);
6416                         return -1;
6417                 }
6418         }
6419         return 0;
6420 }
6421 static void s2io_rem_isr(struct s2io_nic * sp)
6422 {
6423         int cnt = 0;
6424         struct net_device *dev = sp->dev;
6425
6426         if (sp->intr_type == MSI_X) {
6427                 int i;
6428                 u16 msi_control;
6429
6430                 for (i=1; (sp->s2io_entries[i].in_use ==
6431                         MSIX_REGISTERED_SUCCESS); i++) {
6432                         int vector = sp->entries[i].vector;
6433                         void *arg = sp->s2io_entries[i].arg;
6434
6435                         free_irq(vector, arg);
6436                 }
6437                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6438                 msi_control &= 0xFFFE; /* Disable MSI */
6439                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6440
6441                 pci_disable_msix(sp->pdev);
6442         } else {
6443                 free_irq(sp->pdev->irq, dev);
6444                 if (sp->intr_type == MSI) {
6445                         u16 val;
6446
6447                         pci_disable_msi(sp->pdev);
6448                         pci_read_config_word(sp->pdev, 0x4c, &val);
6449                         val ^= 0x1;
6450                         pci_write_config_word(sp->pdev, 0x4c, val);
6451                 }
6452         }
6453         /* Waiting till all Interrupt handlers are complete */
6454         cnt = 0;
6455         do {
6456                 msleep(10);
6457                 if (!atomic_read(&sp->isr_cnt))
6458                         break;
6459                 cnt++;
6460         } while(cnt < 5);
6461 }
6462
6463 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6464 {
6465         int cnt = 0;
6466         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6467         unsigned long flags;
6468         register u64 val64 = 0;
6469
6470         del_timer_sync(&sp->alarm_timer);
6471         /* If s2io_set_link task is executing, wait till it completes. */
6472         while (test_and_set_bit(0, &(sp->link_state))) {
6473                 msleep(50);
6474         }
6475         atomic_set(&sp->card_state, CARD_DOWN);
6476
6477         /* disable Tx and Rx traffic on the NIC */
6478         if (do_io)
6479                 stop_nic(sp);
6480
6481         s2io_rem_isr(sp);
6482
6483         /* Kill tasklet. */
6484         tasklet_kill(&sp->task);
6485
6486         /* Check if the device is Quiescent and then Reset the NIC */
6487         while(do_io) {
6488                 /* As per the HW requirement we need to replenish the
6489                  * receive buffer to avoid the ring bump. Since there is
6490                  * no intention of processing the Rx frame at this pointwe are
6491                  * just settting the ownership bit of rxd in Each Rx
6492                  * ring to HW and set the appropriate buffer size
6493                  * based on the ring mode
6494                  */
6495                 rxd_owner_bit_reset(sp);
6496
6497                 val64 = readq(&bar0->adapter_status);
6498                 if (verify_xena_quiescence(sp)) {
6499                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6500                         break;
6501                 }
6502
6503                 msleep(50);
6504                 cnt++;
6505                 if (cnt == 10) {
6506                         DBG_PRINT(ERR_DBG,
6507                                   "s2io_close:Device not Quiescent ");
6508                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6509                                   (unsigned long long) val64);
6510                         break;
6511                 }
6512         }
6513         if (do_io)
6514                 s2io_reset(sp);
6515
6516         spin_lock_irqsave(&sp->tx_lock, flags);
6517         /* Free all Tx buffers */
6518         free_tx_buffers(sp);
6519         spin_unlock_irqrestore(&sp->tx_lock, flags);
6520
6521         /* Free all Rx buffers */
6522         spin_lock_irqsave(&sp->rx_lock, flags);
6523         free_rx_buffers(sp);
6524         spin_unlock_irqrestore(&sp->rx_lock, flags);
6525
6526         clear_bit(0, &(sp->link_state));
6527 }
6528
6529 static void s2io_card_down(struct s2io_nic * sp)
6530 {
6531         do_s2io_card_down(sp, 1);
6532 }
6533
6534 static int s2io_card_up(struct s2io_nic * sp)
6535 {
6536         int i, ret = 0;
6537         struct mac_info *mac_control;
6538         struct config_param *config;
6539         struct net_device *dev = (struct net_device *) sp->dev;
6540         u16 interruptible;
6541
6542         /* Initialize the H/W I/O registers */
6543         if (init_nic(sp) != 0) {
6544                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6545                           dev->name);
6546                 s2io_reset(sp);
6547                 return -ENODEV;
6548         }
6549
6550         /*
6551          * Initializing the Rx buffers. For now we are considering only 1
6552          * Rx ring and initializing buffers into 30 Rx blocks
6553          */
6554         mac_control = &sp->mac_control;
6555         config = &sp->config;
6556
6557         for (i = 0; i < config->rx_ring_num; i++) {
6558                 if ((ret = fill_rx_buffers(sp, i))) {
6559                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6560                                   dev->name);
6561                         s2io_reset(sp);
6562                         free_rx_buffers(sp);
6563                         return -ENOMEM;
6564                 }
6565                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6566                           atomic_read(&sp->rx_bufs_left[i]));
6567         }
6568         /* Maintain the state prior to the open */
6569         if (sp->promisc_flg)
6570                 sp->promisc_flg = 0;
6571         if (sp->m_cast_flg) {
6572                 sp->m_cast_flg = 0;
6573                 sp->all_multi_pos= 0;
6574         }
6575
6576         /* Setting its receive mode */
6577         s2io_set_multicast(dev);
6578
6579         if (sp->lro) {
6580                 /* Initialize max aggregatable pkts per session based on MTU */
6581                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6582                 /* Check if we can use(if specified) user provided value */
6583                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6584                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6585         }
6586
6587         /* Enable Rx Traffic and interrupts on the NIC */
6588         if (start_nic(sp)) {
6589                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6590                 s2io_reset(sp);
6591                 free_rx_buffers(sp);
6592                 return -ENODEV;
6593         }
6594
6595         /* Add interrupt service routine */
6596         if (s2io_add_isr(sp) != 0) {
6597                 if (sp->intr_type == MSI_X)
6598                         s2io_rem_isr(sp);
6599                 s2io_reset(sp);
6600                 free_rx_buffers(sp);
6601                 return -ENODEV;
6602         }
6603
6604         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6605
6606         /* Enable tasklet for the device */
6607         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6608
6609         /*  Enable select interrupts */
6610         if (sp->intr_type != INTA)
6611                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6612         else {
6613                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6614                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6615                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6616                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6617         }
6618
6619
6620         atomic_set(&sp->card_state, CARD_UP);
6621         return 0;
6622 }
6623
6624 /**
6625  * s2io_restart_nic - Resets the NIC.
