xen: netback: use __CONST_RING_SIZE not __RING_SIZE
[pandora-kernel.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2010 Exar Corp.
4  *
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explanation of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_max_pkts: This parameter defines maximum number of packets can be
42  *     aggregated as a single large packet
43  * napi: This parameter used to enable/disable NAPI (polling Rx)
44  *     Possible values '1' for enable and '0' for disable. Default is '1'
45  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46  *      Possible values '1' for enable and '0' for disable. Default is '0'
47  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48  *                 Possible values '1' for enable , '0' for disable.
49  *                 Default is '2' - which means disable in promisc mode
50  *                 and enable in non-promiscuous mode.
51  * multiq: This parameter used to enable/disable MULTIQUEUE support.
52  *      Possible values '1' for enable and '0' for disable. Default is '0'
53  ************************************************************************/
54
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
76 #include <linux/ip.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
79 #include <linux/io.h>
80 #include <linux/slab.h>
81 #include <net/tcp.h>
82
83 #include <asm/system.h>
84 #include <asm/div64.h>
85 #include <asm/irq.h>
86
87 /* local include */
88 #include "s2io.h"
89 #include "s2io-regs.h"
90
91 #define DRV_VERSION "2.0.26.28"
92
93 /* S2io Driver name & version. */
94 static const char s2io_driver_name[] = "Neterion";
95 static const char s2io_driver_version[] = DRV_VERSION;
96
97 static const int rxd_size[2] = {32, 48};
98 static const int rxd_count[2] = {127, 85};
99
100 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
101 {
102         int ret;
103
104         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
105                (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
106
107         return ret;
108 }
109
110 /*
111  * Cards with following subsystem_id have a link state indication
112  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113  * macro below identifies these cards given the subsystem_id.
114  */
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)              \
116         (dev_type == XFRAME_I_DEVICE) ?                                 \
117         ((((subid >= 0x600B) && (subid <= 0x600D)) ||                   \
118           ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
119
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
122
123 static inline int is_s2io_card_up(const struct s2io_nic *sp)
124 {
125         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
126 }
127
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
130         "Register test\t(offline)",
131         "Eeprom test\t(offline)",
132         "Link test\t(online)",
133         "RLDRAM test\t(offline)",
134         "BIST Test\t(offline)"
135 };
136
137 static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
138         {"tmac_frms"},
139         {"tmac_data_octets"},
140         {"tmac_drop_frms"},
141         {"tmac_mcst_frms"},
142         {"tmac_bcst_frms"},
143         {"tmac_pause_ctrl_frms"},
144         {"tmac_ttl_octets"},
145         {"tmac_ucst_frms"},
146         {"tmac_nucst_frms"},
147         {"tmac_any_err_frms"},
148         {"tmac_ttl_less_fb_octets"},
149         {"tmac_vld_ip_octets"},
150         {"tmac_vld_ip"},
151         {"tmac_drop_ip"},
152         {"tmac_icmp"},
153         {"tmac_rst_tcp"},
154         {"tmac_tcp"},
155         {"tmac_udp"},
156         {"rmac_vld_frms"},
157         {"rmac_data_octets"},
158         {"rmac_fcs_err_frms"},
159         {"rmac_drop_frms"},
160         {"rmac_vld_mcst_frms"},
161         {"rmac_vld_bcst_frms"},
162         {"rmac_in_rng_len_err_frms"},
163         {"rmac_out_rng_len_err_frms"},
164         {"rmac_long_frms"},
165         {"rmac_pause_ctrl_frms"},
166         {"rmac_unsup_ctrl_frms"},
167         {"rmac_ttl_octets"},
168         {"rmac_accepted_ucst_frms"},
169         {"rmac_accepted_nucst_frms"},
170         {"rmac_discarded_frms"},
171         {"rmac_drop_events"},
172         {"rmac_ttl_less_fb_octets"},
173         {"rmac_ttl_frms"},
174         {"rmac_usized_frms"},
175         {"rmac_osized_frms"},
176         {"rmac_frag_frms"},
177         {"rmac_jabber_frms"},
178         {"rmac_ttl_64_frms"},
179         {"rmac_ttl_65_127_frms"},
180         {"rmac_ttl_128_255_frms"},
181         {"rmac_ttl_256_511_frms"},
182         {"rmac_ttl_512_1023_frms"},
183         {"rmac_ttl_1024_1518_frms"},
184         {"rmac_ip"},
185         {"rmac_ip_octets"},
186         {"rmac_hdr_err_ip"},
187         {"rmac_drop_ip"},
188         {"rmac_icmp"},
189         {"rmac_tcp"},
190         {"rmac_udp"},
191         {"rmac_err_drp_udp"},
192         {"rmac_xgmii_err_sym"},
193         {"rmac_frms_q0"},
194         {"rmac_frms_q1"},
195         {"rmac_frms_q2"},
196         {"rmac_frms_q3"},
197         {"rmac_frms_q4"},
198         {"rmac_frms_q5"},
199         {"rmac_frms_q6"},
200         {"rmac_frms_q7"},
201         {"rmac_full_q0"},
202         {"rmac_full_q1"},
203         {"rmac_full_q2"},
204         {"rmac_full_q3"},
205         {"rmac_full_q4"},
206         {"rmac_full_q5"},
207         {"rmac_full_q6"},
208         {"rmac_full_q7"},
209         {"rmac_pause_cnt"},
210         {"rmac_xgmii_data_err_cnt"},
211         {"rmac_xgmii_ctrl_err_cnt"},
212         {"rmac_accepted_ip"},
213         {"rmac_err_tcp"},
214         {"rd_req_cnt"},
215         {"new_rd_req_cnt"},
216         {"new_rd_req_rtry_cnt"},
217         {"rd_rtry_cnt"},
218         {"wr_rtry_rd_ack_cnt"},
219         {"wr_req_cnt"},
220         {"new_wr_req_cnt"},
221         {"new_wr_req_rtry_cnt"},
222         {"wr_rtry_cnt"},
223         {"wr_disc_cnt"},
224         {"rd_rtry_wr_ack_cnt"},
225         {"txp_wr_cnt"},
226         {"txd_rd_cnt"},
227         {"txd_wr_cnt"},
228         {"rxd_rd_cnt"},
229         {"rxd_wr_cnt"},
230         {"txf_rd_cnt"},
231         {"rxf_wr_cnt"}
232 };
233
234 static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
235         {"rmac_ttl_1519_4095_frms"},
236         {"rmac_ttl_4096_8191_frms"},
237         {"rmac_ttl_8192_max_frms"},
238         {"rmac_ttl_gt_max_frms"},
239         {"rmac_osized_alt_frms"},
240         {"rmac_jabber_alt_frms"},
241         {"rmac_gt_max_alt_frms"},
242         {"rmac_vlan_frms"},
243         {"rmac_len_discard"},
244         {"rmac_fcs_discard"},
245         {"rmac_pf_discard"},
246         {"rmac_da_discard"},
247         {"rmac_red_discard"},
248         {"rmac_rts_discard"},
249         {"rmac_ingm_full_discard"},
250         {"link_fault_cnt"}
251 };
252
253 static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
254         {"\n DRIVER STATISTICS"},
255         {"single_bit_ecc_errs"},
256         {"double_bit_ecc_errs"},
257         {"parity_err_cnt"},
258         {"serious_err_cnt"},
259         {"soft_reset_cnt"},
260         {"fifo_full_cnt"},
261         {"ring_0_full_cnt"},
262         {"ring_1_full_cnt"},
263         {"ring_2_full_cnt"},
264         {"ring_3_full_cnt"},
265         {"ring_4_full_cnt"},
266         {"ring_5_full_cnt"},
267         {"ring_6_full_cnt"},
268         {"ring_7_full_cnt"},
269         {"alarm_transceiver_temp_high"},
270         {"alarm_transceiver_temp_low"},
271         {"alarm_laser_bias_current_high"},
272         {"alarm_laser_bias_current_low"},
273         {"alarm_laser_output_power_high"},
274         {"alarm_laser_output_power_low"},
275         {"warn_transceiver_temp_high"},
276         {"warn_transceiver_temp_low"},
277         {"warn_laser_bias_current_high"},
278         {"warn_laser_bias_current_low"},
279         {"warn_laser_output_power_high"},
280         {"warn_laser_output_power_low"},
281         {"lro_aggregated_pkts"},
282         {"lro_flush_both_count"},
283         {"lro_out_of_sequence_pkts"},
284         {"lro_flush_due_to_max_pkts"},
285         {"lro_avg_aggr_pkts"},
286         {"mem_alloc_fail_cnt"},
287         {"pci_map_fail_cnt"},
288         {"watchdog_timer_cnt"},
289         {"mem_allocated"},
290         {"mem_freed"},
291         {"link_up_cnt"},
292         {"link_down_cnt"},
293         {"link_up_time"},
294         {"link_down_time"},
295         {"tx_tcode_buf_abort_cnt"},
296         {"tx_tcode_desc_abort_cnt"},
297         {"tx_tcode_parity_err_cnt"},
298         {"tx_tcode_link_loss_cnt"},
299         {"tx_tcode_list_proc_err_cnt"},
300         {"rx_tcode_parity_err_cnt"},
301         {"rx_tcode_abort_cnt"},
302         {"rx_tcode_parity_abort_cnt"},
303         {"rx_tcode_rda_fail_cnt"},
304         {"rx_tcode_unkn_prot_cnt"},
305         {"rx_tcode_fcs_err_cnt"},
306         {"rx_tcode_buf_size_err_cnt"},
307         {"rx_tcode_rxd_corrupt_cnt"},
308         {"rx_tcode_unkn_err_cnt"},
309         {"tda_err_cnt"},
310         {"pfc_err_cnt"},
311         {"pcc_err_cnt"},
312         {"tti_err_cnt"},
313         {"tpa_err_cnt"},
314         {"sm_err_cnt"},
315         {"lso_err_cnt"},
316         {"mac_tmac_err_cnt"},
317         {"mac_rmac_err_cnt"},
318         {"xgxs_txgxs_err_cnt"},
319         {"xgxs_rxgxs_err_cnt"},
320         {"rc_err_cnt"},
321         {"prc_pcix_err_cnt"},
322         {"rpa_err_cnt"},
323         {"rda_err_cnt"},
324         {"rti_err_cnt"},
325         {"mc_err_cnt"}
326 };
327
328 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
331
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
334
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
337
338 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN        (S2IO_TEST_LEN * ETH_GSTRING_LEN)
340
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp)        \
342         init_timer(&timer);                             \
343         timer.function = handle;                        \
344         timer.data = (unsigned long)arg;                \
345         mod_timer(&timer, (jiffies + exp))              \
346
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
349 {
350         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
351         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
352         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
353         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
354         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
355         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
356 }
357
358 /* Add the vlan */
359 static void s2io_vlan_rx_register(struct net_device *dev,
360                                   struct vlan_group *grp)
361 {
362         int i;
363         struct s2io_nic *nic = netdev_priv(dev);
364         unsigned long flags[MAX_TX_FIFOS];
365         struct config_param *config = &nic->config;
366         struct mac_info *mac_control = &nic->mac_control;
367
368         for (i = 0; i < config->tx_fifo_num; i++) {
369                 struct fifo_info *fifo = &mac_control->fifos[i];
370
371                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
372         }
373
374         nic->vlgrp = grp;
375
376         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
377                 struct fifo_info *fifo = &mac_control->fifos[i];
378
379                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
380         }
381 }
382
383 /* Unregister the vlan */
384 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
385 {
386         int i;
387         struct s2io_nic *nic = netdev_priv(dev);
388         unsigned long flags[MAX_TX_FIFOS];
389         struct config_param *config = &nic->config;
390         struct mac_info *mac_control = &nic->mac_control;
391
392         for (i = 0; i < config->tx_fifo_num; i++) {
393                 struct fifo_info *fifo = &mac_control->fifos[i];
394
395                 spin_lock_irqsave(&fifo->tx_lock, flags[i]);
396         }
397
398         if (nic->vlgrp)
399                 vlan_group_set_device(nic->vlgrp, vid, NULL);
400
401         for (i = config->tx_fifo_num - 1; i >= 0; i--) {
402                 struct fifo_info *fifo = &mac_control->fifos[i];
403
404                 spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
405         }
406 }
407
408 /*
409  * Constants to be programmed into the Xena's registers, to configure
410  * the XAUI.
411  */
412
413 #define END_SIGN        0x0
414 static const u64 herc_act_dtx_cfg[] = {
415         /* Set address */
416         0x8000051536750000ULL, 0x80000515367500E0ULL,
417         /* Write data */
418         0x8000051536750004ULL, 0x80000515367500E4ULL,
419         /* Set address */
420         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
421         /* Write data */
422         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
423         /* Set address */
424         0x801205150D440000ULL, 0x801205150D4400E0ULL,
425         /* Write data */
426         0x801205150D440004ULL, 0x801205150D4400E4ULL,
427         /* Set address */
428         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
429         /* Write data */
430         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
431         /* Done */
432         END_SIGN
433 };
434
435 static const u64 xena_dtx_cfg[] = {
436         /* Set address */
437         0x8000051500000000ULL, 0x80000515000000E0ULL,
438         /* Write data */
439         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
440         /* Set address */
441         0x8001051500000000ULL, 0x80010515000000E0ULL,
442         /* Write data */
443         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
444         /* Set address */
445         0x8002051500000000ULL, 0x80020515000000E0ULL,
446         /* Write data */
447         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
448         END_SIGN
449 };
450
451 /*
452  * Constants for Fixing the MacAddress problem seen mostly on
453  * Alpha machines.
454  */
455 static const u64 fix_mac[] = {
456         0x0060000000000000ULL, 0x0060600000000000ULL,
457         0x0040600000000000ULL, 0x0000600000000000ULL,
458         0x0020600000000000ULL, 0x0060600000000000ULL,
459         0x0020600000000000ULL, 0x0060600000000000ULL,
460         0x0020600000000000ULL, 0x0060600000000000ULL,
461         0x0020600000000000ULL, 0x0060600000000000ULL,
462         0x0020600000000000ULL, 0x0060600000000000ULL,
463         0x0020600000000000ULL, 0x0060600000000000ULL,
464         0x0020600000000000ULL, 0x0060600000000000ULL,
465         0x0020600000000000ULL, 0x0060600000000000ULL,
466         0x0020600000000000ULL, 0x0060600000000000ULL,
467         0x0020600000000000ULL, 0x0060600000000000ULL,
468         0x0020600000000000ULL, 0x0000600000000000ULL,
469         0x0040600000000000ULL, 0x0060600000000000ULL,
470         END_SIGN
471 };
472
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION);
475
476
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
479 S2IO_PARM_INT(rx_ring_num, 1);
480 S2IO_PARM_INT(multiq, 0);
481 S2IO_PARM_INT(rx_ring_mode, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
483 S2IO_PARM_INT(rmac_pause_time, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
486 S2IO_PARM_INT(shared_splits, 0);
487 S2IO_PARM_INT(tmac_util_period, 5);
488 S2IO_PARM_INT(rmac_util_period, 5);
489 S2IO_PARM_INT(l3l4hdr_size, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type, 2);
496 /* Large receive offload feature */
497
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499  * aggregation happens until we hit max IP pkt size(64K)
500  */
501 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts, 0);
503
504 S2IO_PARM_INT(napi, 1);
505 S2IO_PARM_INT(ufo, 0);
506 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
507
508 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
509 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
510 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
511 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
512 static unsigned int rts_frm_len[MAX_RX_RINGS] =
513 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
514
515 module_param_array(tx_fifo_len, uint, NULL, 0);
516 module_param_array(rx_ring_sz, uint, NULL, 0);
517 module_param_array(rts_frm_len, uint, NULL, 0);
518
519 /*
520  * S2IO device table.
521  * This table lists all the devices that this driver supports.
522  */
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
524         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
525          PCI_ANY_ID, PCI_ANY_ID},
526         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
527          PCI_ANY_ID, PCI_ANY_ID},
528         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
529          PCI_ANY_ID, PCI_ANY_ID},
530         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
531          PCI_ANY_ID, PCI_ANY_ID},
532         {0,}
533 };
534
535 MODULE_DEVICE_TABLE(pci, s2io_tbl);
536
537 static struct pci_error_handlers s2io_err_handler = {
538         .error_detected = s2io_io_error_detected,
539         .slot_reset = s2io_io_slot_reset,
540         .resume = s2io_io_resume,
541 };
542
543 static struct pci_driver s2io_driver = {
544         .name = "S2IO",
545         .id_table = s2io_tbl,
546         .probe = s2io_init_nic,
547         .remove = __devexit_p(s2io_rem_nic),
548         .err_handler = &s2io_err_handler,
549 };
550
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
553
554 /* netqueue manipulation helper functions */
555 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
556 {
557         if (!sp->config.multiq) {
558                 int i;
559
560                 for (i = 0; i < sp->config.tx_fifo_num; i++)
561                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
562         }
563         netif_tx_stop_all_queues(sp->dev);
564 }
565
566 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
567 {
568         if (!sp->config.multiq)
569                 sp->mac_control.fifos[fifo_no].queue_state =
570                         FIFO_QUEUE_STOP;
571
572         netif_tx_stop_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
576 {
577         if (!sp->config.multiq) {
578                 int i;
579
580                 for (i = 0; i < sp->config.tx_fifo_num; i++)
581                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
582         }
583         netif_tx_start_all_queues(sp->dev);
584 }
585
586 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
587 {
588         if (!sp->config.multiq)
589                 sp->mac_control.fifos[fifo_no].queue_state =
590                         FIFO_QUEUE_START;
591
592         netif_tx_start_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
596 {
597         if (!sp->config.multiq) {
598                 int i;
599
600                 for (i = 0; i < sp->config.tx_fifo_num; i++)
601                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
602         }
603         netif_tx_wake_all_queues(sp->dev);
604 }
605
606 static inline void s2io_wake_tx_queue(
607         struct fifo_info *fifo, int cnt, u8 multiq)
608 {
609
610         if (multiq) {
611                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
612                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
613         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
614                 if (netif_queue_stopped(fifo->dev)) {
615                         fifo->queue_state = FIFO_QUEUE_START;
616                         netif_wake_queue(fifo->dev);
617                 }
618         }
619 }
620
621 /**
622  * init_shared_mem - Allocation and Initialization of Memory
623  * @nic: Device private variable.
624  * Description: The function allocates all the memory areas shared
625  * between the NIC and the driver. This includes Tx descriptors,
626  * Rx descriptors and the statistics block.
627  */
628
629 static int init_shared_mem(struct s2io_nic *nic)
630 {
631         u32 size;
632         void *tmp_v_addr, *tmp_v_addr_next;
633         dma_addr_t tmp_p_addr, tmp_p_addr_next;
634         struct RxD_block *pre_rxd_blk = NULL;
635         int i, j, blk_cnt;
636         int lst_size, lst_per_page;
637         struct net_device *dev = nic->dev;
638         unsigned long tmp;
639         struct buffAdd *ba;
640         struct config_param *config = &nic->config;
641         struct mac_info *mac_control = &nic->mac_control;
642         unsigned long long mem_allocated = 0;
643
644         /* Allocation and initialization of TXDLs in FIFOs */
645         size = 0;
646         for (i = 0; i < config->tx_fifo_num; i++) {
647                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
648
649                 size += tx_cfg->fifo_len;
650         }
651         if (size > MAX_AVAILABLE_TXDS) {
652                 DBG_PRINT(ERR_DBG,
653                           "Too many TxDs requested: %d, max supported: %d\n",
654                           size, MAX_AVAILABLE_TXDS);
655                 return -EINVAL;
656         }
657
658         size = 0;
659         for (i = 0; i < config->tx_fifo_num; i++) {
660                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
661
662                 size = tx_cfg->fifo_len;
663                 /*
664                  * Legal values are from 2 to 8192
665                  */
666                 if (size < 2) {
667                         DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
668                                   "Valid lengths are 2 through 8192\n",
669                                   i, size);
670                         return -EINVAL;
671                 }
672         }
673
674         lst_size = (sizeof(struct TxD) * config->max_txds);
675         lst_per_page = PAGE_SIZE / lst_size;
676
677         for (i = 0; i < config->tx_fifo_num; i++) {
678                 struct fifo_info *fifo = &mac_control->fifos[i];
679                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
680                 int fifo_len = tx_cfg->fifo_len;
681                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
682
683                 fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
684                 if (!fifo->list_info) {
685                         DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
686                         return -ENOMEM;
687                 }
688                 mem_allocated += list_holder_size;
689         }
690         for (i = 0; i < config->tx_fifo_num; i++) {
691                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
692                                                 lst_per_page);
693                 struct fifo_info *fifo = &mac_control->fifos[i];
694                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
695
696                 fifo->tx_curr_put_info.offset = 0;
697                 fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
698                 fifo->tx_curr_get_info.offset = 0;
699                 fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
700                 fifo->fifo_no = i;
701                 fifo->nic = nic;
702                 fifo->max_txds = MAX_SKB_FRAGS + 2;
703                 fifo->dev = dev;
704
705                 for (j = 0; j < page_num; j++) {
706                         int k = 0;
707                         dma_addr_t tmp_p;
708                         void *tmp_v;
709                         tmp_v = pci_alloc_consistent(nic->pdev,
710                                                      PAGE_SIZE, &tmp_p);
711                         if (!tmp_v) {
712                                 DBG_PRINT(INFO_DBG,
713                                           "pci_alloc_consistent failed for TxDL\n");
714                                 return -ENOMEM;
715                         }
716                         /* If we got a zero DMA address(can happen on
717                          * certain platforms like PPC), reallocate.
718                          * Store virtual address of page we don't want,
719                          * to be freed later.
720                          */
721                         if (!tmp_p) {
722                                 mac_control->zerodma_virt_addr = tmp_v;
723                                 DBG_PRINT(INIT_DBG,
724                                           "%s: Zero DMA address for TxDL. "
725                                           "Virtual address %p\n",
726                                           dev->name, tmp_v);
727                                 tmp_v = pci_alloc_consistent(nic->pdev,
728                                                              PAGE_SIZE, &tmp_p);
729                                 if (!tmp_v) {
730                                         DBG_PRINT(INFO_DBG,
731                                                   "pci_alloc_consistent failed for TxDL\n");
732                                         return -ENOMEM;
733                                 }
734                                 mem_allocated += PAGE_SIZE;
735                         }
736                         while (k < lst_per_page) {
737                                 int l = (j * lst_per_page) + k;
738                                 if (l == tx_cfg->fifo_len)
739                                         break;
740                                 fifo->list_info[l].list_virt_addr =
741                                         tmp_v + (k * lst_size);
742                                 fifo->list_info[l].list_phy_addr =
743                                         tmp_p + (k * lst_size);
744                                 k++;
745                         }
746                 }
747         }
748
749         for (i = 0; i < config->tx_fifo_num; i++) {
750                 struct fifo_info *fifo = &mac_control->fifos[i];
751                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
752
753                 size = tx_cfg->fifo_len;
754                 fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
755                 if (!fifo->ufo_in_band_v)
756                         return -ENOMEM;
757                 mem_allocated += (size * sizeof(u64));
758         }
759
760         /* Allocation and initialization of RXDs in Rings */
761         size = 0;
762         for (i = 0; i < config->rx_ring_num; i++) {
763                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
764                 struct ring_info *ring = &mac_control->rings[i];
765
766                 if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
767                         DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
768                                   "multiple of RxDs per Block\n",
769                                   dev->name, i);
770                         return FAILURE;
771                 }
772                 size += rx_cfg->num_rxd;
773                 ring->block_count = rx_cfg->num_rxd /
774                         (rxd_count[nic->rxd_mode] + 1);
775                 ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
776         }
777         if (nic->rxd_mode == RXD_MODE_1)
778                 size = (size * (sizeof(struct RxD1)));
779         else
780                 size = (size * (sizeof(struct RxD3)));
781
782         for (i = 0; i < config->rx_ring_num; i++) {
783                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
784                 struct ring_info *ring = &mac_control->rings[i];
785
786                 ring->rx_curr_get_info.block_index = 0;
787                 ring->rx_curr_get_info.offset = 0;
788                 ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
789                 ring->rx_curr_put_info.block_index = 0;
790                 ring->rx_curr_put_info.offset = 0;
791                 ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
792                 ring->nic = nic;
793                 ring->ring_no = i;
794
795                 blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
796                 /*  Allocating all the Rx blocks */
797                 for (j = 0; j < blk_cnt; j++) {
798                         struct rx_block_info *rx_blocks;
799                         int l;
800
801                         rx_blocks = &ring->rx_blocks[j];
802                         size = SIZE_OF_BLOCK;   /* size is always page size */
803                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
804                                                           &tmp_p_addr);
805                         if (tmp_v_addr == NULL) {
806                                 /*
807                                  * In case of failure, free_shared_mem()
808                                  * is called, which should free any
809                                  * memory that was alloced till the
810                                  * failure happened.
811                                  */
812                                 rx_blocks->block_virt_addr = tmp_v_addr;
813                                 return -ENOMEM;
814                         }
815                         mem_allocated += size;
816                         memset(tmp_v_addr, 0, size);
817
818                         size = sizeof(struct rxd_info) *
819                                 rxd_count[nic->rxd_mode];
820                         rx_blocks->block_virt_addr = tmp_v_addr;
821                         rx_blocks->block_dma_addr = tmp_p_addr;
822                         rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
823                         if (!rx_blocks->rxds)
824                                 return -ENOMEM;
825                         mem_allocated += size;
826                         for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
827                                 rx_blocks->rxds[l].virt_addr =
828                                         rx_blocks->block_virt_addr +
829                                         (rxd_size[nic->rxd_mode] * l);
830                                 rx_blocks->rxds[l].dma_addr =
831                                         rx_blocks->block_dma_addr +
832                                         (rxd_size[nic->rxd_mode] * l);
833                         }
834                 }
835                 /* Interlinking all Rx Blocks */
836                 for (j = 0; j < blk_cnt; j++) {
837                         int next = (j + 1) % blk_cnt;
838                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
839                         tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
840                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
841                         tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
842
843                         pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
844                         pre_rxd_blk->reserved_2_pNext_RxD_block =
845                                 (unsigned long)tmp_v_addr_next;
846                         pre_rxd_blk->pNext_RxD_Blk_physical =
847                                 (u64)tmp_p_addr_next;
848                 }
849         }
850         if (nic->rxd_mode == RXD_MODE_3B) {
851                 /*
852                  * Allocation of Storages for buffer addresses in 2BUFF mode
853                  * and the buffers as well.
854                  */
855                 for (i = 0; i < config->rx_ring_num; i++) {
856                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
857                         struct ring_info *ring = &mac_control->rings[i];
858
859                         blk_cnt = rx_cfg->num_rxd /
860                                 (rxd_count[nic->rxd_mode] + 1);
861                         size = sizeof(struct buffAdd *) * blk_cnt;
862                         ring->ba = kmalloc(size, GFP_KERNEL);
863                         if (!ring->ba)
864                                 return -ENOMEM;
865                         mem_allocated += size;
866                         for (j = 0; j < blk_cnt; j++) {
867                                 int k = 0;
868
869                                 size = sizeof(struct buffAdd) *
870                                         (rxd_count[nic->rxd_mode] + 1);
871                                 ring->ba[j] = kmalloc(size, GFP_KERNEL);
872                                 if (!ring->ba[j])
873                                         return -ENOMEM;
874                                 mem_allocated += size;
875                                 while (k != rxd_count[nic->rxd_mode]) {
876                                         ba = &ring->ba[j][k];
877                                         size = BUF0_LEN + ALIGN_SIZE;
878                                         ba->ba_0_org = kmalloc(size, GFP_KERNEL);
879                                         if (!ba->ba_0_org)
880                                                 return -ENOMEM;
881                                         mem_allocated += size;
882                                         tmp = (unsigned long)ba->ba_0_org;
883                                         tmp += ALIGN_SIZE;
884                                         tmp &= ~((unsigned long)ALIGN_SIZE);
885                                         ba->ba_0 = (void *)tmp;
886
887                                         size = BUF1_LEN + ALIGN_SIZE;
888                                         ba->ba_1_org = kmalloc(size, GFP_KERNEL);
889                                         if (!ba->ba_1_org)
890                                                 return -ENOMEM;
891                                         mem_allocated += size;
892                                         tmp = (unsigned long)ba->ba_1_org;
893                                         tmp += ALIGN_SIZE;
894                                         tmp &= ~((unsigned long)ALIGN_SIZE);
895                                         ba->ba_1 = (void *)tmp;
896                                         k++;
897                                 }
898                         }
899                 }
900         }
901
902         /* Allocation and initialization of Statistics block */
903         size = sizeof(struct stat_block);
904         mac_control->stats_mem =
905                 pci_alloc_consistent(nic->pdev, size,
906                                      &mac_control->stats_mem_phy);
907
908         if (!mac_control->stats_mem) {
909                 /*
910                  * In case of failure, free_shared_mem() is called, which
911                  * should free any memory that was alloced till the
912                  * failure happened.
913                  */
914                 return -ENOMEM;
915         }
916         mem_allocated += size;
917         mac_control->stats_mem_sz = size;
918
919         tmp_v_addr = mac_control->stats_mem;
920         mac_control->stats_info = (struct stat_block *)tmp_v_addr;
921         memset(tmp_v_addr, 0, size);
922         DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
923                 dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
924         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
925         return SUCCESS;
926 }
927
928 /**
929  * free_shared_mem - Free the allocated Memory
930  * @nic:  Device private variable.
931  * Description: This function is to free all memory locations allocated by
932  * the init_shared_mem() function and return it to the kernel.
933  */
934
935 static void free_shared_mem(struct s2io_nic *nic)
936 {
937         int i, j, blk_cnt, size;
938         void *tmp_v_addr;
939         dma_addr_t tmp_p_addr;
940         int lst_size, lst_per_page;
941         struct net_device *dev;
942         int page_num = 0;
943         struct config_param *config;
944         struct mac_info *mac_control;
945         struct stat_block *stats;
946         struct swStat *swstats;
947
948         if (!nic)
949                 return;
950
951         dev = nic->dev;
952
953         config = &nic->config;
954         mac_control = &nic->mac_control;
955         stats = mac_control->stats_info;
956         swstats = &stats->sw_stat;
957
958         lst_size = sizeof(struct TxD) * config->max_txds;
959         lst_per_page = PAGE_SIZE / lst_size;
960
961         for (i = 0; i < config->tx_fifo_num; i++) {
962                 struct fifo_info *fifo = &mac_control->fifos[i];
963                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
964
965                 page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
966                 for (j = 0; j < page_num; j++) {
967                         int mem_blks = (j * lst_per_page);
968                         struct list_info_hold *fli;
969
970                         if (!fifo->list_info)
971                                 return;
972
973                         fli = &fifo->list_info[mem_blks];
974                         if (!fli->list_virt_addr)
975                                 break;
976                         pci_free_consistent(nic->pdev, PAGE_SIZE,
977                                             fli->list_virt_addr,
978                                             fli->list_phy_addr);
979                         swstats->mem_freed += PAGE_SIZE;
980                 }
981                 /* If we got a zero DMA address during allocation,
982                  * free the page now
983                  */
984                 if (mac_control->zerodma_virt_addr) {
985                         pci_free_consistent(nic->pdev, PAGE_SIZE,
986                                             mac_control->zerodma_virt_addr,
987                                             (dma_addr_t)0);
988                         DBG_PRINT(INIT_DBG,
989                                   "%s: Freeing TxDL with zero DMA address. "
990                                   "Virtual address %p\n",
991                                   dev->name, mac_control->zerodma_virt_addr);
992                         swstats->mem_freed += PAGE_SIZE;
993                 }
994                 kfree(fifo->list_info);
995                 swstats->mem_freed += tx_cfg->fifo_len *
996                         sizeof(struct list_info_hold);
997         }
998
999         size = SIZE_OF_BLOCK;
1000         for (i = 0; i < config->rx_ring_num; i++) {
1001                 struct ring_info *ring = &mac_control->rings[i];
1002
1003                 blk_cnt = ring->block_count;
1004                 for (j = 0; j < blk_cnt; j++) {
1005                         tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
1006                         tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
1007                         if (tmp_v_addr == NULL)
1008                                 break;
1009                         pci_free_consistent(nic->pdev, size,
1010                                             tmp_v_addr, tmp_p_addr);
1011                         swstats->mem_freed += size;
1012                         kfree(ring->rx_blocks[j].rxds);
1013                         swstats->mem_freed += sizeof(struct rxd_info) *
1014                                 rxd_count[nic->rxd_mode];
1015                 }
1016         }
1017
1018         if (nic->rxd_mode == RXD_MODE_3B) {
1019                 /* Freeing buffer storage addresses in 2BUFF mode. */
1020                 for (i = 0; i < config->rx_ring_num; i++) {
1021                         struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1022                         struct ring_info *ring = &mac_control->rings[i];
1023
1024                         blk_cnt = rx_cfg->num_rxd /
1025                                 (rxd_count[nic->rxd_mode] + 1);
1026                         for (j = 0; j < blk_cnt; j++) {
1027                                 int k = 0;
1028                                 if (!ring->ba[j])
1029                                         continue;
1030                                 while (k != rxd_count[nic->rxd_mode]) {
1031                                         struct buffAdd *ba = &ring->ba[j][k];
1032                                         kfree(ba->ba_0_org);
1033                                         swstats->mem_freed +=
1034                                                 BUF0_LEN + ALIGN_SIZE;
1035                                         kfree(ba->ba_1_org);
1036                                         swstats->mem_freed +=
1037                                                 BUF1_LEN + ALIGN_SIZE;
1038                                         k++;
1039                                 }
1040                                 kfree(ring->ba[j]);
1041                                 swstats->mem_freed += sizeof(struct buffAdd) *
1042                                         (rxd_count[nic->rxd_mode] + 1);
1043                         }
1044                         kfree(ring->ba);
1045                         swstats->mem_freed += sizeof(struct buffAdd *) *
1046                                 blk_cnt;
1047                 }
1048         }
1049
1050         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1051                 struct fifo_info *fifo = &mac_control->fifos[i];
1052                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1053
1054                 if (fifo->ufo_in_band_v) {
1055                         swstats->mem_freed += tx_cfg->fifo_len *
1056                                 sizeof(u64);
1057                         kfree(fifo->ufo_in_band_v);
1058                 }
1059         }
1060
1061         if (mac_control->stats_mem) {
1062                 swstats->mem_freed += mac_control->stats_mem_sz;
1063                 pci_free_consistent(nic->pdev,
1064                                     mac_control->stats_mem_sz,
1065                                     mac_control->stats_mem,
1066                                     mac_control->stats_mem_phy);
1067         }
1068 }
1069
1070 /**
1071  * s2io_verify_pci_mode -
1072  */
1073
1074 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1075 {
1076         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1077         register u64 val64 = 0;
1078         int     mode;
1079
1080         val64 = readq(&bar0->pci_mode);
1081         mode = (u8)GET_PCI_MODE(val64);
1082
1083         if (val64 & PCI_MODE_UNKNOWN_MODE)
1084                 return -1;      /* Unknown PCI mode */
1085         return mode;
1086 }
1087
1088 #define NEC_VENID   0x1033
1089 #define NEC_DEVID   0x0125
1090 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1091 {
1092         struct pci_dev *tdev = NULL;
1093         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1094                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1095                         if (tdev->bus == s2io_pdev->bus->parent) {
1096                                 pci_dev_put(tdev);
1097                                 return 1;
1098                         }
1099                 }
1100         }
1101         return 0;
1102 }
1103
1104 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1105 /**
1106  * s2io_print_pci_mode -
1107  */
1108 static int s2io_print_pci_mode(struct s2io_nic *nic)
1109 {
1110         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1111         register u64 val64 = 0;
1112         int     mode;
1113         struct config_param *config = &nic->config;
1114         const char *pcimode;
1115
1116         val64 = readq(&bar0->pci_mode);
1117         mode = (u8)GET_PCI_MODE(val64);
1118
1119         if (val64 & PCI_MODE_UNKNOWN_MODE)
1120                 return -1;      /* Unknown PCI mode */
1121
1122         config->bus_speed = bus_speed[mode];
1123
1124         if (s2io_on_nec_bridge(nic->pdev)) {
1125                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1126                           nic->dev->name);
1127                 return mode;
1128         }
1129
1130         switch (mode) {
1131         case PCI_MODE_PCI_33:
1132                 pcimode = "33MHz PCI bus";
1133                 break;
1134         case PCI_MODE_PCI_66:
1135                 pcimode = "66MHz PCI bus";
1136                 break;
1137         case PCI_MODE_PCIX_M1_66:
1138                 pcimode = "66MHz PCIX(M1) bus";
1139                 break;
1140         case PCI_MODE_PCIX_M1_100:
1141                 pcimode = "100MHz PCIX(M1) bus";
1142                 break;
1143         case PCI_MODE_PCIX_M1_133:
1144                 pcimode = "133MHz PCIX(M1) bus";
1145                 break;
1146         case PCI_MODE_PCIX_M2_66:
1147                 pcimode = "133MHz PCIX(M2) bus";
1148                 break;
1149         case PCI_MODE_PCIX_M2_100:
1150                 pcimode = "200MHz PCIX(M2) bus";
1151                 break;
1152         case PCI_MODE_PCIX_M2_133:
1153                 pcimode = "266MHz PCIX(M2) bus";
1154                 break;
1155         default:
1156                 pcimode = "unsupported bus!";
1157                 mode = -1;
1158         }
1159
1160         DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1161                   nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1162
1163         return mode;
1164 }
1165
1166 /**
1167  *  init_tti - Initialization transmit traffic interrupt scheme
1168  *  @nic: device private variable
1169  *  @link: link status (UP/DOWN) used to enable/disable continuous
1170  *  transmit interrupts
1171  *  Description: The function configures transmit traffic interrupts
1172  *  Return Value:  SUCCESS on success and
1173  *  '-1' on failure
1174  */
1175
1176 static int init_tti(struct s2io_nic *nic, int link)
1177 {
1178         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1179         register u64 val64 = 0;
1180         int i;
1181         struct config_param *config = &nic->config;
1182
1183         for (i = 0; i < config->tx_fifo_num; i++) {
1184                 /*
1185                  * TTI Initialization. Default Tx timer gets us about
1186                  * 250 interrupts per sec. Continuous interrupts are enabled
1187                  * by default.
