drivers/net/igb: fix sparse warning: symbol shadows an earlier one
[pandora-kernel.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70         /* required last entry */
71         {0, }
72 };
73
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 static int igb_clean_rx_ring_msix(struct napi_struct *, int);
110 #ifdef CONFIG_IGB_DCA
111 static void igb_update_rx_dca(struct igb_ring *);
112 static void igb_update_tx_dca(struct igb_ring *);
113 static void igb_setup_dca(struct igb_adapter *);
114 #endif /* CONFIG_IGB_DCA */
115 static bool igb_clean_tx_irq(struct igb_ring *);
116 static int igb_poll(struct napi_struct *, int);
117 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
118 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
119 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
120 static void igb_tx_timeout(struct net_device *);
121 static void igb_reset_task(struct work_struct *);
122 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
123 static void igb_vlan_rx_add_vid(struct net_device *, u16);
124 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
125 static void igb_restore_vlan(struct igb_adapter *);
126
127 static int igb_suspend(struct pci_dev *, pm_message_t);
128 #ifdef CONFIG_PM
129 static int igb_resume(struct pci_dev *);
130 #endif
131 static void igb_shutdown(struct pci_dev *);
132 #ifdef CONFIG_IGB_DCA
133 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
134 static struct notifier_block dca_notifier = {
135         .notifier_call  = igb_notify_dca,
136         .next           = NULL,
137         .priority       = 0
138 };
139 #endif
140
141 #ifdef CONFIG_NET_POLL_CONTROLLER
142 /* for netdump / net console */
143 static void igb_netpoll(struct net_device *);
144 #endif
145
146 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
147                      pci_channel_state_t);
148 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
149 static void igb_io_resume(struct pci_dev *);
150
151 static struct pci_error_handlers igb_err_handler = {
152         .error_detected = igb_io_error_detected,
153         .slot_reset = igb_io_slot_reset,
154         .resume = igb_io_resume,
155 };
156
157
158 static struct pci_driver igb_driver = {
159         .name     = igb_driver_name,
160         .id_table = igb_pci_tbl,
161         .probe    = igb_probe,
162         .remove   = __devexit_p(igb_remove),
163 #ifdef CONFIG_PM
164         /* Power Managment Hooks */
165         .suspend  = igb_suspend,
166         .resume   = igb_resume,
167 #endif
168         .shutdown = igb_shutdown,
169         .err_handler = &igb_err_handler
170 };
171
172 static int global_quad_port_a; /* global quad port a indication */
173
174 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
175 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178
179 /**
180  * Scale the NIC clock cycle by a large factor so that
181  * relatively small clock corrections can be added or
182  * substracted at each clock tick. The drawbacks of a
183  * large factor are a) that the clock register overflows
184  * more quickly (not such a big deal) and b) that the
185  * increment per tick has to fit into 24 bits.
186  *
187  * Note that
188  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
189  *             IGB_TSYNC_SCALE
190  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
191  *
192  * The base scale factor is intentionally a power of two
193  * so that the division in %struct timecounter can be done with
194  * a shift.
195  */
196 #define IGB_TSYNC_SHIFT (19)
197 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
198
199 /**
200  * The duration of one clock cycle of the NIC.
201  *
202  * @todo This hard-coded value is part of the specification and might change
203  * in future hardware revisions. Add revision check.
204  */
205 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
206
207 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
208 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
209 #endif
210
211 /**
212  * igb_read_clock - read raw cycle counter (to be used by time counter)
213  */
214 static cycle_t igb_read_clock(const struct cyclecounter *tc)
215 {
216         struct igb_adapter *adapter =
217                 container_of(tc, struct igb_adapter, cycles);
218         struct e1000_hw *hw = &adapter->hw;
219         u64 stamp;
220
221         stamp =  rd32(E1000_SYSTIML);
222         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
223
224         return stamp;
225 }
226
227 #ifdef DEBUG
228 /**
229  * igb_get_hw_dev_name - return device name string
230  * used by hardware layer to print debugging information
231  **/
232 char *igb_get_hw_dev_name(struct e1000_hw *hw)
233 {
234         struct igb_adapter *adapter = hw->back;
235         return adapter->netdev->name;
236 }
237
238 /**
239  * igb_get_time_str - format current NIC and system time as string
240  */
241 static char *igb_get_time_str(struct igb_adapter *adapter,
242                               char buffer[160])
243 {
244         cycle_t hw = adapter->cycles.read(&adapter->cycles);
245         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
246         struct timespec sys;
247         struct timespec delta;
248         getnstimeofday(&sys);
249
250         delta = timespec_sub(nic, sys);
251
252         sprintf(buffer,
253                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
254                 hw,
255                 (long)nic.tv_sec, nic.tv_nsec,
256                 (long)sys.tv_sec, sys.tv_nsec,
257                 (long)delta.tv_sec, delta.tv_nsec);
258
259         return buffer;
260 }
261 #endif
262
263 /**
264  * igb_init_module - Driver Registration Routine
265  *
266  * igb_init_module is the first routine called when the driver is
267  * loaded. All it does is register with the PCI subsystem.
268  **/
269 static int __init igb_init_module(void)
270 {
271         int ret;
272         printk(KERN_INFO "%s - version %s\n",
273                igb_driver_string, igb_driver_version);
274
275         printk(KERN_INFO "%s\n", igb_copyright);
276
277         global_quad_port_a = 0;
278
279 #ifdef CONFIG_IGB_DCA
280         dca_register_notify(&dca_notifier);
281 #endif
282
283         ret = pci_register_driver(&igb_driver);
284         return ret;
285 }
286
287 module_init(igb_init_module);
288
289 /**
290  * igb_exit_module - Driver Exit Cleanup Routine
291  *
292  * igb_exit_module is called just before the driver is removed
293  * from memory.
294  **/
295 static void __exit igb_exit_module(void)
296 {
297 #ifdef CONFIG_IGB_DCA
298         dca_unregister_notify(&dca_notifier);
299 #endif
300         pci_unregister_driver(&igb_driver);
301 }
302
303 module_exit(igb_exit_module);
304
305 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
306 /**
307  * igb_cache_ring_register - Descriptor ring to register mapping
308  * @adapter: board private structure to initialize
309  *
310  * Once we know the feature-set enabled for the device, we'll cache
311  * the register offset the descriptor ring is assigned to.
312  **/
313 static void igb_cache_ring_register(struct igb_adapter *adapter)
314 {
315         int i;
316
317         switch (adapter->hw.mac.type) {
318         case e1000_82576:
319                 /* The queues are allocated for virtualization such that VF 0
320                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
321                  * In order to avoid collision we start at the first free queue
322                  * and continue consuming queues in the same sequence
323                  */
324                 for (i = 0; i < adapter->num_rx_queues; i++)
325                         adapter->rx_ring[i].reg_idx = Q_IDX_82576(i);
326                 for (i = 0; i < adapter->num_tx_queues; i++)
327                         adapter->tx_ring[i].reg_idx = Q_IDX_82576(i);
328                 break;
329         case e1000_82575:
330         default:
331                 for (i = 0; i < adapter->num_rx_queues; i++)
332                         adapter->rx_ring[i].reg_idx = i;
333                 for (i = 0; i < adapter->num_tx_queues; i++)
334                         adapter->tx_ring[i].reg_idx = i;
335                 break;
336         }
337 }
338
339 /**
340  * igb_alloc_queues - Allocate memory for all rings
341  * @adapter: board private structure to initialize
342  *
343  * We allocate one ring per queue at run-time since we don't know the
344  * number of queues at compile-time.
345  **/
346 static int igb_alloc_queues(struct igb_adapter *adapter)
347 {
348         int i;
349
350         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
351                                    sizeof(struct igb_ring), GFP_KERNEL);
352         if (!adapter->tx_ring)
353                 return -ENOMEM;
354
355         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
356                                    sizeof(struct igb_ring), GFP_KERNEL);
357         if (!adapter->rx_ring) {
358                 kfree(adapter->tx_ring);
359                 return -ENOMEM;
360         }
361
362         adapter->rx_ring->buddy = adapter->tx_ring;
363
364         for (i = 0; i < adapter->num_tx_queues; i++) {
365                 struct igb_ring *ring = &(adapter->tx_ring[i]);
366                 ring->count = adapter->tx_ring_count;
367                 ring->adapter = adapter;
368                 ring->queue_index = i;
369         }
370         for (i = 0; i < adapter->num_rx_queues; i++) {
371                 struct igb_ring *ring = &(adapter->rx_ring[i]);
372                 ring->count = adapter->rx_ring_count;
373                 ring->adapter = adapter;
374                 ring->queue_index = i;
375                 ring->itr_register = E1000_ITR;
376
377                 /* set a default napi handler for each rx_ring */
378                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
379         }
380
381         igb_cache_ring_register(adapter);
382         return 0;
383 }
384
385 static void igb_free_queues(struct igb_adapter *adapter)
386 {
387         int i;
388
389         for (i = 0; i < adapter->num_rx_queues; i++)
390                 netif_napi_del(&adapter->rx_ring[i].napi);
391
392         kfree(adapter->tx_ring);
393         kfree(adapter->rx_ring);
394 }
395
396 #define IGB_N0_QUEUE -1
397 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
398                               int tx_queue, int msix_vector)
399 {
400         u32 msixbm = 0;
401         struct e1000_hw *hw = &adapter->hw;
402         u32 ivar, index;
403
404         switch (hw->mac.type) {
405         case e1000_82575:
406                 /* The 82575 assigns vectors using a bitmask, which matches the
407                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
408                    or more queues to a vector, we write the appropriate bits
409                    into the MSIXBM register for that vector. */
410                 if (rx_queue > IGB_N0_QUEUE) {
411                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
412                         adapter->rx_ring[rx_queue].eims_value = msixbm;
413                 }
414                 if (tx_queue > IGB_N0_QUEUE) {
415                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
416                         adapter->tx_ring[tx_queue].eims_value =
417                                   E1000_EICR_TX_QUEUE0 << tx_queue;
418                 }
419                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
420                 break;
421         case e1000_82576:
422                 /* 82576 uses a table-based method for assigning vectors.
423                    Each queue has a single entry in the table to which we write
424                    a vector number along with a "valid" bit.  Sadly, the layout
425                    of the table is somewhat counterintuitive. */
426                 if (rx_queue > IGB_N0_QUEUE) {
427                         index = (rx_queue >> 1);
428                         ivar = array_rd32(E1000_IVAR0, index);
429                         if (rx_queue & 0x1) {
430                                 /* vector goes into third byte of register */
431                                 ivar = ivar & 0xFF00FFFF;
432                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
433                         } else {
434                                 /* vector goes into low byte of register */
435                                 ivar = ivar & 0xFFFFFF00;
436                                 ivar |= msix_vector | E1000_IVAR_VALID;
437                         }
438                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
439                         array_wr32(E1000_IVAR0, index, ivar);
440                 }
441                 if (tx_queue > IGB_N0_QUEUE) {
442                         index = (tx_queue >> 1);
443                         ivar = array_rd32(E1000_IVAR0, index);
444                         if (tx_queue & 0x1) {
445                                 /* vector goes into high byte of register */
446                                 ivar = ivar & 0x00FFFFFF;
447                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
448                         } else {
449                                 /* vector goes into second byte of register */
450                                 ivar = ivar & 0xFFFF00FF;
451                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
452                         }
453                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
454                         array_wr32(E1000_IVAR0, index, ivar);
455                 }
456                 break;
457         default:
458                 BUG();
459                 break;
460         }
461 }
462
463 /**
464  * igb_configure_msix - Configure MSI-X hardware
465  *
466  * igb_configure_msix sets up the hardware to properly
467  * generate MSI-X interrupts.
468  **/
469 static void igb_configure_msix(struct igb_adapter *adapter)
470 {
471         u32 tmp;
472         int i, vector = 0;
473         struct e1000_hw *hw = &adapter->hw;
474
475         adapter->eims_enable_mask = 0;
476         if (hw->mac.type == e1000_82576)
477                 /* Turn on MSI-X capability first, or our settings
478                  * won't stick.  And it will take days to debug. */
479                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
480                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
481                                    E1000_GPIE_NSICR);
482
483         for (i = 0; i < adapter->num_tx_queues; i++) {
484                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
485                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
486                 adapter->eims_enable_mask |= tx_ring->eims_value;
487                 if (tx_ring->itr_val)
488                         writel(tx_ring->itr_val,
489                                hw->hw_addr + tx_ring->itr_register);
490                 else
491                         writel(1, hw->hw_addr + tx_ring->itr_register);
492         }
493
494         for (i = 0; i < adapter->num_rx_queues; i++) {
495                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
496                 rx_ring->buddy = NULL;
497                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
498                 adapter->eims_enable_mask |= rx_ring->eims_value;
499                 if (rx_ring->itr_val)
500                         writel(rx_ring->itr_val,
501                                hw->hw_addr + rx_ring->itr_register);
502                 else
503                         writel(1, hw->hw_addr + rx_ring->itr_register);
504         }
505
506
507         /* set vector for other causes, i.e. link changes */
508         switch (hw->mac.type) {
509         case e1000_82575:
510                 array_wr32(E1000_MSIXBM(0), vector++,
511                                       E1000_EIMS_OTHER);
512
513                 tmp = rd32(E1000_CTRL_EXT);
514                 /* enable MSI-X PBA support*/
515                 tmp |= E1000_CTRL_EXT_PBA_CLR;
516
517                 /* Auto-Mask interrupts upon ICR read. */
518                 tmp |= E1000_CTRL_EXT_EIAME;
519                 tmp |= E1000_CTRL_EXT_IRCA;
520
521                 wr32(E1000_CTRL_EXT, tmp);
522                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
523                 adapter->eims_other = E1000_EIMS_OTHER;
524
525                 break;
526
527         case e1000_82576:
528                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
529                 wr32(E1000_IVAR_MISC, tmp);
530
531                 adapter->eims_enable_mask = (1 << (vector)) - 1;
532                 adapter->eims_other = 1 << (vector - 1);
533                 break;
534         default:
535                 /* do nothing, since nothing else supports MSI-X */
536                 break;
537         } /* switch (hw->mac.type) */
538         wrfl();
539 }
540
541 /**
542  * igb_request_msix - Initialize MSI-X interrupts
543  *
544  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
545  * kernel.
546  **/
547 static int igb_request_msix(struct igb_adapter *adapter)
548 {
549         struct net_device *netdev = adapter->netdev;
550         int i, err = 0, vector = 0;
551
552         vector = 0;
553
554         for (i = 0; i < adapter->num_tx_queues; i++) {
555                 struct igb_ring *ring = &(adapter->tx_ring[i]);
556                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
557                 err = request_irq(adapter->msix_entries[vector].vector,
558                                   &igb_msix_tx, 0, ring->name,
559                                   &(adapter->tx_ring[i]));
560                 if (err)
561                         goto out;
562                 ring->itr_register = E1000_EITR(0) + (vector << 2);
563                 ring->itr_val = 976; /* ~4000 ints/sec */
564                 vector++;
565         }
566         for (i = 0; i < adapter->num_rx_queues; i++) {
567                 struct igb_ring *ring = &(adapter->rx_ring[i]);
568                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
569                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
570                 else
571                         memcpy(ring->name, netdev->name, IFNAMSIZ);
572                 err = request_irq(adapter->msix_entries[vector].vector,
573                                   &igb_msix_rx, 0, ring->name,
574                                   &(adapter->rx_ring[i]));
575                 if (err)
576                         goto out;
577                 ring->itr_register = E1000_EITR(0) + (vector << 2);
578                 ring->itr_val = adapter->itr;
579                 /* overwrite the poll routine for MSIX, we've already done
580                  * netif_napi_add */
581                 ring->napi.poll = &igb_clean_rx_ring_msix;
582                 vector++;
583         }
584
585         err = request_irq(adapter->msix_entries[vector].vector,
586                           &igb_msix_other, 0, netdev->name, netdev);
587         if (err)
588                 goto out;
589
590         igb_configure_msix(adapter);
591         return 0;
592 out:
593         return err;
594 }
595
596 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
597 {
598         if (adapter->msix_entries) {
599                 pci_disable_msix(adapter->pdev);
600                 kfree(adapter->msix_entries);
601                 adapter->msix_entries = NULL;
602         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
603                 pci_disable_msi(adapter->pdev);
604         return;
605 }
606
607
608 /**
609  * igb_set_interrupt_capability - set MSI or MSI-X if supported
610  *
611  * Attempt to configure interrupts using the best available
612  * capabilities of the hardware and kernel.
613  **/
614 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
615 {
616         int err;
617         int numvecs, i;
618
619         /* Number of supported queues. */
620         /* Having more queues than CPUs doesn't make sense. */
621         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
622         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
623
624         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
625         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
626                                         GFP_KERNEL);
627         if (!adapter->msix_entries)
628                 goto msi_only;
629
630         for (i = 0; i < numvecs; i++)
631                 adapter->msix_entries[i].entry = i;
632
633         err = pci_enable_msix(adapter->pdev,
634                               adapter->msix_entries,
635                               numvecs);
636         if (err == 0)
637                 goto out;
638
639         igb_reset_interrupt_capability(adapter);
640
641         /* If we can't do MSI-X, try MSI */
642 msi_only:
643         adapter->num_rx_queues = 1;
644         adapter->num_tx_queues = 1;
645         if (!pci_enable_msi(adapter->pdev))
646                 adapter->flags |= IGB_FLAG_HAS_MSI;
647 out:
648         /* Notify the stack of the (possibly) reduced Tx Queue count. */
649         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
650         return;
651 }
652
653 /**
654  * igb_request_irq - initialize interrupts
655  *
656  * Attempts to configure interrupts using the best available
657  * capabilities of the hardware and kernel.