6626  * @data : long pointer to the device private structure
6627  * Description:
6628  * This function is scheduled to be run by the s2io_tx_watchdog
6629  * function after 0.5 secs to reset the NIC. The idea is to reduce
6630  * the run time of the watch dog routine which is run holding a
6631  * spin lock.
6632  */
6633
6634 static void s2io_restart_nic(struct work_struct *work)
6635 {
6636         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6637         struct net_device *dev = sp->dev;
6638
6639         rtnl_lock();
6640
6641         if (!netif_running(dev))
6642                 goto out_unlock;
6643
6644         s2io_card_down(sp);
6645         if (s2io_card_up(sp)) {
6646                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6647                           dev->name);
6648         }
6649         netif_wake_queue(dev);
6650         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6651                   dev->name);
6652 out_unlock:
6653         rtnl_unlock();
6654 }
6655
6656 /**
6657  *  s2io_tx_watchdog - Watchdog for transmit side.
6658  *  @dev : Pointer to net device structure
6659  *  Description:
6660  *  This function is triggered if the Tx Queue is stopped
6661  *  for a pre-defined amount of time when the Interface is still up.
6662  *  If the Interface is jammed in such a situation, the hardware is
6663  *  reset (by s2io_close) and restarted again (by s2io_open) to
6664  *  overcome any problem that might have been caused in the hardware.
6665  *  Return value:
6666  *  void
6667  */
6668
6669 static void s2io_tx_watchdog(struct net_device *dev)
6670 {
6671         struct s2io_nic *sp = dev->priv;
6672
6673         if (netif_carrier_ok(dev)) {
6674                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6675                 schedule_work(&sp->rst_timer_task);
6676                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6677         }
6678 }
6679
6680 /**
6681  *   rx_osm_handler - To perform some OS related operations on SKB.
6682  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6683  *   @skb : the socket buffer pointer.
6684  *   @len : length of the packet
6685  *   @cksum : FCS checksum of the frame.
6686  *   @ring_no : the ring from which this RxD was extracted.
6687  *   Description:
6688  *   This function is called by the Rx interrupt serivce routine to perform
6689  *   some OS related operations on the SKB before passing it to the upper
6690  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6691  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6692  *   to the upper layer. If the checksum is wrong, it increments the Rx
6693  *   packet error count, frees the SKB and returns error.
6694  *   Return value:
6695  *   SUCCESS on success and -1 on failure.
6696  */
6697 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6698 {
6699         struct s2io_nic *sp = ring_data->nic;
6700         struct net_device *dev = (struct net_device *) sp->dev;
6701         struct sk_buff *skb = (struct sk_buff *)
6702                 ((unsigned long) rxdp->Host_Control);
6703         int ring_no = ring_data->ring_no;
6704         u16 l3_csum, l4_csum;
6705         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6706         struct lro *lro;
6707         u8 err_mask;
6708
6709         skb->dev = dev;
6710
6711         if (err) {
6712                 /* Check for parity error */
6713                 if (err & 0x1) {
6714                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6715                 }
6716                 err_mask = err >> 48;
6717                 switch(err_mask) {
6718                         case 1:
6719                                 sp->mac_control.stats_info->sw_stat.
6720                                 rx_parity_err_cnt++;
6721                         break;
6722
6723                         case 2:
6724                                 sp->mac_control.stats_info->sw_stat.
6725                                 rx_abort_cnt++;
6726                         break;
6727
6728                         case 3:
6729                                 sp->mac_control.stats_info->sw_stat.
6730                                 rx_parity_abort_cnt++;
6731                         break;
6732
6733                         case 4:
6734                                 sp->mac_control.stats_info->sw_stat.
6735                                 rx_rda_fail_cnt++;
6736                         break;
6737
6738                         case 5:
6739                                 sp->mac_control.stats_info->sw_stat.
6740                                 rx_unkn_prot_cnt++;
6741                         break;
6742
6743                         case 6:
6744                                 sp->mac_control.stats_info->sw_stat.
6745                                 rx_fcs_err_cnt++;
6746                         break;
6747
6748                         case 7:
6749                                 sp->mac_control.stats_info->sw_stat.
6750                                 rx_buf_size_err_cnt++;
6751                         break;
6752
6753                         case 8:
6754                                 sp->mac_control.stats_info->sw_stat.
6755                                 rx_rxd_corrupt_cnt++;
6756                         break;
6757
6758                         case 15:
6759                                 sp->mac_control.stats_info->sw_stat.
6760                                 rx_unkn_err_cnt++;
6761                         break;
6762                 }
6763                 /*
6764                 * Drop the packet if bad transfer code. Exception being
6765                 * 0x5, which could be due to unsupported IPv6 extension header.
6766                 * In this case, we let stack handle the packet.
6767                 * Note that in this case, since checksum will be incorrect,
6768                 * stack will validate the same.
