Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[pandora-kernel.git] / drivers / net / phy / dp83640.c
1 /*
2  * Driver for the National Semiconductor DP83640 PHYTER
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/ethtool.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/mii.h>
27 #include <linux/module.h>
28 #include <linux/net_tstamp.h>
29 #include <linux/netdevice.h>
30 #include <linux/phy.h>
31 #include <linux/ptp_classify.h>
32 #include <linux/ptp_clock_kernel.h>
33
34 #include "dp83640_reg.h"
35
36 #define DP83640_PHY_ID  0x20005ce1
37 #define PAGESEL         0x13
38 #define LAYER4          0x02
39 #define LAYER2          0x01
40 #define MAX_RXTS        64
41 #define N_EXT_TS        6
42 #define PSF_PTPVER      2
43 #define PSF_EVNT        0x4000
44 #define PSF_RX          0x2000
45 #define PSF_TX          0x1000
46 #define EXT_EVENT       1
47 #define CAL_EVENT       7
48 #define CAL_TRIGGER     7
49 #define PER_TRIGGER     6
50
51 /* phyter seems to miss the mark by 16 ns */
52 #define ADJTIME_FIX     16
53
54 #if defined(__BIG_ENDIAN)
55 #define ENDIAN_FLAG     0
56 #elif defined(__LITTLE_ENDIAN)
57 #define ENDIAN_FLAG     PSF_ENDIAN
58 #endif
59
60 #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
61
62 struct phy_rxts {
63         u16 ns_lo;   /* ns[15:0] */
64         u16 ns_hi;   /* overflow[1:0], ns[29:16] */
65         u16 sec_lo;  /* sec[15:0] */
66         u16 sec_hi;  /* sec[31:16] */
67         u16 seqid;   /* sequenceId[15:0] */
68         u16 msgtype; /* messageType[3:0], hash[11:0] */
69 };
70
71 struct phy_txts {
72         u16 ns_lo;   /* ns[15:0] */
73         u16 ns_hi;   /* overflow[1:0], ns[29:16] */
74         u16 sec_lo;  /* sec[15:0] */
75         u16 sec_hi;  /* sec[31:16] */
76 };
77
78 struct rxts {
79         struct list_head list;
80         unsigned long tmo;
81         u64 ns;
82         u16 seqid;
83         u8  msgtype;
84         u16 hash;
85 };
86
87 struct dp83640_clock;
88
89 struct dp83640_private {
90         struct list_head list;
91         struct dp83640_clock *clock;
92         struct phy_device *phydev;
93         struct work_struct ts_work;
94         int hwts_tx_en;
95         int hwts_rx_en;
96         int layer;
97         int version;
98         /* remember state of cfg0 during calibration */
99         int cfg0;
100         /* remember the last event time stamp */
101         struct phy_txts edata;
102         /* list of rx timestamps */
103         struct list_head rxts;
104         struct list_head rxpool;
105         struct rxts rx_pool_data[MAX_RXTS];
106         /* protects above three fields from concurrent access */
107         spinlock_t rx_lock;
108         /* queues of incoming and outgoing packets */
109         struct sk_buff_head rx_queue;
110         struct sk_buff_head tx_queue;
111 };
112
113 struct dp83640_clock {
114         /* keeps the instance in the 'phyter_clocks' list */
115         struct list_head list;
116         /* we create one clock instance per MII bus */
117         struct mii_bus *bus;
118         /* protects extended registers from concurrent access */
119         struct mutex extreg_lock;
120         /* remembers which page was last selected */
121         int page;
122         /* our advertised capabilities */
123         struct ptp_clock_info caps;
124         /* protects the three fields below from concurrent access */
125         struct mutex clock_lock;
126         /* the one phyter from which we shall read */
127         struct dp83640_private *chosen;
128         /* list of the other attached phyters, not chosen */
129         struct list_head phylist;
130         /* reference to our PTP hardware clock */
131         struct ptp_clock *ptp_clock;
132 };
133
134 /* globals */
135
136 enum {
137         CALIBRATE_GPIO,
138         PEROUT_GPIO,
139         EXTTS0_GPIO,
140         EXTTS1_GPIO,
141         EXTTS2_GPIO,
142         EXTTS3_GPIO,
143         EXTTS4_GPIO,
144         EXTTS5_GPIO,
145         GPIO_TABLE_SIZE
146 };
147
148 static int chosen_phy = -1;
149 static ushort gpio_tab[GPIO_TABLE_SIZE] = {
150         1, 2, 3, 4, 8, 9, 10, 11
151 };
152
153 module_param(chosen_phy, int, 0444);
154 module_param_array(gpio_tab, ushort, NULL, 0444);
155
156 MODULE_PARM_DESC(chosen_phy, \
157         "The address of the PHY to use for the ancillary clock features");
158 MODULE_PARM_DESC(gpio_tab, \
159         "Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
160
161 /* a list of clocks and a mutex to protect it */
162 static LIST_HEAD(phyter_clocks);
163 static DEFINE_MUTEX(phyter_clocks_lock);
164
165 static void rx_timestamp_work(struct work_struct *work);
166
167 /* extended register access functions */
168
169 #define BROADCAST_ADDR 31
170
171 static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
172 {
173         return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
174 }
175
176 /* Caller must hold extreg_lock. */
177 static int ext_read(struct phy_device *phydev, int page, u32 regnum)
178 {
179         struct dp83640_private *dp83640 = phydev->priv;
180         int val;
181
182         if (dp83640->clock->page != page) {
183                 broadcast_write(phydev->bus, PAGESEL, page);
184                 dp83640->clock->page = page;
185         }
186         val = phy_read(phydev, regnum);
187
188         return val;
189 }
190
191 /* Caller must hold extreg_lock. */
192 static void ext_write(int broadcast, struct phy_device *phydev,
193                       int page, u32 regnum, u16 val)
194 {
195         struct dp83640_private *dp83640 = phydev->priv;
196
197         if (dp83640->clock->page != page) {