1188                  */
1189                 if (nic->device_type == XFRAME_II_DEVICE) {
1190                         int count = (nic->config.bus_speed * 125)/2;
1191                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1192                 } else
1193                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1194
1195                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196                         TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197                         TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198                         TTI_DATA1_MEM_TX_TIMER_AC_EN;
1199                 if (i == 0)
1200                         if (use_continuous_tx_intrs && (link == LINK_UP))
1201                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1202                 writeq(val64, &bar0->tti_data1_mem);
1203
1204                 if (nic->config.intr_type == MSI_X) {
1205                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1209                 } else {
1210                         if ((nic->config.tx_steering_type ==
1211                              TX_DEFAULT_STEERING) &&
1212                             (config->tx_fifo_num > 1) &&
1213                             (i >= nic->udp_fifo_idx) &&
1214                             (i < (nic->udp_fifo_idx +
1215                                   nic->total_udp_fifos)))
1216                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1220                         else
1221                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1225                 }
1226
1227                 writeq(val64, &bar0->tti_data2_mem);
1228
1229                 val64 = TTI_CMD_MEM_WE |
1230                         TTI_CMD_MEM_STROBE_NEW_CMD |
1231                         TTI_CMD_MEM_OFFSET(i);
1232                 writeq(val64, &bar0->tti_command_mem);
1233
1234                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1235                                           TTI_CMD_MEM_STROBE_NEW_CMD,
1236                                           S2IO_BIT_RESET) != SUCCESS)
1237                         return FAILURE;
1238         }
1239
1240         return SUCCESS;
1241 }
1242
1243 /**
1244  *  init_nic - Initialization of hardware
1245  *  @nic: device private variable
1246  *  Description: The function sequentially configures every block
1247  *  of the H/W from their reset values.
1248  *  Return Value:  SUCCESS on success and
1249  *  '-1' on failure (endian settings incorrect).
1250  */
1251
1252 static int init_nic(struct s2io_nic *nic)
1253 {
1254         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1255         struct net_device *dev = nic->dev;
1256         register u64 val64 = 0;
1257         void __iomem *add;
1258         u32 time;
1259         int i, j;
1260         int dtx_cnt = 0;
1261         unsigned long long mem_share;
1262         int mem_size;
1263         struct config_param *config = &nic->config;
1264         struct mac_info *mac_control = &nic->mac_control;
1265
1266         /* to set the swapper controle on the card */
1267         if (s2io_set_swapper(nic)) {
1268                 DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1269                 return -EIO;
1270         }
1271
1272         /*
1273          * Herc requires EOI to be removed from reset before XGXS, so..
1274          */
1275         if (nic->device_type & XFRAME_II_DEVICE) {
1276                 val64 = 0xA500000000ULL;
1277                 writeq(val64, &bar0->sw_reset);
1278                 msleep(500);
1279                 val64 = readq(&bar0->sw_reset);
1280         }
1281
1282         /* Remove XGXS from reset state */
1283         val64 = 0;
1284         writeq(val64, &bar0->sw_reset);
1285         msleep(500);
1286         val64 = readq(&bar0->sw_reset);
1287
1288         /* Ensure that it's safe to access registers by checking
1289          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1290          */
1291         if (nic->device_type == XFRAME_II_DEVICE) {
1292                 for (i = 0; i < 50; i++) {
1293                         val64 = readq(&bar0->adapter_status);
1294                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1295                                 break;
1296                         msleep(10);
1297                 }
1298                 if (i == 50)
1299                         return -ENODEV;
1300         }
1301
1302         /*  Enable Receiving broadcasts */
1303         add = &bar0->mac_cfg;
1304         val64 = readq(&bar0->mac_cfg);
1305         val64 |= MAC_RMAC_BCAST_ENABLE;
1306         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1307         writel((u32)val64, add);
1308         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1309         writel((u32) (val64 >> 32), (add + 4));
1310
1311         /* Read registers in all blocks */
1312         val64 = readq(&bar0->mac_int_mask);
1313         val64 = readq(&bar0->mc_int_mask);
1314         val64 = readq(&bar0->xgxs_int_mask);
1315
1316         /*  Set MTU */
1317         val64 = dev->mtu;
1318         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1319
1320         if (nic->device_type & XFRAME_II_DEVICE) {
1321                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1322                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1323                                           &bar0->dtx_control, UF);
1324                         if (dtx_cnt & 0x1)
1325                                 msleep(1); /* Necessary!! */
1326                         dtx_cnt++;
1327                 }
1328         } else {
1329                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1330                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1331                                           &bar0->dtx_control, UF);
1332                         val64 = readq(&bar0->dtx_control);
1333                         dtx_cnt++;
1334                 }
1335         }
1336
1337         /*  Tx DMA Initialization */
1338         val64 = 0;
1339         writeq(val64, &bar0->tx_fifo_partition_0);
1340         writeq(val64, &bar0->tx_fifo_partition_1);
1341         writeq(val64, &bar0->tx_fifo_partition_2);
1342         writeq(val64, &bar0->tx_fifo_partition_3);
1343
1344         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1345                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1346
1347                 val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1348                         vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1349
1350                 if (i == (config->tx_fifo_num - 1)) {
1351                         if (i % 2 == 0)
1352                                 i++;
1353                 }
1354
1355                 switch (i) {
1356                 case 1:
1357                         writeq(val64, &bar0->tx_fifo_partition_0);
1358                         val64 = 0;
1359                         j = 0;
1360                         break;
1361                 case 3:
1362                         writeq(val64, &bar0->tx_fifo_partition_1);
1363                         val64 = 0;
1364                         j = 0;
1365                         break;
1366                 case 5:
1367                         writeq(val64, &bar0->tx_fifo_partition_2);
1368                         val64 = 0;
1369                         j = 0;
1370                         break;
1371                 case 7:
1372                         writeq(val64, &bar0->tx_fifo_partition_3);
1373                         val64 = 0;
1374                         j = 0;
1375                         break;
1376                 default:
1377                         j++;
1378                         break;
1379                 }
1380         }
1381
1382         /*
1383          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1385          */
1386         if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1387                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1388
1389         val64 = readq(&bar0->tx_fifo_partition_0);
1390         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1391                   &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1392
1393         /*
1394          * Initialization of Tx_PA_CONFIG register to ignore packet
1395          * integrity checking.
1396          */
1397         val64 = readq(&bar0->tx_pa_cfg);
1398         val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1399                 TX_PA_CFG_IGNORE_SNAP_OUI |
1400                 TX_PA_CFG_IGNORE_LLC_CTRL |
1401                 TX_PA_CFG_IGNORE_L2_ERR;
1402         writeq(val64, &bar0->tx_pa_cfg);
1403
1404         /* Rx DMA intialization. */
1405         val64 = 0;
1406         for (i = 0; i < config->rx_ring_num; i++) {
1407                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1408
1409                 val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1410         }
1411         writeq(val64, &bar0->rx_queue_priority);
1412
1413         /*
1414          * Allocating equal share of memory to all the
1415          * configured Rings.
1416          */
1417         val64 = 0;
1418         if (nic->device_type & XFRAME_II_DEVICE)
1419                 mem_size = 32;
1420         else
1421                 mem_size = 64;
1422
1423         for (i = 0; i < config->rx_ring_num; i++) {
1424                 switch (i) {
1425                 case 0:
1426                         mem_share = (mem_size / config->rx_ring_num +
1427                                      mem_size % config->rx_ring_num);
1428                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1429                         continue;
1430                 case 1:
1431                         mem_share = (mem_size / config->rx_ring_num);
1432                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1433                         continue;
1434                 case 2:
1435                         mem_share = (mem_size / config->rx_ring_num);
1436                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1437                         continue;
1438                 case 3:
1439                         mem_share = (mem_size / config->rx_ring_num);
1440                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1441                         continue;
1442                 case 4:
1443                         mem_share = (mem_size / config->rx_ring_num);
1444                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1445                         continue;
1446                 case 5:
1447                         mem_share = (mem_size / config->rx_ring_num);
1448                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1449                         continue;
1450                 case 6:
1451                         mem_share = (mem_size / config->rx_ring_num);
1452                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1453                         continue;
1454                 case 7:
1455                         mem_share = (mem_size / config->rx_ring_num);
1456                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1457                         continue;
1458                 }
1459         }
1460         writeq(val64, &bar0->rx_queue_cfg);
1461
1462         /*
1463          * Filling Tx round robin registers
1464          * as per the number of FIFOs for equal scheduling priority
1465          */
1466         switch (config->tx_fifo_num) {
1467         case 1:
1468                 val64 = 0x0;
1469                 writeq(val64, &bar0->tx_w_round_robin_0);
1470                 writeq(val64, &bar0->tx_w_round_robin_1);
1471                 writeq(val64, &bar0->tx_w_round_robin_2);
1472                 writeq(val64, &bar0->tx_w_round_robin_3);
1473                 writeq(val64, &bar0->tx_w_round_robin_4);
1474                 break;
1475         case 2:
1476                 val64 = 0x0001000100010001ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_0);
1478                 writeq(val64, &bar0->tx_w_round_robin_1);
1479                 writeq(val64, &bar0->tx_w_round_robin_2);
1480                 writeq(val64, &bar0->tx_w_round_robin_3);
1481                 val64 = 0x0001000100000000ULL;
1482                 writeq(val64, &bar0->tx_w_round_robin_4);
1483                 break;
1484         case 3:
1485                 val64 = 0x0001020001020001ULL;
1486                 writeq(val64, &bar0->tx_w_round_robin_0);
1487                 val64 = 0x0200010200010200ULL;
1488                 writeq(val64, &bar0->tx_w_round_robin_1);
1489                 val64 = 0x0102000102000102ULL;
1490                 writeq(val64, &bar0->tx_w_round_robin_2);
1491                 val64 = 0x0001020001020001ULL;
1492                 writeq(val64, &bar0->tx_w_round_robin_3);
1493                 val64 = 0x0200010200000000ULL;
1494                 writeq(val64, &bar0->tx_w_round_robin_4);
1495                 break;
1496         case 4:
1497                 val64 = 0x0001020300010203ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_0);
1499                 writeq(val64, &bar0->tx_w_round_robin_1);
1500                 writeq(val64, &bar0->tx_w_round_robin_2);
1501                 writeq(val64, &bar0->tx_w_round_robin_3);
1502                 val64 = 0x0001020300000000ULL;
1503                 writeq(val64, &bar0->tx_w_round_robin_4);
1504                 break;
1505         case 5:
1506                 val64 = 0x0001020304000102ULL;
1507                 writeq(val64, &bar0->tx_w_round_robin_0);
1508                 val64 = 0x0304000102030400ULL;
1509                 writeq(val64, &bar0->tx_w_round_robin_1);
1510                 val64 = 0x0102030400010203ULL;
1511                 writeq(val64, &bar0->tx_w_round_robin_2);
1512                 val64 = 0x0400010203040001ULL;
1513                 writeq(val64, &bar0->tx_w_round_robin_3);
1514                 val64 = 0x0203040000000000ULL;
1515                 writeq(val64, &bar0->tx_w_round_robin_4);
1516                 break;
1517         case 6:
1518                 val64 = 0x0001020304050001ULL;
1519                 writeq(val64, &bar0->tx_w_round_robin_0);
1520                 val64 = 0x0203040500010203ULL;
1521                 writeq(val64, &bar0->tx_w_round_robin_1);
1522                 val64 = 0x0405000102030405ULL;
1523                 writeq(val64, &bar0->tx_w_round_robin_2);
1524                 val64 = 0x0001020304050001ULL;
1525                 writeq(val64, &bar0->tx_w_round_robin_3);
1526                 val64 = 0x0203040500000000ULL;
1527                 writeq(val64, &bar0->tx_w_round_robin_4);
1528                 break;
1529         case 7:
1530                 val64 = 0x0001020304050600ULL;
1531                 writeq(val64, &bar0->tx_w_round_robin_0);
1532                 val64 = 0x0102030405060001ULL;
1533                 writeq(val64, &bar0->tx_w_round_robin_1);
1534                 val64 = 0x0203040506000102ULL;
1535                 writeq(val64, &bar0->tx_w_round_robin_2);
1536                 val64 = 0x0304050600010203ULL;
1537                 writeq(val64, &bar0->tx_w_round_robin_3);
1538                 val64 = 0x0405060000000000ULL;
1539                 writeq(val64, &bar0->tx_w_round_robin_4);
1540                 break;
1541         case 8:
1542                 val64 = 0x0001020304050607ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_0);
1544                 writeq(val64, &bar0->tx_w_round_robin_1);
1545                 writeq(val64, &bar0->tx_w_round_robin_2);
1546                 writeq(val64, &bar0->tx_w_round_robin_3);
1547                 val64 = 0x0001020300000000ULL;
1548                 writeq(val64, &bar0->tx_w_round_robin_4);
1549                 break;
1550         }
1551
1552         /* Enable all configured Tx FIFO partitions */
1553         val64 = readq(&bar0->tx_fifo_partition_0);
1554         val64 |= (TX_FIFO_PARTITION_EN);
1555         writeq(val64, &bar0->tx_fifo_partition_0);
1556
1557         /* Filling the Rx round robin registers as per the
1558          * number of Rings and steering based on QoS with
1559          * equal priority.
1560          */
1561         switch (config->rx_ring_num) {
1562         case 1:
1563                 val64 = 0x0;
1564                 writeq(val64, &bar0->rx_w_round_robin_0);
1565                 writeq(val64, &bar0->rx_w_round_robin_1);
1566                 writeq(val64, &bar0->rx_w_round_robin_2);
1567                 writeq(val64, &bar0->rx_w_round_robin_3);
1568                 writeq(val64, &bar0->rx_w_round_robin_4);
1569
1570                 val64 = 0x8080808080808080ULL;
1571                 writeq(val64, &bar0->rts_qos_steering);
1572                 break;
1573         case 2:
1574                 val64 = 0x0001000100010001ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_0);
1576                 writeq(val64, &bar0->rx_w_round_robin_1);
1577                 writeq(val64, &bar0->rx_w_round_robin_2);
1578                 writeq(val64, &bar0->rx_w_round_robin_3);
1579                 val64 = 0x0001000100000000ULL;
1580                 writeq(val64, &bar0->rx_w_round_robin_4);
1581
1582                 val64 = 0x8080808040404040ULL;
1583                 writeq(val64, &bar0->rts_qos_steering);
1584                 break;
1585         case 3:
1586                 val64 = 0x0001020001020001ULL;
1587                 writeq(val64, &bar0->rx_w_round_robin_0);
1588                 val64 = 0x0200010200010200ULL;
1589                 writeq(val64, &bar0->rx_w_round_robin_1);
1590                 val64 = 0x0102000102000102ULL;
1591                 writeq(val64, &bar0->rx_w_round_robin_2);
1592                 val64 = 0x0001020001020001ULL;
1593                 writeq(val64, &bar0->rx_w_round_robin_3);
1594                 val64 = 0x0200010200000000ULL;
1595                 writeq(val64, &bar0->rx_w_round_robin_4);
1596
1597                 val64 = 0x8080804040402020ULL;
1598                 writeq(val64, &bar0->rts_qos_steering);
1599                 break;
1600         case 4:
1601                 val64 = 0x0001020300010203ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_0);
1603                 writeq(val64, &bar0->rx_w_round_robin_1);
1604                 writeq(val64, &bar0->rx_w_round_robin_2);
1605                 writeq(val64, &bar0->rx_w_round_robin_3);
1606                 val64 = 0x0001020300000000ULL;
1607                 writeq(val64, &bar0->rx_w_round_robin_4);
1608
1609                 val64 = 0x8080404020201010ULL;
1610                 writeq(val64, &bar0->rts_qos_steering);
1611                 break;
1612         case 5:
1613                 val64 = 0x0001020304000102ULL;
1614                 writeq(val64, &bar0->rx_w_round_robin_0);
1615                 val64 = 0x0304000102030400ULL;
1616                 writeq(val64, &bar0->rx_w_round_robin_1);
1617                 val64 = 0x0102030400010203ULL;
1618                 writeq(val64, &bar0->rx_w_round_robin_2);
1619                 val64 = 0x0400010203040001ULL;
1620                 writeq(val64, &bar0->rx_w_round_robin_3);
1621                 val64 = 0x0203040000000000ULL;
1622                 writeq(val64, &bar0->rx_w_round_robin_4);
1623
1624                 val64 = 0x8080404020201008ULL;
1625                 writeq(val64, &bar0->rts_qos_steering);
1626                 break;
1627         case 6:
1628                 val64 = 0x0001020304050001ULL;
1629                 writeq(val64, &bar0->rx_w_round_robin_0);
1630                 val64 = 0x0203040500010203ULL;
1631                 writeq(val64, &bar0->rx_w_round_robin_1);
1632                 val64 = 0x0405000102030405ULL;
1633                 writeq(val64, &bar0->rx_w_round_robin_2);
1634                 val64 = 0x0001020304050001ULL;
1635                 writeq(val64, &bar0->rx_w_round_robin_3);
1636                 val64 = 0x0203040500000000ULL;
1637                 writeq(val64, &bar0->rx_w_round_robin_4);
1638
1639                 val64 = 0x8080404020100804ULL;
1640                 writeq(val64, &bar0->rts_qos_steering);
1641                 break;
1642         case 7:
1643                 val64 = 0x0001020304050600ULL;
1644                 writeq(val64, &bar0->rx_w_round_robin_0);
1645                 val64 = 0x0102030405060001ULL;
1646                 writeq(val64, &bar0->rx_w_round_robin_1);
1647                 val64 = 0x0203040506000102ULL;
1648                 writeq(val64, &bar0->rx_w_round_robin_2);
1649                 val64 = 0x0304050600010203ULL;
1650                 writeq(val64, &bar0->rx_w_round_robin_3);
1651                 val64 = 0x0405060000000000ULL;
1652                 writeq(val64, &bar0->rx_w_round_robin_4);
1653
1654                 val64 = 0x8080402010080402ULL;
1655                 writeq(val64, &bar0->rts_qos_steering);
1656                 break;
1657         case 8:
1658                 val64 = 0x0001020304050607ULL;
1659                 writeq(val64, &bar0->rx_w_round_robin_0);
1660                 writeq(val64, &bar0->rx_w_round_robin_1);
1661                 writeq(val64, &bar0->rx_w_round_robin_2);
1662                 writeq(val64, &bar0->rx_w_round_robin_3);
1663                 val64 = 0x0001020300000000ULL;
1664                 writeq(val64, &bar0->rx_w_round_robin_4);
1665
1666                 val64 = 0x8040201008040201ULL;
1667                 writeq(val64, &bar0->rts_qos_steering);
1668                 break;
1669         }
1670
1671         /* UDP Fix */
1672         val64 = 0;
1673         for (i = 0; i < 8; i++)
1674                 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676         /* Set the default rts frame length for the rings configured */
1677         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1678         for (i = 0 ; i < config->rx_ring_num ; i++)
1679                 writeq(val64, &bar0->rts_frm_len_n[i]);
1680
1681         /* Set the frame length for the configured rings
1682          * desired by the user
1683          */
1684         for (i = 0; i < config->rx_ring_num; i++) {
1685                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686                  * specified frame length steering.
1687                  * If the user provides the frame length then program
1688                  * the rts_frm_len register for those values or else
1689                  * leave it as it is.
1690                  */
1691                 if (rts_frm_len[i] != 0) {
1692                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1693                                &bar0->rts_frm_len_n[i]);
1694                 }
1695         }
1696
1697         /* Disable differentiated services steering logic */
1698         for (i = 0; i < 64; i++) {
1699                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1700                         DBG_PRINT(ERR_DBG,
1701                                   "%s: rts_ds_steer failed on codepoint %d\n",
1702                                   dev->name, i);
1703                         return -ENODEV;
1704                 }
1705         }
1706
1707         /* Program statistics memory */
1708         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1709
1710         if (nic->device_type == XFRAME_II_DEVICE) {
1711                 val64 = STAT_BC(0x320);
1712                 writeq(val64, &bar0->stat_byte_cnt);
1713         }
1714
1715         /*
1716          * Initializing the sampling rate for the device to calculate the
1717          * bandwidth utilization.
1718          */
1719         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1720                 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1721         writeq(val64, &bar0->mac_link_util);
1722
1723         /*
1724          * Initializing the Transmit and Receive Traffic Interrupt
1725          * Scheme.
1726          */
1727
1728         /* Initialize TTI */
1729         if (SUCCESS != init_tti(nic, nic->last_link_state))
1730                 return -ENODEV;
1731
1732         /* RTI Initialization */
1733         if (nic->device_type == XFRAME_II_DEVICE) {
1734                 /*
1735                  * Programmed to generate Apprx 500 Intrs per
1736                  * second
1737                  */
1738                 int count = (nic->config.bus_speed * 125)/4;
1739                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1740         } else
1741                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743                 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744                 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745                 RTI_DATA1_MEM_RX_TIMER_AC_EN;
1746
1747         writeq(val64, &bar0->rti_data1_mem);
1748
1749         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751         if (nic->config.intr_type == MSI_X)
1752                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753                           RTI_DATA2_MEM_RX_UFC_D(0x40));
1754         else
1755                 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756                           RTI_DATA2_MEM_RX_UFC_D(0x80));
1757         writeq(val64, &bar0->rti_data2_mem);
1758
1759         for (i = 0; i < config->rx_ring_num; i++) {
1760                 val64 = RTI_CMD_MEM_WE |
1761                         RTI_CMD_MEM_STROBE_NEW_CMD |
1762                         RTI_CMD_MEM_OFFSET(i);
1763                 writeq(val64, &bar0->rti_command_mem);
1764
1765                 /*
1766                  * Once the operation completes, the Strobe bit of the
1767                  * command register will be reset. We poll for this
1768                  * particular condition. We wait for a maximum of 500ms
1769                  * for the operation to complete, if it's not complete
1770                  * by then we return error.
1771                  */
1772                 time = 0;
1773                 while (true) {
1774                         val64 = readq(&bar0->rti_command_mem);
1775                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1776                                 break;
1777
1778                         if (time > 10) {
1779                                 DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1780                                           dev->name);
1781                                 return -ENODEV;
1782                         }
1783                         time++;
1784                         msleep(50);
1785                 }
1786         }
1787
1788         /*
1789          * Initializing proper values as Pause threshold into all
1790          * the 8 Queues on Rx side.
1791          */
1792         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1793         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1794
1795         /* Disable RMAC PAD STRIPPING */
1796         add = &bar0->mac_cfg;
1797         val64 = readq(&bar0->mac_cfg);
1798         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1799         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1800         writel((u32) (val64), add);
1801         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1802         writel((u32) (val64 >> 32), (add + 4));
1803         val64 = readq(&bar0->mac_cfg);
1804
1805         /* Enable FCS stripping by adapter */
1806         add = &bar0->mac_cfg;
1807         val64 = readq(&bar0->mac_cfg);
1808         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1809         if (nic->device_type == XFRAME_II_DEVICE)
1810                 writeq(val64, &bar0->mac_cfg);
1811         else {
1812                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1813                 writel((u32) (val64), add);
1814                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1815                 writel((u32) (val64 >> 32), (add + 4));
1816         }
1817
1818         /*
1819          * Set the time value to be inserted in the pause frame
1820          * generated by xena.
1821          */
1822         val64 = readq(&bar0->rmac_pause_cfg);
1823         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1825         writeq(val64, &bar0->rmac_pause_cfg);
1826
1827         /*
1828          * Set the Threshold Limit for Generating the pause frame
1829          * If the amount of data in any Queue exceeds ratio of
1830          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831          * pause frame is generated
1832          */
1833         val64 = 0;
1834         for (i = 0; i < 4; i++) {
1835                 val64 |= (((u64)0xFF00 |
1836                            nic->mac_control.mc_pause_threshold_q0q3)
1837                           << (i * 2 * 8));
1838         }
1839         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1840
1841         val64 = 0;
1842         for (i = 0; i < 4; i++) {
1843                 val64 |= (((u64)0xFF00 |
1844                            nic->mac_control.mc_pause_threshold_q4q7)
1845                           << (i * 2 * 8));
1846         }
1847         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1848
1849         /*
1850          * TxDMA will stop Read request if the number of read split has
1851          * exceeded the limit pointed by shared_splits
1852          */
1853         val64 = readq(&bar0->pic_control);
1854         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1855         writeq(val64, &bar0->pic_control);
1856
1857         if (nic->config.bus_speed == 266) {
1858                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1859                 writeq(0x0, &bar0->read_retry_delay);
1860                 writeq(0x0, &bar0->write_retry_delay);
1861         }
1862
1863         /*
1864          * Programming the Herc to split every write transaction
1865          * that does not start on an ADB to reduce disconnects.
1866          */
1867         if (nic->device_type == XFRAME_II_DEVICE) {
1868                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1869                         MISC_LINK_STABILITY_PRD(3);
1870                 writeq(val64, &bar0->misc_control);
1871                 val64 = readq(&bar0->pic_control2);
1872                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873                 writeq(val64, &bar0->pic_control2);
1874         }
1875         if (strstr(nic->product_name, "CX4")) {
1876                 val64 = TMAC_AVG_IPG(0x17);
1877                 writeq(val64, &bar0->tmac_avg_ipg);
1878         }
1879
1880         return SUCCESS;
1881 }
1882 #define LINK_UP_DOWN_INTERRUPT          1
1883 #define MAC_RMAC_ERR_TIMER              2
1884
1885 static int s2io_link_fault_indication(struct s2io_nic *nic)
1886 {
1887         if (nic->device_type == XFRAME_II_DEVICE)
1888                 return LINK_UP_DOWN_INTERRUPT;
1889         else
1890                 return MAC_RMAC_ERR_TIMER;
1891 }
1892
1893 /**
1894  *  do_s2io_write_bits -  update alarm bits in alarm register
1895  *  @value: alarm bits
1896  *  @flag: interrupt status
1897  *  @addr: address value
1898  *  Description: update alarm bits in alarm register
1899  *  Return Value:
1900  *  NONE.
1901  */
1902 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1903 {
1904         u64 temp64;
1905
1906         temp64 = readq(addr);
1907
1908         if (flag == ENABLE_INTRS)
1909                 temp64 &= ~((u64)value);
1910         else
1911                 temp64 |= ((u64)value);
1912         writeq(temp64, addr);
1913 }
1914
1915 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1916 {
1917         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1918         register u64 gen_int_mask = 0;
1919         u64 interruptible;
1920
1921         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1922         if (mask & TX_DMA_INTR) {
1923                 gen_int_mask |= TXDMA_INT_M;
1924
1925                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1926                                    TXDMA_PCC_INT | TXDMA_TTI_INT |
1927                                    TXDMA_LSO_INT | TXDMA_TPA_INT |
1928                                    TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1929
1930                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1931                                    PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1932                                    PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1933                                    &bar0->pfc_err_mask);
1934
1935                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1936                                    TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1937                                    TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1938
1939                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1940                                    PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1941                                    PCC_N_SERR | PCC_6_COF_OV_ERR |
1942                                    PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1943                                    PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1944                                    PCC_TXB_ECC_SG_ERR,
1945                                    flag, &bar0->pcc_err_mask);
1946
1947                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1948                                    TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1949
1950                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1951                                    LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1952                                    LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1953                                    flag, &bar0->lso_err_mask);
1954
1955                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1956                                    flag, &bar0->tpa_err_mask);
1957
1958                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1959         }
1960
1961         if (mask & TX_MAC_INTR) {
1962                 gen_int_mask |= TXMAC_INT_M;
1963                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1964                                    &bar0->mac_int_mask);
1965                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1966                                    TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1967                                    TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1968                                    flag, &bar0->mac_tmac_err_mask);
1969         }
1970
1971         if (mask & TX_XGXS_INTR) {
1972                 gen_int_mask |= TXXGXS_INT_M;
1973                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1974                                    &bar0->xgxs_int_mask);
1975                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1976                                    TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1977                                    flag, &bar0->xgxs_txgxs_err_mask);
1978         }
1979
1980         if (mask & RX_DMA_INTR) {
1981                 gen_int_mask |= RXDMA_INT_M;
1982                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1983                                    RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1984                                    flag, &bar0->rxdma_int_mask);
1985                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1986                                    RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1987                                    RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1988                                    RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1989                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1990                                    PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1991                                    PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1992                                    &bar0->prc_pcix_err_mask);
1993                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1994                                    RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1995                                    &bar0->rpa_err_mask);
1996                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1997                                    RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1998                                    RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1999                                    RDA_FRM_ECC_SG_ERR |
2000                                    RDA_MISC_ERR|RDA_PCIX_ERR,
2001                                    flag, &bar0->rda_err_mask);
2002                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
2003                                    RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
2004                                    flag, &bar0->rti_err_mask);
2005         }
2006
2007         if (mask & RX_MAC_INTR) {
2008                 gen_int_mask |= RXMAC_INT_M;
2009                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2010                                    &bar0->mac_int_mask);
2011                 interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2012                                  RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2013                                  RMAC_DOUBLE_ECC_ERR);
2014                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2015                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2016                 do_s2io_write_bits(interruptible,
2017                                    flag, &bar0->mac_rmac_err_mask);
2018         }
2019
2020         if (mask & RX_XGXS_INTR) {
2021                 gen_int_mask |= RXXGXS_INT_M;
2022                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2023                                    &bar0->xgxs_int_mask);
2024                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2025                                    &bar0->xgxs_rxgxs_err_mask);
2026         }
2027
2028         if (mask & MC_INTR) {
2029                 gen_int_mask |= MC_INT_M;
2030                 do_s2io_write_bits(MC_INT_MASK_MC_INT,
2031                                    flag, &bar0->mc_int_mask);
2032                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2033                                    MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2034                                    &bar0->mc_err_mask);
2035         }
2036         nic->general_int_mask = gen_int_mask;
2037
2038         /* Remove this line when alarm interrupts are enabled */
2039         nic->general_int_mask = 0;
2040 }
2041
2042 /**
2043  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2044  *  @nic: device private variable,
2045  *  @mask: A mask indicating which Intr block must be modified and,
2046  *  @flag: A flag indicating whether to enable or disable the Intrs.
2047  *  Description: This function will either disable or enable the interrupts
2048  *  depending on the flag argument. The mask argument can be used to
2049  *  enable/disable any Intr block.
2050  *  Return Value: NONE.
2051  */
2052
2053 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2054 {
2055         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2056         register u64 temp64 = 0, intr_mask = 0;
2057
2058         intr_mask = nic->general_int_mask;
2059
2060         /*  Top level interrupt classification */
2061         /*  PIC Interrupts */
2062         if (mask & TX_PIC_INTR) {
2063                 /*  Enable PIC Intrs in the general intr mask register */
2064                 intr_mask |= TXPIC_INT_M;
2065                 if (flag == ENABLE_INTRS) {
2066                         /*
2067                          * If Hercules adapter enable GPIO otherwise
2068                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2069                          * interrupts for now.
2070                          * TODO
2071                          */
2072                         if (s2io_link_fault_indication(nic) ==
2073                             LINK_UP_DOWN_INTERRUPT) {
2074                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2075                                                    &bar0->pic_int_mask);
2076                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2077                                                    &bar0->gpio_int_mask);
2078                         } else
2079                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                 } else if (flag == DISABLE_INTRS) {
2081                         /*
2082                          * Disable PIC Intrs in the general
2083                          * intr mask register
2084                          */
2085                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2086                 }
2087         }
2088
2089         /*  Tx traffic interrupts */
2090         if (mask & TX_TRAFFIC_INTR) {
2091                 intr_mask |= TXTRAFFIC_INT_M;
2092                 if (flag == ENABLE_INTRS) {
2093                         /*
2094                          * Enable all the Tx side interrupts
2095                          * writing 0 Enables all 64 TX interrupt levels
2096                          */
2097                         writeq(0x0, &bar0->tx_traffic_mask);
2098                 } else if (flag == DISABLE_INTRS) {
2099                         /*
2100                          * Disable Tx Traffic Intrs in the general intr mask
2101                          * register.
2102                          */
2103                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2104                 }
2105         }
2106
2107         /*  Rx traffic interrupts */
2108         if (mask & RX_TRAFFIC_INTR) {
2109                 intr_mask |= RXTRAFFIC_INT_M;
2110                 if (flag == ENABLE_INTRS) {
2111                         /* writing 0 Enables all 8 RX interrupt levels */
2112                         writeq(0x0, &bar0->rx_traffic_mask);
2113                 } else if (flag == DISABLE_INTRS) {
2114                         /*
2115                          * Disable Rx Traffic Intrs in the general intr mask
2116                          * register.