6769                 */
6770                 if (err_mask != 0x5) {
6771                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6772                                 dev->name, err_mask);
6773                         sp->stats.rx_crc_errors++;
6774                         sp->mac_control.stats_info->sw_stat.mem_freed 
6775                                 += skb->truesize;
6776                         dev_kfree_skb(skb);
6777                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6778                         rxdp->Host_Control = 0;
6779                         return 0;
6780                 }
6781         }
6782
6783         /* Updating statistics */
6784         rxdp->Host_Control = 0;
6785         if (sp->rxd_mode == RXD_MODE_1) {
6786                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6787
6788                 sp->stats.rx_bytes += len;
6789                 skb_put(skb, len);
6790
6791         } else if (sp->rxd_mode == RXD_MODE_3B) {
6792                 int get_block = ring_data->rx_curr_get_info.block_index;
6793                 int get_off = ring_data->rx_curr_get_info.offset;
6794                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6795                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6796                 unsigned char *buff = skb_push(skb, buf0_len);
6797
6798                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6799                 sp->stats.rx_bytes += buf0_len + buf2_len;
6800                 memcpy(buff, ba->ba_0, buf0_len);
6801                 skb_put(skb, buf2_len);
6802         }
6803
6804         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6805             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6806             (sp->rx_csum)) {
6807                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6808                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6809                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6810                         /*
6811                          * NIC verifies if the Checksum of the received
6812                          * frame is Ok or not and accordingly returns
6813                          * a flag in the RxD.
6814                          */
6815                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6816                         if (sp->lro) {
6817                                 u32 tcp_len;
6818                                 u8 *tcp;
6819                                 int ret = 0;
6820
6821                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6822                                                 &tcp_len, &lro, rxdp, sp);
6823                                 switch (ret) {
6824                                         case 3: /* Begin anew */
6825                                                 lro->parent = skb;
6826                                                 goto aggregate;
6827                                         case 1: /* Aggregate */
6828                                         {
6829                                                 lro_append_pkt(sp, lro,
6830                                                         skb, tcp_len);
6831                                                 goto aggregate;
6832                                         }
6833                                         case 4: /* Flush session */
6834                                         {
6835                                                 lro_append_pkt(sp, lro,
6836                                                         skb, tcp_len);
6837                                                 queue_rx_frame(lro->parent);
6838                                                 clear_lro_session(lro);
6839                                                 sp->mac_control.stats_info->
6840                                                     sw_stat.flush_max_pkts++;
6841                                                 goto aggregate;
6842                                         }
6843                                         case 2: /* Flush both */
6844                                                 lro->parent->data_len =
6845                                                         lro->frags_len;
6846                                                 sp->mac_control.stats_info->
6847                                                      sw_stat.sending_both++;
6848                                                 queue_rx_frame(lro->parent);
6849                                                 clear_lro_session(lro);
6850                                                 goto send_up;
6851                                         case 0: /* sessions exceeded */
6852                                         case -1: /* non-TCP or not
6853                                                   * L2 aggregatable
6854                                                   */
6855                                         case 5: /*
6856                                                  * First pkt in session not
6857                                                  * L3/L4 aggregatable
6858                                                  */
6859                                                 break;
6860                                         default:
6861                                                 DBG_PRINT(ERR_DBG,
6862                                                         "%s: Samadhana!!\n",
6863                                                          __FUNCTION__);
6864                                                 BUG();
6865                                 }
6866                         }
6867                 } else {
6868                         /*
6869                          * Packet with erroneous checksum, let the
6870                          * upper layers deal with it.
6871                          */
6872                         skb->ip_summed = CHECKSUM_NONE;
6873                 }
6874         } else {
6875                 skb->ip_summed = CHECKSUM_NONE;
6876         }
6877         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6878         if (!sp->lro) {
6879                 skb->protocol = eth_type_trans(skb, dev);
6880                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6881                         vlan_strip_flag)) {
6882                         /* Queueing the vlan frame to the upper layer */
6883                         if (napi)
6884                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6885                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6886                         else
6887                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6888                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6889                 } else {
6890                         if (napi)
6891                                 netif_receive_skb(skb);
6892                         else
6893                                 netif_rx(skb);
6894                 }
6895         } else {
6896 send_up:
6897                 queue_rx_frame(skb);
6898         }
6899         dev->last_rx = jiffies;
6900 aggregate:
6901         atomic_dec(&sp->rx_bufs_left[ring_no]);
6902         return SUCCESS;
6903 }
6904
6905 /**
6906  *  s2io_link - stops/starts the Tx queue.
6907  *  @sp : private member of the device structure, which is a pointer to the
6908  *  s2io_nic structure.
6909  *  @link : inidicates whether link is UP/DOWN.
6910  *  Description:
6911  *  This function stops/starts the Tx queue depending on whether the link
6912  *  status of the NIC is is down or up. This is called by the Alarm
6913  *  interrupt handler whenever a link change interrupt comes up.
6914  *  Return value:
6915  *  void.
6916  */
6917
6918 static void s2io_link(struct s2io_nic * sp, int link)
6919 {
6920         struct net_device *dev = (struct net_device *) sp->dev;
6921
6922         if (link != sp->last_link_state) {
6923                 if (link == LINK_DOWN) {
6924                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6925                         netif_carrier_off(dev);
6926                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6927                         sp->mac_control.stats_info->sw_stat.link_up_time = 
6928                                 jiffies - sp->start_time;
6929                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
6930                 } else {
6931                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6932                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6933                         sp->mac_control.stats_info->sw_stat.link_down_time = 
6934                                 jiffies - sp->start_time;
6935                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
6936                         netif_carrier_on(dev);
6937                 }
6938         }
6939         sp->last_link_state = link;
6940         sp->start_time = jiffies;
6941 }
6942
6943 /**
6944  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6945  *  @sp : private member of the device structure, which is a pointer to the
6946  *  s2io_nic structure.
6947  *  Description:
6948  *  This function initializes a few of the PCI and PCI-X configuration registers
6949  *  with recommended values.
