igb: move rx_buffer_len into the ring structure
[pandora-kernel.git] / drivers / net / igb / igb_main.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
51
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56                                 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
58
59 static const struct e1000_info *igb_info_tbl[] = {
60         [board_82575] = &e1000_82575_info,
61 };
62
63 static struct pci_device_id igb_pci_tbl[] = {
64         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
67         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
68         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
74         /* required last entry */
75         {0, }
76 };
77
78 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79
80 void igb_reset(struct igb_adapter *);
81 static int igb_setup_all_tx_resources(struct igb_adapter *);
82 static int igb_setup_all_rx_resources(struct igb_adapter *);
83 static void igb_free_all_tx_resources(struct igb_adapter *);
84 static void igb_free_all_rx_resources(struct igb_adapter *);
85 void igb_update_stats(struct igb_adapter *);
86 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
87 static void __devexit igb_remove(struct pci_dev *pdev);
88 static int igb_sw_init(struct igb_adapter *);
89 static int igb_open(struct net_device *);
90 static int igb_close(struct net_device *);
91 static void igb_configure_tx(struct igb_adapter *);
92 static void igb_configure_rx(struct igb_adapter *);
93 static void igb_setup_tctl(struct igb_adapter *);
94 static void igb_setup_rctl(struct igb_adapter *);
95 static void igb_clean_all_tx_rings(struct igb_adapter *);
96 static void igb_clean_all_rx_rings(struct igb_adapter *);
97 static void igb_clean_tx_ring(struct igb_ring *);
98 static void igb_clean_rx_ring(struct igb_ring *);
99 static void igb_set_rx_mode(struct net_device *);
100 static void igb_update_phy_info(unsigned long);
101 static void igb_watchdog(unsigned long);
102 static void igb_watchdog_task(struct work_struct *);
103 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
104                                            struct net_device *,
105                                            struct igb_ring *);
106 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
107                                       struct net_device *);
108 static struct net_device_stats *igb_get_stats(struct net_device *);
109 static int igb_change_mtu(struct net_device *, int);
110 static int igb_set_mac(struct net_device *, void *);
111 static void igb_set_uta(struct igb_adapter *adapter);
112 static irqreturn_t igb_intr(int irq, void *);
113 static irqreturn_t igb_intr_msi(int irq, void *);
114 static irqreturn_t igb_msix_other(int irq, void *);
115 static irqreturn_t igb_msix_ring(int irq, void *);
116 #ifdef CONFIG_IGB_DCA
117 static void igb_update_dca(struct igb_q_vector *);
118 static void igb_setup_dca(struct igb_adapter *);
119 #endif /* CONFIG_IGB_DCA */
120 static bool igb_clean_tx_irq(struct igb_q_vector *);
121 static int igb_poll(struct napi_struct *, int);
122 static bool igb_clean_rx_irq_adv(struct igb_q_vector *, int *, int);
123 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
124 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
125 static void igb_tx_timeout(struct net_device *);
126 static void igb_reset_task(struct work_struct *);
127 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
128 static void igb_vlan_rx_add_vid(struct net_device *, u16);
129 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
130 static void igb_restore_vlan(struct igb_adapter *);
131 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
132 static void igb_ping_all_vfs(struct igb_adapter *);
133 static void igb_msg_task(struct igb_adapter *);
134 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
135 static void igb_vmm_control(struct igb_adapter *);
136 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
137 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
138
139 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
140 {
141         u32 reg_data;
142
143         reg_data = rd32(E1000_VMOLR(vfn));
144         reg_data |= E1000_VMOLR_BAM |    /* Accept broadcast */
145                     E1000_VMOLR_ROMPE |  /* Accept packets matched in MTA */
146                     E1000_VMOLR_AUPE |   /* Accept untagged packets */
147                     E1000_VMOLR_STRVLAN; /* Strip vlan tags */
148         wr32(E1000_VMOLR(vfn), reg_data);
149 }
150
151 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
152                                  int vfn)
153 {
154         struct e1000_hw *hw = &adapter->hw;
155         u32 vmolr;
156
157         /* if it isn't the PF check to see if VFs are enabled and
158          * increase the size to support vlan tags */
159         if (vfn < adapter->vfs_allocated_count &&
160             adapter->vf_data[vfn].vlans_enabled)
161                 size += VLAN_TAG_SIZE;
162
163         vmolr = rd32(E1000_VMOLR(vfn));
164         vmolr &= ~E1000_VMOLR_RLPML_MASK;
165         vmolr |= size | E1000_VMOLR_LPE;
166         wr32(E1000_VMOLR(vfn), vmolr);
167
168         return 0;
169 }
170
171 #ifdef CONFIG_PM
172 static int igb_suspend(struct pci_dev *, pm_message_t);
173 static int igb_resume(struct pci_dev *);
174 #endif
175 static void igb_shutdown(struct pci_dev *);
176 #ifdef CONFIG_IGB_DCA
177 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
178 static struct notifier_block dca_notifier = {
179         .notifier_call  = igb_notify_dca,
180         .next           = NULL,
181         .priority       = 0
182 };
183 #endif
184 #ifdef CONFIG_NET_POLL_CONTROLLER
185 /* for netdump / net console */
186 static void igb_netpoll(struct net_device *);
187 #endif
188 #ifdef CONFIG_PCI_IOV
189 static unsigned int max_vfs = 0;
190 module_param(max_vfs, uint, 0);
191 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
192                  "per physical function");
193 #endif /* CONFIG_PCI_IOV */
194
195 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
196                      pci_channel_state_t);
197 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
198 static void igb_io_resume(struct pci_dev *);
199
200 static struct pci_error_handlers igb_err_handler = {
201         .error_detected = igb_io_error_detected,
202         .slot_reset = igb_io_slot_reset,
203         .resume = igb_io_resume,
204 };
205
206
207 static struct pci_driver igb_driver = {
208         .name     = igb_driver_name,
209         .id_table = igb_pci_tbl,
210         .probe    = igb_probe,
211         .remove   = __devexit_p(igb_remove),
212 #ifdef CONFIG_PM
213         /* Power Managment Hooks */
214         .suspend  = igb_suspend,
215         .resume   = igb_resume,
216 #endif
217         .shutdown = igb_shutdown,
218         .err_handler = &igb_err_handler
219 };
220
221 static int global_quad_port_a; /* global quad port a indication */
222
223 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
224 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION);
227
228 /**
229  * Scale the NIC clock cycle by a large factor so that
230  * relatively small clock corrections can be added or
231  * substracted at each clock tick. The drawbacks of a
232  * large factor are a) that the clock register overflows
233  * more quickly (not such a big deal) and b) that the
234  * increment per tick has to fit into 24 bits.
235  *
236  * Note that
237  *   TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
238  *             IGB_TSYNC_SCALE
239  *   TIMINCA += TIMINCA * adjustment [ppm] / 1e9
240  *
241  * The base scale factor is intentionally a power of two
242  * so that the division in %struct timecounter can be done with
243  * a shift.
244  */
245 #define IGB_TSYNC_SHIFT (19)
246 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
247
248 /**
249  * The duration of one clock cycle of the NIC.
250  *
251  * @todo This hard-coded value is part of the specification and might change
252  * in future hardware revisions. Add revision check.
253  */
254 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
255
256 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
257 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
258 #endif
259
260 /**
261  * igb_read_clock - read raw cycle counter (to be used by time counter)
262  */
263 static cycle_t igb_read_clock(const struct cyclecounter *tc)
264 {
265         struct igb_adapter *adapter =
266                 container_of(tc, struct igb_adapter, cycles);
267         struct e1000_hw *hw = &adapter->hw;
268         u64 stamp;
269
270         stamp =  rd32(E1000_SYSTIML);
271         stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
272
273         return stamp;
274 }
275
276 #ifdef DEBUG
277 /**
278  * igb_get_hw_dev_name - return device name string
279  * used by hardware layer to print debugging information
280  **/
281 char *igb_get_hw_dev_name(struct e1000_hw *hw)
282 {
283         struct igb_adapter *adapter = hw->back;
284         return adapter->netdev->name;
285 }
286
287 /**
288  * igb_get_time_str - format current NIC and system time as string
289  */
290 static char *igb_get_time_str(struct igb_adapter *adapter,
291                               char buffer[160])
292 {
293         cycle_t hw = adapter->cycles.read(&adapter->cycles);
294         struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
295         struct timespec sys;
296         struct timespec delta;
297         getnstimeofday(&sys);
298
299         delta = timespec_sub(nic, sys);
300
301         sprintf(buffer,
302                 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
303                 hw,
304                 (long)nic.tv_sec, nic.tv_nsec,
305                 (long)sys.tv_sec, sys.tv_nsec,
306                 (long)delta.tv_sec, delta.tv_nsec);
307
308         return buffer;
309 }
310 #endif
311
312 /**
313  * igb_desc_unused - calculate if we have unused descriptors
314  **/
315 static int igb_desc_unused(struct igb_ring *ring)
316 {
317         if (ring->next_to_clean > ring->next_to_use)
318                 return ring->next_to_clean - ring->next_to_use - 1;
319
320         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
321 }
322
323 /**
324  * igb_init_module - Driver Registration Routine
325  *
326  * igb_init_module is the first routine called when the driver is
327  * loaded. All it does is register with the PCI subsystem.
328  **/
329 static int __init igb_init_module(void)
330 {
331         int ret;
332         printk(KERN_INFO "%s - version %s\n",
333                igb_driver_string, igb_driver_version);
334
335         printk(KERN_INFO "%s\n", igb_copyright);
336
337         global_quad_port_a = 0;
338
339 #ifdef CONFIG_IGB_DCA
340         dca_register_notify(&dca_notifier);
341 #endif
342
343         ret = pci_register_driver(&igb_driver);
344         return ret;
345 }
346
347 module_init(igb_init_module);
348
349 /**
350  * igb_exit_module - Driver Exit Cleanup Routine
351  *
352  * igb_exit_module is called just before the driver is removed
353  * from memory.
354  **/
355 static void __exit igb_exit_module(void)
356 {
357 #ifdef CONFIG_IGB_DCA
358         dca_unregister_notify(&dca_notifier);
359 #endif
360         pci_unregister_driver(&igb_driver);
361 }
362
363 module_exit(igb_exit_module);
364
365 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
366 /**
367  * igb_cache_ring_register - Descriptor ring to register mapping
368  * @adapter: board private structure to initialize
369  *
370  * Once we know the feature-set enabled for the device, we'll cache
371  * the register offset the descriptor ring is assigned to.
372  **/
373 static void igb_cache_ring_register(struct igb_adapter *adapter)
374 {
375         int i;
376         u32 rbase_offset = adapter->vfs_allocated_count;
377
378         switch (adapter->hw.mac.type) {
379         case e1000_82576:
380                 /* The queues are allocated for virtualization such that VF 0
381                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
382                  * In order to avoid collision we start at the first free queue
383                  * and continue consuming queues in the same sequence
384                  */
385                 for (i = 0; i < adapter->num_rx_queues; i++)
386                         adapter->rx_ring[i].reg_idx = rbase_offset +
387                                                       Q_IDX_82576(i);
388                 for (i = 0; i < adapter->num_tx_queues; i++)
389                         adapter->tx_ring[i].reg_idx = rbase_offset +
390                                                       Q_IDX_82576(i);
391                 break;
392         case e1000_82575:
393         default:
394                 for (i = 0; i < adapter->num_rx_queues; i++)
395                         adapter->rx_ring[i].reg_idx = i;
396                 for (i = 0; i < adapter->num_tx_queues; i++)
397                         adapter->tx_ring[i].reg_idx = i;
398                 break;
399         }
400 }
401
402 static void igb_free_queues(struct igb_adapter *adapter)
403 {
404         kfree(adapter->tx_ring);
405         kfree(adapter->rx_ring);
406
407         adapter->tx_ring = NULL;
408         adapter->rx_ring = NULL;
409
410         adapter->num_rx_queues = 0;
411         adapter->num_tx_queues = 0;
412 }
413
414 /**
415  * igb_alloc_queues - Allocate memory for all rings
416  * @adapter: board private structure to initialize
417  *
418  * We allocate one ring per queue at run-time since we don't know the
419  * number of queues at compile-time.
420  **/
421 static int igb_alloc_queues(struct igb_adapter *adapter)
422 {
423         int i;
424
425         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
426                                    sizeof(struct igb_ring), GFP_KERNEL);
427         if (!adapter->tx_ring)
428                 goto err;
429
430         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
431                                    sizeof(struct igb_ring), GFP_KERNEL);
432         if (!adapter->rx_ring)
433                 goto err;
434
435         for (i = 0; i < adapter->num_tx_queues; i++) {
436                 struct igb_ring *ring = &(adapter->tx_ring[i]);
437                 ring->count = adapter->tx_ring_count;
438                 ring->queue_index = i;
439                 ring->pdev = adapter->pdev;
440         }
441         for (i = 0; i < adapter->num_rx_queues; i++) {
442                 struct igb_ring *ring = &(adapter->rx_ring[i]);
443                 ring->count = adapter->rx_ring_count;
444                 ring->queue_index = i;
445                 ring->pdev = adapter->pdev;
446                 ring->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
447         }
448
449         igb_cache_ring_register(adapter);
450
451         return 0;
452
453 err:
454         igb_free_queues(adapter);
455
456         return -ENOMEM;
457 }
458
459 #define IGB_N0_QUEUE -1
460 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
461 {
462         u32 msixbm = 0;
463         struct igb_adapter *adapter = q_vector->adapter;
464         struct e1000_hw *hw = &adapter->hw;
465         u32 ivar, index;
466         int rx_queue = IGB_N0_QUEUE;
467         int tx_queue = IGB_N0_QUEUE;
468
469         if (q_vector->rx_ring)
470                 rx_queue = q_vector->rx_ring->reg_idx;
471         if (q_vector->tx_ring)
472                 tx_queue = q_vector->tx_ring->reg_idx;
473
474         switch (hw->mac.type) {
475         case e1000_82575:
476                 /* The 82575 assigns vectors using a bitmask, which matches the
477                    bitmask for the EICR/EIMS/EIMC registers.  To assign one
478                    or more queues to a vector, we write the appropriate bits
479                    into the MSIXBM register for that vector. */
480                 if (rx_queue > IGB_N0_QUEUE)
481                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
482                 if (tx_queue > IGB_N0_QUEUE)
483                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
484                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
485                 q_vector->eims_value = msixbm;
486                 break;
487         case e1000_82576:
488                 /* 82576 uses a table-based method for assigning vectors.
489                    Each queue has a single entry in the table to which we write
490                    a vector number along with a "valid" bit.  Sadly, the layout
491                    of the table is somewhat counterintuitive. */
492                 if (rx_queue > IGB_N0_QUEUE) {
493                         index = (rx_queue & 0x7);
494                         ivar = array_rd32(E1000_IVAR0, index);
495                         if (rx_queue < 8) {
496                                 /* vector goes into low byte of register */
497                                 ivar = ivar & 0xFFFFFF00;
498                                 ivar |= msix_vector | E1000_IVAR_VALID;
499                         } else {
500                                 /* vector goes into third byte of register */
501                                 ivar = ivar & 0xFF00FFFF;
502                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
503                         }
504                         array_wr32(E1000_IVAR0, index, ivar);
505                 }
506                 if (tx_queue > IGB_N0_QUEUE) {
507                         index = (tx_queue & 0x7);
508                         ivar = array_rd32(E1000_IVAR0, index);
509                         if (tx_queue < 8) {
510                                 /* vector goes into second byte of register */
511                                 ivar = ivar & 0xFFFF00FF;
512                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
513                         } else {
514                                 /* vector goes into high byte of register */
515                                 ivar = ivar & 0x00FFFFFF;
516                                 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
517                         }
518                         array_wr32(E1000_IVAR0, index, ivar);
519                 }
520                 q_vector->eims_value = 1 << msix_vector;
521                 break;
522         default:
523                 BUG();
524                 break;
525         }
526 }
527
528 /**
529  * igb_configure_msix - Configure MSI-X hardware
530  *
531  * igb_configure_msix sets up the hardware to properly
532  * generate MSI-X interrupts.
533  **/
534 static void igb_configure_msix(struct igb_adapter *adapter)
535 {
536         u32 tmp;
537         int i, vector = 0;
538         struct e1000_hw *hw = &adapter->hw;
539
540         adapter->eims_enable_mask = 0;
541
542         /* set vector for other causes, i.e. link changes */
543         switch (hw->mac.type) {
544         case e1000_82575:
545                 tmp = rd32(E1000_CTRL_EXT);
546                 /* enable MSI-X PBA support*/
547                 tmp |= E1000_CTRL_EXT_PBA_CLR;
548
549                 /* Auto-Mask interrupts upon ICR read. */
550                 tmp |= E1000_CTRL_EXT_EIAME;
551                 tmp |= E1000_CTRL_EXT_IRCA;
552
553                 wr32(E1000_CTRL_EXT, tmp);
554
555                 /* enable msix_other interrupt */
556                 array_wr32(E1000_MSIXBM(0), vector++,
557                                       E1000_EIMS_OTHER);
558                 adapter->eims_other = E1000_EIMS_OTHER;
559
560                 break;
561
562         case e1000_82576:
563                 /* Turn on MSI-X capability first, or our settings
564                  * won't stick.  And it will take days to debug. */
565                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
566                                 E1000_GPIE_PBA | E1000_GPIE_EIAME |
567                                 E1000_GPIE_NSICR);
568
569                 /* enable msix_other interrupt */
570                 adapter->eims_other = 1 << vector;
571                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
572
573                 wr32(E1000_IVAR_MISC, tmp);
574                 break;
575         default:
576                 /* do nothing, since nothing else supports MSI-X */
577                 break;
578         } /* switch (hw->mac.type) */
579
580         adapter->eims_enable_mask |= adapter->eims_other;
581
582         for (i = 0; i < adapter->num_q_vectors; i++) {
583                 struct igb_q_vector *q_vector = adapter->q_vector[i];
584                 igb_assign_vector(q_vector, vector++);
585                 adapter->eims_enable_mask |= q_vector->eims_value;
586         }
587
588         wrfl();
589 }
590
591 /**
592  * igb_request_msix - Initialize MSI-X interrupts
593  *
594  * igb_request_msix allocates MSI-X vectors and requests interrupts from the
595  * kernel.
