igb: correct typo that was setting vfta mask to 1
[pandora-kernel.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70         /* required last entry */
71         {0, }
72 };
73
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
75
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
99                                   struct igb_ring *);
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_ping_all_vfs(struct igb_adapter *);
126 static void igb_msg_task(struct igb_adapter *);
127 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
128 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
129 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
130 static void igb_vmm_control(struct igb_adapter *);
131 static inline void igb_set_vmolr(struct e1000_hw *, int);
132 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
133 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
135
136 static int igb_suspend(struct pci_dev *, pm_message_t);
137 #ifdef CONFIG_PM
138 static int igb_resume(struct pci_dev *);
139 #endif
140 static void igb_shutdown(struct pci_dev *);
141 #ifdef CONFIG_IGB_DCA
142 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
143 static struct notifier_block dca_notifier = {
144         .notifier_call  = igb_notify_dca,
145         .next           = NULL,
146         .priority       = 0
147 };
148 #endif
149 #ifdef CONFIG_NET_POLL_CONTROLLER
150 /* for netdump / net console */
151 static void igb_netpoll(struct net_device *);
152 #endif
153
154 #ifdef CONFIG_PCI_IOV
155 static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
156                                const char *, size_t);
157 static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
158                                char *);
159 DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
160 #endif
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162                      pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
165
166 static struct pci_error_handlers igb_err_handler = {
167         .error_detected = igb_io_error_detected,
168         .slot_reset = igb_io_slot_reset,
169         .resume = igb_io_resume,
170 };
171
172
173 static struct pci_driver igb_driver = {
174         .name     = igb_driver_name,
175         .id_table = igb_pci_tbl,
176         .probe    = igb_probe,
177         .remove   = __devexit_p(igb_remove),
178 #ifdef CONFIG_PM
179         /* Power Managment Hooks */
180         .suspend  = igb_suspend,
181         .resume   = igb_resume,
182 #endif
183         .shutdown = igb_shutdown,
184         .err_handler = &igb_err_handler
185 };
186
187 static int global_quad_port_a; /* global quad port a indication */
188
189 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
190 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
191 MODULE_LICENSE("GPL");
192 MODULE_VERSION(DRV_VERSION);
193
194 /**
195  * Scale the NIC clock cycle by a large factor so that
196  * relatively small clock corrections can be added or
197  * substracted at each clock tick. The drawbacks of a
198  * large factor are a) that the clock register overflows
199  * more quickly (not such a big deal) and b) that the
200  * increment per tick has to fit into 24 bits.
201  *
202  * Note that
203  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
204  *             IGB_TSYNC_SCALE
205  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
206  *
207  * The base scale factor is intentionally a power of two
208  * so that the division in %struct timecounter can be done with
209  * a shift.
210  */
211 #define IGB_TSYNC_SHIFT (19)
212 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
213
214 /**
215  * The duration of one clock cycle of the NIC.
216  *
217  * @todo This hard-coded value is part of the specification and might change
218  * in future hardware revisions. Add revision check.
219  */
220 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
221
222 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
223 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
224 #endif
225
226 /**
227  * igb_read_clock - read raw cycle counter (to be used by time counter)
228  */
229 static cycle_t igb_read_clock(const struct cyclecounter *tc)
230 {
231         struct igb_adapter *adapter =
232                 container_of(tc, struct igb_adapter, cycles);
233         struct e1000_hw *hw = &adapter->hw;
234         u64 stamp;
235
236         stamp =  rd32(E1000_SYSTIML);
237         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
238
239         return stamp;
240 }
241
242 #ifdef DEBUG
243 /**
244  * igb_get_hw_dev_name - return device name string
245  * used by hardware layer to print debugging information
246  **/
247 char *igb_get_hw_dev_name(struct e1000_hw *hw)
248 {
249         struct igb_adapter *adapter = hw->back;
250         return adapter->netdev->name;
251 }
252
253 /**
254  * igb_get_time_str - format current NIC and system time as string
255  */
256 static char *igb_get_time_str(struct igb_adapter *adapter,
257                               char buffer[160])
258 {
259         cycle_t hw = adapter->cycles.read(&adapter->cycles);
260         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
261         struct timespec sys;
262         struct timespec delta;
263         getnstimeofday(&sys);
264
265         delta = timespec_sub(nic, sys);
266
267         sprintf(buffer,
268                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
269                 hw,
270                 (long)nic.tv_sec, nic.tv_nsec,
271                 (long)sys.tv_sec, sys.tv_nsec,
272                 (long)delta.tv_sec, delta.tv_nsec);
273
274         return buffer;
275 }
276 #endif
277
278 /**
279  * igb_init_module - Driver Registration Routine
280  *
281  * igb_init_module is the first routine called when the driver is
282  * loaded. All it does is register with the PCI subsystem.
283  **/
284 static int __init igb_init_module(void)
285 {
286         int ret;
287         printk(KERN_INFO "%s - version %s\n",
288                igb_driver_string, igb_driver_version);
289
290         printk(KERN_INFO "%s\n", igb_copyright);
291
292         global_quad_port_a = 0;
293
294 #ifdef CONFIG_IGB_DCA
295         dca_register_notify(&dca_notifier);
296 #endif
297
298         ret = pci_register_driver(&igb_driver);
299         return ret;
300 }
301
302 module_init(igb_init_module);
303
304 /**
305  * igb_exit_module - Driver Exit Cleanup Routine
306  *
307  * igb_exit_module is called just before the driver is removed
308  * from memory.
309  **/
310 static void __exit igb_exit_module(void)
311 {
312 #ifdef CONFIG_IGB_DCA
313         dca_unregister_notify(&dca_notifier);
314 #endif
315         pci_unregister_driver(&igb_driver);
316 }
317
318 module_exit(igb_exit_module);
319
320 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
321 /**
322  * igb_cache_ring_register - Descriptor ring to register mapping
323  * @adapter: board private structure to initialize
324  *
325  * Once we know the feature-set enabled for the device, we'll cache
326  * the register offset the descriptor ring is assigned to.
327  **/
328 static void igb_cache_ring_register(struct igb_adapter *adapter)
329 {
330         int i;
331         unsigned int rbase_offset = adapter->vfs_allocated_count;
332
333         switch (adapter->hw.mac.type) {
334         case e1000_82576:
335                 /* The queues are allocated for virtualization such that VF 0
336                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
337                  * In order to avoid collision we start at the first free queue
338                  * and continue consuming queues in the same sequence
339                  */
340                 for (i = 0; i < adapter->num_rx_queues; i++)
341                         adapter->rx_ring[i].reg_idx = rbase_offset +
342                                                       Q_IDX_82576(i);
343                 for (i = 0; i < adapter->num_tx_queues; i++)
344                         adapter->tx_ring[i].reg_idx = rbase_offset +
345                                                       Q_IDX_82576(i);
346                 break;
347         case e1000_82575:
348         default:
349                 for (i = 0; i < adapter->num_rx_queues; i++)
350                         adapter->rx_ring[i].reg_idx = i;
351                 for (i = 0; i < adapter->num_tx_queues; i++)
352                         adapter->tx_ring[i].reg_idx = i;
353                 break;
354         }
355 }
356
357 /**
358  * igb_alloc_queues - Allocate memory for all rings
359  * @adapter: board private structure to initialize
360  *
361  * We allocate one ring per queue at run-time since we don't know the
362  * number of queues at compile-time.
363  **/
364 static int igb_alloc_queues(struct igb_adapter *adapter)
365 {
366         int i;
367
368         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
369                                    sizeof(struct igb_ring), GFP_KERNEL);
370         if (!adapter->tx_ring)
371                 return -ENOMEM;
372
373         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
374                                    sizeof(struct igb_ring), GFP_KERNEL);
375         if (!adapter->rx_ring) {
376                 kfree(adapter->tx_ring);
377                 return -ENOMEM;
378         }
379
380         adapter->rx_ring->buddy = adapter->tx_ring;
381
382         for (i = 0; i < adapter->num_tx_queues; i++) {
383                 struct igb_ring *ring = &(adapter->tx_ring[i]);
384                 ring->count = adapter->tx_ring_count;
385                 ring->adapter = adapter;
386                 ring->queue_index = i;
387         }
388         for (i = 0; i < adapter->num_rx_queues; i++) {
389                 struct igb_ring *ring = &(adapter->rx_ring[i]);
390                 ring->count = adapter->rx_ring_count;
391                 ring->adapter = adapter;
392                 ring->queue_index = i;
393                 ring->itr_register = E1000_ITR;
394
395                 /* set a default napi handler for each rx_ring */
396                 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
397         }
398
399         igb_cache_ring_register(adapter);
400         return 0;
401 }
402
403 static void igb_free_queues(struct igb_adapter *adapter)
404 {
405         int i;
406
407         for (i = 0; i < adapter->num_rx_queues; i++)
408                 netif_napi_del(&adapter->rx_ring[i].napi);
409
410         kfree(adapter->tx_ring);
411         kfree(adapter->rx_ring);
412 }
413
414 #define IGB_N0_QUEUE -1
415 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
416                               int tx_queue, int msix_vector)
417 {
418         u32 msixbm = 0;
419         struct e1000_hw *hw = &adapter->hw;
420         u32 ivar, index;
421
422         switch (hw->mac.type) {
423         case e1000_82575:
424                 /* The 82575 assigns vectors using a bitmask, which matches the
425                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
426                    or more queues to a vector, we write the appropriate bits
427                    into the MSIXBM register for that vector. */
428                 if (rx_queue > IGB_N0_QUEUE) {
429                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
430                         adapter->rx_ring[rx_queue].eims_value = msixbm;
431                 }
432                 if (tx_queue > IGB_N0_QUEUE) {
433                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
434                         adapter->tx_ring[tx_queue].eims_value =
435                                   E1000_EICR_TX_QUEUE0 << tx_queue;
436                 }
437                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
438                 break;
439         case e1000_82576:
440                 /* 82576 uses a table-based method for assigning vectors.
441                    Each queue has a single entry in the table to which we write
442                    a vector number along with a "valid" bit.  Sadly, the layout
443                    of the table is somewhat counterintuitive. */
444                 if (rx_queue > IGB_N0_QUEUE) {
445                         index = (rx_queue >> 1) + adapter->vfs_allocated_count;
446                         ivar = array_rd32(E1000_IVAR0, index);
447                         if (rx_queue & 0x1) {
448                                 /* vector goes into third byte of register */
449                                 ivar = ivar & 0xFF00FFFF;
450                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
451                         } else {
452                                 /* vector goes into low byte of register */
453                                 ivar = ivar & 0xFFFFFF00;
454                                 ivar |= msix_vector | E1000_IVAR_VALID;
455                         }
456                         adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
457                         array_wr32(E1000_IVAR0, index, ivar);
458                 }
459                 if (tx_queue > IGB_N0_QUEUE) {
460                         index = (tx_queue >> 1) + adapter->vfs_allocated_count;
461                         ivar = array_rd32(E1000_IVAR0, index);
462                         if (tx_queue & 0x1) {
463                                 /* vector goes into high byte of register */
464                                 ivar = ivar & 0x00FFFFFF;
465                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
466                         } else {
467                                 /* vector goes into second byte of register */
468                                 ivar = ivar & 0xFFFF00FF;
469                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
470                         }
471                         adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
472                         array_wr32(E1000_IVAR0, index, ivar);
473                 }
474                 break;
475         default:
476                 BUG();
477                 break;
478         }
479 }
480
481 /**
482  * igb_configure_msix - Configure MSI-X hardware
483  *
484  * igb_configure_msix sets up the hardware to properly
485  * generate MSI-X interrupts.
486  **/
487 static void igb_configure_msix(struct igb_adapter *adapter)
488 {
489         u32 tmp;
490         int i, vector = 0;
491         struct e1000_hw *hw = &adapter->hw;
492
493         adapter->eims_enable_mask = 0;
494         if (hw->mac.type == e1000_82576)
495                 /* Turn on MSI-X capability first, or our settings
496                  * won't stick.  And it will take days to debug. */
497                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
498                                    E1000_GPIE_PBA | E1000_GPIE_EIAME |
499                                    E1000_GPIE_NSICR);
500
501         for (i = 0; i < adapter->num_tx_queues; i++) {
502                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
503                 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
504                 adapter->eims_enable_mask |= tx_ring->eims_value;
505                 if (tx_ring->itr_val)
506                         writel(tx_ring->itr_val,
507                                hw->hw_addr + tx_ring->itr_register);
508                 else
509                         writel(1, hw->hw_addr + tx_ring->itr_register);
510         }
511
512         for (i = 0; i < adapter->num_rx_queues; i++) {
513                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
514                 rx_ring->buddy = NULL;
515                 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
516                 adapter->eims_enable_mask |= rx_ring->eims_value;
517                 if (rx_ring->itr_val)
518                         writel(rx_ring->itr_val,
519                                hw->hw_addr + rx_ring->itr_register);
520                 else
521                         writel(1, hw->hw_addr + rx_ring->itr_register);
522         }
523
524
525         /* set vector for other causes, i.e. link changes */
526         switch (hw->mac.type) {
527         case e1000_82575:
528                 array_wr32(E1000_MSIXBM(0), vector++,
529                                       E1000_EIMS_OTHER);
530
531                 tmp = rd32(E1000_CTRL_EXT);
532                 /* enable MSI-X PBA support*/
533                 tmp |= E1000_CTRL_EXT_PBA_CLR;
534
535                 /* Auto-Mask interrupts upon ICR read. */
536                 tmp |= E1000_CTRL_EXT_EIAME;
537                 tmp |= E1000_CTRL_EXT_IRCA;
538
539                 wr32(E1000_CTRL_EXT, tmp);
540                 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
541                 adapter->eims_other = E1000_EIMS_OTHER;
542
543                 break;
544
545         case e1000_82576:
546                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
547                 wr32(E1000_IVAR_MISC, tmp);
548
549                 adapter->eims_enable_mask = (1 << (vector)) - 1;
550                 adapter->eims_other = 1 << (vector - 1);
551                 break;
552         default:
553                 /* do nothing, since nothing else supports MSI-X */
554                 break;
555         } /* switch (hw->mac.type) */
556         wrfl();
557 }
558
559 /**
560  * igb_request_msix - Initialize MSI-X interrupts
561  *
562  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
563  * kernel.
564  **/
565 static int igb_request_msix(struct igb_adapter *adapter)
566 {
567         struct net_device *netdev = adapter->netdev;
568         int i, err = 0, vector = 0;
569
570         vector = 0;
571
572         for (i = 0; i < adapter->num_tx_queues; i++) {
573                 struct igb_ring *ring = &(adapter->tx_ring[i]);
574                 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
575                 err = request_irq(adapter->msix_entries[vector].vector,
576                                   &igb_msix_tx, 0, ring->name,
577                                   &(adapter->tx_ring[i]));
578                 if (err)
579                         goto out;
580                 ring->itr_register = E1000_EITR(0) + (vector << 2);
581                 ring->itr_val = 976; /* ~4000 ints/sec */
582                 vector++;
583         }
584         for (i = 0; i < adapter->num_rx_queues; i++) {
585                 struct igb_ring *ring = &(adapter->rx_ring[i]);
586                 if (strlen(netdev->name) < (IFNAMSIZ - 5))
587                         sprintf(ring->name, "%s-rx-%d", netdev->name, i);
588                 else
589                         memcpy(ring->name, netdev->name, IFNAMSIZ);
590                 err = request_irq(adapter->msix_entries[vector].vector,
591                                   &igb_msix_rx, 0, ring->name,
592                                   &(adapter->rx_ring[i]));
593                 if (err)
594                         goto out;
595                 ring->itr_register = E1000_EITR(0) + (vector << 2);
596                 ring->itr_val = adapter->itr;
597                 vector++;
598         }
599
600         err = request_irq(adapter->msix_entries[vector].vector,
601                           &igb_msix_other, 0, netdev->name, netdev);
602         if (err)
603                 goto out;
604
605         igb_configure_msix(adapter);
606         return 0;
607 out:
608         return err;
609 }
610
611 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
612 {
613         if (adapter->msix_entries) {
614                 pci_disable_msix(adapter->pdev);
615                 kfree(adapter->msix_entries);
616                 adapter->msix_entries = NULL;
617         } else if (adapter->flags & IGB_FLAG_HAS_MSI)
618                 pci_disable_msi(adapter->pdev);
619         return;
620 }
621
622
623 /**
624  * igb_set_interrupt_capability - set MSI or MSI-X if supported
625  *
626  * Attempt to configure interrupts using the best available
627  * capabilities of the hardware and kernel.
628  **/
629 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
630 {
631         int err;
632         int numvecs, i;
633
634         /* Number of supported queues. */
635         /* Having more queues than CPUs doesn't make sense. */
636         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
637         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
638
639         numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
640         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
641                                         GFP_KERNEL);
642         if (!adapter->msix_entries)
643                 goto msi_only;
644
645         for (i = 0; i < numvecs; i++)
646                 adapter->msix_entries[i].entry = i;
647
648         err = pci_enable_msix(adapter->pdev,
649                               adapter->msix_entries,
650                               numvecs);
651         if (err == 0)
652                 goto out;
653
654         igb_reset_interrupt_capability(adapter);
655
656         /* If we can't do MSI-X, try MSI */
657 msi_only:
658         adapter->num_rx_queues = 1;
659         adapter->num_tx_queues = 1;
660         if (!pci_enable_msi(adapter->pdev))
661                 adapter->flags |= IGB_FLAG_HAS_MSI;
662 out:
663         /* Notify the stack of the (possibly) reduced Tx Queue count. */
664         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
665         return;
666 }
667
668 /**
669  * igb_request_irq - initialize interrupts
670  *
671  * Attempts to configure interrupts using the best available
672  * capabilities of the hardware and kernel.
673  **/
674 static int igb_request_irq(struct igb_adapter *adapter)
675 {
676         struct net_device *netdev = adapter->netdev;
677         struct e1000_hw *hw = &adapter->hw;
678         int err = 0;
679
680         if (adapter->msix_entries) {
681                 err = igb_request_msix(adapter);
682                 if (!err)
683                         goto request_done;
684                 /* fall back to MSI */
685                 igb_reset_interrupt_capability(adapter);
686                 if (!pci_enable_msi(adapter->pdev))
687                         adapter->flags |= IGB_FLAG_HAS_MSI;
688                 igb_free_all_tx_resources(adapter);
689                 igb_free_all_rx_resources(adapter);
690                 adapter->num_rx_queues = 1;
691                 igb_alloc_queues(adapter);
692         } else {
693                 switch (hw->mac.type) {
694                 case e1000_82575:
695                         wr32(E1000_MSIXBM(0),
696                              (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
697                         break;
698                 case e1000_82576:
699                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
700                         break;
701                 default:
702                         break;
703                 }
704         }
705
706         if (adapter->flags & IGB_FLAG_HAS_MSI) {
707                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
708                                   netdev->name, netdev);
709                 if (!err)
710                         goto request_done;
711                 /* fall back to legacy interrupts */
712                 igb_reset_interrupt_capability(adapter);
713                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
714         }
715
716         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
717                           netdev->name, netdev);
718
719         if (err)
720                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
721                         err);
722
723 request_done:
724         return err;
725 }
726
727 static void igb_free_irq(struct igb_adapter *adapter)
728 {
729         struct net_device *netdev = adapter->netdev;
730
731         if (adapter->msix_entries) {
732                 int vector = 0, i;
733
734                 for (i = 0; i < adapter->num_tx_queues; i++)
735                         free_irq(adapter->msix_entries[vector++].vector,
736                                 &(adapter->tx_ring[i]));
737                 for (i = 0; i < adapter->num_rx_queues; i++)
738                         free_irq(adapter->msix_entries[vector++].vector,
739                                 &(adapter->rx_ring[i]));
740
741                 free_irq(adapter->msix_entries[vector++].vector, netdev);
742                 return;
743         }
744
745         free_irq(adapter->pdev->irq, netdev);
746 }
747
748 /**
749  * igb_irq_disable - Mask off interrupt generation on the NIC
750  * @adapter: board private structure
751  **/
752 static void igb_irq_disable(struct igb_adapter *adapter)
753 {
754         struct e1000_hw *hw = &adapter->hw;
755
756         if (adapter->msix_entries) {
757                 wr32(E1000_EIAM, 0);
758                 wr32(E1000_EIMC, ~0);
759                 wr32(E1000_EIAC, 0);
760         }
761
762         wr32(E1000_IAM, 0);
763         wr32(E1000_IMC, ~0);
764         wrfl();
765         synchronize_irq(adapter->pdev->irq);
766 }
767
768 /**
769  * igb_irq_enable - Enable default interrupt generation settings
770  * @adapter: board private structure
771  **/
772 static void igb_irq_enable(struct igb_adapter *adapter)
773 {
774         struct e1000_hw *hw = &adapter->hw;
775
776         if (adapter->msix_entries) {
777                 wr32(E1000_EIAC, adapter->eims_enable_mask);
778                 wr32(E1000_EIAM, adapter->eims_enable_mask);
779                 wr32(E1000_EIMS, adapter->eims_enable_mask);
780                 if (adapter->vfs_allocated_count)
781                         wr32(E1000_MBVFIMR, 0xFF);
782                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
783                                  E1000_IMS_DOUTSYNC));
784         } else {
785                 wr32(E1000_IMS, IMS_ENABLE_MASK);
786                 wr32(E1000_IAM, IMS_ENABLE_MASK);
787         }
788 }
789
790 static void igb_update_mng_vlan(struct igb_adapter *adapter)
791 {
792         struct net_device *netdev = adapter->netdev;
793         u16 vid = adapter->hw.mng_cookie.vlan_id;
794         u16 old_vid = adapter->mng_vlan_id;
795         if (adapter->vlgrp) {
796                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
797                         if (adapter->hw.mng_cookie.status &
798                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
799                                 igb_vlan_rx_add_vid(netdev, vid);
800                                 adapter->mng_vlan_id = vid;
801                         } else
802                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
803
804                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
805                                         (vid != old_vid) &&
806                             !vlan_group_get_device(adapter->vlgrp, old_vid))
807                                 igb_vlan_rx_kill_vid(netdev, old_vid);
808                 } else
809                         adapter->mng_vlan_id = vid;
810         }
811 }
812
813 /**
814  * igb_release_hw_control - release control of the h/w to f/w
815  * @adapter: address of board private structure
816  *
817  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
818  * For ASF and Pass Through versions of f/w this means that the
819  * driver is no longer loaded.