6950  *  Return value:
6951  *  void
6952  */
6953
6954 static void s2io_init_pci(struct s2io_nic * sp)
6955 {
6956         u16 pci_cmd = 0, pcix_cmd = 0;
6957
6958         /* Enable Data Parity Error Recovery in PCI-X command register. */
6959         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6960                              &(pcix_cmd));
6961         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6962                               (pcix_cmd | 1));
6963         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6964                              &(pcix_cmd));
6965
6966         /* Set the PErr Response bit in PCI command register. */
6967         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6968         pci_write_config_word(sp->pdev, PCI_COMMAND,
6969                               (pci_cmd | PCI_COMMAND_PARITY));
6970         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6971 }
6972
6973 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6974 {
6975         if ( tx_fifo_num > 8) {
6976                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6977                          "supported\n");
6978                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6979                 tx_fifo_num = 8;
6980         }
6981         if ( rx_ring_num > 8) {
6982                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6983                          "supported\n");
6984                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6985                 rx_ring_num = 8;
6986         }
6987         if (*dev_intr_type != INTA)
6988                 napi = 0;
6989
6990 #ifndef CONFIG_PCI_MSI
6991         if (*dev_intr_type != INTA) {
6992                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6993                           "MSI/MSI-X. Defaulting to INTA\n");
6994                 *dev_intr_type = INTA;
6995         }
6996 #else
6997         if (*dev_intr_type > MSI_X) {
6998                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6999                           "Defaulting to INTA\n");
7000                 *dev_intr_type = INTA;
7001         }
7002 #endif
7003         if ((*dev_intr_type == MSI_X) &&
7004                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7005                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7006                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7007                                         "Defaulting to INTA\n");
7008                 *dev_intr_type = INTA;
7009         }
7010
7011         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7012                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7013                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7014                 rx_ring_mode = 1;
7015         }
7016         return SUCCESS;
7017 }
7018
7019 /**
7020  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7021  * or Traffic class respectively.
7022  * @nic: device peivate variable
7023  * Description: The function configures the receive steering to
7024  * desired receive ring.
7025  * Return Value:  SUCCESS on success and
7026  * '-1' on failure (endian settings incorrect).
7027  */
7028 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7029 {
7030         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7031         register u64 val64 = 0;
7032
7033         if (ds_codepoint > 63)
7034                 return FAILURE;
7035
7036         val64 = RTS_DS_MEM_DATA(ring);
7037         writeq(val64, &bar0->rts_ds_mem_data);
7038
7039         val64 = RTS_DS_MEM_CTRL_WE |
7040                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7041                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7042
7043         writeq(val64, &bar0->rts_ds_mem_ctrl);
7044
7045         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7046                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7047                                 S2IO_BIT_RESET);
7048 }
7049
7050 /**
7051  *  s2io_init_nic - Initialization of the adapter .
7052  *  @pdev : structure containing the PCI related information of the device.
7053  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7054  *  Description:
7055  *  The function initializes an adapter identified by the pci_dec structure.
7056  *  All OS related initialization including memory and device structure and
7057  *  initlaization of the device private variable is done. Also the swapper
7058  *  control register is initialized to enable read and write into the I/O
7059  *  registers of the device.
7060  *  Return value:
7061  *  returns 0 on success and negative on failure.
7062  */
7063
7064 static int __devinit
7065 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7066 {
7067         struct s2io_nic *sp;
7068         struct net_device *dev;
7069         int i, j, ret;
7070         int dma_flag = FALSE;
7071         u32 mac_up, mac_down;
7072         u64 val64 = 0, tmp64 = 0;
7073         struct XENA_dev_config __iomem *bar0 = NULL;
7074         u16 subid;
7075         struct mac_info *mac_control;
7076         struct config_param *config;
7077         int mode;
7078         u8 dev_intr_type = intr_type;
7079
7080         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7081                 return ret;
7082
7083         if ((ret = pci_enable_device(pdev))) {
7084                 DBG_PRINT(ERR_DBG,
7085                           "s2io_init_nic: pci_enable_device failed\n");
7086                 return ret;
7087         }
7088
7089         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7090                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7091                 dma_flag = TRUE;
7092                 if (pci_set_consistent_dma_mask
7093                     (pdev, DMA_64BIT_MASK)) {
7094                         DBG_PRINT(ERR_DBG,
7095                                   "Unable to obtain 64bit DMA for \
7096                                         consistent allocations\n");
7097                         pci_disable_device(pdev);
7098                         return -ENOMEM;
7099                 }
7100         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7101                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7102         } else {
7103                 pci_disable_device(pdev);
7104                 return -ENOMEM;
7105         }
7106         if (dev_intr_type != MSI_X) {
7107                 if (pci_request_regions(pdev, s2io_driver_name)) {
7108                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7109                         pci_disable_device(pdev);
7110                         return -ENODEV;
7111                 }
7112         }
7113         else {
7114                 if (!(request_mem_region(pci_resource_start(pdev, 0),
7115                          pci_resource_len(pdev, 0), s2io_driver_name))) {
7116                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7117                         pci_disable_device(pdev);
7118                         return -ENODEV;
7119                 }
7120                 if (!(request_mem_region(pci_resource_start(pdev, 2),
7121                          pci_resource_len(pdev, 2), s2io_driver_name))) {
7122                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7123                         release_mem_region(pci_resource_start(pdev, 0),
7124                                    pci_resource_len(pdev, 0));
7125                         pci_disable_device(pdev);
7126                         return -ENODEV;
7127                 }
7128         }
7129
7130         dev = alloc_etherdev(sizeof(struct s2io_nic));
7131         if (dev == NULL) {
7132                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7133                 pci_disable_device(pdev);
7134                 pci_release_regions(pdev);
7135                 return -ENODEV;
7136         }
7137
7138         pci_set_master(pdev);
7139         pci_set_drvdata(pdev, dev);
7140         SET_MODULE_OWNER(dev);
7141         SET_NETDEV_DEV(dev, &pdev->dev);
7142
7143         /*  Private member variable initialized to s2io NIC structure */
7144         sp = dev->priv;
7145         memset(sp, 0, sizeof(struct s2io_nic));
7146         sp->dev = dev;
7147         sp->pdev = pdev;
7148         sp->high_dma_flag = dma_flag;
7149         sp->device_enabled_once = FALSE;
7150         if (rx_ring_mode == 1)
7151                 sp->rxd_mode = RXD_MODE_1;
7152         if (rx_ring_mode == 2)
7153                 sp->rxd_mode = RXD_MODE_3B;
7154
7155         sp->intr_type = dev_intr_type;
7156
7157         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7158                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7159                 sp->device_type = XFRAME_II_DEVICE;
7160         else
7161                 sp->device_type = XFRAME_I_DEVICE;
7162
7163         sp->lro = lro;
7164
7165         /* Initialize some PCI/PCI-X fields of the NIC. */
7166         s2io_init_pci(sp);
7167
7168         /*
7169          * Setting the device configuration parameters.