596  **/
597 static int igb_request_msix(struct igb_adapter *adapter)
598 {
599         struct net_device *netdev = adapter->netdev;
600         struct e1000_hw *hw = &adapter->hw;
601         int i, err = 0, vector = 0;
602
603         err = request_irq(adapter->msix_entries[vector].vector,
604                           &igb_msix_other, 0, netdev->name, adapter);
605         if (err)
606                 goto out;
607         vector++;
608
609         for (i = 0; i < adapter->num_q_vectors; i++) {
610                 struct igb_q_vector *q_vector = adapter->q_vector[i];
611
612                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
613
614                 if (q_vector->rx_ring && q_vector->tx_ring)
615                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
616                                 q_vector->rx_ring->queue_index);
617                 else if (q_vector->tx_ring)
618                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
619                                 q_vector->tx_ring->queue_index);
620                 else if (q_vector->rx_ring)
621                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
622                                 q_vector->rx_ring->queue_index);
623                 else
624                         sprintf(q_vector->name, "%s-unused", netdev->name);
625
626                 err = request_irq(adapter->msix_entries[vector].vector,
627                                   &igb_msix_ring, 0, q_vector->name,
628                                   q_vector);
629                 if (err)
630                         goto out;
631                 vector++;
632         }
633
634         igb_configure_msix(adapter);
635         return 0;
636 out:
637         return err;
638 }
639
640 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
641 {
642         if (adapter->msix_entries) {
643                 pci_disable_msix(adapter->pdev);
644                 kfree(adapter->msix_entries);
645                 adapter->msix_entries = NULL;
646         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
647                 pci_disable_msi(adapter->pdev);
648         }
649 }
650
651 /**
652  * igb_free_q_vectors - Free memory allocated for interrupt vectors
653  * @adapter: board private structure to initialize
654  *
655  * This function frees the memory allocated to the q_vectors.  In addition if
656  * NAPI is enabled it will delete any references to the NAPI struct prior
657  * to freeing the q_vector.
658  **/
659 static void igb_free_q_vectors(struct igb_adapter *adapter)
660 {
661         int v_idx;
662
663         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
664                 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
665                 adapter->q_vector[v_idx] = NULL;
666                 netif_napi_del(&q_vector->napi);
667                 kfree(q_vector);
668         }
669         adapter->num_q_vectors = 0;
670 }
671
672 /**
673  * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
674  *
675  * This function resets the device so that it has 0 rx queues, tx queues, and
676  * MSI-X interrupts allocated.
677  */
678 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
679 {
680         igb_free_queues(adapter);
681         igb_free_q_vectors(adapter);
682         igb_reset_interrupt_capability(adapter);
683 }
684
685 /**
686  * igb_set_interrupt_capability - set MSI or MSI-X if supported
687  *
688  * Attempt to configure interrupts using the best available
689  * capabilities of the hardware and kernel.
690  **/
691 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
692 {
693         int err;
694         int numvecs, i;
695
696         /* Number of supported queues. */
697         adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
698         adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
699
700         /* start with one vector for every rx queue */
701         numvecs = adapter->num_rx_queues;
702
703         /* if tx handler is seperate add 1 for every tx queue */
704         numvecs += adapter->num_tx_queues;
705
706         /* store the number of vectors reserved for queues */
707         adapter->num_q_vectors = numvecs;
708
709         /* add 1 vector for link status interrupts */
710         numvecs++;
711         adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
712                                         GFP_KERNEL);
713         if (!adapter->msix_entries)
714                 goto msi_only;
715
716         for (i = 0; i < numvecs; i++)
717                 adapter->msix_entries[i].entry = i;
718
719         err = pci_enable_msix(adapter->pdev,
720                               adapter->msix_entries,
721                               numvecs);
722         if (err == 0)
723                 goto out;
724
725         igb_reset_interrupt_capability(adapter);
726
727         /* If we can't do MSI-X, try MSI */
728 msi_only:
729 #ifdef CONFIG_PCI_IOV
730         /* disable SR-IOV for non MSI-X configurations */
731         if (adapter->vf_data) {
732                 struct e1000_hw *hw = &adapter->hw;
733                 /* disable iov and allow time for transactions to clear */
734                 pci_disable_sriov(adapter->pdev);
735                 msleep(500);
736
737                 kfree(adapter->vf_data);
738                 adapter->vf_data = NULL;
739                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
740                 msleep(100);
741                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
742         }
743 #endif
744         adapter->num_rx_queues = 1;
745         adapter->num_tx_queues = 1;
746         adapter->num_q_vectors = 1;
747         if (!pci_enable_msi(adapter->pdev))
748                 adapter->flags |= IGB_FLAG_HAS_MSI;
749 out:
750         /* Notify the stack of the (possibly) reduced Tx Queue count. */
751         adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
752         return;
753 }
754
755 /**
756  * igb_alloc_q_vectors - Allocate memory for interrupt vectors
757  * @adapter: board private structure to initialize
758  *
759  * We allocate one q_vector per queue interrupt.  If allocation fails we
760  * return -ENOMEM.
761  **/
762 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
763 {
764         struct igb_q_vector *q_vector;
765         struct e1000_hw *hw = &adapter->hw;
766         int v_idx;
767
768         for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
769                 q_vector = kzalloc(sizeof(struct igb_q_vector), GFP_KERNEL);
770                 if (!q_vector)
771                         goto err_out;
772                 q_vector->adapter = adapter;
773                 q_vector->itr_shift = (hw->mac.type == e1000_82575) ? 16 : 0;
774                 q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
775                 q_vector->itr_val = IGB_START_ITR;
776                 q_vector->set_itr = 1;
777                 netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
778                 adapter->q_vector[v_idx] = q_vector;
779         }
780         return 0;
781
782 err_out:
783         while (v_idx) {
784                 v_idx--;
785                 q_vector = adapter->q_vector[v_idx];
786                 netif_napi_del(&q_vector->napi);
787                 kfree(q_vector);
788                 adapter->q_vector[v_idx] = NULL;
789         }
790         return -ENOMEM;
791 }
792
793 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
794                                       int ring_idx, int v_idx)
795 {
796         struct igb_q_vector *q_vector;
797
798         q_vector = adapter->q_vector[v_idx];
799         q_vector->rx_ring = &adapter->rx_ring[ring_idx];
800         q_vector->rx_ring->q_vector = q_vector;
801         q_vector->itr_val = adapter->itr;
802 }
803
804 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
805                                       int ring_idx, int v_idx)
806 {
807         struct igb_q_vector *q_vector;
808
809         q_vector = adapter->q_vector[v_idx];
810         q_vector->tx_ring = &adapter->tx_ring[ring_idx];
811         q_vector->tx_ring->q_vector = q_vector;
812         q_vector->itr_val = adapter->itr;
813 }
814
815 /**
816  * igb_map_ring_to_vector - maps allocated queues to vectors
817  *
818  * This function maps the recently allocated queues to vectors.
819  **/
820 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
821 {
822         int i;
823         int v_idx = 0;
824
825         if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
826             (adapter->num_q_vectors < adapter->num_tx_queues))
827                 return -ENOMEM;
828
829         if (adapter->num_q_vectors >=
830             (adapter->num_rx_queues + adapter->num_tx_queues)) {
831                 for (i = 0; i < adapter->num_rx_queues; i++)
832                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
833                 for (i = 0; i < adapter->num_tx_queues; i++)
834                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
835         } else {
836                 for (i = 0; i < adapter->num_rx_queues; i++) {
837                         if (i < adapter->num_tx_queues)
838                                 igb_map_tx_ring_to_vector(adapter, i, v_idx);
839                         igb_map_rx_ring_to_vector(adapter, i, v_idx++);
840                 }
841                 for (; i < adapter->num_tx_queues; i++)
842                         igb_map_tx_ring_to_vector(adapter, i, v_idx++);
843         }
844         return 0;
845 }
846
847 /**
848  * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
849  *
850  * This function initializes the interrupts and allocates all of the queues.
851  **/
852 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
853 {
854         struct pci_dev *pdev = adapter->pdev;
855         int err;
856
857         igb_set_interrupt_capability(adapter);
858
859         err = igb_alloc_q_vectors(adapter);
860         if (err) {
861                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
862                 goto err_alloc_q_vectors;
863         }
864
865         err = igb_alloc_queues(adapter);
866         if (err) {
867                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
868                 goto err_alloc_queues;
869         }
870
871         err = igb_map_ring_to_vector(adapter);
872         if (err) {
873                 dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
874                 goto err_map_queues;
875         }
876
877
878         return 0;
879 err_map_queues:
880         igb_free_queues(adapter);
881 err_alloc_queues:
882         igb_free_q_vectors(adapter);
883 err_alloc_q_vectors:
884         igb_reset_interrupt_capability(adapter);
885         return err;
886 }
887
888 /**
889  * igb_request_irq - initialize interrupts
890  *
891  * Attempts to configure interrupts using the best available
892  * capabilities of the hardware and kernel.
893  **/
894 static int igb_request_irq(struct igb_adapter *adapter)
895 {
896         struct net_device *netdev = adapter->netdev;
897         struct pci_dev *pdev = adapter->pdev;
898         struct e1000_hw *hw = &adapter->hw;
899         int err = 0;
900
901         if (adapter->msix_entries) {
902                 err = igb_request_msix(adapter);
903                 if (!err)
904                         goto request_done;
905                 /* fall back to MSI */
906                 igb_clear_interrupt_scheme(adapter);
907                 if (!pci_enable_msi(adapter->pdev))
908                         adapter->flags |= IGB_FLAG_HAS_MSI;
909                 igb_free_all_tx_resources(adapter);
910                 igb_free_all_rx_resources(adapter);
911                 adapter->num_tx_queues = 1;
912                 adapter->num_rx_queues = 1;
913                 adapter->num_q_vectors = 1;
914                 err = igb_alloc_q_vectors(adapter);
915                 if (err) {
916                         dev_err(&pdev->dev,
917                                 "Unable to allocate memory for vectors\n");
918                         goto request_done;
919                 }
920                 err = igb_alloc_queues(adapter);
921                 if (err) {
922                         dev_err(&pdev->dev,
923                                 "Unable to allocate memory for queues\n");
924                         igb_free_q_vectors(adapter);
925                         goto request_done;
926                 }
927                 igb_setup_all_tx_resources(adapter);
928                 igb_setup_all_rx_resources(adapter);
929         } else {
930                 switch (hw->mac.type) {
931                 case e1000_82575:
932                         wr32(E1000_MSIXBM(0),
933                              (E1000_EICR_RX_QUEUE0 |
934                               E1000_EICR_TX_QUEUE0 |
935                               E1000_EIMS_OTHER));
936                         break;
937                 case e1000_82576:
938                         wr32(E1000_IVAR0, E1000_IVAR_VALID);
939                         break;
940                 default:
941                         break;
942                 }
943         }
944
945         if (adapter->flags & IGB_FLAG_HAS_MSI) {
946                 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
947                                   netdev->name, adapter);
948                 if (!err)
949                         goto request_done;
950
951                 /* fall back to legacy interrupts */
952                 igb_reset_interrupt_capability(adapter);
953                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
954         }
955
956         err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
957                           netdev->name, adapter);
958
959         if (err)
960                 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
961                         err);
962
963 request_done:
964         return err;
965 }
966
967 static void igb_free_irq(struct igb_adapter *adapter)
968 {
969         if (adapter->msix_entries) {
970                 int vector = 0, i;
971
972                 free_irq(adapter->msix_entries[vector++].vector, adapter);
973
974                 for (i = 0; i < adapter->num_q_vectors; i++) {
975                         struct igb_q_vector *q_vector = adapter->q_vector[i];
976                         free_irq(adapter->msix_entries[vector++].vector,
977                                  q_vector);
978                 }
979         } else {
980                 free_irq(adapter->pdev->irq, adapter);
981         }
982 }
983
984 /**
985  * igb_irq_disable - Mask off interrupt generation on the NIC
986  * @adapter: board private structure
987  **/
988 static void igb_irq_disable(struct igb_adapter *adapter)
989 {
990         struct e1000_hw *hw = &adapter->hw;
991
992         if (adapter->msix_entries) {
993                 u32 regval = rd32(E1000_EIAM);
994                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
995                 wr32(E1000_EIMC, adapter->eims_enable_mask);
996                 regval = rd32(E1000_EIAC);
997                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
998         }
999
1000         wr32(E1000_IAM, 0);
1001         wr32(E1000_IMC, ~0);
1002         wrfl();
1003         synchronize_irq(adapter->pdev->irq);
1004 }
1005
1006 /**
1007  * igb_irq_enable - Enable default interrupt generation settings
1008  * @adapter: board private structure
1009  **/
1010 static void igb_irq_enable(struct igb_adapter *adapter)
1011 {
1012         struct e1000_hw *hw = &adapter->hw;
1013
1014         if (adapter->msix_entries) {
1015                 u32 regval = rd32(E1000_EIAC);
1016                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1017                 regval = rd32(E1000_EIAM);
1018                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1019                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1020                 if (adapter->vfs_allocated_count)
1021                         wr32(E1000_MBVFIMR, 0xFF);
1022                 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
1023                                  E1000_IMS_DOUTSYNC));
1024         } else {
1025                 wr32(E1000_IMS, IMS_ENABLE_MASK);
1026                 wr32(E1000_IAM, IMS_ENABLE_MASK);
1027         }
1028 }
1029
1030 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1031 {
1032         struct net_device *netdev = adapter->netdev;
1033         u16 vid = adapter->hw.mng_cookie.vlan_id;
1034         u16 old_vid = adapter->mng_vlan_id;
1035         if (adapter->vlgrp) {
1036                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1037                         if (adapter->hw.mng_cookie.status &
1038                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1039                                 igb_vlan_rx_add_vid(netdev, vid);
1040                                 adapter->mng_vlan_id = vid;
1041                         } else
1042                                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1043
1044                         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1045                                         (vid != old_vid) &&
1046                             !vlan_group_get_device(adapter->vlgrp, old_vid))
1047                                 igb_vlan_rx_kill_vid(netdev, old_vid);
1048                 } else
1049                         adapter->mng_vlan_id = vid;
1050         }
1051 }
1052
1053 /**
1054  * igb_release_hw_control - release control of the h/w to f/w
1055  * @adapter: address of board private structure
1056  *
1057  * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1058  * For ASF and Pass Through versions of f/w this means that the
1059  * driver is no longer loaded.
1060  *
1061  **/
1062 static void igb_release_hw_control(struct igb_adapter *adapter)
1063 {
1064         struct e1000_hw *hw = &adapter->hw;
1065         u32 ctrl_ext;
1066
1067         /* Let firmware take over control of h/w */
1068         ctrl_ext = rd32(E1000_CTRL_EXT);
1069         wr32(E1000_CTRL_EXT,
1070                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1071 }
1072
1073
1074 /**
1075  * igb_get_hw_control - get control of the h/w from f/w
1076  * @adapter: address of board private structure
1077  *
1078  * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1079  * For ASF and Pass Through versions of f/w this means that
1080  * the driver is loaded.
1081  *
1082  **/
1083 static void igb_get_hw_control(struct igb_adapter *adapter)
1084 {
1085         struct e1000_hw *hw = &adapter->hw;
1086         u32 ctrl_ext;
1087
1088         /* Let firmware know the driver has taken over */
1089         ctrl_ext = rd32(E1000_CTRL_EXT);
1090         wr32(E1000_CTRL_EXT,
1091                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1092 }
1093
1094 /**
1095  * igb_configure - configure the hardware for RX and TX
1096  * @adapter: private board structure
1097  **/
1098 static void igb_configure(struct igb_adapter *adapter)
1099 {
1100         struct net_device *netdev = adapter->netdev;
1101         int i;
1102
1103         igb_get_hw_control(adapter);
1104         igb_set_rx_mode(netdev);
1105
1106         igb_restore_vlan(adapter);
1107
1108         igb_setup_tctl(adapter);
1109         igb_setup_rctl(adapter);
1110
1111         igb_configure_tx(adapter);
1112         igb_configure_rx(adapter);
1113
1114         igb_rx_fifo_flush_82575(&adapter->hw);
1115
1116         /* call igb_desc_unused which always leaves
1117          * at least 1 descriptor unused to make sure
1118          * next_to_use != next_to_clean */
1119         for (i = 0; i < adapter->num_rx_queues; i++) {
1120                 struct igb_ring *ring = &adapter->rx_ring[i];
1121                 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
1122         }
1123
1124
1125         adapter->tx_queue_len = netdev->tx_queue_len;
1126 }
1127
1128
1129 /**
1130  * igb_up - Open the interface and prepare it to handle traffic
1131  * @adapter: board private structure
1132  **/
1133
1134 int igb_up(struct igb_adapter *adapter)
1135 {
1136         struct e1000_hw *hw = &adapter->hw;
1137         int i;
1138
1139         /* hardware has been reset, we need to reload some things */
1140         igb_configure(adapter);
1141
1142         clear_bit(__IGB_DOWN, &adapter->state);
1143
1144         for (i = 0; i < adapter->num_q_vectors; i++) {
1145                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1146                 napi_enable(&q_vector->napi);
1147         }
1148         if (adapter->msix_entries)
1149                 igb_configure_msix(adapter);
1150
1151         igb_vmm_control(adapter);
1152         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1153
1154         /* Clear any pending interrupts. */
1155         rd32(E1000_ICR);
1156         igb_irq_enable(adapter);
1157
1158         netif_tx_start_all_queues(adapter->netdev);
1159
1160         /* Fire a link change interrupt to start the watchdog. */
1161         wr32(E1000_ICS, E1000_ICS_LSC);
1162         return 0;
1163 }
1164
1165 void igb_down(struct igb_adapter *adapter)
1166 {
1167         struct e1000_hw *hw = &adapter->hw;
1168         struct net_device *netdev = adapter->netdev;
1169         u32 tctl, rctl;
1170         int i;
1171
1172         /* signal that we're down so the interrupt handler does not
1173          * reschedule our watchdog timer */
1174         set_bit(__IGB_DOWN, &adapter->state);
1175
1176         /* disable receives in the hardware */
1177         rctl = rd32(E1000_RCTL);
1178         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1179         /* flush and sleep below */
1180
1181         netif_tx_stop_all_queues(netdev);
1182
1183         /* disable transmits in the hardware */
1184         tctl = rd32(E1000_TCTL);
1185         tctl &= ~E1000_TCTL_EN;
1186         wr32(E1000_TCTL, tctl);
1187         /* flush both disables and wait for them to finish */
1188         wrfl();
1189         msleep(10);
1190
1191         for (i = 0; i < adapter->num_q_vectors; i++) {
1192                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1193                 napi_disable(&q_vector->napi);
1194         }
1195
1196         igb_irq_disable(adapter);
1197
1198         del_timer_sync(&adapter->watchdog_timer);
1199         del_timer_sync(&adapter->phy_info_timer);
1200
1201         netdev->tx_queue_len = adapter->tx_queue_len;
1202         netif_carrier_off(netdev);
1203
1204         /* record the stats before reset*/
1205         igb_update_stats(adapter);
1206
1207         adapter->link_speed = 0;
1208         adapter->link_duplex = 0;
1209
1210         if (!pci_channel_offline(adapter->pdev))
1211                 igb_reset(adapter);
1212         igb_clean_all_tx_rings(adapter);
1213         igb_clean_all_rx_rings(adapter);
1214 #ifdef CONFIG_IGB_DCA
1215
1216         /* since we reset the hardware DCA settings were cleared */
1217         igb_setup_dca(adapter);
1218 #endif
1219 }
1220
1221 void igb_reinit_locked(struct igb_adapter *adapter)
1222 {
1223         WARN_ON(in_interrupt());
1224         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1225                 msleep(1);
1226         igb_down(adapter);
1227         igb_up(adapter);
1228         clear_bit(__IGB_RESETTING, &adapter->state);
1229 }
1230
1231 void igb_reset(struct igb_adapter *adapter)
1232 {
1233         struct e1000_hw *hw = &adapter->hw;
1234         struct e1000_mac_info *mac = &hw->mac;
1235         struct e1000_fc_info *fc = &hw->fc;
1236         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1237         u16 hwm;
1238
1239         /* Repartition Pba for greater than 9k mtu
1240          * To take effect CTRL.RST is required.