820  *
821  **/
822 static void igb_release_hw_control(struct igb_adapter *adapter)
823 {
824         struct e1000_hw *hw = &adapter->hw;
825         u32 ctrl_ext;
826
827         /* Let firmware take over control of h/w */
828         ctrl_ext = rd32(E1000_CTRL_EXT);
829         wr32(E1000_CTRL_EXT,
830                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
831 }
832
833
834 /**
835  * igb_get_hw_control - get control of the h/w from f/w
836  * @adapter: address of board private structure
837  *
838  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
839  * For ASF and Pass Through versions of f/w this means that
840  * the driver is loaded.
841  *
842  **/
843 static void igb_get_hw_control(struct igb_adapter *adapter)
844 {
845         struct e1000_hw *hw = &adapter->hw;
846         u32 ctrl_ext;
847
848         /* Let firmware know the driver has taken over */
849         ctrl_ext = rd32(E1000_CTRL_EXT);
850         wr32(E1000_CTRL_EXT,
851                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
852 }
853
854 /**
855  * igb_configure - configure the hardware for RX and TX
856  * @adapter: private board structure
857  **/
858 static void igb_configure(struct igb_adapter *adapter)
859 {
860         struct net_device *netdev = adapter->netdev;
861         int i;
862
863         igb_get_hw_control(adapter);
864         igb_set_multi(netdev);
865
866         igb_restore_vlan(adapter);
867
868         igb_configure_tx(adapter);
869         igb_setup_rctl(adapter);
870         igb_configure_rx(adapter);
871
872         igb_rx_fifo_flush_82575(&adapter->hw);
873
874         /* call IGB_DESC_UNUSED which always leaves
875          * at least 1 descriptor unused to make sure
876          * next_to_use != next_to_clean */
877         for (i = 0; i < adapter->num_rx_queues; i++) {
878                 struct igb_ring *ring = &adapter->rx_ring[i];
879                 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
880         }
881
882
883         adapter->tx_queue_len = netdev->tx_queue_len;
884 }
885
886
887 /**
888  * igb_up - Open the interface and prepare it to handle traffic
889  * @adapter: board private structure
890  **/
891
892 int igb_up(struct igb_adapter *adapter)
893 {
894         struct e1000_hw *hw = &adapter->hw;
895         int i;
896
897         /* hardware has been reset, we need to reload some things */
898         igb_configure(adapter);
899
900         clear_bit(__IGB_DOWN, &adapter->state);
901
902         for (i = 0; i < adapter->num_rx_queues; i++)
903                 napi_enable(&adapter->rx_ring[i].napi);
904         if (adapter->msix_entries)
905                 igb_configure_msix(adapter);
906
907         igb_vmm_control(adapter);
908         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
909         igb_set_vmolr(hw, adapter->vfs_allocated_count);
910
911         /* Clear any pending interrupts. */
912         rd32(E1000_ICR);
913         igb_irq_enable(adapter);
914
915         /* Fire a link change interrupt to start the watchdog. */
916         wr32(E1000_ICS, E1000_ICS_LSC);
917         return 0;
918 }
919
920 void igb_down(struct igb_adapter *adapter)
921 {
922         struct e1000_hw *hw = &adapter->hw;
923         struct net_device *netdev = adapter->netdev;
924         u32 tctl, rctl;
925         int i;
926
927         /* signal that we're down so the interrupt handler does not
928          * reschedule our watchdog timer */
929         set_bit(__IGB_DOWN, &adapter->state);
930
931         /* disable receives in the hardware */
932         rctl = rd32(E1000_RCTL);
933         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
934         /* flush and sleep below */
935
936         netif_tx_stop_all_queues(netdev);
937
938         /* disable transmits in the hardware */
939         tctl = rd32(E1000_TCTL);
940         tctl &= ~E1000_TCTL_EN;
941         wr32(E1000_TCTL, tctl);
942         /* flush both disables and wait for them to finish */
943         wrfl();
944         msleep(10);
945
946         for (i = 0; i < adapter->num_rx_queues; i++)
947                 napi_disable(&adapter->rx_ring[i].napi);
948
949         igb_irq_disable(adapter);
950
951         del_timer_sync(&adapter->watchdog_timer);
952         del_timer_sync(&adapter->phy_info_timer);
953
954         netdev->tx_queue_len = adapter->tx_queue_len;
955         netif_carrier_off(netdev);
956
957         /* record the stats before reset*/
958         igb_update_stats(adapter);
959
960         adapter->link_speed = 0;
961         adapter->link_duplex = 0;
962
963         if (!pci_channel_offline(adapter->pdev))
964                 igb_reset(adapter);
965         igb_clean_all_tx_rings(adapter);
966         igb_clean_all_rx_rings(adapter);
967 }
968
969 void igb_reinit_locked(struct igb_adapter *adapter)
970 {
971         WARN_ON(in_interrupt());
972         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
973                 msleep(1);
974         igb_down(adapter);
975         igb_up(adapter);
976         clear_bit(__IGB_RESETTING, &adapter->state);
977 }
978
979 void igb_reset(struct igb_adapter *adapter)
980 {
981         struct e1000_hw *hw = &adapter->hw;
982         struct e1000_mac_info *mac = &hw->mac;
983         struct e1000_fc_info *fc = &hw->fc;
984         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
985         u16 hwm;
986
987         /* Repartition Pba for greater than 9k mtu
988          * To take effect CTRL.RST is required.
989          */
990         switch (mac->type) {
991         case e1000_82576:
992                 pba = E1000_PBA_64K;
993                 break;
994         case e1000_82575:
995         default:
996                 pba = E1000_PBA_34K;
997                 break;
998         }
999
1000         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1001             (mac->type < e1000_82576)) {
1002                 /* adjust PBA for jumbo frames */
1003                 wr32(E1000_PBA, pba);
1004
1005                 /* To maintain wire speed transmits, the Tx FIFO should be
1006                  * large enough to accommodate two full transmit packets,
1007                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1008                  * the Rx FIFO should be large enough to accommodate at least
1009                  * one full receive packet and is similarly rounded up and
1010                  * expressed in KB. */
1011                 pba = rd32(E1000_PBA);
1012                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1013                 tx_space = pba >> 16;
1014                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1015                 pba &= 0xffff;
1016                 /* the tx fifo also stores 16 bytes of information about the tx
1017                  * but don't include ethernet FCS because hardware appends it */
1018                 min_tx_space = (adapter->max_frame_size +
1019                                 sizeof(union e1000_adv_tx_desc) -
1020                                 ETH_FCS_LEN) * 2;
1021                 min_tx_space = ALIGN(min_tx_space, 1024);
1022                 min_tx_space >>= 10;
1023                 /* software strips receive CRC, so leave room for it */
1024                 min_rx_space = adapter->max_frame_size;
1025                 min_rx_space = ALIGN(min_rx_space, 1024);
1026                 min_rx_space >>= 10;
1027
1028                 /* If current Tx allocation is less than the min Tx FIFO size,
1029                  * and the min Tx FIFO size is less than the current Rx FIFO
1030                  * allocation, take space away from current Rx allocation */
1031                 if (tx_space < min_tx_space &&
1032                     ((min_tx_space - tx_space) < pba)) {
1033                         pba = pba - (min_tx_space - tx_space);
1034
1035                         /* if short on rx space, rx wins and must trump tx
1036                          * adjustment */
1037                         if (pba < min_rx_space)
1038                                 pba = min_rx_space;
1039                 }
1040                 wr32(E1000_PBA, pba);
1041         }
1042
1043         /* flow control settings */
1044         /* The high water mark must be low enough to fit one full frame
1045          * (or the size used for early receive) above it in the Rx FIFO.
1046          * Set it to the lower of:
1047          * - 90% of the Rx FIFO size, or
1048          * - the full Rx FIFO size minus one full frame */
1049         hwm = min(((pba << 10) * 9 / 10),
1050                         ((pba << 10) - 2 * adapter->max_frame_size));
1051
1052         if (mac->type < e1000_82576) {
1053                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1054                 fc->low_water = fc->high_water - 8;
1055         } else {
1056                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1057                 fc->low_water = fc->high_water - 16;
1058         }
1059         fc->pause_time = 0xFFFF;
1060         fc->send_xon = 1;
1061         fc->type = fc->original_type;
1062
1063         /* disable receive for all VFs and wait one second */
1064         if (adapter->vfs_allocated_count) {
1065                 int i;
1066                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1067                         adapter->vf_data[i].clear_to_send = false;
1068
1069                 /* ping all the active vfs to let them know we are going down */
1070                         igb_ping_all_vfs(adapter);
1071
1072                 /* disable transmits and receives */
1073                 wr32(E1000_VFRE, 0);
1074                 wr32(E1000_VFTE, 0);
1075         }
1076
1077         /* Allow time for pending master requests to run */
1078         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1079         wr32(E1000_WUC, 0);
1080
1081         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1082                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1083
1084         igb_update_mng_vlan(adapter);
1085
1086         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1087         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1088
1089         igb_reset_adaptive(&adapter->hw);
1090         igb_get_phy_info(&adapter->hw);
1091 }
1092
1093 static const struct net_device_ops igb_netdev_ops = {
1094         .ndo_open               = igb_open,
1095         .ndo_stop               = igb_close,
1096         .ndo_start_xmit         = igb_xmit_frame_adv,
1097         .ndo_get_stats          = igb_get_stats,
1098         .ndo_set_multicast_list = igb_set_multi,
1099         .ndo_set_mac_address    = igb_set_mac,
1100         .ndo_change_mtu         = igb_change_mtu,
1101         .ndo_do_ioctl           = igb_ioctl,
1102         .ndo_tx_timeout         = igb_tx_timeout,
1103         .ndo_validate_addr      = eth_validate_addr,
1104         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1105         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1106         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1107 #ifdef CONFIG_NET_POLL_CONTROLLER
1108         .ndo_poll_controller    = igb_netpoll,
1109 #endif
1110 };
1111
1112 /**
1113  * igb_probe - Device Initialization Routine
1114  * @pdev: PCI device information struct
1115  * @ent: entry in igb_pci_tbl
1116  *
1117  * Returns 0 on success, negative on failure
1118  *
1119  * igb_probe initializes an adapter identified by a pci_dev structure.
1120  * The OS initialization, configuring of the adapter private structure,
1121  * and a hardware reset occur.
1122  **/
1123 static int __devinit igb_probe(struct pci_dev *pdev,
1124                                const struct pci_device_id *ent)
1125 {
1126         struct net_device *netdev;
1127         struct igb_adapter *adapter;
1128         struct e1000_hw *hw;
1129         struct pci_dev *us_dev;
1130         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1131         unsigned long mmio_start, mmio_len;
1132         int err, pci_using_dac, pos;
1133         u16 eeprom_data = 0, state = 0;
1134         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1135         u32 part_num;
1136
1137         err = pci_enable_device_mem(pdev);
1138         if (err)
1139                 return err;
1140
1141         pci_using_dac = 0;
1142         err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1143         if (!err) {
1144                 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1145                 if (!err)
1146                         pci_using_dac = 1;
1147         } else {
1148                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1149                 if (err) {
1150                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1151                         if (err) {
1152                                 dev_err(&pdev->dev, "No usable DMA "
1153                                         "configuration, aborting\n");
1154                                 goto err_dma;
1155                         }
1156                 }
1157         }
1158
1159         /* 82575 requires that the pci-e link partner disable the L0s state */
1160         switch (pdev->device) {
1161         case E1000_DEV_ID_82575EB_COPPER:
1162         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1163         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1164                 us_dev = pdev->bus->self;
1165                 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1166                 if (pos) {
1167                         pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1168                                              &state);
1169                         state &= ~PCIE_LINK_STATE_L0S;
1170                         pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1171                                               state);
1172                         dev_info(&pdev->dev,
1173                                  "Disabling ASPM L0s upstream switch port %s\n",
1174                                  pci_name(us_dev));
1175                 }
1176         default:
1177                 break;
1178         }
1179
1180         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1181                                            IORESOURCE_MEM),
1182                                            igb_driver_name);
1183         if (err)
1184                 goto err_pci_reg;
1185
1186         err = pci_enable_pcie_error_reporting(pdev);
1187         if (err) {
1188                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1189                         "0x%x\n", err);
1190                 /* non-fatal, continue */
1191         }
1192
1193         pci_set_master(pdev);
1194         pci_save_state(pdev);
1195
1196         err = -ENOMEM;
1197         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1198                                    IGB_ABS_MAX_TX_QUEUES);
1199         if (!netdev)
1200                 goto err_alloc_etherdev;
1201
1202         SET_NETDEV_DEV(netdev, &pdev->dev);
1203
1204         pci_set_drvdata(pdev, netdev);
1205         adapter = netdev_priv(netdev);
1206         adapter->netdev = netdev;
1207         adapter->pdev = pdev;
1208         hw = &adapter->hw;
1209         hw->back = adapter;
1210         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1211
1212         mmio_start = pci_resource_start(pdev, 0);
1213         mmio_len = pci_resource_len(pdev, 0);
1214
1215         err = -EIO;
1216         hw->hw_addr = ioremap(mmio_start, mmio_len);
1217         if (!hw->hw_addr)
1218                 goto err_ioremap;
1219
1220         netdev->netdev_ops = &igb_netdev_ops;
1221         igb_set_ethtool_ops(netdev);
1222         netdev->watchdog_timeo = 5 * HZ;
1223
1224         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1225
1226         netdev->mem_start = mmio_start;
1227         netdev->mem_end = mmio_start + mmio_len;
1228
1229         /* PCI config space info */
1230         hw->vendor_id = pdev->vendor;
1231         hw->device_id = pdev->device;
1232         hw->revision_id = pdev->revision;
1233         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1234         hw->subsystem_device_id = pdev->subsystem_device;
1235
1236         /* setup the private structure */
1237         hw->back = adapter;
1238         /* Copy the default MAC, PHY and NVM function pointers */
1239         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1240         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1241         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1242         /* Initialize skew-specific constants */
1243         err = ei->get_invariants(hw);
1244         if (err)
1245                 goto err_sw_init;
1246
1247         /* setup the private structure */
1248         err = igb_sw_init(adapter);
1249         if (err)
1250                 goto err_sw_init;
1251
1252         igb_get_bus_info_pcie(hw);
1253
1254         /* set flags */
1255         switch (hw->mac.type) {
1256         case e1000_82575:
1257                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1258                 break;
1259         case e1000_82576:
1260         default:
1261                 break;
1262         }
1263
1264         hw->phy.autoneg_wait_to_complete = false;
1265         hw->mac.adaptive_ifs = true;
1266
1267         /* Copper options */
1268         if (hw->phy.media_type == e1000_media_type_copper) {
1269                 hw->phy.mdix = AUTO_ALL_MODES;
1270                 hw->phy.disable_polarity_correction = false;
1271                 hw->phy.ms_type = e1000_ms_hw_default;
1272         }
1273
1274         if (igb_check_reset_block(hw))
1275                 dev_info(&pdev->dev,
1276                         "PHY reset is blocked due to SOL/IDER session.\n");
1277
1278         netdev->features = NETIF_F_SG |
1279                            NETIF_F_IP_CSUM |
1280                            NETIF_F_HW_VLAN_TX |
1281                            NETIF_F_HW_VLAN_RX |
1282                            NETIF_F_HW_VLAN_FILTER;
1283
1284         netdev->features |= NETIF_F_IPV6_CSUM;
1285         netdev->features |= NETIF_F_TSO;
1286         netdev->features |= NETIF_F_TSO6;
1287
1288         netdev->features |= NETIF_F_GRO;
1289
1290         netdev->vlan_features |= NETIF_F_TSO;
1291         netdev->vlan_features |= NETIF_F_TSO6;
1292         netdev->vlan_features |= NETIF_F_IP_CSUM;
1293         netdev->vlan_features |= NETIF_F_SG;
1294
1295         if (pci_using_dac)
1296                 netdev->features |= NETIF_F_HIGHDMA;
1297
1298         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1299
1300         /* before reading the NVM, reset the controller to put the device in a
1301          * known good starting state */
1302         hw->mac.ops.reset_hw(hw);
1303
1304         /* make sure the NVM is good */
1305         if (igb_validate_nvm_checksum(hw) < 0) {
1306                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1307                 err = -EIO;
1308                 goto err_eeprom;
1309         }
1310
1311         /* copy the MAC address out of the NVM */
1312         if (hw->mac.ops.read_mac_addr(hw))
1313                 dev_err(&pdev->dev, "NVM Read Error\n");
1314
1315         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1316         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1317
1318         if (!is_valid_ether_addr(netdev->perm_addr)) {
1319                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1320                 err = -EIO;
1321                 goto err_eeprom;
1322         }
1323
1324         init_timer(&adapter->watchdog_timer);
1325         adapter->watchdog_timer.function = &igb_watchdog;
1326         adapter->watchdog_timer.data = (unsigned long) adapter;
1327
1328         init_timer(&adapter->phy_info_timer);
1329         adapter->phy_info_timer.function = &igb_update_phy_info;
1330         adapter->phy_info_timer.data = (unsigned long) adapter;
1331
1332         INIT_WORK(&adapter->reset_task, igb_reset_task);
1333         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1334
1335         /* Initialize link properties that are user-changeable */
1336         adapter->fc_autoneg = true;
1337         hw->mac.autoneg = true;
1338         hw->phy.autoneg_advertised = 0x2f;
1339
1340         hw->fc.original_type = e1000_fc_default;
1341         hw->fc.type = e1000_fc_default;
1342
1343         adapter->itr_setting = IGB_DEFAULT_ITR;
1344         adapter->itr = IGB_START_ITR;
1345
1346         igb_validate_mdi_setting(hw);
1347
1348         adapter->rx_csum = 1;
1349
1350         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1351          * enable the ACPI Magic Packet filter
1352          */
1353
1354         if (hw->bus.func == 0)
1355                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1356         else if (hw->bus.func == 1)
1357                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1358
1359         if (eeprom_data & eeprom_apme_mask)
1360                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1361
1362         /* now that we have the eeprom settings, apply the special cases where
1363          * the eeprom may be wrong or the board simply won't support wake on
1364          * lan on a particular port */
1365         switch (pdev->device) {
1366         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1367                 adapter->eeprom_wol = 0;
1368                 break;
1369         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1370         case E1000_DEV_ID_82576_FIBER:
1371         case E1000_DEV_ID_82576_SERDES:
1372                 /* Wake events only supported on port A for dual fiber
1373                  * regardless of eeprom setting */
1374                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1375                         adapter->eeprom_wol = 0;
1376                 break;
1377         }
1378
1379         /* initialize the wol settings based on the eeprom settings */
1380         adapter->wol = adapter->eeprom_wol;
1381         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1382
1383         /* reset the hardware with the new settings */
1384         igb_reset(adapter);
1385
1386         /* let the f/w know that the h/w is now under the control of the
1387          * driver. */
1388         igb_get_hw_control(adapter);
1389
1390         /* tell the stack to leave us alone until igb_open() is called */
1391         netif_carrier_off(netdev);
1392         netif_tx_stop_all_queues(netdev);
1393
1394         strcpy(netdev->name, "eth%d");
1395         err = register_netdev(netdev);
1396         if (err)
1397                 goto err_register;
1398
1399 #ifdef CONFIG_PCI_IOV
1400         /* since iov functionality isn't critical to base device function we
1401          * can accept failure.  If it fails we don't allow iov to be enabled */
1402         if (hw->mac.type == e1000_82576) {
1403                 err = pci_enable_sriov(pdev, 0);
1404                 if (!err)
1405                         err = device_create_file(&netdev->dev,
1406                                                  &dev_attr_num_vfs);
1407                 if (err)
1408                         dev_err(&pdev->dev, "Failed to initialize IOV\n");
1409         }
1410
1411 #endif
1412 #ifdef CONFIG_IGB_DCA
1413         if (dca_add_requester(&pdev->dev) == 0) {
1414                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1415                 dev_info(&pdev->dev, "DCA enabled\n");
1416                 /* Always use CB2 mode, difference is masked
1417                  * in the CB driver. */
1418                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1419                 igb_setup_dca(adapter);
1420         }
1421 #endif
1422
1423         /*
1424          * Initialize hardware timer: we keep it running just in case
1425          * that some program needs it later on.
1426          */
1427         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1428         adapter->cycles.read = igb_read_clock;
1429         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1430         adapter->cycles.mult = 1;
1431         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1432         wr32(E1000_TIMINCA,
1433              (1<<24) |
1434              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1435 #if 0
1436         /*
1437          * Avoid rollover while we initialize by resetting the time counter.
1438          */
1439         wr32(E1000_SYSTIML, 0x00000000);
1440         wr32(E1000_SYSTIMH, 0x00000000);
1441 #else
1442         /*
1443          * Set registers so that rollover occurs soon to test this.