2117                          */
2118                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2119                 }
2120         }
2121
2122         temp64 = readq(&bar0->general_int_mask);
2123         if (flag == ENABLE_INTRS)
2124                 temp64 &= ~((u64)intr_mask);
2125         else
2126                 temp64 = DISABLE_ALL_INTRS;
2127         writeq(temp64, &bar0->general_int_mask);
2128
2129         nic->general_int_mask = readq(&bar0->general_int_mask);
2130 }
2131
2132 /**
2133  *  verify_pcc_quiescent- Checks for PCC quiescent state
2134  *  Return: 1 If PCC is quiescence
2135  *          0 If PCC is not quiescence
2136  */
2137 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2138 {
2139         int ret = 0, herc;
2140         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2141         u64 val64 = readq(&bar0->adapter_status);
2142
2143         herc = (sp->device_type == XFRAME_II_DEVICE);
2144
2145         if (flag == false) {
2146                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2147                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2148                                 ret = 1;
2149                 } else {
2150                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2151                                 ret = 1;
2152                 }
2153         } else {
2154                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2155                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2156                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2157                                 ret = 1;
2158                 } else {
2159                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2160                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2161                                 ret = 1;
2162                 }
2163         }
2164
2165         return ret;
2166 }
2167 /**
2168  *  verify_xena_quiescence - Checks whether the H/W is ready
2169  *  Description: Returns whether the H/W is ready to go or not. Depending
2170  *  on whether adapter enable bit was written or not the comparison
2171  *  differs and the calling function passes the input argument flag to
2172  *  indicate this.
2173  *  Return: 1 If xena is quiescence
2174  *          0 If Xena is not quiescence
2175  */
2176
2177 static int verify_xena_quiescence(struct s2io_nic *sp)
2178 {
2179         int  mode;
2180         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2181         u64 val64 = readq(&bar0->adapter_status);
2182         mode = s2io_verify_pci_mode(sp);
2183
2184         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2185                 DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2186                 return 0;
2187         }
2188         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2189                 DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2190                 return 0;
2191         }
2192         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2193                 DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2194                 return 0;
2195         }
2196         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2197                 DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2198                 return 0;
2199         }
2200         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2201                 DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2202                 return 0;
2203         }
2204         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2205                 DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2206                 return 0;
2207         }
2208         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2209                 DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2210                 return 0;
2211         }
2212         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2213                 DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2214                 return 0;
2215         }
2216
2217         /*
2218          * In PCI 33 mode, the P_PLL is not used, and therefore,
2219          * the the P_PLL_LOCK bit in the adapter_status register will
2220          * not be asserted.
2221          */
2222         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2223             sp->device_type == XFRAME_II_DEVICE &&
2224             mode != PCI_MODE_PCI_33) {
2225                 DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2226                 return 0;
2227         }
2228         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2229               ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2230                 DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2231                 return 0;
2232         }
2233         return 1;
2234 }
2235
2236 /**
2237  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2238  * @sp: Pointer to device specifc structure
2239  * Description :
2240  * New procedure to clear mac address reading  problems on Alpha platforms
2241  *
2242  */
2243
2244 static void fix_mac_address(struct s2io_nic *sp)
2245 {
2246         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2247         int i = 0;
2248
2249         while (fix_mac[i] != END_SIGN) {
2250                 writeq(fix_mac[i++], &bar0->gpio_control);
2251                 udelay(10);
2252                 (void) readq(&bar0->gpio_control);
2253         }
2254 }
2255
2256 /**
2257  *  start_nic - Turns the device on
2258  *  @nic : device private variable.
2259  *  Description:
2260  *  This function actually turns the device on. Before this  function is
2261  *  called,all Registers are configured from their reset states
2262  *  and shared memory is allocated but the NIC is still quiescent. On
2263  *  calling this function, the device interrupts are cleared and the NIC is
2264  *  literally switched on by writing into the adapter control register.
2265  *  Return Value:
2266  *  SUCCESS on success and -1 on failure.
2267  */
2268
2269 static int start_nic(struct s2io_nic *nic)
2270 {
2271         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2272         struct net_device *dev = nic->dev;
2273         register u64 val64 = 0;
2274         u16 subid, i;
2275         struct config_param *config = &nic->config;
2276         struct mac_info *mac_control = &nic->mac_control;
2277
2278         /*  PRC Initialization and configuration */
2279         for (i = 0; i < config->rx_ring_num; i++) {
2280                 struct ring_info *ring = &mac_control->rings[i];
2281
2282                 writeq((u64)ring->rx_blocks[0].block_dma_addr,
2283                        &bar0->prc_rxd0_n[i]);
2284
2285                 val64 = readq(&bar0->prc_ctrl_n[i]);
2286                 if (nic->rxd_mode == RXD_MODE_1)
2287                         val64 |= PRC_CTRL_RC_ENABLED;
2288                 else
2289                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2290                 if (nic->device_type == XFRAME_II_DEVICE)
2291                         val64 |= PRC_CTRL_GROUP_READS;
2292                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2293                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2294                 writeq(val64, &bar0->prc_ctrl_n[i]);
2295         }
2296
2297         if (nic->rxd_mode == RXD_MODE_3B) {
2298                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2299                 val64 = readq(&bar0->rx_pa_cfg);
2300                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2301                 writeq(val64, &bar0->rx_pa_cfg);
2302         }
2303
2304         if (vlan_tag_strip == 0) {
2305                 val64 = readq(&bar0->rx_pa_cfg);
2306                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2307                 writeq(val64, &bar0->rx_pa_cfg);
2308                 nic->vlan_strip_flag = 0;
2309         }
2310
2311         /*
2312          * Enabling MC-RLDRAM. After enabling the device, we timeout
2313          * for around 100ms, which is approximately the time required
2314          * for the device to be ready for operation.
2315          */
2316         val64 = readq(&bar0->mc_rldram_mrs);
2317         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2318         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2319         val64 = readq(&bar0->mc_rldram_mrs);
2320
2321         msleep(100);    /* Delay by around 100 ms. */
2322
2323         /* Enabling ECC Protection. */
2324         val64 = readq(&bar0->adapter_control);
2325         val64 &= ~ADAPTER_ECC_EN;
2326         writeq(val64, &bar0->adapter_control);
2327
2328         /*
2329          * Verify if the device is ready to be enabled, if so enable
2330          * it.
2331          */
2332         val64 = readq(&bar0->adapter_status);
2333         if (!verify_xena_quiescence(nic)) {
2334                 DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2335                           "Adapter status reads: 0x%llx\n",
2336                           dev->name, (unsigned long long)val64);
2337                 return FAILURE;
2338         }
2339
2340         /*
2341          * With some switches, link might be already up at this point.
2342          * Because of this weird behavior, when we enable laser,
2343          * we may not get link. We need to handle this. We cannot
2344          * figure out which switch is misbehaving. So we are forced to
2345          * make a global change.
2346          */
2347
2348         /* Enabling Laser. */
2349         val64 = readq(&bar0->adapter_control);
2350         val64 |= ADAPTER_EOI_TX_ON;
2351         writeq(val64, &bar0->adapter_control);
2352
2353         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2354                 /*
2355                  * Dont see link state interrupts initially on some switches,
2356                  * so directly scheduling the link state task here.
2357                  */
2358                 schedule_work(&nic->set_link_task);
2359         }
2360         /* SXE-002: Initialize link and activity LED */
2361         subid = nic->pdev->subsystem_device;
2362         if (((subid & 0xFF) >= 0x07) &&
2363             (nic->device_type == XFRAME_I_DEVICE)) {
2364                 val64 = readq(&bar0->gpio_control);
2365                 val64 |= 0x0000800000000000ULL;
2366                 writeq(val64, &bar0->gpio_control);
2367                 val64 = 0x0411040400000000ULL;
2368                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2369         }
2370
2371         return SUCCESS;
2372 }
2373 /**
2374  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2375  */
2376 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2377                                         struct TxD *txdlp, int get_off)
2378 {
2379         struct s2io_nic *nic = fifo_data->nic;
2380         struct sk_buff *skb;
2381         struct TxD *txds;
2382         u16 j, frg_cnt;
2383
2384         txds = txdlp;
2385         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2386                 pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2387                                  sizeof(u64), PCI_DMA_TODEVICE);
2388                 txds++;
2389         }
2390
2391         skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2392         if (!skb) {
2393                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2394                 return NULL;
2395         }
2396         pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2397                          skb_headlen(skb), PCI_DMA_TODEVICE);
2398         frg_cnt = skb_shinfo(skb)->nr_frags;
2399         if (frg_cnt) {
2400                 txds++;
2401                 for (j = 0; j < frg_cnt; j++, txds++) {
2402                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2403                         if (!txds->Buffer_Pointer)
2404                                 break;
2405                         pci_unmap_page(nic->pdev,
2406                                        (dma_addr_t)txds->Buffer_Pointer,
2407                                        frag->size, PCI_DMA_TODEVICE);
2408                 }
2409         }
2410         memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2411         return skb;
2412 }
2413
2414 /**
2415  *  free_tx_buffers - Free all queued Tx buffers
2416  *  @nic : device private variable.
2417  *  Description:
2418  *  Free all queued Tx buffers.
2419  *  Return Value: void
2420  */
2421
2422 static void free_tx_buffers(struct s2io_nic *nic)
2423 {
2424         struct net_device *dev = nic->dev;
2425         struct sk_buff *skb;
2426         struct TxD *txdp;
2427         int i, j;
2428         int cnt = 0;
2429         struct config_param *config = &nic->config;
2430         struct mac_info *mac_control = &nic->mac_control;
2431         struct stat_block *stats = mac_control->stats_info;
2432         struct swStat *swstats = &stats->sw_stat;
2433
2434         for (i = 0; i < config->tx_fifo_num; i++) {
2435                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2436                 struct fifo_info *fifo = &mac_control->fifos[i];
2437                 unsigned long flags;
2438
2439                 spin_lock_irqsave(&fifo->tx_lock, flags);
2440                 for (j = 0; j < tx_cfg->fifo_len; j++) {
2441                         txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
2442                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2443                         if (skb) {
2444                                 swstats->mem_freed += skb->truesize;
2445                                 dev_kfree_skb(skb);
2446                                 cnt++;
2447                         }
2448                 }
2449                 DBG_PRINT(INTR_DBG,
2450                           "%s: forcibly freeing %d skbs on FIFO%d\n",
2451                           dev->name, cnt, i);
2452                 fifo->tx_curr_get_info.offset = 0;
2453                 fifo->tx_curr_put_info.offset = 0;
2454                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
2455         }
2456 }
2457
2458 /**
2459  *   stop_nic -  To stop the nic
2460  *   @nic ; device private variable.
2461  *   Description:
2462  *   This function does exactly the opposite of what the start_nic()
2463  *   function does. This function is called to stop the device.
2464  *   Return Value:
2465  *   void.
2466  */
2467
2468 static void stop_nic(struct s2io_nic *nic)
2469 {
2470         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2471         register u64 val64 = 0;
2472         u16 interruptible;
2473
2474         /*  Disable all interrupts */
2475         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2476         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2477         interruptible |= TX_PIC_INTR;
2478         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2479
2480         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2481         val64 = readq(&bar0->adapter_control);
2482         val64 &= ~(ADAPTER_CNTL_EN);
2483         writeq(val64, &bar0->adapter_control);
2484 }
2485
2486 /**
2487  *  fill_rx_buffers - Allocates the Rx side skbs
2488  *  @ring_info: per ring structure
2489  *  @from_card_up: If this is true, we will map the buffer to get
2490  *     the dma address for buf0 and buf1 to give it to the card.
2491  *     Else we will sync the already mapped buffer to give it to the card.
2492  *  Description:
2493  *  The function allocates Rx side skbs and puts the physical
2494  *  address of these buffers into the RxD buffer pointers, so that the NIC
2495  *  can DMA the received frame into these locations.
2496  *  The NIC supports 3 receive modes, viz
2497  *  1. single buffer,
2498  *  2. three buffer and
2499  *  3. Five buffer modes.
2500  *  Each mode defines how many fragments the received frame will be split
2501  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2502  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2503  *  is split into 3 fragments. As of now only single buffer mode is
2504  *  supported.
2505  *   Return Value:
2506  *  SUCCESS on success or an appropriate -ve value on failure.
2507  */
2508 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2509                            int from_card_up)
2510 {
2511         struct sk_buff *skb;
2512         struct RxD_t *rxdp;
2513         int off, size, block_no, block_no1;
2514         u32 alloc_tab = 0;
2515         u32 alloc_cnt;
2516         u64 tmp;
2517         struct buffAdd *ba;
2518         struct RxD_t *first_rxdp = NULL;
2519         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2520         int rxd_index = 0;
2521         struct RxD1 *rxdp1;
2522         struct RxD3 *rxdp3;
2523         struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2524
2525         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2526
2527         block_no1 = ring->rx_curr_get_info.block_index;
2528         while (alloc_tab < alloc_cnt) {
2529                 block_no = ring->rx_curr_put_info.block_index;
2530
2531                 off = ring->rx_curr_put_info.offset;
2532
2533                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2534
2535                 rxd_index = off + 1;
2536                 if (block_no)
2537                         rxd_index += (block_no * ring->rxd_count);
2538
2539                 if ((block_no == block_no1) &&
2540                     (off == ring->rx_curr_get_info.offset) &&
2541                     (rxdp->Host_Control)) {
2542                         DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2543                                   ring->dev->name);
2544                         goto end;
2545                 }
2546                 if (off && (off == ring->rxd_count)) {
2547                         ring->rx_curr_put_info.block_index++;
2548                         if (ring->rx_curr_put_info.block_index ==
2549                             ring->block_count)
2550                                 ring->rx_curr_put_info.block_index = 0;
2551                         block_no = ring->rx_curr_put_info.block_index;
2552                         off = 0;
2553                         ring->rx_curr_put_info.offset = off;
2554                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2555                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2556                                   ring->dev->name, rxdp);
2557
2558                 }
2559
2560                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2561                     ((ring->rxd_mode == RXD_MODE_3B) &&
2562                      (rxdp->Control_2 & s2BIT(0)))) {
2563                         ring->rx_curr_put_info.offset = off;
2564                         goto end;
2565                 }
2566                 /* calculate size of skb based on ring mode */
2567                 size = ring->mtu +
2568                         HEADER_ETHERNET_II_802_3_SIZE +
2569                         HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2570                 if (ring->rxd_mode == RXD_MODE_1)
2571                         size += NET_IP_ALIGN;
2572                 else
2573                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2574
2575                 /* allocate skb */
2576                 skb = dev_alloc_skb(size);
2577                 if (!skb) {
2578                         DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2579                                   ring->dev->name);
2580                         if (first_rxdp) {
2581                                 wmb();
2582                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2583                         }
2584                         swstats->mem_alloc_fail_cnt++;
2585
2586                         return -ENOMEM ;
2587                 }
2588                 swstats->mem_allocated += skb->truesize;
2589
2590                 if (ring->rxd_mode == RXD_MODE_1) {
2591                         /* 1 buffer mode - normal operation mode */
2592                         rxdp1 = (struct RxD1 *)rxdp;
2593                         memset(rxdp, 0, sizeof(struct RxD1));
2594                         skb_reserve(skb, NET_IP_ALIGN);
2595                         rxdp1->Buffer0_ptr =
2596                                 pci_map_single(ring->pdev, skb->data,
2597                                                size - NET_IP_ALIGN,
2598                                                PCI_DMA_FROMDEVICE);
2599                         if (pci_dma_mapping_error(nic->pdev,
2600                                                   rxdp1->Buffer0_ptr))
2601                                 goto pci_map_failed;
2602
2603                         rxdp->Control_2 =
2604                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2605                         rxdp->Host_Control = (unsigned long)skb;
2606                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2607                         /*
2608                          * 2 buffer mode -
2609                          * 2 buffer mode provides 128
2610                          * byte aligned receive buffers.
2611                          */
2612
2613                         rxdp3 = (struct RxD3 *)rxdp;
2614                         /* save buffer pointers to avoid frequent dma mapping */
2615                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2616                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2617                         memset(rxdp, 0, sizeof(struct RxD3));
2618                         /* restore the buffer pointers for dma sync*/
2619                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2620                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2621
2622                         ba = &ring->ba[block_no][off];
2623                         skb_reserve(skb, BUF0_LEN);
2624                         tmp = (u64)(unsigned long)skb->data;
2625                         tmp += ALIGN_SIZE;
2626                         tmp &= ~ALIGN_SIZE;
2627                         skb->data = (void *) (unsigned long)tmp;
2628                         skb_reset_tail_pointer(skb);
2629
2630                         if (from_card_up) {
2631                                 rxdp3->Buffer0_ptr =
2632                                         pci_map_single(ring->pdev, ba->ba_0,
2633                                                        BUF0_LEN,
2634                                                        PCI_DMA_FROMDEVICE);
2635                                 if (pci_dma_mapping_error(nic->pdev,
2636                                                           rxdp3->Buffer0_ptr))
2637                                         goto pci_map_failed;
2638                         } else
2639                                 pci_dma_sync_single_for_device(ring->pdev,
2640                                                                (dma_addr_t)rxdp3->Buffer0_ptr,
2641                                                                BUF0_LEN,
2642                                                                PCI_DMA_FROMDEVICE);
2643
2644                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2645                         if (ring->rxd_mode == RXD_MODE_3B) {
2646                                 /* Two buffer mode */
2647
2648                                 /*
2649                                  * Buffer2 will have L3/L4 header plus
2650                                  * L4 payload
2651                                  */
2652                                 rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2653                                                                     skb->data,
2654                                                                     ring->mtu + 4,
2655                                                                     PCI_DMA_FROMDEVICE);
2656
2657                                 if (pci_dma_mapping_error(nic->pdev,
2658                                                           rxdp3->Buffer2_ptr))
2659                                         goto pci_map_failed;
2660
2661                                 if (from_card_up) {
2662                                         rxdp3->Buffer1_ptr =
2663                                                 pci_map_single(ring->pdev,
2664                                                                ba->ba_1,
2665                                                                BUF1_LEN,
2666                                                                PCI_DMA_FROMDEVICE);
2667
2668                                         if (pci_dma_mapping_error(nic->pdev,
2669                                                                   rxdp3->Buffer1_ptr)) {
2670                                                 pci_unmap_single(ring->pdev,
2671                                                                  (dma_addr_t)(unsigned long)
2672                                                                  skb->data,
2673                                                                  ring->mtu + 4,
2674                                                                  PCI_DMA_FROMDEVICE);
2675                                                 goto pci_map_failed;
2676                                         }
2677                                 }
2678                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2679                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2680                                         (ring->mtu + 4);
2681                         }
2682                         rxdp->Control_2 |= s2BIT(0);
2683                         rxdp->Host_Control = (unsigned long) (skb);
2684                 }
2685                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2686                         rxdp->Control_1 |= RXD_OWN_XENA;
2687                 off++;
2688                 if (off == (ring->rxd_count + 1))
2689                         off = 0;
2690                 ring->rx_curr_put_info.offset = off;
2691
2692                 rxdp->Control_2 |= SET_RXD_MARKER;
2693                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2694                         if (first_rxdp) {
2695                                 wmb();
2696                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2697                         }
2698                         first_rxdp = rxdp;
2699                 }
2700                 ring->rx_bufs_left += 1;
2701                 alloc_tab++;
2702         }
2703
2704 end:
2705         /* Transfer ownership of first descriptor to adapter just before
2706          * exiting. Before that, use memory barrier so that ownership
2707          * and other fields are seen by adapter correctly.
2708          */
2709         if (first_rxdp) {
2710                 wmb();
2711                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2712         }
2713
2714         return SUCCESS;
2715
2716 pci_map_failed:
2717         swstats->pci_map_fail_cnt++;
2718         swstats->mem_freed += skb->truesize;
2719         dev_kfree_skb_irq(skb);
2720         return -ENOMEM;
2721 }
2722
2723 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724 {
2725         struct net_device *dev = sp->dev;
2726         int j;
2727         struct sk_buff *skb;
2728         struct RxD_t *rxdp;
2729         struct RxD1 *rxdp1;
2730         struct RxD3 *rxdp3;
2731         struct mac_info *mac_control = &sp->mac_control;
2732         struct stat_block *stats = mac_control->stats_info;
2733         struct swStat *swstats = &stats->sw_stat;
2734
2735         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2736                 rxdp = mac_control->rings[ring_no].
2737                         rx_blocks[blk].rxds[j].virt_addr;
2738                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2739                 if (!skb)
2740                         continue;
2741                 if (sp->rxd_mode == RXD_MODE_1) {
2742                         rxdp1 = (struct RxD1 *)rxdp;
2743                         pci_unmap_single(sp->pdev,
2744                                          (dma_addr_t)rxdp1->Buffer0_ptr,
2745                                          dev->mtu +
2746                                          HEADER_ETHERNET_II_802_3_SIZE +
2747                                          HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2748                                          PCI_DMA_FROMDEVICE);
2749                         memset(rxdp, 0, sizeof(struct RxD1));
2750                 } else if (sp->rxd_mode == RXD_MODE_3B) {
2751                         rxdp3 = (struct RxD3 *)rxdp;
2752                         pci_unmap_single(sp->pdev,
2753                                          (dma_addr_t)rxdp3->Buffer0_ptr,
2754                                          BUF0_LEN,
2755                                          PCI_DMA_FROMDEVICE);
2756                         pci_unmap_single(sp->pdev,
2757                                          (dma_addr_t)rxdp3->Buffer1_ptr,
2758                                          BUF1_LEN,
2759                                          PCI_DMA_FROMDEVICE);
2760                         pci_unmap_single(sp->pdev,
2761                                          (dma_addr_t)rxdp3->Buffer2_ptr,
2762                                          dev->mtu + 4,
2763                                          PCI_DMA_FROMDEVICE);
2764                         memset(rxdp, 0, sizeof(struct RxD3));
2765                 }
2766                 swstats->mem_freed += skb->truesize;
2767                 dev_kfree_skb(skb);
2768                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2769         }
2770 }
2771
2772 /**
2773  *  free_rx_buffers - Frees all Rx buffers
2774  *  @sp: device private variable.
2775  *  Description:
2776  *  This function will free all Rx buffers allocated by host.
2777  *  Return Value:
2778  *  NONE.
2779  */
2780
2781 static void free_rx_buffers(struct s2io_nic *sp)
2782 {
2783         struct net_device *dev = sp->dev;
2784         int i, blk = 0, buf_cnt = 0;
2785         struct config_param *config = &sp->config;
2786         struct mac_info *mac_control = &sp->mac_control;
2787
2788         for (i = 0; i < config->rx_ring_num; i++) {
2789                 struct ring_info *ring = &mac_control->rings[i];
2790
2791                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2792                         free_rxd_blk(sp, i, blk);
2793
2794                 ring->rx_curr_put_info.block_index = 0;
2795                 ring->rx_curr_get_info.block_index = 0;
2796                 ring->rx_curr_put_info.offset = 0;
2797                 ring->rx_curr_get_info.offset = 0;
2798                 ring->rx_bufs_left = 0;
2799                 DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2800                           dev->name, buf_cnt, i);
2801         }
2802 }
2803
2804 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2805 {
2806         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2807                 DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2808                           ring->dev->name);
2809         }
2810         return 0;
2811 }
2812
2813 /**
2814  * s2io_poll - Rx interrupt handler for NAPI support
2815  * @napi : pointer to the napi structure.
2816  * @budget : The number of packets that were budgeted to be processed
2817  * during  one pass through the 'Poll" function.
2818  * Description:
2819  * Comes into picture only if NAPI support has been incorporated. It does
2820  * the same thing that rx_intr_handler does, but not in a interrupt context
2821  * also It will process only a given number of packets.
2822  * Return value:
2823  * 0 on success and 1 if there are No Rx packets to be processed.
2824  */
2825
2826 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2827 {
2828         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2829         struct net_device *dev = ring->dev;
2830         int pkts_processed = 0;
2831         u8 __iomem *addr = NULL;
2832         u8 val8 = 0;
2833         struct s2io_nic *nic = netdev_priv(dev);
2834         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2835         int budget_org = budget;
2836
2837         if (unlikely(!is_s2io_card_up(nic)))
2838                 return 0;
2839
2840         pkts_processed = rx_intr_handler(ring, budget);
2841         s2io_chk_rx_buffers(nic, ring);
2842
2843         if (pkts_processed < budget_org) {
2844                 napi_complete(napi);
2845                 /*Re Enable MSI-Rx Vector*/
2846                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2847                 addr += 7 - ring->ring_no;
2848                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2849                 writeb(val8, addr);
2850                 val8 = readb(addr);
2851         }
2852         return pkts_processed;
2853 }
2854
2855 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2856 {
2857         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2858         int pkts_processed = 0;
2859         int ring_pkts_processed, i;
2860         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2861         int budget_org = budget;
2862         struct config_param *config = &nic->config;
2863         struct mac_info *mac_control = &nic->mac_control;
2864
2865         if (unlikely(!is_s2io_card_up(nic)))
2866                 return 0;
2867
2868         for (i = 0; i < config->rx_ring_num; i++) {
2869                 struct ring_info *ring = &mac_control->rings[i];
2870                 ring_pkts_processed = rx_intr_handler(ring, budget);
2871                 s2io_chk_rx_buffers(nic, ring);
2872                 pkts_processed += ring_pkts_processed;
2873                 budget -= ring_pkts_processed;
2874                 if (budget <= 0)
2875                         break;
2876         }
2877         if (pkts_processed < budget_org) {
2878                 napi_complete(napi);
2879                 /* Re enable the Rx interrupts for the ring */
2880                 writeq(0, &bar0->rx_traffic_mask);
2881                 readl(&bar0->rx_traffic_mask);
2882         }
2883         return pkts_processed;
2884 }
2885
2886 #ifdef CONFIG_NET_POLL_CONTROLLER
2887 /**
2888  * s2io_netpoll - netpoll event handler entry point
2889  * @dev : pointer to the device structure.
2890  * Description:
2891  *      This function will be called by upper layer to check for events on the
2892  * interface in situations where interrupts are disabled. It is used for
2893  * specific in-kernel networking tasks, such as remote consoles and kernel
2894  * debugging over the network (example netdump in RedHat).
2895  */
2896 static void s2io_netpoll(struct net_device *dev)
2897 {
2898         struct s2io_nic *nic = netdev_priv(dev);
2899         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2900         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2901         int i;
2902         struct config_param *config = &nic->config;
2903         struct mac_info *mac_control = &nic->mac_control;
2904
2905         if (pci_channel_offline(nic->pdev))
2906                 return;
2907
2908         disable_irq(dev->irq);
2909
2910         writeq(val64, &bar0->rx_traffic_int);
2911         writeq(val64, &bar0->tx_traffic_int);
2912
2913         /* we need to free up the transmitted skbufs or else netpoll will
2914          * run out of skbs and will fail and eventually netpoll application such
2915          * as netdump will fail.
2916          */
2917         for (i = 0; i < config->tx_fifo_num; i++)
2918                 tx_intr_handler(&mac_control->fifos[i]);
2919
2920         /* check for received packet and indicate up to network */
2921         for (i = 0; i < config->rx_ring_num; i++) {
2922                 struct ring_info *ring = &mac_control->rings[i];
2923
2924                 rx_intr_handler(ring, 0);
2925         }
2926
2927         for (i = 0; i < config->rx_ring_num; i++) {
2928                 struct ring_info *ring = &mac_control->rings[i];
2929
2930                 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2931                         DBG_PRINT(INFO_DBG,
2932                                   "%s: Out of memory in Rx Netpoll!!\n",
2933                                   dev->name);
2934                         break;
2935                 }
2936         }
2937         enable_irq(dev->irq);
2938 }
2939 #endif
2940
2941 /**
2942  *  rx_intr_handler - Rx interrupt handler
2943  *  @ring_info: per ring structure.
2944  *  @budget: budget for napi processing.
2945  *  Description:
2946  *  If the interrupt is because of a received frame or if the
2947  *  receive ring contains fresh as yet un-processed frames,this function is
2948  *  called. It picks out the RxD at which place the last Rx processing had
2949  *  stopped and sends the skb to the OSM's Rx handler and then increments
2950  *  the offset.
2951  *  Return Value:
2952  *  No. of napi packets processed.
2953  */
2954 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2955 {
2956         int get_block, put_block;
2957         struct rx_curr_get_info get_info, put_info;
2958         struct RxD_t *rxdp;
2959         struct sk_buff *skb;
2960         int pkt_cnt = 0, napi_pkts = 0;
2961         int i;
2962         struct RxD1 *rxdp1;
2963         struct RxD3 *rxdp3;
2964
2965         get_info = ring_data->rx_curr_get_info;
2966         get_block = get_info.block_index;
2967         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2968         put_block = put_info.block_index;
2969         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2970
2971         while (RXD_IS_UP2DT(rxdp)) {
2972                 /*
2973                  * If your are next to put index then it's
2974                  * FIFO full condition
2975                  */
2976                 if ((get_block == put_block) &&
2977                     (get_info.offset + 1) == put_info.offset) {
2978                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2979                                   ring_data->dev->name);
2980                         break;
2981                 }
2982                 skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2983                 if (skb == NULL) {
2984                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2985                                   ring_data->dev->name);
2986                         return 0;
2987                 }
2988                 if (ring_data->rxd_mode == RXD_MODE_1) {
2989                         rxdp1 = (struct RxD1 *)rxdp;
2990                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
2991                                          rxdp1->Buffer0_ptr,
2992                                          ring_data->mtu +
2993                                          HEADER_ETHERNET_II_802_3_SIZE +
2994                                          HEADER_802_2_SIZE +
2995                                          HEADER_SNAP_SIZE,
2996                                          PCI_DMA_FROMDEVICE);
2997                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
2998                         rxdp3 = (struct RxD3 *)rxdp;
2999                         pci_dma_sync_single_for_cpu(ring_data->pdev,
3000                                                     (dma_addr_t)rxdp3->Buffer0_ptr,
3001                                                     BUF0_LEN,
3002                                                     PCI_DMA_FROMDEVICE);
3003                         pci_unmap_single(ring_data->pdev,
3004                                          (dma_addr_t)rxdp3->Buffer2_ptr,
3005                                          ring_data->mtu + 4,
3006                                          PCI_DMA_FROMDEVICE);
3007                 }
3008                 prefetch(skb->data);
3009                 rx_osm_handler(ring_data, rxdp);
3010                 get_info.offset++;
3011                 ring_data->rx_curr_get_info.offset = get_info.offset;
3012                 rxdp = ring_data->rx_blocks[get_block].
3013                         rxds[get_info.offset].virt_addr;
3014                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3015                         get_info.offset = 0;
3016                         ring_data->rx_curr_get_info.offset = get_info.offset;
3017                         get_block++;
3018                         if (get_block == ring_data->block_count)
3019                                 get_block = 0;
3020                         ring_data->rx_curr_get_info.block_index = get_block;
3021                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3022                 }
3023
3024                 if (ring_data->nic->config.napi) {
3025                         budget--;
3026                         napi_pkts++;
3027                         if (!budget)
3028                                 break;
3029                 }
3030                 pkt_cnt++;
3031                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3032                         break;
3033         }
3034         if (ring_data->lro) {
3035                 /* Clear all LRO sessions before exiting */
3036                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
3037                         struct lro *lro = &ring_data->lro0_n[i];
3038                         if (lro->in_use) {
3039                                 update_L3L4_header(ring_data->nic, lro);
3040                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3041                                 clear_lro_session(lro);
3042                         }
3043                 }
3044         }
3045         return napi_pkts;
3046 }
3047
3048 /**
3049  *  tx_intr_handler - Transmit interrupt handler
3050  *  @nic : device private variable
3051  *  Description:
3052  *  If an interrupt was raised to indicate DMA complete of the
3053  *  Tx packet, this function is called. It identifies the last TxD
3054  *  whose buffer was freed and frees all skbs whose data have already
3055  *  DMA'ed into the NICs internal memory.