1241          */
1242         switch (mac->type) {
1243         case e1000_82576:
1244                 pba = E1000_PBA_64K;
1245                 break;
1246         case e1000_82575:
1247         default:
1248                 pba = E1000_PBA_34K;
1249                 break;
1250         }
1251
1252         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1253             (mac->type < e1000_82576)) {
1254                 /* adjust PBA for jumbo frames */
1255                 wr32(E1000_PBA, pba);
1256
1257                 /* To maintain wire speed transmits, the Tx FIFO should be
1258                  * large enough to accommodate two full transmit packets,
1259                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1260                  * the Rx FIFO should be large enough to accommodate at least
1261                  * one full receive packet and is similarly rounded up and
1262                  * expressed in KB. */
1263                 pba = rd32(E1000_PBA);
1264                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1265                 tx_space = pba >> 16;
1266                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1267                 pba &= 0xffff;
1268                 /* the tx fifo also stores 16 bytes of information about the tx
1269                  * but don't include ethernet FCS because hardware appends it */
1270                 min_tx_space = (adapter->max_frame_size +
1271                                 sizeof(union e1000_adv_tx_desc) -
1272                                 ETH_FCS_LEN) * 2;
1273                 min_tx_space = ALIGN(min_tx_space, 1024);
1274                 min_tx_space >>= 10;
1275                 /* software strips receive CRC, so leave room for it */
1276                 min_rx_space = adapter->max_frame_size;
1277                 min_rx_space = ALIGN(min_rx_space, 1024);
1278                 min_rx_space >>= 10;
1279
1280                 /* If current Tx allocation is less than the min Tx FIFO size,
1281                  * and the min Tx FIFO size is less than the current Rx FIFO
1282                  * allocation, take space away from current Rx allocation */
1283                 if (tx_space < min_tx_space &&
1284                     ((min_tx_space - tx_space) < pba)) {
1285                         pba = pba - (min_tx_space - tx_space);
1286
1287                         /* if short on rx space, rx wins and must trump tx
1288                          * adjustment */
1289                         if (pba < min_rx_space)
1290                                 pba = min_rx_space;
1291                 }
1292                 wr32(E1000_PBA, pba);
1293         }
1294
1295         /* flow control settings */
1296         /* The high water mark must be low enough to fit one full frame
1297          * (or the size used for early receive) above it in the Rx FIFO.
1298          * Set it to the lower of:
1299          * - 90% of the Rx FIFO size, or
1300          * - the full Rx FIFO size minus one full frame */
1301         hwm = min(((pba << 10) * 9 / 10),
1302                         ((pba << 10) - 2 * adapter->max_frame_size));
1303
1304         if (mac->type < e1000_82576) {
1305                 fc->high_water = hwm & 0xFFF8;  /* 8-byte granularity */
1306                 fc->low_water = fc->high_water - 8;
1307         } else {
1308                 fc->high_water = hwm & 0xFFF0;  /* 16-byte granularity */
1309                 fc->low_water = fc->high_water - 16;
1310         }
1311         fc->pause_time = 0xFFFF;
1312         fc->send_xon = 1;
1313         fc->current_mode = fc->requested_mode;
1314
1315         /* disable receive for all VFs and wait one second */
1316         if (adapter->vfs_allocated_count) {
1317                 int i;
1318                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1319                         adapter->vf_data[i].clear_to_send = false;
1320
1321                 /* ping all the active vfs to let them know we are going down */
1322                         igb_ping_all_vfs(adapter);
1323
1324                 /* disable transmits and receives */
1325                 wr32(E1000_VFRE, 0);
1326                 wr32(E1000_VFTE, 0);
1327         }
1328
1329         /* Allow time for pending master requests to run */
1330         adapter->hw.mac.ops.reset_hw(&adapter->hw);
1331         wr32(E1000_WUC, 0);
1332
1333         if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1334                 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1335
1336         igb_update_mng_vlan(adapter);
1337
1338         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1339         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1340
1341         igb_reset_adaptive(&adapter->hw);
1342         igb_get_phy_info(&adapter->hw);
1343 }
1344
1345 static const struct net_device_ops igb_netdev_ops = {
1346         .ndo_open               = igb_open,
1347         .ndo_stop               = igb_close,
1348         .ndo_start_xmit         = igb_xmit_frame_adv,
1349         .ndo_get_stats          = igb_get_stats,
1350         .ndo_set_rx_mode        = igb_set_rx_mode,
1351         .ndo_set_multicast_list = igb_set_rx_mode,
1352         .ndo_set_mac_address    = igb_set_mac,
1353         .ndo_change_mtu         = igb_change_mtu,
1354         .ndo_do_ioctl           = igb_ioctl,
1355         .ndo_tx_timeout         = igb_tx_timeout,
1356         .ndo_validate_addr      = eth_validate_addr,
1357         .ndo_vlan_rx_register   = igb_vlan_rx_register,
1358         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
1359         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
1360 #ifdef CONFIG_NET_POLL_CONTROLLER
1361         .ndo_poll_controller    = igb_netpoll,
1362 #endif
1363 };
1364
1365 /**
1366  * igb_probe - Device Initialization Routine
1367  * @pdev: PCI device information struct
1368  * @ent: entry in igb_pci_tbl
1369  *
1370  * Returns 0 on success, negative on failure
1371  *
1372  * igb_probe initializes an adapter identified by a pci_dev structure.
1373  * The OS initialization, configuring of the adapter private structure,
1374  * and a hardware reset occur.
1375  **/
1376 static int __devinit igb_probe(struct pci_dev *pdev,
1377                                const struct pci_device_id *ent)
1378 {
1379         struct net_device *netdev;
1380         struct igb_adapter *adapter;
1381         struct e1000_hw *hw;
1382         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1383         unsigned long mmio_start, mmio_len;
1384         int err, pci_using_dac;
1385         u16 eeprom_data = 0;
1386         u16 eeprom_apme_mask = IGB_EEPROM_APME;
1387         u32 part_num;
1388
1389         err = pci_enable_device_mem(pdev);
1390         if (err)
1391                 return err;
1392
1393         pci_using_dac = 0;
1394         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1395         if (!err) {
1396                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1397                 if (!err)
1398                         pci_using_dac = 1;
1399         } else {
1400                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1401                 if (err) {
1402                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1403                         if (err) {
1404                                 dev_err(&pdev->dev, "No usable DMA "
1405                                         "configuration, aborting\n");
1406                                 goto err_dma;
1407                         }
1408                 }
1409         }
1410
1411         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1412                                            IORESOURCE_MEM),
1413                                            igb_driver_name);
1414         if (err)
1415                 goto err_pci_reg;
1416
1417         pci_enable_pcie_error_reporting(pdev);
1418
1419         pci_set_master(pdev);
1420         pci_save_state(pdev);
1421
1422         err = -ENOMEM;
1423         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1424                                    IGB_ABS_MAX_TX_QUEUES);
1425         if (!netdev)
1426                 goto err_alloc_etherdev;
1427
1428         SET_NETDEV_DEV(netdev, &pdev->dev);
1429
1430         pci_set_drvdata(pdev, netdev);
1431         adapter = netdev_priv(netdev);
1432         adapter->netdev = netdev;
1433         adapter->pdev = pdev;
1434         hw = &adapter->hw;
1435         hw->back = adapter;
1436         adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1437
1438         mmio_start = pci_resource_start(pdev, 0);
1439         mmio_len = pci_resource_len(pdev, 0);
1440
1441         err = -EIO;
1442         hw->hw_addr = ioremap(mmio_start, mmio_len);
1443         if (!hw->hw_addr)
1444                 goto err_ioremap;
1445
1446         netdev->netdev_ops = &igb_netdev_ops;
1447         igb_set_ethtool_ops(netdev);
1448         netdev->watchdog_timeo = 5 * HZ;
1449
1450         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1451
1452         netdev->mem_start = mmio_start;
1453         netdev->mem_end = mmio_start + mmio_len;
1454
1455         /* PCI config space info */
1456         hw->vendor_id = pdev->vendor;
1457         hw->device_id = pdev->device;
1458         hw->revision_id = pdev->revision;
1459         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1460         hw->subsystem_device_id = pdev->subsystem_device;
1461
1462         /* setup the private structure */
1463         hw->back = adapter;
1464         /* Copy the default MAC, PHY and NVM function pointers */
1465         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1466         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1467         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1468         /* Initialize skew-specific constants */
1469         err = ei->get_invariants(hw);
1470         if (err)
1471                 goto err_sw_init;
1472
1473 #ifdef CONFIG_PCI_IOV
1474         /* since iov functionality isn't critical to base device function we
1475          * can accept failure.  If it fails we don't allow iov to be enabled */
1476         if (hw->mac.type == e1000_82576) {
1477                 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1478                 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1479                 int i;
1480                 unsigned char mac_addr[ETH_ALEN];
1481
1482                 if (num_vfs) {
1483                         adapter->vf_data = kcalloc(num_vfs,
1484                                                 sizeof(struct vf_data_storage),
1485                                                 GFP_KERNEL);
1486                         if (!adapter->vf_data) {
1487                                 dev_err(&pdev->dev,
1488                                         "Could not allocate VF private data - "
1489                                         "IOV enable failed\n");
1490                         } else {
1491                                 err = pci_enable_sriov(pdev, num_vfs);
1492                                 if (!err) {
1493                                         adapter->vfs_allocated_count = num_vfs;
1494                                         dev_info(&pdev->dev,
1495                                                  "%d vfs allocated\n",
1496                                                  num_vfs);
1497                                         for (i = 0;
1498                                              i < adapter->vfs_allocated_count;
1499                                              i++) {
1500                                                 random_ether_addr(mac_addr);
1501                                                 igb_set_vf_mac(adapter, i,
1502                                                                mac_addr);
1503                                         }
1504                                 } else {
1505                                         kfree(adapter->vf_data);
1506                                         adapter->vf_data = NULL;
1507                                 }
1508                         }
1509                 }
1510         }
1511
1512 #endif
1513         /* setup the private structure */
1514         err = igb_sw_init(adapter);
1515         if (err)
1516                 goto err_sw_init;
1517
1518         igb_get_bus_info_pcie(hw);
1519
1520         /* set flags */
1521         switch (hw->mac.type) {
1522         case e1000_82575:
1523                 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1524                 break;
1525         case e1000_82576:
1526         default:
1527                 break;
1528         }
1529
1530         hw->phy.autoneg_wait_to_complete = false;
1531         hw->mac.adaptive_ifs = true;
1532
1533         /* Copper options */
1534         if (hw->phy.media_type == e1000_media_type_copper) {
1535                 hw->phy.mdix = AUTO_ALL_MODES;
1536                 hw->phy.disable_polarity_correction = false;
1537                 hw->phy.ms_type = e1000_ms_hw_default;
1538         }
1539
1540         if (igb_check_reset_block(hw))
1541                 dev_info(&pdev->dev,
1542                         "PHY reset is blocked due to SOL/IDER session.\n");
1543
1544         netdev->features = NETIF_F_SG |
1545                            NETIF_F_IP_CSUM |
1546                            NETIF_F_HW_VLAN_TX |
1547                            NETIF_F_HW_VLAN_RX |
1548                            NETIF_F_HW_VLAN_FILTER;
1549
1550         netdev->features |= NETIF_F_IPV6_CSUM;
1551         netdev->features |= NETIF_F_TSO;
1552         netdev->features |= NETIF_F_TSO6;
1553
1554         netdev->features |= NETIF_F_GRO;
1555
1556         netdev->vlan_features |= NETIF_F_TSO;
1557         netdev->vlan_features |= NETIF_F_TSO6;
1558         netdev->vlan_features |= NETIF_F_IP_CSUM;
1559         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1560         netdev->vlan_features |= NETIF_F_SG;
1561
1562         if (pci_using_dac)
1563                 netdev->features |= NETIF_F_HIGHDMA;
1564
1565         if (adapter->hw.mac.type == e1000_82576)
1566                 netdev->features |= NETIF_F_SCTP_CSUM;
1567
1568         adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1569
1570         /* before reading the NVM, reset the controller to put the device in a
1571          * known good starting state */
1572         hw->mac.ops.reset_hw(hw);
1573
1574         /* make sure the NVM is good */
1575         if (igb_validate_nvm_checksum(hw) < 0) {
1576                 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1577                 err = -EIO;
1578                 goto err_eeprom;
1579         }
1580
1581         /* copy the MAC address out of the NVM */
1582         if (hw->mac.ops.read_mac_addr(hw))
1583                 dev_err(&pdev->dev, "NVM Read Error\n");
1584
1585         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1586         memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1587
1588         if (!is_valid_ether_addr(netdev->perm_addr)) {
1589                 dev_err(&pdev->dev, "Invalid MAC Address\n");
1590                 err = -EIO;
1591                 goto err_eeprom;
1592         }
1593
1594         setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1595                     (unsigned long) adapter);
1596         setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1597                     (unsigned long) adapter);
1598
1599         INIT_WORK(&adapter->reset_task, igb_reset_task);
1600         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1601
1602         /* Initialize link properties that are user-changeable */
1603         adapter->fc_autoneg = true;
1604         hw->mac.autoneg = true;
1605         hw->phy.autoneg_advertised = 0x2f;
1606
1607         hw->fc.requested_mode = e1000_fc_default;
1608         hw->fc.current_mode = e1000_fc_default;
1609
1610         adapter->itr_setting = IGB_DEFAULT_ITR;
1611         adapter->itr = IGB_START_ITR;
1612
1613         igb_validate_mdi_setting(hw);
1614
1615         /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1616          * enable the ACPI Magic Packet filter
1617          */
1618
1619         if (hw->bus.func == 0)
1620                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1621         else if (hw->bus.func == 1)
1622                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1623
1624         if (eeprom_data & eeprom_apme_mask)
1625                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1626
1627         /* now that we have the eeprom settings, apply the special cases where
1628          * the eeprom may be wrong or the board simply won't support wake on
1629          * lan on a particular port */
1630         switch (pdev->device) {
1631         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1632                 adapter->eeprom_wol = 0;
1633                 break;
1634         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1635         case E1000_DEV_ID_82576_FIBER:
1636         case E1000_DEV_ID_82576_SERDES:
1637                 /* Wake events only supported on port A for dual fiber
1638                  * regardless of eeprom setting */
1639                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1640                         adapter->eeprom_wol = 0;
1641                 break;
1642         case E1000_DEV_ID_82576_QUAD_COPPER:
1643                 /* if quad port adapter, disable WoL on all but port A */
1644                 if (global_quad_port_a != 0)
1645                         adapter->eeprom_wol = 0;
1646                 else
1647                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1648                 /* Reset for multiple quad port adapters */
1649                 if (++global_quad_port_a == 4)
1650                         global_quad_port_a = 0;
1651                 break;
1652         }
1653
1654         /* initialize the wol settings based on the eeprom settings */
1655         adapter->wol = adapter->eeprom_wol;
1656         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1657
1658         /* reset the hardware with the new settings */
1659         igb_reset(adapter);
1660
1661         /* let the f/w know that the h/w is now under the control of the
1662          * driver. */
1663         igb_get_hw_control(adapter);
1664
1665         strcpy(netdev->name, "eth%d");
1666         err = register_netdev(netdev);
1667         if (err)
1668                 goto err_register;
1669
1670         /* carrier off reporting is important to ethtool even BEFORE open */
1671         netif_carrier_off(netdev);
1672
1673 #ifdef CONFIG_IGB_DCA
1674         if (dca_add_requester(&pdev->dev) == 0) {
1675                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1676                 dev_info(&pdev->dev, "DCA enabled\n");
1677                 igb_setup_dca(adapter);
1678         }
1679 #endif
1680
1681         /*
1682          * Initialize hardware timer: we keep it running just in case
1683          * that some program needs it later on.