1444          */
1445         wr32(E1000_SYSTIML, 0x00000000);
1446         wr32(E1000_SYSTIMH, 0xFF800000);
1447 #endif
1448         wrfl();
1449         timecounter_init(&adapter->clock,
1450                          &adapter->cycles,
1451                          ktime_to_ns(ktime_get_real()));
1452
1453         /*
1454          * Synchronize our NIC clock against system wall clock. NIC
1455          * time stamp reading requires ~3us per sample, each sample
1456          * was pretty stable even under load => only require 10
1457          * samples for each offset comparison.
1458          */
1459         memset(&adapter->compare, 0, sizeof(adapter->compare));
1460         adapter->compare.source = &adapter->clock;
1461         adapter->compare.target = ktime_get_real;
1462         adapter->compare.num_samples = 10;
1463         timecompare_update(&adapter->compare, 0);
1464
1465 #ifdef DEBUG
1466         {
1467                 char buffer[160];
1468                 printk(KERN_DEBUG
1469                         "igb: %s: hw %p initialized timer\n",
1470                         igb_get_time_str(adapter, buffer),
1471                         &adapter->hw);
1472         }
1473 #endif
1474
1475         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1476         /* print bus type/speed/width info */
1477         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1478                  netdev->name,
1479                  ((hw->bus.speed == e1000_bus_speed_2500)
1480                   ? "2.5Gb/s" : "unknown"),
1481                  ((hw->bus.width == e1000_bus_width_pcie_x4)
1482                   ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1483                   ? "Width x1" : "unknown"),
1484                  netdev->dev_addr);
1485
1486         igb_read_part_num(hw, &part_num);
1487         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1488                 (part_num >> 8), (part_num & 0xff));
1489
1490         dev_info(&pdev->dev,
1491                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1492                 adapter->msix_entries ? "MSI-X" :
1493                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1494                 adapter->num_rx_queues, adapter->num_tx_queues);
1495
1496         return 0;
1497
1498 err_register:
1499         igb_release_hw_control(adapter);
1500 err_eeprom:
1501         if (!igb_check_reset_block(hw))
1502                 igb_reset_phy(hw);
1503
1504         if (hw->flash_address)
1505                 iounmap(hw->flash_address);
1506
1507         igb_free_queues(adapter);
1508 err_sw_init:
1509         iounmap(hw->hw_addr);
1510 err_ioremap:
1511         free_netdev(netdev);
1512 err_alloc_etherdev:
1513         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1514                                      IORESOURCE_MEM));
1515 err_pci_reg:
1516 err_dma:
1517         pci_disable_device(pdev);
1518         return err;
1519 }
1520
1521 /**
1522  * igb_remove - Device Removal Routine
1523  * @pdev: PCI device information struct
1524  *
1525  * igb_remove is called by the PCI subsystem to alert the driver
1526  * that it should release a PCI device.  The could be caused by a
1527  * Hot-Plug event, or because the driver is going to be removed from
1528  * memory.
1529  **/
1530 static void __devexit igb_remove(struct pci_dev *pdev)
1531 {
1532         struct net_device *netdev = pci_get_drvdata(pdev);
1533         struct igb_adapter *adapter = netdev_priv(netdev);
1534         struct e1000_hw *hw = &adapter->hw;
1535         int err;
1536
1537         /* flush_scheduled work may reschedule our watchdog task, so
1538          * explicitly disable watchdog tasks from being rescheduled  */
1539         set_bit(__IGB_DOWN, &adapter->state);
1540         del_timer_sync(&adapter->watchdog_timer);
1541         del_timer_sync(&adapter->phy_info_timer);
1542
1543         flush_scheduled_work();
1544
1545 #ifdef CONFIG_IGB_DCA
1546         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1547                 dev_info(&pdev->dev, "DCA disabled\n");
1548                 dca_remove_requester(&pdev->dev);
1549                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1550                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1551         }
1552 #endif
1553
1554         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1555          * would have already happened in close and is redundant. */
1556         igb_release_hw_control(adapter);
1557
1558         unregister_netdev(netdev);
1559
1560         if (!igb_check_reset_block(&adapter->hw))
1561                 igb_reset_phy(&adapter->hw);
1562
1563         igb_reset_interrupt_capability(adapter);
1564
1565         igb_free_queues(adapter);
1566
1567 #ifdef CONFIG_PCI_IOV
1568         /* reclaim resources allocated to VFs */
1569         if (adapter->vf_data) {
1570                 /* disable iov and allow time for transactions to clear */
1571                 pci_disable_sriov(pdev);
1572                 msleep(500);
1573
1574                 kfree(adapter->vf_data);
1575                 adapter->vf_data = NULL;
1576                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1577                 msleep(100);
1578                 dev_info(&pdev->dev, "IOV Disabled\n");
1579         }
1580 #endif
1581         iounmap(hw->hw_addr);
1582         if (hw->flash_address)
1583                 iounmap(hw->flash_address);
1584         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1585                                      IORESOURCE_MEM));
1586
1587         free_netdev(netdev);
1588
1589         err = pci_disable_pcie_error_reporting(pdev);
1590         if (err)
1591                 dev_err(&pdev->dev,
1592                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1593
1594         pci_disable_device(pdev);
1595 }
1596
1597 /**
1598  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1599  * @adapter: board private structure to initialize
1600  *
1601  * igb_sw_init initializes the Adapter private data structure.
1602  * Fields are initialized based on PCI device information and
1603  * OS network device settings (MTU size).
1604  **/
1605 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1606 {
1607         struct e1000_hw *hw = &adapter->hw;
1608         struct net_device *netdev = adapter->netdev;
1609         struct pci_dev *pdev = adapter->pdev;
1610
1611         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1612
1613         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1614         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1615         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1616         adapter->rx_ps_hdr_size = 0; /* disable packet split */
1617         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1618         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1619
1620         /* This call may decrease the number of queues depending on
1621          * interrupt mode. */
1622         igb_set_interrupt_capability(adapter);
1623
1624         if (igb_alloc_queues(adapter)) {
1625                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1626                 return -ENOMEM;
1627         }
1628
1629         /* Explicitly disable IRQ since the NIC can be in any state. */
1630         igb_irq_disable(adapter);
1631
1632         set_bit(__IGB_DOWN, &adapter->state);
1633         return 0;
1634 }
1635
1636 /**
1637  * igb_open - Called when a network interface is made active
1638  * @netdev: network interface device structure
1639  *
1640  * Returns 0 on success, negative value on failure
1641  *
1642  * The open entry point is called when a network interface is made
1643  * active by the system (IFF_UP).  At this point all resources needed
1644  * for transmit and receive operations are allocated, the interrupt
1645  * handler is registered with the OS, the watchdog timer is started,
1646  * and the stack is notified that the interface is ready.
1647  **/
1648 static int igb_open(struct net_device *netdev)
1649 {
1650         struct igb_adapter *adapter = netdev_priv(netdev);
1651         struct e1000_hw *hw = &adapter->hw;
1652         int err;
1653         int i;
1654
1655         /* disallow open during test */
1656         if (test_bit(__IGB_TESTING, &adapter->state))
1657                 return -EBUSY;
1658
1659         /* allocate transmit descriptors */
1660         err = igb_setup_all_tx_resources(adapter);
1661         if (err)
1662                 goto err_setup_tx;
1663
1664         /* allocate receive descriptors */
1665         err = igb_setup_all_rx_resources(adapter);
1666         if (err)
1667                 goto err_setup_rx;
1668
1669         /* e1000_power_up_phy(adapter); */
1670
1671         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1672         if ((adapter->hw.mng_cookie.status &
1673              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1674                 igb_update_mng_vlan(adapter);
1675
1676         /* before we allocate an interrupt, we must be ready to handle it.
1677          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1678          * as soon as we call pci_request_irq, so we have to setup our
1679          * clean_rx handler before we do so.  */
1680         igb_configure(adapter);
1681
1682         igb_vmm_control(adapter);
1683         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1684         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1685
1686         err = igb_request_irq(adapter);
1687         if (err)
1688                 goto err_req_irq;
1689
1690         /* From here on the code is the same as igb_up() */
1691         clear_bit(__IGB_DOWN, &adapter->state);
1692
1693         for (i = 0; i < adapter->num_rx_queues; i++)
1694                 napi_enable(&adapter->rx_ring[i].napi);
1695
1696         /* Clear any pending interrupts. */
1697         rd32(E1000_ICR);
1698
1699         igb_irq_enable(adapter);
1700
1701         netif_tx_start_all_queues(netdev);
1702
1703         /* Fire a link status change interrupt to start the watchdog. */
1704         wr32(E1000_ICS, E1000_ICS_LSC);
1705
1706         return 0;
1707
1708 err_req_irq:
1709         igb_release_hw_control(adapter);
1710         /* e1000_power_down_phy(adapter); */
1711         igb_free_all_rx_resources(adapter);
1712 err_setup_rx:
1713         igb_free_all_tx_resources(adapter);
1714 err_setup_tx:
1715         igb_reset(adapter);
1716
1717         return err;
1718 }
1719
1720 /**
1721  * igb_close - Disables a network interface
1722  * @netdev: network interface device structure
1723  *
1724  * Returns 0, this is not allowed to fail
1725  *
1726  * The close entry point is called when an interface is de-activated
1727  * by the OS.  The hardware is still under the driver's control, but
1728  * needs to be disabled.  A global MAC reset is issued to stop the
1729  * hardware, and all transmit and receive resources are freed.
1730  **/
1731 static int igb_close(struct net_device *netdev)
1732 {
1733         struct igb_adapter *adapter = netdev_priv(netdev);
1734
1735         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1736         igb_down(adapter);
1737
1738         igb_free_irq(adapter);
1739
1740         igb_free_all_tx_resources(adapter);
1741         igb_free_all_rx_resources(adapter);
1742
1743         /* kill manageability vlan ID if supported, but not if a vlan with
1744          * the same ID is registered on the host OS (let 8021q kill it) */
1745         if ((adapter->hw.mng_cookie.status &
1746                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1747              !(adapter->vlgrp &&
1748                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1749                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1750
1751         return 0;
1752 }
1753
1754 /**
1755  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1756  * @adapter: board private structure
1757  * @tx_ring: tx descriptor ring (for a specific queue) to setup
1758  *
1759  * Return 0 on success, negative on failure
1760  **/
1761 int igb_setup_tx_resources(struct igb_adapter *adapter,
1762                            struct igb_ring *tx_ring)
1763 {
1764         struct pci_dev *pdev = adapter->pdev;
1765         int size;
1766
1767         size = sizeof(struct igb_buffer) * tx_ring->count;
1768         tx_ring->buffer_info = vmalloc(size);
1769         if (!tx_ring->buffer_info)
1770                 goto err;
1771         memset(tx_ring->buffer_info, 0, size);
1772
1773         /* round up to nearest 4K */
1774         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1775         tx_ring->size = ALIGN(tx_ring->size, 4096);
1776
1777         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1778                                              &tx_ring->dma);
1779
1780         if (!tx_ring->desc)
1781                 goto err;
1782
1783         tx_ring->adapter = adapter;
1784         tx_ring->next_to_use = 0;
1785         tx_ring->next_to_clean = 0;
1786         return 0;
1787
1788 err:
1789         vfree(tx_ring->buffer_info);
1790         dev_err(&adapter->pdev->dev,
1791                 "Unable to allocate memory for the transmit descriptor ring\n");
1792         return -ENOMEM;
1793 }
1794
1795 /**
1796  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1797  *                                (Descriptors) for all queues
1798  * @adapter: board private structure
1799  *
1800  * Return 0 on success, negative on failure
1801  **/
1802 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1803 {
1804         int i, err = 0;
1805         int r_idx;
1806
1807         for (i = 0; i < adapter->num_tx_queues; i++) {
1808                 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1809                 if (err) {
1810                         dev_err(&adapter->pdev->dev,
1811                                 "Allocation for Tx Queue %u failed\n", i);
1812                         for (i--; i >= 0; i--)
1813                                 igb_free_tx_resources(&adapter->tx_ring[i]);
1814                         break;
1815                 }
1816         }
1817
1818         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1819                 r_idx = i % adapter->num_tx_queues;
1820                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1821         }
1822         return err;
1823 }
1824
1825 /**
1826  * igb_configure_tx - Configure transmit Unit after Reset
1827  * @adapter: board private structure
1828  *
1829  * Configure the Tx unit of the MAC after a reset.
1830  **/
1831 static void igb_configure_tx(struct igb_adapter *adapter)
1832 {
1833         u64 tdba;
1834         struct e1000_hw *hw = &adapter->hw;
1835         u32 tctl;
1836         u32 txdctl, txctrl;
1837         int i, j;
1838
1839         for (i = 0; i < adapter->num_tx_queues; i++) {
1840                 struct igb_ring *ring = &adapter->tx_ring[i];
1841                 j = ring->reg_idx;
1842                 wr32(E1000_TDLEN(j),
1843                      ring->count * sizeof(union e1000_adv_tx_desc));
1844                 tdba = ring->dma;
1845                 wr32(E1000_TDBAL(j),
1846                      tdba & 0x00000000ffffffffULL);
1847                 wr32(E1000_TDBAH(j), tdba >> 32);
1848
1849                 ring->head = E1000_TDH(j);
1850                 ring->tail = E1000_TDT(j);
1851                 writel(0, hw->hw_addr + ring->tail);
1852                 writel(0, hw->hw_addr + ring->head);
1853                 txdctl = rd32(E1000_TXDCTL(j));
1854                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1855                 wr32(E1000_TXDCTL(j), txdctl);
1856
1857                 /* Turn off Relaxed Ordering on head write-backs.  The
1858                  * writebacks MUST be delivered in order or it will
1859                  * completely screw up our bookeeping.
1860                  */
1861                 txctrl = rd32(E1000_DCA_TXCTRL(j));
1862                 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1863                 wr32(E1000_DCA_TXCTRL(j), txctrl);
1864         }
1865
1866         /* disable queue 0 to prevent tail bump w/o re-configuration */
1867         if (adapter->vfs_allocated_count)
1868                 wr32(E1000_TXDCTL(0), 0);
1869
1870         /* Program the Transmit Control Register */
1871         tctl = rd32(E1000_TCTL);
1872         tctl &= ~E1000_TCTL_CT;
1873         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1874                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1875
1876         igb_config_collision_dist(hw);
1877
1878         /* Setup Transmit Descriptor Settings for eop descriptor */
1879         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1880
1881         /* Enable transmits */
1882         tctl |= E1000_TCTL_EN;
1883
1884         wr32(E1000_TCTL, tctl);
1885 }
1886
1887 /**
1888  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1889  * @adapter: board private structure
1890  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
1891  *
1892  * Returns 0 on success, negative on failure
1893  **/
1894 int igb_setup_rx_resources(struct igb_adapter *adapter,
1895                            struct igb_ring *rx_ring)
1896 {
1897         struct pci_dev *pdev = adapter->pdev;
1898         int size, desc_len;
1899
1900         size = sizeof(struct igb_buffer) * rx_ring->count;
1901         rx_ring->buffer_info = vmalloc(size);
1902         if (!rx_ring->buffer_info)
1903                 goto err;
1904         memset(rx_ring->buffer_info, 0, size);
1905
1906         desc_len = sizeof(union e1000_adv_rx_desc);
1907
1908         /* Round up to nearest 4K */
1909         rx_ring->size = rx_ring->count * desc_len;
1910         rx_ring->size = ALIGN(rx_ring->size, 4096);
1911
1912         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1913                                              &rx_ring->dma);
1914
1915         if (!rx_ring->desc)
1916                 goto err;
1917
1918         rx_ring->next_to_clean = 0;
1919         rx_ring->next_to_use = 0;
1920
1921         rx_ring->adapter = adapter;
1922
1923         return 0;
1924
1925 err:
1926         vfree(rx_ring->buffer_info);
1927         dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1928                 "the receive descriptor ring\n");
1929         return -ENOMEM;
1930 }
1931
1932 /**
1933  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1934  *                                (Descriptors) for all queues
1935  * @adapter: board private structure
1936  *
1937  * Return 0 on success, negative on failure
1938  **/
1939 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1940 {
1941         int i, err = 0;
1942
1943         for (i = 0; i < adapter->num_rx_queues; i++) {
1944                 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1945                 if (err) {
1946                         dev_err(&adapter->pdev->dev,
1947                                 "Allocation for Rx Queue %u failed\n", i);
1948                         for (i--; i >= 0; i--)
1949                                 igb_free_rx_resources(&adapter->rx_ring[i]);
1950                         break;
1951                 }
1952         }
1953
1954         return err;
1955 }
1956
1957 /**
1958  * igb_setup_rctl - configure the receive control registers
1959  * @adapter: Board private structure
1960  **/
1961 static void igb_setup_rctl(struct igb_adapter *adapter)
1962 {
1963         struct e1000_hw *hw = &adapter->hw;
1964         u32 rctl;
1965         u32 srrctl = 0;
1966         int i, j;
1967
1968         rctl = rd32(E1000_RCTL);
1969
1970         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1971         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1972
1973         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1974                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1975
1976         /*
1977          * enable stripping of CRC. It's unlikely this will break BMC
1978          * redirection as it did with e1000. Newer features require
1979          * that the HW strips the CRC.
1980          */
1981         rctl |= E1000_RCTL_SECRC;
1982
1983         /*
1984          * disable store bad packets and clear size bits.
1985          */
1986         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1987
1988         /* enable LPE when to prevent packets larger than max_frame_size */
1989                 rctl |= E1000_RCTL_LPE;
1990
1991         /* Setup buffer sizes */
1992         switch (adapter->rx_buffer_len) {
1993         case IGB_RXBUFFER_256:
1994                 rctl |= E1000_RCTL_SZ_256;
1995                 break;
1996         case IGB_RXBUFFER_512:
1997                 rctl |= E1000_RCTL_SZ_512;
1998                 break;
1999         default:
2000                 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2001                          >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2002                 break;
2003         }
2004
2005         /* 82575 and greater support packet-split where the protocol
2006          * header is placed in skb->data and the packet data is
2007          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2008          * In the case of a non-split, skb->data is linearly filled,
2009          * followed by the page buffers.  Therefore, skb->data is
2010          * sized to hold the largest protocol header.
2011          */
2012         /* allocations using alloc_page take too long for regular MTU
2013          * so only enable packet split for jumbo frames */
2014         if (adapter->netdev->mtu > ETH_DATA_LEN) {
2015                 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2016                 srrctl |= adapter->rx_ps_hdr_size <<
2017                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2018                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2019         } else {
2020                 adapter->rx_ps_hdr_size = 0;
2021                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2022         }
2023
2024         /* Attention!!!  For SR-IOV PF driver operations you must enable
2025          * queue drop for all VF and PF queues to prevent head of line blocking
2026          * if an un-trusted VF does not provide descriptors to hardware.
2027          */
2028         if (adapter->vfs_allocated_count) {
2029                 u32 vmolr;
2030
2031                 j = adapter->rx_ring[0].reg_idx;
2032
2033                 /* set all queue drop enable bits */
2034                 wr32(E1000_QDE, ALL_QUEUES);
2035                 srrctl |= E1000_SRRCTL_DROP_EN;
2036
2037                 /* disable queue 0 to prevent tail write w/o re-config */
2038                 wr32(E1000_RXDCTL(0), 0);
2039
2040                 vmolr = rd32(E1000_VMOLR(j));
2041                 if (rctl & E1000_RCTL_LPE)
2042                         vmolr |= E1000_VMOLR_LPE;
2043                 if (adapter->num_rx_queues > 0)
2044                         vmolr |= E1000_VMOLR_RSSE;
2045                 wr32(E1000_VMOLR(j), vmolr);
2046         }
2047
2048         for (i = 0; i < adapter->num_rx_queues; i++) {
2049                 j = adapter->rx_ring[i].reg_idx;
2050                 wr32(E1000_SRRCTL(j), srrctl);
2051         }
2052
2053         wr32(E1000_RCTL, rctl);
2054 }
2055
2056 /**
2057  * igb_rlpml_set - set maximum receive packet size
2058  * @adapter: board private structure
2059  *
2060  * Configure maximum receivable packet size.
2061  **/
2062 static void igb_rlpml_set(struct igb_adapter *adapter)
2063 {
2064         u32 max_frame_size = adapter->max_frame_size;
2065         struct e1000_hw *hw = &adapter->hw;
2066         u16 pf_id = adapter->vfs_allocated_count;
2067
2068         if (adapter->vlgrp)
2069                 max_frame_size += VLAN_TAG_SIZE;
2070
2071         /* if vfs are enabled we set RLPML to the largest possible request
2072          * size and set the VMOLR RLPML to the size we need */
2073         if (pf_id) {
2074                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2075                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2076         }
2077
2078         wr32(E1000_RLPML, max_frame_size);
2079 }
2080
2081 /**
2082  * igb_configure_vt_default_pool - Configure VT default pool
2083  * @adapter: board private structure
2084  *
2085  * Configure the default pool
2086  **/
2087 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2088 {
2089         struct e1000_hw *hw = &adapter->hw;
2090         u16 pf_id = adapter->vfs_allocated_count;
2091         u32 vtctl;
2092
2093         /* not in sr-iov mode - do nothing */
2094         if (!pf_id)
2095                 return;
2096
2097         vtctl = rd32(E1000_VT_CTL);
2098         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2099                    E1000_VT_CTL_DISABLE_DEF_POOL);
2100         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2101         wr32(E1000_VT_CTL, vtctl);
2102 }
2103
2104 /**
2105  * igb_configure_rx - Configure receive Unit after Reset
2106  * @adapter: board private structure
2107  *
2108  * Configure the Rx unit of the MAC after a reset.