198                 broadcast_write(phydev->bus, PAGESEL, page);
199                 dp83640->clock->page = page;
200         }
201         if (broadcast)
202                 broadcast_write(phydev->bus, regnum, val);
203         else
204                 phy_write(phydev, regnum, val);
205 }
206
207 /* Caller must hold extreg_lock. */
208 static int tdr_write(int bc, struct phy_device *dev,
209                      const struct timespec *ts, u16 cmd)
210 {
211         ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0]  */
212         ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16);   /* ns[31:16] */
213         ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
214         ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16);    /* sec[31:16]*/
215
216         ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
217
218         return 0;
219 }
220
221 /* convert phy timestamps into driver timestamps */
222
223 static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
224 {
225         u32 sec;
226
227         sec = p->sec_lo;
228         sec |= p->sec_hi << 16;
229
230         rxts->ns = p->ns_lo;
231         rxts->ns |= (p->ns_hi & 0x3fff) << 16;
232         rxts->ns += ((u64)sec) * 1000000000ULL;
233         rxts->seqid = p->seqid;
234         rxts->msgtype = (p->msgtype >> 12) & 0xf;
235         rxts->hash = p->msgtype & 0x0fff;
236         rxts->tmo = jiffies + 2;
237 }
238
239 static u64 phy2txts(struct phy_txts *p)
240 {
241         u64 ns;
242         u32 sec;
243
244         sec = p->sec_lo;
245         sec |= p->sec_hi << 16;
246
247         ns = p->ns_lo;
248         ns |= (p->ns_hi & 0x3fff) << 16;
249         ns += ((u64)sec) * 1000000000ULL;
250
251         return ns;
252 }
253
254 static void periodic_output(struct dp83640_clock *clock,
255                             struct ptp_clock_request *clkreq, bool on)
256 {
257         struct dp83640_private *dp83640 = clock->chosen;
258         struct phy_device *phydev = dp83640->phydev;
259         u32 sec, nsec, period;
260         u16 gpio, ptp_trig, trigger, val;
261
262         gpio = on ? gpio_tab[PEROUT_GPIO] : 0;
263         trigger = PER_TRIGGER;
264
265         ptp_trig = TRIG_WR |
266                 (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
267                 (gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
268                 TRIG_PER |
269                 TRIG_PULSE;
270
271         val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
272
273         if (!on) {
274                 val |= TRIG_DIS;
275                 mutex_lock(&clock->extreg_lock);
276                 ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
277                 ext_write(0, phydev, PAGE4, PTP_CTL, val);
278                 mutex_unlock(&clock->extreg_lock);
279                 return;
280         }
281
282         sec = clkreq->perout.start.sec;
283         nsec = clkreq->perout.start.nsec;
284         period = clkreq->perout.period.sec * 1000000000UL;
285         period += clkreq->perout.period.nsec;
286
287         mutex_lock(&clock->extreg_lock);
288
289         ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
290
291         /*load trigger*/
292         val |= TRIG_LOAD;
293         ext_write(0, phydev, PAGE4, PTP_CTL, val);
294         ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff);   /* ns[15:0] */
295         ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16);      /* ns[31:16] */
296         ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff);    /* sec[15:0] */
297         ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16);       /* sec[31:16] */
298         ext_write(0, phydev, PAGE4, PTP_TDR, period & 0xffff); /* ns[15:0] */
299         ext_write(0, phydev, PAGE4, PTP_TDR, period >> 16);    /* ns[31:16] */
300
301         /*enable trigger*/
302         val &= ~TRIG_LOAD;
303         val |= TRIG_EN;
304         ext_write(0, phydev, PAGE4, PTP_CTL, val);
305
306         mutex_unlock(&clock->extreg_lock);
307 }
308
309 /* ptp clock methods */
310
311 static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
312 {
313         struct dp83640_clock *clock =
314                 container_of(ptp, struct dp83640_clock, caps);
315         struct phy_device *phydev = clock->chosen->phydev;
316         u64 rate;
317         int neg_adj = 0;
318         u16 hi, lo;
319
320         if (ppb < 0) {
321                 neg_adj = 1;
322                 ppb = -ppb;
323         }
324         rate = ppb;
325         rate <<= 26;
326         rate = div_u64(rate, 1953125);
327
328         hi = (rate >> 16) & PTP_RATE_HI_MASK;
329         if (neg_adj)
330                 hi |= PTP_RATE_DIR;
331
332         lo = rate & 0xffff;
333
334         mutex_lock(&clock->extreg_lock);
335
336         ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
337         ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
338
339         mutex_unlock(&clock->extreg_lock);
340
341         return 0;
342 }
343
344 static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
345 {
346         struct dp83640_clock *clock =
347                 container_of(ptp, struct dp83640_clock, caps);
348         struct phy_device *phydev = clock->chosen->phydev;
349         struct timespec ts;
350         int err;
351
352         delta += ADJTIME_FIX;
353
354         ts = ns_to_timespec(delta);
355
356         mutex_lock(&clock->extreg_lock);
357
358         err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
359
360         mutex_unlock(&clock->extreg_lock);
361
362         return err;
363 }
364
365 static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