658  **/
659 static int igb_request_irq(struct igb_adapter *adapter)
660 {
661         struct net_device *netdev = adapter->netdev;
662         struct e1000_hw *hw = &adapter->hw;
663         int err = 0;
664
665         if (adapter->msix_entries) {
666                 err = igb_request_msix(adapter);
667                 if (!err)
668                         goto request_done;
669                 /* fall back to MSI */
670                 igb_reset_interrupt_capability(adapter);
671                 if (!pci_enable_msi(adapter->pdev))
672                         adapter->flags |= IGB_FLAG_HAS_MSI;
673                 igb_free_all_tx_resources(adapter);
674                 igb_free_all_rx_resources(adapter);
675                 adapter->num_rx_queues = 1;
676                 igb_alloc_queues(adapter);
677         } else {
678                 switch (hw->mac.type) {
679                 case e1000_82575:
680                         wr32(E1000_MSIXBM(0),
681                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
682                         break;
683                 case e1000_82576:
684                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
685                         break;
686                 default:
687                         break;
688                 }
689         }
690
691         if (adapter->flags & IGB_FLAG_HAS_MSI) {
692                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
693                                   netdev->name, netdev);
694                 if (!err)
695                         goto request_done;
696                 /* fall back to legacy interrupts */
697                 igb_reset_interrupt_capability(adapter);
698                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
699         }
700
701         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
702                           netdev->name, netdev);
703
704         if (err)
705                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
706                         err);
707
708 request_done:
709         return err;
710 }
711
712 static void igb_free_irq(struct igb_adapter *adapter)
713 {
714         struct net_device *netdev = adapter->netdev;
715
716         if (adapter->msix_entries) {
717                 int vector = 0, i;
718
719                 for (i = 0; i < adapter->num_tx_queues; i++)
720                         free_irq(adapter->msix_entries[vector++].vector,
721                                 &(adapter->tx_ring[i]));
722                 for (i = 0; i < adapter->num_rx_queues; i++)
723                         free_irq(adapter->msix_entries[vector++].vector,
724                                 &(adapter->rx_ring[i]));
725
726                 free_irq(adapter->msix_entries[vector++].vector, netdev);
727                 return;
728         }
729
730         free_irq(adapter->pdev->irq, netdev);
731 }
732
733 /**
734  * igb_irq_disable - Mask off interrupt generation on the NIC
735  * @adapter: board private structure
736  **/
737 static void igb_irq_disable(struct igb_adapter *adapter)
738 {
739         struct e1000_hw *hw = &adapter->hw;
740
741         if (adapter->msix_entries) {
742                 wr32(E1000_EIAM, 0);
743                 wr32(E1000_EIMC, ~0);
744                 wr32(E1000_EIAC, 0);
745         }
746
747         wr32(E1000_IAM, 0);
748         wr32(E1000_IMC, ~0);
749         wrfl();
750         synchronize_irq(adapter->pdev->irq);
751 }
752
753 /**
754  * igb_irq_enable - Enable default interrupt generation settings
755  * @adapter: board private structure
756  **/
757 static void igb_irq_enable(struct igb_adapter *adapter)
758 {
759         struct e1000_hw *hw = &adapter->hw;
760
761         if (adapter->msix_entries) {
762                 wr32(E1000_EIAC, adapter->eims_enable_mask);
763                 wr32(E1000_EIAM, adapter->eims_enable_mask);
764                 wr32(E1000_EIMS, adapter->eims_enable_mask);
765                 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
766         } else {
767                 wr32(E1000_IMS, IMS_ENABLE_MASK);
768                 wr32(E1000_IAM, IMS_ENABLE_MASK);
769         }
770 }
771
772 static void igb_update_mng_vlan(struct igb_adapter *adapter)
773 {
774         struct net_device *netdev = adapter->netdev;
775         u16 vid = adapter->hw.mng_cookie.vlan_id;
776         u16 old_vid = adapter->mng_vlan_id;
777         if (adapter->vlgrp) {
778                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
779                         if (adapter->hw.mng_cookie.status &
780                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
781                                 igb_vlan_rx_add_vid(netdev, vid);
782                                 adapter->mng_vlan_id = vid;
783                         } else
784                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
785
786                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
787                                         (vid != old_vid) &&
788                             !vlan_group_get_device(adapter->vlgrp, old_vid))
789                                 igb_vlan_rx_kill_vid(netdev, old_vid);
790                 } else
791                         adapter->mng_vlan_id = vid;
792         }
793 }
794
795 /**
796  * igb_release_hw_control - release control of the h/w to f/w
797  * @adapter: address of board private structure
798  *
799  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
800  * For ASF and Pass Through versions of f/w this means that the
801  * driver is no longer loaded.
802  *
803  **/
804 static void igb_release_hw_control(struct igb_adapter *adapter)
805 {
806         struct e1000_hw *hw = &adapter->hw;
807         u32 ctrl_ext;
808
809         /* Let firmware take over control of h/w */
810         ctrl_ext = rd32(E1000_CTRL_EXT);
811         wr32(E1000_CTRL_EXT,
812                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
813 }
814
815
816 /**
817  * igb_get_hw_control - get control of the h/w from f/w
818  * @adapter: address of board private structure
819  *
820  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
821  * For ASF and Pass Through versions of f/w this means that
822  * the driver is loaded.
823  *
824  **/
825 static void igb_get_hw_control(struct igb_adapter *adapter)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         u32 ctrl_ext;
829
830         /* Let firmware know the driver has taken over */
831         ctrl_ext = rd32(E1000_CTRL_EXT);
832         wr32(E1000_CTRL_EXT,
833                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
834 }
835
836 /**
837  * igb_configure - configure the hardware for RX and TX
838  * @adapter: private board structure
839  **/
840 static void igb_configure(struct igb_adapter *adapter)
841 {
842         struct net_device *netdev = adapter->netdev;
843         int i;
844
845         igb_get_hw_control(adapter);
846         igb_set_multi(netdev);
847
848         igb_restore_vlan(adapter);
849
850         igb_configure_tx(adapter);
851         igb_setup_rctl(adapter);
852         igb_configure_rx(adapter);
853
854         igb_rx_fifo_flush_82575(&adapter->hw);
855
856         /* call IGB_DESC_UNUSED which always leaves
857          * at least 1 descriptor unused to make sure
858          * next_to_use != next_to_clean */
859         for (i = 0; i < adapter->num_rx_queues; i++) {
860                 struct igb_ring *ring = &adapter->rx_ring[i];
861                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
862         }
863
864
865         adapter->tx_queue_len = netdev->tx_queue_len;
866 }
867
868
869 /**
870  * igb_up - Open the interface and prepare it to handle traffic
871  * @adapter: board private structure
872  **/
873
874 int igb_up(struct igb_adapter *adapter)
875 {
876         struct e1000_hw *hw = &adapter->hw;
877         int i;
878
879         /* hardware has been reset, we need to reload some things */
880         igb_configure(adapter);
881
882         clear_bit(__IGB_DOWN, &adapter->state);
883
884         for (i = 0; i < adapter->num_rx_queues; i++)
885                 napi_enable(&adapter->rx_ring[i].napi);
886         if (adapter->msix_entries)
887                 igb_configure_msix(adapter);
888
889         /* Clear any pending interrupts. */
890         rd32(E1000_ICR);
891         igb_irq_enable(adapter);
892
893         /* Fire a link change interrupt to start the watchdog. */
894         wr32(E1000_ICS, E1000_ICS_LSC);
895         return 0;
896 }
897
898 void igb_down(struct igb_adapter *adapter)
899 {
900         struct e1000_hw *hw = &adapter->hw;
901         struct net_device *netdev = adapter->netdev;
902         u32 tctl, rctl;
903         int i;
904
905         /* signal that we're down so the interrupt handler does not
906          * reschedule our watchdog timer */
907         set_bit(__IGB_DOWN, &adapter->state);
908
909         /* disable receives in the hardware */
910         rctl = rd32(E1000_RCTL);
911         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
912         /* flush and sleep below */
913
914         netif_tx_stop_all_queues(netdev);
915
916         /* disable transmits in the hardware */
917         tctl = rd32(E1000_TCTL);
918         tctl &= ~E1000_TCTL_EN;
919         wr32(E1000_TCTL, tctl);
920         /* flush both disables and wait for them to finish */
921         wrfl();
922         msleep(10);
923
924         for (i = 0; i < adapter->num_rx_queues; i++)
925                 napi_disable(&adapter->rx_ring[i].napi);
926
927         igb_irq_disable(adapter);
928
929         del_timer_sync(&adapter->watchdog_timer);
930         del_timer_sync(&adapter->phy_info_timer);
931
932         netdev->tx_queue_len = adapter->tx_queue_len;
933         netif_carrier_off(netdev);
934
935         /* record the stats before reset*/
936         igb_update_stats(adapter);
937
938         adapter->link_speed = 0;
939         adapter->link_duplex = 0;
940
941         if (!pci_channel_offline(adapter->pdev))
942                 igb_reset(adapter);
943         igb_clean_all_tx_rings(adapter);
944         igb_clean_all_rx_rings(adapter);
945 }
946
947 void igb_reinit_locked(struct igb_adapter *adapter)
948 {
949         WARN_ON(in_interrupt());
950         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
951                 msleep(1);
952         igb_down(adapter);
953         igb_up(adapter);
954         clear_bit(__IGB_RESETTING, &adapter->state);
955 }
956
957 void igb_reset(struct igb_adapter *adapter)
958 {
959         struct e1000_hw *hw = &adapter->hw;
960         struct e1000_mac_info *mac = &hw->mac;
961         struct e1000_fc_info *fc = &hw->fc;
962         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
963         u16 hwm;
964
965         /* Repartition Pba for greater than 9k mtu
966          * To take effect CTRL.RST is required.
967          */
968         switch (mac->type) {
969         case e1000_82576:
970                 pba = E1000_PBA_64K;
971                 break;
972         case e1000_82575:
973         default:
974                 pba = E1000_PBA_34K;
975                 break;
976         }
977
978         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
979             (mac->type < e1000_82576)) {
980                 /* adjust PBA for jumbo frames */
981                 wr32(E1000_PBA, pba);
982
983                 /* To maintain wire speed transmits, the Tx FIFO should be
984                  * large enough to accommodate two full transmit packets,
985                  * rounded up to the next 1KB and expressed in KB.  Likewise,
986                  * the Rx FIFO should be large enough to accommodate at least
987                  * one full receive packet and is similarly rounded up and
988                  * expressed in KB. */
989                 pba = rd32(E1000_PBA);
990                 /* upper 16 bits has Tx packet buffer allocation size in KB */
991                 tx_space = pba >> 16;
992                 /* lower 16 bits has Rx packet buffer allocation size in KB */
993                 pba &= 0xffff;
994                 /* the tx fifo also stores 16 bytes of information about the tx
995                  * but don't include ethernet FCS because hardware appends it */
996                 min_tx_space = (adapter->max_frame_size +
997                                 sizeof(union e1000_adv_tx_desc) -
998                                 ETH_FCS_LEN) * 2;
999                 min_tx_space = ALIGN(min_tx_space, 1024);
1000                 min_tx_space >>= 10;
1001                 /* software strips receive CRC, so leave room for it */
1002                 min_rx_space = adapter->max_frame_size;
1003                 min_rx_space = ALIGN(min_rx_space, 1024);
1004                 min_rx_space >>= 10;
1005
1006                 /* If current Tx allocation is less than the min Tx FIFO size,
1007                  * and the min Tx FIFO size is less than the current Rx FIFO
1008                  * allocation, take space away from current Rx allocation */
1009                 if (tx_space < min_tx_space &&
1010                     ((min_tx_space - tx_space) < pba)) {
1011                         pba = pba - (min_tx_space - tx_space);
1012
1013                         /* if short on rx space, rx wins and must trump tx
1014                          * adjustment */
1015                         if (pba < min_rx_space)
1016                                 pba = min_rx_space;
1017                 }
1018                 wr32(E1000_PBA, pba);
1019         }
1020
1021         /* flow control settings */
1022         /* The high water mark must be low enough to fit one full frame
1023          * (or the size used for early receive) above it in the Rx FIFO.
1024          * Set it to the lower of:
1025          * - 90% of the Rx FIFO size, or
1026          * - the full Rx FIFO size minus one full frame */
1027         hwm = min(((pba << 10) * 9 / 10),
1028                         ((pba << 10) - 2 * adapter->max_frame_size));
1029
1030         if (mac->type < e1000_82576) {
1031                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1032                 fc->low_water = fc->high_water - 8;
1033         } else {
1034                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1035                 fc->low_water = fc->high_water - 16;
1036         }
1037         fc->pause_time = 0xFFFF;
1038         fc->send_xon = 1;
1039         fc->type = fc->original_type;
1040
1041         /* Allow time for pending master requests to run */
1042         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1043         wr32(E1000_WUC, 0);
1044
1045         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1046                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1047
1048         igb_update_mng_vlan(adapter);
1049
1050         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1051         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1052
1053         igb_reset_adaptive(&adapter->hw);
1054         igb_get_phy_info(&adapter->hw);
1055 }
1056
1057 static const struct net_device_ops igb_netdev_ops = {
1058         .ndo_open               = igb_open,
1059         .ndo_stop               = igb_close,
1060         .ndo_start_xmit         = igb_xmit_frame_adv,
1061         .ndo_get_stats          = igb_get_stats,
1062         .ndo_set_multicast_list = igb_set_multi,
1063         .ndo_set_mac_address    = igb_set_mac,
1064         .ndo_change_mtu         = igb_change_mtu,
1065         .ndo_do_ioctl           = igb_ioctl,
1066         .ndo_tx_timeout         = igb_tx_timeout,
1067         .ndo_validate_addr      = eth_validate_addr,
1068         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1069         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1070         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1071 #ifdef CONFIG_NET_POLL_CONTROLLER
1072         .ndo_poll_controller    = igb_netpoll,
1073 #endif
1074 };
1075
1076 /**
1077  * igb_probe - Device Initialization Routine
1078  * @pdev: PCI device information struct
1079  * @ent: entry in igb_pci_tbl
1080  *
1081  * Returns 0 on success, negative on failure
1082  *
1083  * igb_probe initializes an adapter identified by a pci_dev structure.
1084  * The OS initialization, configuring of the adapter private structure,
1085  * and a hardware reset occur.
1086  **/
1087 static int __devinit igb_probe(struct pci_dev *pdev,
1088                                const struct pci_device_id *ent)
1089 {
1090         struct net_device *netdev;
1091         struct igb_adapter *adapter;
1092         struct e1000_hw *hw;
1093         struct pci_dev *us_dev;
1094         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1095         unsigned long mmio_start, mmio_len;
1096         int err, pci_using_dac, pos;
1097         u16 eeprom_data = 0, state = 0;
1098         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1099         u32 part_num;
1100
1101         err = pci_enable_device_mem(pdev);
1102         if (err)
1103                 return err;
1104
1105         pci_using_dac = 0;
1106         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1107         if (!err) {
1108                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1109                 if (!err)
1110                         pci_using_dac = 1;
1111         } else {
1112                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1113                 if (err) {
1114                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1115                         if (err) {
1116                                 dev_err(&pdev->dev, "No usable DMA "
1117                                         "configuration, aborting\n");
1118                                 goto err_dma;
1119                         }
1120                 }
1121         }
1122
1123         /* 82575 requires that the pci-e link partner disable the L0s state */
1124         switch (pdev->device) {
1125         case E1000_DEV_ID_82575EB_COPPER:
1126         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1127         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1128                 us_dev = pdev->bus->self;
1129                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1130                 if (pos) {
1131                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1132                                              &state);
1133                         state &= ~PCIE_LINK_STATE_L0S;
1134                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1135                                               state);
1136                         dev_info(&pdev->dev,
1137                                  "Disabling ASPM L0s upstream switch port %s\n",
1138                                  pci_name(us_dev));
1139                 }
1140         default:
1141                 break;
1142         }
1143
1144         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1145                                            IORESOURCE_MEM),
1146                                            igb_driver_name);
1147         if (err)
1148                 goto err_pci_reg;
1149
1150         err = pci_enable_pcie_error_reporting(pdev);
1151         if (err) {
1152                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1153                         "0x%x\n", err);
1154                 /* non-fatal, continue */
1155         }
1156
1157         pci_set_master(pdev);
1158         pci_save_state(pdev);
1159
1160         err = -ENOMEM;
1161         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), IGB_MAX_TX_QUEUES);
1162         if (!netdev)
1163                 goto err_alloc_etherdev;
1164
1165         SET_NETDEV_DEV(netdev, &pdev->dev);
1166
1167         pci_set_drvdata(pdev, netdev);
1168         adapter = netdev_priv(netdev);
1169         adapter->netdev = netdev;
1170         adapter->pdev = pdev;
1171         hw = &adapter->hw;
1172         hw->back = adapter;
1173         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1174
1175         mmio_start = pci_resource_start(pdev, 0);
1176         mmio_len = pci_resource_len(pdev, 0);
1177
1178         err = -EIO;
1179         hw->hw_addr = ioremap(mmio_start, mmio_len);
1180         if (!hw->hw_addr)
1181                 goto err_ioremap;
1182
1183         netdev->netdev_ops = &igb_netdev_ops;
1184         igb_set_ethtool_ops(netdev);
1185         netdev->watchdog_timeo = 5 * HZ;
1186
1187         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1188
1189         netdev->mem_start = mmio_start;
1190         netdev->mem_end = mmio_start + mmio_len;
1191
1192         /* PCI config space info */
1193         hw->vendor_id = pdev->vendor;
1194         hw->device_id = pdev->device;
1195         hw->revision_id = pdev->revision;
1196         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1197         hw->subsystem_device_id = pdev->subsystem_device;
1198
1199         /* setup the private structure */
1200         hw->back = adapter;
1201         /* Copy the default MAC, PHY and NVM function pointers */
1202         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1203         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1204         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1205         /* Initialize skew-specific constants */
1206         err = ei->get_invariants(hw);
1207         if (err)
1208                 goto err_sw_init;
1209
1210         /* setup the private structure */
1211         err = igb_sw_init(adapter);
1212         if (err)
1213                 goto err_sw_init;
1214
1215         igb_get_bus_info_pcie(hw);
1216
1217         /* set flags */
1218         switch (hw->mac.type) {
1219         case e1000_82575:
1220                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1221                 break;
1222         case e1000_82576:
1223         default:
1224                 break;
1225         }
1226
1227         hw->phy.autoneg_wait_to_complete = false;
1228         hw->mac.adaptive_ifs = true;
1229
1230         /* Copper options */
1231         if (hw->phy.media_type == e1000_media_type_copper) {
1232                 hw->phy.mdix = AUTO_ALL_MODES;
1233                 hw->phy.disable_polarity_correction = false;
1234                 hw->phy.ms_type = e1000_ms_hw_default;
1235         }
1236
1237         if (igb_check_reset_block(hw))
1238                 dev_info(&pdev->dev,
1239                         "PHY reset is blocked due to SOL/IDER session.\n");
1240
1241         netdev->features = NETIF_F_SG |
1242                            NETIF_F_IP_CSUM |
1243                            NETIF_F_HW_VLAN_TX |
1244                            NETIF_F_HW_VLAN_RX |
1245                            NETIF_F_HW_VLAN_FILTER;
1246
1247         netdev->features |= NETIF_F_IPV6_CSUM;
1248         netdev->features |= NETIF_F_TSO;
1249         netdev->features |= NETIF_F_TSO6;
1250
1251         netdev->features |= NETIF_F_GRO;
1252
1253         netdev->vlan_features |= NETIF_F_TSO;
1254         netdev->vlan_features |= NETIF_F_TSO6;
1255         netdev->vlan_features |= NETIF_F_IP_CSUM;
1256         netdev->vlan_features |= NETIF_F_SG;
1257
1258         if (pci_using_dac)
1259                 netdev->features |= NETIF_F_HIGHDMA;
1260
1261         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1262
1263         /* before reading the NVM, reset the controller to put the device in a
1264          * known good starting state */
1265         hw->mac.ops.reset_hw(hw);
1266
1267         /* make sure the NVM is good */
1268         if (igb_validate_nvm_checksum(hw) < 0) {
1269                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1270                 err = -EIO;
1271                 goto err_eeprom;
1272         }
1273
1274         /* copy the MAC address out of the NVM */
1275         if (hw->mac.ops.read_mac_addr(hw))
1276                 dev_err(&pdev->dev, "NVM Read Error\n");
1277
1278         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1279         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1280
1281         if (!is_valid_ether_addr(netdev->perm_addr)) {
1282                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1283                 err = -EIO;
1284                 goto err_eeprom;
1285         }
1286
1287         init_timer(&adapter->watchdog_timer);
1288         adapter->watchdog_timer.function = &igb_watchdog;
1289         adapter->watchdog_timer.data = (unsigned long) adapter;
1290
1291         init_timer(&adapter->phy_info_timer);
1292         adapter->phy_info_timer.function = &igb_update_phy_info;
1293         adapter->phy_info_timer.data = (unsigned long) adapter;
1294
1295         INIT_WORK(&adapter->reset_task, igb_reset_task);
1296         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1297
1298         /* Initialize link properties that are user-changeable */
1299         adapter->fc_autoneg = true;
1300         hw->mac.autoneg = true;
1301         hw->phy.autoneg_advertised = 0x2f;
1302
1303         hw->fc.original_type = e1000_fc_default;
1304         hw->fc.type = e1000_fc_default;
1305
1306         adapter->itr_setting = IGB_DEFAULT_ITR;
1307         adapter->itr = IGB_START_ITR;
1308
1309         igb_validate_mdi_setting(hw);
1310
1311         adapter->rx_csum = 1;
1312
1313         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1314          * enable the ACPI Magic Packet filter
1315          */
1316
1317         if (hw->bus.func == 0 ||
1318             hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1319                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1320
1321         if (eeprom_data & eeprom_apme_mask)
1322                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1323
1324         /* now that we have the eeprom settings, apply the special cases where
1325          * the eeprom may be wrong or the board simply won't support wake on
1326          * lan on a particular port */
1327         switch (pdev->device) {
1328         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1329                 adapter->eeprom_wol = 0;
1330                 break;
1331         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1332         case E1000_DEV_ID_82576_FIBER:
1333         case E1000_DEV_ID_82576_SERDES:
1334                 /* Wake events only supported on port A for dual fiber
1335                  * regardless of eeprom setting */
1336                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1337                         adapter->eeprom_wol = 0;
1338                 break;
1339         }
1340
1341         /* initialize the wol settings based on the eeprom settings */
1342         adapter->wol = adapter->eeprom_wol;
1343         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1344
1345         /* reset the hardware with the new settings */
1346         igb_reset(adapter);
1347
1348         /* let the f/w know that the h/w is now under the control of the
1349          * driver. */
1350         igb_get_hw_control(adapter);
1351
1352         /* tell the stack to leave us alone until igb_open() is called */
1353         netif_carrier_off(netdev);
1354         netif_tx_stop_all_queues(netdev);
1355
1356         strcpy(netdev->name, "eth%d");
1357         err = register_netdev(netdev);
1358         if (err)
1359                 goto err_register;
1360
1361 #ifdef CONFIG_IGB_DCA
1362         if (dca_add_requester(&pdev->dev) == 0) {
1363                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1364                 dev_info(&pdev->dev, "DCA enabled\n");
1365                 /* Always use CB2 mode, difference is masked
1366                  * in the CB driver. */
1367                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1368                 igb_setup_dca(adapter);
1369         }
1370 #endif
1371
1372         /*
1373          * Initialize hardware timer: we keep it running just in case
1374          * that some program needs it later on.