2109  **/
2110 static void igb_configure_rx(struct igb_adapter *adapter)
2111 {
2112         u64 rdba;
2113         struct e1000_hw *hw = &adapter->hw;
2114         u32 rctl, rxcsum;
2115         u32 rxdctl;
2116         int i;
2117
2118         /* disable receives while setting up the descriptors */
2119         rctl = rd32(E1000_RCTL);
2120         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2121         wrfl();
2122         mdelay(10);
2123
2124         if (adapter->itr_setting > 3)
2125                 wr32(E1000_ITR, adapter->itr);
2126
2127         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2128          * the Base and Length of the Rx Descriptor Ring */
2129         for (i = 0; i < adapter->num_rx_queues; i++) {
2130                 struct igb_ring *ring = &adapter->rx_ring[i];
2131                 int j = ring->reg_idx;
2132                 rdba = ring->dma;
2133                 wr32(E1000_RDBAL(j),
2134                      rdba & 0x00000000ffffffffULL);
2135                 wr32(E1000_RDBAH(j), rdba >> 32);
2136                 wr32(E1000_RDLEN(j),
2137                      ring->count * sizeof(union e1000_adv_rx_desc));
2138
2139                 ring->head = E1000_RDH(j);
2140                 ring->tail = E1000_RDT(j);
2141                 writel(0, hw->hw_addr + ring->tail);
2142                 writel(0, hw->hw_addr + ring->head);
2143
2144                 rxdctl = rd32(E1000_RXDCTL(j));
2145                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2146                 rxdctl &= 0xFFF00000;
2147                 rxdctl |= IGB_RX_PTHRESH;
2148                 rxdctl |= IGB_RX_HTHRESH << 8;
2149                 rxdctl |= IGB_RX_WTHRESH << 16;
2150                 wr32(E1000_RXDCTL(j), rxdctl);
2151         }
2152
2153         if (adapter->num_rx_queues > 1) {
2154                 u32 random[10];
2155                 u32 mrqc;
2156                 u32 j, shift;
2157                 union e1000_reta {
2158                         u32 dword;
2159                         u8  bytes[4];
2160                 } reta;
2161
2162                 get_random_bytes(&random[0], 40);
2163
2164                 if (hw->mac.type >= e1000_82576)
2165                         shift = 0;
2166                 else
2167                         shift = 6;
2168                 for (j = 0; j < (32 * 4); j++) {
2169                         reta.bytes[j & 3] =
2170                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2171                         if ((j & 3) == 3)
2172                                 writel(reta.dword,
2173                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2174                 }
2175                 if (adapter->vfs_allocated_count)
2176                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2177                 else
2178                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2179
2180                 /* Fill out hash function seeds */
2181                 for (j = 0; j < 10; j++)
2182                         array_wr32(E1000_RSSRK(0), j, random[j]);
2183
2184                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2185                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2186                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2187                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2188                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2189                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2190                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2191                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2192
2193
2194                 wr32(E1000_MRQC, mrqc);
2195
2196                 /* Multiqueue and raw packet checksumming are mutually
2197                  * exclusive.  Note that this not the same as TCP/IP
2198                  * checksumming, which works fine. */
2199                 rxcsum = rd32(E1000_RXCSUM);
2200                 rxcsum |= E1000_RXCSUM_PCSD;
2201                 wr32(E1000_RXCSUM, rxcsum);
2202         } else {
2203                 /* Enable multi-queue for sr-iov */
2204                 if (adapter->vfs_allocated_count)
2205                         wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2206                 /* Enable Receive Checksum Offload for TCP and UDP */
2207                 rxcsum = rd32(E1000_RXCSUM);
2208                 if (adapter->rx_csum)
2209                         rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2210                 else
2211                         rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2212
2213                 wr32(E1000_RXCSUM, rxcsum);
2214         }
2215
2216         /* Set the default pool for the PF's first queue */
2217         igb_configure_vt_default_pool(adapter);
2218
2219         igb_rlpml_set(adapter);
2220
2221         /* Enable Receives */
2222         wr32(E1000_RCTL, rctl);
2223 }
2224
2225 /**
2226  * igb_free_tx_resources - Free Tx Resources per Queue
2227  * @tx_ring: Tx descriptor ring for a specific queue
2228  *
2229  * Free all transmit software resources
2230  **/
2231 void igb_free_tx_resources(struct igb_ring *tx_ring)
2232 {
2233         struct pci_dev *pdev = tx_ring->adapter->pdev;
2234
2235         igb_clean_tx_ring(tx_ring);
2236
2237         vfree(tx_ring->buffer_info);
2238         tx_ring->buffer_info = NULL;
2239
2240         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2241
2242         tx_ring->desc = NULL;
2243 }
2244
2245 /**
2246  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2247  * @adapter: board private structure
2248  *
2249  * Free all transmit software resources
2250  **/
2251 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2252 {
2253         int i;
2254
2255         for (i = 0; i < adapter->num_tx_queues; i++)
2256                 igb_free_tx_resources(&adapter->tx_ring[i]);
2257 }
2258
2259 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2260                                            struct igb_buffer *buffer_info)
2261 {
2262         if (buffer_info->dma) {
2263                 pci_unmap_page(adapter->pdev,
2264                                 buffer_info->dma,
2265                                 buffer_info->length,
2266                                 PCI_DMA_TODEVICE);
2267                 buffer_info->dma = 0;
2268         }
2269         if (buffer_info->skb) {
2270                 dev_kfree_skb_any(buffer_info->skb);
2271                 buffer_info->skb = NULL;
2272         }
2273         buffer_info->time_stamp = 0;
2274         buffer_info->next_to_watch = 0;
2275         /* buffer_info must be completely set up in the transmit path */
2276 }
2277
2278 /**
2279  * igb_clean_tx_ring - Free Tx Buffers
2280  * @tx_ring: ring to be cleaned
2281  **/
2282 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2283 {
2284         struct igb_adapter *adapter = tx_ring->adapter;
2285         struct igb_buffer *buffer_info;
2286         unsigned long size;
2287         unsigned int i;
2288
2289         if (!tx_ring->buffer_info)
2290                 return;
2291         /* Free all the Tx ring sk_buffs */
2292
2293         for (i = 0; i < tx_ring->count; i++) {
2294                 buffer_info = &tx_ring->buffer_info[i];
2295                 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2296         }
2297
2298         size = sizeof(struct igb_buffer) * tx_ring->count;
2299         memset(tx_ring->buffer_info, 0, size);
2300
2301         /* Zero out the descriptor ring */
2302
2303         memset(tx_ring->desc, 0, tx_ring->size);
2304
2305         tx_ring->next_to_use = 0;
2306         tx_ring->next_to_clean = 0;
2307
2308         writel(0, adapter->hw.hw_addr + tx_ring->head);
2309         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2310 }
2311
2312 /**
2313  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2314  * @adapter: board private structure
2315  **/
2316 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2317 {
2318         int i;
2319
2320         for (i = 0; i < adapter->num_tx_queues; i++)
2321                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2322 }
2323
2324 /**
2325  * igb_free_rx_resources - Free Rx Resources
2326  * @rx_ring: ring to clean the resources from
2327  *
2328  * Free all receive software resources
2329  **/
2330 void igb_free_rx_resources(struct igb_ring *rx_ring)
2331 {
2332         struct pci_dev *pdev = rx_ring->adapter->pdev;
2333
2334         igb_clean_rx_ring(rx_ring);
2335
2336         vfree(rx_ring->buffer_info);
2337         rx_ring->buffer_info = NULL;
2338
2339         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2340
2341         rx_ring->desc = NULL;
2342 }
2343
2344 /**
2345  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2346  * @adapter: board private structure
2347  *
2348  * Free all receive software resources
2349  **/
2350 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2351 {
2352         int i;
2353
2354         for (i = 0; i < adapter->num_rx_queues; i++)
2355                 igb_free_rx_resources(&adapter->rx_ring[i]);
2356 }
2357
2358 /**
2359  * igb_clean_rx_ring - Free Rx Buffers per Queue
2360  * @rx_ring: ring to free buffers from
2361  **/
2362 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2363 {
2364         struct igb_adapter *adapter = rx_ring->adapter;
2365         struct igb_buffer *buffer_info;
2366         struct pci_dev *pdev = adapter->pdev;
2367         unsigned long size;
2368         unsigned int i;
2369
2370         if (!rx_ring->buffer_info)
2371                 return;
2372         /* Free all the Rx ring sk_buffs */
2373         for (i = 0; i < rx_ring->count; i++) {
2374                 buffer_info = &rx_ring->buffer_info[i];
2375                 if (buffer_info->dma) {
2376                         if (adapter->rx_ps_hdr_size)
2377                                 pci_unmap_single(pdev, buffer_info->dma,
2378                                                  adapter->rx_ps_hdr_size,
2379                                                  PCI_DMA_FROMDEVICE);
2380                         else
2381                                 pci_unmap_single(pdev, buffer_info->dma,
2382                                                  adapter->rx_buffer_len,
2383                                                  PCI_DMA_FROMDEVICE);
2384                         buffer_info->dma = 0;
2385                 }
2386
2387                 if (buffer_info->skb) {
2388                         dev_kfree_skb(buffer_info->skb);
2389                         buffer_info->skb = NULL;
2390                 }
2391                 if (buffer_info->page) {
2392                         if (buffer_info->page_dma)
2393                                 pci_unmap_page(pdev, buffer_info->page_dma,
2394                                                PAGE_SIZE / 2,
2395                                                PCI_DMA_FROMDEVICE);
2396                         put_page(buffer_info->page);
2397                         buffer_info->page = NULL;
2398                         buffer_info->page_dma = 0;
2399                         buffer_info->page_offset = 0;
2400                 }
2401         }
2402
2403         size = sizeof(struct igb_buffer) * rx_ring->count;
2404         memset(rx_ring->buffer_info, 0, size);
2405
2406         /* Zero out the descriptor ring */
2407         memset(rx_ring->desc, 0, rx_ring->size);
2408
2409         rx_ring->next_to_clean = 0;
2410         rx_ring->next_to_use = 0;
2411
2412         writel(0, adapter->hw.hw_addr + rx_ring->head);
2413         writel(0, adapter->hw.hw_addr + rx_ring->tail);
2414 }
2415
2416 /**
2417  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2418  * @adapter: board private structure
2419  **/
2420 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2421 {
2422         int i;
2423
2424         for (i = 0; i < adapter->num_rx_queues; i++)
2425                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2426 }
2427
2428 /**
2429  * igb_set_mac - Change the Ethernet Address of the NIC
2430  * @netdev: network interface device structure
2431  * @p: pointer to an address structure
2432  *
2433  * Returns 0 on success, negative on failure
2434  **/
2435 static int igb_set_mac(struct net_device *netdev, void *p)
2436 {
2437         struct igb_adapter *adapter = netdev_priv(netdev);
2438         struct e1000_hw *hw = &adapter->hw;
2439         struct sockaddr *addr = p;
2440
2441         if (!is_valid_ether_addr(addr->sa_data))
2442                 return -EADDRNOTAVAIL;
2443
2444         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2445         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2446
2447         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2448
2449         igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2450
2451         return 0;
2452 }
2453
2454 /**
2455  * igb_set_multi - Multicast and Promiscuous mode set
2456  * @netdev: network interface device structure
2457  *
2458  * The set_multi entry point is called whenever the multicast address
2459  * list or the network interface flags are updated.  This routine is
2460  * responsible for configuring the hardware for proper multicast,
2461  * promiscuous mode, and all-multi behavior.
2462  **/
2463 static void igb_set_multi(struct net_device *netdev)
2464 {
2465         struct igb_adapter *adapter = netdev_priv(netdev);
2466         struct e1000_hw *hw = &adapter->hw;
2467         struct e1000_mac_info *mac = &hw->mac;
2468         struct dev_mc_list *mc_ptr;
2469         u8  *mta_list;
2470         u32 rctl;
2471         int i;
2472
2473         /* Check for Promiscuous and All Multicast modes */
2474
2475         rctl = rd32(E1000_RCTL);
2476
2477         if (netdev->flags & IFF_PROMISC) {
2478                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2479                 rctl &= ~E1000_RCTL_VFE;
2480         } else {
2481                 if (netdev->flags & IFF_ALLMULTI) {
2482                         rctl |= E1000_RCTL_MPE;
2483                         rctl &= ~E1000_RCTL_UPE;
2484                 } else
2485                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2486                 rctl |= E1000_RCTL_VFE;
2487         }
2488         wr32(E1000_RCTL, rctl);
2489
2490         if (!netdev->mc_count) {
2491                 /* nothing to program, so clear mc list */
2492                 igb_update_mc_addr_list(hw, NULL, 0, 1,
2493                                         mac->rar_entry_count);
2494                 return;
2495         }
2496
2497         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2498         if (!mta_list)
2499                 return;
2500
2501         /* The shared function expects a packed array of only addresses. */
2502         mc_ptr = netdev->mc_list;
2503
2504         for (i = 0; i < netdev->mc_count; i++) {
2505                 if (!mc_ptr)
2506                         break;
2507                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2508                 mc_ptr = mc_ptr->next;
2509         }
2510         igb_update_mc_addr_list(hw, mta_list, i,
2511                                 adapter->vfs_allocated_count + 1,
2512                                 mac->rar_entry_count);
2513
2514         igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2515         igb_restore_vf_multicasts(adapter);
2516
2517         kfree(mta_list);
2518 }
2519
2520 /* Need to wait a few seconds after link up to get diagnostic information from
2521  * the phy */
2522 static void igb_update_phy_info(unsigned long data)
2523 {
2524         struct igb_adapter *adapter = (struct igb_adapter *) data;
2525         igb_get_phy_info(&adapter->hw);
2526 }
2527
2528 /**
2529  * igb_has_link - check shared code for link and determine up/down
2530  * @adapter: pointer to driver private info
2531  **/
2532 static bool igb_has_link(struct igb_adapter *adapter)
2533 {
2534         struct e1000_hw *hw = &adapter->hw;
2535         bool link_active = false;
2536         s32 ret_val = 0;
2537
2538         /* get_link_status is set on LSC (link status) interrupt or
2539          * rx sequence error interrupt.  get_link_status will stay
2540          * false until the e1000_check_for_link establishes link
2541          * for copper adapters ONLY
2542          */
2543         switch (hw->phy.media_type) {
2544         case e1000_media_type_copper:
2545                 if (hw->mac.get_link_status) {
2546                         ret_val = hw->mac.ops.check_for_link(hw);
2547                         link_active = !hw->mac.get_link_status;
2548                 } else {
2549                         link_active = true;
2550                 }
2551                 break;
2552         case e1000_media_type_fiber:
2553                 ret_val = hw->mac.ops.check_for_link(hw);
2554                 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2555                 break;
2556         case e1000_media_type_internal_serdes:
2557                 ret_val = hw->mac.ops.check_for_link(hw);
2558                 link_active = hw->mac.serdes_has_link;
2559                 break;
2560         default:
2561         case e1000_media_type_unknown:
2562                 break;
2563         }
2564
2565         return link_active;
2566 }
2567
2568 /**
2569  * igb_watchdog - Timer Call-back
2570  * @data: pointer to adapter cast into an unsigned long
2571  **/
2572 static void igb_watchdog(unsigned long data)
2573 {
2574         struct igb_adapter *adapter = (struct igb_adapter *)data;
2575         /* Do the rest outside of interrupt context */
2576         schedule_work(&adapter->watchdog_task);
2577 }
2578
2579 static void igb_watchdog_task(struct work_struct *work)
2580 {
2581         struct igb_adapter *adapter = container_of(work,
2582                                         struct igb_adapter, watchdog_task);
2583         struct e1000_hw *hw = &adapter->hw;
2584         struct net_device *netdev = adapter->netdev;
2585         struct igb_ring *tx_ring = adapter->tx_ring;
2586         u32 link;
2587         u32 eics = 0;
2588         int i;
2589
2590         link = igb_has_link(adapter);
2591         if ((netif_carrier_ok(netdev)) && link)
2592                 goto link_up;
2593
2594         if (link) {
2595                 if (!netif_carrier_ok(netdev)) {
2596                         u32 ctrl;
2597                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2598                                                    &adapter->link_speed,
2599                                                    &adapter->link_duplex);
2600
2601                         ctrl = rd32(E1000_CTRL);
2602                         /* Links status message must follow this format */
2603                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2604                                  "Flow Control: %s\n",
2605                                  netdev->name,
2606                                  adapter->link_speed,
2607                                  adapter->link_duplex == FULL_DUPLEX ?
2608                                  "Full Duplex" : "Half Duplex",
2609                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2610                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2611                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2612                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2613
2614                         /* tweak tx_queue_len according to speed/duplex and
2615                          * adjust the timeout factor */
2616                         netdev->tx_queue_len = adapter->tx_queue_len;
2617                         adapter->tx_timeout_factor = 1;
2618                         switch (adapter->link_speed) {
2619                         case SPEED_10:
2620                                 netdev->tx_queue_len = 10;
2621                                 adapter->tx_timeout_factor = 14;
2622                                 break;
2623                         case SPEED_100:
2624                                 netdev->tx_queue_len = 100;
2625                                 /* maybe add some timeout factor ? */
2626                                 break;
2627                         }
2628
2629                         netif_carrier_on(netdev);
2630                         netif_tx_wake_all_queues(netdev);
2631
2632                         igb_ping_all_vfs(adapter);
2633
2634                         /* link state has changed, schedule phy info update */
2635                         if (!test_bit(__IGB_DOWN, &adapter->state))
2636                                 mod_timer(&adapter->phy_info_timer,
2637                                           round_jiffies(jiffies + 2 * HZ));
2638                 }
2639         } else {
2640                 if (netif_carrier_ok(netdev)) {
2641                         adapter->link_speed = 0;
2642                         adapter->link_duplex = 0;
2643                         /* Links status message must follow this format */
2644                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2645                                netdev->name);
2646                         netif_carrier_off(netdev);
2647                         netif_tx_stop_all_queues(netdev);
2648
2649                         igb_ping_all_vfs(adapter);
2650
2651                         /* link state has changed, schedule phy info update */
2652                         if (!test_bit(__IGB_DOWN, &adapter->state))
2653                                 mod_timer(&adapter->phy_info_timer,
2654                                           round_jiffies(jiffies + 2 * HZ));
2655                 }
2656         }
2657
2658 link_up:
2659         igb_update_stats(adapter);
2660
2661         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2662         adapter->tpt_old = adapter->stats.tpt;
2663         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2664         adapter->colc_old = adapter->stats.colc;
2665
2666         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2667         adapter->gorc_old = adapter->stats.gorc;
2668         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2669         adapter->gotc_old = adapter->stats.gotc;
2670
2671         igb_update_adaptive(&adapter->hw);
2672
2673         if (!netif_carrier_ok(netdev)) {
2674                 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2675                         /* We've lost link, so the controller stops DMA,
2676                          * but we've got queued Tx work that's never going
2677                          * to get done, so reset controller to flush Tx.
2678                          * (Do the reset outside of interrupt context). */
2679                         adapter->tx_timeout_count++;
2680                         schedule_work(&adapter->reset_task);
2681                 }
2682         }
2683
2684         /* Cause software interrupt to ensure rx ring is cleaned */
2685         if (adapter->msix_entries) {
2686                 for (i = 0; i < adapter->num_rx_queues; i++)
2687                         eics |= adapter->rx_ring[i].eims_value;
2688                 wr32(E1000_EICS, eics);
2689         } else {
2690                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2691         }
2692
2693         /* Force detection of hung controller every watchdog period */
2694         tx_ring->detect_tx_hung = true;
2695
2696         /* Reset the timer */
2697         if (!test_bit(__IGB_DOWN, &adapter->state))
2698                 mod_timer(&adapter->watchdog_timer,
2699                           round_jiffies(jiffies + 2 * HZ));
2700 }
2701
2702 enum latency_range {
2703         lowest_latency = 0,
2704         low_latency = 1,
2705         bulk_latency = 2,
2706         latency_invalid = 255
2707 };
2708
2709
2710 /**
2711  * igb_update_ring_itr - update the dynamic ITR value based on packet size
2712  *
2713  *      Stores a new ITR value based on strictly on packet size.  This
2714  *      algorithm is less sophisticated than that used in igb_update_itr,
2715  *      due to the difficulty of synchronizing statistics across multiple
2716  *      receive rings.  The divisors and thresholds used by this fuction
2717  *      were determined based on theoretical maximum wire speed and testing
2718  *      data, in order to minimize response time while increasing bulk
2719  *      throughput.
2720  *      This functionality is controlled by the InterruptThrottleRate module
2721  *      parameter (see igb_param.c)
2722  *      NOTE:  This function is called only when operating in a multiqueue
2723  *             receive environment.
2724  * @rx_ring: pointer to ring
2725  **/
2726 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2727 {
2728         int new_val = rx_ring->itr_val;
2729         int avg_wire_size = 0;
2730         struct igb_adapter *adapter = rx_ring->adapter;
2731
2732         if (!rx_ring->total_packets)
2733                 goto clear_counts; /* no packets, so don't do anything */
2734
2735         /* For non-gigabit speeds, just fix the interrupt rate at 4000
2736          * ints/sec - ITR timer value of 120 ticks.
2737          */
2738         if (adapter->link_speed != SPEED_1000) {
2739                 new_val = 120;
2740                 goto set_itr_val;
2741         }
2742         avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2743
2744         /* Add 24 bytes to size to account for CRC, preamble, and gap */
2745         avg_wire_size += 24;
2746
2747         /* Don't starve jumbo frames */
2748         avg_wire_size = min(avg_wire_size, 3000);
2749
2750         /* Give a little boost to mid-size frames */
2751         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2752                 new_val = avg_wire_size / 3;
2753         else
2754                 new_val = avg_wire_size / 2;
2755
2756 set_itr_val:
2757         if (new_val != rx_ring->itr_val) {
2758                 rx_ring->itr_val = new_val;
2759                 rx_ring->set_itr = 1;
2760         }
2761 clear_counts:
2762         rx_ring->total_bytes = 0;
2763         rx_ring->total_packets = 0;
2764 }
2765
2766 /**
2767  * igb_update_itr - update the dynamic ITR value based on statistics
2768  *      Stores a new ITR value based on packets and byte
2769  *      counts during the last interrupt.  The advantage of per interrupt
2770  *      computation is faster updates and more accurate ITR for the current
2771  *      traffic pattern.  Constants in this function were computed
2772  *      based on theoretical maximum wire speed and thresholds were set based
2773  *      on testing data as well as attempting to minimize response time
2774  *      while increasing bulk throughput.