3056  *  Return Value:
3057  *  NONE
3058  */
3059
3060 static void tx_intr_handler(struct fifo_info *fifo_data)
3061 {
3062         struct s2io_nic *nic = fifo_data->nic;
3063         struct tx_curr_get_info get_info, put_info;
3064         struct sk_buff *skb = NULL;
3065         struct TxD *txdlp;
3066         int pkt_cnt = 0;
3067         unsigned long flags = 0;
3068         u8 err_mask;
3069         struct stat_block *stats = nic->mac_control.stats_info;
3070         struct swStat *swstats = &stats->sw_stat;
3071
3072         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3073                 return;
3074
3075         get_info = fifo_data->tx_curr_get_info;
3076         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3077         txdlp = (struct TxD *)
3078                 fifo_data->list_info[get_info.offset].list_virt_addr;
3079         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3080                (get_info.offset != put_info.offset) &&
3081                (txdlp->Host_Control)) {
3082                 /* Check for TxD errors */
3083                 if (txdlp->Control_1 & TXD_T_CODE) {
3084                         unsigned long long err;
3085                         err = txdlp->Control_1 & TXD_T_CODE;
3086                         if (err & 0x1) {
3087                                 swstats->parity_err_cnt++;
3088                         }
3089
3090                         /* update t_code statistics */
3091                         err_mask = err >> 48;
3092                         switch (err_mask) {
3093                         case 2:
3094                                 swstats->tx_buf_abort_cnt++;
3095                                 break;
3096
3097                         case 3:
3098                                 swstats->tx_desc_abort_cnt++;
3099                                 break;
3100
3101                         case 7:
3102                                 swstats->tx_parity_err_cnt++;
3103                                 break;
3104
3105                         case 10:
3106                                 swstats->tx_link_loss_cnt++;
3107                                 break;
3108
3109                         case 15:
3110                                 swstats->tx_list_proc_err_cnt++;
3111                                 break;
3112                         }
3113                 }
3114
3115                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3116                 if (skb == NULL) {
3117                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3118                         DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3119                                   __func__);
3120                         return;
3121                 }
3122                 pkt_cnt++;
3123
3124                 /* Updating the statistics block */
3125                 swstats->mem_freed += skb->truesize;
3126                 dev_kfree_skb_irq(skb);
3127
3128                 get_info.offset++;
3129                 if (get_info.offset == get_info.fifo_len + 1)
3130                         get_info.offset = 0;
3131                 txdlp = (struct TxD *)
3132                         fifo_data->list_info[get_info.offset].list_virt_addr;
3133                 fifo_data->tx_curr_get_info.offset = get_info.offset;
3134         }
3135
3136         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3137
3138         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3139 }
3140
3141 /**
3142  *  s2io_mdio_write - Function to write in to MDIO registers
3143  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3144  *  @addr     : address value
3145  *  @value    : data value
3146  *  @dev      : pointer to net_device structure
3147  *  Description:
3148  *  This function is used to write values to the MDIO registers
3149  *  NONE
3150  */
3151 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3152                             struct net_device *dev)
3153 {
3154         u64 val64;
3155         struct s2io_nic *sp = netdev_priv(dev);
3156         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3157
3158         /* address transaction */
3159         val64 = MDIO_MMD_INDX_ADDR(addr) |
3160                 MDIO_MMD_DEV_ADDR(mmd_type) |
3161                 MDIO_MMS_PRT_ADDR(0x0);
3162         writeq(val64, &bar0->mdio_control);
3163         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3164         writeq(val64, &bar0->mdio_control);
3165         udelay(100);
3166
3167         /* Data transaction */
3168         val64 = MDIO_MMD_INDX_ADDR(addr) |
3169                 MDIO_MMD_DEV_ADDR(mmd_type) |
3170                 MDIO_MMS_PRT_ADDR(0x0) |
3171                 MDIO_MDIO_DATA(value) |
3172                 MDIO_OP(MDIO_OP_WRITE_TRANS);
3173         writeq(val64, &bar0->mdio_control);
3174         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3175         writeq(val64, &bar0->mdio_control);
3176         udelay(100);
3177
3178         val64 = MDIO_MMD_INDX_ADDR(addr) |
3179                 MDIO_MMD_DEV_ADDR(mmd_type) |
3180                 MDIO_MMS_PRT_ADDR(0x0) |
3181                 MDIO_OP(MDIO_OP_READ_TRANS);
3182         writeq(val64, &bar0->mdio_control);
3183         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3184         writeq(val64, &bar0->mdio_control);
3185         udelay(100);
3186 }
3187
3188 /**
3189  *  s2io_mdio_read - Function to write in to MDIO registers
3190  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3191  *  @addr     : address value
3192  *  @dev      : pointer to net_device structure
3193  *  Description:
3194  *  This function is used to read values to the MDIO registers
3195  *  NONE
3196  */
3197 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3198 {
3199         u64 val64 = 0x0;
3200         u64 rval64 = 0x0;
3201         struct s2io_nic *sp = netdev_priv(dev);
3202         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3203
3204         /* address transaction */
3205         val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3206                          | MDIO_MMD_DEV_ADDR(mmd_type)
3207                          | MDIO_MMS_PRT_ADDR(0x0));
3208         writeq(val64, &bar0->mdio_control);
3209         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3210         writeq(val64, &bar0->mdio_control);
3211         udelay(100);
3212
3213         /* Data transaction */
3214         val64 = MDIO_MMD_INDX_ADDR(addr) |
3215                 MDIO_MMD_DEV_ADDR(mmd_type) |
3216                 MDIO_MMS_PRT_ADDR(0x0) |
3217                 MDIO_OP(MDIO_OP_READ_TRANS);
3218         writeq(val64, &bar0->mdio_control);
3219         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3220         writeq(val64, &bar0->mdio_control);
3221         udelay(100);
3222
3223         /* Read the value from regs */
3224         rval64 = readq(&bar0->mdio_control);
3225         rval64 = rval64 & 0xFFFF0000;
3226         rval64 = rval64 >> 16;
3227         return rval64;
3228 }
3229
3230 /**
3231  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3232  *  @counter      : counter value to be updated
3233  *  @flag         : flag to indicate the status
3234  *  @type         : counter type
3235  *  Description:
3236  *  This function is to check the status of the xpak counters value
3237  *  NONE
3238  */
3239
3240 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3241                                   u16 flag, u16 type)
3242 {
3243         u64 mask = 0x3;
3244         u64 val64;
3245         int i;
3246         for (i = 0; i < index; i++)
3247                 mask = mask << 0x2;
3248
3249         if (flag > 0) {
3250                 *counter = *counter + 1;
3251                 val64 = *regs_stat & mask;
3252                 val64 = val64 >> (index * 0x2);
3253                 val64 = val64 + 1;
3254                 if (val64 == 3) {
3255                         switch (type) {
3256                         case 1:
3257                                 DBG_PRINT(ERR_DBG,
3258                                           "Take Xframe NIC out of service.\n");
3259                                 DBG_PRINT(ERR_DBG,
3260 "Excessive temperatures may result in premature transceiver failure.\n");
3261                                 break;
3262                         case 2:
3263                                 DBG_PRINT(ERR_DBG,
3264                                           "Take Xframe NIC out of service.\n");
3265                                 DBG_PRINT(ERR_DBG,
3266 "Excessive bias currents may indicate imminent laser diode failure.\n");
3267                                 break;
3268                         case 3:
3269                                 DBG_PRINT(ERR_DBG,
3270                                           "Take Xframe NIC out of service.\n");
3271                                 DBG_PRINT(ERR_DBG,
3272 "Excessive laser output power may saturate far-end receiver.\n");
3273                                 break;
3274                         default:
3275                                 DBG_PRINT(ERR_DBG,
3276                                           "Incorrect XPAK Alarm type\n");
3277                         }
3278                         val64 = 0x0;
3279                 }
3280                 val64 = val64 << (index * 0x2);
3281                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3282
3283         } else {
3284                 *regs_stat = *regs_stat & (~mask);
3285         }
3286 }
3287
3288 /**
3289  *  s2io_updt_xpak_counter - Function to update the xpak counters
3290  *  @dev         : pointer to net_device struct
3291  *  Description:
3292  *  This function is to upate the status of the xpak counters value
3293  *  NONE
3294  */
3295 static void s2io_updt_xpak_counter(struct net_device *dev)
3296 {
3297         u16 flag  = 0x0;
3298         u16 type  = 0x0;
3299         u16 val16 = 0x0;
3300         u64 val64 = 0x0;
3301         u64 addr  = 0x0;
3302
3303         struct s2io_nic *sp = netdev_priv(dev);
3304         struct stat_block *stats = sp->mac_control.stats_info;
3305         struct xpakStat *xstats = &stats->xpak_stat;
3306
3307         /* Check the communication with the MDIO slave */
3308         addr = MDIO_CTRL1;
3309         val64 = 0x0;
3310         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3311         if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3312                 DBG_PRINT(ERR_DBG,
3313                           "ERR: MDIO slave access failed - Returned %llx\n",
3314                           (unsigned long long)val64);
3315                 return;
3316         }
3317
3318         /* Check for the expected value of control reg 1 */
3319         if (val64 != MDIO_CTRL1_SPEED10G) {
3320                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3321                           "Returned: %llx- Expected: 0x%x\n",
3322                           (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3323                 return;
3324         }
3325
3326         /* Loading the DOM register to MDIO register */
3327         addr = 0xA100;
3328         s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3329         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3330
3331         /* Reading the Alarm flags */
3332         addr = 0xA070;
3333         val64 = 0x0;
3334         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3335
3336         flag = CHECKBIT(val64, 0x7);
3337         type = 1;
3338         s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3339                               &xstats->xpak_regs_stat,
3340                               0x0, flag, type);
3341
3342         if (CHECKBIT(val64, 0x6))
3343                 xstats->alarm_transceiver_temp_low++;
3344
3345         flag = CHECKBIT(val64, 0x3);
3346         type = 2;
3347         s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3348                               &xstats->xpak_regs_stat,
3349                               0x2, flag, type);
3350
3351         if (CHECKBIT(val64, 0x2))
3352                 xstats->alarm_laser_bias_current_low++;
3353
3354         flag = CHECKBIT(val64, 0x1);
3355         type = 3;
3356         s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3357                               &xstats->xpak_regs_stat,
3358                               0x4, flag, type);
3359
3360         if (CHECKBIT(val64, 0x0))
3361                 xstats->alarm_laser_output_power_low++;
3362
3363         /* Reading the Warning flags */
3364         addr = 0xA074;
3365         val64 = 0x0;
3366         val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3367
3368         if (CHECKBIT(val64, 0x7))
3369                 xstats->warn_transceiver_temp_high++;
3370
3371         if (CHECKBIT(val64, 0x6))
3372                 xstats->warn_transceiver_temp_low++;
3373
3374         if (CHECKBIT(val64, 0x3))
3375                 xstats->warn_laser_bias_current_high++;
3376
3377         if (CHECKBIT(val64, 0x2))
3378                 xstats->warn_laser_bias_current_low++;
3379
3380         if (CHECKBIT(val64, 0x1))
3381                 xstats->warn_laser_output_power_high++;
3382
3383         if (CHECKBIT(val64, 0x0))
3384                 xstats->warn_laser_output_power_low++;
3385 }
3386
3387 /**
3388  *  wait_for_cmd_complete - waits for a command to complete.
3389  *  @sp : private member of the device structure, which is a pointer to the
3390  *  s2io_nic structure.
3391  *  Description: Function that waits for a command to Write into RMAC
3392  *  ADDR DATA registers to be completed and returns either success or
3393  *  error depending on whether the command was complete or not.
3394  *  Return value:
3395  *   SUCCESS on success and FAILURE on failure.
3396  */
3397
3398 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3399                                  int bit_state)
3400 {
3401         int ret = FAILURE, cnt = 0, delay = 1;
3402         u64 val64;
3403
3404         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3405                 return FAILURE;
3406
3407         do {
3408                 val64 = readq(addr);
3409                 if (bit_state == S2IO_BIT_RESET) {
3410                         if (!(val64 & busy_bit)) {
3411                                 ret = SUCCESS;
3412                                 break;
3413                         }
3414                 } else {
3415                         if (val64 & busy_bit) {
3416                                 ret = SUCCESS;
3417                                 break;
3418                         }
3419                 }
3420
3421                 if (in_interrupt())
3422                         mdelay(delay);
3423                 else
3424                         msleep(delay);
3425
3426                 if (++cnt >= 10)
3427                         delay = 50;
3428         } while (cnt < 20);
3429         return ret;
3430 }
3431 /*
3432  * check_pci_device_id - Checks if the device id is supported
3433  * @id : device id
3434  * Description: Function to check if the pci device id is supported by driver.
3435  * Return value: Actual device id if supported else PCI_ANY_ID
3436  */
3437 static u16 check_pci_device_id(u16 id)
3438 {
3439         switch (id) {
3440         case PCI_DEVICE_ID_HERC_WIN:
3441         case PCI_DEVICE_ID_HERC_UNI:
3442                 return XFRAME_II_DEVICE;
3443         case PCI_DEVICE_ID_S2IO_UNI:
3444         case PCI_DEVICE_ID_S2IO_WIN:
3445                 return XFRAME_I_DEVICE;
3446         default:
3447                 return PCI_ANY_ID;
3448         }
3449 }
3450
3451 /**
3452  *  s2io_reset - Resets the card.
3453  *  @sp : private member of the device structure.
3454  *  Description: Function to Reset the card. This function then also
3455  *  restores the previously saved PCI configuration space registers as
3456  *  the card reset also resets the configuration space.
3457  *  Return value:
3458  *  void.
3459  */
3460
3461 static void s2io_reset(struct s2io_nic *sp)
3462 {
3463         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3464         u64 val64;
3465         u16 subid, pci_cmd;
3466         int i;
3467         u16 val16;
3468         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3469         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3470         struct stat_block *stats;
3471         struct swStat *swstats;
3472
3473         DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3474                   __func__, pci_name(sp->pdev));
3475
3476         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3477         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3478
3479         val64 = SW_RESET_ALL;
3480         writeq(val64, &bar0->sw_reset);
3481         if (strstr(sp->product_name, "CX4"))
3482                 msleep(750);
3483         msleep(250);
3484         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3485
3486                 /* Restore the PCI state saved during initialization. */
3487                 pci_restore_state(sp->pdev);
3488                 pci_save_state(sp->pdev);
3489                 pci_read_config_word(sp->pdev, 0x2, &val16);
3490                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3491                         break;
3492                 msleep(200);
3493         }
3494
3495         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3496                 DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3497
3498         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3499
3500         s2io_init_pci(sp);
3501
3502         /* Set swapper to enable I/O register access */
3503         s2io_set_swapper(sp);
3504
3505         /* restore mac_addr entries */
3506         do_s2io_restore_unicast_mc(sp);
3507
3508         /* Restore the MSIX table entries from local variables */
3509         restore_xmsi_data(sp);
3510
3511         /* Clear certain PCI/PCI-X fields after reset */
3512         if (sp->device_type == XFRAME_II_DEVICE) {
3513                 /* Clear "detected parity error" bit */
3514                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3515
3516                 /* Clearing PCIX Ecc status register */
3517                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3518
3519                 /* Clearing PCI_STATUS error reflected here */
3520                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3521         }
3522
3523         /* Reset device statistics maintained by OS */
3524         memset(&sp->stats, 0, sizeof(struct net_device_stats));
3525
3526         stats = sp->mac_control.stats_info;
3527         swstats = &stats->sw_stat;
3528
3529         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3530         up_cnt = swstats->link_up_cnt;
3531         down_cnt = swstats->link_down_cnt;
3532         up_time = swstats->link_up_time;
3533         down_time = swstats->link_down_time;
3534         reset_cnt = swstats->soft_reset_cnt;
3535         mem_alloc_cnt = swstats->mem_allocated;
3536         mem_free_cnt = swstats->mem_freed;
3537         watchdog_cnt = swstats->watchdog_timer_cnt;
3538
3539         memset(stats, 0, sizeof(struct stat_block));
3540
3541         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3542         swstats->link_up_cnt = up_cnt;
3543         swstats->link_down_cnt = down_cnt;
3544         swstats->link_up_time = up_time;
3545         swstats->link_down_time = down_time;
3546         swstats->soft_reset_cnt = reset_cnt;
3547         swstats->mem_allocated = mem_alloc_cnt;
3548         swstats->mem_freed = mem_free_cnt;
3549         swstats->watchdog_timer_cnt = watchdog_cnt;
3550
3551         /* SXE-002: Configure link and activity LED to turn it off */
3552         subid = sp->pdev->subsystem_device;
3553         if (((subid & 0xFF) >= 0x07) &&
3554             (sp->device_type == XFRAME_I_DEVICE)) {
3555                 val64 = readq(&bar0->gpio_control);
3556                 val64 |= 0x0000800000000000ULL;
3557                 writeq(val64, &bar0->gpio_control);
3558                 val64 = 0x0411040400000000ULL;
3559                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3560         }
3561
3562         /*
3563          * Clear spurious ECC interrupts that would have occurred on
3564          * XFRAME II cards after reset.
3565          */
3566         if (sp->device_type == XFRAME_II_DEVICE) {
3567                 val64 = readq(&bar0->pcc_err_reg);
3568                 writeq(val64, &bar0->pcc_err_reg);
3569         }
3570
3571         sp->device_enabled_once = false;
3572 }
3573
3574 /**
3575  *  s2io_set_swapper - to set the swapper controle on the card
3576  *  @sp : private member of the device structure,
3577  *  pointer to the s2io_nic structure.
3578  *  Description: Function to set the swapper control on the card
3579  *  correctly depending on the 'endianness' of the system.
3580  *  Return value:
3581  *  SUCCESS on success and FAILURE on failure.
3582  */
3583
3584 static int s2io_set_swapper(struct s2io_nic *sp)
3585 {
3586         struct net_device *dev = sp->dev;
3587         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3588         u64 val64, valt, valr;
3589
3590         /*
3591          * Set proper endian settings and verify the same by reading
3592          * the PIF Feed-back register.
3593          */
3594
3595         val64 = readq(&bar0->pif_rd_swapper_fb);
3596         if (val64 != 0x0123456789ABCDEFULL) {
3597                 int i = 0;
3598                 static const u64 value[] = {
3599                         0xC30000C3C30000C3ULL,  /* FE=1, SE=1 */
3600                         0x8100008181000081ULL,  /* FE=1, SE=0 */
3601                         0x4200004242000042ULL,  /* FE=0, SE=1 */
3602                         0                       /* FE=0, SE=0 */
3603                 };
3604
3605                 while (i < 4) {
3606                         writeq(value[i], &bar0->swapper_ctrl);
3607                         val64 = readq(&bar0->pif_rd_swapper_fb);
3608                         if (val64 == 0x0123456789ABCDEFULL)
3609                                 break;
3610                         i++;
3611                 }
3612                 if (i == 4) {
3613                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3614                                   "feedback read %llx\n",
3615                                   dev->name, (unsigned long long)val64);
3616                         return FAILURE;
3617                 }
3618                 valr = value[i];
3619         } else {
3620                 valr = readq(&bar0->swapper_ctrl);
3621         }
3622
3623         valt = 0x0123456789ABCDEFULL;
3624         writeq(valt, &bar0->xmsi_address);
3625         val64 = readq(&bar0->xmsi_address);
3626
3627         if (val64 != valt) {
3628                 int i = 0;
3629                 static const u64 value[] = {
3630                         0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3631                         0x0081810000818100ULL,  /* FE=1, SE=0 */
3632                         0x0042420000424200ULL,  /* FE=0, SE=1 */
3633                         0                       /* FE=0, SE=0 */
3634                 };
3635
3636                 while (i < 4) {
3637                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3638                         writeq(valt, &bar0->xmsi_address);
3639                         val64 = readq(&bar0->xmsi_address);
3640                         if (val64 == valt)
3641                                 break;
3642                         i++;
3643                 }
3644                 if (i == 4) {
3645                         unsigned long long x = val64;
3646                         DBG_PRINT(ERR_DBG,
3647                                   "Write failed, Xmsi_addr reads:0x%llx\n", x);
3648                         return FAILURE;
3649                 }
3650         }
3651         val64 = readq(&bar0->swapper_ctrl);
3652         val64 &= 0xFFFF000000000000ULL;
3653
3654 #ifdef __BIG_ENDIAN
3655         /*
3656          * The device by default set to a big endian format, so a
3657          * big endian driver need not set anything.
3658          */
3659         val64 |= (SWAPPER_CTRL_TXP_FE |
3660                   SWAPPER_CTRL_TXP_SE |
3661                   SWAPPER_CTRL_TXD_R_FE |
3662                   SWAPPER_CTRL_TXD_W_FE |
3663                   SWAPPER_CTRL_TXF_R_FE |
3664                   SWAPPER_CTRL_RXD_R_FE |
3665                   SWAPPER_CTRL_RXD_W_FE |
3666                   SWAPPER_CTRL_RXF_W_FE |
3667                   SWAPPER_CTRL_XMSI_FE |
3668                   SWAPPER_CTRL_STATS_FE |
3669                   SWAPPER_CTRL_STATS_SE);
3670         if (sp->config.intr_type == INTA)
3671                 val64 |= SWAPPER_CTRL_XMSI_SE;
3672         writeq(val64, &bar0->swapper_ctrl);
3673 #else
3674         /*
3675          * Initially we enable all bits to make it accessible by the
3676          * driver, then we selectively enable only those bits that
3677          * we want to set.
3678          */
3679         val64 |= (SWAPPER_CTRL_TXP_FE |
3680                   SWAPPER_CTRL_TXP_SE |
3681                   SWAPPER_CTRL_TXD_R_FE |
3682                   SWAPPER_CTRL_TXD_R_SE |
3683                   SWAPPER_CTRL_TXD_W_FE |
3684                   SWAPPER_CTRL_TXD_W_SE |
3685                   SWAPPER_CTRL_TXF_R_FE |
3686                   SWAPPER_CTRL_RXD_R_FE |
3687                   SWAPPER_CTRL_RXD_R_SE |
3688                   SWAPPER_CTRL_RXD_W_FE |
3689                   SWAPPER_CTRL_RXD_W_SE |
3690                   SWAPPER_CTRL_RXF_W_FE |
3691                   SWAPPER_CTRL_XMSI_FE |
3692                   SWAPPER_CTRL_STATS_FE |
3693                   SWAPPER_CTRL_STATS_SE);
3694         if (sp->config.intr_type == INTA)
3695                 val64 |= SWAPPER_CTRL_XMSI_SE;
3696         writeq(val64, &bar0->swapper_ctrl);
3697 #endif
3698         val64 = readq(&bar0->swapper_ctrl);
3699
3700         /*
3701          * Verifying if endian settings are accurate by reading a
3702          * feedback register.
3703          */
3704         val64 = readq(&bar0->pif_rd_swapper_fb);
3705         if (val64 != 0x0123456789ABCDEFULL) {
3706                 /* Endian settings are incorrect, calls for another dekko. */
3707                 DBG_PRINT(ERR_DBG,
3708                           "%s: Endian settings are wrong, feedback read %llx\n",
3709                           dev->name, (unsigned long long)val64);
3710                 return FAILURE;
3711         }
3712
3713         return SUCCESS;
3714 }
3715
3716 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3717 {
3718         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3719         u64 val64;
3720         int ret = 0, cnt = 0;
3721
3722         do {
3723                 val64 = readq(&bar0->xmsi_access);
3724                 if (!(val64 & s2BIT(15)))
3725                         break;
3726                 mdelay(1);
3727                 cnt++;
3728         } while (cnt < 5);
3729         if (cnt == 5) {
3730                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3731                 ret = 1;
3732         }
3733
3734         return ret;
3735 }
3736
3737 static void restore_xmsi_data(struct s2io_nic *nic)
3738 {
3739         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740         u64 val64;
3741         int i, msix_index;
3742
3743         if (nic->device_type == XFRAME_I_DEVICE)
3744                 return;
3745
3746         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3747                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3748                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3749                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3750                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3751                 writeq(val64, &bar0->xmsi_access);
3752                 if (wait_for_msix_trans(nic, msix_index)) {
3753                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3754                                   __func__, msix_index);
3755                         continue;
3756                 }
3757         }
3758 }
3759
3760 static void store_xmsi_data(struct s2io_nic *nic)
3761 {
3762         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3763         u64 val64, addr, data;
3764         int i, msix_index;
3765
3766         if (nic->device_type == XFRAME_I_DEVICE)
3767                 return;
3768
3769         /* Store and display */
3770         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3771                 msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3772                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3773                 writeq(val64, &bar0->xmsi_access);
3774                 if (wait_for_msix_trans(nic, msix_index)) {
3775                         DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3776                                   __func__, msix_index);
3777                         continue;
3778                 }
3779                 addr = readq(&bar0->xmsi_address);
3780                 data = readq(&bar0->xmsi_data);
3781                 if (addr && data) {
3782                         nic->msix_info[i].addr = addr;
3783                         nic->msix_info[i].data = data;
3784                 }
3785         }
3786 }
3787
3788 static int s2io_enable_msi_x(struct s2io_nic *nic)
3789 {
3790         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3791         u64 rx_mat;
3792         u16 msi_control; /* Temp variable */
3793         int ret, i, j, msix_indx = 1;
3794         int size;
3795         struct stat_block *stats = nic->mac_control.stats_info;
3796         struct swStat *swstats = &stats->sw_stat;
3797
3798         size = nic->num_entries * sizeof(struct msix_entry);
3799         nic->entries = kzalloc(size, GFP_KERNEL);
3800         if (!nic->entries) {
3801                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3802                           __func__);
3803                 swstats->mem_alloc_fail_cnt++;
3804                 return -ENOMEM;
3805         }
3806         swstats->mem_allocated += size;
3807
3808         size = nic->num_entries * sizeof(struct s2io_msix_entry);
3809         nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3810         if (!nic->s2io_entries) {
3811                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3812                           __func__);
3813                 swstats->mem_alloc_fail_cnt++;
3814                 kfree(nic->entries);
3815                 swstats->mem_freed
3816                         += (nic->num_entries * sizeof(struct msix_entry));
3817                 return -ENOMEM;
3818         }
3819         swstats->mem_allocated += size;
3820
3821         nic->entries[0].entry = 0;
3822         nic->s2io_entries[0].entry = 0;
3823         nic->s2io_entries[0].in_use = MSIX_FLG;
3824         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3825         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3826
3827         for (i = 1; i < nic->num_entries; i++) {
3828                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3829                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3830                 nic->s2io_entries[i].arg = NULL;
3831                 nic->s2io_entries[i].in_use = 0;
3832         }
3833
3834         rx_mat = readq(&bar0->rx_mat);
3835         for (j = 0; j < nic->config.rx_ring_num; j++) {
3836                 rx_mat |= RX_MAT_SET(j, msix_indx);
3837                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3838                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3839                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3840                 msix_indx += 8;
3841         }
3842         writeq(rx_mat, &bar0->rx_mat);
3843         readq(&bar0->rx_mat);
3844
3845         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3846         /* We fail init if error or we get less vectors than min required */
3847         if (ret) {
3848                 DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3849                 kfree(nic->entries);
3850                 swstats->mem_freed += nic->num_entries *
3851                         sizeof(struct msix_entry);
3852                 kfree(nic->s2io_entries);
3853                 swstats->mem_freed += nic->num_entries *
3854                         sizeof(struct s2io_msix_entry);
3855                 nic->entries = NULL;
3856                 nic->s2io_entries = NULL;
3857                 return -ENOMEM;
3858         }
3859
3860         /*
3861          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3862          * in the herc NIC. (Temp change, needs to be removed later)
3863          */
3864         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3865         msi_control |= 0x1; /* Enable MSI */
3866         pci_write_config_word(nic->pdev, 0x42, msi_control);
3867
3868         return 0;
3869 }
3870
3871 /* Handle software interrupt used during MSI(X) test */
3872 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3873 {
3874         struct s2io_nic *sp = dev_id;
3875
3876         sp->msi_detected = 1;
3877         wake_up(&sp->msi_wait);
3878
3879         return IRQ_HANDLED;
3880 }
3881
3882 /* Test interrupt path by forcing a a software IRQ */
3883 static int s2io_test_msi(struct s2io_nic *sp)
3884 {
3885         struct pci_dev *pdev = sp->pdev;
3886         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3887         int err;
3888         u64 val64, saved64;
3889
3890         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3891                           sp->name, sp);
3892         if (err) {
3893                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3894                           sp->dev->name, pci_name(pdev), pdev->irq);
3895                 return err;
3896         }
3897
3898         init_waitqueue_head(&sp->msi_wait);
3899         sp->msi_detected = 0;
3900
3901         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3902         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3903         val64 |= SCHED_INT_CTRL_TIMER_EN;
3904         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3905         writeq(val64, &bar0->scheduled_int_ctrl);
3906
3907         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3908
3909         if (!sp->msi_detected) {
3910                 /* MSI(X) test failed, go back to INTx mode */
3911                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3912                           "using MSI(X) during test\n",
3913                           sp->dev->name, pci_name(pdev));
3914
3915                 err = -EOPNOTSUPP;
3916         }
3917
3918         free_irq(sp->entries[1].vector, sp);
3919
3920         writeq(saved64, &bar0->scheduled_int_ctrl);
3921
3922         return err;
3923 }
3924
3925 static void remove_msix_isr(struct s2io_nic *sp)
3926 {
3927         int i;
3928         u16 msi_control;
3929
3930         for (i = 0; i < sp->num_entries; i++) {
3931                 if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3932                         int vector = sp->entries[i].vector;
3933                         void *arg = sp->s2io_entries[i].arg;
3934                         free_irq(vector, arg);
3935                 }
3936         }
3937
3938         kfree(sp->entries);
3939         kfree(sp->s2io_entries);
3940         sp->entries = NULL;
3941         sp->s2io_entries = NULL;
3942
3943         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3944         msi_control &= 0xFFFE; /* Disable MSI */
3945         pci_write_config_word(sp->pdev, 0x42, msi_control);
3946
3947         pci_disable_msix(sp->pdev);
3948 }
3949
3950 static void remove_inta_isr(struct s2io_nic *sp)
3951 {
3952         struct net_device *dev = sp->dev;
3953
3954         free_irq(sp->pdev->irq, dev);
3955 }
3956
3957 /* ********************************************************* *
3958  * Functions defined below concern the OS part of the driver *
3959  * ********************************************************* */
3960
3961 /**
3962  *  s2io_open - open entry point of the driver
3963  *  @dev : pointer to the device structure.
3964  *  Description:
3965  *  This function is the open entry point of the driver. It mainly calls a
3966  *  function to allocate Rx buffers and inserts them into the buffer
3967  *  descriptors and then enables the Rx part of the NIC.
3968  *  Return value:
3969  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3970  *   file on failure.
3971  */
3972
3973 static int s2io_open(struct net_device *dev)
3974 {
3975         struct s2io_nic *sp = netdev_priv(dev);
3976         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3977         int err = 0;
3978
3979         /*
3980          * Make sure you have link off by default every time
3981          * Nic is initialized
3982          */
3983         netif_carrier_off(dev);
3984         sp->last_link_state = 0;
3985
3986         /* Initialize H/W and enable interrupts */
3987         err = s2io_card_up(sp);
3988         if (err) {
3989                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3990                           dev->name);
3991                 goto hw_init_failed;
3992         }
3993
3994         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3995                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3996                 s2io_card_down(sp);
3997                 err = -ENODEV;
3998                 goto hw_init_failed;
3999         }
4000         s2io_start_all_tx_queue(sp);
4001         return 0;
4002
4003 hw_init_failed:
4004         if (sp->config.intr_type == MSI_X) {
4005                 if (sp->entries) {
4006                         kfree(sp->entries);
4007                         swstats->mem_freed += sp->num_entries *
4008                                 sizeof(struct msix_entry);
4009                 }
4010                 if (sp->s2io_entries) {
4011                         kfree(sp->s2io_entries);
4012                         swstats->mem_freed += sp->num_entries *
4013                                 sizeof(struct s2io_msix_entry);
4014                 }
4015         }
4016         return err;
4017 }
4018
4019 /**
4020  *  s2io_close -close entry point of the driver
4021  *  @dev : device pointer.
4022  *  Description:
4023  *  This is the stop entry point of the driver. It needs to undo exactly
4024  *  whatever was done by the open entry point,thus it's usually referred to
4025  *  as the close function.Among other things this function mainly stops the
4026  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4027  *  Return value:
4028  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4029  *  file on failure.
4030  */
4031
4032 static int s2io_close(struct net_device *dev)
4033 {
4034         struct s2io_nic *sp = netdev_priv(dev);
4035         struct config_param *config = &sp->config;
4036         u64 tmp64;
4037         int offset;
4038
4039         /* Return if the device is already closed               *
4040          *  Can happen when s2io_card_up failed in change_mtu    *
4041          */
4042         if (!is_s2io_card_up(sp))
4043                 return 0;
4044
4045         s2io_stop_all_tx_queue(sp);
4046         /* delete all populated mac entries */
4047         for (offset = 1; offset < config->max_mc_addr; offset++) {
4048                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4049                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4050                         do_s2io_delete_unicast_mc(sp, tmp64);
4051         }
4052
4053         s2io_card_down(sp);
4054
4055         return 0;
4056 }
4057
4058 /**
4059  *  s2io_xmit - Tx entry point of te driver
4060  *  @skb : the socket buffer containing the Tx data.
4061  *  @dev : device pointer.
4062  *  Description :
4063  *  This function is the Tx entry point of the driver. S2IO NIC supports
4064  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4065  *  NOTE: when device can't queue the pkt,just the trans_start variable will
4066  *  not be upadted.
4067  *  Return value:
4068  *  0 on success & 1 on failure.
4069  */
4070
4071 static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4072 {
4073         struct s2io_nic *sp = netdev_priv(dev);
4074         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4075         register u64 val64;
4076         struct TxD *txdp;
4077         struct TxFIFO_element __iomem *tx_fifo;
4078         unsigned long flags = 0;
4079         u16 vlan_tag = 0;
4080         struct fifo_info *fifo = NULL;
4081         int do_spin_lock = 1;
4082         int offload_type;
4083         int enable_per_list_interrupt = 0;
4084         struct config_param *config = &sp->config;
4085         struct mac_info *mac_control = &sp->mac_control;
4086         struct stat_block *stats = mac_control->stats_info;
4087         struct swStat *swstats = &stats->sw_stat;
4088
4089         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4090
4091         if (unlikely(skb->len <= 0)) {
4092                 DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4093                 dev_kfree_skb_any(skb);
4094                 return NETDEV_TX_OK;
4095         }
4096
4097         if (!is_s2io_card_up(sp)) {
4098                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4099                           dev->name);
4100                 dev_kfree_skb(skb);
4101                 return NETDEV_TX_OK;
4102         }
4103
4104         queue = 0;
4105         if (vlan_tx_tag_present(skb))
4106                 vlan_tag = vlan_tx_tag_get(skb);
4107         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4108                 if (skb->protocol == htons(ETH_P_IP)) {
4109                         struct iphdr *ip;
4110                         struct tcphdr *th;
4111                         ip = ip_hdr(skb);
4112
4113                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4114                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4115                                                        ip->ihl*4);
4116
4117                                 if (ip->protocol == IPPROTO_TCP) {
4118                                         queue_len = sp->total_tcp_fifos;
4119                                         queue = (ntohs(th->source) +
4120                                                  ntohs(th->dest)) &
4121                                                 sp->fifo_selector[queue_len - 1];
4122                                         if (queue >= queue_len)
4123                                                 queue = queue_len - 1;
4124                                 } else if (ip->protocol == IPPROTO_UDP) {
4125                                         queue_len = sp->total_udp_fifos;
4126                                         queue = (ntohs(th->source) +
4127                                                  ntohs(th->dest)) &
4128                                                 sp->fifo_selector[queue_len - 1];
4129                                         if (queue >= queue_len)
4130                                                 queue = queue_len - 1;
4131                                         queue += sp->udp_fifo_idx;
4132                                         if (skb->len > 1024)
4133                                                 enable_per_list_interrupt = 1;
4134                                         do_spin_lock = 0;
4135                                 }
4136                         }
4137                 }
4138         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4139                 /* get fifo number based on skb->priority value */
4140                 queue = config->fifo_mapping
4141                         [skb->priority & (MAX_TX_FIFOS - 1)];
4142         fifo = &mac_control->fifos[queue];
4143
4144         if (do_spin_lock)
4145                 spin_lock_irqsave(&fifo->tx_lock, flags);
4146         else {
4147                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4148                         return NETDEV_TX_LOCKED;
4149         }
4150
4151         if (sp->config.multiq) {
4152                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4153                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4154                         return NETDEV_TX_BUSY;
4155                 }
4156         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4157                 if (netif_queue_stopped(dev)) {
4158                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4159                         return NETDEV_TX_BUSY;
4160                 }
4161         }
4162
4163         put_off = (u16)fifo->tx_curr_put_info.offset;
4164         get_off = (u16)fifo->tx_curr_get_info.offset;
4165         txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
4166
4167         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4168         /* Avoid "put" pointer going beyond "get" pointer */
4169         if (txdp->Host_Control ||
4170             ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4171                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4172                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4173                 dev_kfree_skb(skb);
4174                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4175                 return NETDEV_TX_OK;
4176         }
4177
4178         offload_type = s2io_offload_type(skb);
4179         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4180                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4181                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4182         }
4183         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4184                 txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4185                                     TXD_TX_CKO_TCP_EN |
4186                                     TXD_TX_CKO_UDP_EN);
4187         }
4188         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4189         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4190         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4191         if (enable_per_list_interrupt)
4192                 if (put_off & (queue_len >> 5))
4193                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4194         if (vlan_tag) {
4195                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4196                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4197         }
4198
4199         frg_len = skb_headlen(skb);
4200         if (offload_type == SKB_GSO_UDP) {
4201                 int ufo_size;
4202
4203                 ufo_size = s2io_udp_mss(skb);
4204                 ufo_size &= ~7;
4205                 txdp->Control_1 |= TXD_UFO_EN;
4206                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4207                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4208 #ifdef __BIG_ENDIAN
4209                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4210                 fifo->ufo_in_band_v[put_off] =
4211                         (__force u64)skb_shinfo(skb)->ip6_frag_id;
4212 #else
4213                 fifo->ufo_in_band_v[put_off] =
4214                         (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4215 #endif
4216                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4217                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4218                                                       fifo->ufo_in_band_v,
4219                                                       sizeof(u64),
4220                                                       PCI_DMA_TODEVICE);
4221                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4222                         goto pci_map_failed;
4223                 txdp++;
4224         }
4225
4226         txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4227                                               frg_len, PCI_DMA_TODEVICE);
4228         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4229                 goto pci_map_failed;
4230
4231         txdp->Host_Control = (unsigned long)skb;
4232         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4233         if (offload_type == SKB_GSO_UDP)
4234                 txdp->Control_1 |= TXD_UFO_EN;
4235
4236         frg_cnt = skb_shinfo(skb)->nr_frags;
4237         /* For fragmented SKB. */
4238         for (i = 0; i < frg_cnt; i++) {
4239                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4240                 /* A '0' length fragment will be ignored */
4241                 if (!frag->size)
4242                         continue;
4243                 txdp++;
4244                 txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4245                                                          frag->page_offset,
4246                                                          frag->size,
4247                                                          PCI_DMA_TODEVICE);
4248                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4249                 if (offload_type == SKB_GSO_UDP)
4250                         txdp->Control_1 |= TXD_UFO_EN;
4251         }
4252         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4253
4254         if (offload_type == SKB_GSO_UDP)
4255                 frg_cnt++; /* as Txd0 was used for inband header */
4256
4257         tx_fifo = mac_control->tx_FIFO_start[queue];
4258         val64 = fifo->list_info[put_off].list_phy_addr;
4259         writeq(val64, &tx_fifo->TxDL_Pointer);
4260
4261         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4262                  TX_FIFO_LAST_LIST);
4263         if (offload_type)
4264                 val64 |= TX_FIFO_SPECIAL_FUNC;
4265
4266         writeq(val64, &tx_fifo->List_Control);
4267
4268         mmiowb();
4269
4270         put_off++;
4271         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4272                 put_off = 0;
4273         fifo->tx_curr_put_info.offset = put_off;
4274
4275         /* Avoid "put" pointer going beyond "get" pointer */
4276         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4277                 swstats->fifo_full_cnt++;
4278                 DBG_PRINT(TX_DBG,
4279                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4280                           put_off, get_off);
4281                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4282         }
4283         swstats->mem_allocated += skb->truesize;
4284         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4285
4286         if (sp->config.intr_type == MSI_X)
4287                 tx_intr_handler(fifo);
4288
4289         return NETDEV_TX_OK;
4290
4291 pci_map_failed:
4292         swstats->pci_map_fail_cnt++;
4293         s2io_stop_tx_queue(sp, fifo->fifo_no);
4294         swstats->mem_freed += skb->truesize;
4295         dev_kfree_skb(skb);
4296         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4297         return NETDEV_TX_OK;
4298 }
4299
4300 static void
4301 s2io_alarm_handle(unsigned long data)
4302 {
4303         struct s2io_nic *sp = (struct s2io_nic *)data;
4304         struct net_device *dev = sp->dev;
4305
4306         s2io_handle_errors(dev);
4307         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4308 }
4309
4310 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4311 {
4312         struct ring_info *ring = (struct ring_info *)dev_id;
4313         struct s2io_nic *sp = ring->nic;
4314         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4315
4316         if (unlikely(!is_s2io_card_up(sp)))
4317                 return IRQ_HANDLED;
4318
4319         if (sp->config.napi) {
4320                 u8 __iomem *addr = NULL;
4321                 u8 val8 = 0;
4322
4323                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4324                 addr += (7 - ring->ring_no);
4325                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4326                 writeb(val8, addr);
4327                 val8 = readb(addr);
4328                 napi_schedule(&ring->napi);
4329         } else {
4330                 rx_intr_handler(ring, 0);
4331                 s2io_chk_rx_buffers(sp, ring);
4332         }
4333
4334         return IRQ_HANDLED;
4335 }
4336
4337 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4338 {
4339         int i;
4340         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4341         struct s2io_nic *sp = fifos->nic;
4342         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4343         struct config_param *config  = &sp->config;
4344         u64 reason;
4345
4346         if (unlikely(!is_s2io_card_up(sp)))
4347                 return IRQ_NONE;
4348
4349         reason = readq(&bar0->general_int_status);
4350         if (unlikely(reason == S2IO_MINUS_ONE))
4351                 /* Nothing much can be done. Get out */
4352                 return IRQ_HANDLED;
4353
4354         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4355                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4356
4357                 if (reason & GEN_INTR_TXPIC)
4358                         s2io_txpic_intr_handle(sp);
4359
4360                 if (reason & GEN_INTR_TXTRAFFIC)
4361                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4362
4363                 for (i = 0; i < config->tx_fifo_num; i++)
4364                         tx_intr_handler(&fifos[i]);
4365
4366                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4367                 readl(&bar0->general_int_status);
4368                 return IRQ_HANDLED;
4369         }
4370         /* The interrupt was not raised by us */
4371         return IRQ_NONE;
4372 }
4373
4374 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4375 {
4376         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4377         u64 val64;
4378
4379         val64 = readq(&bar0->pic_int_status);
4380         if (val64 & PIC_INT_GPIO) {
4381                 val64 = readq(&bar0->gpio_int_reg);
4382                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4383                     (val64 & GPIO_INT_REG_LINK_UP)) {
4384                         /*
4385                          * This is unstable state so clear both up/down
4386                          * interrupt and adapter to re-evaluate the link state.