1375          */
1376         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1377         adapter->cycles.read = igb_read_clock;
1378         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1379         adapter->cycles.mult = 1;
1380         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1381         wr32(E1000_TIMINCA,
1382              (1<<24) |
1383              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1384 #if 0
1385         /*
1386          * Avoid rollover while we initialize by resetting the time counter.
1387          */
1388         wr32(E1000_SYSTIML, 0x00000000);
1389         wr32(E1000_SYSTIMH, 0x00000000);
1390 #else
1391         /*
1392          * Set registers so that rollover occurs soon to test this.
1393          */
1394         wr32(E1000_SYSTIML, 0x00000000);
1395         wr32(E1000_SYSTIMH, 0xFF800000);
1396 #endif
1397         wrfl();
1398         timecounter_init(&adapter->clock,
1399                          &adapter->cycles,
1400                          ktime_to_ns(ktime_get_real()));
1401
1402         /*
1403          * Synchronize our NIC clock against system wall clock. NIC
1404          * time stamp reading requires ~3us per sample, each sample
1405          * was pretty stable even under load => only require 10
1406          * samples for each offset comparison.
1407          */
1408         memset(&adapter->compare, 0, sizeof(adapter->compare));
1409         adapter->compare.source = &adapter->clock;
1410         adapter->compare.target = ktime_get_real;
1411         adapter->compare.num_samples = 10;
1412         timecompare_update(&adapter->compare, 0);
1413
1414 #ifdef DEBUG
1415         {
1416                 char buffer[160];
1417                 printk(KERN_DEBUG
1418                         "igb: %s: hw %p initialized timer\n",
1419                         igb_get_time_str(adapter, buffer),
1420                         &adapter->hw);
1421         }
1422 #endif
1423
1424         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1425         /* print bus type/speed/width info */
1426         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1427                  netdev->name,
1428                  ((hw->bus.speed == e1000_bus_speed_2500)
1429                   ? "2.5Gb/s" : "unknown"),
1430                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1431                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1432                   ? "Width x1" : "unknown"),
1433                  netdev->dev_addr);
1434
1435         igb_read_part_num(hw, &part_num);
1436         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1437                 (part_num >> 8), (part_num & 0xff));
1438
1439         dev_info(&pdev->dev,
1440                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1441                 adapter->msix_entries ? "MSI-X" :
1442                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1443                 adapter->num_rx_queues, adapter->num_tx_queues);
1444
1445         return 0;
1446
1447 err_register:
1448         igb_release_hw_control(adapter);
1449 err_eeprom:
1450         if (!igb_check_reset_block(hw))
1451                 igb_reset_phy(hw);
1452
1453         if (hw->flash_address)
1454                 iounmap(hw->flash_address);
1455
1456         igb_free_queues(adapter);
1457 err_sw_init:
1458         iounmap(hw->hw_addr);
1459 err_ioremap:
1460         free_netdev(netdev);
1461 err_alloc_etherdev:
1462         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1463                                      IORESOURCE_MEM));
1464 err_pci_reg:
1465 err_dma:
1466         pci_disable_device(pdev);
1467         return err;
1468 }
1469
1470 /**
1471  * igb_remove - Device Removal Routine
1472  * @pdev: PCI device information struct
1473  *
1474  * igb_remove is called by the PCI subsystem to alert the driver
1475  * that it should release a PCI device.  The could be caused by a
1476  * Hot-Plug event, or because the driver is going to be removed from
1477  * memory.
1478  **/
1479 static void __devexit igb_remove(struct pci_dev *pdev)
1480 {
1481         struct net_device *netdev = pci_get_drvdata(pdev);
1482         struct igb_adapter *adapter = netdev_priv(netdev);
1483         struct e1000_hw *hw = &adapter->hw;
1484         int err;
1485
1486         /* flush_scheduled work may reschedule our watchdog task, so
1487          * explicitly disable watchdog tasks from being rescheduled  */
1488         set_bit(__IGB_DOWN, &adapter->state);
1489         del_timer_sync(&adapter->watchdog_timer);
1490         del_timer_sync(&adapter->phy_info_timer);
1491
1492         flush_scheduled_work();
1493
1494 #ifdef CONFIG_IGB_DCA
1495         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1496                 dev_info(&pdev->dev, "DCA disabled\n");
1497                 dca_remove_requester(&pdev->dev);
1498                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1499                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1500         }
1501 #endif
1502
1503         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1504          * would have already happened in close and is redundant. */
1505         igb_release_hw_control(adapter);
1506
1507         unregister_netdev(netdev);
1508
1509         if (!igb_check_reset_block(&adapter->hw))
1510                 igb_reset_phy(&adapter->hw);
1511
1512         igb_reset_interrupt_capability(adapter);
1513
1514         igb_free_queues(adapter);
1515
1516         iounmap(hw->hw_addr);
1517         if (hw->flash_address)
1518                 iounmap(hw->flash_address);
1519         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1520                                      IORESOURCE_MEM));
1521
1522         free_netdev(netdev);
1523
1524         err = pci_disable_pcie_error_reporting(pdev);
1525         if (err)
1526                 dev_err(&pdev->dev,
1527                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1528
1529         pci_disable_device(pdev);
1530 }
1531
1532 /**
1533  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1534  * @adapter: board private structure to initialize
1535  *
1536  * igb_sw_init initializes the Adapter private data structure.
1537  * Fields are initialized based on PCI device information and
1538  * OS network device settings (MTU size).
1539  **/
1540 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1541 {
1542         struct e1000_hw *hw = &adapter->hw;
1543         struct net_device *netdev = adapter->netdev;
1544         struct pci_dev *pdev = adapter->pdev;
1545
1546         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1547
1548         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1549         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1550         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1551         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1552         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1553         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1554
1555         /* This call may decrease the number of queues depending on
1556          * interrupt mode. */
1557         igb_set_interrupt_capability(adapter);
1558
1559         if (igb_alloc_queues(adapter)) {
1560                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1561                 return -ENOMEM;
1562         }
1563
1564         /* Explicitly disable IRQ since the NIC can be in any state. */
1565         igb_irq_disable(adapter);
1566
1567         set_bit(__IGB_DOWN, &adapter->state);
1568         return 0;
1569 }
1570
1571 /**
1572  * igb_open - Called when a network interface is made active
1573  * @netdev: network interface device structure
1574  *
1575  * Returns 0 on success, negative value on failure
1576  *
1577  * The open entry point is called when a network interface is made
1578  * active by the system (IFF_UP).  At this point all resources needed
1579  * for transmit and receive operations are allocated, the interrupt
1580  * handler is registered with the OS, the watchdog timer is started,
1581  * and the stack is notified that the interface is ready.
1582  **/
1583 static int igb_open(struct net_device *netdev)
1584 {
1585         struct igb_adapter *adapter = netdev_priv(netdev);
1586         struct e1000_hw *hw = &adapter->hw;
1587         int err;
1588         int i;
1589
1590         /* disallow open during test */
1591         if (test_bit(__IGB_TESTING, &adapter->state))
1592                 return -EBUSY;
1593
1594         /* allocate transmit descriptors */
1595         err = igb_setup_all_tx_resources(adapter);
1596         if (err)
1597                 goto err_setup_tx;
1598
1599         /* allocate receive descriptors */
1600         err = igb_setup_all_rx_resources(adapter);
1601         if (err)
1602                 goto err_setup_rx;
1603
1604         /* e1000_power_up_phy(adapter); */
1605
1606         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1607         if ((adapter->hw.mng_cookie.status &
1608              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1609                 igb_update_mng_vlan(adapter);
1610
1611         /* before we allocate an interrupt, we must be ready to handle it.
1612          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613          * as soon as we call pci_request_irq, so we have to setup our
1614          * clean_rx handler before we do so.  */
1615         igb_configure(adapter);
1616
1617         err = igb_request_irq(adapter);
1618         if (err)
1619                 goto err_req_irq;
1620
1621         /* From here on the code is the same as igb_up() */
1622         clear_bit(__IGB_DOWN, &adapter->state);
1623
1624         for (i = 0; i < adapter->num_rx_queues; i++)
1625                 napi_enable(&adapter->rx_ring[i].napi);
1626
1627         /* Clear any pending interrupts. */
1628         rd32(E1000_ICR);
1629
1630         igb_irq_enable(adapter);
1631
1632         netif_tx_start_all_queues(netdev);
1633
1634         /* Fire a link status change interrupt to start the watchdog. */
1635         wr32(E1000_ICS, E1000_ICS_LSC);
1636
1637         return 0;
1638
1639 err_req_irq:
1640         igb_release_hw_control(adapter);
1641         /* e1000_power_down_phy(adapter); */
1642         igb_free_all_rx_resources(adapter);
1643 err_setup_rx:
1644         igb_free_all_tx_resources(adapter);
1645 err_setup_tx:
1646         igb_reset(adapter);
1647
1648         return err;
1649 }
1650
1651 /**
1652  * igb_close - Disables a network interface
1653  * @netdev: network interface device structure
1654  *
1655  * Returns 0, this is not allowed to fail
1656  *
1657  * The close entry point is called when an interface is de-activated
1658  * by the OS.  The hardware is still under the driver's control, but
1659  * needs to be disabled.  A global MAC reset is issued to stop the
1660  * hardware, and all transmit and receive resources are freed.
1661  **/
1662 static int igb_close(struct net_device *netdev)
1663 {
1664         struct igb_adapter *adapter = netdev_priv(netdev);
1665
1666         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1667         igb_down(adapter);
1668
1669         igb_free_irq(adapter);
1670
1671         igb_free_all_tx_resources(adapter);
1672         igb_free_all_rx_resources(adapter);
1673
1674         /* kill manageability vlan ID if supported, but not if a vlan with
1675          * the same ID is registered on the host OS (let 8021q kill it) */
1676         if ((adapter->hw.mng_cookie.status &
1677                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1678              !(adapter->vlgrp &&
1679                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1680                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1681
1682         return 0;
1683 }
1684
1685 /**
1686  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1689  *
1690  * Return 0 on success, negative on failure
1691  **/
1692 int igb_setup_tx_resources(struct igb_adapter *adapter,
1693                            struct igb_ring *tx_ring)
1694 {
1695         struct pci_dev *pdev = adapter->pdev;
1696         int size;
1697
1698         size = sizeof(struct igb_buffer) * tx_ring->count;
1699         tx_ring->buffer_info = vmalloc(size);
1700         if (!tx_ring->buffer_info)
1701                 goto err;
1702         memset(tx_ring->buffer_info, 0, size);
1703
1704         /* round up to nearest 4K */
1705         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1706         tx_ring->size = ALIGN(tx_ring->size, 4096);
1707
1708         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1709                                              &tx_ring->dma);
1710
1711         if (!tx_ring->desc)
1712                 goto err;
1713
1714         tx_ring->adapter = adapter;
1715         tx_ring->next_to_use = 0;
1716         tx_ring->next_to_clean = 0;
1717         return 0;
1718
1719 err:
1720         vfree(tx_ring->buffer_info);
1721         dev_err(&adapter->pdev->dev,
1722                 "Unable to allocate memory for the transmit descriptor ring\n");
1723         return -ENOMEM;
1724 }
1725
1726 /**
1727  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1728  *                                (Descriptors) for all queues
1729  * @adapter: board private structure
1730  *
1731  * Return 0 on success, negative on failure
1732  **/
1733 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1734 {
1735         int i, err = 0;
1736         int r_idx;
1737
1738         for (i = 0; i < adapter->num_tx_queues; i++) {
1739                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1740                 if (err) {
1741                         dev_err(&adapter->pdev->dev,
1742                                 "Allocation for Tx Queue %u failed\n", i);
1743                         for (i--; i >= 0; i--)
1744                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1745                         break;
1746                 }
1747         }
1748
1749         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1750                 r_idx = i % adapter->num_tx_queues;
1751                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1752         }
1753         return err;
1754 }
1755
1756 /**
1757  * igb_configure_tx - Configure transmit Unit after Reset
1758  * @adapter: board private structure
1759  *
1760  * Configure the Tx unit of the MAC after a reset.
1761  **/
1762 static void igb_configure_tx(struct igb_adapter *adapter)
1763 {
1764         u64 tdba;
1765         struct e1000_hw *hw = &adapter->hw;
1766         u32 tctl;
1767         u32 txdctl, txctrl;
1768         int i, j;
1769
1770         for (i = 0; i < adapter->num_tx_queues; i++) {
1771                 struct igb_ring *ring = &adapter->tx_ring[i];
1772                 j = ring->reg_idx;
1773                 wr32(E1000_TDLEN(j),
1774                      ring->count * sizeof(union e1000_adv_tx_desc));
1775                 tdba = ring->dma;
1776                 wr32(E1000_TDBAL(j),
1777                      tdba & 0x00000000ffffffffULL);
1778                 wr32(E1000_TDBAH(j), tdba >> 32);
1779
1780                 ring->head = E1000_TDH(j);
1781                 ring->tail = E1000_TDT(j);
1782                 writel(0, hw->hw_addr + ring->tail);
1783                 writel(0, hw->hw_addr + ring->head);
1784                 txdctl = rd32(E1000_TXDCTL(j));
1785                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1786                 wr32(E1000_TXDCTL(j), txdctl);
1787
1788                 /* Turn off Relaxed Ordering on head write-backs.  The
1789                  * writebacks MUST be delivered in order or it will
1790                  * completely screw up our bookeeping.
1791                  */
1792                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1793                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1794                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1795         }
1796
1797         /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1798
1799         /* Program the Transmit Control Register */
1800
1801         tctl = rd32(E1000_TCTL);
1802         tctl &= ~E1000_TCTL_CT;
1803         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1804                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1805
1806         igb_config_collision_dist(hw);
1807
1808         /* Setup Transmit Descriptor Settings for eop descriptor */
1809         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1810
1811         /* Enable transmits */
1812         tctl |= E1000_TCTL_EN;
1813
1814         wr32(E1000_TCTL, tctl);
1815 }
1816
1817 /**
1818  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1819  * @adapter: board private structure
1820  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1821  *
1822  * Returns 0 on success, negative on failure
1823  **/
1824 int igb_setup_rx_resources(struct igb_adapter *adapter,
1825                            struct igb_ring *rx_ring)
1826 {
1827         struct pci_dev *pdev = adapter->pdev;
1828         int size, desc_len;
1829
1830         size = sizeof(struct igb_buffer) * rx_ring->count;
1831         rx_ring->buffer_info = vmalloc(size);
1832         if (!rx_ring->buffer_info)
1833                 goto err;
1834         memset(rx_ring->buffer_info, 0, size);
1835
1836         desc_len = sizeof(union e1000_adv_rx_desc);
1837
1838         /* Round up to nearest 4K */
1839         rx_ring->size = rx_ring->count * desc_len;
1840         rx_ring->size = ALIGN(rx_ring->size, 4096);
1841
1842         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1843                                              &rx_ring->dma);
1844
1845         if (!rx_ring->desc)
1846                 goto err;
1847
1848         rx_ring->next_to_clean = 0;
1849         rx_ring->next_to_use = 0;
1850
1851         rx_ring->adapter = adapter;
1852
1853         return 0;
1854
1855 err:
1856         vfree(rx_ring->buffer_info);
1857         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1858                 "the receive descriptor ring\n");
1859         return -ENOMEM;
1860 }
1861
1862 /**
1863  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1864  *                                (Descriptors) for all queues
1865  * @adapter: board private structure
1866  *
1867  * Return 0 on success, negative on failure
1868  **/
1869 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1870 {
1871         int i, err = 0;
1872
1873         for (i = 0; i < adapter->num_rx_queues; i++) {
1874                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1875                 if (err) {
1876                         dev_err(&adapter->pdev->dev,
1877                                 "Allocation for Rx Queue %u failed\n", i);
1878                         for (i--; i >= 0; i--)
1879                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1880                         break;
1881                 }
1882         }
1883
1884         return err;
1885 }
1886
1887 /**
1888  * igb_setup_rctl - configure the receive control registers
1889  * @adapter: Board private structure
1890  **/
1891 static void igb_setup_rctl(struct igb_adapter *adapter)
1892 {
1893         struct e1000_hw *hw = &adapter->hw;
1894         u32 rctl;
1895         u32 srrctl = 0;
1896         int i, j;
1897
1898         rctl = rd32(E1000_RCTL);
1899
1900         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1901         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1902
1903         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1904                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1905
1906         /*
1907          * enable stripping of CRC. It's unlikely this will break BMC
1908          * redirection as it did with e1000. Newer features require
1909          * that the HW strips the CRC.
1910          */
1911         rctl |= E1000_RCTL_SECRC;
1912
1913         /*
1914          * disable store bad packets and clear size bits.