2775  *      this functionality is controlled by the InterruptThrottleRate module
2776  *      parameter (see igb_param.c)
2777  *      NOTE:  These calculations are only valid when operating in a single-
2778  *             queue environment.
2779  * @adapter: pointer to adapter
2780  * @itr_setting: current adapter->itr
2781  * @packets: the number of packets during this measurement interval
2782  * @bytes: the number of bytes during this measurement interval
2783  **/
2784 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2785                                    int packets, int bytes)
2786 {
2787         unsigned int retval = itr_setting;
2788
2789         if (packets == 0)
2790                 goto update_itr_done;
2791
2792         switch (itr_setting) {
2793         case lowest_latency:
2794                 /* handle TSO and jumbo frames */
2795                 if (bytes/packets > 8000)
2796                         retval = bulk_latency;
2797                 else if ((packets < 5) && (bytes > 512))
2798                         retval = low_latency;
2799                 break;
2800         case low_latency:  /* 50 usec aka 20000 ints/s */
2801                 if (bytes > 10000) {
2802                         /* this if handles the TSO accounting */
2803                         if (bytes/packets > 8000) {
2804                                 retval = bulk_latency;
2805                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2806                                 retval = bulk_latency;
2807                         } else if ((packets > 35)) {
2808                                 retval = lowest_latency;
2809                         }
2810                 } else if (bytes/packets > 2000) {
2811                         retval = bulk_latency;
2812                 } else if (packets <= 2 && bytes < 512) {
2813                         retval = lowest_latency;
2814                 }
2815                 break;
2816         case bulk_latency: /* 250 usec aka 4000 ints/s */
2817                 if (bytes > 25000) {
2818                         if (packets > 35)
2819                                 retval = low_latency;
2820                 } else if (bytes < 1500) {
2821                         retval = low_latency;
2822                 }
2823                 break;
2824         }
2825
2826 update_itr_done:
2827         return retval;
2828 }
2829
2830 static void igb_set_itr(struct igb_adapter *adapter)
2831 {
2832         u16 current_itr;
2833         u32 new_itr = adapter->itr;
2834
2835         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2836         if (adapter->link_speed != SPEED_1000) {
2837                 current_itr = 0;
2838                 new_itr = 4000;
2839                 goto set_itr_now;
2840         }
2841
2842         adapter->rx_itr = igb_update_itr(adapter,
2843                                     adapter->rx_itr,
2844                                     adapter->rx_ring->total_packets,
2845                                     adapter->rx_ring->total_bytes);
2846
2847         if (adapter->rx_ring->buddy) {
2848                 adapter->tx_itr = igb_update_itr(adapter,
2849                                             adapter->tx_itr,
2850                                             adapter->tx_ring->total_packets,
2851                                             adapter->tx_ring->total_bytes);
2852                 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2853         } else {
2854                 current_itr = adapter->rx_itr;
2855         }
2856
2857         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2858         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2859                 current_itr = low_latency;
2860
2861         switch (current_itr) {
2862         /* counts and packets in update_itr are dependent on these numbers */
2863         case lowest_latency:
2864                 new_itr = 70000;
2865                 break;
2866         case low_latency:
2867                 new_itr = 20000; /* aka hwitr = ~200 */
2868                 break;
2869         case bulk_latency:
2870                 new_itr = 4000;
2871                 break;
2872         default:
2873                 break;
2874         }
2875
2876 set_itr_now:
2877         adapter->rx_ring->total_bytes = 0;
2878         adapter->rx_ring->total_packets = 0;
2879         if (adapter->rx_ring->buddy) {
2880                 adapter->rx_ring->buddy->total_bytes = 0;
2881                 adapter->rx_ring->buddy->total_packets = 0;
2882         }
2883
2884         if (new_itr != adapter->itr) {
2885                 /* this attempts to bias the interrupt rate towards Bulk
2886                  * by adding intermediate steps when interrupt rate is
2887                  * increasing */
2888                 new_itr = new_itr > adapter->itr ?
2889                              min(adapter->itr + (new_itr >> 2), new_itr) :
2890                              new_itr;
2891                 /* Don't write the value here; it resets the adapter's
2892                  * internal timer, and causes us to delay far longer than
2893                  * we should between interrupts.  Instead, we write the ITR
2894                  * value at the beginning of the next interrupt so the timing
2895                  * ends up being correct.
2896                  */
2897                 adapter->itr = new_itr;
2898                 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2899                 adapter->rx_ring->set_itr = 1;
2900         }
2901
2902         return;
2903 }
2904
2905
2906 #define IGB_TX_FLAGS_CSUM               0x00000001
2907 #define IGB_TX_FLAGS_VLAN               0x00000002
2908 #define IGB_TX_FLAGS_TSO                0x00000004
2909 #define IGB_TX_FLAGS_IPV4               0x00000008
2910 #define IGB_TX_FLAGS_TSTAMP             0x00000010
2911 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
2912 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2913
2914 static inline int igb_tso_adv(struct igb_adapter *adapter,
2915                               struct igb_ring *tx_ring,
2916                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2917 {
2918         struct e1000_adv_tx_context_desc *context_desc;
2919         unsigned int i;
2920         int err;
2921         struct igb_buffer *buffer_info;
2922         u32 info = 0, tu_cmd = 0;
2923         u32 mss_l4len_idx, l4len;
2924         *hdr_len = 0;
2925
2926         if (skb_header_cloned(skb)) {
2927                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2928                 if (err)
2929                         return err;
2930         }
2931
2932         l4len = tcp_hdrlen(skb);
2933         *hdr_len += l4len;
2934
2935         if (skb->protocol == htons(ETH_P_IP)) {
2936                 struct iphdr *iph = ip_hdr(skb);
2937                 iph->tot_len = 0;
2938                 iph->check = 0;
2939                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2940                                                          iph->daddr, 0,
2941                                                          IPPROTO_TCP,
2942                                                          0);
2943         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2944                 ipv6_hdr(skb)->payload_len = 0;
2945                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2946                                                        &ipv6_hdr(skb)->daddr,
2947                                                        0, IPPROTO_TCP, 0);
2948         }
2949
2950         i = tx_ring->next_to_use;
2951
2952         buffer_info = &tx_ring->buffer_info[i];
2953         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2954         /* VLAN MACLEN IPLEN */
2955         if (tx_flags & IGB_TX_FLAGS_VLAN)
2956                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2957         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2958         *hdr_len += skb_network_offset(skb);
2959         info |= skb_network_header_len(skb);
2960         *hdr_len += skb_network_header_len(skb);
2961         context_desc->vlan_macip_lens = cpu_to_le32(info);
2962
2963         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2964         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2965
2966         if (skb->protocol == htons(ETH_P_IP))
2967                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2968         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2969
2970         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2971
2972         /* MSS L4LEN IDX */
2973         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2974         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2975
2976         /* For 82575, context index must be unique per ring. */
2977         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2978                 mss_l4len_idx |= tx_ring->queue_index << 4;
2979
2980         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2981         context_desc->seqnum_seed = 0;
2982
2983         buffer_info->time_stamp = jiffies;
2984         buffer_info->next_to_watch = i;
2985         buffer_info->dma = 0;
2986         i++;
2987         if (i == tx_ring->count)
2988                 i = 0;
2989
2990         tx_ring->next_to_use = i;
2991
2992         return true;
2993 }
2994
2995 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2996                                         struct igb_ring *tx_ring,
2997                                         struct sk_buff *skb, u32 tx_flags)
2998 {
2999         struct e1000_adv_tx_context_desc *context_desc;
3000         unsigned int i;
3001         struct igb_buffer *buffer_info;
3002         u32 info = 0, tu_cmd = 0;
3003
3004         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3005             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3006                 i = tx_ring->next_to_use;
3007                 buffer_info = &tx_ring->buffer_info[i];
3008                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3009
3010                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3011                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3012                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3013                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3014                         info |= skb_network_header_len(skb);
3015
3016                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3017
3018                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3019
3020                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3021                         switch (skb->protocol) {
3022                         case cpu_to_be16(ETH_P_IP):
3023                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3024                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3025                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3026                                 break;
3027                         case cpu_to_be16(ETH_P_IPV6):
3028                                 /* XXX what about other V6 headers?? */
3029                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3030                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3031                                 break;
3032                         default:
3033                                 if (unlikely(net_ratelimit()))
3034                                         dev_warn(&adapter->pdev->dev,
3035                                             "partial checksum but proto=%x!\n",
3036                                             skb->protocol);
3037                                 break;
3038                         }
3039                 }
3040
3041                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3042                 context_desc->seqnum_seed = 0;
3043                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3044                         context_desc->mss_l4len_idx =
3045                                 cpu_to_le32(tx_ring->queue_index << 4);
3046                 else
3047                         context_desc->mss_l4len_idx = 0;
3048
3049                 buffer_info->time_stamp = jiffies;
3050                 buffer_info->next_to_watch = i;
3051                 buffer_info->dma = 0;
3052
3053                 i++;
3054                 if (i == tx_ring->count)
3055                         i = 0;
3056                 tx_ring->next_to_use = i;
3057
3058                 return true;
3059         }
3060         return false;
3061 }
3062
3063 #define IGB_MAX_TXD_PWR 16
3064 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3065
3066 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3067                                  struct igb_ring *tx_ring, struct sk_buff *skb,
3068                                  unsigned int first)
3069 {
3070         struct igb_buffer *buffer_info;
3071         unsigned int len = skb_headlen(skb);
3072         unsigned int count = 0, i;
3073         unsigned int f;
3074
3075         i = tx_ring->next_to_use;
3076
3077         buffer_info = &tx_ring->buffer_info[i];
3078         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3079         buffer_info->length = len;
3080         /* set time_stamp *before* dma to help avoid a possible race */
3081         buffer_info->time_stamp = jiffies;
3082         buffer_info->next_to_watch = i;
3083         buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
3084                                           PCI_DMA_TODEVICE);
3085         count++;
3086         i++;
3087         if (i == tx_ring->count)
3088                 i = 0;
3089
3090         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3091                 struct skb_frag_struct *frag;
3092
3093                 frag = &skb_shinfo(skb)->frags[f];
3094                 len = frag->size;
3095
3096                 buffer_info = &tx_ring->buffer_info[i];
3097                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3098                 buffer_info->length = len;
3099                 buffer_info->time_stamp = jiffies;
3100                 buffer_info->next_to_watch = i;
3101                 buffer_info->dma = pci_map_page(adapter->pdev,
3102                                                 frag->page,
3103                                                 frag->page_offset,
3104                                                 len,
3105                                                 PCI_DMA_TODEVICE);
3106
3107                 count++;
3108                 i++;
3109                 if (i == tx_ring->count)
3110                         i = 0;
3111         }
3112
3113         i = ((i == 0) ? tx_ring->count - 1 : i - 1);
3114         tx_ring->buffer_info[i].skb = skb;
3115         tx_ring->buffer_info[first].next_to_watch = i;
3116
3117         return count;
3118 }
3119
3120 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3121                                     struct igb_ring *tx_ring,
3122                                     int tx_flags, int count, u32 paylen,
3123                                     u8 hdr_len)
3124 {
3125         union e1000_adv_tx_desc *tx_desc = NULL;
3126         struct igb_buffer *buffer_info;
3127         u32 olinfo_status = 0, cmd_type_len;
3128         unsigned int i;
3129
3130         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3131                         E1000_ADVTXD_DCMD_DEXT);
3132
3133         if (tx_flags & IGB_TX_FLAGS_VLAN)
3134                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3135
3136         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3137                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3138
3139         if (tx_flags & IGB_TX_FLAGS_TSO) {
3140                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3141
3142                 /* insert tcp checksum */
3143                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3144
3145                 /* insert ip checksum */
3146                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3147                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3148
3149         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3150                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3151         }
3152
3153         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3154             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3155                          IGB_TX_FLAGS_VLAN)))
3156                 olinfo_status |= tx_ring->queue_index << 4;
3157
3158         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3159
3160         i = tx_ring->next_to_use;
3161         while (count--) {
3162                 buffer_info = &tx_ring->buffer_info[i];
3163                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3164                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3165                 tx_desc->read.cmd_type_len =
3166                         cpu_to_le32(cmd_type_len | buffer_info->length);
3167                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3168                 i++;
3169                 if (i == tx_ring->count)
3170                         i = 0;
3171         }
3172
3173         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3174         /* Force memory writes to complete before letting h/w
3175          * know there are new descriptors to fetch.  (Only
3176          * applicable for weak-ordered memory model archs,
3177          * such as IA-64). */
3178         wmb();
3179
3180         tx_ring->next_to_use = i;
3181         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3182         /* we need this if more than one processor can write to our tail
3183          * at a time, it syncronizes IO on IA64/Altix systems */
3184         mmiowb();
3185 }
3186
3187 static int __igb_maybe_stop_tx(struct net_device *netdev,
3188                                struct igb_ring *tx_ring, int size)
3189 {
3190         struct igb_adapter *adapter = netdev_priv(netdev);
3191
3192         netif_stop_subqueue(netdev, tx_ring->queue_index);
3193
3194         /* Herbert's original patch had:
3195          *  smp_mb__after_netif_stop_queue();
3196          * but since that doesn't exist yet, just open code it. */
3197         smp_mb();
3198
3199         /* We need to check again in a case another CPU has just
3200          * made room available. */
3201         if (IGB_DESC_UNUSED(tx_ring) < size)
3202                 return -EBUSY;
3203
3204         /* A reprieve! */
3205         netif_wake_subqueue(netdev, tx_ring->queue_index);
3206         ++adapter->restart_queue;
3207         return 0;
3208 }
3209
3210 static int igb_maybe_stop_tx(struct net_device *netdev,
3211                              struct igb_ring *tx_ring, int size)
3212 {
3213         if (IGB_DESC_UNUSED(tx_ring) >= size)
3214                 return 0;
3215         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3216 }
3217
3218 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3219                                    struct net_device *netdev,
3220                                    struct igb_ring *tx_ring)
3221 {
3222         struct igb_adapter *adapter = netdev_priv(netdev);
3223         unsigned int first;
3224         unsigned int tx_flags = 0;
3225         u8 hdr_len = 0;
3226         int tso = 0;
3227         union skb_shared_tx *shtx;
3228
3229         if (test_bit(__IGB_DOWN, &adapter->state)) {
3230                 dev_kfree_skb_any(skb);
3231                 return NETDEV_TX_OK;
3232         }
3233
3234         if (skb->len <= 0) {
3235                 dev_kfree_skb_any(skb);
3236                 return NETDEV_TX_OK;
3237         }
3238
3239         /* need: 1 descriptor per page,
3240          *       + 2 desc gap to keep tail from touching head,
3241          *       + 1 desc for skb->data,
3242          *       + 1 desc for context descriptor,
3243          * otherwise try next time */
3244         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3245                 /* this is a hard error */
3246                 return NETDEV_TX_BUSY;
3247         }
3248
3249         /*
3250          * TODO: check that there currently is no other packet with
3251          * time stamping in the queue
3252          *
3253          * When doing time stamping, keep the connection to the socket
3254          * a while longer: it is still needed by skb_hwtstamp_tx(),
3255          * called either in igb_tx_hwtstamp() or by our caller when
3256          * doing software time stamping.
3257          */
3258         shtx = skb_tx(skb);
3259         if (unlikely(shtx->hardware)) {
3260                 shtx->in_progress = 1;
3261                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3262         }
3263
3264         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3265                 tx_flags |= IGB_TX_FLAGS_VLAN;
3266                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3267         }
3268
3269         if (skb->protocol == htons(ETH_P_IP))
3270                 tx_flags |= IGB_TX_FLAGS_IPV4;
3271
3272         first = tx_ring->next_to_use;
3273         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3274                                               &hdr_len) : 0;
3275
3276         if (tso < 0) {
3277                 dev_kfree_skb_any(skb);
3278                 return NETDEV_TX_OK;
3279         }
3280
3281         if (tso)
3282                 tx_flags |= IGB_TX_FLAGS_TSO;
3283         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3284                  (skb->ip_summed == CHECKSUM_PARTIAL))
3285                 tx_flags |= IGB_TX_FLAGS_CSUM;
3286
3287         igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3288                          igb_tx_map_adv(adapter, tx_ring, skb, first),
3289                          skb->len, hdr_len);
3290
3291         netdev->trans_start = jiffies;
3292
3293         /* Make sure there is space in the ring for the next send. */
3294         igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3295
3296         return NETDEV_TX_OK;
3297 }
3298
3299 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3300 {
3301         struct igb_adapter *adapter = netdev_priv(netdev);
3302         struct igb_ring *tx_ring;
3303
3304         int r_idx = 0;
3305         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3306         tx_ring = adapter->multi_tx_table[r_idx];
3307
3308         /* This goes back to the question of how to logically map a tx queue
3309          * to a flow.  Right now, performance is impacted slightly negatively
3310          * if using multiple tx queues.  If the stack breaks away from a
3311          * single qdisc implementation, we can look at this again. */
3312         return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3313 }
3314
3315 /**
3316  * igb_tx_timeout - Respond to a Tx Hang
3317  * @netdev: network interface device structure
3318  **/
3319 static void igb_tx_timeout(struct net_device *netdev)
3320 {
3321         struct igb_adapter *adapter = netdev_priv(netdev);
3322         struct e1000_hw *hw = &adapter->hw;
3323
3324         /* Do the reset outside of interrupt context */
3325         adapter->tx_timeout_count++;
3326         schedule_work(&adapter->reset_task);
3327         wr32(E1000_EICS,
3328              (adapter->eims_enable_mask & ~adapter->eims_other));
3329 }
3330
3331 static void igb_reset_task(struct work_struct *work)
3332 {
3333         struct igb_adapter *adapter;
3334         adapter = container_of(work, struct igb_adapter, reset_task);
3335
3336         igb_reinit_locked(adapter);
3337 }
3338
3339 /**
3340  * igb_get_stats - Get System Network Statistics
3341  * @netdev: network interface device structure
3342  *
3343  * Returns the address of the device statistics structure.
3344  * The statistics are actually updated from the timer callback.
3345  **/
3346 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3347 {
3348         struct igb_adapter *adapter = netdev_priv(netdev);
3349
3350         /* only return the current stats */
3351         return &adapter->net_stats;
3352 }
3353
3354 /**
3355  * igb_change_mtu - Change the Maximum Transfer Unit
3356  * @netdev: network interface device structure
3357  * @new_mtu: new value for maximum frame size
3358  *
3359  * Returns 0 on success, negative on failure
3360  **/
3361 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3362 {
3363         struct igb_adapter *adapter = netdev_priv(netdev);
3364         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3365
3366         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3367             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3368                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3369                 return -EINVAL;
3370         }
3371
3372         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3373                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3374                 return -EINVAL;
3375         }
3376
3377         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3378                 msleep(1);
3379
3380         /* igb_down has a dependency on max_frame_size */
3381         adapter->max_frame_size = max_frame;
3382         if (netif_running(netdev))
3383                 igb_down(adapter);
3384
3385         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3386          * means we reserve 2 more, this pushes us to allocate from the next
3387          * larger slab size.
3388          * i.e. RXBUFFER_2048 --> size-4096 slab
3389          */
3390
3391         if (max_frame <= IGB_RXBUFFER_256)
3392                 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3393         else if (max_frame <= IGB_RXBUFFER_512)
3394                 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3395         else if (max_frame <= IGB_RXBUFFER_1024)
3396                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3397         else if (max_frame <= IGB_RXBUFFER_2048)
3398                 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3399         else
3400 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3401                 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3402 #else
3403                 adapter->rx_buffer_len = PAGE_SIZE / 2;
3404 #endif
3405
3406         /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3407         if (adapter->vfs_allocated_count &&
3408             (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3409                 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3410
3411         /* adjust allocation if LPE protects us, and we aren't using SBP */
3412         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3413              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3414                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3415
3416         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3417                  netdev->mtu, new_mtu);
3418         netdev->mtu = new_mtu;
3419
3420         if (netif_running(netdev))
3421                 igb_up(adapter);
3422         else
3423                 igb_reset(adapter);
3424
3425         clear_bit(__IGB_RESETTING, &adapter->state);
3426
3427         return 0;
3428 }
3429
3430 /**
3431  * igb_update_stats - Update the board statistics counters
3432  * @adapter: board private structure
3433  **/
3434
3435 void igb_update_stats(struct igb_adapter *adapter)
3436 {
3437         struct e1000_hw *hw = &adapter->hw;
3438         struct pci_dev *pdev = adapter->pdev;
3439         u16 phy_tmp;
3440
3441 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3442
3443         /*
3444          * Prevent stats update while adapter is being reset, or if the pci
3445          * connection is down.