366 {
367         struct dp83640_clock *clock =
368                 container_of(ptp, struct dp83640_clock, caps);
369         struct phy_device *phydev = clock->chosen->phydev;
370         unsigned int val[4];
371
372         mutex_lock(&clock->extreg_lock);
373
374         ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
375
376         val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
377         val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
378         val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
379         val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
380
381         mutex_unlock(&clock->extreg_lock);
382
383         ts->tv_nsec = val[0] | (val[1] << 16);
384         ts->tv_sec  = val[2] | (val[3] << 16);
385
386         return 0;
387 }
388
389 static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
390                                const struct timespec *ts)
391 {
392         struct dp83640_clock *clock =
393                 container_of(ptp, struct dp83640_clock, caps);
394         struct phy_device *phydev = clock->chosen->phydev;
395         int err;
396
397         mutex_lock(&clock->extreg_lock);
398
399         err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
400
401         mutex_unlock(&clock->extreg_lock);
402
403         return err;
404 }
405
406 static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
407                               struct ptp_clock_request *rq, int on)
408 {
409         struct dp83640_clock *clock =
410                 container_of(ptp, struct dp83640_clock, caps);
411         struct phy_device *phydev = clock->chosen->phydev;
412         int index;
413         u16 evnt, event_num, gpio_num;
414
415         switch (rq->type) {
416         case PTP_CLK_REQ_EXTTS:
417                 index = rq->extts.index;
418                 if (index < 0 || index >= N_EXT_TS)
419                         return -EINVAL;
420                 event_num = EXT_EVENT + index;
421                 evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
422                 if (on) {
423                         gpio_num = gpio_tab[EXTTS0_GPIO + index];
424                         evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
425                         evnt |= EVNT_RISE;
426                 }
427                 ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
428                 return 0;
429
430         case PTP_CLK_REQ_PEROUT:
431                 if (rq->perout.index != 0)
432                         return -EINVAL;
433                 periodic_output(clock, rq, on);
434                 return 0;
435
436         default:
437                 break;
438         }
439
440         return -EOPNOTSUPP;
441 }
442
443 static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
444 static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
445
446 static void enable_status_frames(struct phy_device *phydev, bool on)
447 {
448         u16 cfg0 = 0, ver;
449
450         if (on)
451                 cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
452
453         ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
454
455         ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
456         ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
457
458         if (!phydev->attached_dev) {
459                 pr_warn("expected to find an attached netdevice\n");
460                 return;
461         }
462
463         if (on) {
464                 if (dev_mc_add(phydev->attached_dev, status_frame_dst))
465                         pr_warn("failed to add mc address\n");
466         } else {
467                 if (dev_mc_del(phydev->attached_dev, status_frame_dst))
468                         pr_warn("failed to delete mc address\n");
469         }
470 }
471
472 static bool is_status_frame(struct sk_buff *skb, int type)
473 {
474         struct ethhdr *h = eth_hdr(skb);
475
476         if (PTP_CLASS_V2_L2 == type &&
477             !memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
478                 return true;
479         else
480                 return false;
481 }
482
483 static int expired(struct rxts *rxts)
484 {
485         return time_after(jiffies, rxts->tmo);
486 }
487
488 /* Caller must hold rx_lock. */
489 static void prune_rx_ts(struct dp83640_private *dp83640)
490 {
491         struct list_head *this, *next;
492         struct rxts *rxts;
493
494         list_for_each_safe(this, next, &dp83640->rxts) {
495                 rxts = list_entry(this, struct rxts, list);
496                 if (expired(rxts)) {
497                         list_del_init(&rxts->list);
498                         list_add(&rxts->list, &dp83640->rxpool);
499                 }
500         }
501 }
502
503 /* synchronize the phyters so they act as one clock */
504
505 static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
506 {
507         int val;
508         phy_write(phydev, PAGESEL, 0);
509         val = phy_read(phydev, PHYCR2);
510         if (on)
511                 val |= BC_WRITE;
512         else
513                 val &= ~BC_WRITE;
514         phy_write(phydev, PHYCR2, val);
515         phy_write(phydev, PAGESEL, init_page);
516 }
517
518 static void recalibrate(struct dp83640_clock *clock)
519 {
520         s64 now, diff;
521         struct phy_txts event_ts;
522         struct timespec ts;
523         struct list_head *this;
524         struct dp83640_private *tmp;
525         struct phy_device *master = clock->chosen->phydev;
526         u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
527
528         trigger = CAL_TRIGGER;