7170          * Most of these parameters can be specified by the user during
7171          * module insertion as they are module loadable parameters. If
7172          * these parameters are not not specified during load time, they
7173          * are initialized with default values.
7174          */
7175         mac_control = &sp->mac_control;
7176         config = &sp->config;
7177
7178         /* Tx side parameters. */
7179         config->tx_fifo_num = tx_fifo_num;
7180         for (i = 0; i < MAX_TX_FIFOS; i++) {
7181                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7182                 config->tx_cfg[i].fifo_priority = i;
7183         }
7184
7185         /* mapping the QoS priority to the configured fifos */
7186         for (i = 0; i < MAX_TX_FIFOS; i++)
7187                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7188
7189         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7190         for (i = 0; i < config->tx_fifo_num; i++) {
7191                 config->tx_cfg[i].f_no_snoop =
7192                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7193                 if (config->tx_cfg[i].fifo_len < 65) {
7194                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7195                         break;
7196                 }
7197         }
7198         /* + 2 because one Txd for skb->data and one Txd for UFO */
7199         config->max_txds = MAX_SKB_FRAGS + 2;
7200
7201         /* Rx side parameters. */
7202         config->rx_ring_num = rx_ring_num;
7203         for (i = 0; i < MAX_RX_RINGS; i++) {
7204                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7205                     (rxd_count[sp->rxd_mode] + 1);
7206                 config->rx_cfg[i].ring_priority = i;
7207         }
7208
7209         for (i = 0; i < rx_ring_num; i++) {
7210                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7211                 config->rx_cfg[i].f_no_snoop =
7212                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7213         }
7214
7215         /*  Setting Mac Control parameters */
7216         mac_control->rmac_pause_time = rmac_pause_time;
7217         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7218         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7219
7220
7221         /* Initialize Ring buffer parameters. */
7222         for (i = 0; i < config->rx_ring_num; i++)
7223                 atomic_set(&sp->rx_bufs_left[i], 0);
7224
7225         /* Initialize the number of ISRs currently running */
7226         atomic_set(&sp->isr_cnt, 0);
7227
7228         /*  initialize the shared memory used by the NIC and the host */
7229         if (init_shared_mem(sp)) {
7230                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7231                           dev->name);
7232                 ret = -ENOMEM;
7233                 goto mem_alloc_failed;
7234         }
7235
7236         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7237                                      pci_resource_len(pdev, 0));
7238         if (!sp->bar0) {
7239                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7240                           dev->name);
7241                 ret = -ENOMEM;
7242                 goto bar0_remap_failed;
7243         }
7244
7245         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7246                                      pci_resource_len(pdev, 2));
7247         if (!sp->bar1) {
7248                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7249                           dev->name);
7250                 ret = -ENOMEM;
7251                 goto bar1_remap_failed;
7252         }
7253
7254         dev->irq = pdev->irq;
7255         dev->base_addr = (unsigned long) sp->bar0;
7256
7257         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7258         for (j = 0; j < MAX_TX_FIFOS; j++) {
7259                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7260                     (sp->bar1 + (j * 0x00020000));
7261         }
7262
7263         /*  Driver entry points */
7264         dev->open = &s2io_open;
7265         dev->stop = &s2io_close;
7266         dev->hard_start_xmit = &s2io_xmit;
7267         dev->get_stats = &s2io_get_stats;
7268         dev->set_multicast_list = &s2io_set_multicast;
7269         dev->do_ioctl = &s2io_ioctl;
7270         dev->change_mtu = &s2io_change_mtu;
7271         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7272         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7273         dev->vlan_rx_register = s2io_vlan_rx_register;
7274
7275         /*
7276          * will use eth_mac_addr() for  dev->set_mac_address
7277          * mac address will be set every time dev->open() is called
7278          */
7279         dev->poll = s2io_poll;
7280         dev->weight = 32;
7281
7282 #ifdef CONFIG_NET_POLL_CONTROLLER
7283         dev->poll_controller = s2io_netpoll;
7284 #endif
7285
7286         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7287         if (sp->high_dma_flag == TRUE)
7288                 dev->features |= NETIF_F_HIGHDMA;
7289         dev->features |= NETIF_F_TSO;
7290         dev->features |= NETIF_F_TSO6;
7291         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7292                 dev->features |= NETIF_F_UFO;
7293                 dev->features |= NETIF_F_HW_CSUM;
7294         }
7295
7296         dev->tx_timeout = &s2io_tx_watchdog;
7297         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7298         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7299         INIT_WORK(&sp->set_link_task, s2io_set_link);
7300
7301         pci_save_state(sp->pdev);
7302
7303         /* Setting swapper control on the NIC, for proper reset operation */
7304         if (s2io_set_swapper(sp)) {
7305                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7306                           dev->name);
7307                 ret = -EAGAIN;
7308                 goto set_swap_failed;
7309         }
7310
7311         /* Verify if the Herc works on the slot its placed into */
7312         if (sp->device_type & XFRAME_II_DEVICE) {
7313                 mode = s2io_verify_pci_mode(sp);
7314                 if (mode < 0) {
7315                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7316                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7317                         ret = -EBADSLT;
7318                         goto set_swap_failed;
7319                 }
7320         }
7321
7322         /* Not needed for Herc */
7323         if (sp->device_type & XFRAME_I_DEVICE) {
7324                 /*
7325                  * Fix for all "FFs" MAC address problems observed on
7326                  * Alpha platforms
7327                  */
7328                 fix_mac_address(sp);
7329                 s2io_reset(sp);
7330         }
7331
7332         /*
7333          * MAC address initialization.
7334          * For now only one mac address will be read and used.