3446          */
3447         if (adapter->link_speed == 0)
3448                 return;
3449         if (pci_channel_offline(pdev))
3450                 return;
3451
3452         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3453         adapter->stats.gprc += rd32(E1000_GPRC);
3454         adapter->stats.gorc += rd32(E1000_GORCL);
3455         rd32(E1000_GORCH); /* clear GORCL */
3456         adapter->stats.bprc += rd32(E1000_BPRC);
3457         adapter->stats.mprc += rd32(E1000_MPRC);
3458         adapter->stats.roc += rd32(E1000_ROC);
3459
3460         adapter->stats.prc64 += rd32(E1000_PRC64);
3461         adapter->stats.prc127 += rd32(E1000_PRC127);
3462         adapter->stats.prc255 += rd32(E1000_PRC255);
3463         adapter->stats.prc511 += rd32(E1000_PRC511);
3464         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3465         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3466         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3467         adapter->stats.sec += rd32(E1000_SEC);
3468
3469         adapter->stats.mpc += rd32(E1000_MPC);
3470         adapter->stats.scc += rd32(E1000_SCC);
3471         adapter->stats.ecol += rd32(E1000_ECOL);
3472         adapter->stats.mcc += rd32(E1000_MCC);
3473         adapter->stats.latecol += rd32(E1000_LATECOL);
3474         adapter->stats.dc += rd32(E1000_DC);
3475         adapter->stats.rlec += rd32(E1000_RLEC);
3476         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3477         adapter->stats.xontxc += rd32(E1000_XONTXC);
3478         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3479         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3480         adapter->stats.fcruc += rd32(E1000_FCRUC);
3481         adapter->stats.gptc += rd32(E1000_GPTC);
3482         adapter->stats.gotc += rd32(E1000_GOTCL);
3483         rd32(E1000_GOTCH); /* clear GOTCL */
3484         adapter->stats.rnbc += rd32(E1000_RNBC);
3485         adapter->stats.ruc += rd32(E1000_RUC);
3486         adapter->stats.rfc += rd32(E1000_RFC);
3487         adapter->stats.rjc += rd32(E1000_RJC);
3488         adapter->stats.tor += rd32(E1000_TORH);
3489         adapter->stats.tot += rd32(E1000_TOTH);
3490         adapter->stats.tpr += rd32(E1000_TPR);
3491
3492         adapter->stats.ptc64 += rd32(E1000_PTC64);
3493         adapter->stats.ptc127 += rd32(E1000_PTC127);
3494         adapter->stats.ptc255 += rd32(E1000_PTC255);
3495         adapter->stats.ptc511 += rd32(E1000_PTC511);
3496         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3497         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3498
3499         adapter->stats.mptc += rd32(E1000_MPTC);
3500         adapter->stats.bptc += rd32(E1000_BPTC);
3501
3502         /* used for adaptive IFS */
3503
3504         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3505         adapter->stats.tpt += hw->mac.tx_packet_delta;
3506         hw->mac.collision_delta = rd32(E1000_COLC);
3507         adapter->stats.colc += hw->mac.collision_delta;
3508
3509         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3510         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3511         adapter->stats.tncrs += rd32(E1000_TNCRS);
3512         adapter->stats.tsctc += rd32(E1000_TSCTC);
3513         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3514
3515         adapter->stats.iac += rd32(E1000_IAC);
3516         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3517         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3518         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3519         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3520         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3521         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3522         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3523         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3524
3525         /* Fill out the OS statistics structure */
3526         adapter->net_stats.multicast = adapter->stats.mprc;
3527         adapter->net_stats.collisions = adapter->stats.colc;
3528
3529         /* Rx Errors */
3530
3531         /* RLEC on some newer hardware can be incorrect so build
3532         * our own version based on RUC and ROC */
3533         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3534                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3535                 adapter->stats.ruc + adapter->stats.roc +
3536                 adapter->stats.cexterr;
3537         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3538                                               adapter->stats.roc;
3539         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3540         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3541         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3542
3543         /* Tx Errors */
3544         adapter->net_stats.tx_errors = adapter->stats.ecol +
3545                                        adapter->stats.latecol;
3546         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3547         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3548         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3549
3550         /* Tx Dropped needs to be maintained elsewhere */
3551
3552         /* Phy Stats */
3553         if (hw->phy.media_type == e1000_media_type_copper) {
3554                 if ((adapter->link_speed == SPEED_1000) &&
3555                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3556                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3557                         adapter->phy_stats.idle_errors += phy_tmp;
3558                 }
3559         }
3560
3561         /* Management Stats */
3562         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3563         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3564         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3565 }
3566
3567 static irqreturn_t igb_msix_other(int irq, void *data)
3568 {
3569         struct net_device *netdev = data;
3570         struct igb_adapter *adapter = netdev_priv(netdev);
3571         struct e1000_hw *hw = &adapter->hw;
3572         u32 icr = rd32(E1000_ICR);
3573
3574         /* reading ICR causes bit 31 of EICR to be cleared */
3575
3576         if(icr & E1000_ICR_DOUTSYNC) {
3577                 /* HW is reporting DMA is out of sync */
3578                 adapter->stats.doosync++;
3579         }
3580
3581         /* Check for a mailbox event */
3582         if (icr & E1000_ICR_VMMB)
3583                 igb_msg_task(adapter);
3584
3585         if (icr & E1000_ICR_LSC) {
3586                 hw->mac.get_link_status = 1;
3587                 /* guard against interrupt when we're going down */
3588                 if (!test_bit(__IGB_DOWN, &adapter->state))
3589                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3590         }
3591
3592         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3593         wr32(E1000_EIMS, adapter->eims_other);
3594
3595         return IRQ_HANDLED;
3596 }
3597
3598 static irqreturn_t igb_msix_tx(int irq, void *data)
3599 {
3600         struct igb_ring *tx_ring = data;
3601         struct igb_adapter *adapter = tx_ring->adapter;
3602         struct e1000_hw *hw = &adapter->hw;
3603
3604 #ifdef CONFIG_IGB_DCA
3605         if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3606                 igb_update_tx_dca(tx_ring);
3607 #endif
3608
3609         tx_ring->total_bytes = 0;
3610         tx_ring->total_packets = 0;
3611
3612         /* auto mask will automatically reenable the interrupt when we write
3613          * EICS */
3614         if (!igb_clean_tx_irq(tx_ring))
3615                 /* Ring was not completely cleaned, so fire another interrupt */
3616                 wr32(E1000_EICS, tx_ring->eims_value);
3617         else
3618                 wr32(E1000_EIMS, tx_ring->eims_value);
3619
3620         return IRQ_HANDLED;
3621 }
3622
3623 static void igb_write_itr(struct igb_ring *ring)
3624 {
3625         struct e1000_hw *hw = &ring->adapter->hw;
3626         if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3627                 switch (hw->mac.type) {
3628                 case e1000_82576:
3629                         wr32(ring->itr_register, ring->itr_val |
3630                              0x80000000);
3631                         break;
3632                 default:
3633                         wr32(ring->itr_register, ring->itr_val |
3634                              (ring->itr_val << 16));
3635                         break;
3636                 }
3637                 ring->set_itr = 0;
3638         }
3639 }
3640
3641 static irqreturn_t igb_msix_rx(int irq, void *data)
3642 {
3643         struct igb_ring *rx_ring = data;
3644
3645         /* Write the ITR value calculated at the end of the
3646          * previous interrupt.
3647          */
3648
3649         igb_write_itr(rx_ring);
3650
3651         if (napi_schedule_prep(&rx_ring->napi))
3652                 __napi_schedule(&rx_ring->napi);
3653
3654 #ifdef CONFIG_IGB_DCA
3655         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3656                 igb_update_rx_dca(rx_ring);
3657 #endif
3658                 return IRQ_HANDLED;
3659 }
3660
3661 #ifdef CONFIG_IGB_DCA
3662 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3663 {
3664         u32 dca_rxctrl;
3665         struct igb_adapter *adapter = rx_ring->adapter;
3666         struct e1000_hw *hw = &adapter->hw;
3667         int cpu = get_cpu();
3668         int q = rx_ring->reg_idx;
3669
3670         if (rx_ring->cpu != cpu) {
3671                 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3672                 if (hw->mac.type == e1000_82576) {
3673                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3674                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3675                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
3676                 } else {
3677                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3678                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3679                 }
3680                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3681                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3682                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3683                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3684                 rx_ring->cpu = cpu;
3685         }
3686         put_cpu();
3687 }
3688
3689 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3690 {
3691         u32 dca_txctrl;
3692         struct igb_adapter *adapter = tx_ring->adapter;
3693         struct e1000_hw *hw = &adapter->hw;
3694         int cpu = get_cpu();
3695         int q = tx_ring->reg_idx;
3696
3697         if (tx_ring->cpu != cpu) {
3698                 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3699                 if (hw->mac.type == e1000_82576) {
3700                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3701                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3702                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
3703                 } else {
3704                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3705                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3706                 }
3707                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3708                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3709                 tx_ring->cpu = cpu;
3710         }
3711         put_cpu();
3712 }
3713
3714 static void igb_setup_dca(struct igb_adapter *adapter)
3715 {
3716         int i;
3717
3718         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3719                 return;
3720
3721         for (i = 0; i < adapter->num_tx_queues; i++) {
3722                 adapter->tx_ring[i].cpu = -1;
3723                 igb_update_tx_dca(&adapter->tx_ring[i]);
3724         }
3725         for (i = 0; i < adapter->num_rx_queues; i++) {
3726                 adapter->rx_ring[i].cpu = -1;
3727                 igb_update_rx_dca(&adapter->rx_ring[i]);
3728         }
3729 }
3730
3731 static int __igb_notify_dca(struct device *dev, void *data)
3732 {
3733         struct net_device *netdev = dev_get_drvdata(dev);
3734         struct igb_adapter *adapter = netdev_priv(netdev);
3735         struct e1000_hw *hw = &adapter->hw;
3736         unsigned long event = *(unsigned long *)data;
3737
3738         switch (event) {
3739         case DCA_PROVIDER_ADD:
3740                 /* if already enabled, don't do it again */
3741                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3742                         break;
3743                 /* Always use CB2 mode, difference is masked
3744                  * in the CB driver. */
3745                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3746                 if (dca_add_requester(dev) == 0) {
3747                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
3748                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
3749                         igb_setup_dca(adapter);
3750                         break;
3751                 }
3752                 /* Fall Through since DCA is disabled. */
3753         case DCA_PROVIDER_REMOVE:
3754                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3755                         /* without this a class_device is left
3756                          * hanging around in the sysfs model */
3757                         dca_remove_requester(dev);
3758                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
3759                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3760                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3761                 }
3762                 break;
3763         }
3764
3765         return 0;
3766 }
3767
3768 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3769                           void *p)
3770 {
3771         int ret_val;
3772
3773         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3774                                          __igb_notify_dca);
3775
3776         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3777 }
3778 #endif /* CONFIG_IGB_DCA */
3779
3780 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3781 {
3782         struct e1000_hw *hw = &adapter->hw;
3783         u32 ping;
3784         int i;
3785
3786         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3787                 ping = E1000_PF_CONTROL_MSG;
3788                 if (adapter->vf_data[i].clear_to_send)
3789                         ping |= E1000_VT_MSGTYPE_CTS;
3790                 igb_write_mbx(hw, &ping, 1, i);
3791         }
3792 }
3793
3794 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3795                                   u32 *msgbuf, u32 vf)
3796 {
3797         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3798         u16 *hash_list = (u16 *)&msgbuf[1];
3799         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3800         int i;
3801
3802         /* only up to 30 hash values supported */
3803         if (n > 30)
3804                 n = 30;
3805
3806         /* salt away the number of multi cast addresses assigned
3807          * to this VF for later use to restore when the PF multi cast
3808          * list changes
3809          */
3810         vf_data->num_vf_mc_hashes = n;
3811
3812         /* VFs are limited to using the MTA hash table for their multicast
3813          * addresses */
3814         for (i = 0; i < n; i++)
3815                 vf_data->vf_mc_hashes[i] = hash_list[i];;
3816
3817         /* Flush and reset the mta with the new values */
3818         igb_set_multi(adapter->netdev);
3819
3820         return 0;
3821 }
3822
3823 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3824 {
3825         struct e1000_hw *hw = &adapter->hw;
3826         struct vf_data_storage *vf_data;
3827         int i, j;
3828
3829         for (i = 0; i < adapter->vfs_allocated_count; i++) {
3830                 vf_data = &adapter->vf_data[i];
3831                 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3832                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3833         }
3834 }
3835
3836 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3837 {
3838         struct e1000_hw *hw = &adapter->hw;
3839         u32 pool_mask, reg, vid;
3840         int i;
3841
3842         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3843
3844         /* Find the vlan filter for this id */
3845         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3846                 reg = rd32(E1000_VLVF(i));
3847
3848                 /* remove the vf from the pool */
3849                 reg &= ~pool_mask;
3850
3851                 /* if pool is empty then remove entry from vfta */
3852                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3853                     (reg & E1000_VLVF_VLANID_ENABLE)) {
3854                         reg = 0;
3855                         vid = reg & E1000_VLVF_VLANID_MASK;
3856                         igb_vfta_set(hw, vid, false);
3857                 }
3858
3859                 wr32(E1000_VLVF(i), reg);
3860         }
3861 }
3862
3863 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3864 {
3865         struct e1000_hw *hw = &adapter->hw;
3866         u32 reg, i;
3867
3868         /* It is an error to call this function when VFs are not enabled */
3869         if (!adapter->vfs_allocated_count)
3870                 return -1;
3871
3872         /* Find the vlan filter for this id */
3873         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3874                 reg = rd32(E1000_VLVF(i));
3875                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3876                     vid == (reg & E1000_VLVF_VLANID_MASK))
3877                         break;
3878         }
3879
3880         if (add) {
3881                 if (i == E1000_VLVF_ARRAY_SIZE) {
3882                         /* Did not find a matching VLAN ID entry that was
3883                          * enabled.  Search for a free filter entry, i.e.
3884                          * one without the enable bit set
3885                          */
3886                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3887                                 reg = rd32(E1000_VLVF(i));
3888                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3889                                         break;
3890                         }
3891                 }
3892                 if (i < E1000_VLVF_ARRAY_SIZE) {
3893                         /* Found an enabled/available entry */
3894                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3895
3896                         /* if !enabled we need to set this up in vfta */
3897                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3898                                 /* add VID to filter table, if bit already set
3899                                  * PF must have added it outside of table */
3900                                 if (igb_vfta_set(hw, vid, true))
3901                                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
3902                                                 adapter->vfs_allocated_count);
3903                                 reg |= E1000_VLVF_VLANID_ENABLE;
3904                         }
3905                         reg &= ~E1000_VLVF_VLANID_MASK;
3906                         reg |= vid;
3907
3908                         wr32(E1000_VLVF(i), reg);
3909                         return 0;
3910                 }
3911         } else {
3912                 if (i < E1000_VLVF_ARRAY_SIZE) {
3913                         /* remove vf from the pool */
3914                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3915                         /* if pool is empty then remove entry from vfta */
3916                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3917                                 reg = 0;
3918                                 igb_vfta_set(hw, vid, false);
3919                         }
3920                         wr32(E1000_VLVF(i), reg);
3921                         return 0;
3922                 }
3923         }
3924         return -1;
3925 }
3926
3927 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3928 {
3929         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3930         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3931
3932         return igb_vlvf_set(adapter, vid, add, vf);
3933 }
3934
3935 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3936 {
3937         struct e1000_hw *hw = &adapter->hw;
3938
3939         /* disable mailbox functionality for vf */
3940         adapter->vf_data[vf].clear_to_send = false;
3941
3942         /* reset offloads to defaults */
3943         igb_set_vmolr(hw, vf);
3944
3945         /* reset vlans for device */
3946         igb_clear_vf_vfta(adapter, vf);
3947
3948         /* reset multicast table array for vf */
3949         adapter->vf_data[vf].num_vf_mc_hashes = 0;
3950
3951         /* Flush and reset the mta with the new values */
3952         igb_set_multi(adapter->netdev);
3953 }
3954
3955 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3956 {
3957         struct e1000_hw *hw = &adapter->hw;
3958         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3959         u32 reg, msgbuf[3];
3960         u8 *addr = (u8 *)(&msgbuf[1]);
3961
3962         /* process all the same items cleared in a function level reset */
3963         igb_vf_reset_event(adapter, vf);
3964
3965         /* set vf mac address */
3966         igb_rar_set(hw, vf_mac, vf + 1);
3967         igb_set_rah_pool(hw, vf, vf + 1);
3968
3969         /* enable transmit and receive for vf */
3970         reg = rd32(E1000_VFTE);
3971         wr32(E1000_VFTE, reg | (1 << vf));
3972         reg = rd32(E1000_VFRE);
3973         wr32(E1000_VFRE, reg | (1 << vf));
3974
3975         /* enable mailbox functionality for vf */
3976         adapter->vf_data[vf].clear_to_send = true;
3977
3978         /* reply to reset with ack and vf mac address */
3979         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3980         memcpy(addr, vf_mac, 6);
3981         igb_write_mbx(hw, msgbuf, 3, vf);
3982 }
3983
3984 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
3985 {
3986                 unsigned char *addr = (char *)&msg[1];
3987                 int err = -1;
3988
3989                 if (is_valid_ether_addr(addr))
3990                         err = igb_set_vf_mac(adapter, vf, addr);
3991
3992                 return err;
3993
3994 }
3995
3996 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
3997 {
3998         struct e1000_hw *hw = &adapter->hw;
3999         u32 msg = E1000_VT_MSGTYPE_NACK;
4000
4001         /* if device isn't clear to send it shouldn't be reading either */
4002         if (!adapter->vf_data[vf].clear_to_send)
4003                 igb_write_mbx(hw, &msg, 1, vf);
4004 }
4005
4006
4007 static void igb_msg_task(struct igb_adapter *adapter)
4008 {
4009         struct e1000_hw *hw = &adapter->hw;
4010         u32 vf;
4011
4012         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4013                 /* process any reset requests */
4014                 if (!igb_check_for_rst(hw, vf)) {
4015                         adapter->vf_data[vf].clear_to_send = false;
4016                         igb_vf_reset_event(adapter, vf);
4017                 }
4018
4019                 /* process any messages pending */
4020                 if (!igb_check_for_msg(hw, vf))
4021                         igb_rcv_msg_from_vf(adapter, vf);
4022
4023                 /* process any acks */
4024                 if (!igb_check_for_ack(hw, vf))
4025                         igb_rcv_ack_from_vf(adapter, vf);
4026
4027         }
4028 }
4029
4030 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4031 {
4032         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4033         u32 msgbuf[mbx_size];
4034         struct e1000_hw *hw = &adapter->hw;
4035         s32 retval;
4036
4037         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4038
4039         if (retval)
4040                 dev_err(&adapter->pdev->dev,
4041                         "Error receiving message from VF\n");
4042
4043         /* this is a message we already processed, do nothing */
4044         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4045                 return retval;
4046
4047         /*
4048          * until the vf completes a reset it should not be
4049          * allowed to start any configuration.
4050          */
4051
4052         if (msgbuf[0] == E1000_VF_RESET) {
4053                 igb_vf_reset_msg(adapter, vf);
4054
4055                 return retval;
4056         }
4057
4058         if (!adapter->vf_data[vf].clear_to_send) {
4059                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4060                 igb_write_mbx(hw, msgbuf, 1, vf);
4061                 return retval;
4062         }
4063
4064         switch ((msgbuf[0] & 0xFFFF)) {
4065         case E1000_VF_SET_MAC_ADDR:
4066                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4067                 break;
4068         case E1000_VF_SET_MULTICAST:
4069                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4070                 break;
4071         case E1000_VF_SET_LPE:
4072                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4073                 break;
4074         case E1000_VF_SET_VLAN:
4075                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4076                 break;
4077         default:
4078                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4079                 retval = -1;
4080                 break;
4081         }
4082
4083         /* notify the VF of the results of what it sent us */
4084         if (retval)
4085                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4086         else
4087                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4088
4089         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4090
4091         igb_write_mbx(hw, msgbuf, 1, vf);
4092
4093         return retval;
4094 }
4095
4096 /**
4097  * igb_intr_msi - Interrupt Handler
4098  * @irq: interrupt number
4099  * @data: pointer to a network interface device structure
4100  **/
4101 static irqreturn_t igb_intr_msi(int irq, void *data)
4102 {
4103         struct net_device *netdev = data;
4104         struct igb_adapter *adapter = netdev_priv(netdev);
4105         struct e1000_hw *hw = &adapter->hw;
4106         /* read ICR disables interrupts using IAM */
4107         u32 icr = rd32(E1000_ICR);
4108
4109         igb_write_itr(adapter->rx_ring);
4110
4111         if(icr & E1000_ICR_DOUTSYNC) {
4112                 /* HW is reporting DMA is out of sync */
4113                 adapter->stats.doosync++;
4114         }
4115
4116         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4117                 hw->mac.get_link_status = 1;
4118                 if (!test_bit(__IGB_DOWN, &adapter->state))
4119                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4120         }
4121
4122         napi_schedule(&adapter->rx_ring[0].napi);
4123
4124         return IRQ_HANDLED;
4125 }
4126
4127 /**
4128  * igb_intr - Legacy Interrupt Handler
4129  * @irq: interrupt number
4130  * @data: pointer to a network interface device structure
4131  **/
4132 static irqreturn_t igb_intr(int irq, void *data)
4133 {
4134         struct net_device *netdev = data;
4135         struct igb_adapter *adapter = netdev_priv(netdev);
4136         struct e1000_hw *hw = &adapter->hw;
4137         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4138          * need for the IMC write */
4139         u32 icr = rd32(E1000_ICR);
4140         if (!icr)
4141                 return IRQ_NONE;  /* Not our interrupt */
4142
4143         igb_write_itr(adapter->rx_ring);
4144
4145         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4146          * not set, then the adapter didn't send an interrupt */
4147         if (!(icr & E1000_ICR_INT_ASSERTED))
4148                 return IRQ_NONE;
4149
4150         if(icr & E1000_ICR_DOUTSYNC) {
4151                 /* HW is reporting DMA is out of sync */
4152                 adapter->stats.doosync++;
4153         }
4154
4155         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4156                 hw->mac.get_link_status = 1;
4157                 /* guard against interrupt when we're going down */
4158                 if (!test_bit(__IGB_DOWN, &adapter->state))
4159                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4160         }
4161
4162         napi_schedule(&adapter->rx_ring[0].napi);
4163
4164         return IRQ_HANDLED;
4165 }
4166
4167 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4168 {
4169         struct igb_adapter *adapter = rx_ring->adapter;
4170         struct e1000_hw *hw = &adapter->hw;
4171
4172         if (adapter->itr_setting & 3) {
4173                 if (adapter->num_rx_queues == 1)
4174                         igb_set_itr(adapter);
4175                 else
4176                         igb_update_ring_itr(rx_ring);
4177         }
4178
4179         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4180                 if (adapter->msix_entries)
4181                         wr32(E1000_EIMS, rx_ring->eims_value);
4182                 else
4183                         igb_irq_enable(adapter);
4184         }
4185 }
4186
4187 /**
4188  * igb_poll - NAPI Rx polling callback
4189  * @napi: napi polling structure
4190  * @budget: count of how many packets we should handle
4191  **/
4192 static int igb_poll(struct napi_struct *napi, int budget)
4193 {
4194         struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4195         int work_done = 0;
4196
4197 #ifdef CONFIG_IGB_DCA
4198         if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4199                 igb_update_rx_dca(rx_ring);
4200 #endif
4201         igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4202
4203         if (rx_ring->buddy) {
4204 #ifdef CONFIG_IGB_DCA
4205                 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4206                         igb_update_tx_dca(rx_ring->buddy);
4207 #endif
4208                 if (!igb_clean_tx_irq(rx_ring->buddy))
4209                         work_done = budget;
4210         }
4211
4212         /* If not enough Rx work done, exit the polling mode */
4213         if (work_done < budget) {
4214                 napi_complete(napi);
4215                 igb_rx_irq_enable(rx_ring);
4216         }
4217
4218         return work_done;
4219 }
4220
4221 /**
4222  * igb_hwtstamp - utility function which checks for TX time stamp
4223  * @adapter: board private structure
4224  * @skb: packet that was just sent
4225  *
4226  * If we were asked to do hardware stamping and such a time stamp is
4227  * available, then it must have been for this skb here because we only
4228  * allow only one such packet into the queue.