1684          */
1685         memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1686         adapter->cycles.read = igb_read_clock;
1687         adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1688         adapter->cycles.mult = 1;
1689         adapter->cycles.shift = IGB_TSYNC_SHIFT;
1690         wr32(E1000_TIMINCA,
1691              (1<<24) |
1692              IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1693 #if 0
1694         /*
1695          * Avoid rollover while we initialize by resetting the time counter.
1696          */
1697         wr32(E1000_SYSTIML, 0x00000000);
1698         wr32(E1000_SYSTIMH, 0x00000000);
1699 #else
1700         /*
1701          * Set registers so that rollover occurs soon to test this.
1702          */
1703         wr32(E1000_SYSTIML, 0x00000000);
1704         wr32(E1000_SYSTIMH, 0xFF800000);
1705 #endif
1706         wrfl();
1707         timecounter_init(&adapter->clock,
1708                          &adapter->cycles,
1709                          ktime_to_ns(ktime_get_real()));
1710
1711         /*
1712          * Synchronize our NIC clock against system wall clock. NIC
1713          * time stamp reading requires ~3us per sample, each sample
1714          * was pretty stable even under load => only require 10
1715          * samples for each offset comparison.
1716          */
1717         memset(&adapter->compare, 0, sizeof(adapter->compare));
1718         adapter->compare.source = &adapter->clock;
1719         adapter->compare.target = ktime_get_real;
1720         adapter->compare.num_samples = 10;
1721         timecompare_update(&adapter->compare, 0);
1722
1723 #ifdef DEBUG
1724         {
1725                 char buffer[160];
1726                 printk(KERN_DEBUG
1727                         "igb: %s: hw %p initialized timer\n",
1728                         igb_get_time_str(adapter, buffer),
1729                         &adapter->hw);
1730         }
1731 #endif
1732
1733         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1734         /* print bus type/speed/width info */
1735         dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1736                  netdev->name,
1737                  ((hw->bus.speed == e1000_bus_speed_2500)
1738                   ? "2.5Gb/s" : "unknown"),
1739                  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1740                   (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1741                   (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1742                    "unknown"),
1743                  netdev->dev_addr);
1744
1745         igb_read_part_num(hw, &part_num);
1746         dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1747                 (part_num >> 8), (part_num & 0xff));
1748
1749         dev_info(&pdev->dev,
1750                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1751                 adapter->msix_entries ? "MSI-X" :
1752                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1753                 adapter->num_rx_queues, adapter->num_tx_queues);
1754
1755         return 0;
1756
1757 err_register:
1758         igb_release_hw_control(adapter);
1759 err_eeprom:
1760         if (!igb_check_reset_block(hw))
1761                 igb_reset_phy(hw);
1762
1763         if (hw->flash_address)
1764                 iounmap(hw->flash_address);
1765 err_sw_init:
1766         igb_clear_interrupt_scheme(adapter);
1767         iounmap(hw->hw_addr);
1768 err_ioremap:
1769         free_netdev(netdev);
1770 err_alloc_etherdev:
1771         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1772                                      IORESOURCE_MEM));
1773 err_pci_reg:
1774 err_dma:
1775         pci_disable_device(pdev);
1776         return err;
1777 }
1778
1779 /**
1780  * igb_remove - Device Removal Routine
1781  * @pdev: PCI device information struct
1782  *
1783  * igb_remove is called by the PCI subsystem to alert the driver
1784  * that it should release a PCI device.  The could be caused by a
1785  * Hot-Plug event, or because the driver is going to be removed from
1786  * memory.
1787  **/
1788 static void __devexit igb_remove(struct pci_dev *pdev)
1789 {
1790         struct net_device *netdev = pci_get_drvdata(pdev);
1791         struct igb_adapter *adapter = netdev_priv(netdev);
1792         struct e1000_hw *hw = &adapter->hw;
1793
1794         /* flush_scheduled work may reschedule our watchdog task, so
1795          * explicitly disable watchdog tasks from being rescheduled  */
1796         set_bit(__IGB_DOWN, &adapter->state);
1797         del_timer_sync(&adapter->watchdog_timer);
1798         del_timer_sync(&adapter->phy_info_timer);
1799
1800         flush_scheduled_work();
1801
1802 #ifdef CONFIG_IGB_DCA
1803         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1804                 dev_info(&pdev->dev, "DCA disabled\n");
1805                 dca_remove_requester(&pdev->dev);
1806                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1807                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1808         }
1809 #endif
1810
1811         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1812          * would have already happened in close and is redundant. */
1813         igb_release_hw_control(adapter);
1814
1815         unregister_netdev(netdev);
1816
1817         if (!igb_check_reset_block(&adapter->hw))
1818                 igb_reset_phy(&adapter->hw);
1819
1820         igb_clear_interrupt_scheme(adapter);
1821
1822 #ifdef CONFIG_PCI_IOV
1823         /* reclaim resources allocated to VFs */
1824         if (adapter->vf_data) {
1825                 /* disable iov and allow time for transactions to clear */
1826                 pci_disable_sriov(pdev);
1827                 msleep(500);
1828
1829                 kfree(adapter->vf_data);
1830                 adapter->vf_data = NULL;
1831                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1832                 msleep(100);
1833                 dev_info(&pdev->dev, "IOV Disabled\n");
1834         }
1835 #endif
1836         iounmap(hw->hw_addr);
1837         if (hw->flash_address)
1838                 iounmap(hw->flash_address);
1839         pci_release_selected_regions(pdev, pci_select_bars(pdev,
1840                                      IORESOURCE_MEM));
1841
1842         free_netdev(netdev);
1843
1844         pci_disable_pcie_error_reporting(pdev);
1845
1846         pci_disable_device(pdev);
1847 }
1848
1849 /**
1850  * igb_sw_init - Initialize general software structures (struct igb_adapter)
1851  * @adapter: board private structure to initialize
1852  *
1853  * igb_sw_init initializes the Adapter private data structure.
1854  * Fields are initialized based on PCI device information and
1855  * OS network device settings (MTU size).
1856  **/
1857 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1858 {
1859         struct e1000_hw *hw = &adapter->hw;
1860         struct net_device *netdev = adapter->netdev;
1861         struct pci_dev *pdev = adapter->pdev;
1862
1863         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1864
1865         adapter->tx_ring_count = IGB_DEFAULT_TXD;
1866         adapter->rx_ring_count = IGB_DEFAULT_RXD;
1867         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1868         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1869
1870         /* This call may decrease the number of queues depending on
1871          * interrupt mode. */
1872         if (igb_init_interrupt_scheme(adapter)) {
1873                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1874                 return -ENOMEM;
1875         }
1876
1877         /* Explicitly disable IRQ since the NIC can be in any state. */
1878         igb_irq_disable(adapter);
1879
1880         set_bit(__IGB_DOWN, &adapter->state);
1881         return 0;
1882 }
1883
1884 /**
1885  * igb_open - Called when a network interface is made active
1886  * @netdev: network interface device structure
1887  *
1888  * Returns 0 on success, negative value on failure
1889  *
1890  * The open entry point is called when a network interface is made
1891  * active by the system (IFF_UP).  At this point all resources needed
1892  * for transmit and receive operations are allocated, the interrupt
1893  * handler is registered with the OS, the watchdog timer is started,
1894  * and the stack is notified that the interface is ready.
1895  **/
1896 static int igb_open(struct net_device *netdev)
1897 {
1898         struct igb_adapter *adapter = netdev_priv(netdev);
1899         struct e1000_hw *hw = &adapter->hw;
1900         int err;
1901         int i;
1902
1903         /* disallow open during test */
1904         if (test_bit(__IGB_TESTING, &adapter->state))
1905                 return -EBUSY;
1906
1907         netif_carrier_off(netdev);
1908
1909         /* allocate transmit descriptors */
1910         err = igb_setup_all_tx_resources(adapter);
1911         if (err)
1912                 goto err_setup_tx;
1913
1914         /* allocate receive descriptors */
1915         err = igb_setup_all_rx_resources(adapter);
1916         if (err)
1917                 goto err_setup_rx;
1918
1919         /* e1000_power_up_phy(adapter); */
1920
1921         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1922         if ((adapter->hw.mng_cookie.status &
1923              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1924                 igb_update_mng_vlan(adapter);
1925
1926         /* before we allocate an interrupt, we must be ready to handle it.
1927          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1928          * as soon as we call pci_request_irq, so we have to setup our
1929          * clean_rx handler before we do so.  */
1930         igb_configure(adapter);
1931
1932         igb_vmm_control(adapter);
1933         igb_set_vmolr(hw, adapter->vfs_allocated_count);
1934
1935         err = igb_request_irq(adapter);
1936         if (err)
1937                 goto err_req_irq;
1938
1939         /* From here on the code is the same as igb_up() */
1940         clear_bit(__IGB_DOWN, &adapter->state);
1941
1942         for (i = 0; i < adapter->num_q_vectors; i++) {
1943                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1944                 napi_enable(&q_vector->napi);
1945         }
1946
1947         /* Clear any pending interrupts. */
1948         rd32(E1000_ICR);
1949
1950         igb_irq_enable(adapter);
1951
1952         netif_tx_start_all_queues(netdev);
1953
1954         /* Fire a link status change interrupt to start the watchdog. */
1955         wr32(E1000_ICS, E1000_ICS_LSC);
1956
1957         return 0;
1958
1959 err_req_irq:
1960         igb_release_hw_control(adapter);
1961         /* e1000_power_down_phy(adapter); */
1962         igb_free_all_rx_resources(adapter);
1963 err_setup_rx:
1964         igb_free_all_tx_resources(adapter);
1965 err_setup_tx:
1966         igb_reset(adapter);
1967
1968         return err;
1969 }
1970
1971 /**
1972  * igb_close - Disables a network interface
1973  * @netdev: network interface device structure
1974  *
1975  * Returns 0, this is not allowed to fail
1976  *
1977  * The close entry point is called when an interface is de-activated
1978  * by the OS.  The hardware is still under the driver's control, but
1979  * needs to be disabled.  A global MAC reset is issued to stop the
1980  * hardware, and all transmit and receive resources are freed.
1981  **/
1982 static int igb_close(struct net_device *netdev)
1983 {
1984         struct igb_adapter *adapter = netdev_priv(netdev);
1985
1986         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1987         igb_down(adapter);
1988
1989         igb_free_irq(adapter);
1990
1991         igb_free_all_tx_resources(adapter);
1992         igb_free_all_rx_resources(adapter);
1993
1994         /* kill manageability vlan ID if supported, but not if a vlan with
1995          * the same ID is registered on the host OS (let 8021q kill it) */
1996         if ((adapter->hw.mng_cookie.status &
1997                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1998              !(adapter->vlgrp &&
1999                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2000                 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2001
2002         return 0;
2003 }
2004
2005 /**
2006  * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2007  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2008  *
2009  * Return 0 on success, negative on failure
2010  **/
2011 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2012 {
2013         struct pci_dev *pdev = tx_ring->pdev;
2014         int size;
2015
2016         size = sizeof(struct igb_buffer) * tx_ring->count;
2017         tx_ring->buffer_info = vmalloc(size);
2018         if (!tx_ring->buffer_info)
2019                 goto err;
2020         memset(tx_ring->buffer_info, 0, size);
2021
2022         /* round up to nearest 4K */
2023         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2024         tx_ring->size = ALIGN(tx_ring->size, 4096);
2025
2026         tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
2027                                              &tx_ring->dma);
2028
2029         if (!tx_ring->desc)
2030                 goto err;
2031
2032         tx_ring->next_to_use = 0;
2033         tx_ring->next_to_clean = 0;
2034         return 0;
2035
2036 err:
2037         vfree(tx_ring->buffer_info);
2038         dev_err(&pdev->dev,
2039                 "Unable to allocate memory for the transmit descriptor ring\n");
2040         return -ENOMEM;
2041 }
2042
2043 /**
2044  * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2045  *                                (Descriptors) for all queues
2046  * @adapter: board private structure
2047  *
2048  * Return 0 on success, negative on failure
2049  **/
2050 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2051 {
2052         int i, err = 0;
2053         int r_idx;
2054
2055         for (i = 0; i < adapter->num_tx_queues; i++) {
2056                 err = igb_setup_tx_resources(&adapter->tx_ring[i]);
2057                 if (err) {
2058                         dev_err(&adapter->pdev->dev,
2059                                 "Allocation for Tx Queue %u failed\n", i);
2060                         for (i--; i >= 0; i--)
2061                                 igb_free_tx_resources(&adapter->tx_ring[i]);
2062                         break;
2063                 }
2064         }
2065
2066         for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
2067                 r_idx = i % adapter->num_tx_queues;
2068                 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
2069         }
2070         return err;
2071 }
2072
2073 /**
2074  * igb_setup_tctl - configure the transmit control registers
2075  * @adapter: Board private structure
2076  **/
2077 static void igb_setup_tctl(struct igb_adapter *adapter)
2078 {
2079         struct e1000_hw *hw = &adapter->hw;
2080         u32 tctl;
2081
2082         /* disable queue 0 which is enabled by default on 82575 and 82576 */
2083         wr32(E1000_TXDCTL(0), 0);
2084
2085         /* Program the Transmit Control Register */
2086         tctl = rd32(E1000_TCTL);
2087         tctl &= ~E1000_TCTL_CT;
2088         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2089                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2090
2091         igb_config_collision_dist(hw);
2092
2093         /* Enable transmits */
2094         tctl |= E1000_TCTL_EN;
2095
2096         wr32(E1000_TCTL, tctl);
2097 }
2098
2099 /**
2100  * igb_configure_tx_ring - Configure transmit ring after Reset
2101  * @adapter: board private structure
2102  * @ring: tx ring to configure
2103  *
2104  * Configure a transmit ring after a reset.
2105  **/
2106 static void igb_configure_tx_ring(struct igb_adapter *adapter,
2107                                   struct igb_ring *ring)
2108 {
2109         struct e1000_hw *hw = &adapter->hw;
2110         u32 txdctl;
2111         u64 tdba = ring->dma;
2112         int reg_idx = ring->reg_idx;
2113
2114         /* disable the queue */
2115         txdctl = rd32(E1000_TXDCTL(reg_idx));
2116         wr32(E1000_TXDCTL(reg_idx),
2117                         txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
2118         wrfl();
2119         mdelay(10);
2120
2121         wr32(E1000_TDLEN(reg_idx),
2122                         ring->count * sizeof(union e1000_adv_tx_desc));
2123         wr32(E1000_TDBAL(reg_idx),
2124                         tdba & 0x00000000ffffffffULL);
2125         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2126
2127         ring->head = hw->hw_addr + E1000_TDH(reg_idx);
2128         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2129         writel(0, ring->head);
2130         writel(0, ring->tail);
2131
2132         txdctl |= IGB_TX_PTHRESH;
2133         txdctl |= IGB_TX_HTHRESH << 8;
2134         txdctl |= IGB_TX_WTHRESH << 16;
2135
2136         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2137         wr32(E1000_TXDCTL(reg_idx), txdctl);
2138 }
2139
2140 /**
2141  * igb_configure_tx - Configure transmit Unit after Reset
2142  * @adapter: board private structure
2143  *
2144  * Configure the Tx unit of the MAC after a reset.
2145  **/
2146 static void igb_configure_tx(struct igb_adapter *adapter)
2147 {
2148         int i;
2149
2150         for (i = 0; i < adapter->num_tx_queues; i++)
2151                 igb_configure_tx_ring(adapter, &adapter->tx_ring[i]);
2152
2153         /* Setup Transmit Descriptor Settings for eop descriptor */
2154         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
2155 }
2156
2157 /**
2158  * igb_setup_rx_resources - allocate Rx resources (Descriptors)
2159  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2160  *
2161  * Returns 0 on success, negative on failure
2162  **/
2163 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2164 {
2165         struct pci_dev *pdev = rx_ring->pdev;
2166         int size, desc_len;
2167
2168         size = sizeof(struct igb_buffer) * rx_ring->count;
2169         rx_ring->buffer_info = vmalloc(size);
2170         if (!rx_ring->buffer_info)
2171                 goto err;
2172         memset(rx_ring->buffer_info, 0, size);
2173
2174         desc_len = sizeof(union e1000_adv_rx_desc);
2175
2176         /* Round up to nearest 4K */
2177         rx_ring->size = rx_ring->count * desc_len;
2178         rx_ring->size = ALIGN(rx_ring->size, 4096);
2179
2180         rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2181                                              &rx_ring->dma);
2182
2183         if (!rx_ring->desc)
2184                 goto err;
2185
2186         rx_ring->next_to_clean = 0;
2187         rx_ring->next_to_use = 0;
2188
2189         return 0;
2190
2191 err:
2192         vfree(rx_ring->buffer_info);
2193         dev_err(&pdev->dev, "Unable to allocate memory for "
2194                 "the receive descriptor ring\n");
2195         return -ENOMEM;
2196 }
2197
2198 /**
2199  * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2200  *                                (Descriptors) for all queues
2201  * @adapter: board private structure
2202  *
2203  * Return 0 on success, negative on failure
2204  **/
2205 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2206 {
2207         int i, err = 0;
2208
2209         for (i = 0; i < adapter->num_rx_queues; i++) {
2210                 err = igb_setup_rx_resources(&adapter->rx_ring[i]);
2211                 if (err) {
2212                         dev_err(&adapter->pdev->dev,
2213                                 "Allocation for Rx Queue %u failed\n", i);
2214                         for (i--; i >= 0; i--)
2215                                 igb_free_rx_resources(&adapter->rx_ring[i]);
2216                         break;
2217                 }
2218         }
2219
2220         return err;
2221 }
2222
2223 /**
2224  * igb_setup_rctl - configure the receive control registers
2225  * @adapter: Board private structure
2226  **/
2227 static void igb_setup_rctl(struct igb_adapter *adapter)
2228 {
2229         struct e1000_hw *hw = &adapter->hw;
2230         u32 rctl;
2231
2232         rctl = rd32(E1000_RCTL);
2233
2234         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2235         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2236
2237         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2238                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2239
2240         /*
2241          * enable stripping of CRC. It's unlikely this will break BMC
2242          * redirection as it did with e1000. Newer features require
2243          * that the HW strips the CRC.