7335          */
7336         bar0 = sp->bar0;
7337         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7338             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7339         writeq(val64, &bar0->rmac_addr_cmd_mem);
7340         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7341                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7342         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7343         mac_down = (u32) tmp64;
7344         mac_up = (u32) (tmp64 >> 32);
7345
7346         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7347         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7348         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7349         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7350         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7351         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7352
7353         /*  Set the factory defined MAC address initially   */
7354         dev->addr_len = ETH_ALEN;
7355         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7356
7357         /* reset Nic and bring it to known state */
7358         s2io_reset(sp);
7359
7360         /*
7361          * Initialize the tasklet status and link state flags
7362          * and the card state parameter
7363          */
7364         atomic_set(&(sp->card_state), 0);
7365         sp->tasklet_status = 0;
7366         sp->link_state = 0;
7367
7368         /* Initialize spinlocks */
7369         spin_lock_init(&sp->tx_lock);
7370
7371         if (!napi)
7372                 spin_lock_init(&sp->put_lock);
7373         spin_lock_init(&sp->rx_lock);
7374
7375         /*
7376          * SXE-002: Configure link and activity LED to init state
7377          * on driver load.
7378          */
7379         subid = sp->pdev->subsystem_device;
7380         if ((subid & 0xFF) >= 0x07) {
7381                 val64 = readq(&bar0->gpio_control);
7382                 val64 |= 0x0000800000000000ULL;
7383                 writeq(val64, &bar0->gpio_control);
7384                 val64 = 0x0411040400000000ULL;
7385                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7386                 val64 = readq(&bar0->gpio_control);
7387         }
7388
7389         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7390
7391         if (register_netdev(dev)) {
7392                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7393                 ret = -ENODEV;
7394                 goto register_failed;
7395         }
7396         s2io_vpd_read(sp);
7397         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7398         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7399                   sp->product_name, pdev->revision);
7400         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7401                   s2io_driver_version);
7402         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7403                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7404                           sp->def_mac_addr[0].mac_addr[0],
7405                           sp->def_mac_addr[0].mac_addr[1],
7406                           sp->def_mac_addr[0].mac_addr[2],
7407                           sp->def_mac_addr[0].mac_addr[3],
7408                           sp->def_mac_addr[0].mac_addr[4],
7409                           sp->def_mac_addr[0].mac_addr[5]);
7410         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7411         if (sp->device_type & XFRAME_II_DEVICE) {
7412                 mode = s2io_print_pci_mode(sp);
7413                 if (mode < 0) {
7414                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7415                         ret = -EBADSLT;
7416                         unregister_netdev(dev);
7417                         goto set_swap_failed;
7418                 }
7419         }
7420         switch(sp->rxd_mode) {
7421                 case RXD_MODE_1:
7422                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7423                                                 dev->name);
7424                     break;
7425                 case RXD_MODE_3B:
7426                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7427                                                 dev->name);
7428                     break;
7429         }
7430
7431         if (napi)
7432                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7433         switch(sp->intr_type) {
7434                 case INTA:
7435                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7436                     break;
7437                 case MSI:
7438                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7439                     break;
7440                 case MSI_X:
7441                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7442                     break;
7443         }
7444         if (sp->lro)
7445                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7446                           dev->name);
7447         if (ufo)
7448                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7449                                         " enabled\n", dev->name);
7450         /* Initialize device name */
7451         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7452
7453         /* Initialize bimodal Interrupts */
7454         sp->config.bimodal = bimodal;
7455         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7456                 sp->config.bimodal = 0;
7457                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7458                         dev->name);
7459         }
7460
7461         /*
7462          * Make Link state as off at this point, when the Link change
7463          * interrupt comes the state will be automatically changed to
7464          * the right state.
7465          */
7466         netif_carrier_off(dev);
7467
7468         return 0;
7469
7470       register_failed:
7471       set_swap_failed:
7472         iounmap(sp->bar1);
7473       bar1_remap_failed:
7474         iounmap(sp->bar0);
7475       bar0_remap_failed:
7476       mem_alloc_failed:
7477         free_shared_mem(sp);
7478         pci_disable_device(pdev);
7479         if (dev_intr_type != MSI_X)
7480                 pci_release_regions(pdev);
7481         else {
7482                 release_mem_region(pci_resource_start(pdev, 0),
7483                         pci_resource_len(pdev, 0));
7484                 release_mem_region(pci_resource_start(pdev, 2),
7485                         pci_resource_len(pdev, 2));
7486         }
7487         pci_set_drvdata(pdev, NULL);
7488         free_netdev(dev);
7489
7490         return ret;
7491 }
7492
7493 /**
7494  * s2io_rem_nic - Free the PCI device
7495  * @pdev: structure containing the PCI related information of the device.
7496  * Description: This function is called by the Pci subsystem to release a
7497  * PCI device and free up all resource held up by the device. This could
7498  * be in response to a Hot plug event or when the driver is to be removed
7499  * from memory.
7500  */
7501
7502 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7503 {
7504         struct net_device *dev =
7505             (struct net_device *) pci_get_drvdata(pdev);
7506         struct s2io_nic *sp;
7507
7508         if (dev == NULL) {
7509                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7510                 return;
7511         }
7512
7513         flush_scheduled_work();
7514
7515         sp = dev->priv;
7516         unregister_netdev(dev);
7517
7518         free_shared_mem(sp);
7519         iounmap(sp->bar0);
7520         iounmap(sp->bar1);
7521         if (sp->intr_type != MSI_X)
7522                 pci_release_regions(pdev);
7523         else {
7524                 release_mem_region(pci_resource_start(pdev, 0),
7525                         pci_resource_len(pdev, 0));
7526                 release_mem_region(pci_resource_start(pdev, 2),
7527                         pci_resource_len(pdev, 2));
7528         }
7529         pci_set_drvdata(pdev, NULL);
7530         free_netdev(dev);
7531         pci_disable_device(pdev);
7532 }
7533
7534 /**
7535  * s2io_starter - Entry point for the driver
7536  * Description: This function is the entry point for the driver. It verifies
7537  * the module loadable parameters and initializes PCI configuration space.