529         cal_gpio = gpio_tab[CALIBRATE_GPIO];
530
531         mutex_lock(&clock->extreg_lock);
532
533         /*
534          * enable broadcast, disable status frames, enable ptp clock
535          */
536         list_for_each(this, &clock->phylist) {
537                 tmp = list_entry(this, struct dp83640_private, list);
538                 enable_broadcast(tmp->phydev, clock->page, 1);
539                 tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
540                 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
541                 ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
542         }
543         enable_broadcast(master, clock->page, 1);
544         cfg0 = ext_read(master, PAGE5, PSF_CFG0);
545         ext_write(0, master, PAGE5, PSF_CFG0, 0);
546         ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
547
548         /*
549          * enable an event timestamp
550          */
551         evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
552         evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
553         evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
554
555         list_for_each(this, &clock->phylist) {
556                 tmp = list_entry(this, struct dp83640_private, list);
557                 ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
558         }
559         ext_write(0, master, PAGE5, PTP_EVNT, evnt);
560
561         /*
562          * configure a trigger
563          */
564         ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
565         ptp_trig |= (trigger  & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
566         ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
567         ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
568
569         /* load trigger */
570         val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
571         val |= TRIG_LOAD;
572         ext_write(0, master, PAGE4, PTP_CTL, val);
573
574         /* enable trigger */
575         val &= ~TRIG_LOAD;
576         val |= TRIG_EN;
577         ext_write(0, master, PAGE4, PTP_CTL, val);
578
579         /* disable trigger */
580         val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
581         val |= TRIG_DIS;
582         ext_write(0, master, PAGE4, PTP_CTL, val);
583
584         /*
585          * read out and correct offsets
586          */
587         val = ext_read(master, PAGE4, PTP_STS);
588         pr_info("master PTP_STS  0x%04hx\n", val);
589         val = ext_read(master, PAGE4, PTP_ESTS);
590         pr_info("master PTP_ESTS 0x%04hx\n", val);
591         event_ts.ns_lo  = ext_read(master, PAGE4, PTP_EDATA);
592         event_ts.ns_hi  = ext_read(master, PAGE4, PTP_EDATA);
593         event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
594         event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
595         now = phy2txts(&event_ts);
596
597         list_for_each(this, &clock->phylist) {
598                 tmp = list_entry(this, struct dp83640_private, list);
599                 val = ext_read(tmp->phydev, PAGE4, PTP_STS);
600                 pr_info("slave  PTP_STS  0x%04hx\n", val);
601                 val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
602                 pr_info("slave  PTP_ESTS 0x%04hx\n", val);
603                 event_ts.ns_lo  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
604                 event_ts.ns_hi  = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
605                 event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
606                 event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
607                 diff = now - (s64) phy2txts(&event_ts);
608                 pr_info("slave offset %lld nanoseconds\n", diff);
609                 diff += ADJTIME_FIX;
610                 ts = ns_to_timespec(diff);
611                 tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
612         }
613
614         /*
615          * restore status frames
616          */
617         list_for_each(this, &clock->phylist) {
618                 tmp = list_entry(this, struct dp83640_private, list);
619                 ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
620         }
621         ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
622
623         mutex_unlock(&clock->extreg_lock);
624 }
625
626 /* time stamping methods */
627
628 static inline u16 exts_chan_to_edata(int ch)
629 {
630         return 1 << ((ch + EXT_EVENT) * 2);
631 }
632
633 static int decode_evnt(struct dp83640_private *dp83640,
634                        void *data, u16 ests)
635 {
636         struct phy_txts *phy_txts;
637         struct ptp_clock_event event;
638         int i, parsed;
639         int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
640         u16 ext_status = 0;
641
642         if (ests & MULT_EVNT) {
643                 ext_status = *(u16 *) data;
644                 data += sizeof(ext_status);
645         }
646
647         phy_txts = data;
648
649         switch (words) { /* fall through in every case */
650         case 3:
651                 dp83640->edata.sec_hi = phy_txts->sec_hi;
652         case 2:
653                 dp83640->edata.sec_lo = phy_txts->sec_lo;
654         case 1:
655                 dp83640->edata.ns_hi = phy_txts->ns_hi;
656         case 0:
657                 dp83640->edata.ns_lo = phy_txts->ns_lo;
658         }
659
660         if (ext_status) {
661                 parsed = words + 2;
662         } else {
663                 parsed = words + 1;
664                 i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