4229  */
4230 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4231 {
4232         union skb_shared_tx *shtx = skb_tx(skb);
4233         struct e1000_hw *hw = &adapter->hw;
4234
4235         if (unlikely(shtx->hardware)) {
4236                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4237                 if (valid) {
4238                         u64 regval = rd32(E1000_TXSTMPL);
4239                         u64 ns;
4240                         struct skb_shared_hwtstamps shhwtstamps;
4241
4242                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4243                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4244                         ns = timecounter_cyc2time(&adapter->clock,
4245                                                   regval);
4246                         timecompare_update(&adapter->compare, ns);
4247                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4248                         shhwtstamps.syststamp =
4249                                 timecompare_transform(&adapter->compare, ns);
4250                         skb_tstamp_tx(skb, &shhwtstamps);
4251                 }
4252         }
4253 }
4254
4255 /**
4256  * igb_clean_tx_irq - Reclaim resources after transmit completes
4257  * @adapter: board private structure
4258  * returns true if ring is completely cleaned
4259  **/
4260 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4261 {
4262         struct igb_adapter *adapter = tx_ring->adapter;
4263         struct net_device *netdev = adapter->netdev;
4264         struct e1000_hw *hw = &adapter->hw;
4265         struct igb_buffer *buffer_info;
4266         struct sk_buff *skb;
4267         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4268         unsigned int total_bytes = 0, total_packets = 0;
4269         unsigned int i, eop, count = 0;
4270         bool cleaned = false;
4271
4272         i = tx_ring->next_to_clean;
4273         eop = tx_ring->buffer_info[i].next_to_watch;
4274         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4275
4276         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4277                (count < tx_ring->count)) {
4278                 for (cleaned = false; !cleaned; count++) {
4279                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4280                         buffer_info = &tx_ring->buffer_info[i];
4281                         cleaned = (i == eop);
4282                         skb = buffer_info->skb;
4283
4284                         if (skb) {
4285                                 unsigned int segs, bytecount;
4286                                 /* gso_segs is currently only valid for tcp */
4287                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4288                                 /* multiply data chunks by size of headers */
4289                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4290                                             skb->len;
4291                                 total_packets += segs;
4292                                 total_bytes += bytecount;
4293
4294                                 igb_tx_hwtstamp(adapter, skb);
4295                         }
4296
4297                         igb_unmap_and_free_tx_resource(adapter, buffer_info);
4298                         tx_desc->wb.status = 0;
4299
4300                         i++;
4301                         if (i == tx_ring->count)
4302                                 i = 0;
4303                 }
4304                 eop = tx_ring->buffer_info[i].next_to_watch;
4305                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4306         }
4307
4308         tx_ring->next_to_clean = i;
4309
4310         if (unlikely(count &&
4311                      netif_carrier_ok(netdev) &&
4312                      IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4313                 /* Make sure that anybody stopping the queue after this
4314                  * sees the new next_to_clean.
4315                  */
4316                 smp_mb();
4317                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4318                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4319                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4320                         ++adapter->restart_queue;
4321                 }
4322         }
4323
4324         if (tx_ring->detect_tx_hung) {
4325                 /* Detect a transmit hang in hardware, this serializes the
4326                  * check with the clearing of time_stamp and movement of i */
4327                 tx_ring->detect_tx_hung = false;
4328                 if (tx_ring->buffer_info[i].time_stamp &&
4329                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4330                                (adapter->tx_timeout_factor * HZ))
4331                     && !(rd32(E1000_STATUS) &
4332                          E1000_STATUS_TXOFF)) {
4333
4334                         /* detected Tx unit hang */
4335                         dev_err(&adapter->pdev->dev,
4336                                 "Detected Tx Unit Hang\n"
4337                                 "  Tx Queue             <%d>\n"
4338                                 "  TDH                  <%x>\n"
4339                                 "  TDT                  <%x>\n"
4340                                 "  next_to_use          <%x>\n"
4341                                 "  next_to_clean        <%x>\n"
4342                                 "buffer_info[next_to_clean]\n"
4343                                 "  time_stamp           <%lx>\n"
4344                                 "  next_to_watch        <%x>\n"
4345                                 "  jiffies              <%lx>\n"
4346                                 "  desc.status          <%x>\n",
4347                                 tx_ring->queue_index,
4348                                 readl(adapter->hw.hw_addr + tx_ring->head),
4349                                 readl(adapter->hw.hw_addr + tx_ring->tail),
4350                                 tx_ring->next_to_use,
4351                                 tx_ring->next_to_clean,
4352                                 tx_ring->buffer_info[i].time_stamp,
4353                                 eop,
4354                                 jiffies,
4355                                 eop_desc->wb.status);
4356                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4357                 }
4358         }
4359         tx_ring->total_bytes += total_bytes;
4360         tx_ring->total_packets += total_packets;
4361         tx_ring->tx_stats.bytes += total_bytes;
4362         tx_ring->tx_stats.packets += total_packets;
4363         adapter->net_stats.tx_bytes += total_bytes;
4364         adapter->net_stats.tx_packets += total_packets;
4365         return (count < tx_ring->count);
4366 }
4367
4368 /**
4369  * igb_receive_skb - helper function to handle rx indications
4370  * @ring: pointer to receive ring receving this packet
4371  * @status: descriptor status field as written by hardware
4372  * @rx_desc: receive descriptor containing vlan and type information.
4373  * @skb: pointer to sk_buff to be indicated to stack
4374  **/
4375 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4376                             union e1000_adv_rx_desc * rx_desc,
4377                             struct sk_buff *skb)
4378 {
4379         struct igb_adapter * adapter = ring->adapter;
4380         bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4381
4382         skb_record_rx_queue(skb, ring->queue_index);
4383         if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4384                 if (vlan_extracted)
4385                         vlan_gro_receive(&ring->napi, adapter->vlgrp,
4386                                          le16_to_cpu(rx_desc->wb.upper.vlan),
4387                                          skb);
4388                 else
4389                         napi_gro_receive(&ring->napi, skb);
4390         } else {
4391                 if (vlan_extracted)
4392                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4393                                           le16_to_cpu(rx_desc->wb.upper.vlan));
4394                 else
4395                         netif_receive_skb(skb);
4396         }
4397 }
4398
4399 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4400                                        u32 status_err, struct sk_buff *skb)
4401 {
4402         skb->ip_summed = CHECKSUM_NONE;
4403
4404         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4405         if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4406                 return;
4407         /* TCP/UDP checksum error bit is set */
4408         if (status_err &
4409             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4410                 /* let the stack verify checksum errors */
4411                 adapter->hw_csum_err++;
4412                 return;
4413         }
4414         /* It must be a TCP or UDP packet with a valid checksum */
4415         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4416                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4417
4418         adapter->hw_csum_good++;
4419 }
4420
4421 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4422                                  int *work_done, int budget)
4423 {
4424         struct igb_adapter *adapter = rx_ring->adapter;
4425         struct net_device *netdev = adapter->netdev;
4426         struct e1000_hw *hw = &adapter->hw;
4427         struct pci_dev *pdev = adapter->pdev;
4428         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4429         struct igb_buffer *buffer_info , *next_buffer;
4430         struct sk_buff *skb;
4431         bool cleaned = false;
4432         int cleaned_count = 0;
4433         unsigned int total_bytes = 0, total_packets = 0;
4434         unsigned int i;
4435         u32 length, hlen, staterr;
4436
4437         i = rx_ring->next_to_clean;
4438         buffer_info = &rx_ring->buffer_info[i];
4439         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4440         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4441
4442         while (staterr & E1000_RXD_STAT_DD) {
4443                 if (*work_done >= budget)
4444                         break;
4445                 (*work_done)++;
4446
4447                 skb = buffer_info->skb;
4448                 prefetch(skb->data - NET_IP_ALIGN);
4449                 buffer_info->skb = NULL;
4450
4451                 i++;
4452                 if (i == rx_ring->count)
4453                         i = 0;
4454                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4455                 prefetch(next_rxd);
4456                 next_buffer = &rx_ring->buffer_info[i];
4457
4458                 length = le16_to_cpu(rx_desc->wb.upper.length);
4459                 cleaned = true;
4460                 cleaned_count++;
4461
4462                 if (!adapter->rx_ps_hdr_size) {
4463                         pci_unmap_single(pdev, buffer_info->dma,
4464                                          adapter->rx_buffer_len +
4465                                            NET_IP_ALIGN,
4466                                          PCI_DMA_FROMDEVICE);
4467                         skb_put(skb, length);
4468                         goto send_up;
4469                 }
4470
4471                 /* HW will not DMA in data larger than the given buffer, even
4472                  * if it parses the (NFS, of course) header to be larger.  In
4473                  * that case, it fills the header buffer and spills the rest
4474                  * into the page.
4475                  */
4476                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4477                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4478                 if (hlen > adapter->rx_ps_hdr_size)
4479                         hlen = adapter->rx_ps_hdr_size;
4480
4481                 if (!skb_shinfo(skb)->nr_frags) {
4482                         pci_unmap_single(pdev, buffer_info->dma,
4483                                          adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4484                                          PCI_DMA_FROMDEVICE);
4485                         skb_put(skb, hlen);
4486                 }
4487
4488                 if (length) {
4489                         pci_unmap_page(pdev, buffer_info->page_dma,
4490                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4491                         buffer_info->page_dma = 0;
4492
4493                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4494                                                 buffer_info->page,
4495                                                 buffer_info->page_offset,
4496                                                 length);
4497
4498                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4499                             (page_count(buffer_info->page) != 1))
4500                                 buffer_info->page = NULL;
4501                         else
4502                                 get_page(buffer_info->page);
4503
4504                         skb->len += length;
4505                         skb->data_len += length;
4506
4507                         skb->truesize += length;
4508                 }
4509
4510                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4511                         buffer_info->skb = next_buffer->skb;
4512                         buffer_info->dma = next_buffer->dma;
4513                         next_buffer->skb = skb;
4514                         next_buffer->dma = 0;
4515                         goto next_desc;
4516                 }
4517 send_up:
4518                 /*
4519                  * If this bit is set, then the RX registers contain
4520                  * the time stamp. No other packet will be time
4521                  * stamped until we read these registers, so read the
4522                  * registers to make them available again. Because
4523                  * only one packet can be time stamped at a time, we
4524                  * know that the register values must belong to this
4525                  * one here and therefore we don't need to compare
4526                  * any of the additional attributes stored for it.
4527                  *
4528                  * If nothing went wrong, then it should have a
4529                  * skb_shared_tx that we can turn into a
4530                  * skb_shared_hwtstamps.
4531                  *
4532                  * TODO: can time stamping be triggered (thus locking
4533                  * the registers) without the packet reaching this point
4534                  * here? In that case RX time stamping would get stuck.
4535                  *
4536                  * TODO: in "time stamp all packets" mode this bit is
4537                  * not set. Need a global flag for this mode and then
4538                  * always read the registers. Cannot be done without
4539                  * a race condition.
4540                  */
4541                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4542                         u64 regval;
4543                         u64 ns;
4544                         struct skb_shared_hwtstamps *shhwtstamps =
4545                                 skb_hwtstamps(skb);
4546
4547                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4548                              "igb: no RX time stamp available for time stamped packet");
4549                         regval = rd32(E1000_RXSTMPL);
4550                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4551                         ns = timecounter_cyc2time(&adapter->clock, regval);
4552                         timecompare_update(&adapter->compare, ns);
4553                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4554                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4555                         shhwtstamps->syststamp =
4556                                 timecompare_transform(&adapter->compare, ns);
4557                 }
4558
4559                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4560                         dev_kfree_skb_irq(skb);
4561                         goto next_desc;
4562                 }
4563
4564                 total_bytes += skb->len;
4565                 total_packets++;
4566
4567                 igb_rx_checksum_adv(adapter, staterr, skb);
4568
4569                 skb->protocol = eth_type_trans(skb, netdev);
4570
4571                 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4572
4573 next_desc:
4574                 rx_desc->wb.upper.status_error = 0;
4575
4576                 /* return some buffers to hardware, one at a time is too slow */
4577                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4578                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4579                         cleaned_count = 0;
4580                 }
4581
4582                 /* use prefetched values */
4583                 rx_desc = next_rxd;
4584                 buffer_info = next_buffer;
4585                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4586         }
4587
4588         rx_ring->next_to_clean = i;
4589         cleaned_count = IGB_DESC_UNUSED(rx_ring);
4590
4591         if (cleaned_count)
4592                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4593
4594         rx_ring->total_packets += total_packets;
4595         rx_ring->total_bytes += total_bytes;
4596         rx_ring->rx_stats.packets += total_packets;
4597         rx_ring->rx_stats.bytes += total_bytes;
4598         adapter->net_stats.rx_bytes += total_bytes;
4599         adapter->net_stats.rx_packets += total_packets;
4600         return cleaned;
4601 }
4602
4603 /**
4604  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4605  * @adapter: address of board private structure
4606  **/
4607 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4608                                      int cleaned_count)
4609 {
4610         struct igb_adapter *adapter = rx_ring->adapter;
4611         struct net_device *netdev = adapter->netdev;
4612         struct pci_dev *pdev = adapter->pdev;
4613         union e1000_adv_rx_desc *rx_desc;
4614         struct igb_buffer *buffer_info;
4615         struct sk_buff *skb;
4616         unsigned int i;
4617         int bufsz;
4618
4619         i = rx_ring->next_to_use;
4620         buffer_info = &rx_ring->buffer_info[i];
4621
4622         if (adapter->rx_ps_hdr_size)
4623                 bufsz = adapter->rx_ps_hdr_size;
4624         else
4625                 bufsz = adapter->rx_buffer_len;
4626         bufsz += NET_IP_ALIGN;
4627
4628         while (cleaned_count--) {
4629                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4630
4631                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4632                         if (!buffer_info->page) {
4633                                 buffer_info->page = alloc_page(GFP_ATOMIC);
4634                                 if (!buffer_info->page) {
4635                                         adapter->alloc_rx_buff_failed++;
4636                                         goto no_buffers;
4637                                 }
4638                                 buffer_info->page_offset = 0;
4639                         } else {
4640                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
4641                         }
4642                         buffer_info->page_dma =
4643                                 pci_map_page(pdev, buffer_info->page,
4644                                              buffer_info->page_offset,
4645                                              PAGE_SIZE / 2,
4646                                              PCI_DMA_FROMDEVICE);
4647                 }
4648
4649                 if (!buffer_info->skb) {
4650                         skb = netdev_alloc_skb(netdev, bufsz);
4651                         if (!skb) {
4652                                 adapter->alloc_rx_buff_failed++;
4653                                 goto no_buffers;
4654                         }
4655
4656                         /* Make buffer alignment 2 beyond a 16 byte boundary
4657                          * this will result in a 16 byte aligned IP header after
4658                          * the 14 byte MAC header is removed
4659                          */
4660                         skb_reserve(skb, NET_IP_ALIGN);
4661
4662                         buffer_info->skb = skb;
4663                         buffer_info->dma = pci_map_single(pdev, skb->data,
4664                                                           bufsz,
4665                                                           PCI_DMA_FROMDEVICE);
4666                 }
4667                 /* Refresh the desc even if buffer_addrs didn't change because
4668                  * each write-back erases this info. */
4669                 if (adapter->rx_ps_hdr_size) {
4670                         rx_desc->read.pkt_addr =
4671                              cpu_to_le64(buffer_info->page_dma);
4672                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4673                 } else {
4674                         rx_desc->read.pkt_addr =
4675                              cpu_to_le64(buffer_info->dma);
4676                         rx_desc->read.hdr_addr = 0;
4677                 }
4678
4679                 i++;
4680                 if (i == rx_ring->count)
4681                         i = 0;
4682                 buffer_info = &rx_ring->buffer_info[i];
4683         }
4684
4685 no_buffers:
4686         if (rx_ring->next_to_use != i) {
4687                 rx_ring->next_to_use = i;
4688                 if (i == 0)
4689                         i = (rx_ring->count - 1);
4690                 else
4691                         i--;
4692
4693                 /* Force memory writes to complete before letting h/w
4694                  * know there are new descriptors to fetch.  (Only
4695                  * applicable for weak-ordered memory model archs,
4696                  * such as IA-64). */
4697                 wmb();
4698                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4699         }
4700 }
4701
4702 /**
4703  * igb_mii_ioctl -
4704  * @netdev:
4705  * @ifreq:
4706  * @cmd:
4707  **/
4708 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4709 {
4710         struct igb_adapter *adapter = netdev_priv(netdev);
4711         struct mii_ioctl_data *data = if_mii(ifr);
4712
4713         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4714                 return -EOPNOTSUPP;
4715
4716         switch (cmd) {
4717         case SIOCGMIIPHY:
4718                 data->phy_id = adapter->hw.phy.addr;
4719                 break;
4720         case SIOCGMIIREG:
4721                 if (!capable(CAP_NET_ADMIN))
4722                         return -EPERM;
4723                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4724                                      &data->val_out))
4725                         return -EIO;
4726                 break;
4727         case SIOCSMIIREG:
4728         default:
4729                 return -EOPNOTSUPP;
4730         }
4731         return 0;
4732 }
4733
4734 /**
4735  * igb_hwtstamp_ioctl - control hardware time stamping
4736  * @netdev:
4737  * @ifreq:
4738  * @cmd:
4739  *
4740  * Outgoing time stamping can be enabled and disabled. Play nice and
4741  * disable it when requested, although it shouldn't case any overhead
4742  * when no packet needs it. At most one packet in the queue may be
4743  * marked for time stamping, otherwise it would be impossible to tell
4744  * for sure to which packet the hardware time stamp belongs.
4745  *
4746  * Incoming time stamping has to be configured via the hardware
4747  * filters. Not all combinations are supported, in particular event
4748  * type has to be specified. Matching the kind of event packet is
4749  * not supported, with the exception of "all V2 events regardless of
4750  * level 2 or 4".