1915          */
1916         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1917
1918         /* enable LPE when to prevent packets larger than max_frame_size */
1919                 rctl |= E1000_RCTL_LPE;
1920
1921         /* Setup buffer sizes */
1922         switch (adapter->rx_buffer_len) {
1923         case IGB_RXBUFFER_256:
1924                 rctl |= E1000_RCTL_SZ_256;
1925                 break;
1926         case IGB_RXBUFFER_512:
1927                 rctl |= E1000_RCTL_SZ_512;
1928                 break;
1929         default:
1930                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
1931                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1932                 break;
1933         }
1934
1935         /* 82575 and greater support packet-split where the protocol
1936          * header is placed in skb->data and the packet data is
1937          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1938          * In the case of a non-split, skb->data is linearly filled,
1939          * followed by the page buffers.  Therefore, skb->data is
1940          * sized to hold the largest protocol header.
1941          */
1942         /* allocations using alloc_page take too long for regular MTU
1943          * so only enable packet split for jumbo frames */
1944         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1945                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
1946                 srrctl |= adapter->rx_ps_hdr_size <<
1947                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1948                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1949         } else {
1950                 adapter->rx_ps_hdr_size = 0;
1951                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1952         }
1953
1954         for (i = 0; i < adapter->num_rx_queues; i++) {
1955                 j = adapter->rx_ring[i].reg_idx;
1956                 wr32(E1000_SRRCTL(j), srrctl);
1957         }
1958
1959         wr32(E1000_RCTL, rctl);
1960 }
1961
1962 /**
1963  * igb_configure_rx - Configure receive Unit after Reset
1964  * @adapter: board private structure
1965  *
1966  * Configure the Rx unit of the MAC after a reset.
1967  **/
1968 static void igb_configure_rx(struct igb_adapter *adapter)
1969 {
1970         u64 rdba;
1971         struct e1000_hw *hw = &adapter->hw;
1972         u32 rctl, rxcsum;
1973         u32 rxdctl;
1974         int i;
1975
1976         /* disable receives while setting up the descriptors */
1977         rctl = rd32(E1000_RCTL);
1978         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1979         wrfl();
1980         mdelay(10);
1981
1982         if (adapter->itr_setting > 3)
1983                 wr32(E1000_ITR, adapter->itr);
1984
1985         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1986          * the Base and Length of the Rx Descriptor Ring */
1987         for (i = 0; i < adapter->num_rx_queues; i++) {
1988                 struct igb_ring *ring = &adapter->rx_ring[i];
1989                 int j = ring->reg_idx;
1990                 rdba = ring->dma;
1991                 wr32(E1000_RDBAL(j),
1992                      rdba & 0x00000000ffffffffULL);
1993                 wr32(E1000_RDBAH(j), rdba >> 32);
1994                 wr32(E1000_RDLEN(j),
1995                      ring->count * sizeof(union e1000_adv_rx_desc));
1996
1997                 ring->head = E1000_RDH(j);
1998                 ring->tail = E1000_RDT(j);
1999                 writel(0, hw->hw_addr + ring->tail);
2000                 writel(0, hw->hw_addr + ring->head);
2001
2002                 rxdctl = rd32(E1000_RXDCTL(j));
2003                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2004                 rxdctl &= 0xFFF00000;
2005                 rxdctl |= IGB_RX_PTHRESH;
2006                 rxdctl |= IGB_RX_HTHRESH << 8;
2007                 rxdctl |= IGB_RX_WTHRESH << 16;
2008                 wr32(E1000_RXDCTL(j), rxdctl);
2009         }
2010
2011         if (adapter->num_rx_queues > 1) {
2012                 u32 random[10];
2013                 u32 mrqc;
2014                 u32 j, shift;
2015                 union e1000_reta {
2016                         u32 dword;
2017                         u8  bytes[4];
2018                 } reta;
2019
2020                 get_random_bytes(&random[0], 40);
2021
2022                 if (hw->mac.type >= e1000_82576)
2023                         shift = 0;
2024                 else
2025                         shift = 6;
2026                 for (j = 0; j < (32 * 4); j++) {
2027                         reta.bytes[j & 3] =
2028                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2029                         if ((j & 3) == 3)
2030                                 writel(reta.dword,
2031                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2032                 }
2033                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2034
2035                 /* Fill out hash function seeds */
2036                 for (j = 0; j < 10; j++)
2037                         array_wr32(E1000_RSSRK(0), j, random[j]);
2038
2039                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2040                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2041                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2042                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2043                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2044                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2045                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2046                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2047
2048
2049                 wr32(E1000_MRQC, mrqc);
2050
2051                 /* Multiqueue and raw packet checksumming are mutually
2052                  * exclusive.  Note that this not the same as TCP/IP
2053                  * checksumming, which works fine. */
2054                 rxcsum = rd32(E1000_RXCSUM);
2055                 rxcsum |= E1000_RXCSUM_PCSD;
2056                 wr32(E1000_RXCSUM, rxcsum);
2057         } else {
2058                 /* Enable Receive Checksum Offload for TCP and UDP */
2059                 rxcsum = rd32(E1000_RXCSUM);
2060                 if (adapter->rx_csum)
2061                         rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2062                 else
2063                         rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2064
2065                 wr32(E1000_RXCSUM, rxcsum);
2066         }
2067
2068         if (adapter->vlgrp)
2069                 wr32(E1000_RLPML,
2070                                 adapter->max_frame_size + VLAN_TAG_SIZE);
2071         else
2072                 wr32(E1000_RLPML, adapter->max_frame_size);
2073
2074         /* Enable Receives */
2075         wr32(E1000_RCTL, rctl);
2076 }
2077
2078 /**
2079  * igb_free_tx_resources - Free Tx Resources per Queue
2080  * @tx_ring: Tx descriptor ring for a specific queue
2081  *
2082  * Free all transmit software resources
2083  **/
2084 void igb_free_tx_resources(struct igb_ring *tx_ring)
2085 {
2086         struct pci_dev *pdev = tx_ring->adapter->pdev;
2087
2088         igb_clean_tx_ring(tx_ring);
2089
2090         vfree(tx_ring->buffer_info);
2091         tx_ring->buffer_info = NULL;
2092
2093         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2094
2095         tx_ring->desc = NULL;
2096 }
2097
2098 /**
2099  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2100  * @adapter: board private structure
2101  *
2102  * Free all transmit software resources
2103  **/
2104 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2105 {
2106         int i;
2107
2108         for (i = 0; i < adapter->num_tx_queues; i++)
2109                 igb_free_tx_resources(&adapter->tx_ring[i]);
2110 }
2111
2112 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2113                                            struct igb_buffer *buffer_info)
2114 {
2115         if (buffer_info->dma) {
2116                 pci_unmap_page(adapter->pdev,
2117                                 buffer_info->dma,
2118                                 buffer_info->length,
2119                                 PCI_DMA_TODEVICE);
2120                 buffer_info->dma = 0;
2121         }
2122         if (buffer_info->skb) {
2123                 dev_kfree_skb_any(buffer_info->skb);
2124                 buffer_info->skb = NULL;
2125         }
2126         buffer_info->time_stamp = 0;
2127         buffer_info->next_to_watch = 0;
2128         /* buffer_info must be completely set up in the transmit path */
2129 }
2130
2131 /**
2132  * igb_clean_tx_ring - Free Tx Buffers
2133  * @tx_ring: ring to be cleaned
2134  **/
2135 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2136 {
2137         struct igb_adapter *adapter = tx_ring->adapter;
2138         struct igb_buffer *buffer_info;
2139         unsigned long size;
2140         unsigned int i;
2141
2142         if (!tx_ring->buffer_info)
2143                 return;
2144         /* Free all the Tx ring sk_buffs */
2145
2146         for (i = 0; i < tx_ring->count; i++) {
2147                 buffer_info = &tx_ring->buffer_info[i];
2148                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2149         }
2150
2151         size = sizeof(struct igb_buffer) * tx_ring->count;
2152         memset(tx_ring->buffer_info, 0, size);
2153
2154         /* Zero out the descriptor ring */
2155
2156         memset(tx_ring->desc, 0, tx_ring->size);
2157
2158         tx_ring->next_to_use = 0;
2159         tx_ring->next_to_clean = 0;
2160
2161         writel(0, adapter->hw.hw_addr + tx_ring->head);
2162         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2163 }
2164
2165 /**
2166  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2167  * @adapter: board private structure
2168  **/
2169 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2170 {
2171         int i;
2172
2173         for (i = 0; i < adapter->num_tx_queues; i++)
2174                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2175 }
2176
2177 /**
2178  * igb_free_rx_resources - Free Rx Resources
2179  * @rx_ring: ring to clean the resources from
2180  *
2181  * Free all receive software resources
2182  **/
2183 void igb_free_rx_resources(struct igb_ring *rx_ring)
2184 {
2185         struct pci_dev *pdev = rx_ring->adapter->pdev;
2186
2187         igb_clean_rx_ring(rx_ring);
2188
2189         vfree(rx_ring->buffer_info);
2190         rx_ring->buffer_info = NULL;
2191
2192         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2193
2194         rx_ring->desc = NULL;
2195 }
2196
2197 /**
2198  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2199  * @adapter: board private structure
2200  *
2201  * Free all receive software resources
2202  **/
2203 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2204 {
2205         int i;
2206
2207         for (i = 0; i < adapter->num_rx_queues; i++)
2208                 igb_free_rx_resources(&adapter->rx_ring[i]);
2209 }
2210
2211 /**
2212  * igb_clean_rx_ring - Free Rx Buffers per Queue
2213  * @rx_ring: ring to free buffers from
2214  **/
2215 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2216 {
2217         struct igb_adapter *adapter = rx_ring->adapter;
2218         struct igb_buffer *buffer_info;
2219         struct pci_dev *pdev = adapter->pdev;
2220         unsigned long size;
2221         unsigned int i;
2222
2223         if (!rx_ring->buffer_info)
2224                 return;
2225         /* Free all the Rx ring sk_buffs */
2226         for (i = 0; i < rx_ring->count; i++) {
2227                 buffer_info = &rx_ring->buffer_info[i];
2228                 if (buffer_info->dma) {
2229                         if (adapter->rx_ps_hdr_size)
2230                                 pci_unmap_single(pdev, buffer_info->dma,
2231                                                  adapter->rx_ps_hdr_size,
2232                                                  PCI_DMA_FROMDEVICE);
2233                         else
2234                                 pci_unmap_single(pdev, buffer_info->dma,
2235                                                  adapter->rx_buffer_len,
2236                                                  PCI_DMA_FROMDEVICE);
2237                         buffer_info->dma = 0;
2238                 }
2239
2240                 if (buffer_info->skb) {
2241                         dev_kfree_skb(buffer_info->skb);
2242                         buffer_info->skb = NULL;
2243                 }
2244                 if (buffer_info->page) {
2245                         if (buffer_info->page_dma)
2246                                 pci_unmap_page(pdev, buffer_info->page_dma,
2247                                                PAGE_SIZE / 2,
2248                                                PCI_DMA_FROMDEVICE);
2249                         put_page(buffer_info->page);
2250                         buffer_info->page = NULL;
2251                         buffer_info->page_dma = 0;
2252                         buffer_info->page_offset = 0;
2253                 }
2254         }
2255
2256         size = sizeof(struct igb_buffer) * rx_ring->count;
2257         memset(rx_ring->buffer_info, 0, size);
2258
2259         /* Zero out the descriptor ring */
2260         memset(rx_ring->desc, 0, rx_ring->size);
2261
2262         rx_ring->next_to_clean = 0;
2263         rx_ring->next_to_use = 0;
2264
2265         writel(0, adapter->hw.hw_addr + rx_ring->head);
2266         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2267 }
2268
2269 /**
2270  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2271  * @adapter: board private structure
2272  **/
2273 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2274 {
2275         int i;
2276
2277         for (i = 0; i < adapter->num_rx_queues; i++)
2278                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2279 }
2280
2281 /**
2282  * igb_set_mac - Change the Ethernet Address of the NIC
2283  * @netdev: network interface device structure
2284  * @p: pointer to an address structure
2285  *
2286  * Returns 0 on success, negative on failure
2287  **/
2288 static int igb_set_mac(struct net_device *netdev, void *p)
2289 {
2290         struct igb_adapter *adapter = netdev_priv(netdev);
2291         struct e1000_hw *hw = &adapter->hw;
2292         struct sockaddr *addr = p;
2293
2294         if (!is_valid_ether_addr(addr->sa_data))
2295                 return -EADDRNOTAVAIL;
2296
2297         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2298         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2299
2300         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2301
2302         return 0;
2303 }
2304
2305 /**
2306  * igb_set_multi - Multicast and Promiscuous mode set
2307  * @netdev: network interface device structure
2308  *
2309  * The set_multi entry point is called whenever the multicast address
2310  * list or the network interface flags are updated.  This routine is
2311  * responsible for configuring the hardware for proper multicast,
2312  * promiscuous mode, and all-multi behavior.
2313  **/
2314 static void igb_set_multi(struct net_device *netdev)
2315 {
2316         struct igb_adapter *adapter = netdev_priv(netdev);
2317         struct e1000_hw *hw = &adapter->hw;
2318         struct e1000_mac_info *mac = &hw->mac;
2319         struct dev_mc_list *mc_ptr;
2320         u8  *mta_list;
2321         u32 rctl;
2322         int i;
2323
2324         /* Check for Promiscuous and All Multicast modes */
2325
2326         rctl = rd32(E1000_RCTL);
2327
2328         if (netdev->flags & IFF_PROMISC) {
2329                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2330                 rctl &= ~E1000_RCTL_VFE;
2331         } else {
2332                 if (netdev->flags & IFF_ALLMULTI) {
2333                         rctl |= E1000_RCTL_MPE;
2334                         rctl &= ~E1000_RCTL_UPE;
2335                 } else
2336                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2337                 rctl |= E1000_RCTL_VFE;
2338         }
2339         wr32(E1000_RCTL, rctl);
2340
2341         if (!netdev->mc_count) {
2342                 /* nothing to program, so clear mc list */
2343                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2344                                         mac->rar_entry_count);
2345                 return;
2346         }
2347
2348         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2349         if (!mta_list)
2350                 return;
2351
2352         /* The shared function expects a packed array of only addresses. */
2353         mc_ptr = netdev->mc_list;
2354
2355         for (i = 0; i < netdev->mc_count; i++) {
2356                 if (!mc_ptr)
2357                         break;
2358                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2359                 mc_ptr = mc_ptr->next;
2360         }
2361         igb_update_mc_addr_list(hw, mta_list, i, 1, mac->rar_entry_count);
2362         kfree(mta_list);
2363 }
2364
2365 /* Need to wait a few seconds after link up to get diagnostic information from
2366  * the phy */
2367 static void igb_update_phy_info(unsigned long data)
2368 {
2369         struct igb_adapter *adapter = (struct igb_adapter *) data;
2370         igb_get_phy_info(&adapter->hw);
2371 }
2372
2373 /**
2374  * igb_has_link - check shared code for link and determine up/down
2375  * @adapter: pointer to driver private info
2376  **/
2377 static bool igb_has_link(struct igb_adapter *adapter)
2378 {
2379         struct e1000_hw *hw = &adapter->hw;
2380         bool link_active = false;
2381         s32 ret_val = 0;
2382
2383         /* get_link_status is set on LSC (link status) interrupt or
2384          * rx sequence error interrupt.  get_link_status will stay
2385          * false until the e1000_check_for_link establishes link
2386          * for copper adapters ONLY
2387          */
2388         switch (hw->phy.media_type) {
2389         case e1000_media_type_copper:
2390                 if (hw->mac.get_link_status) {
2391                         ret_val = hw->mac.ops.check_for_link(hw);
2392                         link_active = !hw->mac.get_link_status;
2393                 } else {
2394                         link_active = true;
2395                 }
2396                 break;
2397         case e1000_media_type_fiber:
2398                 ret_val = hw->mac.ops.check_for_link(hw);
2399                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2400                 break;
2401         case e1000_media_type_internal_serdes:
2402                 ret_val = hw->mac.ops.check_for_link(hw);
2403                 link_active = hw->mac.serdes_has_link;
2404                 break;
2405         default:
2406         case e1000_media_type_unknown:
2407                 break;
2408         }
2409
2410         return link_active;
2411 }
2412
2413 /**
2414  * igb_watchdog - Timer Call-back
2415  * @data: pointer to adapter cast into an unsigned long
2416  **/
2417 static void igb_watchdog(unsigned long data)
2418 {
2419         struct igb_adapter *adapter = (struct igb_adapter *)data;
2420         /* Do the rest outside of interrupt context */
2421         schedule_work(&adapter->watchdog_task);
2422 }
2423
2424 static void igb_watchdog_task(struct work_struct *work)
2425 {
2426         struct igb_adapter *adapter = container_of(work,
2427                                         struct igb_adapter, watchdog_task);
2428         struct e1000_hw *hw = &adapter->hw;
2429         struct net_device *netdev = adapter->netdev;
2430         struct igb_ring *tx_ring = adapter->tx_ring;
2431         u32 link;
2432         u32 eics = 0;
2433         int i;
2434
2435         link = igb_has_link(adapter);
2436         if ((netif_carrier_ok(netdev)) && link)
2437                 goto link_up;
2438
2439         if (link) {
2440                 if (!netif_carrier_ok(netdev)) {
2441                         u32 ctrl;
2442                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2443                                                    &adapter->link_speed,
2444                                                    &adapter->link_duplex);
2445
2446                         ctrl = rd32(E1000_CTRL);
2447                         /* Links status message must follow this format */
2448                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2449                                  "Flow Control: %s\n",
2450                                  netdev->name,
2451                                  adapter->link_speed,
2452                                  adapter->link_duplex == FULL_DUPLEX ?
2453                                  "Full Duplex" : "Half Duplex",
2454                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2458
2459                         /* tweak tx_queue_len according to speed/duplex and
2460                          * adjust the timeout factor */
2461                         netdev->tx_queue_len = adapter->tx_queue_len;
2462                         adapter->tx_timeout_factor = 1;
2463                         switch (adapter->link_speed) {
2464                         case SPEED_10:
2465                                 netdev->tx_queue_len = 10;
2466                                 adapter->tx_timeout_factor = 14;
2467                                 break;
2468                         case SPEED_100:
2469                                 netdev->tx_queue_len = 100;
2470                                 /* maybe add some timeout factor ? */
2471                                 break;
2472                         }
2473
2474                         netif_carrier_on(netdev);
2475                         netif_tx_wake_all_queues(netdev);
2476
2477                         /* link state has changed, schedule phy info update */
2478                         if (!test_bit(__IGB_DOWN, &adapter->state))
2479                                 mod_timer(&adapter->phy_info_timer,
2480                                           round_jiffies(jiffies + 2 * HZ));
2481                 }
2482         } else {
2483                 if (netif_carrier_ok(netdev)) {
2484                         adapter->link_speed = 0;
2485                         adapter->link_duplex = 0;
2486                         /* Links status message must follow this format */
2487                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2488                                netdev->name);
2489                         netif_carrier_off(netdev);
2490                         netif_tx_stop_all_queues(netdev);
2491
2492                         /* link state has changed, schedule phy info update */
2493                         if (!test_bit(__IGB_DOWN, &adapter->state))
2494                                 mod_timer(&adapter->phy_info_timer,
2495                                           round_jiffies(jiffies + 2 * HZ));
2496                 }
2497         }
2498
2499 link_up:
2500         igb_update_stats(adapter);
2501
2502         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2503         adapter->tpt_old = adapter->stats.tpt;
2504         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2505         adapter->colc_old = adapter->stats.colc;
2506
2507         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2508         adapter->gorc_old = adapter->stats.gorc;
2509         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2510         adapter->gotc_old = adapter->stats.gotc;
2511
2512         igb_update_adaptive(&adapter->hw);
2513
2514         if (!netif_carrier_ok(netdev)) {
2515                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2516                         /* We've lost link, so the controller stops DMA,
2517                          * but we've got queued Tx work that's never going
2518                          * to get done, so reset controller to flush Tx.