2244          */
2245         rctl |= E1000_RCTL_SECRC;
2246
2247         /*
2248          * disable store bad packets and clear size bits.
2249          */
2250         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2251
2252         /* enable LPE to prevent packets larger than max_frame_size */
2253         rctl |= E1000_RCTL_LPE;
2254
2255         /* disable queue 0 to prevent tail write w/o re-config */
2256         wr32(E1000_RXDCTL(0), 0);
2257
2258         /* Attention!!!  For SR-IOV PF driver operations you must enable
2259          * queue drop for all VF and PF queues to prevent head of line blocking
2260          * if an un-trusted VF does not provide descriptors to hardware.
2261          */
2262         if (adapter->vfs_allocated_count) {
2263                 u32 vmolr;
2264
2265                 /* set all queue drop enable bits */
2266                 wr32(E1000_QDE, ALL_QUEUES);
2267
2268                 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2269                 if (rctl & E1000_RCTL_LPE)
2270                         vmolr |= E1000_VMOLR_LPE;
2271                 if (adapter->num_rx_queues > 1)
2272                         vmolr |= E1000_VMOLR_RSSE;
2273                 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2274         }
2275
2276         wr32(E1000_RCTL, rctl);
2277 }
2278
2279 /**
2280  * igb_rlpml_set - set maximum receive packet size
2281  * @adapter: board private structure
2282  *
2283  * Configure maximum receivable packet size.
2284  **/
2285 static void igb_rlpml_set(struct igb_adapter *adapter)
2286 {
2287         u32 max_frame_size = adapter->max_frame_size;
2288         struct e1000_hw *hw = &adapter->hw;
2289         u16 pf_id = adapter->vfs_allocated_count;
2290
2291         if (adapter->vlgrp)
2292                 max_frame_size += VLAN_TAG_SIZE;
2293
2294         /* if vfs are enabled we set RLPML to the largest possible request
2295          * size and set the VMOLR RLPML to the size we need */
2296         if (pf_id) {
2297                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2298                 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2299         }
2300
2301         wr32(E1000_RLPML, max_frame_size);
2302 }
2303
2304 /**
2305  * igb_configure_vt_default_pool - Configure VT default pool
2306  * @adapter: board private structure
2307  *
2308  * Configure the default pool
2309  **/
2310 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2311 {
2312         struct e1000_hw *hw = &adapter->hw;
2313         u16 pf_id = adapter->vfs_allocated_count;
2314         u32 vtctl;
2315
2316         /* not in sr-iov mode - do nothing */
2317         if (!pf_id)
2318                 return;
2319
2320         vtctl = rd32(E1000_VT_CTL);
2321         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2322                    E1000_VT_CTL_DISABLE_DEF_POOL);
2323         vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2324         wr32(E1000_VT_CTL, vtctl);
2325 }
2326
2327 /**
2328  * igb_configure_rx_ring - Configure a receive ring after Reset
2329  * @adapter: board private structure
2330  * @ring: receive ring to be configured
2331  *
2332  * Configure the Rx unit of the MAC after a reset.
2333  **/
2334 static void igb_configure_rx_ring(struct igb_adapter *adapter,
2335                                   struct igb_ring *ring)
2336 {
2337         struct e1000_hw *hw = &adapter->hw;
2338         u64 rdba = ring->dma;
2339         int reg_idx = ring->reg_idx;
2340         u32 srrctl, rxdctl;
2341
2342         /* disable the queue */
2343         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2344         wr32(E1000_RXDCTL(reg_idx),
2345                         rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
2346
2347         /* Set DMA base address registers */
2348         wr32(E1000_RDBAL(reg_idx),
2349              rdba & 0x00000000ffffffffULL);
2350         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
2351         wr32(E1000_RDLEN(reg_idx),
2352                        ring->count * sizeof(union e1000_adv_rx_desc));
2353
2354         /* initialize head and tail */
2355         ring->head = hw->hw_addr + E1000_RDH(reg_idx);
2356         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
2357         writel(0, ring->head);
2358         writel(0, ring->tail);
2359
2360         /* set descriptor configuration */
2361         if (ring->rx_buffer_len < IGB_RXBUFFER_1024) {
2362                 srrctl = ALIGN(ring->rx_buffer_len, 64) <<
2363                          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2364 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
2365                 srrctl |= IGB_RXBUFFER_16384 >>
2366                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2367 #else
2368                 srrctl |= (PAGE_SIZE / 2) >>
2369                           E1000_SRRCTL_BSIZEPKT_SHIFT;
2370 #endif
2371                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2372         } else {
2373                 srrctl = ALIGN(ring->rx_buffer_len, 1024) >>
2374                          E1000_SRRCTL_BSIZEPKT_SHIFT;
2375                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2376         }
2377
2378         wr32(E1000_SRRCTL(reg_idx), srrctl);
2379
2380         /* enable receive descriptor fetching */
2381         rxdctl = rd32(E1000_RXDCTL(reg_idx));
2382         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2383         rxdctl &= 0xFFF00000;
2384         rxdctl |= IGB_RX_PTHRESH;
2385         rxdctl |= IGB_RX_HTHRESH << 8;
2386         rxdctl |= IGB_RX_WTHRESH << 16;
2387         wr32(E1000_RXDCTL(reg_idx), rxdctl);
2388 }
2389
2390 /**
2391  * igb_configure_rx - Configure receive Unit after Reset
2392  * @adapter: board private structure
2393  *
2394  * Configure the Rx unit of the MAC after a reset.
2395  **/
2396 static void igb_configure_rx(struct igb_adapter *adapter)
2397 {
2398         struct e1000_hw *hw = &adapter->hw;
2399         u32 rctl, rxcsum;
2400         int i;
2401
2402         /* disable receives while setting up the descriptors */
2403         rctl = rd32(E1000_RCTL);
2404         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2405         wrfl();
2406         mdelay(10);
2407
2408         if (adapter->itr_setting > 3)
2409                 wr32(E1000_ITR, adapter->itr);
2410
2411         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2412          * the Base and Length of the Rx Descriptor Ring */
2413         for (i = 0; i < adapter->num_rx_queues; i++)
2414                 igb_configure_rx_ring(adapter, &adapter->rx_ring[i]);
2415
2416         if (adapter->num_rx_queues > 1) {
2417                 u32 random[10];
2418                 u32 mrqc;
2419                 u32 j, shift;
2420                 union e1000_reta {
2421                         u32 dword;
2422                         u8  bytes[4];
2423                 } reta;
2424
2425                 get_random_bytes(&random[0], 40);
2426
2427                 if (hw->mac.type >= e1000_82576)
2428                         shift = 0;
2429                 else
2430                         shift = 6;
2431                 for (j = 0; j < (32 * 4); j++) {
2432                         reta.bytes[j & 3] =
2433                                 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2434                         if ((j & 3) == 3)
2435                                 writel(reta.dword,
2436                                        hw->hw_addr + E1000_RETA(0) + (j & ~3));
2437                 }
2438                 if (adapter->vfs_allocated_count)
2439                         mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2440                 else
2441                         mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2442
2443                 /* Fill out hash function seeds */
2444                 for (j = 0; j < 10; j++)
2445                         array_wr32(E1000_RSSRK(0), j, random[j]);
2446
2447                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2448                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
2449                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2450                          E1000_MRQC_RSS_FIELD_IPV6_TCP);
2451                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2452                          E1000_MRQC_RSS_FIELD_IPV6_UDP);
2453                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2454                          E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2455
2456                 wr32(E1000_MRQC, mrqc);
2457         } else if (adapter->vfs_allocated_count) {
2458                 /* Enable multi-queue for sr-iov */
2459                 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2460         }
2461
2462         /* Enable Receive Checksum Offload for TCP and UDP */
2463         rxcsum = rd32(E1000_RXCSUM);
2464         /* Disable raw packet checksumming */
2465         rxcsum |= E1000_RXCSUM_PCSD;
2466
2467         if (adapter->hw.mac.type == e1000_82576)
2468                 /* Enable Receive Checksum Offload for SCTP */
2469                 rxcsum |= E1000_RXCSUM_CRCOFL;
2470
2471         /* Don't need to set TUOFL or IPOFL, they default to 1 */
2472         wr32(E1000_RXCSUM, rxcsum);
2473
2474         /* Set the default pool for the PF's first queue */
2475         igb_configure_vt_default_pool(adapter);
2476
2477         /* set UTA to appropriate mode */
2478         igb_set_uta(adapter);
2479
2480         /* set the correct pool for the PF default MAC address in entry 0 */
2481         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
2482                          adapter->vfs_allocated_count);
2483
2484         igb_rlpml_set(adapter);
2485
2486         /* Enable Receives */
2487         wr32(E1000_RCTL, rctl);
2488 }
2489
2490 /**
2491  * igb_free_tx_resources - Free Tx Resources per Queue
2492  * @tx_ring: Tx descriptor ring for a specific queue
2493  *
2494  * Free all transmit software resources
2495  **/
2496 void igb_free_tx_resources(struct igb_ring *tx_ring)
2497 {
2498         igb_clean_tx_ring(tx_ring);
2499
2500         vfree(tx_ring->buffer_info);
2501         tx_ring->buffer_info = NULL;
2502
2503         pci_free_consistent(tx_ring->pdev, tx_ring->size,
2504                             tx_ring->desc, tx_ring->dma);
2505
2506         tx_ring->desc = NULL;
2507 }
2508
2509 /**
2510  * igb_free_all_tx_resources - Free Tx Resources for All Queues
2511  * @adapter: board private structure
2512  *
2513  * Free all transmit software resources
2514  **/
2515 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2516 {
2517         int i;
2518
2519         for (i = 0; i < adapter->num_tx_queues; i++)
2520                 igb_free_tx_resources(&adapter->tx_ring[i]);
2521 }
2522
2523 static void igb_unmap_and_free_tx_resource(struct igb_ring *tx_ring,
2524                                            struct igb_buffer *buffer_info)
2525 {
2526         buffer_info->dma = 0;
2527         if (buffer_info->skb) {
2528                 skb_dma_unmap(&tx_ring->pdev->dev,
2529                               buffer_info->skb,
2530                               DMA_TO_DEVICE);
2531                 dev_kfree_skb_any(buffer_info->skb);
2532                 buffer_info->skb = NULL;
2533         }
2534         buffer_info->time_stamp = 0;
2535         /* buffer_info must be completely set up in the transmit path */
2536 }
2537
2538 /**
2539  * igb_clean_tx_ring - Free Tx Buffers
2540  * @tx_ring: ring to be cleaned
2541  **/
2542 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2543 {
2544         struct igb_buffer *buffer_info;
2545         unsigned long size;
2546         unsigned int i;
2547
2548         if (!tx_ring->buffer_info)
2549                 return;
2550         /* Free all the Tx ring sk_buffs */
2551
2552         for (i = 0; i < tx_ring->count; i++) {
2553                 buffer_info = &tx_ring->buffer_info[i];
2554                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
2555         }
2556
2557         size = sizeof(struct igb_buffer) * tx_ring->count;
2558         memset(tx_ring->buffer_info, 0, size);
2559
2560         /* Zero out the descriptor ring */
2561
2562         memset(tx_ring->desc, 0, tx_ring->size);
2563
2564         tx_ring->next_to_use = 0;
2565         tx_ring->next_to_clean = 0;
2566
2567         writel(0, tx_ring->head);
2568         writel(0, tx_ring->tail);
2569 }
2570
2571 /**
2572  * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2573  * @adapter: board private structure
2574  **/
2575 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2576 {
2577         int i;
2578
2579         for (i = 0; i < adapter->num_tx_queues; i++)
2580                 igb_clean_tx_ring(&adapter->tx_ring[i]);
2581 }
2582
2583 /**
2584  * igb_free_rx_resources - Free Rx Resources
2585  * @rx_ring: ring to clean the resources from
2586  *
2587  * Free all receive software resources
2588  **/
2589 void igb_free_rx_resources(struct igb_ring *rx_ring)
2590 {
2591         igb_clean_rx_ring(rx_ring);
2592
2593         vfree(rx_ring->buffer_info);
2594         rx_ring->buffer_info = NULL;
2595
2596         pci_free_consistent(rx_ring->pdev, rx_ring->size,
2597                             rx_ring->desc, rx_ring->dma);
2598
2599         rx_ring->desc = NULL;
2600 }
2601
2602 /**
2603  * igb_free_all_rx_resources - Free Rx Resources for All Queues
2604  * @adapter: board private structure
2605  *
2606  * Free all receive software resources
2607  **/
2608 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2609 {
2610         int i;
2611
2612         for (i = 0; i < adapter->num_rx_queues; i++)
2613                 igb_free_rx_resources(&adapter->rx_ring[i]);
2614 }
2615
2616 /**
2617  * igb_clean_rx_ring - Free Rx Buffers per Queue
2618  * @rx_ring: ring to free buffers from
2619  **/
2620 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2621 {
2622         struct igb_buffer *buffer_info;
2623         unsigned long size;
2624         unsigned int i;
2625
2626         if (!rx_ring->buffer_info)
2627                 return;
2628         /* Free all the Rx ring sk_buffs */
2629         for (i = 0; i < rx_ring->count; i++) {
2630                 buffer_info = &rx_ring->buffer_info[i];
2631                 if (buffer_info->dma) {
2632                         pci_unmap_single(rx_ring->pdev,
2633                                          buffer_info->dma,
2634                                          rx_ring->rx_buffer_len,
2635                                          PCI_DMA_FROMDEVICE);
2636                         buffer_info->dma = 0;
2637                 }
2638
2639                 if (buffer_info->skb) {
2640                         dev_kfree_skb(buffer_info->skb);
2641                         buffer_info->skb = NULL;
2642                 }
2643                 if (buffer_info->page_dma) {
2644                         pci_unmap_page(rx_ring->pdev,
2645                                        buffer_info->page_dma,
2646                                        PAGE_SIZE / 2,
2647                                        PCI_DMA_FROMDEVICE);
2648                         buffer_info->page_dma = 0;
2649                 }
2650                 if (buffer_info->page) {
2651                         put_page(buffer_info->page);
2652                         buffer_info->page = NULL;
2653                         buffer_info->page_offset = 0;
2654                 }
2655         }
2656
2657         size = sizeof(struct igb_buffer) * rx_ring->count;
2658         memset(rx_ring->buffer_info, 0, size);
2659
2660         /* Zero out the descriptor ring */
2661         memset(rx_ring->desc, 0, rx_ring->size);
2662
2663         rx_ring->next_to_clean = 0;
2664         rx_ring->next_to_use = 0;
2665
2666         writel(0, rx_ring->head);
2667         writel(0, rx_ring->tail);
2668 }
2669
2670 /**
2671  * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2672  * @adapter: board private structure
2673  **/
2674 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2675 {
2676         int i;
2677
2678         for (i = 0; i < adapter->num_rx_queues; i++)
2679                 igb_clean_rx_ring(&adapter->rx_ring[i]);
2680 }
2681
2682 /**
2683  * igb_set_mac - Change the Ethernet Address of the NIC
2684  * @netdev: network interface device structure
2685  * @p: pointer to an address structure
2686  *
2687  * Returns 0 on success, negative on failure
2688  **/
2689 static int igb_set_mac(struct net_device *netdev, void *p)
2690 {
2691         struct igb_adapter *adapter = netdev_priv(netdev);
2692         struct e1000_hw *hw = &adapter->hw;
2693         struct sockaddr *addr = p;
2694
2695         if (!is_valid_ether_addr(addr->sa_data))
2696                 return -EADDRNOTAVAIL;
2697
2698         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2699         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2700
2701         /* set the correct pool for the new PF MAC address in entry 0 */
2702         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
2703                          adapter->vfs_allocated_count);
2704
2705         return 0;
2706 }
2707
2708 /**
2709  * igb_write_mc_addr_list - write multicast addresses to MTA
2710  * @netdev: network interface device structure
2711  *
2712  * Writes multicast address list to the MTA hash table.
2713  * Returns: -ENOMEM on failure
2714  *                0 on no addresses written
2715  *                X on writing X addresses to MTA
2716  **/
2717 static int igb_write_mc_addr_list(struct net_device *netdev)
2718 {
2719         struct igb_adapter *adapter = netdev_priv(netdev);
2720         struct e1000_hw *hw = &adapter->hw;
2721         struct dev_mc_list *mc_ptr = netdev->mc_list;
2722         u8  *mta_list;
2723         u32 vmolr = 0;
2724         int i;
2725
2726         if (!netdev->mc_count) {
2727                 /* nothing to program, so clear mc list */
2728                 igb_update_mc_addr_list(hw, NULL, 0);
2729                 igb_restore_vf_multicasts(adapter);
2730                 return 0;
2731         }
2732
2733         mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2734         if (!mta_list)
2735                 return -ENOMEM;
2736
2737         /* set vmolr receive overflow multicast bit */
2738         vmolr |= E1000_VMOLR_ROMPE;
2739
2740         /* The shared function expects a packed array of only addresses. */
2741         mc_ptr = netdev->mc_list;
2742
2743         for (i = 0; i < netdev->mc_count; i++) {
2744                 if (!mc_ptr)
2745                         break;
2746                 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2747                 mc_ptr = mc_ptr->next;
2748         }
2749         igb_update_mc_addr_list(hw, mta_list, i);
2750         kfree(mta_list);
2751
2752         return netdev->mc_count;
2753 }
2754
2755 /**
2756  * igb_write_uc_addr_list - write unicast addresses to RAR table
2757  * @netdev: network interface device structure
2758  *
2759  * Writes unicast address list to the RAR table.