4387                          */
4388                         val64 |= GPIO_INT_REG_LINK_DOWN;
4389                         val64 |= GPIO_INT_REG_LINK_UP;
4390                         writeq(val64, &bar0->gpio_int_reg);
4391                         val64 = readq(&bar0->gpio_int_mask);
4392                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4393                                    GPIO_INT_MASK_LINK_DOWN);
4394                         writeq(val64, &bar0->gpio_int_mask);
4395                 } else if (val64 & GPIO_INT_REG_LINK_UP) {
4396                         val64 = readq(&bar0->adapter_status);
4397                         /* Enable Adapter */
4398                         val64 = readq(&bar0->adapter_control);
4399                         val64 |= ADAPTER_CNTL_EN;
4400                         writeq(val64, &bar0->adapter_control);
4401                         val64 |= ADAPTER_LED_ON;
4402                         writeq(val64, &bar0->adapter_control);
4403                         if (!sp->device_enabled_once)
4404                                 sp->device_enabled_once = 1;
4405
4406                         s2io_link(sp, LINK_UP);
4407                         /*
4408                          * unmask link down interrupt and mask link-up
4409                          * intr
4410                          */
4411                         val64 = readq(&bar0->gpio_int_mask);
4412                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4413                         val64 |= GPIO_INT_MASK_LINK_UP;
4414                         writeq(val64, &bar0->gpio_int_mask);
4415
4416                 } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4417                         val64 = readq(&bar0->adapter_status);
4418                         s2io_link(sp, LINK_DOWN);
4419                         /* Link is down so unmaks link up interrupt */
4420                         val64 = readq(&bar0->gpio_int_mask);
4421                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4422                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4423                         writeq(val64, &bar0->gpio_int_mask);
4424
4425                         /* turn off LED */
4426                         val64 = readq(&bar0->adapter_control);
4427                         val64 = val64 & (~ADAPTER_LED_ON);
4428                         writeq(val64, &bar0->adapter_control);
4429                 }
4430         }
4431         val64 = readq(&bar0->gpio_int_mask);
4432 }
4433
4434 /**
4435  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4436  *  @value: alarm bits
4437  *  @addr: address value
4438  *  @cnt: counter variable
4439  *  Description: Check for alarm and increment the counter
4440  *  Return Value:
4441  *  1 - if alarm bit set
4442  *  0 - if alarm bit is not set
4443  */
4444 static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4445                                  unsigned long long *cnt)
4446 {
4447         u64 val64;
4448         val64 = readq(addr);
4449         if (val64 & value) {
4450                 writeq(val64, addr);
4451                 (*cnt)++;
4452                 return 1;
4453         }
4454         return 0;
4455
4456 }
4457
4458 /**
4459  *  s2io_handle_errors - Xframe error indication handler
4460  *  @nic: device private variable
4461  *  Description: Handle alarms such as loss of link, single or
4462  *  double ECC errors, critical and serious errors.
4463  *  Return Value:
4464  *  NONE
4465  */
4466 static void s2io_handle_errors(void *dev_id)
4467 {
4468         struct net_device *dev = (struct net_device *)dev_id;
4469         struct s2io_nic *sp = netdev_priv(dev);
4470         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4471         u64 temp64 = 0, val64 = 0;
4472         int i = 0;
4473
4474         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4475         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4476
4477         if (!is_s2io_card_up(sp))
4478                 return;
4479
4480         if (pci_channel_offline(sp->pdev))
4481                 return;
4482
4483         memset(&sw_stat->ring_full_cnt, 0,
4484                sizeof(sw_stat->ring_full_cnt));
4485
4486         /* Handling the XPAK counters update */
4487         if (stats->xpak_timer_count < 72000) {
4488                 /* waiting for an hour */
4489                 stats->xpak_timer_count++;
4490         } else {
4491                 s2io_updt_xpak_counter(dev);
4492                 /* reset the count to zero */
4493                 stats->xpak_timer_count = 0;
4494         }
4495
4496         /* Handling link status change error Intr */
4497         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4498                 val64 = readq(&bar0->mac_rmac_err_reg);
4499                 writeq(val64, &bar0->mac_rmac_err_reg);
4500                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4501                         schedule_work(&sp->set_link_task);
4502         }
4503
4504         /* In case of a serious error, the device will be Reset. */
4505         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4506                                   &sw_stat->serious_err_cnt))
4507                 goto reset;
4508
4509         /* Check for data parity error */
4510         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4511                                   &sw_stat->parity_err_cnt))
4512                 goto reset;
4513
4514         /* Check for ring full counter */
4515         if (sp->device_type == XFRAME_II_DEVICE) {
4516                 val64 = readq(&bar0->ring_bump_counter1);
4517                 for (i = 0; i < 4; i++) {
4518                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4519                         temp64 >>= 64 - ((i+1)*16);
4520                         sw_stat->ring_full_cnt[i] += temp64;
4521                 }
4522
4523                 val64 = readq(&bar0->ring_bump_counter2);
4524                 for (i = 0; i < 4; i++) {
4525                         temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4526                         temp64 >>= 64 - ((i+1)*16);
4527                         sw_stat->ring_full_cnt[i+4] += temp64;
4528                 }
4529         }
4530
4531         val64 = readq(&bar0->txdma_int_status);
4532         /*check for pfc_err*/
4533         if (val64 & TXDMA_PFC_INT) {
4534                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4535                                           PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4536                                           PFC_PCIX_ERR,
4537                                           &bar0->pfc_err_reg,
4538                                           &sw_stat->pfc_err_cnt))
4539                         goto reset;
4540                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4541                                       &bar0->pfc_err_reg,
4542                                       &sw_stat->pfc_err_cnt);
4543         }
4544
4545         /*check for tda_err*/
4546         if (val64 & TXDMA_TDA_INT) {
4547                 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4548                                           TDA_SM0_ERR_ALARM |
4549                                           TDA_SM1_ERR_ALARM,
4550                                           &bar0->tda_err_reg,
4551                                           &sw_stat->tda_err_cnt))
4552                         goto reset;
4553                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4554                                       &bar0->tda_err_reg,
4555                                       &sw_stat->tda_err_cnt);
4556         }
4557         /*check for pcc_err*/
4558         if (val64 & TXDMA_PCC_INT) {
4559                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4560                                           PCC_N_SERR | PCC_6_COF_OV_ERR |
4561                                           PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4562                                           PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4563                                           PCC_TXB_ECC_DB_ERR,
4564                                           &bar0->pcc_err_reg,
4565                                           &sw_stat->pcc_err_cnt))
4566                         goto reset;
4567                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4568                                       &bar0->pcc_err_reg,
4569                                       &sw_stat->pcc_err_cnt);
4570         }
4571
4572         /*check for tti_err*/
4573         if (val64 & TXDMA_TTI_INT) {
4574                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4575                                           &bar0->tti_err_reg,
4576                                           &sw_stat->tti_err_cnt))
4577                         goto reset;
4578                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4579                                       &bar0->tti_err_reg,
4580                                       &sw_stat->tti_err_cnt);
4581         }
4582
4583         /*check for lso_err*/
4584         if (val64 & TXDMA_LSO_INT) {
4585                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4586                                           LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4587                                           &bar0->lso_err_reg,
4588                                           &sw_stat->lso_err_cnt))
4589                         goto reset;
4590                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4591                                       &bar0->lso_err_reg,
4592                                       &sw_stat->lso_err_cnt);
4593         }
4594
4595         /*check for tpa_err*/
4596         if (val64 & TXDMA_TPA_INT) {
4597                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4598                                           &bar0->tpa_err_reg,
4599                                           &sw_stat->tpa_err_cnt))
4600                         goto reset;
4601                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4602                                       &bar0->tpa_err_reg,
4603                                       &sw_stat->tpa_err_cnt);
4604         }
4605
4606         /*check for sm_err*/
4607         if (val64 & TXDMA_SM_INT) {
4608                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4609                                           &bar0->sm_err_reg,
4610                                           &sw_stat->sm_err_cnt))
4611                         goto reset;
4612         }
4613
4614         val64 = readq(&bar0->mac_int_status);
4615         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4616                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4617                                           &bar0->mac_tmac_err_reg,
4618                                           &sw_stat->mac_tmac_err_cnt))
4619                         goto reset;
4620                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4621                                       TMAC_DESC_ECC_SG_ERR |
4622                                       TMAC_DESC_ECC_DB_ERR,
4623                                       &bar0->mac_tmac_err_reg,
4624                                       &sw_stat->mac_tmac_err_cnt);
4625         }
4626
4627         val64 = readq(&bar0->xgxs_int_status);
4628         if (val64 & XGXS_INT_STATUS_TXGXS) {
4629                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4630                                           &bar0->xgxs_txgxs_err_reg,
4631                                           &sw_stat->xgxs_txgxs_err_cnt))
4632                         goto reset;
4633                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4634                                       &bar0->xgxs_txgxs_err_reg,
4635                                       &sw_stat->xgxs_txgxs_err_cnt);
4636         }
4637
4638         val64 = readq(&bar0->rxdma_int_status);
4639         if (val64 & RXDMA_INT_RC_INT_M) {
4640                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4641                                           RC_FTC_ECC_DB_ERR |
4642                                           RC_PRCn_SM_ERR_ALARM |
4643                                           RC_FTC_SM_ERR_ALARM,
4644                                           &bar0->rc_err_reg,
4645                                           &sw_stat->rc_err_cnt))
4646                         goto reset;
4647                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4648                                       RC_FTC_ECC_SG_ERR |
4649                                       RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4650                                       &sw_stat->rc_err_cnt);
4651                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4652                                           PRC_PCI_AB_WR_Rn |
4653                                           PRC_PCI_AB_F_WR_Rn,
4654                                           &bar0->prc_pcix_err_reg,
4655                                           &sw_stat->prc_pcix_err_cnt))
4656                         goto reset;
4657                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4658                                       PRC_PCI_DP_WR_Rn |
4659                                       PRC_PCI_DP_F_WR_Rn,
4660                                       &bar0->prc_pcix_err_reg,
4661                                       &sw_stat->prc_pcix_err_cnt);
4662         }
4663
4664         if (val64 & RXDMA_INT_RPA_INT_M) {
4665                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4666                                           &bar0->rpa_err_reg,
4667                                           &sw_stat->rpa_err_cnt))
4668                         goto reset;
4669                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4670                                       &bar0->rpa_err_reg,
4671                                       &sw_stat->rpa_err_cnt);
4672         }
4673
4674         if (val64 & RXDMA_INT_RDA_INT_M) {
4675                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4676                                           RDA_FRM_ECC_DB_N_AERR |
4677                                           RDA_SM1_ERR_ALARM |
4678                                           RDA_SM0_ERR_ALARM |
4679                                           RDA_RXD_ECC_DB_SERR,
4680                                           &bar0->rda_err_reg,
4681                                           &sw_stat->rda_err_cnt))
4682                         goto reset;
4683                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4684                                       RDA_FRM_ECC_SG_ERR |
4685                                       RDA_MISC_ERR |
4686                                       RDA_PCIX_ERR,
4687                                       &bar0->rda_err_reg,
4688                                       &sw_stat->rda_err_cnt);
4689         }
4690
4691         if (val64 & RXDMA_INT_RTI_INT_M) {
4692                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4693                                           &bar0->rti_err_reg,
4694                                           &sw_stat->rti_err_cnt))
4695                         goto reset;
4696                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4697                                       &bar0->rti_err_reg,
4698                                       &sw_stat->rti_err_cnt);
4699         }
4700
4701         val64 = readq(&bar0->mac_int_status);
4702         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4703                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4704                                           &bar0->mac_rmac_err_reg,
4705                                           &sw_stat->mac_rmac_err_cnt))
4706                         goto reset;
4707                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4708                                       RMAC_SINGLE_ECC_ERR |
4709                                       RMAC_DOUBLE_ECC_ERR,
4710                                       &bar0->mac_rmac_err_reg,
4711                                       &sw_stat->mac_rmac_err_cnt);
4712         }
4713
4714         val64 = readq(&bar0->xgxs_int_status);
4715         if (val64 & XGXS_INT_STATUS_RXGXS) {
4716                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4717                                           &bar0->xgxs_rxgxs_err_reg,
4718                                           &sw_stat->xgxs_rxgxs_err_cnt))
4719                         goto reset;
4720         }
4721
4722         val64 = readq(&bar0->mc_int_status);
4723         if (val64 & MC_INT_STATUS_MC_INT) {
4724                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4725                                           &bar0->mc_err_reg,
4726                                           &sw_stat->mc_err_cnt))
4727                         goto reset;
4728
4729                 /* Handling Ecc errors */
4730                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4731                         writeq(val64, &bar0->mc_err_reg);
4732                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4733                                 sw_stat->double_ecc_errs++;
4734                                 if (sp->device_type != XFRAME_II_DEVICE) {
4735                                         /*
4736                                          * Reset XframeI only if critical error
4737                                          */
4738                                         if (val64 &
4739                                             (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4740                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4741                                                 goto reset;
4742                                 }
4743                         } else
4744                                 sw_stat->single_ecc_errs++;
4745                 }
4746         }
4747         return;
4748
4749 reset:
4750         s2io_stop_all_tx_queue(sp);
4751         schedule_work(&sp->rst_timer_task);
4752         sw_stat->soft_reset_cnt++;
4753 }
4754
4755 /**
4756  *  s2io_isr - ISR handler of the device .
4757  *  @irq: the irq of the device.
4758  *  @dev_id: a void pointer to the dev structure of the NIC.
4759  *  Description:  This function is the ISR handler of the device. It
4760  *  identifies the reason for the interrupt and calls the relevant
4761  *  service routines. As a contongency measure, this ISR allocates the
4762  *  recv buffers, if their numbers are below the panic value which is
4763  *  presently set to 25% of the original number of rcv buffers allocated.
4764  *  Return value:
4765  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4766  *   IRQ_NONE: will be returned if interrupt is not from our device
4767  */
4768 static irqreturn_t s2io_isr(int irq, void *dev_id)
4769 {
4770         struct net_device *dev = (struct net_device *)dev_id;
4771         struct s2io_nic *sp = netdev_priv(dev);
4772         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4773         int i;
4774         u64 reason = 0;
4775         struct mac_info *mac_control;
4776         struct config_param *config;
4777
4778         /* Pretend we handled any irq's from a disconnected card */
4779         if (pci_channel_offline(sp->pdev))
4780                 return IRQ_NONE;
4781
4782         if (!is_s2io_card_up(sp))
4783                 return IRQ_NONE;
4784
4785         config = &sp->config;
4786         mac_control = &sp->mac_control;
4787
4788         /*
4789          * Identify the cause for interrupt and call the appropriate
4790          * interrupt handler. Causes for the interrupt could be;
4791          * 1. Rx of packet.
4792          * 2. Tx complete.
4793          * 3. Link down.
4794          */
4795         reason = readq(&bar0->general_int_status);
4796
4797         if (unlikely(reason == S2IO_MINUS_ONE))
4798                 return IRQ_HANDLED;     /* Nothing much can be done. Get out */
4799
4800         if (reason &
4801             (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4802                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4803
4804                 if (config->napi) {
4805                         if (reason & GEN_INTR_RXTRAFFIC) {
4806                                 napi_schedule(&sp->napi);
4807                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4808                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4809                                 readl(&bar0->rx_traffic_int);
4810                         }
4811                 } else {
4812                         /*
4813                          * rx_traffic_int reg is an R1 register, writing all 1's
4814                          * will ensure that the actual interrupt causing bit
4815                          * get's cleared and hence a read can be avoided.
4816                          */
4817                         if (reason & GEN_INTR_RXTRAFFIC)
4818                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4819
4820                         for (i = 0; i < config->rx_ring_num; i++) {
4821                                 struct ring_info *ring = &mac_control->rings[i];
4822
4823                                 rx_intr_handler(ring, 0);
4824                         }
4825                 }
4826
4827                 /*
4828                  * tx_traffic_int reg is an R1 register, writing all 1's
4829                  * will ensure that the actual interrupt causing bit get's
4830                  * cleared and hence a read can be avoided.
4831                  */
4832                 if (reason & GEN_INTR_TXTRAFFIC)
4833                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4834
4835                 for (i = 0; i < config->tx_fifo_num; i++)
4836                         tx_intr_handler(&mac_control->fifos[i]);
4837
4838                 if (reason & GEN_INTR_TXPIC)
4839                         s2io_txpic_intr_handle(sp);
4840
4841                 /*
4842                  * Reallocate the buffers from the interrupt handler itself.
4843                  */
4844                 if (!config->napi) {
4845                         for (i = 0; i < config->rx_ring_num; i++) {
4846                                 struct ring_info *ring = &mac_control->rings[i];
4847
4848                                 s2io_chk_rx_buffers(sp, ring);
4849                         }
4850                 }
4851                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4852                 readl(&bar0->general_int_status);
4853
4854                 return IRQ_HANDLED;
4855
4856         } else if (!reason) {
4857                 /* The interrupt was not raised by us */
4858                 return IRQ_NONE;
4859         }
4860
4861         return IRQ_HANDLED;
4862 }
4863
4864 /**
4865  * s2io_updt_stats -
4866  */
4867 static void s2io_updt_stats(struct s2io_nic *sp)
4868 {
4869         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4870         u64 val64;
4871         int cnt = 0;
4872
4873         if (is_s2io_card_up(sp)) {
4874                 /* Apprx 30us on a 133 MHz bus */
4875                 val64 = SET_UPDT_CLICKS(10) |
4876                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4877                 writeq(val64, &bar0->stat_cfg);
4878                 do {
4879                         udelay(100);
4880                         val64 = readq(&bar0->stat_cfg);
4881                         if (!(val64 & s2BIT(0)))
4882                                 break;
4883                         cnt++;
4884                         if (cnt == 5)
4885                                 break; /* Updt failed */
4886                 } while (1);
4887         }
4888 }
4889
4890 /**
4891  *  s2io_get_stats - Updates the device statistics structure.
4892  *  @dev : pointer to the device structure.
4893  *  Description:
4894  *  This function updates the device statistics structure in the s2io_nic
4895  *  structure and returns a pointer to the same.
4896  *  Return value:
4897  *  pointer to the updated net_device_stats structure.
4898  */
4899 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4900 {
4901         struct s2io_nic *sp = netdev_priv(dev);
4902         struct mac_info *mac_control = &sp->mac_control;
4903         struct stat_block *stats = mac_control->stats_info;
4904         u64 delta;
4905
4906         /* Configure Stats for immediate updt */
4907         s2io_updt_stats(sp);
4908
4909         /* A device reset will cause the on-adapter statistics to be zero'ed.
4910          * This can be done while running by changing the MTU.  To prevent the
4911          * system from having the stats zero'ed, the driver keeps a copy of the
4912          * last update to the system (which is also zero'ed on reset).  This
4913          * enables the driver to accurately know the delta between the last
4914          * update and the current update.
4915          */
4916         delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4917                 le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4918         sp->stats.rx_packets += delta;
4919         dev->stats.rx_packets += delta;
4920
4921         delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4922                 le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4923         sp->stats.tx_packets += delta;
4924         dev->stats.tx_packets += delta;
4925
4926         delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4927                 le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4928         sp->stats.rx_bytes += delta;
4929         dev->stats.rx_bytes += delta;
4930
4931         delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4932                 le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4933         sp->stats.tx_bytes += delta;
4934         dev->stats.tx_bytes += delta;
4935
4936         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4937         sp->stats.rx_errors += delta;
4938         dev->stats.rx_errors += delta;
4939
4940         delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4941                 le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4942         sp->stats.tx_errors += delta;
4943         dev->stats.tx_errors += delta;
4944
4945         delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4946         sp->stats.rx_dropped += delta;
4947         dev->stats.rx_dropped += delta;
4948
4949         delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4950         sp->stats.tx_dropped += delta;
4951         dev->stats.tx_dropped += delta;
4952
4953         /* The adapter MAC interprets pause frames as multicast packets, but
4954          * does not pass them up.  This erroneously increases the multicast
4955          * packet count and needs to be deducted when the multicast frame count
4956          * is queried.
4957          */
4958         delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4959                 le32_to_cpu(stats->rmac_vld_mcst_frms);
4960         delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4961         delta -= sp->stats.multicast;
4962         sp->stats.multicast += delta;
4963         dev->stats.multicast += delta;
4964
4965         delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4966                 le32_to_cpu(stats->rmac_usized_frms)) +
4967                 le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4968         sp->stats.rx_length_errors += delta;
4969         dev->stats.rx_length_errors += delta;
4970
4971         delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4972         sp->stats.rx_crc_errors += delta;
4973         dev->stats.rx_crc_errors += delta;
4974
4975         return &dev->stats;
4976 }
4977
4978 /**
4979  *  s2io_set_multicast - entry point for multicast address enable/disable.
4980  *  @dev : pointer to the device structure
4981  *  Description:
4982  *  This function is a driver entry point which gets called by the kernel
4983  *  whenever multicast addresses must be enabled/disabled. This also gets
4984  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4985  *  determine, if multicast address must be enabled or if promiscuous mode
4986  *  is to be disabled etc.
4987  *  Return value:
4988  *  void.
4989  */
4990
4991 static void s2io_set_multicast(struct net_device *dev)
4992 {
4993         int i, j, prev_cnt;
4994         struct netdev_hw_addr *ha;
4995         struct s2io_nic *sp = netdev_priv(dev);
4996         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4997         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4998                 0xfeffffffffffULL;
4999         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
5000         void __iomem *add;
5001         struct config_param *config = &sp->config;
5002
5003         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
5004                 /*  Enable all Multicast addresses */
5005                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
5006                        &bar0->rmac_addr_data0_mem);
5007                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
5008                        &bar0->rmac_addr_data1_mem);
5009                 val64 = RMAC_ADDR_CMD_MEM_WE |
5010                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5011                         RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
5012                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5013                 /* Wait till command completes */
5014                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5015                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5016                                       S2IO_BIT_RESET);
5017
5018                 sp->m_cast_flg = 1;
5019                 sp->all_multi_pos = config->max_mc_addr - 1;
5020         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
5021                 /*  Disable all Multicast addresses */
5022                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5023                        &bar0->rmac_addr_data0_mem);
5024                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5025                        &bar0->rmac_addr_data1_mem);
5026                 val64 = RMAC_ADDR_CMD_MEM_WE |
5027                         RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5028                         RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
5029                 writeq(val64, &bar0->rmac_addr_cmd_mem);
5030                 /* Wait till command completes */
5031                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5032                                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5033                                       S2IO_BIT_RESET);
5034
5035                 sp->m_cast_flg = 0;
5036                 sp->all_multi_pos = 0;
5037         }
5038
5039         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
5040                 /*  Put the NIC into promiscuous mode */
5041                 add = &bar0->mac_cfg;
5042                 val64 = readq(&bar0->mac_cfg);
5043                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
5044
5045                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5046                 writel((u32)val64, add);
5047                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5048                 writel((u32) (val64 >> 32), (add + 4));
5049
5050                 if (vlan_tag_strip != 1) {
5051                         val64 = readq(&bar0->rx_pa_cfg);
5052                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5053                         writeq(val64, &bar0->rx_pa_cfg);
5054                         sp->vlan_strip_flag = 0;
5055                 }
5056
5057                 val64 = readq(&bar0->mac_cfg);
5058                 sp->promisc_flg = 1;
5059                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5060                           dev->name);
5061         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5062                 /*  Remove the NIC from promiscuous mode */
5063                 add = &bar0->mac_cfg;
5064                 val64 = readq(&bar0->mac_cfg);
5065                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5066
5067                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5068                 writel((u32)val64, add);
5069                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5070                 writel((u32) (val64 >> 32), (add + 4));
5071
5072                 if (vlan_tag_strip != 0) {
5073                         val64 = readq(&bar0->rx_pa_cfg);
5074                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5075                         writeq(val64, &bar0->rx_pa_cfg);
5076                         sp->vlan_strip_flag = 1;
5077                 }
5078
5079                 val64 = readq(&bar0->mac_cfg);
5080                 sp->promisc_flg = 0;
5081                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5082         }
5083
5084         /*  Update individual M_CAST address list */
5085         if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5086                 if (netdev_mc_count(dev) >
5087                     (config->max_mc_addr - config->max_mac_addr)) {
5088                         DBG_PRINT(ERR_DBG,
5089                                   "%s: No more Rx filters can be added - "
5090                                   "please enable ALL_MULTI instead\n",
5091                                   dev->name);
5092                         return;
5093                 }
5094
5095                 prev_cnt = sp->mc_addr_count;
5096                 sp->mc_addr_count = netdev_mc_count(dev);
5097
5098                 /* Clear out the previous list of Mc in the H/W. */
5099                 for (i = 0; i < prev_cnt; i++) {
5100                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5101                                &bar0->rmac_addr_data0_mem);
5102                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5103                                &bar0->rmac_addr_data1_mem);
5104                         val64 = RMAC_ADDR_CMD_MEM_WE |
5105                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5106                                 RMAC_ADDR_CMD_MEM_OFFSET
5107                                 (config->mc_start_offset + i);
5108                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5109
5110                         /* Wait for command completes */
5111                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5112                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5113                                                   S2IO_BIT_RESET)) {
5114                                 DBG_PRINT(ERR_DBG,
5115                                           "%s: Adding Multicasts failed\n",
5116                                           dev->name);
5117                                 return;
5118                         }
5119                 }
5120
5121                 /* Create the new Rx filter list and update the same in H/W. */
5122                 i = 0;
5123                 netdev_for_each_mc_addr(ha, dev) {
5124                         mac_addr = 0;
5125                         for (j = 0; j < ETH_ALEN; j++) {
5126                                 mac_addr |= ha->addr[j];
5127                                 mac_addr <<= 8;
5128                         }
5129                         mac_addr >>= 8;
5130                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5131                                &bar0->rmac_addr_data0_mem);
5132                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5133                                &bar0->rmac_addr_data1_mem);
5134                         val64 = RMAC_ADDR_CMD_MEM_WE |
5135                                 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5136                                 RMAC_ADDR_CMD_MEM_OFFSET
5137                                 (i + config->mc_start_offset);
5138                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5139
5140                         /* Wait for command completes */
5141                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5142                                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5143                                                   S2IO_BIT_RESET)) {
5144                                 DBG_PRINT(ERR_DBG,
5145                                           "%s: Adding Multicasts failed\n",
5146                                           dev->name);
5147                                 return;
5148                         }
5149                         i++;
5150                 }
5151         }
5152 }
5153
5154 /* read from CAM unicast & multicast addresses and store it in
5155  * def_mac_addr structure
5156  */
5157 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5158 {
5159         int offset;
5160         u64 mac_addr = 0x0;
5161         struct config_param *config = &sp->config;
5162
5163         /* store unicast & multicast mac addresses */
5164         for (offset = 0; offset < config->max_mc_addr; offset++) {
5165                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5166                 /* if read fails disable the entry */
5167                 if (mac_addr == FAILURE)
5168                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5169                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5170         }
5171 }
5172
5173 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5174 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5175 {
5176         int offset;
5177         struct config_param *config = &sp->config;
5178         /* restore unicast mac address */
5179         for (offset = 0; offset < config->max_mac_addr; offset++)
5180                 do_s2io_prog_unicast(sp->dev,
5181                                      sp->def_mac_addr[offset].mac_addr);
5182
5183         /* restore multicast mac address */
5184         for (offset = config->mc_start_offset;
5185              offset < config->max_mc_addr; offset++)
5186                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5187 }
5188
5189 /* add a multicast MAC address to CAM */
5190 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5191 {
5192         int i;
5193         u64 mac_addr = 0;
5194         struct config_param *config = &sp->config;
5195
5196         for (i = 0; i < ETH_ALEN; i++) {
5197                 mac_addr <<= 8;
5198                 mac_addr |= addr[i];
5199         }
5200         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5201                 return SUCCESS;
5202
5203         /* check if the multicast mac already preset in CAM */
5204         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5205                 u64 tmp64;
5206                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5207                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5208                         break;
5209
5210                 if (tmp64 == mac_addr)
5211                         return SUCCESS;
5212         }
5213         if (i == config->max_mc_addr) {
5214                 DBG_PRINT(ERR_DBG,
5215                           "CAM full no space left for multicast MAC\n");
5216                 return FAILURE;
5217         }
5218         /* Update the internal structure with this new mac address */
5219         do_s2io_copy_mac_addr(sp, i, mac_addr);
5220
5221         return do_s2io_add_mac(sp, mac_addr, i);
5222 }
5223
5224 /* add MAC address to CAM */
5225 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5226 {
5227         u64 val64;
5228         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5229
5230         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5231                &bar0->rmac_addr_data0_mem);
5232
5233         val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5234                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5235         writeq(val64, &bar0->rmac_addr_cmd_mem);
5236
5237         /* Wait till command completes */
5238         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5239                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5240                                   S2IO_BIT_RESET)) {
5241                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5242                 return FAILURE;
5243         }
5244         return SUCCESS;
5245 }
5246 /* deletes a specified unicast/multicast mac entry from CAM */
5247 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5248 {
5249         int offset;
5250         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5251         struct config_param *config = &sp->config;
5252
5253         for (offset = 1;
5254              offset < config->max_mc_addr; offset++) {
5255                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5256                 if (tmp64 == addr) {
5257                         /* disable the entry by writing  0xffffffffffffULL */
5258                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5259                                 return FAILURE;
5260                         /* store the new mac list from CAM */
5261                         do_s2io_store_unicast_mc(sp);
5262                         return SUCCESS;
5263                 }
5264         }
5265         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5266                   (unsigned long long)addr);
5267         return FAILURE;
5268 }
5269
5270 /* read mac entries from CAM */
5271 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5272 {
5273         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5274         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5275
5276         /* read mac addr */
5277         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5278                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5279         writeq(val64, &bar0->rmac_addr_cmd_mem);
5280
5281         /* Wait till command completes */
5282         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5283                                   RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5284                                   S2IO_BIT_RESET)) {
5285                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5286                 return FAILURE;
5287         }
5288         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5289
5290         return tmp64 >> 16;
5291 }
5292
5293 /**
5294  * s2io_set_mac_addr driver entry point
5295  */
5296
5297 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5298 {
5299         struct sockaddr *addr = p;
5300
5301         if (!is_valid_ether_addr(addr->sa_data))
5302                 return -EINVAL;
5303
5304         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5305
5306         /* store the MAC address in CAM */
5307         return do_s2io_prog_unicast(dev, dev->dev_addr);
5308 }
5309 /**
5310  *  do_s2io_prog_unicast - Programs the Xframe mac address
5311  *  @dev : pointer to the device structure.
5312  *  @addr: a uchar pointer to the new mac address which is to be set.
5313  *  Description : This procedure will program the Xframe to receive
5314  *  frames with new Mac Address
5315  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5316  *  as defined in errno.h file on failure.
5317  */
5318
5319 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5320 {
5321         struct s2io_nic *sp = netdev_priv(dev);
5322         register u64 mac_addr = 0, perm_addr = 0;
5323         int i;
5324         u64 tmp64;
5325         struct config_param *config = &sp->config;
5326
5327         /*
5328          * Set the new MAC address as the new unicast filter and reflect this
5329          * change on the device address registered with the OS. It will be
5330          * at offset 0.
5331          */
5332         for (i = 0; i < ETH_ALEN; i++) {
5333                 mac_addr <<= 8;
5334                 mac_addr |= addr[i];
5335                 perm_addr <<= 8;
5336                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5337         }
5338
5339         /* check if the dev_addr is different than perm_addr */
5340         if (mac_addr == perm_addr)
5341                 return SUCCESS;
5342
5343         /* check if the mac already preset in CAM */
5344         for (i = 1; i < config->max_mac_addr; i++) {
5345                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5346                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5347                         break;
5348
5349                 if (tmp64 == mac_addr) {
5350                         DBG_PRINT(INFO_DBG,
5351                                   "MAC addr:0x%llx already present in CAM\n",
5352                                   (unsigned long long)mac_addr);
5353                         return SUCCESS;
5354                 }
5355         }
5356         if (i == config->max_mac_addr) {
5357                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5358                 return FAILURE;
5359         }
5360         /* Update the internal structure with this new mac address */
5361         do_s2io_copy_mac_addr(sp, i, mac_addr);
5362
5363         return do_s2io_add_mac(sp, mac_addr, i);
5364 }
5365
5366 /**
5367  * s2io_ethtool_sset - Sets different link parameters.