665                 ext_status = exts_chan_to_edata(i);
666         }
667
668         event.type = PTP_CLOCK_EXTTS;
669         event.timestamp = phy2txts(&dp83640->edata);
670
671         for (i = 0; i < N_EXT_TS; i++) {
672                 if (ext_status & exts_chan_to_edata(i)) {
673                         event.index = i;
674                         ptp_clock_event(dp83640->clock->ptp_clock, &event);
675                 }
676         }
677
678         return parsed * sizeof(u16);
679 }
680
681 static void decode_rxts(struct dp83640_private *dp83640,
682                         struct phy_rxts *phy_rxts)
683 {
684         struct rxts *rxts;
685         unsigned long flags;
686
687         spin_lock_irqsave(&dp83640->rx_lock, flags);
688
689         prune_rx_ts(dp83640);
690
691         if (list_empty(&dp83640->rxpool)) {
692                 pr_debug("rx timestamp pool is empty\n");
693                 goto out;
694         }
695         rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
696         list_del_init(&rxts->list);
697         phy2rxts(phy_rxts, rxts);
698         list_add_tail(&rxts->list, &dp83640->rxts);
699 out:
700         spin_unlock_irqrestore(&dp83640->rx_lock, flags);
701 }
702
703 static void decode_txts(struct dp83640_private *dp83640,
704                         struct phy_txts *phy_txts)
705 {
706         struct skb_shared_hwtstamps shhwtstamps;
707         struct sk_buff *skb;
708         u64 ns;
709
710         /* We must already have the skb that triggered this. */
711
712         skb = skb_dequeue(&dp83640->tx_queue);
713
714         if (!skb) {
715                 pr_debug("have timestamp but tx_queue empty\n");
716                 return;
717         }
718         ns = phy2txts(phy_txts);
719         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
720         shhwtstamps.hwtstamp = ns_to_ktime(ns);
721         skb_complete_tx_timestamp(skb, &shhwtstamps);
722 }
723
724 static void decode_status_frame(struct dp83640_private *dp83640,
725                                 struct sk_buff *skb)
726 {
727         struct phy_rxts *phy_rxts;
728         struct phy_txts *phy_txts;
729         u8 *ptr;
730         int len, size;
731         u16 ests, type;
732
733         ptr = skb->data + 2;
734
735         for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
736
737                 type = *(u16 *)ptr;
738                 ests = type & 0x0fff;
739                 type = type & 0xf000;
740                 len -= sizeof(type);
741                 ptr += sizeof(type);
742
743                 if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
744
745                         phy_rxts = (struct phy_rxts *) ptr;
746                         decode_rxts(dp83640, phy_rxts);
747                         size = sizeof(*phy_rxts);
748
749                 } else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
750
751                         phy_txts = (struct phy_txts *) ptr;
752                         decode_txts(dp83640, phy_txts);
753                         size = sizeof(*phy_txts);
754
755                 } else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
756
757                         size = decode_evnt(dp83640, ptr, ests);
758
759                 } else {
760                         size = 0;
761                         break;
762                 }
763                 ptr += size;
764         }
765 }
766
767 static int is_sync(struct sk_buff *skb, int type)
768 {
769         u8 *data = skb->data, *msgtype;
770         unsigned int offset = 0;
771
772         switch (type) {
773         case PTP_CLASS_V1_IPV4:
774         case PTP_CLASS_V2_IPV4:
775                 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
776                 break;
777         case PTP_CLASS_V1_IPV6:
778         case PTP_CLASS_V2_IPV6:
779                 offset = OFF_PTP6;
780                 break;
781         case PTP_CLASS_V2_L2:
782                 offset = ETH_HLEN;
783                 break;
784         case PTP_CLASS_V2_VLAN:
785                 offset = ETH_HLEN + VLAN_HLEN;
786                 break;
787         default:
788                 return 0;
789         }
790
791         if (type & PTP_CLASS_V1)
792                 offset += OFF_PTP_CONTROL;
793
794         if (skb->len < offset + 1)
795                 return 0;
796
797         msgtype = data + offset;
798
799         return (*msgtype & 0xf) == 0;
800 }
801
802 static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
803 {
804         u16 *seqid;
805         unsigned int offset;
806         u8 *msgtype, *data = skb_mac_header(skb);
807
808         /* check sequenceID, messageType, 12 bit hash of offset 20-29 */
809
810         switch (type) {
811         case PTP_CLASS_V1_IPV4:
812         case PTP_CLASS_V2_IPV4:
813                 offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
814                 break;
815         case PTP_CLASS_V1_IPV6:
816         case PTP_CLASS_V2_IPV6:
817                 offset = OFF_PTP6;
818                 break;
819         case PTP_CLASS_V2_L2:
820                 offset = ETH_HLEN;
821                 break;
822         case PTP_CLASS_V2_VLAN:
823                 offset = ETH_HLEN + VLAN_HLEN;
824                 break;
825         default:
826                 return 0;
827         }
828
829         if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
830                 return 0;
831
832         if (unlikely(type & PTP_CLASS_V1))
833                 msgtype = data + offset + OFF_PTP_CONTROL;
834         else
835                 msgtype = data + offset;
836
837         seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