7538  */
7539
7540 int __init s2io_starter(void)
7541 {
7542         return pci_register_driver(&s2io_driver);
7543 }
7544
7545 /**
7546  * s2io_closer - Cleanup routine for the driver
7547  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7548  */
7549
7550 static __exit void s2io_closer(void)
7551 {
7552         pci_unregister_driver(&s2io_driver);
7553         DBG_PRINT(INIT_DBG, "cleanup done\n");
7554 }
7555
7556 module_init(s2io_starter);
7557 module_exit(s2io_closer);
7558
7559 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7560                 struct tcphdr **tcp, struct RxD_t *rxdp)
7561 {
7562         int ip_off;
7563         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7564
7565         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7566                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7567                           __FUNCTION__);
7568                 return -1;
7569         }
7570
7571         /* TODO:
7572          * By default the VLAN field in the MAC is stripped by the card, if this
7573          * feature is turned off in rx_pa_cfg register, then the ip_off field
7574          * has to be shifted by a further 2 bytes
7575          */
7576         switch (l2_type) {
7577                 case 0: /* DIX type */
7578                 case 4: /* DIX type with VLAN */
7579                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7580                         break;
7581                 /* LLC, SNAP etc are considered non-mergeable */
7582                 default:
7583                         return -1;
7584         }
7585
7586         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7587         ip_len = (u8)((*ip)->ihl);
7588         ip_len <<= 2;
7589         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7590
7591         return 0;
7592 }
7593
7594 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7595                                   struct tcphdr *tcp)
7596 {
7597         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7598         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7599            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7600                 return -1;
7601         return 0;
7602 }
7603
7604 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7605 {
7606         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7607 }
7608
7609 static void initiate_new_session(struct lro *lro, u8 *l2h,
7610                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7611 {
7612         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7613         lro->l2h = l2h;
7614         lro->iph = ip;
7615         lro->tcph = tcp;
7616         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7617         lro->tcp_ack = ntohl(tcp->ack_seq);
7618         lro->sg_num = 1;
7619         lro->total_len = ntohs(ip->tot_len);
7620         lro->frags_len = 0;
7621         /*
7622          * check if we saw TCP timestamp. Other consistency checks have
7623          * already been done.
7624          */
7625         if (tcp->doff == 8) {
7626                 u32 *ptr;
7627                 ptr = (u32 *)(tcp+1);
7628                 lro->saw_ts = 1;
7629                 lro->cur_tsval = *(ptr+1);
7630                 lro->cur_tsecr = *(ptr+2);
7631         }
7632         lro->in_use = 1;
7633 }
7634
7635 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7636 {
7637         struct iphdr *ip = lro->iph;
7638         struct tcphdr *tcp = lro->tcph;
7639         __sum16 nchk;
7640         struct stat_block *statinfo = sp->mac_control.stats_info;
7641         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7642
7643         /* Update L3 header */
7644         ip->tot_len = htons(lro->total_len);
7645         ip->check = 0;
7646         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7647         ip->check = nchk;
7648
7649         /* Update L4 header */
7650         tcp->ack_seq = lro->tcp_ack;
7651         tcp->window = lro->window;
7652
7653         /* Update tsecr field if this session has timestamps enabled */
7654         if (lro->saw_ts) {
7655                 u32 *ptr = (u32 *)(tcp + 1);
7656                 *(ptr+2) = lro->cur_tsecr;
7657         }
7658
7659         /* Update counters required for calculation of
7660          * average no. of packets aggregated.
7661          */
7662         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7663         statinfo->sw_stat.num_aggregations++;
7664 }
7665
7666 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7667                 struct tcphdr *tcp, u32 l4_pyld)
7668 {
7669         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7670         lro->total_len += l4_pyld;
7671         lro->frags_len += l4_pyld;
7672         lro->tcp_next_seq += l4_pyld;
7673         lro->sg_num++;
7674
7675         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7676         lro->tcp_ack = tcp->ack_seq;
7677         lro->window = tcp->window;
7678
7679         if (lro->saw_ts) {
7680                 u32 *ptr;
7681                 /* Update tsecr and tsval from this packet */
7682                 ptr = (u32 *) (tcp + 1);
7683                 lro->cur_tsval = *(ptr + 1);
7684                 lro->cur_tsecr = *(ptr + 2);
7685         }
7686 }
7687
7688 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7689                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7690 {
7691         u8 *ptr;
7692
7693         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7694
7695         if (!tcp_pyld_len) {
7696                 /* Runt frame or a pure ack */
7697                 return -1;
7698         }
7699
7700         if (ip->ihl != 5) /* IP has options */
7701                 return -1;
7702
7703         /* If we see CE codepoint in IP header, packet is not mergeable */
7704         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7705                 return -1;
7706
7707         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7708         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7709                                     tcp->ece || tcp->cwr || !tcp->ack) {
7710                 /*
7711                  * Currently recognize only the ack control word and
7712                  * any other control field being set would result in
7713                  * flushing the LRO session
7714                  */
7715                 return -1;
7716         }
7717
7718         /*
7719          * Allow only one TCP timestamp option. Don't aggregate if
7720          * any other options are detected.