5368  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5369  * @info: pointer to the structure with parameters given by ethtool to set
5370  * link information.
5371  * Description:
5372  * The function sets different link parameters provided by the user onto
5373  * the NIC.
5374  * Return value:
5375  * 0 on success.
5376  */
5377
5378 static int s2io_ethtool_sset(struct net_device *dev,
5379                              struct ethtool_cmd *info)
5380 {
5381         struct s2io_nic *sp = netdev_priv(dev);
5382         if ((info->autoneg == AUTONEG_ENABLE) ||
5383             (ethtool_cmd_speed(info) != SPEED_10000) ||
5384             (info->duplex != DUPLEX_FULL))
5385                 return -EINVAL;
5386         else {
5387                 s2io_close(sp->dev);
5388                 s2io_open(sp->dev);
5389         }
5390
5391         return 0;
5392 }
5393
5394 /**
5395  * s2io_ethtol_gset - Return link specific information.
5396  * @sp : private member of the device structure, pointer to the
5397  *      s2io_nic structure.
5398  * @info : pointer to the structure with parameters given by ethtool
5399  * to return link information.
5400  * Description:
5401  * Returns link specific information like speed, duplex etc.. to ethtool.
5402  * Return value :
5403  * return 0 on success.
5404  */
5405
5406 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5407 {
5408         struct s2io_nic *sp = netdev_priv(dev);
5409         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5410         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5411         info->port = PORT_FIBRE;
5412
5413         /* info->transceiver */
5414         info->transceiver = XCVR_EXTERNAL;
5415
5416         if (netif_carrier_ok(sp->dev)) {
5417                 ethtool_cmd_speed_set(info, SPEED_10000);
5418                 info->duplex = DUPLEX_FULL;
5419         } else {
5420                 ethtool_cmd_speed_set(info, -1);
5421                 info->duplex = -1;
5422         }
5423
5424         info->autoneg = AUTONEG_DISABLE;
5425         return 0;
5426 }
5427
5428 /**
5429  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5430  * @sp : private member of the device structure, which is a pointer to the
5431  * s2io_nic structure.
5432  * @info : pointer to the structure with parameters given by ethtool to
5433  * return driver information.
5434  * Description:
5435  * Returns driver specefic information like name, version etc.. to ethtool.
5436  * Return value:
5437  *  void
5438  */
5439
5440 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5441                                   struct ethtool_drvinfo *info)
5442 {
5443         struct s2io_nic *sp = netdev_priv(dev);
5444
5445         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5446         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5447         strncpy(info->fw_version, "", sizeof(info->fw_version));
5448         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5449         info->regdump_len = XENA_REG_SPACE;
5450         info->eedump_len = XENA_EEPROM_SPACE;
5451 }
5452
5453 /**
5454  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5455  *  @sp: private member of the device structure, which is a pointer to the
5456  *  s2io_nic structure.
5457  *  @regs : pointer to the structure with parameters given by ethtool for
5458  *  dumping the registers.
5459  *  @reg_space: The input argumnet into which all the registers are dumped.
5460  *  Description:
5461  *  Dumps the entire register space of xFrame NIC into the user given
5462  *  buffer area.
5463  * Return value :
5464  * void .
5465  */
5466
5467 static void s2io_ethtool_gregs(struct net_device *dev,
5468                                struct ethtool_regs *regs, void *space)
5469 {
5470         int i;
5471         u64 reg;
5472         u8 *reg_space = (u8 *)space;
5473         struct s2io_nic *sp = netdev_priv(dev);
5474
5475         regs->len = XENA_REG_SPACE;
5476         regs->version = sp->pdev->subsystem_device;
5477
5478         for (i = 0; i < regs->len; i += 8) {
5479                 reg = readq(sp->bar0 + i);
5480                 memcpy((reg_space + i), &reg, 8);
5481         }
5482 }
5483
5484 /*
5485  *  s2io_set_led - control NIC led
5486  */
5487 static void s2io_set_led(struct s2io_nic *sp, bool on)
5488 {
5489         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5490         u16 subid = sp->pdev->subsystem_device;
5491         u64 val64;
5492
5493         if ((sp->device_type == XFRAME_II_DEVICE) ||
5494             ((subid & 0xFF) >= 0x07)) {
5495                 val64 = readq(&bar0->gpio_control);
5496                 if (on)
5497                         val64 |= GPIO_CTRL_GPIO_0;
5498                 else
5499                         val64 &= ~GPIO_CTRL_GPIO_0;
5500
5501                 writeq(val64, &bar0->gpio_control);
5502         } else {
5503                 val64 = readq(&bar0->adapter_control);
5504                 if (on)
5505                         val64 |= ADAPTER_LED_ON;
5506                 else
5507                         val64 &= ~ADAPTER_LED_ON;
5508
5509                 writeq(val64, &bar0->adapter_control);
5510         }
5511
5512 }
5513
5514 /**
5515  * s2io_ethtool_set_led - To physically identify the nic on the system.
5516  * @dev : network device
5517  * @state: led setting
5518  *
5519  * Description: Used to physically identify the NIC on the system.
5520  * The Link LED will blink for a time specified by the user for
5521  * identification.
5522  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5523  * identification is possible only if it's link is up.
5524  */
5525
5526 static int s2io_ethtool_set_led(struct net_device *dev,
5527                                 enum ethtool_phys_id_state state)
5528 {
5529         struct s2io_nic *sp = netdev_priv(dev);
5530         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5531         u16 subid = sp->pdev->subsystem_device;
5532
5533         if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5534                 u64 val64 = readq(&bar0->adapter_control);
5535                 if (!(val64 & ADAPTER_CNTL_EN)) {
5536                         pr_err("Adapter Link down, cannot blink LED\n");
5537                         return -EAGAIN;
5538                 }
5539         }
5540
5541         switch (state) {
5542         case ETHTOOL_ID_ACTIVE:
5543                 sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5544                 return 1;       /* cycle on/off once per second */
5545
5546         case ETHTOOL_ID_ON:
5547                 s2io_set_led(sp, true);
5548                 break;
5549
5550         case ETHTOOL_ID_OFF:
5551                 s2io_set_led(sp, false);
5552                 break;
5553
5554         case ETHTOOL_ID_INACTIVE:
5555                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5556                         writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5557         }
5558
5559         return 0;
5560 }
5561
5562 static void s2io_ethtool_gringparam(struct net_device *dev,
5563                                     struct ethtool_ringparam *ering)
5564 {
5565         struct s2io_nic *sp = netdev_priv(dev);
5566         int i, tx_desc_count = 0, rx_desc_count = 0;
5567
5568         if (sp->rxd_mode == RXD_MODE_1) {
5569                 ering->rx_max_pending = MAX_RX_DESC_1;
5570                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5571         } else {
5572                 ering->rx_max_pending = MAX_RX_DESC_2;
5573                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5574         }
5575
5576         ering->rx_mini_max_pending = 0;
5577         ering->tx_max_pending = MAX_TX_DESC;
5578
5579         for (i = 0; i < sp->config.rx_ring_num; i++)
5580                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5581         ering->rx_pending = rx_desc_count;
5582         ering->rx_jumbo_pending = rx_desc_count;
5583         ering->rx_mini_pending = 0;
5584
5585         for (i = 0; i < sp->config.tx_fifo_num; i++)
5586                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5587         ering->tx_pending = tx_desc_count;
5588         DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5589 }
5590
5591 /**
5592  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5593  * @sp : private member of the device structure, which is a pointer to the
5594  *      s2io_nic structure.
5595  * @ep : pointer to the structure with pause parameters given by ethtool.
5596  * Description:
5597  * Returns the Pause frame generation and reception capability of the NIC.
5598  * Return value:
5599  *  void
5600  */
5601 static void s2io_ethtool_getpause_data(struct net_device *dev,
5602                                        struct ethtool_pauseparam *ep)
5603 {
5604         u64 val64;
5605         struct s2io_nic *sp = netdev_priv(dev);
5606         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5607
5608         val64 = readq(&bar0->rmac_pause_cfg);
5609         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5610                 ep->tx_pause = true;
5611         if (val64 & RMAC_PAUSE_RX_ENABLE)
5612                 ep->rx_pause = true;
5613         ep->autoneg = false;
5614 }
5615
5616 /**
5617  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5618  * @sp : private member of the device structure, which is a pointer to the
5619  *      s2io_nic structure.
5620  * @ep : pointer to the structure with pause parameters given by ethtool.
5621  * Description:
5622  * It can be used to set or reset Pause frame generation or reception
5623  * support of the NIC.
5624  * Return value:
5625  * int, returns 0 on Success
5626  */
5627
5628 static int s2io_ethtool_setpause_data(struct net_device *dev,
5629                                       struct ethtool_pauseparam *ep)
5630 {
5631         u64 val64;
5632         struct s2io_nic *sp = netdev_priv(dev);
5633         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5634
5635         val64 = readq(&bar0->rmac_pause_cfg);
5636         if (ep->tx_pause)
5637                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5638         else
5639                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5640         if (ep->rx_pause)
5641                 val64 |= RMAC_PAUSE_RX_ENABLE;
5642         else
5643                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5644         writeq(val64, &bar0->rmac_pause_cfg);
5645         return 0;
5646 }
5647
5648 /**
5649  * read_eeprom - reads 4 bytes of data from user given offset.
5650  * @sp : private member of the device structure, which is a pointer to the
5651  *      s2io_nic structure.
5652  * @off : offset at which the data must be written
5653  * @data : Its an output parameter where the data read at the given
5654  *      offset is stored.
5655  * Description:
5656  * Will read 4 bytes of data from the user given offset and return the
5657  * read data.
5658  * NOTE: Will allow to read only part of the EEPROM visible through the
5659  *   I2C bus.
5660  * Return value:
5661  *  -1 on failure and 0 on success.
5662  */
5663
5664 #define S2IO_DEV_ID             5
5665 static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5666 {
5667         int ret = -1;
5668         u32 exit_cnt = 0;
5669         u64 val64;
5670         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5671
5672         if (sp->device_type == XFRAME_I_DEVICE) {
5673                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5674                         I2C_CONTROL_ADDR(off) |
5675                         I2C_CONTROL_BYTE_CNT(0x3) |
5676                         I2C_CONTROL_READ |
5677                         I2C_CONTROL_CNTL_START;
5678                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5679
5680                 while (exit_cnt < 5) {
5681                         val64 = readq(&bar0->i2c_control);
5682                         if (I2C_CONTROL_CNTL_END(val64)) {
5683                                 *data = I2C_CONTROL_GET_DATA(val64);
5684                                 ret = 0;
5685                                 break;
5686                         }
5687                         msleep(50);
5688                         exit_cnt++;
5689                 }
5690         }
5691
5692         if (sp->device_type == XFRAME_II_DEVICE) {
5693                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5694                         SPI_CONTROL_BYTECNT(0x3) |
5695                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5696                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5697                 val64 |= SPI_CONTROL_REQ;
5698                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5699                 while (exit_cnt < 5) {
5700                         val64 = readq(&bar0->spi_control);
5701                         if (val64 & SPI_CONTROL_NACK) {
5702                                 ret = 1;
5703                                 break;
5704                         } else if (val64 & SPI_CONTROL_DONE) {
5705                                 *data = readq(&bar0->spi_data);
5706                                 *data &= 0xffffff;
5707                                 ret = 0;
5708                                 break;
5709                         }
5710                         msleep(50);
5711                         exit_cnt++;
5712                 }
5713         }
5714         return ret;
5715 }
5716
5717 /**
5718  *  write_eeprom - actually writes the relevant part of the data value.
5719  *  @sp : private member of the device structure, which is a pointer to the
5720  *       s2io_nic structure.
5721  *  @off : offset at which the data must be written
5722  *  @data : The data that is to be written
5723  *  @cnt : Number of bytes of the data that are actually to be written into
5724  *  the Eeprom. (max of 3)
5725  * Description:
5726  *  Actually writes the relevant part of the data value into the Eeprom
5727  *  through the I2C bus.
5728  * Return value:
5729  *  0 on success, -1 on failure.
5730  */
5731
5732 static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5733 {
5734         int exit_cnt = 0, ret = -1;
5735         u64 val64;
5736         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5737
5738         if (sp->device_type == XFRAME_I_DEVICE) {
5739                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5740                         I2C_CONTROL_ADDR(off) |
5741                         I2C_CONTROL_BYTE_CNT(cnt) |
5742                         I2C_CONTROL_SET_DATA((u32)data) |
5743                         I2C_CONTROL_CNTL_START;
5744                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5745
5746                 while (exit_cnt < 5) {
5747                         val64 = readq(&bar0->i2c_control);
5748                         if (I2C_CONTROL_CNTL_END(val64)) {
5749                                 if (!(val64 & I2C_CONTROL_NACK))
5750                                         ret = 0;
5751                                 break;
5752                         }
5753                         msleep(50);
5754                         exit_cnt++;
5755                 }
5756         }
5757
5758         if (sp->device_type == XFRAME_II_DEVICE) {
5759                 int write_cnt = (cnt == 8) ? 0 : cnt;
5760                 writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5761
5762                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5763                         SPI_CONTROL_BYTECNT(write_cnt) |
5764                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5765                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5766                 val64 |= SPI_CONTROL_REQ;
5767                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5768                 while (exit_cnt < 5) {
5769                         val64 = readq(&bar0->spi_control);
5770                         if (val64 & SPI_CONTROL_NACK) {
5771                                 ret = 1;
5772                                 break;
5773                         } else if (val64 & SPI_CONTROL_DONE) {
5774                                 ret = 0;
5775                                 break;
5776                         }
5777                         msleep(50);
5778                         exit_cnt++;
5779                 }
5780         }
5781         return ret;
5782 }
5783 static void s2io_vpd_read(struct s2io_nic *nic)
5784 {
5785         u8 *vpd_data;
5786         u8 data;
5787         int i = 0, cnt, len, fail = 0;
5788         int vpd_addr = 0x80;
5789         struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5790
5791         if (nic->device_type == XFRAME_II_DEVICE) {
5792                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5793                 vpd_addr = 0x80;
5794         } else {
5795                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5796                 vpd_addr = 0x50;
5797         }
5798         strcpy(nic->serial_num, "NOT AVAILABLE");
5799
5800         vpd_data = kmalloc(256, GFP_KERNEL);
5801         if (!vpd_data) {
5802                 swstats->mem_alloc_fail_cnt++;
5803                 return;
5804         }
5805         swstats->mem_allocated += 256;
5806
5807         for (i = 0; i < 256; i += 4) {
5808                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5809                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5810                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5811                 for (cnt = 0; cnt < 5; cnt++) {
5812                         msleep(2);
5813                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5814                         if (data == 0x80)
5815                                 break;
5816                 }
5817                 if (cnt >= 5) {
5818                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5819                         fail = 1;
5820                         break;
5821                 }
5822                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5823                                       (u32 *)&vpd_data[i]);
5824         }
5825
5826         if (!fail) {
5827                 /* read serial number of adapter */
5828                 for (cnt = 0; cnt < 252; cnt++) {
5829                         if ((vpd_data[cnt] == 'S') &&
5830                             (vpd_data[cnt+1] == 'N')) {
5831                                 len = vpd_data[cnt+2];
5832                                 if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5833                                         memcpy(nic->serial_num,
5834                                                &vpd_data[cnt + 3],
5835                                                len);
5836                                         memset(nic->serial_num+len,
5837                                                0,
5838                                                VPD_STRING_LEN-len);
5839                                         break;
5840                                 }
5841                         }
5842                 }
5843         }
5844
5845         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5846                 len = vpd_data[1];
5847                 memcpy(nic->product_name, &vpd_data[3], len);
5848                 nic->product_name[len] = 0;
5849         }
5850         kfree(vpd_data);
5851         swstats->mem_freed += 256;
5852 }
5853
5854 /**
5855  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5856  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5857  *  @eeprom : pointer to the user level structure provided by ethtool,
5858  *  containing all relevant information.
5859  *  @data_buf : user defined value to be written into Eeprom.
5860  *  Description: Reads the values stored in the Eeprom at given offset
5861  *  for a given length. Stores these values int the input argument data
5862  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5863  *  Return value:
5864  *  int  0 on success
5865  */
5866
5867 static int s2io_ethtool_geeprom(struct net_device *dev,
5868                                 struct ethtool_eeprom *eeprom, u8 * data_buf)
5869 {
5870         u32 i, valid;
5871         u64 data;
5872         struct s2io_nic *sp = netdev_priv(dev);
5873
5874         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5875
5876         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5877                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5878
5879         for (i = 0; i < eeprom->len; i += 4) {
5880                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5881                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5882                         return -EFAULT;
5883                 }
5884                 valid = INV(data);
5885                 memcpy((data_buf + i), &valid, 4);
5886         }
5887         return 0;
5888 }
5889
5890 /**
5891  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5892  *  @sp : private member of the device structure, which is a pointer to the
5893  *  s2io_nic structure.
5894  *  @eeprom : pointer to the user level structure provided by ethtool,
5895  *  containing all relevant information.
5896  *  @data_buf ; user defined value to be written into Eeprom.
5897  *  Description:
5898  *  Tries to write the user provided value in the Eeprom, at the offset
5899  *  given by the user.
5900  *  Return value:
5901  *  0 on success, -EFAULT on failure.
5902  */
5903
5904 static int s2io_ethtool_seeprom(struct net_device *dev,
5905                                 struct ethtool_eeprom *eeprom,
5906                                 u8 *data_buf)
5907 {
5908         int len = eeprom->len, cnt = 0;
5909         u64 valid = 0, data;
5910         struct s2io_nic *sp = netdev_priv(dev);
5911
5912         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5913                 DBG_PRINT(ERR_DBG,
5914                           "ETHTOOL_WRITE_EEPROM Err: "
5915                           "Magic value is wrong, it is 0x%x should be 0x%x\n",
5916                           (sp->pdev->vendor | (sp->pdev->device << 16)),
5917                           eeprom->magic);
5918                 return -EFAULT;
5919         }
5920
5921         while (len) {
5922                 data = (u32)data_buf[cnt] & 0x000000FF;
5923                 if (data)
5924                         valid = (u32)(data << 24);
5925                 else
5926                         valid = data;
5927
5928                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5929                         DBG_PRINT(ERR_DBG,
5930                                   "ETHTOOL_WRITE_EEPROM Err: "
5931                                   "Cannot write into the specified offset\n");
5932                         return -EFAULT;
5933                 }
5934                 cnt++;
5935                 len--;
5936         }
5937
5938         return 0;
5939 }
5940
5941 /**
5942  * s2io_register_test - reads and writes into all clock domains.
5943  * @sp : private member of the device structure, which is a pointer to the
5944  * s2io_nic structure.
5945  * @data : variable that returns the result of each of the test conducted b
5946  * by the driver.
5947  * Description:
5948  * Read and write into all clock domains. The NIC has 3 clock domains,
5949  * see that registers in all the three regions are accessible.
5950  * Return value:
5951  * 0 on success.
5952  */
5953
5954 static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5955 {
5956         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5957         u64 val64 = 0, exp_val;
5958         int fail = 0;
5959
5960         val64 = readq(&bar0->pif_rd_swapper_fb);
5961         if (val64 != 0x123456789abcdefULL) {
5962                 fail = 1;
5963                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5964         }
5965
5966         val64 = readq(&bar0->rmac_pause_cfg);
5967         if (val64 != 0xc000ffff00000000ULL) {
5968                 fail = 1;
5969                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5970         }
5971
5972         val64 = readq(&bar0->rx_queue_cfg);
5973         if (sp->device_type == XFRAME_II_DEVICE)
5974                 exp_val = 0x0404040404040404ULL;
5975         else
5976                 exp_val = 0x0808080808080808ULL;
5977         if (val64 != exp_val) {
5978                 fail = 1;
5979                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5980         }
5981
5982         val64 = readq(&bar0->xgxs_efifo_cfg);
5983         if (val64 != 0x000000001923141EULL) {
5984                 fail = 1;
5985                 DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5986         }
5987
5988         val64 = 0x5A5A5A5A5A5A5A5AULL;
5989         writeq(val64, &bar0->xmsi_data);
5990         val64 = readq(&bar0->xmsi_data);
5991         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5992                 fail = 1;
5993                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5994         }
5995
5996         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5997         writeq(val64, &bar0->xmsi_data);
5998         val64 = readq(&bar0->xmsi_data);
5999         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
6000                 fail = 1;
6001                 DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
6002         }
6003
6004         *data = fail;
6005         return fail;
6006 }
6007
6008 /**
6009  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6010  * @sp : private member of the device structure, which is a pointer to the
6011  * s2io_nic structure.
6012  * @data:variable that returns the result of each of the test conducted by
6013  * the driver.
6014  * Description:
6015  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6016  * register.
6017  * Return value:
6018  * 0 on success.
6019  */
6020
6021 static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
6022 {
6023         int fail = 0;
6024         u64 ret_data, org_4F0, org_7F0;
6025         u8 saved_4F0 = 0, saved_7F0 = 0;
6026         struct net_device *dev = sp->dev;
6027
6028         /* Test Write Error at offset 0 */
6029         /* Note that SPI interface allows write access to all areas
6030          * of EEPROM. Hence doing all negative testing only for Xframe I.
6031          */
6032         if (sp->device_type == XFRAME_I_DEVICE)
6033                 if (!write_eeprom(sp, 0, 0, 3))
6034                         fail = 1;
6035
6036         /* Save current values at offsets 0x4F0 and 0x7F0 */
6037         if (!read_eeprom(sp, 0x4F0, &org_4F0))
6038                 saved_4F0 = 1;
6039         if (!read_eeprom(sp, 0x7F0, &org_7F0))
6040                 saved_7F0 = 1;
6041
6042         /* Test Write at offset 4f0 */
6043         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
6044                 fail = 1;
6045         if (read_eeprom(sp, 0x4F0, &ret_data))
6046                 fail = 1;
6047
6048         if (ret_data != 0x012345) {
6049                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6050                           "Data written %llx Data read %llx\n",
6051                           dev->name, (unsigned long long)0x12345,
6052                           (unsigned long long)ret_data);
6053                 fail = 1;
6054         }
6055
6056         /* Reset the EEPROM data go FFFF */
6057         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6058
6059         /* Test Write Request Error at offset 0x7c */
6060         if (sp->device_type == XFRAME_I_DEVICE)
6061                 if (!write_eeprom(sp, 0x07C, 0, 3))
6062                         fail = 1;
6063
6064         /* Test Write Request at offset 0x7f0 */
6065         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6066                 fail = 1;
6067         if (read_eeprom(sp, 0x7F0, &ret_data))
6068                 fail = 1;
6069
6070         if (ret_data != 0x012345) {
6071                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6072                           "Data written %llx Data read %llx\n",
6073                           dev->name, (unsigned long long)0x12345,
6074                           (unsigned long long)ret_data);
6075                 fail = 1;
6076         }
6077
6078         /* Reset the EEPROM data go FFFF */
6079         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6080
6081         if (sp->device_type == XFRAME_I_DEVICE) {
6082                 /* Test Write Error at offset 0x80 */
6083                 if (!write_eeprom(sp, 0x080, 0, 3))
6084                         fail = 1;
6085
6086                 /* Test Write Error at offset 0xfc */
6087                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6088                         fail = 1;
6089
6090                 /* Test Write Error at offset 0x100 */
6091                 if (!write_eeprom(sp, 0x100, 0, 3))
6092                         fail = 1;
6093
6094                 /* Test Write Error at offset 4ec */
6095                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6096                         fail = 1;
6097         }
6098
6099         /* Restore values at offsets 0x4F0 and 0x7F0 */
6100         if (saved_4F0)
6101                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6102         if (saved_7F0)
6103                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6104
6105         *data = fail;
6106         return fail;
6107 }
6108
6109 /**
6110  * s2io_bist_test - invokes the MemBist test of the card .
6111  * @sp : private member of the device structure, which is a pointer to the
6112  * s2io_nic structure.
6113  * @data:variable that returns the result of each of the test conducted by
6114  * the driver.
6115  * Description:
6116  * This invokes the MemBist test of the card. We give around
6117  * 2 secs time for the Test to complete. If it's still not complete
6118  * within this peiod, we consider that the test failed.
6119  * Return value:
6120  * 0 on success and -1 on failure.
6121  */
6122
6123 static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6124 {
6125         u8 bist = 0;
6126         int cnt = 0, ret = -1;
6127
6128         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6129         bist |= PCI_BIST_START;
6130         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6131
6132         while (cnt < 20) {
6133                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6134                 if (!(bist & PCI_BIST_START)) {
6135                         *data = (bist & PCI_BIST_CODE_MASK);
6136                         ret = 0;
6137                         break;
6138                 }
6139                 msleep(100);
6140                 cnt++;
6141         }
6142
6143         return ret;
6144 }
6145
6146 /**
6147  * s2io-link_test - verifies the link state of the nic
6148  * @sp ; private member of the device structure, which is a pointer to the
6149  * s2io_nic structure.
6150  * @data: variable that returns the result of each of the test conducted by
6151  * the driver.
6152  * Description:
6153  * The function verifies the link state of the NIC and updates the input
6154  * argument 'data' appropriately.
6155  * Return value:
6156  * 0 on success.
6157  */
6158
6159 static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6160 {
6161         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6162         u64 val64;
6163
6164         val64 = readq(&bar0->adapter_status);
6165         if (!(LINK_IS_UP(val64)))
6166                 *data = 1;
6167         else
6168                 *data = 0;
6169
6170         return *data;
6171 }
6172
6173 /**
6174  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6175  * @sp - private member of the device structure, which is a pointer to the
6176  * s2io_nic structure.
6177  * @data - variable that returns the result of each of the test
6178  * conducted by the driver.
6179  * Description:
6180  *  This is one of the offline test that tests the read and write
6181  *  access to the RldRam chip on the NIC.
6182  * Return value:
6183  *  0 on success.
6184  */
6185
6186 static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6187 {
6188         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6189         u64 val64;
6190         int cnt, iteration = 0, test_fail = 0;
6191
6192         val64 = readq(&bar0->adapter_control);
6193         val64 &= ~ADAPTER_ECC_EN;
6194         writeq(val64, &bar0->adapter_control);
6195
6196         val64 = readq(&bar0->mc_rldram_test_ctrl);
6197         val64 |= MC_RLDRAM_TEST_MODE;
6198         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6199
6200         val64 = readq(&bar0->mc_rldram_mrs);
6201         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6202         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6203
6204         val64 |= MC_RLDRAM_MRS_ENABLE;
6205         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6206
6207         while (iteration < 2) {
6208                 val64 = 0x55555555aaaa0000ULL;
6209                 if (iteration == 1)
6210                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6211                 writeq(val64, &bar0->mc_rldram_test_d0);
6212
6213                 val64 = 0xaaaa5a5555550000ULL;
6214                 if (iteration == 1)
6215                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6216                 writeq(val64, &bar0->mc_rldram_test_d1);
6217
6218                 val64 = 0x55aaaaaaaa5a0000ULL;
6219                 if (iteration == 1)
6220                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6221                 writeq(val64, &bar0->mc_rldram_test_d2);
6222
6223                 val64 = (u64) (0x0000003ffffe0100ULL);
6224                 writeq(val64, &bar0->mc_rldram_test_add);
6225
6226                 val64 = MC_RLDRAM_TEST_MODE |
6227                         MC_RLDRAM_TEST_WRITE |
6228                         MC_RLDRAM_TEST_GO;
6229                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6230
6231                 for (cnt = 0; cnt < 5; cnt++) {
6232                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6233                         if (val64 & MC_RLDRAM_TEST_DONE)
6234                                 break;
6235                         msleep(200);
6236                 }
6237
6238                 if (cnt == 5)
6239                         break;
6240
6241                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6242                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6243
6244                 for (cnt = 0; cnt < 5; cnt++) {
6245                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6246                         if (val64 & MC_RLDRAM_TEST_DONE)
6247                                 break;
6248                         msleep(500);
6249                 }
6250
6251                 if (cnt == 5)
6252                         break;
6253
6254                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6255                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6256                         test_fail = 1;
6257
6258                 iteration++;
6259         }
6260
6261         *data = test_fail;
6262
6263         /* Bring the adapter out of test mode */
6264         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6265
6266         return test_fail;
6267 }
6268
6269 /**
6270  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6271  *  @sp : private member of the device structure, which is a pointer to the
6272  *  s2io_nic structure.
6273  *  @ethtest : pointer to a ethtool command specific structure that will be
6274  *  returned to the user.
6275  *  @data : variable that returns the result of each of the test
6276  * conducted by the driver.
6277  * Description:
6278  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6279  *  the health of the card.
6280  * Return value:
6281  *  void
6282  */
6283
6284 static void s2io_ethtool_test(struct net_device *dev,
6285                               struct ethtool_test *ethtest,
6286                               uint64_t *data)
6287 {
6288         struct s2io_nic *sp = netdev_priv(dev);
6289         int orig_state = netif_running(sp->dev);
6290
6291         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6292                 /* Offline Tests. */
6293                 if (orig_state)
6294                         s2io_close(sp->dev);
6295
6296                 if (s2io_register_test(sp, &data[0]))
6297                         ethtest->flags |= ETH_TEST_FL_FAILED;
6298
6299                 s2io_reset(sp);
6300
6301                 if (s2io_rldram_test(sp, &data[3]))
6302                         ethtest->flags |= ETH_TEST_FL_FAILED;
6303
6304                 s2io_reset(sp);
6305
6306                 if (s2io_eeprom_test(sp, &data[1]))
6307                         ethtest->flags |= ETH_TEST_FL_FAILED;
6308
6309                 if (s2io_bist_test(sp, &data[4]))
6310                         ethtest->flags |= ETH_TEST_FL_FAILED;
6311
6312                 if (orig_state)
6313                         s2io_open(sp->dev);
6314
6315                 data[2] = 0;
6316         } else {
6317                 /* Online Tests. */
6318                 if (!orig_state) {
6319                         DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6320                                   dev->name);
6321                         data[0] = -1;
6322                         data[1] = -1;
6323                         data[2] = -1;
6324                         data[3] = -1;
6325                         data[4] = -1;
6326                 }
6327
6328                 if (s2io_link_test(sp, &data[2]))
6329                         ethtest->flags |= ETH_TEST_FL_FAILED;
6330
6331                 data[0] = 0;
6332                 data[1] = 0;
6333                 data[3] = 0;
6334                 data[4] = 0;
6335         }
6336 }
6337
6338 static void s2io_get_ethtool_stats(struct net_device *dev,
6339                                    struct ethtool_stats *estats,
6340                                    u64 *tmp_stats)
6341 {
6342         int i = 0, k;
6343         struct s2io_nic *sp = netdev_priv(dev);
6344         struct stat_block *stats = sp->mac_control.stats_info;
6345         struct swStat *swstats = &stats->sw_stat;
6346         struct xpakStat *xstats = &stats->xpak_stat;
6347
6348         s2io_updt_stats(sp);
6349         tmp_stats[i++] =
6350                 (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6351                 le32_to_cpu(stats->tmac_frms);
6352         tmp_stats[i++] =
6353                 (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6354                 le32_to_cpu(stats->tmac_data_octets);
6355         tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6358                 le32_to_cpu(stats->tmac_mcst_frms);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6361                 le32_to_cpu(stats->tmac_bcst_frms);
6362         tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6363         tmp_stats[i++] =
6364                 (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6365                 le32_to_cpu(stats->tmac_ttl_octets);
6366         tmp_stats[i++] =
6367                 (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6368                 le32_to_cpu(stats->tmac_ucst_frms);
6369         tmp_stats[i++] =
6370                 (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6371                 le32_to_cpu(stats->tmac_nucst_frms);
6372         tmp_stats[i++] =
6373                 (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6374                 le32_to_cpu(stats->tmac_any_err_frms);
6375         tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6376         tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6377         tmp_stats[i++] =
6378                 (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6379                 le32_to_cpu(stats->tmac_vld_ip);
6380         tmp_stats[i++] =
6381                 (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6382                 le32_to_cpu(stats->tmac_drop_ip);
6383         tmp_stats[i++] =
6384                 (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6385                 le32_to_cpu(stats->tmac_icmp);
6386         tmp_stats[i++] =
6387                 (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6388                 le32_to_cpu(stats->tmac_rst_tcp);
6389         tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6390         tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6391                 le32_to_cpu(stats->tmac_udp);
6392         tmp_stats[i++] =
6393                 (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6394                 le32_to_cpu(stats->rmac_vld_frms);
6395         tmp_stats[i++] =
6396                 (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6397                 le32_to_cpu(stats->rmac_data_octets);
6398         tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6399         tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6400         tmp_stats[i++] =
6401                 (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6402                 le32_to_cpu(stats->rmac_vld_mcst_frms);
6403         tmp_stats[i++] =
6404                 (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6405                 le32_to_cpu(stats->rmac_vld_bcst_frms);
6406         tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6407         tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6408         tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6409         tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6410         tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6411         tmp_stats[i++] =
6412                 (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6413                 le32_to_cpu(stats->rmac_ttl_octets);
6414         tmp_stats[i++] =
6415                 (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6416                 | le32_to_cpu(stats->rmac_accepted_ucst_frms);
6417         tmp_stats[i++] =
6418                 (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6419                 << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6420         tmp_stats[i++] =
6421                 (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6422                 le32_to_cpu(stats->rmac_discarded_frms);
6423         tmp_stats[i++] =
6424                 (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6425                 << 32 | le32_to_cpu(stats->rmac_drop_events);
6426         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6427         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6428         tmp_stats[i++] =
6429                 (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6430                 le32_to_cpu(stats->rmac_usized_frms);
6431         tmp_stats[i++] =
6432                 (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6433                 le32_to_cpu(stats->rmac_osized_frms);
6434         tmp_stats[i++] =
6435                 (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6436                 le32_to_cpu(stats->rmac_frag_frms);
6437         tmp_stats[i++] =
6438                 (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6439                 le32_to_cpu(stats->rmac_jabber_frms);
6440         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6441         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6442         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6443         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6444         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6445         tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6446         tmp_stats[i++] =
6447                 (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6448                 le32_to_cpu(stats->rmac_ip);
6449         tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6450         tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6451         tmp_stats[i++] =
6452                 (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6453                 le32_to_cpu(stats->rmac_drop_ip);
6454         tmp_stats[i++] =
6455                 (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6456                 le32_to_cpu(stats->rmac_icmp);
6457         tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6458         tmp_stats[i++] =
6459                 (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6460                 le32_to_cpu(stats->rmac_udp);
6461         tmp_stats[i++] =
6462                 (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6463                 le32_to_cpu(stats->rmac_err_drp_udp);
6464         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6465         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6466         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6467         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6468         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6469         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6470         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6471         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6472         tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6473         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6474         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6475         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6476         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6477         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6478         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6479         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6480         tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6481         tmp_stats[i++] =
6482                 (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6483                 le32_to_cpu(stats->rmac_pause_cnt);
6484         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6485         tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6486         tmp_stats[i++] =
6487                 (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6488                 le32_to_cpu(stats->rmac_accepted_ip);
6489         tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6490         tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6491         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6492         tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6493         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6494         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6495         tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6496         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6497         tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6498         tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6499         tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6500         tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6501         tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6502         tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6503         tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6504         tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6505         tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6506         tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6507         tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6508
6509         /* Enhanced statistics exist only for Hercules */
6510         if (sp->device_type == XFRAME_II_DEVICE) {
6511                 tmp_stats[i++] =
6512                         le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6513                 tmp_stats[i++] =
6514                         le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6515                 tmp_stats[i++] =
6516                         le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6517                 tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6518                 tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6519                 tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6520                 tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6521                 tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6522                 tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6523                 tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6524                 tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6525                 tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6526                 tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6527                 tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6528                 tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6529                 tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6530         }
6531
6532         tmp_stats[i++] = 0;
6533         tmp_stats[i++] = swstats->single_ecc_errs;
6534         tmp_stats[i++] = swstats->double_ecc_errs;
6535         tmp_stats[i++] = swstats->parity_err_cnt;
6536         tmp_stats[i++] = swstats->serious_err_cnt;
6537         tmp_stats[i++] = swstats->soft_reset_cnt;
6538         tmp_stats[i++] = swstats->fifo_full_cnt;
6539         for (k = 0; k < MAX_RX_RINGS; k++)
6540                 tmp_stats[i++] = swstats->ring_full_cnt[k];
6541         tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6542         tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6543         tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6544         tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6545         tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6546         tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6547         tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6548         tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6549         tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6550         tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6551         tmp_stats[i++] = xstats->warn_laser_output_power_high;
6552         tmp_stats[i++] = xstats->warn_laser_output_power_low;
6553         tmp_stats[i++] = swstats->clubbed_frms_cnt;
6554         tmp_stats[i++] = swstats->sending_both;
6555         tmp_stats[i++] = swstats->outof_sequence_pkts;
6556         tmp_stats[i++] = swstats->flush_max_pkts;
6557         if (swstats->num_aggregations) {
6558                 u64 tmp = swstats->sum_avg_pkts_aggregated;
6559                 int count = 0;
6560                 /*
6561                  * Since 64-bit divide does not work on all platforms,
6562                  * do repeated subtraction.