2519                          * (Do the reset outside of interrupt context). */
2520                         adapter->tx_timeout_count++;
2521                         schedule_work(&adapter->reset_task);
2522                 }
2523         }
2524
2525         /* Cause software interrupt to ensure rx ring is cleaned */
2526         if (adapter->msix_entries) {
2527                 for (i = 0; i < adapter->num_rx_queues; i++)
2528                         eics |= adapter->rx_ring[i].eims_value;
2529                 wr32(E1000_EICS, eics);
2530         } else {
2531                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2532         }
2533
2534         /* Force detection of hung controller every watchdog period */
2535         tx_ring->detect_tx_hung = true;
2536
2537         /* Reset the timer */
2538         if (!test_bit(__IGB_DOWN, &adapter->state))
2539                 mod_timer(&adapter->watchdog_timer,
2540                           round_jiffies(jiffies + 2 * HZ));
2541 }
2542
2543 enum latency_range {
2544         lowest_latency = 0,
2545         low_latency = 1,
2546         bulk_latency = 2,
2547         latency_invalid = 255
2548 };
2549
2550
2551 /**
2552  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2553  *
2554  *      Stores a new ITR value based on strictly on packet size.  This
2555  *      algorithm is less sophisticated than that used in igb_update_itr,
2556  *      due to the difficulty of synchronizing statistics across multiple
2557  *      receive rings.  The divisors and thresholds used by this fuction
2558  *      were determined based on theoretical maximum wire speed and testing
2559  *      data, in order to minimize response time while increasing bulk
2560  *      throughput.
2561  *      This functionality is controlled by the InterruptThrottleRate module
2562  *      parameter (see igb_param.c)
2563  *      NOTE:  This function is called only when operating in a multiqueue
2564  *             receive environment.
2565  * @rx_ring: pointer to ring
2566  **/
2567 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2568 {
2569         int new_val = rx_ring->itr_val;
2570         int avg_wire_size = 0;
2571         struct igb_adapter *adapter = rx_ring->adapter;
2572
2573         if (!rx_ring->total_packets)
2574                 goto clear_counts; /* no packets, so don't do anything */
2575
2576         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2577          * ints/sec - ITR timer value of 120 ticks.
2578          */
2579         if (adapter->link_speed != SPEED_1000) {
2580                 new_val = 120;
2581                 goto set_itr_val;
2582         }
2583         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2584
2585         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2586         avg_wire_size += 24;
2587
2588         /* Don't starve jumbo frames */
2589         avg_wire_size = min(avg_wire_size, 3000);
2590
2591         /* Give a little boost to mid-size frames */
2592         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2593                 new_val = avg_wire_size / 3;
2594         else
2595                 new_val = avg_wire_size / 2;
2596
2597 set_itr_val:
2598         if (new_val != rx_ring->itr_val) {
2599                 rx_ring->itr_val = new_val;
2600                 rx_ring->set_itr = 1;
2601         }
2602 clear_counts:
2603         rx_ring->total_bytes = 0;
2604         rx_ring->total_packets = 0;
2605 }
2606
2607 /**
2608  * igb_update_itr - update the dynamic ITR value based on statistics
2609  *      Stores a new ITR value based on packets and byte
2610  *      counts during the last interrupt.  The advantage of per interrupt
2611  *      computation is faster updates and more accurate ITR for the current
2612  *      traffic pattern.  Constants in this function were computed
2613  *      based on theoretical maximum wire speed and thresholds were set based
2614  *      on testing data as well as attempting to minimize response time
2615  *      while increasing bulk throughput.
2616  *      this functionality is controlled by the InterruptThrottleRate module
2617  *      parameter (see igb_param.c)
2618  *      NOTE:  These calculations are only valid when operating in a single-
2619  *             queue environment.
2620  * @adapter: pointer to adapter
2621  * @itr_setting: current adapter->itr
2622  * @packets: the number of packets during this measurement interval
2623  * @bytes: the number of bytes during this measurement interval
2624  **/
2625 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2626                                    int packets, int bytes)
2627 {
2628         unsigned int retval = itr_setting;
2629
2630         if (packets == 0)
2631                 goto update_itr_done;
2632
2633         switch (itr_setting) {
2634         case lowest_latency:
2635                 /* handle TSO and jumbo frames */
2636                 if (bytes/packets > 8000)
2637                         retval = bulk_latency;
2638                 else if ((packets < 5) && (bytes > 512))
2639                         retval = low_latency;
2640                 break;
2641         case low_latency:  /* 50 usec aka 20000 ints/s */
2642                 if (bytes > 10000) {
2643                         /* this if handles the TSO accounting */
2644                         if (bytes/packets > 8000) {
2645                                 retval = bulk_latency;
2646                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2647                                 retval = bulk_latency;
2648                         } else if ((packets > 35)) {
2649                                 retval = lowest_latency;
2650                         }
2651                 } else if (bytes/packets > 2000) {
2652                         retval = bulk_latency;
2653                 } else if (packets <= 2 && bytes < 512) {
2654                         retval = lowest_latency;
2655                 }
2656                 break;
2657         case bulk_latency: /* 250 usec aka 4000 ints/s */
2658                 if (bytes > 25000) {
2659                         if (packets > 35)
2660                                 retval = low_latency;
2661                 } else if (bytes < 1500) {
2662                         retval = low_latency;
2663                 }
2664                 break;
2665         }
2666
2667 update_itr_done:
2668         return retval;
2669 }
2670
2671 static void igb_set_itr(struct igb_adapter *adapter)
2672 {
2673         u16 current_itr;
2674         u32 new_itr = adapter->itr;
2675
2676         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2677         if (adapter->link_speed != SPEED_1000) {
2678                 current_itr = 0;
2679                 new_itr = 4000;
2680                 goto set_itr_now;
2681         }
2682
2683         adapter->rx_itr = igb_update_itr(adapter,
2684                                     adapter->rx_itr,
2685                                     adapter->rx_ring->total_packets,
2686                                     adapter->rx_ring->total_bytes);
2687
2688         if (adapter->rx_ring->buddy) {
2689                 adapter->tx_itr = igb_update_itr(adapter,
2690                                             adapter->tx_itr,
2691                                             adapter->tx_ring->total_packets,
2692                                             adapter->tx_ring->total_bytes);
2693                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2694         } else {
2695                 current_itr = adapter->rx_itr;
2696         }
2697
2698         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2699         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2700                 current_itr = low_latency;
2701
2702         switch (current_itr) {
2703         /* counts and packets in update_itr are dependent on these numbers */
2704         case lowest_latency:
2705                 new_itr = 70000;
2706                 break;
2707         case low_latency:
2708                 new_itr = 20000; /* aka hwitr = ~200 */
2709                 break;
2710         case bulk_latency:
2711                 new_itr = 4000;
2712                 break;
2713         default:
2714                 break;
2715         }
2716
2717 set_itr_now:
2718         adapter->rx_ring->total_bytes = 0;
2719         adapter->rx_ring->total_packets = 0;
2720         if (adapter->rx_ring->buddy) {
2721                 adapter->rx_ring->buddy->total_bytes = 0;
2722                 adapter->rx_ring->buddy->total_packets = 0;
2723         }
2724
2725         if (new_itr != adapter->itr) {
2726                 /* this attempts to bias the interrupt rate towards Bulk
2727                  * by adding intermediate steps when interrupt rate is
2728                  * increasing */
2729                 new_itr = new_itr > adapter->itr ?
2730                              min(adapter->itr + (new_itr >> 2), new_itr) :
2731                              new_itr;
2732                 /* Don't write the value here; it resets the adapter's
2733                  * internal timer, and causes us to delay far longer than
2734                  * we should between interrupts.  Instead, we write the ITR
2735                  * value at the beginning of the next interrupt so the timing
2736                  * ends up being correct.
2737                  */
2738                 adapter->itr = new_itr;
2739                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2740                 adapter->rx_ring->set_itr = 1;
2741         }
2742
2743         return;
2744 }
2745
2746
2747 #define IGB_TX_FLAGS_CSUM               0x00000001
2748 #define IGB_TX_FLAGS_VLAN               0x00000002
2749 #define IGB_TX_FLAGS_TSO                0x00000004
2750 #define IGB_TX_FLAGS_IPV4               0x00000008
2751 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2752 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2753 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2754
2755 static inline int igb_tso_adv(struct igb_adapter *adapter,
2756                               struct igb_ring *tx_ring,
2757                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2758 {
2759         struct e1000_adv_tx_context_desc *context_desc;
2760         unsigned int i;
2761         int err;
2762         struct igb_buffer *buffer_info;
2763         u32 info = 0, tu_cmd = 0;
2764         u32 mss_l4len_idx, l4len;
2765         *hdr_len = 0;
2766
2767         if (skb_header_cloned(skb)) {
2768                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2769                 if (err)
2770                         return err;
2771         }
2772
2773         l4len = tcp_hdrlen(skb);
2774         *hdr_len += l4len;
2775
2776         if (skb->protocol == htons(ETH_P_IP)) {
2777                 struct iphdr *iph = ip_hdr(skb);
2778                 iph->tot_len = 0;
2779                 iph->check = 0;
2780                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2781                                                          iph->daddr, 0,
2782                                                          IPPROTO_TCP,
2783                                                          0);
2784         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2785                 ipv6_hdr(skb)->payload_len = 0;
2786                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2787                                                        &ipv6_hdr(skb)->daddr,
2788                                                        0, IPPROTO_TCP, 0);
2789         }
2790
2791         i = tx_ring->next_to_use;
2792
2793         buffer_info = &tx_ring->buffer_info[i];
2794         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2795         /* VLAN MACLEN IPLEN */
2796         if (tx_flags & IGB_TX_FLAGS_VLAN)
2797                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2798         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2799         *hdr_len += skb_network_offset(skb);
2800         info |= skb_network_header_len(skb);
2801         *hdr_len += skb_network_header_len(skb);
2802         context_desc->vlan_macip_lens = cpu_to_le32(info);
2803
2804         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2805         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2806
2807         if (skb->protocol == htons(ETH_P_IP))
2808                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2809         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2810
2811         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2812
2813         /* MSS L4LEN IDX */
2814         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2815         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2816
2817         /* For 82575, context index must be unique per ring. */
2818         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2819                 mss_l4len_idx |= tx_ring->queue_index << 4;
2820
2821         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2822         context_desc->seqnum_seed = 0;
2823
2824         buffer_info->time_stamp = jiffies;
2825         buffer_info->next_to_watch = i;
2826         buffer_info->dma = 0;
2827         i++;
2828         if (i == tx_ring->count)
2829                 i = 0;
2830
2831         tx_ring->next_to_use = i;
2832
2833         return true;
2834 }
2835
2836 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2837                                         struct igb_ring *tx_ring,
2838                                         struct sk_buff *skb, u32 tx_flags)
2839 {
2840         struct e1000_adv_tx_context_desc *context_desc;
2841         unsigned int i;
2842         struct igb_buffer *buffer_info;
2843         u32 info = 0, tu_cmd = 0;
2844
2845         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2846             (tx_flags & IGB_TX_FLAGS_VLAN)) {
2847                 i = tx_ring->next_to_use;
2848                 buffer_info = &tx_ring->buffer_info[i];
2849                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2850
2851                 if (tx_flags & IGB_TX_FLAGS_VLAN)
2852                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2853                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2854                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2855                         info |= skb_network_header_len(skb);
2856
2857                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2858
2859                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2860
2861                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2862                         switch (skb->protocol) {
2863                         case cpu_to_be16(ETH_P_IP):
2864                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2865                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2866                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2867                                 break;
2868                         case cpu_to_be16(ETH_P_IPV6):
2869                                 /* XXX what about other V6 headers?? */
2870                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2871                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2872                                 break;
2873                         default:
2874                                 if (unlikely(net_ratelimit()))
2875                                         dev_warn(&adapter->pdev->dev,
2876                                             "partial checksum but proto=%x!\n",
2877                                             skb->protocol);
2878                                 break;
2879                         }
2880                 }
2881
2882                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2883                 context_desc->seqnum_seed = 0;
2884                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2885                         context_desc->mss_l4len_idx =
2886                                 cpu_to_le32(tx_ring->queue_index << 4);
2887                 else
2888                         context_desc->mss_l4len_idx = 0;
2889
2890                 buffer_info->time_stamp = jiffies;
2891                 buffer_info->next_to_watch = i;
2892                 buffer_info->dma = 0;
2893
2894                 i++;
2895                 if (i == tx_ring->count)
2896                         i = 0;
2897                 tx_ring->next_to_use = i;
2898
2899                 return true;
2900         }
2901         return false;
2902 }
2903
2904 #define IGB_MAX_TXD_PWR 16
2905 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
2906
2907 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
2908                                  struct igb_ring *tx_ring, struct sk_buff *skb,
2909                                  unsigned int first)
2910 {
2911         struct igb_buffer *buffer_info;
2912         unsigned int len = skb_headlen(skb);
2913         unsigned int count = 0, i;
2914         unsigned int f;
2915
2916         i = tx_ring->next_to_use;
2917
2918         buffer_info = &tx_ring->buffer_info[i];
2919         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2920         buffer_info->length = len;
2921         /* set time_stamp *before* dma to help avoid a possible race */
2922         buffer_info->time_stamp = jiffies;
2923         buffer_info->next_to_watch = i;
2924         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
2925                                           PCI_DMA_TODEVICE);
2926         count++;
2927         i++;
2928         if (i == tx_ring->count)
2929                 i = 0;
2930
2931         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2932                 struct skb_frag_struct *frag;
2933
2934                 frag = &skb_shinfo(skb)->frags[f];
2935                 len = frag->size;
2936
2937                 buffer_info = &tx_ring->buffer_info[i];
2938                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
2939                 buffer_info->length = len;
2940                 buffer_info->time_stamp = jiffies;
2941                 buffer_info->next_to_watch = i;
2942                 buffer_info->dma = pci_map_page(adapter->pdev,
2943                                                 frag->page,
2944                                                 frag->page_offset,
2945                                                 len,
2946                                                 PCI_DMA_TODEVICE);
2947
2948                 count++;
2949                 i++;
2950                 if (i == tx_ring->count)
2951                         i = 0;
2952         }
2953
2954         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
2955         tx_ring->buffer_info[i].skb = skb;
2956         tx_ring->buffer_info[first].next_to_watch = i;
2957
2958         return count;
2959 }
2960
2961 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
2962                                     struct igb_ring *tx_ring,
2963                                     int tx_flags, int count, u32 paylen,
2964                                     u8 hdr_len)
2965 {
2966         union e1000_adv_tx_desc *tx_desc = NULL;
2967         struct igb_buffer *buffer_info;
2968         u32 olinfo_status = 0, cmd_type_len;
2969         unsigned int i;
2970
2971         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2972                         E1000_ADVTXD_DCMD_DEXT);
2973
2974         if (tx_flags & IGB_TX_FLAGS_VLAN)
2975                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2976
2977         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
2978                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
2979
2980         if (tx_flags & IGB_TX_FLAGS_TSO) {
2981                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2982
2983                 /* insert tcp checksum */
2984                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2985
2986                 /* insert ip checksum */
2987                 if (tx_flags & IGB_TX_FLAGS_IPV4)
2988                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2989
2990         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
2991                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2992         }
2993
2994         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
2995             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
2996                          IGB_TX_FLAGS_VLAN)))
2997                 olinfo_status |= tx_ring->queue_index << 4;
2998
2999         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3000
3001         i = tx_ring->next_to_use;
3002         while (count--) {
3003                 buffer_info = &tx_ring->buffer_info[i];
3004                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3005                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3006                 tx_desc->read.cmd_type_len =
3007                         cpu_to_le32(cmd_type_len | buffer_info->length);
3008                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3009                 i++;
3010                 if (i == tx_ring->count)
3011                         i = 0;
3012         }
3013
3014         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3015         /* Force memory writes to complete before letting h/w
3016          * know there are new descriptors to fetch.  (Only
3017          * applicable for weak-ordered memory model archs,
3018          * such as IA-64). */
3019         wmb();
3020
3021         tx_ring->next_to_use = i;
3022         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3023         /* we need this if more than one processor can write to our tail
3024          * at a time, it syncronizes IO on IA64/Altix systems */
3025         mmiowb();
3026 }
3027
3028 static int __igb_maybe_stop_tx(struct net_device *netdev,
3029                                struct igb_ring *tx_ring, int size)
3030 {
3031         struct igb_adapter *adapter = netdev_priv(netdev);
3032
3033         netif_stop_subqueue(netdev, tx_ring->queue_index);
3034
3035         /* Herbert's original patch had:
3036          *  smp_mb__after_netif_stop_queue();
3037          * but since that doesn't exist yet, just open code it. */
3038         smp_mb();
3039
3040         /* We need to check again in a case another CPU has just
3041          * made room available. */
3042         if (IGB_DESC_UNUSED(tx_ring) < size)
3043                 return -EBUSY;
3044
3045         /* A reprieve! */
3046         netif_wake_subqueue(netdev, tx_ring->queue_index);
3047         ++adapter->restart_queue;
3048         return 0;
3049 }
3050
3051 static int igb_maybe_stop_tx(struct net_device *netdev,
3052                              struct igb_ring *tx_ring, int size)
3053 {
3054         if (IGB_DESC_UNUSED(tx_ring) >= size)
3055                 return 0;
3056         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3057 }
3058
3059 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3060                                    struct net_device *netdev,
3061                                    struct igb_ring *tx_ring)
3062 {
3063         struct igb_adapter *adapter = netdev_priv(netdev);
3064         unsigned int first;
3065         unsigned int tx_flags = 0;
3066         u8 hdr_len = 0;
3067         int tso = 0;
3068         union skb_shared_tx *shtx;
3069
3070         if (test_bit(__IGB_DOWN, &adapter->state)) {
3071                 dev_kfree_skb_any(skb);
3072                 return NETDEV_TX_OK;
3073         }
3074
3075         if (skb->len <= 0) {
3076                 dev_kfree_skb_any(skb);
3077                 return NETDEV_TX_OK;
3078         }
3079
3080         /* need: 1 descriptor per page,
3081          *       + 2 desc gap to keep tail from touching head,
3082          *       + 1 desc for skb->data,
3083          *       + 1 desc for context descriptor,
3084          * otherwise try next time */
3085         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3086                 /* this is a hard error */
3087                 return NETDEV_TX_BUSY;
3088         }
3089
3090         /*
3091          * TODO: check that there currently is no other packet with
3092          * time stamping in the queue
3093          *
3094          * When doing time stamping, keep the connection to the socket
3095          * a while longer: it is still needed by skb_hwtstamp_tx(),
3096          * called either in igb_tx_hwtstamp() or by our caller when
3097          * doing software time stamping.