2760  * Returns: -ENOMEM on failure/insufficient address space
2761  *                0 on no addresses written
2762  *                X on writing X addresses to the RAR table
2763  **/
2764 static int igb_write_uc_addr_list(struct net_device *netdev)
2765 {
2766         struct igb_adapter *adapter = netdev_priv(netdev);
2767         struct e1000_hw *hw = &adapter->hw;
2768         unsigned int vfn = adapter->vfs_allocated_count;
2769         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
2770         int count = 0;
2771
2772         /* return ENOMEM indicating insufficient memory for addresses */
2773         if (netdev->uc.count > rar_entries)
2774                 return -ENOMEM;
2775
2776         if (netdev->uc.count && rar_entries) {
2777                 struct netdev_hw_addr *ha;
2778                 list_for_each_entry(ha, &netdev->uc.list, list) {
2779                         if (!rar_entries)
2780                                 break;
2781                         igb_rar_set_qsel(adapter, ha->addr,
2782                                          rar_entries--,
2783                                          vfn);
2784                         count++;
2785                 }
2786         }
2787         /* write the addresses in reverse order to avoid write combining */
2788         for (; rar_entries > 0 ; rar_entries--) {
2789                 wr32(E1000_RAH(rar_entries), 0);
2790                 wr32(E1000_RAL(rar_entries), 0);
2791         }
2792         wrfl();
2793
2794         return count;
2795 }
2796
2797 /**
2798  * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2799  * @netdev: network interface device structure
2800  *
2801  * The set_rx_mode entry point is called whenever the unicast or multicast
2802  * address lists or the network interface flags are updated.  This routine is
2803  * responsible for configuring the hardware for proper unicast, multicast,
2804  * promiscuous mode, and all-multi behavior.
2805  **/
2806 static void igb_set_rx_mode(struct net_device *netdev)
2807 {
2808         struct igb_adapter *adapter = netdev_priv(netdev);
2809         struct e1000_hw *hw = &adapter->hw;
2810         unsigned int vfn = adapter->vfs_allocated_count;
2811         u32 rctl, vmolr = 0;
2812         int count;
2813
2814         /* Check for Promiscuous and All Multicast modes */
2815         rctl = rd32(E1000_RCTL);
2816
2817         /* clear the effected bits */
2818         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
2819
2820         if (netdev->flags & IFF_PROMISC) {
2821                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2822                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
2823         } else {
2824                 if (netdev->flags & IFF_ALLMULTI) {
2825                         rctl |= E1000_RCTL_MPE;
2826                         vmolr |= E1000_VMOLR_MPME;
2827                 } else {
2828                         /*
2829                          * Write addresses to the MTA, if the attempt fails
2830                          * then we should just turn on promiscous mode so
2831                          * that we can at least receive multicast traffic
2832                          */
2833                         count = igb_write_mc_addr_list(netdev);
2834                         if (count < 0) {
2835                                 rctl |= E1000_RCTL_MPE;
2836                                 vmolr |= E1000_VMOLR_MPME;
2837                         } else if (count) {
2838                                 vmolr |= E1000_VMOLR_ROMPE;
2839                         }
2840                 }
2841                 /*
2842                  * Write addresses to available RAR registers, if there is not
2843                  * sufficient space to store all the addresses then enable
2844                  * unicast promiscous mode
2845                  */
2846                 count = igb_write_uc_addr_list(netdev);
2847                 if (count < 0) {
2848                         rctl |= E1000_RCTL_UPE;
2849                         vmolr |= E1000_VMOLR_ROPE;
2850                 }
2851                 rctl |= E1000_RCTL_VFE;
2852         }
2853         wr32(E1000_RCTL, rctl);
2854
2855         /*
2856          * In order to support SR-IOV and eventually VMDq it is necessary to set
2857          * the VMOLR to enable the appropriate modes.  Without this workaround
2858          * we will have issues with VLAN tag stripping not being done for frames
2859          * that are only arriving because we are the default pool
2860          */
2861         if (hw->mac.type < e1000_82576)
2862                 return;
2863
2864         vmolr |= rd32(E1000_VMOLR(vfn)) &
2865                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
2866         wr32(E1000_VMOLR(vfn), vmolr);
2867         igb_restore_vf_multicasts(adapter);
2868 }
2869
2870 /* Need to wait a few seconds after link up to get diagnostic information from
2871  * the phy */
2872 static void igb_update_phy_info(unsigned long data)
2873 {
2874         struct igb_adapter *adapter = (struct igb_adapter *) data;
2875         igb_get_phy_info(&adapter->hw);
2876 }
2877
2878 /**
2879  * igb_has_link - check shared code for link and determine up/down
2880  * @adapter: pointer to driver private info
2881  **/
2882 static bool igb_has_link(struct igb_adapter *adapter)
2883 {
2884         struct e1000_hw *hw = &adapter->hw;
2885         bool link_active = false;
2886         s32 ret_val = 0;
2887
2888         /* get_link_status is set on LSC (link status) interrupt or
2889          * rx sequence error interrupt.  get_link_status will stay
2890          * false until the e1000_check_for_link establishes link
2891          * for copper adapters ONLY
2892          */
2893         switch (hw->phy.media_type) {
2894         case e1000_media_type_copper:
2895                 if (hw->mac.get_link_status) {
2896                         ret_val = hw->mac.ops.check_for_link(hw);
2897                         link_active = !hw->mac.get_link_status;
2898                 } else {
2899                         link_active = true;
2900                 }
2901                 break;
2902         case e1000_media_type_internal_serdes:
2903                 ret_val = hw->mac.ops.check_for_link(hw);
2904                 link_active = hw->mac.serdes_has_link;
2905                 break;
2906         default:
2907         case e1000_media_type_unknown:
2908                 break;
2909         }
2910
2911         return link_active;
2912 }
2913
2914 /**
2915  * igb_watchdog - Timer Call-back
2916  * @data: pointer to adapter cast into an unsigned long
2917  **/
2918 static void igb_watchdog(unsigned long data)
2919 {
2920         struct igb_adapter *adapter = (struct igb_adapter *)data;
2921         /* Do the rest outside of interrupt context */
2922         schedule_work(&adapter->watchdog_task);
2923 }
2924
2925 static void igb_watchdog_task(struct work_struct *work)
2926 {
2927         struct igb_adapter *adapter = container_of(work,
2928                                         struct igb_adapter, watchdog_task);
2929         struct e1000_hw *hw = &adapter->hw;
2930         struct net_device *netdev = adapter->netdev;
2931         struct igb_ring *tx_ring = adapter->tx_ring;
2932         u32 link;
2933         int i;
2934
2935         link = igb_has_link(adapter);
2936         if ((netif_carrier_ok(netdev)) && link)
2937                 goto link_up;
2938
2939         if (link) {
2940                 if (!netif_carrier_ok(netdev)) {
2941                         u32 ctrl;
2942                         hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2943                                                    &adapter->link_speed,
2944                                                    &adapter->link_duplex);
2945
2946                         ctrl = rd32(E1000_CTRL);
2947                         /* Links status message must follow this format */
2948                         printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2949                                  "Flow Control: %s\n",
2950                                  netdev->name,
2951                                  adapter->link_speed,
2952                                  adapter->link_duplex == FULL_DUPLEX ?
2953                                  "Full Duplex" : "Half Duplex",
2954                                  ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2955                                  E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2956                                  E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2957                                  E1000_CTRL_TFCE) ? "TX" : "None")));
2958
2959                         /* tweak tx_queue_len according to speed/duplex and
2960                          * adjust the timeout factor */
2961                         netdev->tx_queue_len = adapter->tx_queue_len;
2962                         adapter->tx_timeout_factor = 1;
2963                         switch (adapter->link_speed) {
2964                         case SPEED_10:
2965                                 netdev->tx_queue_len = 10;
2966                                 adapter->tx_timeout_factor = 14;
2967                                 break;
2968                         case SPEED_100:
2969                                 netdev->tx_queue_len = 100;
2970                                 /* maybe add some timeout factor ? */
2971                                 break;
2972                         }
2973
2974                         netif_carrier_on(netdev);
2975
2976                         igb_ping_all_vfs(adapter);
2977
2978                         /* link state has changed, schedule phy info update */
2979                         if (!test_bit(__IGB_DOWN, &adapter->state))
2980                                 mod_timer(&adapter->phy_info_timer,
2981                                           round_jiffies(jiffies + 2 * HZ));
2982                 }
2983         } else {
2984                 if (netif_carrier_ok(netdev)) {
2985                         adapter->link_speed = 0;
2986                         adapter->link_duplex = 0;
2987                         /* Links status message must follow this format */
2988                         printk(KERN_INFO "igb: %s NIC Link is Down\n",
2989                                netdev->name);
2990                         netif_carrier_off(netdev);
2991
2992                         igb_ping_all_vfs(adapter);
2993
2994                         /* link state has changed, schedule phy info update */
2995                         if (!test_bit(__IGB_DOWN, &adapter->state))
2996                                 mod_timer(&adapter->phy_info_timer,
2997                                           round_jiffies(jiffies + 2 * HZ));
2998                 }
2999         }
3000
3001 link_up:
3002         igb_update_stats(adapter);
3003
3004         hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3005         adapter->tpt_old = adapter->stats.tpt;
3006         hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
3007         adapter->colc_old = adapter->stats.colc;
3008
3009         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3010         adapter->gorc_old = adapter->stats.gorc;
3011         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3012         adapter->gotc_old = adapter->stats.gotc;
3013
3014         igb_update_adaptive(&adapter->hw);
3015
3016         if (!netif_carrier_ok(netdev)) {
3017                 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3018                         /* We've lost link, so the controller stops DMA,
3019                          * but we've got queued Tx work that's never going
3020                          * to get done, so reset controller to flush Tx.
3021                          * (Do the reset outside of interrupt context). */
3022                         adapter->tx_timeout_count++;
3023                         schedule_work(&adapter->reset_task);
3024                         /* return immediately since reset is imminent */
3025                         return;
3026                 }
3027         }
3028
3029         /* Cause software interrupt to ensure rx ring is cleaned */
3030         if (adapter->msix_entries) {
3031                 u32 eics = 0;
3032                 for (i = 0; i < adapter->num_q_vectors; i++) {
3033                         struct igb_q_vector *q_vector = adapter->q_vector[i];
3034                         eics |= q_vector->eims_value;
3035                 }
3036                 wr32(E1000_EICS, eics);
3037         } else {
3038                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
3039         }
3040
3041         /* Force detection of hung controller every watchdog period */
3042         tx_ring->detect_tx_hung = true;
3043
3044         /* Reset the timer */
3045         if (!test_bit(__IGB_DOWN, &adapter->state))
3046                 mod_timer(&adapter->watchdog_timer,
3047                           round_jiffies(jiffies + 2 * HZ));
3048 }
3049
3050 enum latency_range {
3051         lowest_latency = 0,
3052         low_latency = 1,
3053         bulk_latency = 2,
3054         latency_invalid = 255
3055 };
3056
3057
3058 /**
3059  * igb_update_ring_itr - update the dynamic ITR value based on packet size
3060  *
3061  *      Stores a new ITR value based on strictly on packet size.  This
3062  *      algorithm is less sophisticated than that used in igb_update_itr,
3063  *      due to the difficulty of synchronizing statistics across multiple
3064  *      receive rings.  The divisors and thresholds used by this fuction
3065  *      were determined based on theoretical maximum wire speed and testing
3066  *      data, in order to minimize response time while increasing bulk
3067  *      throughput.
3068  *      This functionality is controlled by the InterruptThrottleRate module
3069  *      parameter (see igb_param.c)
3070  *      NOTE:  This function is called only when operating in a multiqueue
3071  *             receive environment.
3072  * @q_vector: pointer to q_vector
3073  **/
3074 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3075 {
3076         int new_val = q_vector->itr_val;
3077         int avg_wire_size = 0;
3078         struct igb_adapter *adapter = q_vector->adapter;
3079
3080         /* For non-gigabit speeds, just fix the interrupt rate at 4000
3081          * ints/sec - ITR timer value of 120 ticks.
3082          */
3083         if (adapter->link_speed != SPEED_1000) {
3084                 new_val = 976;
3085                 goto set_itr_val;
3086         }
3087
3088         if (q_vector->rx_ring && q_vector->rx_ring->total_packets) {
3089                 struct igb_ring *ring = q_vector->rx_ring;
3090                 avg_wire_size = ring->total_bytes / ring->total_packets;
3091         }
3092
3093         if (q_vector->tx_ring && q_vector->tx_ring->total_packets) {
3094                 struct igb_ring *ring = q_vector->tx_ring;
3095                 avg_wire_size = max_t(u32, avg_wire_size,
3096                                       (ring->total_bytes /
3097                                        ring->total_packets));
3098         }
3099
3100         /* if avg_wire_size isn't set no work was done */
3101         if (!avg_wire_size)
3102                 goto clear_counts;
3103
3104         /* Add 24 bytes to size to account for CRC, preamble, and gap */
3105         avg_wire_size += 24;
3106
3107         /* Don't starve jumbo frames */
3108         avg_wire_size = min(avg_wire_size, 3000);
3109
3110         /* Give a little boost to mid-size frames */
3111         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3112                 new_val = avg_wire_size / 3;
3113         else
3114                 new_val = avg_wire_size / 2;
3115
3116 set_itr_val:
3117         if (new_val != q_vector->itr_val) {
3118                 q_vector->itr_val = new_val;
3119                 q_vector->set_itr = 1;
3120         }
3121 clear_counts:
3122         if (q_vector->rx_ring) {
3123                 q_vector->rx_ring->total_bytes = 0;
3124                 q_vector->rx_ring->total_packets = 0;
3125         }
3126         if (q_vector->tx_ring) {
3127                 q_vector->tx_ring->total_bytes = 0;
3128                 q_vector->tx_ring->total_packets = 0;
3129         }
3130 }
3131
3132 /**
3133  * igb_update_itr - update the dynamic ITR value based on statistics
3134  *      Stores a new ITR value based on packets and byte
3135  *      counts during the last interrupt.  The advantage of per interrupt
3136  *      computation is faster updates and more accurate ITR for the current
3137  *      traffic pattern.  Constants in this function were computed
3138  *      based on theoretical maximum wire speed and thresholds were set based
3139  *      on testing data as well as attempting to minimize response time
3140  *      while increasing bulk throughput.
3141  *      this functionality is controlled by the InterruptThrottleRate module
3142  *      parameter (see igb_param.c)
3143  *      NOTE:  These calculations are only valid when operating in a single-
3144  *             queue environment.
3145  * @adapter: pointer to adapter
3146  * @itr_setting: current q_vector->itr_val
3147  * @packets: the number of packets during this measurement interval
3148  * @bytes: the number of bytes during this measurement interval
3149  **/
3150 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
3151                                    int packets, int bytes)
3152 {
3153         unsigned int retval = itr_setting;
3154
3155         if (packets == 0)
3156                 goto update_itr_done;
3157
3158         switch (itr_setting) {
3159         case lowest_latency:
3160                 /* handle TSO and jumbo frames */
3161                 if (bytes/packets > 8000)
3162                         retval = bulk_latency;
3163                 else if ((packets < 5) && (bytes > 512))
3164                         retval = low_latency;
3165                 break;
3166         case low_latency:  /* 50 usec aka 20000 ints/s */
3167                 if (bytes > 10000) {
3168                         /* this if handles the TSO accounting */
3169                         if (bytes/packets > 8000) {
3170                                 retval = bulk_latency;
3171                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3172                                 retval = bulk_latency;
3173                         } else if ((packets > 35)) {
3174                                 retval = lowest_latency;
3175                         }
3176                 } else if (bytes/packets > 2000) {
3177                         retval = bulk_latency;
3178                 } else if (packets <= 2 && bytes < 512) {
3179                         retval = lowest_latency;
3180                 }
3181                 break;
3182         case bulk_latency: /* 250 usec aka 4000 ints/s */
3183                 if (bytes > 25000) {
3184                         if (packets > 35)
3185                                 retval = low_latency;
3186                 } else if (bytes < 1500) {
3187                         retval = low_latency;
3188                 }
3189                 break;
3190         }
3191
3192 update_itr_done:
3193         return retval;
3194 }
3195
3196 static void igb_set_itr(struct igb_adapter *adapter)
3197 {
3198         struct igb_q_vector *q_vector = adapter->q_vector[0];
3199         u16 current_itr;
3200         u32 new_itr = q_vector->itr_val;
3201
3202         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3203         if (adapter->link_speed != SPEED_1000) {
3204                 current_itr = 0;
3205                 new_itr = 4000;
3206                 goto set_itr_now;
3207         }
3208
3209         adapter->rx_itr = igb_update_itr(adapter,
3210                                     adapter->rx_itr,
3211                                     adapter->rx_ring->total_packets,
3212                                     adapter->rx_ring->total_bytes);
3213
3214         adapter->tx_itr = igb_update_itr(adapter,
3215                                     adapter->tx_itr,
3216                                     adapter->tx_ring->total_packets,
3217                                     adapter->tx_ring->total_bytes);
3218         current_itr = max(adapter->rx_itr, adapter->tx_itr);
3219
3220         /* conservative mode (itr 3) eliminates the lowest_latency setting */
3221         if (adapter->itr_setting == 3 && current_itr == lowest_latency)
3222                 current_itr = low_latency;
3223
3224         switch (current_itr) {
3225         /* counts and packets in update_itr are dependent on these numbers */
3226         case lowest_latency:
3227                 new_itr = 56;  /* aka 70,000 ints/sec */
3228                 break;
3229         case low_latency:
3230                 new_itr = 196; /* aka 20,000 ints/sec */
3231                 break;
3232         case bulk_latency:
3233                 new_itr = 980; /* aka 4,000 ints/sec */
3234                 break;
3235         default:
3236                 break;
3237         }
3238
3239 set_itr_now:
3240         adapter->rx_ring->total_bytes = 0;
3241         adapter->rx_ring->total_packets = 0;
3242         adapter->tx_ring->total_bytes = 0;
3243         adapter->tx_ring->total_packets = 0;
3244
3245         if (new_itr != q_vector->itr_val) {
3246                 /* this attempts to bias the interrupt rate towards Bulk
3247                  * by adding intermediate steps when interrupt rate is
3248                  * increasing */
3249                 new_itr = new_itr > q_vector->itr_val ?