6563                  */
6564                 while (tmp >= swstats->num_aggregations) {
6565                         tmp -= swstats->num_aggregations;
6566                         count++;
6567                 }
6568                 tmp_stats[i++] = count;
6569         } else
6570                 tmp_stats[i++] = 0;
6571         tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6572         tmp_stats[i++] = swstats->pci_map_fail_cnt;
6573         tmp_stats[i++] = swstats->watchdog_timer_cnt;
6574         tmp_stats[i++] = swstats->mem_allocated;
6575         tmp_stats[i++] = swstats->mem_freed;
6576         tmp_stats[i++] = swstats->link_up_cnt;
6577         tmp_stats[i++] = swstats->link_down_cnt;
6578         tmp_stats[i++] = swstats->link_up_time;
6579         tmp_stats[i++] = swstats->link_down_time;
6580
6581         tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6582         tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6583         tmp_stats[i++] = swstats->tx_parity_err_cnt;
6584         tmp_stats[i++] = swstats->tx_link_loss_cnt;
6585         tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6586
6587         tmp_stats[i++] = swstats->rx_parity_err_cnt;
6588         tmp_stats[i++] = swstats->rx_abort_cnt;
6589         tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6590         tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6591         tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6592         tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6593         tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6594         tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6595         tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6596         tmp_stats[i++] = swstats->tda_err_cnt;
6597         tmp_stats[i++] = swstats->pfc_err_cnt;
6598         tmp_stats[i++] = swstats->pcc_err_cnt;
6599         tmp_stats[i++] = swstats->tti_err_cnt;
6600         tmp_stats[i++] = swstats->tpa_err_cnt;
6601         tmp_stats[i++] = swstats->sm_err_cnt;
6602         tmp_stats[i++] = swstats->lso_err_cnt;
6603         tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6604         tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6605         tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6606         tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6607         tmp_stats[i++] = swstats->rc_err_cnt;
6608         tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6609         tmp_stats[i++] = swstats->rpa_err_cnt;
6610         tmp_stats[i++] = swstats->rda_err_cnt;
6611         tmp_stats[i++] = swstats->rti_err_cnt;
6612         tmp_stats[i++] = swstats->mc_err_cnt;
6613 }
6614
6615 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6616 {
6617         return XENA_REG_SPACE;
6618 }
6619
6620
6621 static int s2io_get_eeprom_len(struct net_device *dev)
6622 {
6623         return XENA_EEPROM_SPACE;
6624 }
6625
6626 static int s2io_get_sset_count(struct net_device *dev, int sset)
6627 {
6628         struct s2io_nic *sp = netdev_priv(dev);
6629
6630         switch (sset) {
6631         case ETH_SS_TEST:
6632                 return S2IO_TEST_LEN;
6633         case ETH_SS_STATS:
6634                 switch (sp->device_type) {
6635                 case XFRAME_I_DEVICE:
6636                         return XFRAME_I_STAT_LEN;
6637                 case XFRAME_II_DEVICE:
6638                         return XFRAME_II_STAT_LEN;
6639                 default:
6640                         return 0;
6641                 }
6642         default:
6643                 return -EOPNOTSUPP;
6644         }
6645 }
6646
6647 static void s2io_ethtool_get_strings(struct net_device *dev,
6648                                      u32 stringset, u8 *data)
6649 {
6650         int stat_size = 0;
6651         struct s2io_nic *sp = netdev_priv(dev);
6652
6653         switch (stringset) {
6654         case ETH_SS_TEST:
6655                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6656                 break;
6657         case ETH_SS_STATS:
6658                 stat_size = sizeof(ethtool_xena_stats_keys);
6659                 memcpy(data, &ethtool_xena_stats_keys, stat_size);
6660                 if (sp->device_type == XFRAME_II_DEVICE) {
6661                         memcpy(data + stat_size,
6662                                &ethtool_enhanced_stats_keys,
6663                                sizeof(ethtool_enhanced_stats_keys));
6664                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6665                 }
6666
6667                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6668                        sizeof(ethtool_driver_stats_keys));
6669         }
6670 }
6671
6672 static int s2io_set_features(struct net_device *dev, u32 features)
6673 {
6674         struct s2io_nic *sp = netdev_priv(dev);
6675         u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6676
6677         if (changed && netif_running(dev)) {
6678                 int rc;
6679
6680                 s2io_stop_all_tx_queue(sp);
6681                 s2io_card_down(sp);
6682                 dev->features = features;
6683                 rc = s2io_card_up(sp);
6684                 if (rc)
6685                         s2io_reset(sp);
6686                 else
6687                         s2io_start_all_tx_queue(sp);
6688
6689                 return rc ? rc : 1;
6690         }
6691
6692         return 0;
6693 }
6694
6695 static const struct ethtool_ops netdev_ethtool_ops = {
6696         .get_settings = s2io_ethtool_gset,
6697         .set_settings = s2io_ethtool_sset,
6698         .get_drvinfo = s2io_ethtool_gdrvinfo,
6699         .get_regs_len = s2io_ethtool_get_regs_len,
6700         .get_regs = s2io_ethtool_gregs,
6701         .get_link = ethtool_op_get_link,
6702         .get_eeprom_len = s2io_get_eeprom_len,
6703         .get_eeprom = s2io_ethtool_geeprom,
6704         .set_eeprom = s2io_ethtool_seeprom,
6705         .get_ringparam = s2io_ethtool_gringparam,
6706         .get_pauseparam = s2io_ethtool_getpause_data,
6707         .set_pauseparam = s2io_ethtool_setpause_data,
6708         .self_test = s2io_ethtool_test,
6709         .get_strings = s2io_ethtool_get_strings,
6710         .set_phys_id = s2io_ethtool_set_led,
6711         .get_ethtool_stats = s2io_get_ethtool_stats,
6712         .get_sset_count = s2io_get_sset_count,
6713 };
6714
6715 /**
6716  *  s2io_ioctl - Entry point for the Ioctl
6717  *  @dev :  Device pointer.
6718  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6719  *  a proprietary structure used to pass information to the driver.
6720  *  @cmd :  This is used to distinguish between the different commands that
6721  *  can be passed to the IOCTL functions.
6722  *  Description:
6723  *  Currently there are no special functionality supported in IOCTL, hence
6724  *  function always return EOPNOTSUPPORTED
6725  */
6726
6727 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6728 {
6729         return -EOPNOTSUPP;
6730 }
6731
6732 /**
6733  *  s2io_change_mtu - entry point to change MTU size for the device.
6734  *   @dev : device pointer.
6735  *   @new_mtu : the new MTU size for the device.
6736  *   Description: A driver entry point to change MTU size for the device.
6737  *   Before changing the MTU the device must be stopped.
6738  *  Return value:
6739  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6740  *   file on failure.
6741  */
6742
6743 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6744 {
6745         struct s2io_nic *sp = netdev_priv(dev);
6746         int ret = 0;
6747
6748         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6749                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6750                 return -EPERM;
6751         }
6752
6753         dev->mtu = new_mtu;
6754         if (netif_running(dev)) {
6755                 s2io_stop_all_tx_queue(sp);
6756                 s2io_card_down(sp);
6757                 ret = s2io_card_up(sp);
6758                 if (ret) {
6759                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6760                                   __func__);
6761                         return ret;
6762                 }
6763                 s2io_wake_all_tx_queue(sp);
6764         } else { /* Device is down */
6765                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6766                 u64 val64 = new_mtu;
6767
6768                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6769         }
6770
6771         return ret;
6772 }
6773
6774 /**
6775  * s2io_set_link - Set the LInk status
6776  * @data: long pointer to device private structue
6777  * Description: Sets the link status for the adapter
6778  */
6779
6780 static void s2io_set_link(struct work_struct *work)
6781 {
6782         struct s2io_nic *nic = container_of(work, struct s2io_nic,
6783                                             set_link_task);
6784         struct net_device *dev = nic->dev;
6785         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6786         register u64 val64;
6787         u16 subid;
6788
6789         rtnl_lock();
6790
6791         if (!netif_running(dev))
6792                 goto out_unlock;
6793
6794         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6795                 /* The card is being reset, no point doing anything */
6796                 goto out_unlock;
6797         }
6798
6799         subid = nic->pdev->subsystem_device;
6800         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6801                 /*
6802                  * Allow a small delay for the NICs self initiated
6803                  * cleanup to complete.
6804                  */
6805                 msleep(100);
6806         }
6807
6808         val64 = readq(&bar0->adapter_status);
6809         if (LINK_IS_UP(val64)) {
6810                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6811                         if (verify_xena_quiescence(nic)) {
6812                                 val64 = readq(&bar0->adapter_control);
6813                                 val64 |= ADAPTER_CNTL_EN;
6814                                 writeq(val64, &bar0->adapter_control);
6815                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6816                                             nic->device_type, subid)) {
6817                                         val64 = readq(&bar0->gpio_control);
6818                                         val64 |= GPIO_CTRL_GPIO_0;
6819                                         writeq(val64, &bar0->gpio_control);
6820                                         val64 = readq(&bar0->gpio_control);
6821                                 } else {
6822                                         val64 |= ADAPTER_LED_ON;
6823                                         writeq(val64, &bar0->adapter_control);
6824                                 }
6825                                 nic->device_enabled_once = true;
6826                         } else {
6827                                 DBG_PRINT(ERR_DBG,
6828                                           "%s: Error: device is not Quiescent\n",
6829                                           dev->name);
6830                                 s2io_stop_all_tx_queue(nic);
6831                         }
6832                 }
6833                 val64 = readq(&bar0->adapter_control);
6834                 val64 |= ADAPTER_LED_ON;
6835                 writeq(val64, &bar0->adapter_control);
6836                 s2io_link(nic, LINK_UP);
6837         } else {
6838                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6839                                                       subid)) {
6840                         val64 = readq(&bar0->gpio_control);
6841                         val64 &= ~GPIO_CTRL_GPIO_0;
6842                         writeq(val64, &bar0->gpio_control);
6843                         val64 = readq(&bar0->gpio_control);
6844                 }
6845                 /* turn off LED */
6846                 val64 = readq(&bar0->adapter_control);
6847                 val64 = val64 & (~ADAPTER_LED_ON);
6848                 writeq(val64, &bar0->adapter_control);
6849                 s2io_link(nic, LINK_DOWN);
6850         }
6851         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6852
6853 out_unlock:
6854         rtnl_unlock();
6855 }
6856
6857 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6858                                   struct buffAdd *ba,
6859                                   struct sk_buff **skb, u64 *temp0, u64 *temp1,
6860                                   u64 *temp2, int size)
6861 {
6862         struct net_device *dev = sp->dev;
6863         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6864
6865         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6866                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6867                 /* allocate skb */
6868                 if (*skb) {
6869                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6870                         /*
6871                          * As Rx frame are not going to be processed,
6872                          * using same mapped address for the Rxd
6873                          * buffer pointer
6874                          */
6875                         rxdp1->Buffer0_ptr = *temp0;
6876                 } else {
6877                         *skb = dev_alloc_skb(size);
6878                         if (!(*skb)) {
6879                                 DBG_PRINT(INFO_DBG,
6880                                           "%s: Out of memory to allocate %s\n",
6881                                           dev->name, "1 buf mode SKBs");
6882                                 stats->mem_alloc_fail_cnt++;
6883                                 return -ENOMEM ;
6884                         }
6885                         stats->mem_allocated += (*skb)->truesize;
6886                         /* storing the mapped addr in a temp variable
6887                          * such it will be used for next rxd whose
6888                          * Host Control is NULL
6889                          */
6890                         rxdp1->Buffer0_ptr = *temp0 =
6891                                 pci_map_single(sp->pdev, (*skb)->data,
6892                                                size - NET_IP_ALIGN,
6893                                                PCI_DMA_FROMDEVICE);
6894                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6895                                 goto memalloc_failed;
6896                         rxdp->Host_Control = (unsigned long) (*skb);
6897                 }
6898         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6899                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6900                 /* Two buffer Mode */
6901                 if (*skb) {
6902                         rxdp3->Buffer2_ptr = *temp2;
6903                         rxdp3->Buffer0_ptr = *temp0;
6904                         rxdp3->Buffer1_ptr = *temp1;
6905                 } else {
6906                         *skb = dev_alloc_skb(size);
6907                         if (!(*skb)) {
6908                                 DBG_PRINT(INFO_DBG,
6909                                           "%s: Out of memory to allocate %s\n",
6910                                           dev->name,
6911                                           "2 buf mode SKBs");
6912                                 stats->mem_alloc_fail_cnt++;
6913                                 return -ENOMEM;
6914                         }
6915                         stats->mem_allocated += (*skb)->truesize;
6916                         rxdp3->Buffer2_ptr = *temp2 =
6917                                 pci_map_single(sp->pdev, (*skb)->data,
6918                                                dev->mtu + 4,
6919                                                PCI_DMA_FROMDEVICE);
6920                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6921                                 goto memalloc_failed;
6922                         rxdp3->Buffer0_ptr = *temp0 =
6923                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6924                                                PCI_DMA_FROMDEVICE);
6925                         if (pci_dma_mapping_error(sp->pdev,
6926                                                   rxdp3->Buffer0_ptr)) {
6927                                 pci_unmap_single(sp->pdev,
6928                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6929                                                  dev->mtu + 4,
6930                                                  PCI_DMA_FROMDEVICE);
6931                                 goto memalloc_failed;
6932                         }
6933                         rxdp->Host_Control = (unsigned long) (*skb);
6934
6935                         /* Buffer-1 will be dummy buffer not used */
6936                         rxdp3->Buffer1_ptr = *temp1 =
6937                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6938                                                PCI_DMA_FROMDEVICE);
6939                         if (pci_dma_mapping_error(sp->pdev,
6940                                                   rxdp3->Buffer1_ptr)) {
6941                                 pci_unmap_single(sp->pdev,
6942                                                  (dma_addr_t)rxdp3->Buffer0_ptr,
6943                                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
6944                                 pci_unmap_single(sp->pdev,
6945                                                  (dma_addr_t)rxdp3->Buffer2_ptr,
6946                                                  dev->mtu + 4,
6947                                                  PCI_DMA_FROMDEVICE);
6948                                 goto memalloc_failed;
6949                         }
6950                 }
6951         }
6952         return 0;
6953
6954 memalloc_failed:
6955         stats->pci_map_fail_cnt++;
6956         stats->mem_freed += (*skb)->truesize;
6957         dev_kfree_skb(*skb);
6958         return -ENOMEM;
6959 }
6960
6961 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6962                                 int size)
6963 {
6964         struct net_device *dev = sp->dev;
6965         if (sp->rxd_mode == RXD_MODE_1) {
6966                 rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6967         } else if (sp->rxd_mode == RXD_MODE_3B) {
6968                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6969                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6970                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6971         }
6972 }
6973
6974 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6975 {
6976         int i, j, k, blk_cnt = 0, size;
6977         struct config_param *config = &sp->config;
6978         struct mac_info *mac_control = &sp->mac_control;
6979         struct net_device *dev = sp->dev;
6980         struct RxD_t *rxdp = NULL;
6981         struct sk_buff *skb = NULL;
6982         struct buffAdd *ba = NULL;
6983         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6984
6985         /* Calculate the size based on ring mode */
6986         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6987                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6988         if (sp->rxd_mode == RXD_MODE_1)
6989                 size += NET_IP_ALIGN;
6990         else if (sp->rxd_mode == RXD_MODE_3B)
6991                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6992
6993         for (i = 0; i < config->rx_ring_num; i++) {
6994                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6995                 struct ring_info *ring = &mac_control->rings[i];
6996
6997                 blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6998
6999                 for (j = 0; j < blk_cnt; j++) {
7000                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
7001                                 rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
7002                                 if (sp->rxd_mode == RXD_MODE_3B)
7003                                         ba = &ring->ba[j][k];
7004                                 if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
7005                                                            (u64 *)&temp0_64,
7006                                                            (u64 *)&temp1_64,
7007                                                            (u64 *)&temp2_64,
7008                                                            size) == -ENOMEM) {
7009                                         return 0;
7010                                 }
7011
7012                                 set_rxd_buffer_size(sp, rxdp, size);
7013                                 wmb();
7014                                 /* flip the Ownership bit to Hardware */
7015                                 rxdp->Control_1 |= RXD_OWN_XENA;
7016                         }
7017                 }
7018         }
7019         return 0;
7020
7021 }
7022
7023 static int s2io_add_isr(struct s2io_nic *sp)
7024 {
7025         int ret = 0;
7026         struct net_device *dev = sp->dev;
7027         int err = 0;
7028
7029         if (sp->config.intr_type == MSI_X)
7030                 ret = s2io_enable_msi_x(sp);
7031         if (ret) {
7032                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7033                 sp->config.intr_type = INTA;
7034         }
7035
7036         /*
7037          * Store the values of the MSIX table in
7038          * the struct s2io_nic structure
7039          */
7040         store_xmsi_data(sp);
7041
7042         /* After proper initialization of H/W, register ISR */
7043         if (sp->config.intr_type == MSI_X) {
7044                 int i, msix_rx_cnt = 0;
7045
7046                 for (i = 0; i < sp->num_entries; i++) {
7047                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7048                                 if (sp->s2io_entries[i].type ==
7049                                     MSIX_RING_TYPE) {
7050                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7051                                                 dev->name, i);
7052                                         err = request_irq(sp->entries[i].vector,
7053                                                           s2io_msix_ring_handle,
7054                                                           0,
7055                                                           sp->desc[i],
7056                                                           sp->s2io_entries[i].arg);
7057                                 } else if (sp->s2io_entries[i].type ==
7058                                            MSIX_ALARM_TYPE) {
7059                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7060                                                 dev->name, i);
7061                                         err = request_irq(sp->entries[i].vector,
7062                                                           s2io_msix_fifo_handle,
7063                                                           0,
7064                                                           sp->desc[i],
7065                                                           sp->s2io_entries[i].arg);
7066
7067                                 }
7068                                 /* if either data or addr is zero print it. */
7069                                 if (!(sp->msix_info[i].addr &&
7070                                       sp->msix_info[i].data)) {
7071                                         DBG_PRINT(ERR_DBG,
7072                                                   "%s @Addr:0x%llx Data:0x%llx\n",
7073                                                   sp->desc[i],
7074                                                   (unsigned long long)
7075                                                   sp->msix_info[i].addr,
7076                                                   (unsigned long long)
7077                                                   ntohl(sp->msix_info[i].data));
7078                                 } else
7079                                         msix_rx_cnt++;
7080                                 if (err) {
7081                                         remove_msix_isr(sp);
7082
7083                                         DBG_PRINT(ERR_DBG,
7084                                                   "%s:MSI-X-%d registration "
7085                                                   "failed\n", dev->name, i);
7086
7087                                         DBG_PRINT(ERR_DBG,
7088                                                   "%s: Defaulting to INTA\n",
7089                                                   dev->name);
7090                                         sp->config.intr_type = INTA;
7091                                         break;
7092                                 }
7093                                 sp->s2io_entries[i].in_use =
7094                                         MSIX_REGISTERED_SUCCESS;
7095                         }
7096                 }
7097                 if (!err) {
7098                         pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7099                         DBG_PRINT(INFO_DBG,
7100                                   "MSI-X-TX entries enabled through alarm vector\n");
7101                 }
7102         }
7103         if (sp->config.intr_type == INTA) {
7104                 err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7105                                   sp->name, dev);
7106                 if (err) {
7107                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7108                                   dev->name);
7109                         return -1;
7110                 }
7111         }
7112         return 0;
7113 }
7114
7115 static void s2io_rem_isr(struct s2io_nic *sp)
7116 {
7117         if (sp->config.intr_type == MSI_X)
7118                 remove_msix_isr(sp);
7119         else
7120                 remove_inta_isr(sp);
7121 }
7122
7123 static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7124 {
7125         int cnt = 0;
7126         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7127         register u64 val64 = 0;
7128         struct config_param *config;
7129         config = &sp->config;
7130
7131         if (!is_s2io_card_up(sp))
7132                 return;
7133
7134         del_timer_sync(&sp->alarm_timer);
7135         /* If s2io_set_link task is executing, wait till it completes. */
7136         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7137                 msleep(50);
7138         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7139
7140         /* Disable napi */
7141         if (sp->config.napi) {
7142                 int off = 0;
7143                 if (config->intr_type ==  MSI_X) {
7144                         for (; off < sp->config.rx_ring_num; off++)
7145                                 napi_disable(&sp->mac_control.rings[off].napi);
7146                 }
7147                 else
7148                         napi_disable(&sp->napi);
7149         }
7150
7151         /* disable Tx and Rx traffic on the NIC */
7152         if (do_io)
7153                 stop_nic(sp);
7154
7155         s2io_rem_isr(sp);
7156
7157         /* stop the tx queue, indicate link down */
7158         s2io_link(sp, LINK_DOWN);
7159
7160         /* Check if the device is Quiescent and then Reset the NIC */
7161         while (do_io) {
7162                 /* As per the HW requirement we need to replenish the
7163                  * receive buffer to avoid the ring bump. Since there is
7164                  * no intention of processing the Rx frame at this pointwe are
7165                  * just settting the ownership bit of rxd in Each Rx
7166                  * ring to HW and set the appropriate buffer size
7167                  * based on the ring mode
7168                  */
7169                 rxd_owner_bit_reset(sp);
7170
7171                 val64 = readq(&bar0->adapter_status);
7172                 if (verify_xena_quiescence(sp)) {
7173                         if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7174                                 break;
7175                 }
7176
7177                 msleep(50);
7178                 cnt++;
7179                 if (cnt == 10) {
7180                         DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7181                                   "adapter status reads 0x%llx\n",
7182                                   (unsigned long long)val64);
7183                         break;
7184                 }
7185         }
7186         if (do_io)
7187                 s2io_reset(sp);
7188
7189         /* Free all Tx buffers */
7190         free_tx_buffers(sp);
7191
7192         /* Free all Rx buffers */
7193         free_rx_buffers(sp);
7194
7195         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7196 }
7197
7198 static void s2io_card_down(struct s2io_nic *sp)
7199 {
7200         do_s2io_card_down(sp, 1);
7201 }
7202
7203 static int s2io_card_up(struct s2io_nic *sp)
7204 {
7205         int i, ret = 0;
7206         struct config_param *config;
7207         struct mac_info *mac_control;
7208         struct net_device *dev = (struct net_device *)sp->dev;
7209         u16 interruptible;
7210
7211         /* Initialize the H/W I/O registers */
7212         ret = init_nic(sp);
7213         if (ret != 0) {
7214                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7215                           dev->name);
7216                 if (ret != -EIO)
7217                         s2io_reset(sp);
7218                 return ret;
7219         }
7220
7221         /*
7222          * Initializing the Rx buffers. For now we are considering only 1
7223          * Rx ring and initializing buffers into 30 Rx blocks
7224          */
7225         config = &sp->config;
7226         mac_control = &sp->mac_control;
7227
7228         for (i = 0; i < config->rx_ring_num; i++) {
7229                 struct ring_info *ring = &mac_control->rings[i];
7230
7231                 ring->mtu = dev->mtu;
7232                 ring->lro = !!(dev->features & NETIF_F_LRO);
7233                 ret = fill_rx_buffers(sp, ring, 1);
7234                 if (ret) {
7235                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7236                                   dev->name);
7237                         s2io_reset(sp);
7238                         free_rx_buffers(sp);
7239                         return -ENOMEM;
7240                 }
7241                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7242                           ring->rx_bufs_left);
7243         }
7244
7245         /* Initialise napi */
7246         if (config->napi) {
7247                 if (config->intr_type ==  MSI_X) {
7248                         for (i = 0; i < sp->config.rx_ring_num; i++)
7249                                 napi_enable(&sp->mac_control.rings[i].napi);
7250                 } else {
7251                         napi_enable(&sp->napi);
7252                 }
7253         }
7254
7255         /* Maintain the state prior to the open */
7256         if (sp->promisc_flg)
7257                 sp->promisc_flg = 0;
7258         if (sp->m_cast_flg) {
7259                 sp->m_cast_flg = 0;
7260                 sp->all_multi_pos = 0;
7261         }
7262
7263         /* Setting its receive mode */
7264         s2io_set_multicast(dev);
7265
7266         if (dev->features & NETIF_F_LRO) {
7267                 /* Initialize max aggregatable pkts per session based on MTU */
7268                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7269                 /* Check if we can use (if specified) user provided value */
7270                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7271                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7272         }
7273
7274         /* Enable Rx Traffic and interrupts on the NIC */
7275         if (start_nic(sp)) {
7276                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7277                 s2io_reset(sp);
7278                 free_rx_buffers(sp);
7279                 return -ENODEV;
7280         }
7281
7282         /* Add interrupt service routine */
7283         if (s2io_add_isr(sp) != 0) {
7284                 if (sp->config.intr_type == MSI_X)
7285                         s2io_rem_isr(sp);
7286                 s2io_reset(sp);
7287                 free_rx_buffers(sp);
7288                 return -ENODEV;
7289         }
7290
7291         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7292
7293         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7294
7295         /*  Enable select interrupts */
7296         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7297         if (sp->config.intr_type != INTA) {
7298                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7299                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7300         } else {
7301                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7302                 interruptible |= TX_PIC_INTR;
7303                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7304         }
7305
7306         return 0;
7307 }
7308
7309 /**
7310  * s2io_restart_nic - Resets the NIC.
7311  * @data : long pointer to the device private structure
7312  * Description:
7313  * This function is scheduled to be run by the s2io_tx_watchdog
7314  * function after 0.5 secs to reset the NIC. The idea is to reduce
7315  * the run time of the watch dog routine which is run holding a
7316  * spin lock.
7317  */
7318
7319 static void s2io_restart_nic(struct work_struct *work)
7320 {
7321         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7322         struct net_device *dev = sp->dev;
7323
7324         rtnl_lock();
7325
7326         if (!netif_running(dev))
7327                 goto out_unlock;
7328
7329         s2io_card_down(sp);
7330         if (s2io_card_up(sp)) {
7331                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7332         }
7333         s2io_wake_all_tx_queue(sp);
7334         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7335 out_unlock:
7336         rtnl_unlock();
7337 }
7338
7339 /**
7340  *  s2io_tx_watchdog - Watchdog for transmit side.
7341  *  @dev : Pointer to net device structure
7342  *  Description:
7343  *  This function is triggered if the Tx Queue is stopped
7344  *  for a pre-defined amount of time when the Interface is still up.
7345  *  If the Interface is jammed in such a situation, the hardware is
7346  *  reset (by s2io_close) and restarted again (by s2io_open) to
7347  *  overcome any problem that might have been caused in the hardware.
7348  *  Return value:
7349  *  void
7350  */
7351
7352 static void s2io_tx_watchdog(struct net_device *dev)
7353 {
7354         struct s2io_nic *sp = netdev_priv(dev);
7355         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7356
7357         if (netif_carrier_ok(dev)) {
7358                 swstats->watchdog_timer_cnt++;
7359                 schedule_work(&sp->rst_timer_task);
7360                 swstats->soft_reset_cnt++;
7361         }
7362 }
7363
7364 /**
7365  *   rx_osm_handler - To perform some OS related operations on SKB.
7366  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7367  *   @skb : the socket buffer pointer.
7368  *   @len : length of the packet
7369  *   @cksum : FCS checksum of the frame.
7370  *   @ring_no : the ring from which this RxD was extracted.
7371  *   Description:
7372  *   This function is called by the Rx interrupt serivce routine to perform
7373  *   some OS related operations on the SKB before passing it to the upper
7374  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7375  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7376  *   to the upper layer. If the checksum is wrong, it increments the Rx
7377  *   packet error count, frees the SKB and returns error.
7378  *   Return value:
7379  *   SUCCESS on success and -1 on failure.
7380  */
7381 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7382 {
7383         struct s2io_nic *sp = ring_data->nic;
7384         struct net_device *dev = (struct net_device *)ring_data->dev;
7385         struct sk_buff *skb = (struct sk_buff *)
7386                 ((unsigned long)rxdp->Host_Control);
7387         int ring_no = ring_data->ring_no;
7388         u16 l3_csum, l4_csum;
7389         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7390         struct lro *uninitialized_var(lro);
7391         u8 err_mask;
7392         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7393
7394         skb->dev = dev;
7395
7396         if (err) {
7397                 /* Check for parity error */
7398                 if (err & 0x1)
7399                         swstats->parity_err_cnt++;
7400
7401                 err_mask = err >> 48;
7402                 switch (err_mask) {
7403                 case 1:
7404                         swstats->rx_parity_err_cnt++;
7405                         break;
7406
7407                 case 2:
7408                         swstats->rx_abort_cnt++;
7409                         break;
7410
7411                 case 3:
7412                         swstats->rx_parity_abort_cnt++;
7413                         break;
7414
7415                 case 4:
7416                         swstats->rx_rda_fail_cnt++;
7417                         break;
7418
7419                 case 5:
7420                         swstats->rx_unkn_prot_cnt++;
7421                         break;
7422
7423                 case 6:
7424                         swstats->rx_fcs_err_cnt++;
7425                         break;
7426
7427                 case 7:
7428                         swstats->rx_buf_size_err_cnt++;
7429                         break;
7430
7431                 case 8:
7432                         swstats->rx_rxd_corrupt_cnt++;
7433                         break;
7434
7435                 case 15:
7436                         swstats->rx_unkn_err_cnt++;
7437                         break;
7438                 }
7439                 /*
7440                  * Drop the packet if bad transfer code. Exception being
7441                  * 0x5, which could be due to unsupported IPv6 extension header.
7442                  * In this case, we let stack handle the packet.
7443                  * Note that in this case, since checksum will be incorrect,
7444                  * stack will validate the same.
7445                  */
7446                 if (err_mask != 0x5) {
7447                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7448                                   dev->name, err_mask);
7449                         dev->stats.rx_crc_errors++;
7450                         swstats->mem_freed
7451                                 += skb->truesize;
7452                         dev_kfree_skb(skb);
7453                         ring_data->rx_bufs_left -= 1;
7454                         rxdp->Host_Control = 0;
7455                         return 0;
7456                 }
7457         }
7458
7459         rxdp->Host_Control = 0;
7460         if (sp->rxd_mode == RXD_MODE_1) {
7461                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7462
7463                 skb_put(skb, len);
7464         } else if (sp->rxd_mode == RXD_MODE_3B) {
7465                 int get_block = ring_data->rx_curr_get_info.block_index;
7466                 int get_off = ring_data->rx_curr_get_info.offset;
7467                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7468                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7469                 unsigned char *buff = skb_push(skb, buf0_len);
7470
7471                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7472                 memcpy(buff, ba->ba_0, buf0_len);
7473                 skb_put(skb, buf2_len);
7474         }
7475
7476         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7477             ((!ring_data->lro) ||
7478              (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7479             (dev->features & NETIF_F_RXCSUM)) {
7480                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7481                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7482                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7483                         /*
7484                          * NIC verifies if the Checksum of the received
7485                          * frame is Ok or not and accordingly returns
7486                          * a flag in the RxD.
7487                          */
7488                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7489                         if (ring_data->lro) {
7490                                 u32 tcp_len = 0;
7491                                 u8 *tcp;
7492                                 int ret = 0;
7493
7494                                 ret = s2io_club_tcp_session(ring_data,
7495                                                             skb->data, &tcp,
7496                                                             &tcp_len, &lro,
7497                                                             rxdp, sp);
7498                                 switch (ret) {
7499                                 case 3: /* Begin anew */
7500                                         lro->parent = skb;
7501                                         goto aggregate;
7502                                 case 1: /* Aggregate */
7503                                         lro_append_pkt(sp, lro, skb, tcp_len);
7504                                         goto aggregate;
7505                                 case 4: /* Flush session */
7506                                         lro_append_pkt(sp, lro, skb, tcp_len);
7507                                         queue_rx_frame(lro->parent,
7508                                                        lro->vlan_tag);
7509                                         clear_lro_session(lro);
7510                                         swstats->flush_max_pkts++;
7511                                         goto aggregate;
7512                                 case 2: /* Flush both */
7513                                         lro->parent->data_len = lro->frags_len;
7514                                         swstats->sending_both++;
7515                                         queue_rx_frame(lro->parent,
7516                                                        lro->vlan_tag);
7517                                         clear_lro_session(lro);
7518                                         goto send_up;
7519                                 case 0: /* sessions exceeded */
7520                                 case -1: /* non-TCP or not L2 aggregatable */
7521                                 case 5: /*
7522                                          * First pkt in session not
7523                                          * L3/L4 aggregatable
7524                                          */
7525                                         break;
7526                                 default:
7527                                         DBG_PRINT(ERR_DBG,
7528                                                   "%s: Samadhana!!\n",
7529                                                   __func__);
7530                                         BUG();
7531                                 }
7532                         }
7533                 } else {
7534                         /*
7535                          * Packet with erroneous checksum, let the
7536                          * upper layers deal with it.
7537                          */
7538                         skb_checksum_none_assert(skb);
7539                 }
7540         } else
7541                 skb_checksum_none_assert(skb);
7542
7543         swstats->mem_freed += skb->truesize;
7544 send_up:
7545         skb_record_rx_queue(skb, ring_no);
7546         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7547 aggregate:
7548         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7549         return SUCCESS;
7550 }
7551
7552 /**
7553  *  s2io_link - stops/starts the Tx queue.
7554  *  @sp : private member of the device structure, which is a pointer to the
7555  *  s2io_nic structure.
7556  *  @link : inidicates whether link is UP/DOWN.
7557  *  Description:
7558  *  This function stops/starts the Tx queue depending on whether the link
7559  *  status of the NIC is is down or up. This is called by the Alarm
7560  *  interrupt handler whenever a link change interrupt comes up.
7561  *  Return value:
7562  *  void.