838
839         return (rxts->msgtype == (*msgtype & 0xf) &&
840                 rxts->seqid   == ntohs(*seqid));
841 }
842
843 static void dp83640_free_clocks(void)
844 {
845         struct dp83640_clock *clock;
846         struct list_head *this, *next;
847
848         mutex_lock(&phyter_clocks_lock);
849
850         list_for_each_safe(this, next, &phyter_clocks) {
851                 clock = list_entry(this, struct dp83640_clock, list);
852                 if (!list_empty(&clock->phylist)) {
853                         pr_warn("phy list non-empty while unloading\n");
854                         BUG();
855                 }
856                 list_del(&clock->list);
857                 mutex_destroy(&clock->extreg_lock);
858                 mutex_destroy(&clock->clock_lock);
859                 put_device(&clock->bus->dev);
860                 kfree(clock);
861         }
862
863         mutex_unlock(&phyter_clocks_lock);
864 }
865
866 static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
867 {
868         INIT_LIST_HEAD(&clock->list);
869         clock->bus = bus;
870         mutex_init(&clock->extreg_lock);
871         mutex_init(&clock->clock_lock);
872         INIT_LIST_HEAD(&clock->phylist);
873         clock->caps.owner = THIS_MODULE;
874         sprintf(clock->caps.name, "dp83640 timer");
875         clock->caps.max_adj     = 1953124;
876         clock->caps.n_alarm     = 0;
877         clock->caps.n_ext_ts    = N_EXT_TS;
878         clock->caps.n_per_out   = 1;
879         clock->caps.pps         = 0;
880         clock->caps.adjfreq     = ptp_dp83640_adjfreq;
881         clock->caps.adjtime     = ptp_dp83640_adjtime;
882         clock->caps.gettime     = ptp_dp83640_gettime;
883         clock->caps.settime     = ptp_dp83640_settime;
884         clock->caps.enable      = ptp_dp83640_enable;
885         /*
886          * Get a reference to this bus instance.
887          */
888         get_device(&bus->dev);
889 }
890
891 static int choose_this_phy(struct dp83640_clock *clock,
892                            struct phy_device *phydev)
893 {
894         if (chosen_phy == -1 && !clock->chosen)
895                 return 1;
896
897         if (chosen_phy == phydev->addr)
898                 return 1;
899
900         return 0;
901 }
902
903 static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
904 {
905         if (clock)
906                 mutex_lock(&clock->clock_lock);
907         return clock;
908 }
909
910 /*
911  * Look up and lock a clock by bus instance.
912  * If there is no clock for this bus, then create it first.
913  */
914 static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
915 {
916         struct dp83640_clock *clock = NULL, *tmp;
917         struct list_head *this;
918
919         mutex_lock(&phyter_clocks_lock);
920
921         list_for_each(this, &phyter_clocks) {
922                 tmp = list_entry(this, struct dp83640_clock, list);
923                 if (tmp->bus == bus) {
924                         clock = tmp;
925                         break;
926                 }
927         }
928         if (clock)
929                 goto out;
930
931         clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
932         if (!clock)
933                 goto out;
934
935         dp83640_clock_init(clock, bus);
936         list_add_tail(&phyter_clocks, &clock->list);
937 out:
938         mutex_unlock(&phyter_clocks_lock);
939
940         return dp83640_clock_get(clock);
941 }
942
943 static void dp83640_clock_put(struct dp83640_clock *clock)
944 {
945         mutex_unlock(&clock->clock_lock);
946 }
947
948 static int dp83640_probe(struct phy_device *phydev)
949 {
950         struct dp83640_clock *clock;
951         struct dp83640_private *dp83640;
952         int err = -ENOMEM, i;
953
954         if (phydev->addr == BROADCAST_ADDR)
955                 return 0;
956
957         clock = dp83640_clock_get_bus(phydev->bus);
958         if (!clock)
959                 goto no_clock;
960
961         dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
962         if (!dp83640)
963                 goto no_memory;
964
965         dp83640->phydev = phydev;
966         INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
967
968         INIT_LIST_HEAD(&dp83640->rxts);
969         INIT_LIST_HEAD(&dp83640->rxpool);
970         for (i = 0; i < MAX_RXTS; i++)
971                 list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
972
973         phydev->priv = dp83640;
974
975         spin_lock_init(&dp83640->rx_lock);
976         skb_queue_head_init(&dp83640->rx_queue);
977         skb_queue_head_init(&dp83640->tx_queue);
978
979         dp83640->clock = clock;
980
981         if (choose_this_phy(clock, phydev)) {
982                 clock->chosen = dp83640;
983                 clock->ptp_clock = ptp_clock_register(&clock->caps);
984                 if (IS_ERR(clock->ptp_clock)) {
985                         err = PTR_ERR(clock->ptp_clock);
986                         goto no_register;
987                 }
988         } else
989                 list_add_tail(&dp83640->list, &clock->phylist);
990
991         if (clock->chosen && !list_empty(&clock->phylist))
992                 recalibrate(clock);
993         else
994                 enable_broadcast(dp83640->phydev, clock->page, 1);
995
996         dp83640_clock_put(clock);
997         return 0;
998
999 no_register:
1000         clock->chosen = NULL;
1001         kfree(dp83640);
1002 no_memory:
1003         dp83640_clock_put(clock);
1004 no_clock:
1005         return err;
1006 }
1007
1008 static void dp83640_remove(struct phy_device *phydev)