4751  *
4752  **/
4753 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4754                               struct ifreq *ifr, int cmd)
4755 {
4756         struct igb_adapter *adapter = netdev_priv(netdev);
4757         struct e1000_hw *hw = &adapter->hw;
4758         struct hwtstamp_config config;
4759         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4760         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4761         u32 tsync_rx_ctl_type = 0;
4762         u32 tsync_rx_cfg = 0;
4763         int is_l4 = 0;
4764         int is_l2 = 0;
4765         short port = 319; /* PTP */
4766         u32 regval;
4767
4768         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4769                 return -EFAULT;
4770
4771         /* reserved for future extensions */
4772         if (config.flags)
4773                 return -EINVAL;
4774
4775         switch (config.tx_type) {
4776         case HWTSTAMP_TX_OFF:
4777                 tsync_tx_ctl_bit = 0;
4778                 break;
4779         case HWTSTAMP_TX_ON:
4780                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4781                 break;
4782         default:
4783                 return -ERANGE;
4784         }
4785
4786         switch (config.rx_filter) {
4787         case HWTSTAMP_FILTER_NONE:
4788                 tsync_rx_ctl_bit = 0;
4789                 break;
4790         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4791         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4792         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4793         case HWTSTAMP_FILTER_ALL:
4794                 /*
4795                  * register TSYNCRXCFG must be set, therefore it is not
4796                  * possible to time stamp both Sync and Delay_Req messages
4797                  * => fall back to time stamping all packets
4798                  */
4799                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4800                 config.rx_filter = HWTSTAMP_FILTER_ALL;
4801                 break;
4802         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4803                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4804                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4805                 is_l4 = 1;
4806                 break;
4807         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4808                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4809                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4810                 is_l4 = 1;
4811                 break;
4812         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4813         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4814                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4815                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4816                 is_l2 = 1;
4817                 is_l4 = 1;
4818                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4819                 break;
4820         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4821         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4822                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4823                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4824                 is_l2 = 1;
4825                 is_l4 = 1;
4826                 config.rx_filter = HWTSTAMP_FILTER_SOME;
4827                 break;
4828         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4829         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4830         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4831                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4832                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4833                 is_l2 = 1;
4834                 break;
4835         default:
4836                 return -ERANGE;
4837         }
4838
4839         /* enable/disable TX */
4840         regval = rd32(E1000_TSYNCTXCTL);
4841         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4842         wr32(E1000_TSYNCTXCTL, regval);
4843
4844         /* enable/disable RX, define which PTP packets are time stamped */
4845         regval = rd32(E1000_TSYNCRXCTL);
4846         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4847         regval = (regval & ~0xE) | tsync_rx_ctl_type;
4848         wr32(E1000_TSYNCRXCTL, regval);
4849         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4850
4851         /*
4852          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4853          *                                          (Ethertype to filter on)
4854          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4855          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4856          */
4857         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4858
4859         /* L4 Queue Filter[0]: only filter by source and destination port */
4860         wr32(E1000_SPQF0, htons(port));
4861         wr32(E1000_IMIREXT(0), is_l4 ?
4862              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4863         wr32(E1000_IMIR(0), is_l4 ?
4864              (htons(port)
4865               | (0<<16) /* immediate interrupt disabled */
4866               | 0 /* (1<<17) bit cleared: do not bypass
4867                      destination port check */)
4868                 : 0);
4869         wr32(E1000_FTQF0, is_l4 ?
4870              (0x11 /* UDP */
4871               | (1<<15) /* VF not compared */
4872               | (1<<27) /* Enable Timestamping */
4873               | (7<<28) /* only source port filter enabled,
4874                            source/target address and protocol
4875                            masked */)
4876              : ((1<<15) | (15<<28) /* all mask bits set = filter not
4877                                       enabled */));
4878
4879         wrfl();
4880
4881         adapter->hwtstamp_config = config;
4882
4883         /* clear TX/RX time stamp registers, just to be sure */
4884         regval = rd32(E1000_TXSTMPH);
4885         regval = rd32(E1000_RXSTMPH);
4886
4887         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4888                 -EFAULT : 0;
4889 }
4890
4891 /**
4892  * igb_ioctl -
4893  * @netdev:
4894  * @ifreq:
4895  * @cmd:
4896  **/
4897 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4898 {
4899         switch (cmd) {
4900         case SIOCGMIIPHY:
4901         case SIOCGMIIREG:
4902         case SIOCSMIIREG:
4903                 return igb_mii_ioctl(netdev, ifr, cmd);
4904         case SIOCSHWTSTAMP:
4905                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4906         default:
4907                 return -EOPNOTSUPP;
4908         }
4909 }
4910
4911 static void igb_vlan_rx_register(struct net_device *netdev,
4912                                  struct vlan_group *grp)
4913 {
4914         struct igb_adapter *adapter = netdev_priv(netdev);
4915         struct e1000_hw *hw = &adapter->hw;
4916         u32 ctrl, rctl;
4917
4918         igb_irq_disable(adapter);
4919         adapter->vlgrp = grp;
4920
4921         if (grp) {
4922                 /* enable VLAN tag insert/strip */
4923                 ctrl = rd32(E1000_CTRL);
4924                 ctrl |= E1000_CTRL_VME;
4925                 wr32(E1000_CTRL, ctrl);
4926
4927                 /* enable VLAN receive filtering */
4928                 rctl = rd32(E1000_RCTL);
4929                 rctl &= ~E1000_RCTL_CFIEN;
4930                 wr32(E1000_RCTL, rctl);
4931                 igb_update_mng_vlan(adapter);
4932         } else {
4933                 /* disable VLAN tag insert/strip */
4934                 ctrl = rd32(E1000_CTRL);
4935                 ctrl &= ~E1000_CTRL_VME;
4936                 wr32(E1000_CTRL, ctrl);
4937
4938                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4939                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4940                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4941                 }
4942         }
4943
4944         igb_rlpml_set(adapter);
4945
4946         if (!test_bit(__IGB_DOWN, &adapter->state))
4947                 igb_irq_enable(adapter);
4948 }
4949
4950 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4951 {
4952         struct igb_adapter *adapter = netdev_priv(netdev);
4953         struct e1000_hw *hw = &adapter->hw;
4954         int pf_id = adapter->vfs_allocated_count;
4955
4956         if ((hw->mng_cookie.status &
4957              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4958             (vid == adapter->mng_vlan_id))
4959                 return;
4960
4961         /* add vid to vlvf if sr-iov is enabled,
4962          * if that fails add directly to filter table */
4963         if (igb_vlvf_set(adapter, vid, true, pf_id))
4964                 igb_vfta_set(hw, vid, true);
4965
4966 }
4967
4968 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4969 {
4970         struct igb_adapter *adapter = netdev_priv(netdev);
4971         struct e1000_hw *hw = &adapter->hw;
4972         int pf_id = adapter->vfs_allocated_count;
4973
4974         igb_irq_disable(adapter);
4975         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4976
4977         if (!test_bit(__IGB_DOWN, &adapter->state))
4978                 igb_irq_enable(adapter);
4979
4980         if ((adapter->hw.mng_cookie.status &
4981              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4982             (vid == adapter->mng_vlan_id)) {
4983                 /* release control to f/w */
4984                 igb_release_hw_control(adapter);
4985                 return;
4986         }
4987
4988         /* remove vid from vlvf if sr-iov is enabled,
4989          * if not in vlvf remove from vfta */
4990         if (igb_vlvf_set(adapter, vid, false, pf_id))
4991                 igb_vfta_set(hw, vid, false);
4992 }
4993
4994 static void igb_restore_vlan(struct igb_adapter *adapter)
4995 {
4996         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4997
4998         if (adapter->vlgrp) {
4999                 u16 vid;
5000                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5001                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5002                                 continue;
5003                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5004                 }
5005         }
5006 }
5007
5008 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5009 {
5010         struct e1000_mac_info *mac = &adapter->hw.mac;
5011
5012         mac->autoneg = 0;
5013
5014         /* Fiber NICs only allow 1000 gbps Full duplex */
5015         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5016                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5017                 dev_err(&adapter->pdev->dev,
5018                         "Unsupported Speed/Duplex configuration\n");
5019                 return -EINVAL;
5020         }
5021
5022         switch (spddplx) {
5023         case SPEED_10 + DUPLEX_HALF:
5024                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5025                 break;
5026         case SPEED_10 + DUPLEX_FULL:
5027                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5028                 break;
5029         case SPEED_100 + DUPLEX_HALF:
5030                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5031                 break;
5032         case SPEED_100 + DUPLEX_FULL:
5033                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5034                 break;
5035         case SPEED_1000 + DUPLEX_FULL:
5036                 mac->autoneg = 1;
5037                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5038                 break;
5039         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5040         default:
5041                 dev_err(&adapter->pdev->dev,
5042                         "Unsupported Speed/Duplex configuration\n");
5043                 return -EINVAL;
5044         }
5045         return 0;
5046 }
5047
5048 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5049 {
5050         struct net_device *netdev = pci_get_drvdata(pdev);
5051         struct igb_adapter *adapter = netdev_priv(netdev);
5052         struct e1000_hw *hw = &adapter->hw;
5053         u32 ctrl, rctl, status;
5054         u32 wufc = adapter->wol;
5055 #ifdef CONFIG_PM
5056         int retval = 0;
5057 #endif
5058
5059         netif_device_detach(netdev);
5060
5061         if (netif_running(netdev))
5062                 igb_close(netdev);
5063
5064         igb_reset_interrupt_capability(adapter);
5065
5066         igb_free_queues(adapter);
5067
5068 #ifdef CONFIG_PM
5069         retval = pci_save_state(pdev);
5070         if (retval)
5071                 return retval;
5072 #endif
5073
5074         status = rd32(E1000_STATUS);
5075         if (status & E1000_STATUS_LU)
5076                 wufc &= ~E1000_WUFC_LNKC;
5077
5078         if (wufc) {
5079                 igb_setup_rctl(adapter);
5080                 igb_set_multi(netdev);
5081
5082                 /* turn on all-multi mode if wake on multicast is enabled */
5083                 if (wufc & E1000_WUFC_MC) {
5084                         rctl = rd32(E1000_RCTL);
5085                         rctl |= E1000_RCTL_MPE;
5086                         wr32(E1000_RCTL, rctl);
5087                 }
5088
5089                 ctrl = rd32(E1000_CTRL);
5090                 /* advertise wake from D3Cold */
5091                 #define E1000_CTRL_ADVD3WUC 0x00100000
5092                 /* phy power management enable */
5093                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5094                 ctrl |= E1000_CTRL_ADVD3WUC;
5095                 wr32(E1000_CTRL, ctrl);
5096
5097                 /* Allow time for pending master requests to run */
5098                 igb_disable_pcie_master(&adapter->hw);
5099
5100                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5101                 wr32(E1000_WUFC, wufc);
5102         } else {
5103                 wr32(E1000_WUC, 0);
5104                 wr32(E1000_WUFC, 0);
5105         }
5106
5107         /* make sure adapter isn't asleep if manageability/wol is enabled */
5108         if (wufc || adapter->en_mng_pt) {
5109                 pci_enable_wake(pdev, PCI_D3hot, 1);
5110                 pci_enable_wake(pdev, PCI_D3cold, 1);
5111         } else {
5112                 igb_shutdown_fiber_serdes_link_82575(hw);
5113                 pci_enable_wake(pdev, PCI_D3hot, 0);
5114                 pci_enable_wake(pdev, PCI_D3cold, 0);
5115         }
5116
5117         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5118          * would have already happened in close and is redundant. */
5119         igb_release_hw_control(adapter);
5120
5121         pci_disable_device(pdev);
5122
5123         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5124
5125         return 0;
5126 }
5127
5128 #ifdef CONFIG_PM
5129 static int igb_resume(struct pci_dev *pdev)
5130 {
5131         struct net_device *netdev = pci_get_drvdata(pdev);
5132         struct igb_adapter *adapter = netdev_priv(netdev);
5133         struct e1000_hw *hw = &adapter->hw;
5134         u32 err;
5135
5136         pci_set_power_state(pdev, PCI_D0);
5137         pci_restore_state(pdev);
5138
5139         err = pci_enable_device_mem(pdev);
5140         if (err) {
5141                 dev_err(&pdev->dev,
5142                         "igb: Cannot enable PCI device from suspend\n");
5143                 return err;
5144         }
5145         pci_set_master(pdev);
5146
5147         pci_enable_wake(pdev, PCI_D3hot, 0);
5148         pci_enable_wake(pdev, PCI_D3cold, 0);
5149
5150         igb_set_interrupt_capability(adapter);
5151
5152         if (igb_alloc_queues(adapter)) {
5153                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5154                 return -ENOMEM;
5155         }
5156
5157         /* e1000_power_up_phy(adapter); */
5158
5159         igb_reset(adapter);
5160
5161         /* let the f/w know that the h/w is now under the control of the
5162          * driver. */
5163         igb_get_hw_control(adapter);
5164
5165         wr32(E1000_WUS, ~0);
5166
5167         if (netif_running(netdev)) {
5168                 err = igb_open(netdev);
5169                 if (err)
5170                         return err;
5171         }
5172
5173         netif_device_attach(netdev);
5174
5175         return 0;
5176 }
5177 #endif
5178
5179 static void igb_shutdown(struct pci_dev *pdev)
5180 {
5181         igb_suspend(pdev, PMSG_SUSPEND);
5182 }
5183
5184 #ifdef CONFIG_NET_POLL_CONTROLLER
5185 /*
5186  * Polling 'interrupt' - used by things like netconsole to send skbs
5187  * without having to re-enable interrupts. It's not called while
5188  * the interrupt routine is executing.
5189  */
5190 static void igb_netpoll(struct net_device *netdev)
5191 {
5192         struct igb_adapter *adapter = netdev_priv(netdev);
5193         struct e1000_hw *hw = &adapter->hw;
5194         int i;
5195
5196         if (!adapter->msix_entries) {
5197                 igb_irq_disable(adapter);
5198                 napi_schedule(&adapter->rx_ring[0].napi);
5199                 return;
5200         }
5201
5202         for (i = 0; i < adapter->num_tx_queues; i++) {
5203                 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5204                 wr32(E1000_EIMC, tx_ring->eims_value);
5205                 igb_clean_tx_irq(tx_ring);
5206                 wr32(E1000_EIMS, tx_ring->eims_value);
5207         }
5208
5209         for (i = 0; i < adapter->num_rx_queues; i++) {
5210                 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5211                 wr32(E1000_EIMC, rx_ring->eims_value);
5212                 napi_schedule(&rx_ring->napi);
5213         }
5214 }
5215 #endif /* CONFIG_NET_POLL_CONTROLLER */
5216
5217 /**
5218  * igb_io_error_detected - called when PCI error is detected
5219  * @pdev: Pointer to PCI device
5220  * @state: The current pci connection state
5221  *
5222  * This function is called after a PCI bus error affecting
5223  * this device has been detected.
5224  */
5225 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5226                                               pci_channel_state_t state)
5227 {
5228         struct net_device *netdev = pci_get_drvdata(pdev);
5229         struct igb_adapter *adapter = netdev_priv(netdev);
5230
5231         netif_device_detach(netdev);
5232
5233         if (netif_running(netdev))
5234                 igb_down(adapter);
5235         pci_disable_device(pdev);
5236
5237         /* Request a slot slot reset. */
5238         return PCI_ERS_RESULT_NEED_RESET;
5239 }
5240
5241 /**
5242  * igb_io_slot_reset - called after the pci bus has been reset.
5243  * @pdev: Pointer to PCI device
5244  *
5245  * Restart the card from scratch, as if from a cold-boot. Implementation
5246  * resembles the first-half of the igb_resume routine.
5247  */
5248 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5249 {
5250         struct net_device *netdev = pci_get_drvdata(pdev);
5251         struct igb_adapter *adapter = netdev_priv(netdev);
5252         struct e1000_hw *hw = &adapter->hw;
5253         pci_ers_result_t result;
5254         int err;
5255
5256         if (pci_enable_device_mem(pdev)) {
5257                 dev_err(&pdev->dev,
5258                         "Cannot re-enable PCI device after reset.\n");
5259                 result = PCI_ERS_RESULT_DISCONNECT;
5260         } else {
5261                 pci_set_master(pdev);
5262                 pci_restore_state(pdev);
5263
5264                 pci_enable_wake(pdev, PCI_D3hot, 0);
5265                 pci_enable_wake(pdev, PCI_D3cold, 0);
5266
5267                 igb_reset(adapter);
5268                 wr32(E1000_WUS, ~0);
5269                 result = PCI_ERS_RESULT_RECOVERED;
5270         }
5271
5272         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5273         if (err) {
5274                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5275                         "failed 0x%0x\n", err);
5276                 /* non-fatal, continue */
5277         }
5278
5279         return result;
5280 }
5281
5282 /**
5283  * igb_io_resume - called when traffic can start flowing again.
5284  * @pdev: Pointer to PCI device
5285  *
5286  * This callback is called when the error recovery driver tells us that
5287  * its OK to resume normal operation. Implementation resembles the
5288  * second-half of the igb_resume routine.
5289  */
5290 static void igb_io_resume(struct pci_dev *pdev)
5291 {
5292         struct net_device *netdev = pci_get_drvdata(pdev);
5293         struct igb_adapter *adapter = netdev_priv(netdev);
5294
5295         if (netif_running(netdev)) {
5296                 if (igb_up(adapter)) {
5297                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5298                         return;
5299                 }
5300         }
5301
5302         netif_device_attach(netdev);
5303
5304         /* let the f/w know that the h/w is now under the control of the
5305          * driver. */
5306         igb_get_hw_control(adapter);
5307 }
5308
5309 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5310 {
5311         u32 reg_data;
5312
5313         reg_data = rd32(E1000_VMOLR(vfn));
5314         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
5315                     E1000_VMOLR_ROPE |   /* Accept packets matched in UTA */
5316                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
5317                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
5318                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5319         wr32(E1000_VMOLR(vfn), reg_data);
5320 }
5321
5322 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5323                                  int vfn)
5324 {
5325         struct e1000_hw *hw = &adapter->hw;
5326         u32 vmolr;
5327
5328         vmolr = rd32(E1000_VMOLR(vfn));
5329         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5330         vmolr |= size | E1000_VMOLR_LPE;
5331         wr32(E1000_VMOLR(vfn), vmolr);
5332
5333         return 0;
5334 }
5335
5336 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5337 {
5338         u32 reg_data;
5339
5340         reg_data = rd32(E1000_RAH(entry));
5341         reg_data &= ~E1000_RAH_POOL_MASK;
5342         reg_data |= E1000_RAH_POOL_1 << pool;;
5343         wr32(E1000_RAH(entry), reg_data);
5344 }
5345
5346 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5347                                   int entry_count, u16 total_rar_filters)
5348 {
5349         struct e1000_hw *hw = &adapter->hw;
5350         int i = adapter->vfs_allocated_count + 1;
5351
5352         if ((i + entry_count) < total_rar_filters)
5353                 total_rar_filters = i + entry_count;
5354
5355         for (; i < total_rar_filters; i++)
5356                 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5357 }
5358
5359 static int igb_set_vf_mac(struct igb_adapter *adapter,
5360                           int vf, unsigned char *mac_addr)
5361 {
5362         struct e1000_hw *hw = &adapter->hw;
5363         int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5364
5365         igb_rar_set(hw, mac_addr, rar_entry);
5366
5367         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5368
5369         igb_set_rah_pool(hw, vf, rar_entry);
5370
5371         return 0;
5372 }
5373
5374 static void igb_vmm_control(struct igb_adapter *adapter)
5375 {
5376         struct e1000_hw *hw = &adapter->hw;
5377         u32 reg_data;
5378
5379         if (!adapter->vfs_allocated_count)
5380                 return;
5381
5382         /* VF's need PF reset indication before they
5383          * can send/receive mail */
5384         reg_data = rd32(E1000_CTRL_EXT);
5385         reg_data |= E1000_CTRL_EXT_PFRSTD;
5386         wr32(E1000_CTRL_EXT, reg_data);
5387
5388         igb_vmdq_set_loopback_pf(hw, true);
5389         igb_vmdq_set_replication_pf(hw, true);
5390 }
5391
5392 #ifdef CONFIG_PCI_IOV
5393 static ssize_t igb_show_num_vfs(struct device *dev,
5394                                 struct device_attribute *attr, char *buf)
5395 {
5396         struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5397
5398         return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5399 }
5400
5401 static ssize_t igb_set_num_vfs(struct device *dev,
5402                                struct device_attribute *attr,
5403                                const char *buf, size_t count)
5404 {
5405         struct net_device *netdev = to_net_dev(dev);
5406         struct igb_adapter *adapter = netdev_priv(netdev);
5407         struct e1000_hw *hw = &adapter->hw;
5408         struct pci_dev *pdev = adapter->pdev;
5409         unsigned int num_vfs, i;
5410         unsigned char mac_addr[ETH_ALEN];
5411         int err;
5412
5413         sscanf(buf, "%u", &num_vfs);
5414
5415         if (num_vfs > 7)
5416                 num_vfs = 7;
5417
5418         /* value unchanged do nothing */
5419         if (num_vfs == adapter->vfs_allocated_count)
5420                 return count;
5421
5422         if (netdev->flags & IFF_UP)
5423                 igb_close(netdev);
5424
5425         igb_reset_interrupt_capability(adapter);
5426         igb_free_queues(adapter);
5427         adapter->tx_ring = NULL;
5428         adapter->rx_ring = NULL;
5429         adapter->vfs_allocated_count = 0;
5430
5431         /* reclaim resources allocated to VFs since we are changing count */
5432         if (adapter->vf_data) {
5433                 /* disable iov and allow time for transactions to clear */
5434                 pci_disable_sriov(pdev);
5435                 msleep(500);
5436
5437                 kfree(adapter->vf_data);
5438                 adapter->vf_data = NULL;
5439                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5440                 msleep(100);
5441                 dev_info(&pdev->dev, "IOV Disabled\n");
5442         }
5443
5444         if (num_vfs) {
5445                 adapter->vf_data = kcalloc(num_vfs,
5446                                            sizeof(struct vf_data_storage),
5447                                            GFP_KERNEL);
5448                 if (!adapter->vf_data) {
5449                         dev_err(&pdev->dev, "Could not allocate VF private "
5450                                 "data - IOV enable failed\n");
5451                 } else {
5452                         err = pci_enable_sriov(pdev, num_vfs);
5453                         if (!err) {
5454                                 adapter->vfs_allocated_count = num_vfs;
5455                                 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5456                                 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5457                                         random_ether_addr(mac_addr);
5458                                         igb_set_vf_mac(adapter, i, mac_addr);
5459                                 }
5460                         } else {
5461                                 kfree(adapter->vf_data);
5462                                 adapter->vf_data = NULL;
5463                         }
5464                 }
5465         }
5466
5467         igb_set_interrupt_capability(adapter);
5468         igb_alloc_queues(adapter);
5469         igb_reset(adapter);
5470
5471         if (netdev->flags & IFF_UP)
5472                 igb_open(netdev);
5473
5474         return count;
5475 }
5476 #endif /* CONFIG_PCI_IOV */
5477 /* igb_main.c */