3250                              max((new_itr * q_vector->itr_val) /
3251                                  (new_itr + (q_vector->itr_val >> 2)),
3252                                  new_itr) :
3253                              new_itr;
3254                 /* Don't write the value here; it resets the adapter's
3255                  * internal timer, and causes us to delay far longer than
3256                  * we should between interrupts.  Instead, we write the ITR
3257                  * value at the beginning of the next interrupt so the timing
3258                  * ends up being correct.
3259                  */
3260                 q_vector->itr_val = new_itr;
3261                 q_vector->set_itr = 1;
3262         }
3263
3264         return;
3265 }
3266
3267 #define IGB_TX_FLAGS_CSUM               0x00000001
3268 #define IGB_TX_FLAGS_VLAN               0x00000002
3269 #define IGB_TX_FLAGS_TSO                0x00000004
3270 #define IGB_TX_FLAGS_IPV4               0x00000008
3271 #define IGB_TX_FLAGS_TSTAMP             0x00000010
3272 #define IGB_TX_FLAGS_VLAN_MASK  0xffff0000
3273 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3274
3275 static inline int igb_tso_adv(struct igb_adapter *adapter,
3276                               struct igb_ring *tx_ring,
3277                               struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3278 {
3279         struct e1000_adv_tx_context_desc *context_desc;
3280         unsigned int i;
3281         int err;
3282         struct igb_buffer *buffer_info;
3283         u32 info = 0, tu_cmd = 0;
3284         u32 mss_l4len_idx, l4len;
3285         *hdr_len = 0;
3286
3287         if (skb_header_cloned(skb)) {
3288                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3289                 if (err)
3290                         return err;
3291         }
3292
3293         l4len = tcp_hdrlen(skb);
3294         *hdr_len += l4len;
3295
3296         if (skb->protocol == htons(ETH_P_IP)) {
3297                 struct iphdr *iph = ip_hdr(skb);
3298                 iph->tot_len = 0;
3299                 iph->check = 0;
3300                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3301                                                          iph->daddr, 0,
3302                                                          IPPROTO_TCP,
3303                                                          0);
3304         } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3305                 ipv6_hdr(skb)->payload_len = 0;
3306                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3307                                                        &ipv6_hdr(skb)->daddr,
3308                                                        0, IPPROTO_TCP, 0);
3309         }
3310
3311         i = tx_ring->next_to_use;
3312
3313         buffer_info = &tx_ring->buffer_info[i];
3314         context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3315         /* VLAN MACLEN IPLEN */
3316         if (tx_flags & IGB_TX_FLAGS_VLAN)
3317                 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3318         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3319         *hdr_len += skb_network_offset(skb);
3320         info |= skb_network_header_len(skb);
3321         *hdr_len += skb_network_header_len(skb);
3322         context_desc->vlan_macip_lens = cpu_to_le32(info);
3323
3324         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3325         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3326
3327         if (skb->protocol == htons(ETH_P_IP))
3328                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3329         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3330
3331         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3332
3333         /* MSS L4LEN IDX */
3334         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3335         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3336
3337         /* For 82575, context index must be unique per ring. */
3338         if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3339                 mss_l4len_idx |= tx_ring->queue_index << 4;
3340
3341         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3342         context_desc->seqnum_seed = 0;
3343
3344         buffer_info->time_stamp = jiffies;
3345         buffer_info->next_to_watch = i;
3346         buffer_info->dma = 0;
3347         i++;
3348         if (i == tx_ring->count)
3349                 i = 0;
3350
3351         tx_ring->next_to_use = i;
3352
3353         return true;
3354 }
3355
3356 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3357                                         struct igb_ring *tx_ring,
3358                                         struct sk_buff *skb, u32 tx_flags)
3359 {
3360         struct e1000_adv_tx_context_desc *context_desc;
3361         struct pci_dev *pdev = tx_ring->pdev;
3362         struct igb_buffer *buffer_info;
3363         u32 info = 0, tu_cmd = 0;
3364         unsigned int i;
3365
3366         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3367             (tx_flags & IGB_TX_FLAGS_VLAN)) {
3368                 i = tx_ring->next_to_use;
3369                 buffer_info = &tx_ring->buffer_info[i];
3370                 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3371
3372                 if (tx_flags & IGB_TX_FLAGS_VLAN)
3373                         info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3374                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3375                 if (skb->ip_summed == CHECKSUM_PARTIAL)
3376                         info |= skb_network_header_len(skb);
3377
3378                 context_desc->vlan_macip_lens = cpu_to_le32(info);
3379
3380                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3381
3382                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3383                         __be16 protocol;
3384
3385                         if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3386                                 const struct vlan_ethhdr *vhdr =
3387                                           (const struct vlan_ethhdr*)skb->data;
3388
3389                                 protocol = vhdr->h_vlan_encapsulated_proto;
3390                         } else {
3391                                 protocol = skb->protocol;
3392                         }
3393
3394                         switch (protocol) {
3395                         case cpu_to_be16(ETH_P_IP):
3396                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3397                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3398                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3399                                 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3400                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3401                                 break;
3402                         case cpu_to_be16(ETH_P_IPV6):
3403                                 /* XXX what about other V6 headers?? */
3404                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3405                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3406                                 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3407                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3408                                 break;
3409                         default:
3410                                 if (unlikely(net_ratelimit()))
3411                                         dev_warn(&pdev->dev,
3412                                             "partial checksum but proto=%x!\n",
3413                                             skb->protocol);
3414                                 break;
3415                         }
3416                 }
3417
3418                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3419                 context_desc->seqnum_seed = 0;
3420                 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3421                         context_desc->mss_l4len_idx =
3422                                 cpu_to_le32(tx_ring->queue_index << 4);
3423                 else
3424                         context_desc->mss_l4len_idx = 0;
3425
3426                 buffer_info->time_stamp = jiffies;
3427                 buffer_info->next_to_watch = i;
3428                 buffer_info->dma = 0;
3429
3430                 i++;
3431                 if (i == tx_ring->count)
3432                         i = 0;
3433                 tx_ring->next_to_use = i;
3434
3435                 return true;
3436         }
3437         return false;
3438 }
3439
3440 #define IGB_MAX_TXD_PWR 16
3441 #define IGB_MAX_DATA_PER_TXD    (1<<IGB_MAX_TXD_PWR)
3442
3443 static inline int igb_tx_map_adv(struct igb_ring *tx_ring, struct sk_buff *skb,
3444                                  unsigned int first)
3445 {
3446         struct igb_buffer *buffer_info;
3447         struct pci_dev *pdev = tx_ring->pdev;
3448         unsigned int len = skb_headlen(skb);
3449         unsigned int count = 0, i;
3450         unsigned int f;
3451         dma_addr_t *map;
3452
3453         i = tx_ring->next_to_use;
3454
3455         if (skb_dma_map(&pdev->dev, skb, DMA_TO_DEVICE)) {
3456                 dev_err(&pdev->dev, "TX DMA map failed\n");
3457                 return 0;
3458         }
3459
3460         map = skb_shinfo(skb)->dma_maps;
3461
3462         buffer_info = &tx_ring->buffer_info[i];
3463         BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3464         buffer_info->length = len;
3465         /* set time_stamp *before* dma to help avoid a possible race */
3466         buffer_info->time_stamp = jiffies;
3467         buffer_info->next_to_watch = i;
3468         buffer_info->dma = skb_shinfo(skb)->dma_head;
3469
3470         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3471                 struct skb_frag_struct *frag;
3472
3473                 i++;
3474                 if (i == tx_ring->count)
3475                         i = 0;
3476
3477                 frag = &skb_shinfo(skb)->frags[f];
3478                 len = frag->size;
3479
3480                 buffer_info = &tx_ring->buffer_info[i];
3481                 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3482                 buffer_info->length = len;
3483                 buffer_info->time_stamp = jiffies;
3484                 buffer_info->next_to_watch = i;
3485                 buffer_info->dma = map[count];
3486                 count++;
3487         }
3488
3489         tx_ring->buffer_info[i].skb = skb;
3490         tx_ring->buffer_info[first].next_to_watch = i;
3491
3492         return count + 1;
3493 }
3494
3495 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3496                                     struct igb_ring *tx_ring,
3497                                     int tx_flags, int count, u32 paylen,
3498                                     u8 hdr_len)
3499 {
3500         union e1000_adv_tx_desc *tx_desc = NULL;
3501         struct igb_buffer *buffer_info;
3502         u32 olinfo_status = 0, cmd_type_len;
3503         unsigned int i;
3504
3505         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3506                         E1000_ADVTXD_DCMD_DEXT);
3507
3508         if (tx_flags & IGB_TX_FLAGS_VLAN)
3509                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3510
3511         if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3512                 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3513
3514         if (tx_flags & IGB_TX_FLAGS_TSO) {
3515                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3516
3517                 /* insert tcp checksum */
3518                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3519
3520                 /* insert ip checksum */
3521                 if (tx_flags & IGB_TX_FLAGS_IPV4)
3522                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3523
3524         } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3525                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3526         }
3527
3528         if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3529             (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3530                          IGB_TX_FLAGS_VLAN)))
3531                 olinfo_status |= tx_ring->queue_index << 4;
3532
3533         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3534
3535         i = tx_ring->next_to_use;
3536         while (count--) {
3537                 buffer_info = &tx_ring->buffer_info[i];
3538                 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3539                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3540                 tx_desc->read.cmd_type_len =
3541                         cpu_to_le32(cmd_type_len | buffer_info->length);
3542                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3543                 i++;
3544                 if (i == tx_ring->count)
3545                         i = 0;
3546         }
3547
3548         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3549         /* Force memory writes to complete before letting h/w
3550          * know there are new descriptors to fetch.  (Only
3551          * applicable for weak-ordered memory model archs,
3552          * such as IA-64). */
3553         wmb();
3554
3555         tx_ring->next_to_use = i;
3556         writel(i, tx_ring->tail);
3557         /* we need this if more than one processor can write to our tail
3558          * at a time, it syncronizes IO on IA64/Altix systems */
3559         mmiowb();
3560 }
3561
3562 static int __igb_maybe_stop_tx(struct net_device *netdev,
3563                                struct igb_ring *tx_ring, int size)
3564 {
3565         struct igb_adapter *adapter = netdev_priv(netdev);
3566
3567         netif_stop_subqueue(netdev, tx_ring->queue_index);
3568
3569         /* Herbert's original patch had:
3570          *  smp_mb__after_netif_stop_queue();
3571          * but since that doesn't exist yet, just open code it. */
3572         smp_mb();
3573
3574         /* We need to check again in a case another CPU has just
3575          * made room available. */
3576         if (igb_desc_unused(tx_ring) < size)
3577                 return -EBUSY;
3578
3579         /* A reprieve! */
3580         netif_wake_subqueue(netdev, tx_ring->queue_index);
3581         ++adapter->restart_queue;
3582         return 0;
3583 }
3584
3585 static int igb_maybe_stop_tx(struct net_device *netdev,
3586                              struct igb_ring *tx_ring, int size)
3587 {
3588         if (igb_desc_unused(tx_ring) >= size)
3589                 return 0;
3590         return __igb_maybe_stop_tx(netdev, tx_ring, size);
3591 }
3592
3593 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3594                                            struct net_device *netdev,
3595                                            struct igb_ring *tx_ring)
3596 {
3597         struct igb_adapter *adapter = netdev_priv(netdev);
3598         unsigned int first;
3599         unsigned int tx_flags = 0;
3600         u8 hdr_len = 0;
3601         int count = 0;
3602         int tso = 0;
3603         union skb_shared_tx *shtx;
3604
3605         if (test_bit(__IGB_DOWN, &adapter->state)) {
3606                 dev_kfree_skb_any(skb);
3607                 return NETDEV_TX_OK;
3608         }
3609
3610         if (skb->len <= 0) {
3611                 dev_kfree_skb_any(skb);
3612                 return NETDEV_TX_OK;
3613         }
3614
3615         /* need: 1 descriptor per page,
3616          *       + 2 desc gap to keep tail from touching head,
3617          *       + 1 desc for skb->data,
3618          *       + 1 desc for context descriptor,
3619          * otherwise try next time */
3620         if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3621                 /* this is a hard error */
3622                 return NETDEV_TX_BUSY;
3623         }
3624
3625         /*
3626          * TODO: check that there currently is no other packet with
3627          * time stamping in the queue
3628          *
3629          * When doing time stamping, keep the connection to the socket
3630          * a while longer: it is still needed by skb_hwtstamp_tx(),
3631          * called either in igb_tx_hwtstamp() or by our caller when
3632          * doing software time stamping.
3633          */
3634         shtx = skb_tx(skb);
3635         if (unlikely(shtx->hardware)) {
3636                 shtx->in_progress = 1;
3637                 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3638         }
3639
3640         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3641                 tx_flags |= IGB_TX_FLAGS_VLAN;
3642                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3643         }
3644
3645         if (skb->protocol == htons(ETH_P_IP))
3646                 tx_flags |= IGB_TX_FLAGS_IPV4;
3647
3648         first = tx_ring->next_to_use;
3649         tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3650                                               &hdr_len) : 0;
3651
3652         if (tso < 0) {
3653                 dev_kfree_skb_any(skb);
3654                 return NETDEV_TX_OK;
3655         }
3656
3657         if (tso)
3658                 tx_flags |= IGB_TX_FLAGS_TSO;
3659         else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3660                  (skb->ip_summed == CHECKSUM_PARTIAL))
3661                 tx_flags |= IGB_TX_FLAGS_CSUM;
3662
3663         /*
3664          * count reflects descriptors mapped, if 0 then mapping error
3665          * has occured and we need to rewind the descriptor queue
3666          */
3667         count = igb_tx_map_adv(tx_ring, skb, first);
3668
3669         if (count) {
3670                 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3671                                  skb->len, hdr_len);
3672                 /* Make sure there is space in the ring for the next send. */
3673                 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3674         } else {
3675                 dev_kfree_skb_any(skb);
3676                 tx_ring->buffer_info[first].time_stamp = 0;
3677                 tx_ring->next_to_use = first;
3678         }
3679
3680         return NETDEV_TX_OK;
3681 }
3682
3683 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3684                                       struct net_device *netdev)
3685 {
3686         struct igb_adapter *adapter = netdev_priv(netdev);
3687         struct igb_ring *tx_ring;
3688
3689         int r_idx = 0;
3690         r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3691         tx_ring = adapter->multi_tx_table[r_idx];
3692
3693         /* This goes back to the question of how to logically map a tx queue
3694          * to a flow.  Right now, performance is impacted slightly negatively
3695          * if using multiple tx queues.  If the stack breaks away from a
3696          * single qdisc implementation, we can look at this again. */
3697         return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3698 }
3699
3700 /**
3701  * igb_tx_timeout - Respond to a Tx Hang
3702  * @netdev: network interface device structure
3703  **/
3704 static void igb_tx_timeout(struct net_device *netdev)
3705 {
3706         struct igb_adapter *adapter = netdev_priv(netdev);
3707         struct e1000_hw *hw = &adapter->hw;
3708
3709         /* Do the reset outside of interrupt context */
3710         adapter->tx_timeout_count++;
3711         schedule_work(&adapter->reset_task);
3712         wr32(E1000_EICS,
3713              (adapter->eims_enable_mask & ~adapter->eims_other));
3714 }
3715
3716 static void igb_reset_task(struct work_struct *work)
3717 {
3718         struct igb_adapter *adapter;
3719         adapter = container_of(work, struct igb_adapter, reset_task);
3720
3721         igb_reinit_locked(adapter);
3722 }
3723
3724 /**
3725  * igb_get_stats - Get System Network Statistics
3726  * @netdev: network interface device structure
3727  *
3728  * Returns the address of the device statistics structure.
3729  * The statistics are actually updated from the timer callback.
3730  **/
3731 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3732 {
3733         /* only return the current stats */
3734         return &netdev->stats;
3735 }
3736
3737 /**
3738  * igb_change_mtu - Change the Maximum Transfer Unit
3739  * @netdev: network interface device structure
3740  * @new_mtu: new value for maximum frame size
3741  *
3742  * Returns 0 on success, negative on failure
3743  **/
3744 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3745 {
3746         struct igb_adapter *adapter = netdev_priv(netdev);
3747         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3748         u32 rx_buffer_len, i;
3749
3750         if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3751             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3752                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3753                 return -EINVAL;
3754         }
3755
3756         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3757                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3758                 return -EINVAL;
3759         }
3760
3761         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3762                 msleep(1);
3763
3764         /* igb_down has a dependency on max_frame_size */
3765         adapter->max_frame_size = max_frame;
3766         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3767          * means we reserve 2 more, this pushes us to allocate from the next
3768          * larger slab size.
3769          * i.e. RXBUFFER_2048 --> size-4096 slab
3770          */
3771
3772         if (max_frame <= IGB_RXBUFFER_1024)
3773                 rx_buffer_len = IGB_RXBUFFER_1024;
3774         else if (max_frame <= MAXIMUM_ETHERNET_VLAN_SIZE)
3775                 rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3776         else
3777                 rx_buffer_len = IGB_RXBUFFER_128;
3778
3779         if (netif_running(netdev))
3780                 igb_down(adapter);
3781
3782         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3783                  netdev->mtu, new_mtu);
3784         netdev->mtu = new_mtu;
3785
3786         for (i = 0; i < adapter->num_rx_queues; i++)
3787                 adapter->rx_ring[i].rx_buffer_len = rx_buffer_len;
3788
3789         if (netif_running(netdev))
3790                 igb_up(adapter);
3791         else
3792                 igb_reset(adapter);
3793
3794         clear_bit(__IGB_RESETTING, &adapter->state);
3795
3796         return 0;
3797 }
3798
3799 /**
3800  * igb_update_stats - Update the board statistics counters
3801  * @adapter: board private structure
3802  **/
3803
3804 void igb_update_stats(struct igb_adapter *adapter)
3805 {
3806         struct net_device *netdev = adapter->netdev;
3807         struct e1000_hw *hw = &adapter->hw;
3808         struct pci_dev *pdev = adapter->pdev;
3809         u16 phy_tmp;
3810
3811 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3812
3813         /*
3814          * Prevent stats update while adapter is being reset, or if the pci
3815          * connection is down.