1009 {
1010         struct dp83640_clock *clock;
1011         struct list_head *this, *next;
1012         struct dp83640_private *tmp, *dp83640 = phydev->priv;
1013         struct sk_buff *skb;
1014
1015         if (phydev->addr == BROADCAST_ADDR)
1016                 return;
1017
1018         enable_status_frames(phydev, false);
1019         cancel_work_sync(&dp83640->ts_work);
1020
1021         while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
1022                 kfree_skb(skb);
1023
1024         while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
1025                 skb_complete_tx_timestamp(skb, NULL);
1026
1027         clock = dp83640_clock_get(dp83640->clock);
1028
1029         if (dp83640 == clock->chosen) {
1030                 ptp_clock_unregister(clock->ptp_clock);
1031                 clock->chosen = NULL;
1032         } else {
1033                 list_for_each_safe(this, next, &clock->phylist) {
1034                         tmp = list_entry(this, struct dp83640_private, list);
1035                         if (tmp == dp83640) {
1036                                 list_del_init(&tmp->list);
1037                                 break;
1038                         }
1039                 }
1040         }
1041
1042         dp83640_clock_put(clock);
1043         kfree(dp83640);
1044 }
1045
1046 static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
1047 {
1048         struct dp83640_private *dp83640 = phydev->priv;
1049         struct hwtstamp_config cfg;
1050         u16 txcfg0, rxcfg0;
1051
1052         if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1053                 return -EFAULT;
1054
1055         if (cfg.flags) /* reserved for future extensions */
1056                 return -EINVAL;
1057
1058         if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
1059                 return -ERANGE;
1060
1061         dp83640->hwts_tx_en = cfg.tx_type;
1062
1063         switch (cfg.rx_filter) {
1064         case HWTSTAMP_FILTER_NONE:
1065                 dp83640->hwts_rx_en = 0;
1066                 dp83640->layer = 0;
1067                 dp83640->version = 0;
1068                 break;
1069         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1070         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1071         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1072                 dp83640->hwts_rx_en = 1;
1073                 dp83640->layer = LAYER4;
1074                 dp83640->version = 1;
1075                 break;
1076         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1077         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1078         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1079                 dp83640->hwts_rx_en = 1;
1080                 dp83640->layer = LAYER4;
1081                 dp83640->version = 2;
1082                 break;
1083         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1084         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1085         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1086                 dp83640->hwts_rx_en = 1;
1087                 dp83640->layer = LAYER2;
1088                 dp83640->version = 2;
1089                 break;
1090         case HWTSTAMP_FILTER_PTP_V2_EVENT:
1091         case HWTSTAMP_FILTER_PTP_V2_SYNC:
1092         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1093                 dp83640->hwts_rx_en = 1;
1094                 dp83640->layer = LAYER4|LAYER2;
1095                 dp83640->version = 2;
1096                 break;
1097         default:
1098                 return -ERANGE;
1099         }
1100
1101         txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1102         rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
1103
1104         if (dp83640->layer & LAYER2) {
1105                 txcfg0 |= TX_L2_EN;
1106                 rxcfg0 |= RX_L2_EN;
1107         }
1108         if (dp83640->layer & LAYER4) {
1109                 txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
1110                 rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
1111         }
1112
1113         if (dp83640->hwts_tx_en)
1114                 txcfg0 |= TX_TS_EN;
1115
1116         if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
1117                 txcfg0 |= SYNC_1STEP | CHK_1STEP;
1118
1119         if (dp83640->hwts_rx_en)
1120                 rxcfg0 |= RX_TS_EN;
1121
1122         mutex_lock(&dp83640->clock->extreg_lock);
1123
1124         if (dp83640->hwts_tx_en || dp83640->hwts_rx_en) {
1125                 enable_status_frames(phydev, true);
1126                 ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
1127         }
1128
1129         ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
1130         ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
1131
1132         mutex_unlock(&dp83640->clock->extreg_lock);
1133
1134         return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
1135 }
1136
1137 static void rx_timestamp_work(struct work_struct *work)
1138 {
1139         struct dp83640_private *dp83640 =
1140                 container_of(work, struct dp83640_private, ts_work);
1141         struct list_head *this, *next;
1142         struct rxts *rxts;
1143         struct skb_shared_hwtstamps *shhwtstamps;
1144         struct sk_buff *skb;
1145         unsigned int type;
1146         unsigned long flags;
1147
1148         /* Deliver each deferred packet, with or without a time stamp. */
1149
1150         while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
1151                 type = SKB_PTP_TYPE(skb);