3098          */
3099         shtx = skb_tx(skb);
3100         if (unlikely(shtx->hardware)) {
3101                 shtx->in_progress = 1;
3102                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3103         } else if (likely(!shtx->software)) {
3104                 /*
3105                  * TODO: can this be solved in dev.c:dev_hard_start_xmit()?
3106                  * There are probably unmodified driver which do something
3107                  * like this and thus don't work in combination with
3108                  * SOF_TIMESTAMPING_TX_SOFTWARE.
3109                  */
3110                 skb_orphan(skb);
3111         }
3112
3113         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3114                 tx_flags |= IGB_TX_FLAGS_VLAN;
3115                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3116         }
3117
3118         if (skb->protocol == htons(ETH_P_IP))
3119                 tx_flags |= IGB_TX_FLAGS_IPV4;
3120
3121         first = tx_ring->next_to_use;
3122         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3123                                               &hdr_len) : 0;
3124
3125         if (tso < 0) {
3126                 dev_kfree_skb_any(skb);
3127                 return NETDEV_TX_OK;
3128         }
3129
3130         if (tso)
3131                 tx_flags |= IGB_TX_FLAGS_TSO;
3132         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3133                  (skb->ip_summed == CHECKSUM_PARTIAL))
3134                 tx_flags |= IGB_TX_FLAGS_CSUM;
3135
3136         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3137                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3138                          skb->len, hdr_len);
3139
3140         netdev->trans_start = jiffies;
3141
3142         /* Make sure there is space in the ring for the next send. */
3143         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3144
3145         return NETDEV_TX_OK;
3146 }
3147
3148 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3149 {
3150         struct igb_adapter *adapter = netdev_priv(netdev);
3151         struct igb_ring *tx_ring;
3152
3153         int r_idx = 0;
3154         r_idx = skb->queue_mapping & (IGB_MAX_TX_QUEUES - 1);
3155         tx_ring = adapter->multi_tx_table[r_idx];
3156
3157         /* This goes back to the question of how to logically map a tx queue
3158          * to a flow.  Right now, performance is impacted slightly negatively
3159          * if using multiple tx queues.  If the stack breaks away from a
3160          * single qdisc implementation, we can look at this again. */
3161         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3162 }
3163
3164 /**
3165  * igb_tx_timeout - Respond to a Tx Hang
3166  * @netdev: network interface device structure
3167  **/
3168 static void igb_tx_timeout(struct net_device *netdev)
3169 {
3170         struct igb_adapter *adapter = netdev_priv(netdev);
3171         struct e1000_hw *hw = &adapter->hw;
3172
3173         /* Do the reset outside of interrupt context */
3174         adapter->tx_timeout_count++;
3175         schedule_work(&adapter->reset_task);
3176         wr32(E1000_EICS,
3177              (adapter->eims_enable_mask & ~adapter->eims_other));
3178 }
3179
3180 static void igb_reset_task(struct work_struct *work)
3181 {
3182         struct igb_adapter *adapter;
3183         adapter = container_of(work, struct igb_adapter, reset_task);
3184
3185         igb_reinit_locked(adapter);
3186 }
3187
3188 /**
3189  * igb_get_stats - Get System Network Statistics
3190  * @netdev: network interface device structure
3191  *
3192  * Returns the address of the device statistics structure.
3193  * The statistics are actually updated from the timer callback.
3194  **/
3195 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3196 {
3197         struct igb_adapter *adapter = netdev_priv(netdev);
3198
3199         /* only return the current stats */
3200         return &adapter->net_stats;
3201 }
3202
3203 /**
3204  * igb_change_mtu - Change the Maximum Transfer Unit
3205  * @netdev: network interface device structure
3206  * @new_mtu: new value for maximum frame size
3207  *
3208  * Returns 0 on success, negative on failure
3209  **/
3210 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3211 {
3212         struct igb_adapter *adapter = netdev_priv(netdev);
3213         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3214
3215         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3216             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3217                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3218                 return -EINVAL;
3219         }
3220
3221 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3222         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3223                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3224                 return -EINVAL;
3225         }
3226
3227         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3228                 msleep(1);
3229
3230         /* igb_down has a dependency on max_frame_size */
3231         adapter->max_frame_size = max_frame;
3232         if (netif_running(netdev))
3233                 igb_down(adapter);
3234
3235         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3236          * means we reserve 2 more, this pushes us to allocate from the next
3237          * larger slab size.
3238          * i.e. RXBUFFER_2048 --> size-4096 slab
3239          */
3240
3241         if (max_frame <= IGB_RXBUFFER_256)
3242                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3243         else if (max_frame <= IGB_RXBUFFER_512)
3244                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3245         else if (max_frame <= IGB_RXBUFFER_1024)
3246                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3247         else if (max_frame <= IGB_RXBUFFER_2048)
3248                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3249         else
3250 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3251                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3252 #else
3253                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3254 #endif
3255         /* adjust allocation if LPE protects us, and we aren't using SBP */
3256         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3257              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3258                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3259
3260         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3261                  netdev->mtu, new_mtu);
3262         netdev->mtu = new_mtu;
3263
3264         if (netif_running(netdev))
3265                 igb_up(adapter);
3266         else
3267                 igb_reset(adapter);
3268
3269         clear_bit(__IGB_RESETTING, &adapter->state);
3270
3271         return 0;
3272 }
3273
3274 /**
3275  * igb_update_stats - Update the board statistics counters
3276  * @adapter: board private structure
3277  **/
3278
3279 void igb_update_stats(struct igb_adapter *adapter)
3280 {
3281         struct e1000_hw *hw = &adapter->hw;
3282         struct pci_dev *pdev = adapter->pdev;
3283         u16 phy_tmp;
3284
3285 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3286
3287         /*
3288          * Prevent stats update while adapter is being reset, or if the pci
3289          * connection is down.
3290          */
3291         if (adapter->link_speed == 0)
3292                 return;
3293         if (pci_channel_offline(pdev))
3294                 return;
3295
3296         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3297         adapter->stats.gprc += rd32(E1000_GPRC);
3298         adapter->stats.gorc += rd32(E1000_GORCL);
3299         rd32(E1000_GORCH); /* clear GORCL */
3300         adapter->stats.bprc += rd32(E1000_BPRC);
3301         adapter->stats.mprc += rd32(E1000_MPRC);
3302         adapter->stats.roc += rd32(E1000_ROC);
3303
3304         adapter->stats.prc64 += rd32(E1000_PRC64);
3305         adapter->stats.prc127 += rd32(E1000_PRC127);
3306         adapter->stats.prc255 += rd32(E1000_PRC255);
3307         adapter->stats.prc511 += rd32(E1000_PRC511);
3308         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3309         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3310         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3311         adapter->stats.sec += rd32(E1000_SEC);
3312
3313         adapter->stats.mpc += rd32(E1000_MPC);
3314         adapter->stats.scc += rd32(E1000_SCC);
3315         adapter->stats.ecol += rd32(E1000_ECOL);
3316         adapter->stats.mcc += rd32(E1000_MCC);
3317         adapter->stats.latecol += rd32(E1000_LATECOL);
3318         adapter->stats.dc += rd32(E1000_DC);
3319         adapter->stats.rlec += rd32(E1000_RLEC);
3320         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3321         adapter->stats.xontxc += rd32(E1000_XONTXC);
3322         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3323         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3324         adapter->stats.fcruc += rd32(E1000_FCRUC);
3325         adapter->stats.gptc += rd32(E1000_GPTC);
3326         adapter->stats.gotc += rd32(E1000_GOTCL);
3327         rd32(E1000_GOTCH); /* clear GOTCL */
3328         adapter->stats.rnbc += rd32(E1000_RNBC);
3329         adapter->stats.ruc += rd32(E1000_RUC);
3330         adapter->stats.rfc += rd32(E1000_RFC);
3331         adapter->stats.rjc += rd32(E1000_RJC);
3332         adapter->stats.tor += rd32(E1000_TORH);
3333         adapter->stats.tot += rd32(E1000_TOTH);
3334         adapter->stats.tpr += rd32(E1000_TPR);
3335
3336         adapter->stats.ptc64 += rd32(E1000_PTC64);
3337         adapter->stats.ptc127 += rd32(E1000_PTC127);
3338         adapter->stats.ptc255 += rd32(E1000_PTC255);
3339         adapter->stats.ptc511 += rd32(E1000_PTC511);
3340         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3341         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3342
3343         adapter->stats.mptc += rd32(E1000_MPTC);
3344         adapter->stats.bptc += rd32(E1000_BPTC);
3345
3346         /* used for adaptive IFS */
3347
3348         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3349         adapter->stats.tpt += hw->mac.tx_packet_delta;
3350         hw->mac.collision_delta = rd32(E1000_COLC);
3351         adapter->stats.colc += hw->mac.collision_delta;
3352
3353         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3354         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3355         adapter->stats.tncrs += rd32(E1000_TNCRS);
3356         adapter->stats.tsctc += rd32(E1000_TSCTC);
3357         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3358
3359         adapter->stats.iac += rd32(E1000_IAC);
3360         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3361         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3362         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3363         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3364         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3365         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3366         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3367         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3368
3369         /* Fill out the OS statistics structure */
3370         adapter->net_stats.multicast = adapter->stats.mprc;
3371         adapter->net_stats.collisions = adapter->stats.colc;
3372
3373         /* Rx Errors */
3374
3375         /* RLEC on some newer hardware can be incorrect so build
3376         * our own version based on RUC and ROC */
3377         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3378                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3379                 adapter->stats.ruc + adapter->stats.roc +
3380                 adapter->stats.cexterr;
3381         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3382                                               adapter->stats.roc;
3383         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3384         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3385         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3386
3387         /* Tx Errors */
3388         adapter->net_stats.tx_errors = adapter->stats.ecol +
3389                                        adapter->stats.latecol;
3390         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3391         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3392         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3393
3394         /* Tx Dropped needs to be maintained elsewhere */
3395
3396         /* Phy Stats */
3397         if (hw->phy.media_type == e1000_media_type_copper) {
3398                 if ((adapter->link_speed == SPEED_1000) &&
3399                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3400                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3401                         adapter->phy_stats.idle_errors += phy_tmp;
3402                 }
3403         }
3404
3405         /* Management Stats */
3406         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3407         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3408         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3409 }
3410
3411 static irqreturn_t igb_msix_other(int irq, void *data)
3412 {
3413         struct net_device *netdev = data;
3414         struct igb_adapter *adapter = netdev_priv(netdev);
3415         struct e1000_hw *hw = &adapter->hw;
3416         u32 icr = rd32(E1000_ICR);
3417
3418         /* reading ICR causes bit 31 of EICR to be cleared */
3419
3420         if(icr & E1000_ICR_DOUTSYNC) {
3421                 /* HW is reporting DMA is out of sync */
3422                 adapter->stats.doosync++;
3423         }
3424         if (!(icr & E1000_ICR_LSC))
3425                 goto no_link_interrupt;
3426         hw->mac.get_link_status = 1;
3427         /* guard against interrupt when we're going down */
3428         if (!test_bit(__IGB_DOWN, &adapter->state))
3429                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3430
3431 no_link_interrupt:
3432         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC);
3433         wr32(E1000_EIMS, adapter->eims_other);
3434
3435         return IRQ_HANDLED;
3436 }
3437
3438 static irqreturn_t igb_msix_tx(int irq, void *data)
3439 {
3440         struct igb_ring *tx_ring = data;
3441         struct igb_adapter *adapter = tx_ring->adapter;
3442         struct e1000_hw *hw = &adapter->hw;
3443
3444 #ifdef CONFIG_IGB_DCA
3445         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3446                 igb_update_tx_dca(tx_ring);
3447 #endif
3448
3449         tx_ring->total_bytes = 0;
3450         tx_ring->total_packets = 0;
3451
3452         /* auto mask will automatically reenable the interrupt when we write
3453          * EICS */
3454         if (!igb_clean_tx_irq(tx_ring))
3455                 /* Ring was not completely cleaned, so fire another interrupt */
3456                 wr32(E1000_EICS, tx_ring->eims_value);
3457         else
3458                 wr32(E1000_EIMS, tx_ring->eims_value);
3459
3460         return IRQ_HANDLED;
3461 }
3462
3463 static void igb_write_itr(struct igb_ring *ring)
3464 {
3465         struct e1000_hw *hw = &ring->adapter->hw;
3466         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3467                 switch (hw->mac.type) {
3468                 case e1000_82576:
3469                         wr32(ring->itr_register, ring->itr_val |
3470                              0x80000000);
3471                         break;
3472                 default:
3473                         wr32(ring->itr_register, ring->itr_val |
3474                              (ring->itr_val << 16));
3475                         break;
3476                 }
3477                 ring->set_itr = 0;
3478         }
3479 }
3480
3481 static irqreturn_t igb_msix_rx(int irq, void *data)
3482 {
3483         struct igb_ring *rx_ring = data;
3484
3485         /* Write the ITR value calculated at the end of the
3486          * previous interrupt.
3487          */
3488
3489         igb_write_itr(rx_ring);
3490
3491         if (napi_schedule_prep(&rx_ring->napi))
3492                 __napi_schedule(&rx_ring->napi);
3493
3494 #ifdef CONFIG_IGB_DCA
3495         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3496                 igb_update_rx_dca(rx_ring);
3497 #endif
3498                 return IRQ_HANDLED;
3499 }
3500
3501 #ifdef CONFIG_IGB_DCA
3502 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3503 {
3504         u32 dca_rxctrl;
3505         struct igb_adapter *adapter = rx_ring->adapter;
3506         struct e1000_hw *hw = &adapter->hw;
3507         int cpu = get_cpu();
3508         int q = rx_ring->reg_idx;
3509
3510         if (rx_ring->cpu != cpu) {
3511                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3512                 if (hw->mac.type == e1000_82576) {
3513                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3514                         dca_rxctrl |= dca_get_tag(cpu) <<
3515                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3516                 } else {
3517                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3518                         dca_rxctrl |= dca_get_tag(cpu);
3519                 }
3520                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3521                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3522                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3523                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3524                 rx_ring->cpu = cpu;
3525         }
3526         put_cpu();
3527 }
3528
3529 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3530 {
3531         u32 dca_txctrl;
3532         struct igb_adapter *adapter = tx_ring->adapter;
3533         struct e1000_hw *hw = &adapter->hw;
3534         int cpu = get_cpu();
3535         int q = tx_ring->reg_idx;
3536
3537         if (tx_ring->cpu != cpu) {
3538                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3539                 if (hw->mac.type == e1000_82576) {
3540                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3541                         dca_txctrl |= dca_get_tag(cpu) <<
3542                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3543                 } else {
3544                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3545                         dca_txctrl |= dca_get_tag(cpu);
3546                 }
3547                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3548                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3549                 tx_ring->cpu = cpu;
3550         }
3551         put_cpu();
3552 }
3553
3554 static void igb_setup_dca(struct igb_adapter *adapter)
3555 {
3556         int i;
3557
3558         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3559                 return;
3560
3561         for (i = 0; i < adapter->num_tx_queues; i++) {
3562                 adapter->tx_ring[i].cpu = -1;
3563                 igb_update_tx_dca(&adapter->tx_ring[i]);
3564         }
3565         for (i = 0; i < adapter->num_rx_queues; i++) {
3566                 adapter->rx_ring[i].cpu = -1;
3567                 igb_update_rx_dca(&adapter->rx_ring[i]);
3568         }
3569 }
3570
3571 static int __igb_notify_dca(struct device *dev, void *data)
3572 {
3573         struct net_device *netdev = dev_get_drvdata(dev);
3574         struct igb_adapter *adapter = netdev_priv(netdev);
3575         struct e1000_hw *hw = &adapter->hw;
3576         unsigned long event = *(unsigned long *)data;
3577
3578         switch (event) {
3579         case DCA_PROVIDER_ADD:
3580                 /* if already enabled, don't do it again */
3581                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3582                         break;
3583                 /* Always use CB2 mode, difference is masked
3584                  * in the CB driver. */
3585                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3586                 if (dca_add_requester(dev) == 0) {
3587                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3588                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3589                         igb_setup_dca(adapter);
3590                         break;
3591                 }
3592                 /* Fall Through since DCA is disabled. */
3593         case DCA_PROVIDER_REMOVE:
3594                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3595                         /* without this a class_device is left
3596                          * hanging around in the sysfs model */
3597                         dca_remove_requester(dev);
3598                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3599                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3600                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3601                 }
3602                 break;
3603         }
3604
3605         return 0;
3606 }
3607
3608 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3609                           void *p)
3610 {
3611         int ret_val;
3612
3613         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3614                                          __igb_notify_dca);
3615
3616         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3617 }
3618 #endif /* CONFIG_IGB_DCA */
3619
3620 /**
3621  * igb_intr_msi - Interrupt Handler
3622  * @irq: interrupt number
3623  * @data: pointer to a network interface device structure
3624  **/
3625 static irqreturn_t igb_intr_msi(int irq, void *data)
3626 {
3627         struct net_device *netdev = data;
3628         struct igb_adapter *adapter = netdev_priv(netdev);
3629         struct e1000_hw *hw = &adapter->hw;
3630         /* read ICR disables interrupts using IAM */
3631         u32 icr = rd32(E1000_ICR);
3632
3633         igb_write_itr(adapter->rx_ring);
3634
3635         if(icr & E1000_ICR_DOUTSYNC) {
3636                 /* HW is reporting DMA is out of sync */
3637                 adapter->stats.doosync++;
3638         }
3639
3640         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3641                 hw->mac.get_link_status = 1;
3642                 if (!test_bit(__IGB_DOWN, &adapter->state))
3643                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3644         }
3645
3646         napi_schedule(&adapter->rx_ring[0].napi);
3647
3648         return IRQ_HANDLED;
3649 }
3650
3651 /**
3652  * igb_intr - Legacy Interrupt Handler
3653  * @irq: interrupt number
3654  * @data: pointer to a network interface device structure
3655  **/
3656 static irqreturn_t igb_intr(int irq, void *data)
3657 {
3658         struct net_device *netdev = data;
3659         struct igb_adapter *adapter = netdev_priv(netdev);
3660         struct e1000_hw *hw = &adapter->hw;
3661         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3662          * need for the IMC write */
3663         u32 icr = rd32(E1000_ICR);
3664         if (!icr)
3665                 return IRQ_NONE;  /* Not our interrupt */
3666
3667         igb_write_itr(adapter->rx_ring);
3668
3669         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3670          * not set, then the adapter didn't send an interrupt */
3671         if (!(icr & E1000_ICR_INT_ASSERTED))
3672                 return IRQ_NONE;
3673
3674         if(icr & E1000_ICR_DOUTSYNC) {
3675                 /* HW is reporting DMA is out of sync */
3676                 adapter->stats.doosync++;
3677         }
3678
3679         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3680                 hw->mac.get_link_status = 1;
3681                 /* guard against interrupt when we're going down */
3682                 if (!test_bit(__IGB_DOWN, &adapter->state))
3683                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3684         }
3685
3686         napi_schedule(&adapter->rx_ring[0].napi);
3687
3688         return IRQ_HANDLED;
3689 }
3690
3691 /**
3692  * igb_poll - NAPI Rx polling callback
3693  * @napi: napi polling structure
3694  * @budget: count of how many packets we should handle
3695  **/
3696 static int igb_poll(struct napi_struct *napi, int budget)
3697 {
3698         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3699         struct igb_adapter *adapter = rx_ring->adapter;
3700         struct net_device *netdev = adapter->netdev;
3701         int tx_clean_complete, work_done = 0;
3702
3703         /* this poll routine only supports one tx and one rx queue */
3704 #ifdef CONFIG_IGB_DCA
3705         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3706                 igb_update_tx_dca(&adapter->tx_ring[0]);
3707 #endif
3708         tx_clean_complete = igb_clean_tx_irq(&adapter->tx_ring[0]);
3709
3710 #ifdef CONFIG_IGB_DCA
3711         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3712                 igb_update_rx_dca(&adapter->rx_ring[0]);
3713 #endif
3714         igb_clean_rx_irq_adv(&adapter->rx_ring[0], &work_done, budget);
3715
3716         /* If no Tx and not enough Rx work done, exit the polling mode */
3717         if ((tx_clean_complete && (work_done < budget)) ||
3718             !netif_running(netdev)) {
3719                 if (adapter->itr_setting & 3)
3720                         igb_set_itr(adapter);
3721                 napi_complete(napi);
3722                 if (!test_bit(__IGB_DOWN, &adapter->state))
3723                         igb_irq_enable(adapter);
3724                 return 0;
3725         }
3726
3727         return 1;
3728 }
3729
3730 static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
3731 {
3732         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
3733         struct igb_adapter *adapter = rx_ring->adapter;
3734         struct e1000_hw *hw = &adapter->hw;
3735         struct net_device *netdev = adapter->netdev;
3736         int work_done = 0;
3737
3738 #ifdef CONFIG_IGB_DCA
3739         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3740                 igb_update_rx_dca(rx_ring);
3741 #endif
3742         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
3743
3744         /* If not enough Rx work done, exit the polling mode */
3745         if ((work_done == 0) || !netif_running(netdev)) {
3746                 napi_complete(napi);
3747
3748                 if (adapter->itr_setting & 3) {
3749                         if (adapter->num_rx_queues == 1)
3750                                 igb_set_itr(adapter);
3751                         else
3752                                 igb_update_ring_itr(rx_ring);
3753                 }
3754                 if (!test_bit(__IGB_DOWN, &adapter->state))
3755                         wr32(E1000_EIMS, rx_ring->eims_value);
3756
3757                 return 0;
3758         }
3759
3760         return 1;
3761 }
3762
3763 /**
3764  * igb_hwtstamp - utility function which checks for TX time stamp
3765  * @adapter: board private structure
3766  * @skb: packet that was just sent
3767  *
3768  * If we were asked to do hardware stamping and such a time stamp is
3769  * available, then it must have been for this skb here because we only
3770  * allow only one such packet into the queue.