7721          */
7722         if (tcp->doff != 5 && tcp->doff != 8)
7723                 return -1;
7724
7725         if (tcp->doff == 8) {
7726                 ptr = (u8 *)(tcp + 1);
7727                 while (*ptr == TCPOPT_NOP)
7728                         ptr++;
7729                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7730                         return -1;
7731
7732                 /* Ensure timestamp value increases monotonically */
7733                 if (l_lro)
7734                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7735                                 return -1;
7736
7737                 /* timestamp echo reply should be non-zero */
7738                 if (*((u32 *)(ptr+6)) == 0)
7739                         return -1;
7740         }
7741
7742         return 0;
7743 }
7744
7745 static int
7746 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7747                       struct RxD_t *rxdp, struct s2io_nic *sp)
7748 {
7749         struct iphdr *ip;
7750         struct tcphdr *tcph;
7751         int ret = 0, i;
7752
7753         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7754                                          rxdp))) {
7755                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7756                           ip->saddr, ip->daddr);
7757         } else {
7758                 return ret;
7759         }
7760
7761         tcph = (struct tcphdr *)*tcp;
7762         *tcp_len = get_l4_pyld_length(ip, tcph);
7763         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7764                 struct lro *l_lro = &sp->lro0_n[i];
7765                 if (l_lro->in_use) {
7766                         if (check_for_socket_match(l_lro, ip, tcph))
7767                                 continue;
7768                         /* Sock pair matched */
7769                         *lro = l_lro;
7770
7771                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7772                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7773                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7774                                           (*lro)->tcp_next_seq,
7775                                           ntohl(tcph->seq));
7776
7777                                 sp->mac_control.stats_info->
7778                                    sw_stat.outof_sequence_pkts++;
7779                                 ret = 2;
7780                                 break;
7781                         }
7782
7783                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7784                                 ret = 1; /* Aggregate */
7785                         else
7786                                 ret = 2; /* Flush both */
7787                         break;
7788                 }
7789         }
7790
7791         if (ret == 0) {
7792                 /* Before searching for available LRO objects,
7793                  * check if the pkt is L3/L4 aggregatable. If not
7794                  * don't create new LRO session. Just send this
7795                  * packet up.
7796                  */
7797                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7798                         return 5;
7799                 }
7800
7801                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7802                         struct lro *l_lro = &sp->lro0_n[i];
7803                         if (!(l_lro->in_use)) {
7804                                 *lro = l_lro;
7805                                 ret = 3; /* Begin anew */
7806                                 break;
7807                         }
7808                 }
7809         }
7810
7811         if (ret == 0) { /* sessions exceeded */
7812                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7813                           __FUNCTION__);
7814                 *lro = NULL;
7815                 return ret;
7816         }
7817
7818         switch (ret) {
7819                 case 3:
7820                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7821                         break;
7822                 case 2:
7823                         update_L3L4_header(sp, *lro);
7824                         break;
7825                 case 1:
7826                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7827                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7828                                 update_L3L4_header(sp, *lro);
7829                                 ret = 4; /* Flush the LRO */
7830                         }
7831                         break;
7832                 default:
7833                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7834                                 __FUNCTION__);
7835                         break;
7836         }
7837
7838         return ret;
7839 }
7840
7841 static void clear_lro_session(struct lro *lro)
7842 {
7843         static u16 lro_struct_size = sizeof(struct lro);
7844
7845         memset(lro, 0, lro_struct_size);
7846 }
7847
7848 static void queue_rx_frame(struct sk_buff *skb)
7849 {
7850         struct net_device *dev = skb->dev;
7851
7852         skb->protocol = eth_type_trans(skb, dev);
7853         if (napi)
7854                 netif_receive_skb(skb);
7855         else
7856                 netif_rx(skb);
7857 }
7858
7859 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7860                            struct sk_buff *skb,
7861                            u32 tcp_len)
7862 {
7863         struct sk_buff *first = lro->parent;
7864
7865         first->len += tcp_len;
7866         first->data_len = lro->frags_len;
7867         skb_pull(skb, (skb->len - tcp_len));
7868         if (skb_shinfo(first)->frag_list)
7869                 lro->last_frag->next = skb;
7870         else
7871                 skb_shinfo(first)->frag_list = skb;
7872         first->truesize += skb->truesize;
7873         lro->last_frag = skb;
7874         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7875         return;
7876 }
7877
7878 /**
7879  * s2io_io_error_detected - called when PCI error is detected
7880  * @pdev: Pointer to PCI device
7881  * @state: The current pci connection state
7882  *
7883  * This function is called after a PCI bus error affecting
7884  * this device has been detected.
7885  */
7886 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7887                                                pci_channel_state_t state)
7888 {
7889         struct net_device *netdev = pci_get_drvdata(pdev);
7890         struct s2io_nic *sp = netdev->priv;
7891
7892         netif_device_detach(netdev);
7893
7894         if (netif_running(netdev)) {
7895                 /* Bring down the card, while avoiding PCI I/O */
7896                 do_s2io_card_down(sp, 0);
7897         }
7898         pci_disable_device(pdev);
7899
7900         return PCI_ERS_RESULT_NEED_RESET;
7901 }
7902
7903 /**
7904  * s2io_io_slot_reset - called after the pci bus has been reset.
7905  * @pdev: Pointer to PCI device
7906  *
7907  * Restart the card from scratch, as if from a cold-boot.
7908  * At this point, the card has exprienced a hard reset,
7909  * followed by fixups by BIOS, and has its config space
7910  * set up identically to what it was at cold boot.
7911  */
7912 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7913 {
7914         struct net_device *netdev = pci_get_drvdata(pdev);
7915         struct s2io_nic *sp = netdev->priv;
7916
7917         if (pci_enable_device(pdev)) {
7918                 printk(KERN_ERR "s2io: "
7919                        "Cannot re-enable PCI device after reset.\n");
7920                 return PCI_ERS_RESULT_DISCONNECT;
7921         }
7922
7923         pci_set_master(pdev);
7924         s2io_reset(sp);
7925
7926         return PCI_ERS_RESULT_RECOVERED;
7927 }
7928
7929 /**
7930  * s2io_io_resume - called when traffic can start flowing again.
7931  * @pdev: Pointer to PCI device
7932  *
7933  * This callback is called when the error recovery driver tells
7934  * us that its OK to resume normal operation.
7935  */
7936 static void s2io_io_resume(struct pci_dev *pdev)
7937 {
7938         struct net_device *netdev = pci_get_drvdata(pdev);
7939         struct s2io_nic *sp = netdev->priv;
7940
7941         if (netif_running(netdev)) {
7942                 if (s2io_card_up(sp)) {
7943                         printk(KERN_ERR "s2io: "
7944                                "Can't bring device back up after reset.\n");
7945                         return;
7946                 }
7947
7948                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7949                         s2io_card_down(sp);
7950                         printk(KERN_ERR "s2io: "
7951                                "Can't resetore mac addr after reset.\n");
7952                         return;
7953                 }
7954         }
7955
7956         netif_device_attach(netdev);
7957         netif_wake_queue(netdev);
7958 }