1152                 spin_lock_irqsave(&dp83640->rx_lock, flags);
1153                 list_for_each_safe(this, next, &dp83640->rxts) {
1154                         rxts = list_entry(this, struct rxts, list);
1155                         if (match(skb, type, rxts)) {
1156                                 shhwtstamps = skb_hwtstamps(skb);
1157                                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1158                                 shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
1159                                 list_del_init(&rxts->list);
1160                                 list_add(&rxts->list, &dp83640->rxpool);
1161                                 break;
1162                         }
1163                 }
1164                 spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1165                 netif_rx_ni(skb);
1166         }
1167
1168         /* Clear out expired time stamps. */
1169
1170         spin_lock_irqsave(&dp83640->rx_lock, flags);
1171         prune_rx_ts(dp83640);
1172         spin_unlock_irqrestore(&dp83640->rx_lock, flags);
1173 }
1174
1175 static bool dp83640_rxtstamp(struct phy_device *phydev,
1176                              struct sk_buff *skb, int type)
1177 {
1178         struct dp83640_private *dp83640 = phydev->priv;
1179
1180         if (!dp83640->hwts_rx_en)
1181                 return false;
1182
1183         if (is_status_frame(skb, type)) {
1184                 decode_status_frame(dp83640, skb);
1185                 kfree_skb(skb);
1186                 return true;
1187         }
1188
1189         SKB_PTP_TYPE(skb) = type;
1190         skb_queue_tail(&dp83640->rx_queue, skb);
1191         schedule_work(&dp83640->ts_work);
1192
1193         return true;
1194 }
1195
1196 static void dp83640_txtstamp(struct phy_device *phydev,
1197                              struct sk_buff *skb, int type)
1198 {
1199         struct dp83640_private *dp83640 = phydev->priv;
1200
1201         switch (dp83640->hwts_tx_en) {
1202
1203         case HWTSTAMP_TX_ONESTEP_SYNC:
1204                 if (is_sync(skb, type)) {
1205                         skb_complete_tx_timestamp(skb, NULL);
1206                         return;
1207                 }
1208                 /* fall through */
1209         case HWTSTAMP_TX_ON:
1210                 skb_queue_tail(&dp83640->tx_queue, skb);
1211                 schedule_work(&dp83640->ts_work);
1212                 break;
1213
1214         case HWTSTAMP_TX_OFF:
1215         default:
1216                 skb_complete_tx_timestamp(skb, NULL);
1217                 break;
1218         }
1219 }
1220
1221 static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
1222 {
1223         struct dp83640_private *dp83640 = dev->priv;
1224
1225         info->so_timestamping =
1226                 SOF_TIMESTAMPING_TX_HARDWARE |
1227                 SOF_TIMESTAMPING_RX_HARDWARE |
1228                 SOF_TIMESTAMPING_RAW_HARDWARE;
1229         info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
1230         info->tx_types =
1231                 (1 << HWTSTAMP_TX_OFF) |
1232                 (1 << HWTSTAMP_TX_ON) |
1233                 (1 << HWTSTAMP_TX_ONESTEP_SYNC);
1234         info->rx_filters =
1235                 (1 << HWTSTAMP_FILTER_NONE) |
1236                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
1237                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
1238                 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
1239                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
1240                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
1241                 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
1242                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1243                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
1244                 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
1245                 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
1246                 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
1247                 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
1248         return 0;
1249 }
1250
1251 static struct phy_driver dp83640_driver = {
1252         .phy_id         = DP83640_PHY_ID,
1253         .phy_id_mask    = 0xfffffff0,
1254         .name           = "NatSemi DP83640",
1255         .features       = PHY_BASIC_FEATURES,
1256         .flags          = 0,
1257         .probe          = dp83640_probe,
1258         .remove         = dp83640_remove,
1259         .config_aneg    = genphy_config_aneg,
1260         .read_status    = genphy_read_status,
1261         .ts_info        = dp83640_ts_info,
1262         .hwtstamp       = dp83640_hwtstamp,
1263         .rxtstamp       = dp83640_rxtstamp,
1264         .txtstamp       = dp83640_txtstamp,
1265         .driver         = {.owner = THIS_MODULE,}
1266 };
1267
1268 static int __init dp83640_init(void)
1269 {
1270         return phy_driver_register(&dp83640_driver);
1271 }
1272
1273 static void __exit dp83640_exit(void)
1274 {
1275         dp83640_free_clocks();
1276         phy_driver_unregister(&dp83640_driver);
1277 }
1278
1279 MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
1280 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.at>");
1281 MODULE_LICENSE("GPL");
1282
1283 module_init(dp83640_init);
1284 module_exit(dp83640_exit);
1285
1286 static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
1287         { DP83640_PHY_ID, 0xfffffff0 },
1288         { }
1289 };
1290
1291 MODULE_DEVICE_TABLE(mdio, dp83640_tbl);