7563  */
7564
7565 static void s2io_link(struct s2io_nic *sp, int link)
7566 {
7567         struct net_device *dev = (struct net_device *)sp->dev;
7568         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7569
7570         if (link != sp->last_link_state) {
7571                 init_tti(sp, link);
7572                 if (link == LINK_DOWN) {
7573                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7574                         s2io_stop_all_tx_queue(sp);
7575                         netif_carrier_off(dev);
7576                         if (swstats->link_up_cnt)
7577                                 swstats->link_up_time =
7578                                         jiffies - sp->start_time;
7579                         swstats->link_down_cnt++;
7580                 } else {
7581                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7582                         if (swstats->link_down_cnt)
7583                                 swstats->link_down_time =
7584                                         jiffies - sp->start_time;
7585                         swstats->link_up_cnt++;
7586                         netif_carrier_on(dev);
7587                         s2io_wake_all_tx_queue(sp);
7588                 }
7589         }
7590         sp->last_link_state = link;
7591         sp->start_time = jiffies;
7592 }
7593
7594 /**
7595  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7596  *  @sp : private member of the device structure, which is a pointer to the
7597  *  s2io_nic structure.
7598  *  Description:
7599  *  This function initializes a few of the PCI and PCI-X configuration registers
7600  *  with recommended values.
7601  *  Return value:
7602  *  void
7603  */
7604
7605 static void s2io_init_pci(struct s2io_nic *sp)
7606 {
7607         u16 pci_cmd = 0, pcix_cmd = 0;
7608
7609         /* Enable Data Parity Error Recovery in PCI-X command register. */
7610         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611                              &(pcix_cmd));
7612         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613                               (pcix_cmd | 1));
7614         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7615                              &(pcix_cmd));
7616
7617         /* Set the PErr Response bit in PCI command register. */
7618         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7619         pci_write_config_word(sp->pdev, PCI_COMMAND,
7620                               (pci_cmd | PCI_COMMAND_PARITY));
7621         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7622 }
7623
7624 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7625                             u8 *dev_multiq)
7626 {
7627         int i;
7628
7629         if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7630                 DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7631                           "(%d) not supported\n", tx_fifo_num);
7632
7633                 if (tx_fifo_num < 1)
7634                         tx_fifo_num = 1;
7635                 else
7636                         tx_fifo_num = MAX_TX_FIFOS;
7637
7638                 DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7639         }
7640
7641         if (multiq)
7642                 *dev_multiq = multiq;
7643
7644         if (tx_steering_type && (1 == tx_fifo_num)) {
7645                 if (tx_steering_type != TX_DEFAULT_STEERING)
7646                         DBG_PRINT(ERR_DBG,
7647                                   "Tx steering is not supported with "
7648                                   "one fifo. Disabling Tx steering.\n");
7649                 tx_steering_type = NO_STEERING;
7650         }
7651
7652         if ((tx_steering_type < NO_STEERING) ||
7653             (tx_steering_type > TX_DEFAULT_STEERING)) {
7654                 DBG_PRINT(ERR_DBG,
7655                           "Requested transmit steering not supported\n");
7656                 DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7657                 tx_steering_type = NO_STEERING;
7658         }
7659
7660         if (rx_ring_num > MAX_RX_RINGS) {
7661                 DBG_PRINT(ERR_DBG,
7662                           "Requested number of rx rings not supported\n");
7663                 DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7664                           MAX_RX_RINGS);
7665                 rx_ring_num = MAX_RX_RINGS;
7666         }
7667
7668         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7669                 DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7670                           "Defaulting to INTA\n");
7671                 *dev_intr_type = INTA;
7672         }
7673
7674         if ((*dev_intr_type == MSI_X) &&
7675             ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7676              (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7677                 DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7678                           "Defaulting to INTA\n");
7679                 *dev_intr_type = INTA;
7680         }
7681
7682         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7683                 DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7684                 DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7685                 rx_ring_mode = 1;
7686         }
7687
7688         for (i = 0; i < MAX_RX_RINGS; i++)
7689                 if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7690                         DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7691                                   "supported\nDefaulting to %d\n",
7692                                   MAX_RX_BLOCKS_PER_RING);
7693                         rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7694                 }
7695
7696         return SUCCESS;
7697 }
7698
7699 /**
7700  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7701  * or Traffic class respectively.
7702  * @nic: device private variable
7703  * Description: The function configures the receive steering to
7704  * desired receive ring.
7705  * Return Value:  SUCCESS on success and
7706  * '-1' on failure (endian settings incorrect).
7707  */
7708 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7709 {
7710         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7711         register u64 val64 = 0;
7712
7713         if (ds_codepoint > 63)
7714                 return FAILURE;
7715
7716         val64 = RTS_DS_MEM_DATA(ring);
7717         writeq(val64, &bar0->rts_ds_mem_data);
7718
7719         val64 = RTS_DS_MEM_CTRL_WE |
7720                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7721                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7722
7723         writeq(val64, &bar0->rts_ds_mem_ctrl);
7724
7725         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7726                                      RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7727                                      S2IO_BIT_RESET);
7728 }
7729
7730 static const struct net_device_ops s2io_netdev_ops = {
7731         .ndo_open               = s2io_open,
7732         .ndo_stop               = s2io_close,
7733         .ndo_get_stats          = s2io_get_stats,
7734         .ndo_start_xmit         = s2io_xmit,
7735         .ndo_validate_addr      = eth_validate_addr,
7736         .ndo_set_multicast_list = s2io_set_multicast,
7737         .ndo_do_ioctl           = s2io_ioctl,
7738         .ndo_set_mac_address    = s2io_set_mac_addr,
7739         .ndo_change_mtu         = s2io_change_mtu,
7740         .ndo_set_features       = s2io_set_features,
7741         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7742         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7743         .ndo_tx_timeout         = s2io_tx_watchdog,
7744 #ifdef CONFIG_NET_POLL_CONTROLLER
7745         .ndo_poll_controller    = s2io_netpoll,
7746 #endif
7747 };
7748
7749 /**
7750  *  s2io_init_nic - Initialization of the adapter .
7751  *  @pdev : structure containing the PCI related information of the device.
7752  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7753  *  Description:
7754  *  The function initializes an adapter identified by the pci_dec structure.
7755  *  All OS related initialization including memory and device structure and
7756  *  initlaization of the device private variable is done. Also the swapper
7757  *  control register is initialized to enable read and write into the I/O
7758  *  registers of the device.
7759  *  Return value:
7760  *  returns 0 on success and negative on failure.
7761  */
7762
7763 static int __devinit
7764 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7765 {
7766         struct s2io_nic *sp;
7767         struct net_device *dev;
7768         int i, j, ret;
7769         int dma_flag = false;
7770         u32 mac_up, mac_down;
7771         u64 val64 = 0, tmp64 = 0;
7772         struct XENA_dev_config __iomem *bar0 = NULL;
7773         u16 subid;
7774         struct config_param *config;
7775         struct mac_info *mac_control;
7776         int mode;
7777         u8 dev_intr_type = intr_type;
7778         u8 dev_multiq = 0;
7779
7780         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7781         if (ret)
7782                 return ret;
7783
7784         ret = pci_enable_device(pdev);
7785         if (ret) {
7786                 DBG_PRINT(ERR_DBG,
7787                           "%s: pci_enable_device failed\n", __func__);
7788                 return ret;
7789         }
7790
7791         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7792                 DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7793                 dma_flag = true;
7794                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7795                         DBG_PRINT(ERR_DBG,
7796                                   "Unable to obtain 64bit DMA "
7797                                   "for consistent allocations\n");
7798                         pci_disable_device(pdev);
7799                         return -ENOMEM;
7800                 }
7801         } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7802                 DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7803         } else {
7804                 pci_disable_device(pdev);
7805                 return -ENOMEM;
7806         }
7807         ret = pci_request_regions(pdev, s2io_driver_name);
7808         if (ret) {
7809                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7810                           __func__, ret);
7811                 pci_disable_device(pdev);
7812                 return -ENODEV;
7813         }
7814         if (dev_multiq)
7815                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7816         else
7817                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7818         if (dev == NULL) {
7819                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7820                 pci_disable_device(pdev);
7821                 pci_release_regions(pdev);
7822                 return -ENODEV;
7823         }
7824
7825         pci_set_master(pdev);
7826         pci_set_drvdata(pdev, dev);
7827         SET_NETDEV_DEV(dev, &pdev->dev);
7828
7829         /*  Private member variable initialized to s2io NIC structure */
7830         sp = netdev_priv(dev);
7831         sp->dev = dev;
7832         sp->pdev = pdev;
7833         sp->high_dma_flag = dma_flag;
7834         sp->device_enabled_once = false;
7835         if (rx_ring_mode == 1)
7836                 sp->rxd_mode = RXD_MODE_1;
7837         if (rx_ring_mode == 2)
7838                 sp->rxd_mode = RXD_MODE_3B;
7839
7840         sp->config.intr_type = dev_intr_type;
7841
7842         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7843             (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7844                 sp->device_type = XFRAME_II_DEVICE;
7845         else
7846                 sp->device_type = XFRAME_I_DEVICE;
7847
7848
7849         /* Initialize some PCI/PCI-X fields of the NIC. */
7850         s2io_init_pci(sp);
7851
7852         /*
7853          * Setting the device configuration parameters.
7854          * Most of these parameters can be specified by the user during
7855          * module insertion as they are module loadable parameters. If
7856          * these parameters are not not specified during load time, they
7857          * are initialized with default values.
7858          */
7859         config = &sp->config;
7860         mac_control = &sp->mac_control;
7861
7862         config->napi = napi;
7863         config->tx_steering_type = tx_steering_type;
7864
7865         /* Tx side parameters. */
7866         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7867                 config->tx_fifo_num = MAX_TX_FIFOS;
7868         else
7869                 config->tx_fifo_num = tx_fifo_num;
7870
7871         /* Initialize the fifos used for tx steering */
7872         if (config->tx_fifo_num < 5) {
7873                 if (config->tx_fifo_num  == 1)
7874                         sp->total_tcp_fifos = 1;
7875                 else
7876                         sp->total_tcp_fifos = config->tx_fifo_num - 1;
7877                 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7878                 sp->total_udp_fifos = 1;
7879                 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7880         } else {
7881                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7882                                        FIFO_OTHER_MAX_NUM);
7883                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7884                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7885                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7886         }
7887
7888         config->multiq = dev_multiq;
7889         for (i = 0; i < config->tx_fifo_num; i++) {
7890                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7891
7892                 tx_cfg->fifo_len = tx_fifo_len[i];
7893                 tx_cfg->fifo_priority = i;
7894         }
7895
7896         /* mapping the QoS priority to the configured fifos */
7897         for (i = 0; i < MAX_TX_FIFOS; i++)
7898                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7899
7900         /* map the hashing selector table to the configured fifos */
7901         for (i = 0; i < config->tx_fifo_num; i++)
7902                 sp->fifo_selector[i] = fifo_selector[i];
7903
7904
7905         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7906         for (i = 0; i < config->tx_fifo_num; i++) {
7907                 struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7908
7909                 tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7910                 if (tx_cfg->fifo_len < 65) {
7911                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7912                         break;
7913                 }
7914         }
7915         /* + 2 because one Txd for skb->data and one Txd for UFO */
7916         config->max_txds = MAX_SKB_FRAGS + 2;
7917
7918         /* Rx side parameters. */
7919         config->rx_ring_num = rx_ring_num;
7920         for (i = 0; i < config->rx_ring_num; i++) {
7921                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7922                 struct ring_info *ring = &mac_control->rings[i];
7923
7924                 rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7925                 rx_cfg->ring_priority = i;
7926                 ring->rx_bufs_left = 0;
7927                 ring->rxd_mode = sp->rxd_mode;
7928                 ring->rxd_count = rxd_count[sp->rxd_mode];
7929                 ring->pdev = sp->pdev;
7930                 ring->dev = sp->dev;
7931         }
7932
7933         for (i = 0; i < rx_ring_num; i++) {
7934                 struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7935
7936                 rx_cfg->ring_org = RING_ORG_BUFF1;
7937                 rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7938         }
7939
7940         /*  Setting Mac Control parameters */
7941         mac_control->rmac_pause_time = rmac_pause_time;
7942         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7943         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7944
7945
7946         /*  initialize the shared memory used by the NIC and the host */
7947         if (init_shared_mem(sp)) {
7948                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7949                 ret = -ENOMEM;
7950                 goto mem_alloc_failed;
7951         }
7952
7953         sp->bar0 = pci_ioremap_bar(pdev, 0);
7954         if (!sp->bar0) {
7955                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7956                           dev->name);
7957                 ret = -ENOMEM;
7958                 goto bar0_remap_failed;
7959         }
7960
7961         sp->bar1 = pci_ioremap_bar(pdev, 2);
7962         if (!sp->bar1) {
7963                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7964                           dev->name);
7965                 ret = -ENOMEM;
7966                 goto bar1_remap_failed;
7967         }
7968
7969         dev->irq = pdev->irq;
7970         dev->base_addr = (unsigned long)sp->bar0;
7971
7972         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7973         for (j = 0; j < MAX_TX_FIFOS; j++) {
7974                 mac_control->tx_FIFO_start[j] =
7975                         (struct TxFIFO_element __iomem *)
7976                         (sp->bar1 + (j * 0x00020000));
7977         }
7978
7979         /*  Driver entry points */
7980         dev->netdev_ops = &s2io_netdev_ops;
7981         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7982         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7983                 NETIF_F_TSO | NETIF_F_TSO6 |
7984                 NETIF_F_RXCSUM | NETIF_F_LRO;
7985         dev->features |= dev->hw_features |
7986                 NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7987         if (sp->device_type & XFRAME_II_DEVICE) {
7988                 dev->hw_features |= NETIF_F_UFO;
7989                 if (ufo)
7990                         dev->features |= NETIF_F_UFO;
7991         }
7992         if (sp->high_dma_flag == true)
7993                 dev->features |= NETIF_F_HIGHDMA;
7994         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7995         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7996         INIT_WORK(&sp->set_link_task, s2io_set_link);
7997
7998         pci_save_state(sp->pdev);
7999
8000         /* Setting swapper control on the NIC, for proper reset operation */
8001         if (s2io_set_swapper(sp)) {
8002                 DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
8003                           dev->name);
8004                 ret = -EAGAIN;
8005                 goto set_swap_failed;
8006         }
8007
8008         /* Verify if the Herc works on the slot its placed into */
8009         if (sp->device_type & XFRAME_II_DEVICE) {
8010                 mode = s2io_verify_pci_mode(sp);
8011                 if (mode < 0) {
8012                         DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
8013                                   __func__);
8014                         ret = -EBADSLT;
8015                         goto set_swap_failed;
8016                 }
8017         }
8018
8019         if (sp->config.intr_type == MSI_X) {
8020                 sp->num_entries = config->rx_ring_num + 1;
8021                 ret = s2io_enable_msi_x(sp);
8022
8023                 if (!ret) {
8024                         ret = s2io_test_msi(sp);
8025                         /* rollback MSI-X, will re-enable during add_isr() */
8026                         remove_msix_isr(sp);
8027                 }
8028                 if (ret) {
8029
8030                         DBG_PRINT(ERR_DBG,
8031                                   "MSI-X requested but failed to enable\n");
8032                         sp->config.intr_type = INTA;
8033                 }
8034         }
8035
8036         if (config->intr_type ==  MSI_X) {
8037                 for (i = 0; i < config->rx_ring_num ; i++) {
8038                         struct ring_info *ring = &mac_control->rings[i];
8039
8040                         netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
8041                 }
8042         } else {
8043                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8044         }
8045
8046         /* Not needed for Herc */
8047         if (sp->device_type & XFRAME_I_DEVICE) {
8048                 /*
8049                  * Fix for all "FFs" MAC address problems observed on
8050                  * Alpha platforms
8051                  */
8052                 fix_mac_address(sp);
8053                 s2io_reset(sp);
8054         }
8055
8056         /*
8057          * MAC address initialization.
8058          * For now only one mac address will be read and used.
8059          */
8060         bar0 = sp->bar0;
8061         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8062                 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8063         writeq(val64, &bar0->rmac_addr_cmd_mem);
8064         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8065                               RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8066                               S2IO_BIT_RESET);
8067         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8068         mac_down = (u32)tmp64;
8069         mac_up = (u32) (tmp64 >> 32);
8070
8071         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8072         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8073         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8074         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8075         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8076         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8077
8078         /*  Set the factory defined MAC address initially   */
8079         dev->addr_len = ETH_ALEN;
8080         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8081         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8082
8083         /* initialize number of multicast & unicast MAC entries variables */
8084         if (sp->device_type == XFRAME_I_DEVICE) {
8085                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8086                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8087                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8088         } else if (sp->device_type == XFRAME_II_DEVICE) {
8089                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8090                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8091                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8092         }
8093
8094         /* store mac addresses from CAM to s2io_nic structure */
8095         do_s2io_store_unicast_mc(sp);
8096
8097         /* Configure MSIX vector for number of rings configured plus one */
8098         if ((sp->device_type == XFRAME_II_DEVICE) &&
8099             (config->intr_type == MSI_X))
8100                 sp->num_entries = config->rx_ring_num + 1;
8101
8102         /* Store the values of the MSIX table in the s2io_nic structure */
8103         store_xmsi_data(sp);
8104         /* reset Nic and bring it to known state */
8105         s2io_reset(sp);
8106
8107         /*
8108          * Initialize link state flags
8109          * and the card state parameter
8110          */
8111         sp->state = 0;
8112
8113         /* Initialize spinlocks */
8114         for (i = 0; i < sp->config.tx_fifo_num; i++) {
8115                 struct fifo_info *fifo = &mac_control->fifos[i];
8116
8117                 spin_lock_init(&fifo->tx_lock);
8118         }
8119
8120         /*
8121          * SXE-002: Configure link and activity LED to init state
8122          * on driver load.
8123          */
8124         subid = sp->pdev->subsystem_device;
8125         if ((subid & 0xFF) >= 0x07) {
8126                 val64 = readq(&bar0->gpio_control);
8127                 val64 |= 0x0000800000000000ULL;
8128                 writeq(val64, &bar0->gpio_control);
8129                 val64 = 0x0411040400000000ULL;
8130                 writeq(val64, (void __iomem *)bar0 + 0x2700);
8131                 val64 = readq(&bar0->gpio_control);
8132         }
8133
8134         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8135
8136         if (register_netdev(dev)) {
8137                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8138                 ret = -ENODEV;
8139                 goto register_failed;
8140         }
8141         s2io_vpd_read(sp);
8142         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8143         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8144                   sp->product_name, pdev->revision);
8145         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8146                   s2io_driver_version);
8147         DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8148         DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8149         if (sp->device_type & XFRAME_II_DEVICE) {
8150                 mode = s2io_print_pci_mode(sp);
8151                 if (mode < 0) {
8152                         ret = -EBADSLT;
8153                         unregister_netdev(dev);
8154                         goto set_swap_failed;
8155                 }
8156         }
8157         switch (sp->rxd_mode) {
8158         case RXD_MODE_1:
8159                 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8160                           dev->name);
8161                 break;
8162         case RXD_MODE_3B:
8163                 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8164                           dev->name);
8165                 break;
8166         }
8167
8168         switch (sp->config.napi) {
8169         case 0:
8170                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8171                 break;
8172         case 1:
8173                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8174                 break;
8175         }
8176
8177         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8178                   sp->config.tx_fifo_num);
8179
8180         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8181                   sp->config.rx_ring_num);
8182
8183         switch (sp->config.intr_type) {
8184         case INTA:
8185                 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8186                 break;
8187         case MSI_X:
8188                 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8189                 break;
8190         }
8191         if (sp->config.multiq) {
8192                 for (i = 0; i < sp->config.tx_fifo_num; i++) {
8193                         struct fifo_info *fifo = &mac_control->fifos[i];
8194
8195                         fifo->multiq = config->multiq;
8196                 }
8197                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8198                           dev->name);
8199         } else
8200                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8201                           dev->name);
8202
8203         switch (sp->config.tx_steering_type) {
8204         case NO_STEERING:
8205                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8206                           dev->name);
8207                 break;
8208         case TX_PRIORITY_STEERING:
8209                 DBG_PRINT(ERR_DBG,
8210                           "%s: Priority steering enabled for transmit\n",
8211                           dev->name);
8212                 break;
8213         case TX_DEFAULT_STEERING:
8214                 DBG_PRINT(ERR_DBG,
8215                           "%s: Default steering enabled for transmit\n",
8216                           dev->name);
8217         }
8218
8219         DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8220                   dev->name);
8221         if (ufo)
8222                 DBG_PRINT(ERR_DBG,
8223                           "%s: UDP Fragmentation Offload(UFO) enabled\n",
8224                           dev->name);
8225         /* Initialize device name */
8226         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8227
8228         if (vlan_tag_strip)
8229                 sp->vlan_strip_flag = 1;
8230         else
8231                 sp->vlan_strip_flag = 0;
8232
8233         /*
8234          * Make Link state as off at this point, when the Link change
8235          * interrupt comes the state will be automatically changed to
8236          * the right state.
8237          */
8238         netif_carrier_off(dev);
8239
8240         return 0;
8241
8242 register_failed:
8243 set_swap_failed:
8244         iounmap(sp->bar1);
8245 bar1_remap_failed:
8246         iounmap(sp->bar0);
8247 bar0_remap_failed:
8248 mem_alloc_failed:
8249         free_shared_mem(sp);
8250         pci_disable_device(pdev);
8251         pci_release_regions(pdev);
8252         pci_set_drvdata(pdev, NULL);
8253         free_netdev(dev);
8254
8255         return ret;
8256 }
8257
8258 /**
8259  * s2io_rem_nic - Free the PCI device
8260  * @pdev: structure containing the PCI related information of the device.
8261  * Description: This function is called by the Pci subsystem to release a
8262  * PCI device and free up all resource held up by the device. This could
8263  * be in response to a Hot plug event or when the driver is to be removed
8264  * from memory.
8265  */
8266
8267 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8268 {
8269         struct net_device *dev = pci_get_drvdata(pdev);
8270         struct s2io_nic *sp;
8271
8272         if (dev == NULL) {
8273                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8274                 return;
8275         }
8276
8277         sp = netdev_priv(dev);
8278
8279         cancel_work_sync(&sp->rst_timer_task);
8280         cancel_work_sync(&sp->set_link_task);
8281
8282         unregister_netdev(dev);
8283
8284         free_shared_mem(sp);
8285         iounmap(sp->bar0);
8286         iounmap(sp->bar1);
8287         pci_release_regions(pdev);
8288         pci_set_drvdata(pdev, NULL);
8289         free_netdev(dev);
8290         pci_disable_device(pdev);
8291 }
8292
8293 /**
8294  * s2io_starter - Entry point for the driver
8295  * Description: This function is the entry point for the driver. It verifies
8296  * the module loadable parameters and initializes PCI configuration space.
8297  */
8298
8299 static int __init s2io_starter(void)
8300 {
8301         return pci_register_driver(&s2io_driver);
8302 }
8303
8304 /**
8305  * s2io_closer - Cleanup routine for the driver
8306  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8307  */
8308
8309 static __exit void s2io_closer(void)
8310 {
8311         pci_unregister_driver(&s2io_driver);
8312         DBG_PRINT(INIT_DBG, "cleanup done\n");
8313 }
8314
8315 module_init(s2io_starter);
8316 module_exit(s2io_closer);
8317
8318 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8319                                 struct tcphdr **tcp, struct RxD_t *rxdp,
8320                                 struct s2io_nic *sp)
8321 {
8322         int ip_off;
8323         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8324
8325         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8326                 DBG_PRINT(INIT_DBG,
8327                           "%s: Non-TCP frames not supported for LRO\n",
8328                           __func__);
8329                 return -1;
8330         }
8331
8332         /* Checking for DIX type or DIX type with VLAN */
8333         if ((l2_type == 0) || (l2_type == 4)) {
8334                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8335                 /*
8336                  * If vlan stripping is disabled and the frame is VLAN tagged,
8337                  * shift the offset by the VLAN header size bytes.
8338                  */
8339                 if ((!sp->vlan_strip_flag) &&
8340                     (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8341                         ip_off += HEADER_VLAN_SIZE;
8342         } else {
8343                 /* LLC, SNAP etc are considered non-mergeable */
8344                 return -1;
8345         }
8346
8347         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8348         ip_len = (u8)((*ip)->ihl);
8349         ip_len <<= 2;
8350         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8351
8352         return 0;
8353 }
8354
8355 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8356                                   struct tcphdr *tcp)
8357 {
8358         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8359         if ((lro->iph->saddr != ip->saddr) ||
8360             (lro->iph->daddr != ip->daddr) ||
8361             (lro->tcph->source != tcp->source) ||
8362             (lro->tcph->dest != tcp->dest))
8363                 return -1;
8364         return 0;
8365 }
8366
8367 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8368 {
8369         return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8370 }
8371
8372 static void initiate_new_session(struct lro *lro, u8 *l2h,
8373                                  struct iphdr *ip, struct tcphdr *tcp,
8374                                  u32 tcp_pyld_len, u16 vlan_tag)
8375 {
8376         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8377         lro->l2h = l2h;
8378         lro->iph = ip;
8379         lro->tcph = tcp;
8380         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8381         lro->tcp_ack = tcp->ack_seq;
8382         lro->sg_num = 1;
8383         lro->total_len = ntohs(ip->tot_len);
8384         lro->frags_len = 0;
8385         lro->vlan_tag = vlan_tag;
8386         /*
8387          * Check if we saw TCP timestamp.
8388          * Other consistency checks have already been done.
8389          */
8390         if (tcp->doff == 8) {
8391                 __be32 *ptr;
8392                 ptr = (__be32 *)(tcp+1);
8393                 lro->saw_ts = 1;
8394                 lro->cur_tsval = ntohl(*(ptr+1));
8395                 lro->cur_tsecr = *(ptr+2);
8396         }
8397         lro->in_use = 1;
8398 }
8399
8400 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8401 {
8402         struct iphdr *ip = lro->iph;
8403         struct tcphdr *tcp = lro->tcph;
8404         __sum16 nchk;
8405         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8406
8407         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8408
8409         /* Update L3 header */
8410         ip->tot_len = htons(lro->total_len);
8411         ip->check = 0;
8412         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8413         ip->check = nchk;
8414
8415         /* Update L4 header */
8416         tcp->ack_seq = lro->tcp_ack;
8417         tcp->window = lro->window;
8418
8419         /* Update tsecr field if this session has timestamps enabled */
8420         if (lro->saw_ts) {
8421                 __be32 *ptr = (__be32 *)(tcp + 1);
8422                 *(ptr+2) = lro->cur_tsecr;
8423         }
8424
8425         /* Update counters required for calculation of
8426          * average no. of packets aggregated.
8427          */
8428         swstats->sum_avg_pkts_aggregated += lro->sg_num;
8429         swstats->num_aggregations++;
8430 }
8431
8432 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8433                              struct tcphdr *tcp, u32 l4_pyld)
8434 {
8435         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8436         lro->total_len += l4_pyld;
8437         lro->frags_len += l4_pyld;
8438         lro->tcp_next_seq += l4_pyld;
8439         lro->sg_num++;
8440
8441         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8442         lro->tcp_ack = tcp->ack_seq;
8443         lro->window = tcp->window;
8444
8445         if (lro->saw_ts) {
8446                 __be32 *ptr;
8447                 /* Update tsecr and tsval from this packet */
8448                 ptr = (__be32 *)(tcp+1);
8449                 lro->cur_tsval = ntohl(*(ptr+1));
8450                 lro->cur_tsecr = *(ptr + 2);
8451         }
8452 }
8453
8454 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8455                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8456 {
8457         u8 *ptr;
8458
8459         DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8460
8461         if (!tcp_pyld_len) {
8462                 /* Runt frame or a pure ack */
8463                 return -1;
8464         }
8465
8466         if (ip->ihl != 5) /* IP has options */
8467                 return -1;
8468
8469         /* If we see CE codepoint in IP header, packet is not mergeable */
8470         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8471                 return -1;
8472
8473         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8474         if (tcp->urg || tcp->psh || tcp->rst ||
8475             tcp->syn || tcp->fin ||
8476             tcp->ece || tcp->cwr || !tcp->ack) {
8477                 /*
8478                  * Currently recognize only the ack control word and
8479                  * any other control field being set would result in
8480                  * flushing the LRO session
8481                  */
8482                 return -1;
8483         }
8484
8485         /*
8486          * Allow only one TCP timestamp option. Don't aggregate if
8487          * any other options are detected.
8488          */
8489         if (tcp->doff != 5 && tcp->doff != 8)
8490                 return -1;
8491
8492         if (tcp->doff == 8) {
8493                 ptr = (u8 *)(tcp + 1);
8494                 while (*ptr == TCPOPT_NOP)
8495                         ptr++;
8496                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8497                         return -1;
8498
8499                 /* Ensure timestamp value increases monotonically */
8500                 if (l_lro)
8501                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8502                                 return -1;
8503
8504                 /* timestamp echo reply should be non-zero */
8505                 if (*((__be32 *)(ptr+6)) == 0)
8506                         return -1;
8507         }
8508
8509         return 0;
8510 }
8511
8512 static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8513                                  u8 **tcp, u32 *tcp_len, struct lro **lro,
8514                                  struct RxD_t *rxdp, struct s2io_nic *sp)
8515 {
8516         struct iphdr *ip;
8517         struct tcphdr *tcph;
8518         int ret = 0, i;
8519         u16 vlan_tag = 0;
8520         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8521
8522         ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8523                                    rxdp, sp);
8524         if (ret)
8525                 return ret;
8526
8527         DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8528
8529         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8530         tcph = (struct tcphdr *)*tcp;
8531         *tcp_len = get_l4_pyld_length(ip, tcph);
8532         for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8533                 struct lro *l_lro = &ring_data->lro0_n[i];
8534                 if (l_lro->in_use) {
8535                         if (check_for_socket_match(l_lro, ip, tcph))
8536                                 continue;
8537                         /* Sock pair matched */
8538                         *lro = l_lro;
8539
8540                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8541                                 DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8542                                           "expected 0x%x, actual 0x%x\n",
8543                                           __func__,
8544                                           (*lro)->tcp_next_seq,
8545                                           ntohl(tcph->seq));
8546
8547                                 swstats->outof_sequence_pkts++;
8548                                 ret = 2;
8549                                 break;
8550                         }
8551
8552                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8553                                                       *tcp_len))
8554                                 ret = 1; /* Aggregate */
8555                         else
8556                                 ret = 2; /* Flush both */
8557                         break;
8558                 }
8559         }
8560
8561         if (ret == 0) {
8562                 /* Before searching for available LRO objects,
8563                  * check if the pkt is L3/L4 aggregatable. If not
8564                  * don't create new LRO session. Just send this
8565                  * packet up.
8566                  */
8567                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8568                         return 5;
8569
8570                 for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8571                         struct lro *l_lro = &ring_data->lro0_n[i];
8572                         if (!(l_lro->in_use)) {
8573                                 *lro = l_lro;
8574                                 ret = 3; /* Begin anew */
8575                                 break;
8576                         }
8577                 }
8578         }
8579
8580         if (ret == 0) { /* sessions exceeded */
8581                 DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8582                           __func__);
8583                 *lro = NULL;
8584                 return ret;
8585         }
8586
8587         switch (ret) {
8588         case 3:
8589                 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8590                                      vlan_tag);
8591                 break;
8592         case 2:
8593                 update_L3L4_header(sp, *lro);
8594                 break;
8595         case 1:
8596                 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8597                 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8598                         update_L3L4_header(sp, *lro);
8599                         ret = 4; /* Flush the LRO */
8600                 }
8601                 break;
8602         default:
8603                 DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8604                 break;
8605         }
8606
8607         return ret;
8608 }
8609
8610 static void clear_lro_session(struct lro *lro)
8611 {
8612         static u16 lro_struct_size = sizeof(struct lro);
8613
8614         memset(lro, 0, lro_struct_size);
8615 }
8616
8617 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8618 {
8619         struct net_device *dev = skb->dev;
8620         struct s2io_nic *sp = netdev_priv(dev);
8621
8622         skb->protocol = eth_type_trans(skb, dev);
8623         if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
8624                 /* Queueing the vlan frame to the upper layer */
8625                 if (sp->config.napi)
8626                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8627                 else
8628                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8629         } else {
8630                 if (sp->config.napi)
8631                         netif_receive_skb(skb);
8632                 else
8633                         netif_rx(skb);
8634         }
8635 }
8636
8637 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8638                            struct sk_buff *skb, u32 tcp_len)
8639 {
8640         struct sk_buff *first = lro->parent;
8641         struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8642
8643         first->len += tcp_len;
8644         first->data_len = lro->frags_len;
8645         skb_pull(skb, (skb->len - tcp_len));
8646         if (skb_shinfo(first)->frag_list)
8647                 lro->last_frag->next = skb;
8648         else
8649                 skb_shinfo(first)->frag_list = skb;
8650         first->truesize += skb->truesize;
8651         lro->last_frag = skb;
8652         swstats->clubbed_frms_cnt++;
8653 }
8654
8655 /**
8656  * s2io_io_error_detected - called when PCI error is detected
8657  * @pdev: Pointer to PCI device
8658  * @state: The current pci connection state
8659  *
8660  * This function is called after a PCI bus error affecting
8661  * this device has been detected.
8662  */
8663 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8664                                                pci_channel_state_t state)
8665 {
8666         struct net_device *netdev = pci_get_drvdata(pdev);
8667         struct s2io_nic *sp = netdev_priv(netdev);
8668
8669         netif_device_detach(netdev);
8670
8671         if (state == pci_channel_io_perm_failure)
8672                 return PCI_ERS_RESULT_DISCONNECT;
8673
8674         if (netif_running(netdev)) {
8675                 /* Bring down the card, while avoiding PCI I/O */
8676                 do_s2io_card_down(sp, 0);
8677         }
8678         pci_disable_device(pdev);
8679
8680         return PCI_ERS_RESULT_NEED_RESET;
8681 }
8682
8683 /**
8684  * s2io_io_slot_reset - called after the pci bus has been reset.
8685  * @pdev: Pointer to PCI device
8686  *
8687  * Restart the card from scratch, as if from a cold-boot.
8688  * At this point, the card has exprienced a hard reset,
8689  * followed by fixups by BIOS, and has its config space
8690  * set up identically to what it was at cold boot.
8691  */
8692 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8693 {
8694         struct net_device *netdev = pci_get_drvdata(pdev);
8695         struct s2io_nic *sp = netdev_priv(netdev);
8696
8697         if (pci_enable_device(pdev)) {
8698                 pr_err("Cannot re-enable PCI device after reset.\n");
8699                 return PCI_ERS_RESULT_DISCONNECT;
8700         }
8701
8702         pci_set_master(pdev);
8703         s2io_reset(sp);
8704
8705         return PCI_ERS_RESULT_RECOVERED;
8706 }
8707
8708 /**
8709  * s2io_io_resume - called when traffic can start flowing again.
8710  * @pdev: Pointer to PCI device
8711  *
8712  * This callback is called when the error recovery driver tells
8713  * us that its OK to resume normal operation.
8714  */
8715 static void s2io_io_resume(struct pci_dev *pdev)
8716 {
8717         struct net_device *netdev = pci_get_drvdata(pdev);
8718         struct s2io_nic *sp = netdev_priv(netdev);
8719
8720         if (netif_running(netdev)) {
8721                 if (s2io_card_up(sp)) {
8722                         pr_err("Can't bring device back up after reset.\n");
8723                         return;
8724                 }
8725
8726                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8727                         s2io_card_down(sp);
8728                         pr_err("Can't restore mac addr after reset.\n");
8729                         return;
8730                 }
8731         }
8732
8733         netif_device_attach(netdev);
8734         netif_tx_wake_all_queues(netdev);
8735 }