3771  */
3772 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
3773 {
3774         union skb_shared_tx *shtx = skb_tx(skb);
3775         struct e1000_hw *hw = &adapter->hw;
3776
3777         if (unlikely(shtx->hardware)) {
3778                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
3779                 if (valid) {
3780                         u64 regval = rd32(E1000_TXSTMPL);
3781                         u64 ns;
3782                         struct skb_shared_hwtstamps shhwtstamps;
3783
3784                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
3785                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
3786                         ns = timecounter_cyc2time(&adapter->clock,
3787                                                   regval);
3788                         timecompare_update(&adapter->compare, ns);
3789                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
3790                         shhwtstamps.syststamp =
3791                                 timecompare_transform(&adapter->compare, ns);
3792                         skb_tstamp_tx(skb, &shhwtstamps);
3793                 }
3794
3795                 /* delayed orphaning: skb_tstamp_tx() needs the socket */
3796                 skb_orphan(skb);
3797         }
3798 }
3799
3800 /**
3801  * igb_clean_tx_irq - Reclaim resources after transmit completes
3802  * @adapter: board private structure
3803  * returns true if ring is completely cleaned
3804  **/
3805 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
3806 {
3807         struct igb_adapter *adapter = tx_ring->adapter;
3808         struct net_device *netdev = adapter->netdev;
3809         struct e1000_hw *hw = &adapter->hw;
3810         struct igb_buffer *buffer_info;
3811         struct sk_buff *skb;
3812         union e1000_adv_tx_desc *tx_desc, *eop_desc;
3813         unsigned int total_bytes = 0, total_packets = 0;
3814         unsigned int i, eop, count = 0;
3815         bool cleaned = false;
3816
3817         i = tx_ring->next_to_clean;
3818         eop = tx_ring->buffer_info[i].next_to_watch;
3819         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3820
3821         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3822                (count < tx_ring->count)) {
3823                 for (cleaned = false; !cleaned; count++) {
3824                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3825                         buffer_info = &tx_ring->buffer_info[i];
3826                         cleaned = (i == eop);
3827                         skb = buffer_info->skb;
3828
3829                         if (skb) {
3830                                 unsigned int segs, bytecount;
3831                                 /* gso_segs is currently only valid for tcp */
3832                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3833                                 /* multiply data chunks by size of headers */
3834                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3835                                             skb->len;
3836                                 total_packets += segs;
3837                                 total_bytes += bytecount;
3838
3839                                 igb_tx_hwtstamp(adapter, skb);
3840                         }
3841
3842                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
3843                         tx_desc->wb.status = 0;
3844
3845                         i++;
3846                         if (i == tx_ring->count)
3847                                 i = 0;
3848                 }
3849                 eop = tx_ring->buffer_info[i].next_to_watch;
3850                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
3851         }
3852
3853         tx_ring->next_to_clean = i;
3854
3855         if (unlikely(count &&
3856                      netif_carrier_ok(netdev) &&
3857                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
3858                 /* Make sure that anybody stopping the queue after this
3859                  * sees the new next_to_clean.
3860                  */
3861                 smp_mb();
3862                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
3863                     !(test_bit(__IGB_DOWN, &adapter->state))) {
3864                         netif_wake_subqueue(netdev, tx_ring->queue_index);
3865                         ++adapter->restart_queue;
3866                 }
3867         }
3868
3869         if (tx_ring->detect_tx_hung) {
3870                 /* Detect a transmit hang in hardware, this serializes the
3871                  * check with the clearing of time_stamp and movement of i */
3872                 tx_ring->detect_tx_hung = false;
3873                 if (tx_ring->buffer_info[i].time_stamp &&
3874                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3875                                (adapter->tx_timeout_factor * HZ))
3876                     && !(rd32(E1000_STATUS) &
3877                          E1000_STATUS_TXOFF)) {
3878
3879                         /* detected Tx unit hang */
3880                         dev_err(&adapter->pdev->dev,
3881                                 "Detected Tx Unit Hang\n"
3882                                 "  Tx Queue             <%d>\n"
3883                                 "  TDH                  <%x>\n"
3884                                 "  TDT                  <%x>\n"
3885                                 "  next_to_use          <%x>\n"
3886                                 "  next_to_clean        <%x>\n"
3887                                 "buffer_info[next_to_clean]\n"
3888                                 "  time_stamp           <%lx>\n"
3889                                 "  next_to_watch        <%x>\n"
3890                                 "  jiffies              <%lx>\n"
3891                                 "  desc.status          <%x>\n",
3892                                 tx_ring->queue_index,
3893                                 readl(adapter->hw.hw_addr + tx_ring->head),
3894                                 readl(adapter->hw.hw_addr + tx_ring->tail),
3895                                 tx_ring->next_to_use,
3896                                 tx_ring->next_to_clean,
3897                                 tx_ring->buffer_info[i].time_stamp,
3898                                 eop,
3899                                 jiffies,
3900                                 eop_desc->wb.status);
3901                         netif_stop_subqueue(netdev, tx_ring->queue_index);
3902                 }
3903         }
3904         tx_ring->total_bytes += total_bytes;
3905         tx_ring->total_packets += total_packets;
3906         tx_ring->tx_stats.bytes += total_bytes;
3907         tx_ring->tx_stats.packets += total_packets;
3908         adapter->net_stats.tx_bytes += total_bytes;
3909         adapter->net_stats.tx_packets += total_packets;
3910         return (count < tx_ring->count);
3911 }
3912
3913 /**
3914  * igb_receive_skb - helper function to handle rx indications
3915  * @ring: pointer to receive ring receving this packet
3916  * @status: descriptor status field as written by hardware
3917  * @rx_desc: receive descriptor containing vlan and type information.
3918  * @skb: pointer to sk_buff to be indicated to stack
3919  **/
3920 static void igb_receive_skb(struct igb_ring *ring, u8 status,
3921                             union e1000_adv_rx_desc * rx_desc,
3922                             struct sk_buff *skb)
3923 {
3924         struct igb_adapter * adapter = ring->adapter;
3925         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
3926
3927         skb_record_rx_queue(skb, ring->queue_index);
3928         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3929                 if (vlan_extracted)
3930                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
3931                                          le16_to_cpu(rx_desc->wb.upper.vlan),
3932                                          skb);
3933                 else
3934                         napi_gro_receive(&ring->napi, skb);
3935         } else {
3936                 if (vlan_extracted)
3937                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3938                                           le16_to_cpu(rx_desc->wb.upper.vlan));
3939                 else
3940                         netif_receive_skb(skb);
3941         }
3942 }
3943
3944 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
3945                                        u32 status_err, struct sk_buff *skb)
3946 {
3947         skb->ip_summed = CHECKSUM_NONE;
3948
3949         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3950         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
3951                 return;
3952         /* TCP/UDP checksum error bit is set */
3953         if (status_err &
3954             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
3955                 /* let the stack verify checksum errors */
3956                 adapter->hw_csum_err++;
3957                 return;
3958         }
3959         /* It must be a TCP or UDP packet with a valid checksum */
3960         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
3961                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3962
3963         adapter->hw_csum_good++;
3964 }
3965
3966 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
3967                                  int *work_done, int budget)
3968 {
3969         struct igb_adapter *adapter = rx_ring->adapter;
3970         struct net_device *netdev = adapter->netdev;
3971         struct e1000_hw *hw = &adapter->hw;
3972         struct pci_dev *pdev = adapter->pdev;
3973         union e1000_adv_rx_desc *rx_desc , *next_rxd;
3974         struct igb_buffer *buffer_info , *next_buffer;
3975         struct sk_buff *skb;
3976         bool cleaned = false;
3977         int cleaned_count = 0;
3978         unsigned int total_bytes = 0, total_packets = 0;
3979         unsigned int i;
3980         u32 length, hlen, staterr;
3981
3982         i = rx_ring->next_to_clean;
3983         buffer_info = &rx_ring->buffer_info[i];
3984         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
3985         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
3986
3987         while (staterr & E1000_RXD_STAT_DD) {
3988                 if (*work_done >= budget)
3989                         break;
3990                 (*work_done)++;
3991
3992                 skb = buffer_info->skb;
3993                 prefetch(skb->data - NET_IP_ALIGN);
3994                 buffer_info->skb = NULL;
3995
3996                 i++;
3997                 if (i == rx_ring->count)
3998                         i = 0;
3999                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4000                 prefetch(next_rxd);
4001                 next_buffer = &rx_ring->buffer_info[i];
4002
4003                 length = le16_to_cpu(rx_desc->wb.upper.length);
4004                 cleaned = true;
4005                 cleaned_count++;
4006
4007                 if (!adapter->rx_ps_hdr_size) {
4008                         pci_unmap_single(pdev, buffer_info->dma,
4009                                          adapter->rx_buffer_len +
4010                                            NET_IP_ALIGN,
4011                                          PCI_DMA_FROMDEVICE);
4012                         skb_put(skb, length);
4013                         goto send_up;
4014                 }
4015
4016                 /* HW will not DMA in data larger than the given buffer, even
4017                  * if it parses the (NFS, of course) header to be larger.  In
4018                  * that case, it fills the header buffer and spills the rest
4019                  * into the page.
4020                  */
4021                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4022                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4023                 if (hlen > adapter->rx_ps_hdr_size)
4024                         hlen = adapter->rx_ps_hdr_size;
4025
4026                 if (!skb_shinfo(skb)->nr_frags) {
4027                         pci_unmap_single(pdev, buffer_info->dma,
4028                                          adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4029                                          PCI_DMA_FROMDEVICE);
4030                         skb_put(skb, hlen);
4031                 }
4032
4033                 if (length) {
4034                         pci_unmap_page(pdev, buffer_info->page_dma,
4035                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4036                         buffer_info->page_dma = 0;
4037
4038                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4039                                                 buffer_info->page,
4040                                                 buffer_info->page_offset,
4041                                                 length);
4042
4043                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4044                             (page_count(buffer_info->page) != 1))
4045                                 buffer_info->page = NULL;
4046                         else
4047                                 get_page(buffer_info->page);
4048
4049                         skb->len += length;
4050                         skb->data_len += length;
4051
4052                         skb->truesize += length;
4053                 }
4054
4055                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4056                         buffer_info->skb = next_buffer->skb;
4057                         buffer_info->dma = next_buffer->dma;
4058                         next_buffer->skb = skb;
4059                         next_buffer->dma = 0;
4060                         goto next_desc;
4061                 }
4062 send_up:
4063                 /*
4064                  * If this bit is set, then the RX registers contain
4065                  * the time stamp. No other packet will be time
4066                  * stamped until we read these registers, so read the
4067                  * registers to make them available again. Because
4068                  * only one packet can be time stamped at a time, we
4069                  * know that the register values must belong to this
4070                  * one here and therefore we don't need to compare
4071                  * any of the additional attributes stored for it.
4072                  *
4073                  * If nothing went wrong, then it should have a
4074                  * skb_shared_tx that we can turn into a
4075                  * skb_shared_hwtstamps.
4076                  *
4077                  * TODO: can time stamping be triggered (thus locking
4078                  * the registers) without the packet reaching this point
4079                  * here? In that case RX time stamping would get stuck.
4080                  *
4081                  * TODO: in "time stamp all packets" mode this bit is
4082                  * not set. Need a global flag for this mode and then
4083                  * always read the registers. Cannot be done without
4084                  * a race condition.
4085                  */
4086                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4087                         u64 regval;
4088                         u64 ns;
4089                         struct skb_shared_hwtstamps *shhwtstamps =
4090                                 skb_hwtstamps(skb);
4091
4092                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4093                              "igb: no RX time stamp available for time stamped packet");
4094                         regval = rd32(E1000_RXSTMPL);
4095                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4096                         ns = timecounter_cyc2time(&adapter->clock, regval);
4097                         timecompare_update(&adapter->compare, ns);
4098                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4099                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4100                         shhwtstamps->syststamp =
4101                                 timecompare_transform(&adapter->compare, ns);
4102                 }
4103
4104                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4105                         dev_kfree_skb_irq(skb);
4106                         goto next_desc;
4107                 }
4108
4109                 total_bytes += skb->len;
4110                 total_packets++;
4111
4112                 igb_rx_checksum_adv(adapter, staterr, skb);
4113
4114                 skb->protocol = eth_type_trans(skb, netdev);
4115
4116                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4117
4118 next_desc:
4119                 rx_desc->wb.upper.status_error = 0;
4120
4121                 /* return some buffers to hardware, one at a time is too slow */
4122                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4123                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4124                         cleaned_count = 0;
4125                 }
4126
4127                 /* use prefetched values */
4128                 rx_desc = next_rxd;
4129                 buffer_info = next_buffer;
4130                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4131         }
4132
4133         rx_ring->next_to_clean = i;
4134         cleaned_count = IGB_DESC_UNUSED(rx_ring);
4135
4136         if (cleaned_count)
4137                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4138
4139         rx_ring->total_packets += total_packets;
4140         rx_ring->total_bytes += total_bytes;
4141         rx_ring->rx_stats.packets += total_packets;
4142         rx_ring->rx_stats.bytes += total_bytes;
4143         adapter->net_stats.rx_bytes += total_bytes;
4144         adapter->net_stats.rx_packets += total_packets;
4145         return cleaned;
4146 }
4147
4148 /**
4149  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4150  * @adapter: address of board private structure
4151  **/
4152 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4153                                      int cleaned_count)
4154 {
4155         struct igb_adapter *adapter = rx_ring->adapter;
4156         struct net_device *netdev = adapter->netdev;
4157         struct pci_dev *pdev = adapter->pdev;
4158         union e1000_adv_rx_desc *rx_desc;
4159         struct igb_buffer *buffer_info;
4160         struct sk_buff *skb;
4161         unsigned int i;
4162         int bufsz;
4163
4164         i = rx_ring->next_to_use;
4165         buffer_info = &rx_ring->buffer_info[i];
4166
4167         if (adapter->rx_ps_hdr_size)
4168                 bufsz = adapter->rx_ps_hdr_size;
4169         else
4170                 bufsz = adapter->rx_buffer_len;
4171         bufsz += NET_IP_ALIGN;
4172
4173         while (cleaned_count--) {
4174                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4175
4176                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4177                         if (!buffer_info->page) {
4178                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4179                                 if (!buffer_info->page) {
4180                                         adapter->alloc_rx_buff_failed++;
4181                                         goto no_buffers;
4182                                 }
4183                                 buffer_info->page_offset = 0;
4184                         } else {
4185                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4186                         }
4187                         buffer_info->page_dma =
4188                                 pci_map_page(pdev, buffer_info->page,
4189                                              buffer_info->page_offset,
4190                                              PAGE_SIZE / 2,
4191                                              PCI_DMA_FROMDEVICE);
4192                 }
4193
4194                 if (!buffer_info->skb) {
4195                         skb = netdev_alloc_skb(netdev, bufsz);
4196                         if (!skb) {
4197                                 adapter->alloc_rx_buff_failed++;
4198                                 goto no_buffers;
4199                         }
4200
4201                         /* Make buffer alignment 2 beyond a 16 byte boundary
4202                          * this will result in a 16 byte aligned IP header after
4203                          * the 14 byte MAC header is removed
4204                          */
4205                         skb_reserve(skb, NET_IP_ALIGN);
4206
4207                         buffer_info->skb = skb;
4208                         buffer_info->dma = pci_map_single(pdev, skb->data,
4209                                                           bufsz,
4210                                                           PCI_DMA_FROMDEVICE);
4211                 }
4212                 /* Refresh the desc even if buffer_addrs didn't change because
4213                  * each write-back erases this info. */
4214                 if (adapter->rx_ps_hdr_size) {
4215                         rx_desc->read.pkt_addr =
4216                              cpu_to_le64(buffer_info->page_dma);
4217                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4218                 } else {
4219                         rx_desc->read.pkt_addr =
4220                              cpu_to_le64(buffer_info->dma);
4221                         rx_desc->read.hdr_addr = 0;
4222                 }
4223
4224                 i++;
4225                 if (i == rx_ring->count)
4226                         i = 0;
4227                 buffer_info = &rx_ring->buffer_info[i];
4228         }
4229
4230 no_buffers:
4231         if (rx_ring->next_to_use != i) {
4232                 rx_ring->next_to_use = i;
4233                 if (i == 0)
4234                         i = (rx_ring->count - 1);
4235                 else
4236                         i--;
4237
4238                 /* Force memory writes to complete before letting h/w
4239                  * know there are new descriptors to fetch.  (Only
4240                  * applicable for weak-ordered memory model archs,
4241                  * such as IA-64). */
4242                 wmb();
4243                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4244         }
4245 }
4246
4247 /**
4248  * igb_mii_ioctl -
4249  * @netdev:
4250  * @ifreq:
4251  * @cmd:
4252  **/
4253 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4254 {
4255         struct igb_adapter *adapter = netdev_priv(netdev);
4256         struct mii_ioctl_data *data = if_mii(ifr);
4257
4258         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4259                 return -EOPNOTSUPP;
4260
4261         switch (cmd) {
4262         case SIOCGMIIPHY:
4263                 data->phy_id = adapter->hw.phy.addr;
4264                 break;
4265         case SIOCGMIIREG:
4266                 if (!capable(CAP_NET_ADMIN))
4267                         return -EPERM;
4268                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4269                                      &data->val_out))
4270                         return -EIO;
4271                 break;
4272         case SIOCSMIIREG:
4273         default:
4274                 return -EOPNOTSUPP;
4275         }
4276         return 0;
4277 }
4278
4279 /**
4280  * igb_hwtstamp_ioctl - control hardware time stamping
4281  * @netdev:
4282  * @ifreq:
4283  * @cmd:
4284  *
4285  * Outgoing time stamping can be enabled and disabled. Play nice and
4286  * disable it when requested, although it shouldn't case any overhead
4287  * when no packet needs it. At most one packet in the queue may be
4288  * marked for time stamping, otherwise it would be impossible to tell
4289  * for sure to which packet the hardware time stamp belongs.
4290  *
4291  * Incoming time stamping has to be configured via the hardware
4292  * filters. Not all combinations are supported, in particular event
4293  * type has to be specified. Matching the kind of event packet is
4294  * not supported, with the exception of "all V2 events regardless of
4295  * level 2 or 4".
4296  *
4297  **/
4298 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4299                               struct ifreq *ifr, int cmd)
4300 {
4301         struct igb_adapter *adapter = netdev_priv(netdev);
4302         struct e1000_hw *hw = &adapter->hw;
4303         struct hwtstamp_config config;
4304         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4305         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4306         u32 tsync_rx_ctl_type = 0;
4307         u32 tsync_rx_cfg = 0;
4308         int is_l4 = 0;
4309         int is_l2 = 0;
4310         short port = 319; /* PTP */
4311         u32 regval;
4312
4313         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4314                 return -EFAULT;
4315
4316         /* reserved for future extensions */
4317         if (config.flags)
4318                 return -EINVAL;
4319
4320         switch (config.tx_type) {
4321         case HWTSTAMP_TX_OFF:
4322                 tsync_tx_ctl_bit = 0;
4323                 break;
4324         case HWTSTAMP_TX_ON:
4325                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4326                 break;
4327         default:
4328                 return -ERANGE;
4329         }
4330
4331         switch (config.rx_filter) {
4332         case HWTSTAMP_FILTER_NONE:
4333                 tsync_rx_ctl_bit = 0;
4334                 break;
4335         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4336         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4337         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4338         case HWTSTAMP_FILTER_ALL:
4339                 /*
4340                  * register TSYNCRXCFG must be set, therefore it is not
4341                  * possible to time stamp both Sync and Delay_Req messages
4342                  * => fall back to time stamping all packets
4343                  */
4344                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4345                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4346                 break;
4347         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4348                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4349                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4350                 is_l4 = 1;
4351                 break;
4352         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4353                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4354                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4355                 is_l4 = 1;
4356                 break;
4357         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4358         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4359                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4360                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4361                 is_l2 = 1;
4362                 is_l4 = 1;
4363                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4364                 break;
4365         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4366         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4367                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4368                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4369                 is_l2 = 1;
4370                 is_l4 = 1;
4371                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4372                 break;
4373         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4374         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4375         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4376                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4377                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4378                 is_l2 = 1;
4379                 break;
4380         default:
4381                 return -ERANGE;
4382         }
4383
4384         /* enable/disable TX */
4385         regval = rd32(E1000_TSYNCTXCTL);
4386         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4387         wr32(E1000_TSYNCTXCTL, regval);
4388
4389         /* enable/disable RX, define which PTP packets are time stamped */
4390         regval = rd32(E1000_TSYNCRXCTL);
4391         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4392         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4393         wr32(E1000_TSYNCRXCTL, regval);
4394         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4395
4396         /*
4397          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4398          *                                          (Ethertype to filter on)
4399          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4400          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4401          */
4402         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4403
4404         /* L4 Queue Filter[0]: only filter by source and destination port */
4405         wr32(E1000_SPQF0, htons(port));
4406         wr32(E1000_IMIREXT(0), is_l4 ?
4407              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4408         wr32(E1000_IMIR(0), is_l4 ?
4409              (htons(port)
4410               | (0<<16) /* immediate interrupt disabled */
4411               | 0 /* (1<<17) bit cleared: do not bypass
4412                      destination port check */)
4413                 : 0);
4414         wr32(E1000_FTQF0, is_l4 ?
4415              (0x11 /* UDP */
4416               | (1<<15) /* VF not compared */
4417               | (1<<27) /* Enable Timestamping */
4418               | (7<<28) /* only source port filter enabled,
4419                            source/target address and protocol
4420                            masked */)
4421              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4422                                       enabled */));
4423
4424         wrfl();
4425
4426         adapter->hwtstamp_config = config;
4427
4428         /* clear TX/RX time stamp registers, just to be sure */
4429         regval = rd32(E1000_TXSTMPH);
4430         regval = rd32(E1000_RXSTMPH);
4431
4432         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4433                 -EFAULT : 0;
4434 }
4435
4436 /**
4437  * igb_ioctl -
4438  * @netdev:
4439  * @ifreq:
4440  * @cmd:
4441  **/
4442 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4443 {
4444         switch (cmd) {
4445         case SIOCGMIIPHY:
4446         case SIOCGMIIREG:
4447         case SIOCSMIIREG:
4448                 return igb_mii_ioctl(netdev, ifr, cmd);
4449         case SIOCSHWTSTAMP:
4450                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4451         default:
4452                 return -EOPNOTSUPP;
4453         }
4454 }
4455
4456 static void igb_vlan_rx_register(struct net_device *netdev,
4457                                  struct vlan_group *grp)
4458 {
4459         struct igb_adapter *adapter = netdev_priv(netdev);
4460         struct e1000_hw *hw = &adapter->hw;
4461         u32 ctrl, rctl;
4462
4463         igb_irq_disable(adapter);
4464         adapter->vlgrp = grp;
4465
4466         if (grp) {
4467                 /* enable VLAN tag insert/strip */
4468                 ctrl = rd32(E1000_CTRL);
4469                 ctrl |= E1000_CTRL_VME;
4470                 wr32(E1000_CTRL, ctrl);
4471
4472                 /* enable VLAN receive filtering */
4473                 rctl = rd32(E1000_RCTL);
4474                 rctl &= ~E1000_RCTL_CFIEN;
4475                 wr32(E1000_RCTL, rctl);
4476                 igb_update_mng_vlan(adapter);
4477                 wr32(E1000_RLPML,
4478                                 adapter->max_frame_size + VLAN_TAG_SIZE);
4479         } else {
4480                 /* disable VLAN tag insert/strip */
4481                 ctrl = rd32(E1000_CTRL);
4482                 ctrl &= ~E1000_CTRL_VME;
4483                 wr32(E1000_CTRL, ctrl);
4484
4485                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4486                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4487                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4488                 }
4489                 wr32(E1000_RLPML,
4490                                 adapter->max_frame_size);
4491         }
4492
4493         if (!test_bit(__IGB_DOWN, &adapter->state))
4494                 igb_irq_enable(adapter);
4495 }
4496
4497 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4498 {
4499         struct igb_adapter *adapter = netdev_priv(netdev);
4500         struct e1000_hw *hw = &adapter->hw;
4501         u32 vfta, index;
4502
4503         if ((hw->mng_cookie.status &
4504              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4505             (vid == adapter->mng_vlan_id))
4506                 return;
4507         /* add VID to filter table */
4508         index = (vid >> 5) & 0x7F;
4509         vfta = array_rd32(E1000_VFTA, index);
4510         vfta |= (1 << (vid & 0x1F));
4511         igb_write_vfta(&adapter->hw, index, vfta);
4512 }
4513
4514 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4515 {
4516         struct igb_adapter *adapter = netdev_priv(netdev);
4517         struct e1000_hw *hw = &adapter->hw;
4518         u32 vfta, index;
4519
4520         igb_irq_disable(adapter);
4521         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4522
4523         if (!test_bit(__IGB_DOWN, &adapter->state))
4524                 igb_irq_enable(adapter);
4525
4526         if ((adapter->hw.mng_cookie.status &
4527              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4528             (vid == adapter->mng_vlan_id)) {
4529                 /* release control to f/w */
4530                 igb_release_hw_control(adapter);
4531                 return;
4532         }
4533
4534         /* remove VID from filter table */
4535         index = (vid >> 5) & 0x7F;
4536         vfta = array_rd32(E1000_VFTA, index);
4537         vfta &= ~(1 << (vid & 0x1F));
4538         igb_write_vfta(&adapter->hw, index, vfta);
4539 }
4540
4541 static void igb_restore_vlan(struct igb_adapter *adapter)
4542 {
4543         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4544
4545         if (adapter->vlgrp) {
4546                 u16 vid;
4547                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4548                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4549                                 continue;
4550                         igb_vlan_rx_add_vid(adapter->netdev, vid);
4551                 }
4552         }
4553 }
4554
4555 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
4556 {
4557         struct e1000_mac_info *mac = &adapter->hw.mac;
4558
4559         mac->autoneg = 0;
4560
4561         /* Fiber NICs only allow 1000 gbps Full duplex */
4562         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
4563                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4564                 dev_err(&adapter->pdev->dev,
4565                         "Unsupported Speed/Duplex configuration\n");
4566                 return -EINVAL;
4567         }
4568
4569         switch (spddplx) {
4570         case SPEED_10 + DUPLEX_HALF:
4571                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4572                 break;
4573         case SPEED_10 + DUPLEX_FULL:
4574                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4575                 break;
4576         case SPEED_100 + DUPLEX_HALF:
4577                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4578                 break;
4579         case SPEED_100 + DUPLEX_FULL:
4580                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4581                 break;
4582         case SPEED_1000 + DUPLEX_FULL:
4583                 mac->autoneg = 1;
4584                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4585                 break;
4586         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4587         default:
4588                 dev_err(&adapter->pdev->dev,
4589                         "Unsupported Speed/Duplex configuration\n");
4590                 return -EINVAL;
4591         }
4592         return 0;
4593 }
4594
4595 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
4596 {
4597         struct net_device *netdev = pci_get_drvdata(pdev);
4598         struct igb_adapter *adapter = netdev_priv(netdev);
4599         struct e1000_hw *hw = &adapter->hw;
4600         u32 ctrl, rctl, status;
4601         u32 wufc = adapter->wol;
4602 #ifdef CONFIG_PM
4603         int retval = 0;
4604 #endif
4605
4606         netif_device_detach(netdev);
4607
4608         if (netif_running(netdev))
4609                 igb_close(netdev);
4610
4611         igb_reset_interrupt_capability(adapter);
4612
4613         igb_free_queues(adapter);
4614
4615 #ifdef CONFIG_PM
4616         retval = pci_save_state(pdev);
4617         if (retval)
4618                 return retval;
4619 #endif
4620
4621         status = rd32(E1000_STATUS);
4622         if (status & E1000_STATUS_LU)
4623                 wufc &= ~E1000_WUFC_LNKC;
4624
4625         if (wufc) {
4626                 igb_setup_rctl(adapter);
4627                 igb_set_multi(netdev);
4628
4629                 /* turn on all-multi mode if wake on multicast is enabled */
4630                 if (wufc & E1000_WUFC_MC) {
4631                         rctl = rd32(E1000_RCTL);
4632                         rctl |= E1000_RCTL_MPE;
4633                         wr32(E1000_RCTL, rctl);
4634                 }
4635
4636                 ctrl = rd32(E1000_CTRL);
4637                 /* advertise wake from D3Cold */
4638                 #define E1000_CTRL_ADVD3WUC 0x00100000
4639                 /* phy power management enable */
4640                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4641                 ctrl |= E1000_CTRL_ADVD3WUC;
4642                 wr32(E1000_CTRL, ctrl);
4643
4644                 /* Allow time for pending master requests to run */
4645                 igb_disable_pcie_master(&adapter->hw);
4646
4647                 wr32(E1000_WUC, E1000_WUC_PME_EN);
4648                 wr32(E1000_WUFC, wufc);
4649         } else {
4650                 wr32(E1000_WUC, 0);
4651                 wr32(E1000_WUFC, 0);
4652         }
4653
4654         /* make sure adapter isn't asleep if manageability/wol is enabled */
4655         if (wufc || adapter->en_mng_pt) {
4656                 pci_enable_wake(pdev, PCI_D3hot, 1);
4657                 pci_enable_wake(pdev, PCI_D3cold, 1);
4658         } else {
4659                 igb_shutdown_fiber_serdes_link_82575(hw);
4660                 pci_enable_wake(pdev, PCI_D3hot, 0);
4661                 pci_enable_wake(pdev, PCI_D3cold, 0);
4662         }
4663
4664         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4665          * would have already happened in close and is redundant. */
4666         igb_release_hw_control(adapter);
4667
4668         pci_disable_device(pdev);
4669
4670         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4671
4672         return 0;
4673 }
4674
4675 #ifdef CONFIG_PM
4676 static int igb_resume(struct pci_dev *pdev)
4677 {
4678         struct net_device *netdev = pci_get_drvdata(pdev);
4679         struct igb_adapter *adapter = netdev_priv(netdev);
4680         struct e1000_hw *hw = &adapter->hw;
4681         u32 err;
4682
4683         pci_set_power_state(pdev, PCI_D0);
4684         pci_restore_state(pdev);
4685
4686         err = pci_enable_device_mem(pdev);
4687         if (err) {
4688                 dev_err(&pdev->dev,
4689                         "igb: Cannot enable PCI device from suspend\n");
4690                 return err;
4691         }
4692         pci_set_master(pdev);
4693
4694         pci_enable_wake(pdev, PCI_D3hot, 0);
4695         pci_enable_wake(pdev, PCI_D3cold, 0);
4696
4697         igb_set_interrupt_capability(adapter);
4698
4699         if (igb_alloc_queues(adapter)) {
4700                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4701                 return -ENOMEM;
4702         }
4703
4704         /* e1000_power_up_phy(adapter); */
4705
4706         igb_reset(adapter);
4707
4708         /* let the f/w know that the h/w is now under the control of the
4709          * driver. */
4710         igb_get_hw_control(adapter);
4711
4712         wr32(E1000_WUS, ~0);
4713
4714         if (netif_running(netdev)) {
4715                 err = igb_open(netdev);
4716                 if (err)
4717                         return err;
4718         }
4719
4720         netif_device_attach(netdev);
4721
4722         return 0;
4723 }
4724 #endif
4725
4726 static void igb_shutdown(struct pci_dev *pdev)
4727 {
4728         igb_suspend(pdev, PMSG_SUSPEND);
4729 }
4730
4731 #ifdef CONFIG_NET_POLL_CONTROLLER
4732 /*
4733  * Polling 'interrupt' - used by things like netconsole to send skbs
4734  * without having to re-enable interrupts. It's not called while
4735  * the interrupt routine is executing.
4736  */
4737 static void igb_netpoll(struct net_device *netdev)
4738 {
4739         struct igb_adapter *adapter = netdev_priv(netdev);
4740         struct e1000_hw *hw = &adapter->hw;
4741         int i;
4742
4743         if (!adapter->msix_entries) {
4744                 igb_irq_disable(adapter);
4745                 napi_schedule(&adapter->rx_ring[0].napi);
4746                 return;
4747         }
4748
4749         for (i = 0; i < adapter->num_tx_queues; i++) {
4750                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
4751                 wr32(E1000_EIMC, tx_ring->eims_value);
4752                 igb_clean_tx_irq(tx_ring);
4753                 wr32(E1000_EIMS, tx_ring->eims_value);
4754         }
4755
4756         for (i = 0; i < adapter->num_rx_queues; i++) {
4757                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
4758                 wr32(E1000_EIMC, rx_ring->eims_value);
4759                 napi_schedule(&rx_ring->napi);
4760         }
4761 }
4762 #endif /* CONFIG_NET_POLL_CONTROLLER */
4763
4764 /**
4765  * igb_io_error_detected - called when PCI error is detected
4766  * @pdev: Pointer to PCI device
4767  * @state: The current pci connection state
4768  *
4769  * This function is called after a PCI bus error affecting
4770  * this device has been detected.
4771  */
4772 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
4773                                               pci_channel_state_t state)
4774 {
4775         struct net_device *netdev = pci_get_drvdata(pdev);
4776         struct igb_adapter *adapter = netdev_priv(netdev);
4777
4778         netif_device_detach(netdev);
4779
4780         if (netif_running(netdev))
4781                 igb_down(adapter);
4782         pci_disable_device(pdev);
4783
4784         /* Request a slot slot reset. */
4785         return PCI_ERS_RESULT_NEED_RESET;
4786 }
4787
4788 /**
4789  * igb_io_slot_reset - called after the pci bus has been reset.
4790  * @pdev: Pointer to PCI device
4791  *
4792  * Restart the card from scratch, as if from a cold-boot. Implementation
4793  * resembles the first-half of the igb_resume routine.
4794  */
4795 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
4796 {
4797         struct net_device *netdev = pci_get_drvdata(pdev);
4798         struct igb_adapter *adapter = netdev_priv(netdev);
4799         struct e1000_hw *hw = &adapter->hw;
4800         pci_ers_result_t result;
4801         int err;
4802
4803         if (pci_enable_device_mem(pdev)) {
4804                 dev_err(&pdev->dev,
4805                         "Cannot re-enable PCI device after reset.\n");
4806                 result = PCI_ERS_RESULT_DISCONNECT;
4807         } else {
4808                 pci_set_master(pdev);
4809                 pci_restore_state(pdev);
4810
4811                 pci_enable_wake(pdev, PCI_D3hot, 0);
4812                 pci_enable_wake(pdev, PCI_D3cold, 0);
4813
4814                 igb_reset(adapter);
4815                 wr32(E1000_WUS, ~0);
4816                 result = PCI_ERS_RESULT_RECOVERED;
4817         }
4818
4819         err = pci_cleanup_aer_uncorrect_error_status(pdev);
4820         if (err) {
4821                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
4822                         "failed 0x%0x\n", err);
4823                 /* non-fatal, continue */
4824         }
4825
4826         return result;
4827 }
4828
4829 /**
4830  * igb_io_resume - called when traffic can start flowing again.
4831  * @pdev: Pointer to PCI device
4832  *
4833  * This callback is called when the error recovery driver tells us that
4834  * its OK to resume normal operation. Implementation resembles the
4835  * second-half of the igb_resume routine.
4836  */
4837 static void igb_io_resume(struct pci_dev *pdev)
4838 {
4839         struct net_device *netdev = pci_get_drvdata(pdev);
4840         struct igb_adapter *adapter = netdev_priv(netdev);
4841
4842         if (netif_running(netdev)) {
4843                 if (igb_up(adapter)) {
4844                         dev_err(&pdev->dev, "igb_up failed after reset\n");
4845                         return;
4846                 }
4847         }
4848
4849         netif_device_attach(netdev);
4850
4851         /* let the f/w know that the h/w is now under the control of the
4852          * driver. */
4853         igb_get_hw_control(adapter);
4854 }
4855
4856 /* igb_main.c */