3816          */
3817         if (adapter->link_speed == 0)
3818                 return;
3819         if (pci_channel_offline(pdev))
3820                 return;
3821
3822         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3823         adapter->stats.gprc += rd32(E1000_GPRC);
3824         adapter->stats.gorc += rd32(E1000_GORCL);
3825         rd32(E1000_GORCH); /* clear GORCL */
3826         adapter->stats.bprc += rd32(E1000_BPRC);
3827         adapter->stats.mprc += rd32(E1000_MPRC);
3828         adapter->stats.roc += rd32(E1000_ROC);
3829
3830         adapter->stats.prc64 += rd32(E1000_PRC64);
3831         adapter->stats.prc127 += rd32(E1000_PRC127);
3832         adapter->stats.prc255 += rd32(E1000_PRC255);
3833         adapter->stats.prc511 += rd32(E1000_PRC511);
3834         adapter->stats.prc1023 += rd32(E1000_PRC1023);
3835         adapter->stats.prc1522 += rd32(E1000_PRC1522);
3836         adapter->stats.symerrs += rd32(E1000_SYMERRS);
3837         adapter->stats.sec += rd32(E1000_SEC);
3838
3839         adapter->stats.mpc += rd32(E1000_MPC);
3840         adapter->stats.scc += rd32(E1000_SCC);
3841         adapter->stats.ecol += rd32(E1000_ECOL);
3842         adapter->stats.mcc += rd32(E1000_MCC);
3843         adapter->stats.latecol += rd32(E1000_LATECOL);
3844         adapter->stats.dc += rd32(E1000_DC);
3845         adapter->stats.rlec += rd32(E1000_RLEC);
3846         adapter->stats.xonrxc += rd32(E1000_XONRXC);
3847         adapter->stats.xontxc += rd32(E1000_XONTXC);
3848         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3849         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3850         adapter->stats.fcruc += rd32(E1000_FCRUC);
3851         adapter->stats.gptc += rd32(E1000_GPTC);
3852         adapter->stats.gotc += rd32(E1000_GOTCL);
3853         rd32(E1000_GOTCH); /* clear GOTCL */
3854         adapter->stats.rnbc += rd32(E1000_RNBC);
3855         adapter->stats.ruc += rd32(E1000_RUC);
3856         adapter->stats.rfc += rd32(E1000_RFC);
3857         adapter->stats.rjc += rd32(E1000_RJC);
3858         adapter->stats.tor += rd32(E1000_TORH);
3859         adapter->stats.tot += rd32(E1000_TOTH);
3860         adapter->stats.tpr += rd32(E1000_TPR);
3861
3862         adapter->stats.ptc64 += rd32(E1000_PTC64);
3863         adapter->stats.ptc127 += rd32(E1000_PTC127);
3864         adapter->stats.ptc255 += rd32(E1000_PTC255);
3865         adapter->stats.ptc511 += rd32(E1000_PTC511);
3866         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3867         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3868
3869         adapter->stats.mptc += rd32(E1000_MPTC);
3870         adapter->stats.bptc += rd32(E1000_BPTC);
3871
3872         /* used for adaptive IFS */
3873
3874         hw->mac.tx_packet_delta = rd32(E1000_TPT);
3875         adapter->stats.tpt += hw->mac.tx_packet_delta;
3876         hw->mac.collision_delta = rd32(E1000_COLC);
3877         adapter->stats.colc += hw->mac.collision_delta;
3878
3879         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3880         adapter->stats.rxerrc += rd32(E1000_RXERRC);
3881         adapter->stats.tncrs += rd32(E1000_TNCRS);
3882         adapter->stats.tsctc += rd32(E1000_TSCTC);
3883         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3884
3885         adapter->stats.iac += rd32(E1000_IAC);
3886         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3887         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3888         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3889         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3890         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3891         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3892         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3893         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3894
3895         /* Fill out the OS statistics structure */
3896         netdev->stats.multicast = adapter->stats.mprc;
3897         netdev->stats.collisions = adapter->stats.colc;
3898
3899         /* Rx Errors */
3900
3901         if (hw->mac.type != e1000_82575) {
3902                 u32 rqdpc_tmp;
3903                 u64 rqdpc_total = 0;
3904                 int i;
3905                 /* Read out drops stats per RX queue.  Notice RQDPC (Receive
3906                  * Queue Drop Packet Count) stats only gets incremented, if
3907                  * the DROP_EN but it set (in the SRRCTL register for that
3908                  * queue).  If DROP_EN bit is NOT set, then the some what
3909                  * equivalent count is stored in RNBC (not per queue basis).
3910                  * Also note the drop count is due to lack of available
3911                  * descriptors.
3912                  */
3913                 for (i = 0; i < adapter->num_rx_queues; i++) {
3914                         rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3915                         adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3916                         rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3917                 }
3918                 netdev->stats.rx_fifo_errors = rqdpc_total;
3919         }
3920
3921         /* Note RNBC (Receive No Buffers Count) is an not an exact
3922          * drop count as the hardware FIFO might save the day.  Thats
3923          * one of the reason for saving it in rx_fifo_errors, as its
3924          * potentially not a true drop.
3925          */
3926         netdev->stats.rx_fifo_errors += adapter->stats.rnbc;
3927
3928         /* RLEC on some newer hardware can be incorrect so build
3929          * our own version based on RUC and ROC */
3930         netdev->stats.rx_errors = adapter->stats.rxerrc +
3931                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3932                 adapter->stats.ruc + adapter->stats.roc +
3933                 adapter->stats.cexterr;
3934         netdev->stats.rx_length_errors = adapter->stats.ruc +
3935                                               adapter->stats.roc;
3936         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3937         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3938         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3939
3940         /* Tx Errors */
3941         netdev->stats.tx_errors = adapter->stats.ecol +
3942                                        adapter->stats.latecol;
3943         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3944         netdev->stats.tx_window_errors = adapter->stats.latecol;
3945         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3946
3947         /* Tx Dropped needs to be maintained elsewhere */
3948
3949         /* Phy Stats */
3950         if (hw->phy.media_type == e1000_media_type_copper) {
3951                 if ((adapter->link_speed == SPEED_1000) &&
3952                    (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3953                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3954                         adapter->phy_stats.idle_errors += phy_tmp;
3955                 }
3956         }
3957
3958         /* Management Stats */
3959         adapter->stats.mgptc += rd32(E1000_MGTPTC);
3960         adapter->stats.mgprc += rd32(E1000_MGTPRC);
3961         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3962 }
3963
3964 static irqreturn_t igb_msix_other(int irq, void *data)
3965 {
3966         struct igb_adapter *adapter = data;
3967         struct e1000_hw *hw = &adapter->hw;
3968         u32 icr = rd32(E1000_ICR);
3969         /* reading ICR causes bit 31 of EICR to be cleared */
3970
3971         if (icr & E1000_ICR_DOUTSYNC) {
3972                 /* HW is reporting DMA is out of sync */
3973                 adapter->stats.doosync++;
3974         }
3975
3976         /* Check for a mailbox event */
3977         if (icr & E1000_ICR_VMMB)
3978                 igb_msg_task(adapter);
3979
3980         if (icr & E1000_ICR_LSC) {
3981                 hw->mac.get_link_status = 1;
3982                 /* guard against interrupt when we're going down */
3983                 if (!test_bit(__IGB_DOWN, &adapter->state))
3984                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3985         }
3986
3987         wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3988         wr32(E1000_EIMS, adapter->eims_other);
3989
3990         return IRQ_HANDLED;
3991 }
3992
3993 static void igb_write_itr(struct igb_q_vector *q_vector)
3994 {
3995         u32 itr_val = q_vector->itr_val & 0x7FFC;
3996
3997         if (!q_vector->set_itr)
3998                 return;
3999
4000         if (!itr_val)
4001                 itr_val = 0x4;
4002
4003         if (q_vector->itr_shift)
4004                 itr_val |= itr_val << q_vector->itr_shift;
4005         else
4006                 itr_val |= 0x8000000;
4007
4008         writel(itr_val, q_vector->itr_register);
4009         q_vector->set_itr = 0;
4010 }
4011
4012 static irqreturn_t igb_msix_ring(int irq, void *data)
4013 {
4014         struct igb_q_vector *q_vector = data;
4015
4016         /* Write the ITR value calculated from the previous interrupt. */
4017         igb_write_itr(q_vector);
4018
4019         napi_schedule(&q_vector->napi);
4020
4021         return IRQ_HANDLED;
4022 }
4023
4024 #ifdef CONFIG_IGB_DCA
4025 static void igb_update_dca(struct igb_q_vector *q_vector)
4026 {
4027         struct igb_adapter *adapter = q_vector->adapter;
4028         struct e1000_hw *hw = &adapter->hw;
4029         int cpu = get_cpu();
4030
4031         if (q_vector->cpu == cpu)
4032                 goto out_no_update;
4033
4034         if (q_vector->tx_ring) {
4035                 int q = q_vector->tx_ring->reg_idx;
4036                 u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4037                 if (hw->mac.type == e1000_82575) {
4038                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4039                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4040                 } else {
4041                         dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4042                         dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4043                                       E1000_DCA_TXCTRL_CPUID_SHIFT;
4044                 }
4045                 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4046                 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4047         }
4048         if (q_vector->rx_ring) {
4049                 int q = q_vector->rx_ring->reg_idx;
4050                 u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4051                 if (hw->mac.type == e1000_82575) {
4052                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4053                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4054                 } else {
4055                         dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4056                         dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4057                                       E1000_DCA_RXCTRL_CPUID_SHIFT;
4058                 }
4059                 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4060                 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4061                 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4062                 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4063         }
4064         q_vector->cpu = cpu;
4065 out_no_update:
4066         put_cpu();
4067 }
4068
4069 static void igb_setup_dca(struct igb_adapter *adapter)
4070 {
4071         struct e1000_hw *hw = &adapter->hw;
4072         int i;
4073
4074         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4075                 return;
4076
4077         /* Always use CB2 mode, difference is masked in the CB driver. */
4078         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4079
4080         for (i = 0; i < adapter->num_q_vectors; i++) {
4081                 struct igb_q_vector *q_vector = adapter->q_vector[i];
4082                 q_vector->cpu = -1;
4083                 igb_update_dca(q_vector);
4084         }
4085 }
4086
4087 static int __igb_notify_dca(struct device *dev, void *data)
4088 {
4089         struct net_device *netdev = dev_get_drvdata(dev);
4090         struct igb_adapter *adapter = netdev_priv(netdev);
4091         struct e1000_hw *hw = &adapter->hw;
4092         unsigned long event = *(unsigned long *)data;
4093
4094         switch (event) {
4095         case DCA_PROVIDER_ADD:
4096                 /* if already enabled, don't do it again */
4097                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4098                         break;
4099                 /* Always use CB2 mode, difference is masked
4100                  * in the CB driver. */
4101                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
4102                 if (dca_add_requester(dev) == 0) {
4103                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
4104                         dev_info(&adapter->pdev->dev, "DCA enabled\n");
4105                         igb_setup_dca(adapter);
4106                         break;
4107                 }
4108                 /* Fall Through since DCA is disabled. */
4109         case DCA_PROVIDER_REMOVE:
4110                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4111                         /* without this a class_device is left
4112                          * hanging around in the sysfs model */
4113                         dca_remove_requester(dev);
4114                         dev_info(&adapter->pdev->dev, "DCA disabled\n");
4115                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4116                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
4117                 }
4118                 break;
4119         }
4120
4121         return 0;
4122 }
4123
4124 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4125                           void *p)
4126 {
4127         int ret_val;
4128
4129         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4130                                          __igb_notify_dca);
4131
4132         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4133 }
4134 #endif /* CONFIG_IGB_DCA */
4135
4136 static void igb_ping_all_vfs(struct igb_adapter *adapter)
4137 {
4138         struct e1000_hw *hw = &adapter->hw;
4139         u32 ping;
4140         int i;
4141
4142         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
4143                 ping = E1000_PF_CONTROL_MSG;
4144                 if (adapter->vf_data[i].clear_to_send)
4145                         ping |= E1000_VT_MSGTYPE_CTS;
4146                 igb_write_mbx(hw, &ping, 1, i);
4147         }
4148 }
4149
4150 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
4151                                   u32 *msgbuf, u32 vf)
4152 {
4153         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4154         u16 *hash_list = (u16 *)&msgbuf[1];
4155         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4156         int i;
4157
4158         /* only up to 30 hash values supported */
4159         if (n > 30)
4160                 n = 30;
4161
4162         /* salt away the number of multi cast addresses assigned
4163          * to this VF for later use to restore when the PF multi cast
4164          * list changes
4165          */
4166         vf_data->num_vf_mc_hashes = n;
4167
4168         /* VFs are limited to using the MTA hash table for their multicast
4169          * addresses */
4170         for (i = 0; i < n; i++)
4171                 vf_data->vf_mc_hashes[i] = hash_list[i];
4172
4173         /* Flush and reset the mta with the new values */
4174         igb_set_rx_mode(adapter->netdev);
4175
4176         return 0;
4177 }
4178
4179 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
4180 {
4181         struct e1000_hw *hw = &adapter->hw;
4182         struct vf_data_storage *vf_data;
4183         int i, j;
4184
4185         for (i = 0; i < adapter->vfs_allocated_count; i++) {
4186                 vf_data = &adapter->vf_data[i];
4187                 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
4188                         igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
4189         }
4190 }
4191
4192 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
4193 {
4194         struct e1000_hw *hw = &adapter->hw;
4195         u32 pool_mask, reg, vid;
4196         int i;
4197
4198         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4199
4200         /* Find the vlan filter for this id */
4201         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4202                 reg = rd32(E1000_VLVF(i));
4203
4204                 /* remove the vf from the pool */
4205                 reg &= ~pool_mask;
4206
4207                 /* if pool is empty then remove entry from vfta */
4208                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4209                     (reg & E1000_VLVF_VLANID_ENABLE)) {
4210                         reg = 0;
4211                         vid = reg & E1000_VLVF_VLANID_MASK;
4212                         igb_vfta_set(hw, vid, false);
4213                 }
4214
4215                 wr32(E1000_VLVF(i), reg);
4216         }
4217
4218         adapter->vf_data[vf].vlans_enabled = 0;
4219 }
4220
4221 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4222 {
4223         struct e1000_hw *hw = &adapter->hw;
4224         u32 reg, i;
4225
4226         /* It is an error to call this function when VFs are not enabled */
4227         if (!adapter->vfs_allocated_count)
4228                 return -1;
4229
4230         /* Find the vlan filter for this id */
4231         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4232                 reg = rd32(E1000_VLVF(i));
4233                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4234                     vid == (reg & E1000_VLVF_VLANID_MASK))
4235                         break;
4236         }
4237
4238         if (add) {
4239                 if (i == E1000_VLVF_ARRAY_SIZE) {
4240                         /* Did not find a matching VLAN ID entry that was
4241                          * enabled.  Search for a free filter entry, i.e.
4242                          * one without the enable bit set
4243                          */
4244                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4245                                 reg = rd32(E1000_VLVF(i));
4246                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4247                                         break;
4248                         }
4249                 }
4250                 if (i < E1000_VLVF_ARRAY_SIZE) {
4251                         /* Found an enabled/available entry */
4252                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4253
4254                         /* if !enabled we need to set this up in vfta */
4255                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4256                                 /* add VID to filter table, if bit already set
4257                                  * PF must have added it outside of table */
4258                                 if (igb_vfta_set(hw, vid, true))
4259                                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4260                                                 adapter->vfs_allocated_count);
4261                                 reg |= E1000_VLVF_VLANID_ENABLE;
4262                         }
4263                         reg &= ~E1000_VLVF_VLANID_MASK;
4264                         reg |= vid;
4265
4266                         wr32(E1000_VLVF(i), reg);
4267
4268                         /* do not modify RLPML for PF devices */
4269                         if (vf >= adapter->vfs_allocated_count)
4270                                 return 0;
4271
4272                         if (!adapter->vf_data[vf].vlans_enabled) {
4273                                 u32 size;
4274                                 reg = rd32(E1000_VMOLR(vf));
4275                                 size = reg & E1000_VMOLR_RLPML_MASK;
4276                                 size += 4;
4277                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4278                                 reg |= size;
4279                                 wr32(E1000_VMOLR(vf), reg);
4280                         }
4281                         adapter->vf_data[vf].vlans_enabled++;
4282
4283                         return 0;
4284                 }
4285         } else {
4286                 if (i < E1000_VLVF_ARRAY_SIZE) {
4287                         /* remove vf from the pool */
4288                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4289                         /* if pool is empty then remove entry from vfta */
4290                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4291                                 reg = 0;
4292                                 igb_vfta_set(hw, vid, false);
4293                         }
4294                         wr32(E1000_VLVF(i), reg);
4295
4296                         /* do not modify RLPML for PF devices */
4297                         if (vf >= adapter->vfs_allocated_count)
4298                                 return 0;
4299
4300                         adapter->vf_data[vf].vlans_enabled--;
4301                         if (!adapter->vf_data[vf].vlans_enabled) {
4302                                 u32 size;
4303                                 reg = rd32(E1000_VMOLR(vf));
4304                                 size = reg & E1000_VMOLR_RLPML_MASK;
4305                                 size -= 4;
4306                                 reg &= ~E1000_VMOLR_RLPML_MASK;
4307                                 reg |= size;
4308                                 wr32(E1000_VMOLR(vf), reg);
4309                         }
4310                         return 0;
4311                 }
4312         }
4313         return -1;
4314 }
4315
4316 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4317 {
4318         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4319         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4320
4321         return igb_vlvf_set(adapter, vid, add, vf);
4322 }
4323
4324 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4325 {
4326         struct e1000_hw *hw = &adapter->hw;
4327
4328         /* disable mailbox functionality for vf */
4329         adapter->vf_data[vf].clear_to_send = false;
4330
4331         /* reset offloads to defaults */
4332         igb_set_vmolr(hw, vf);
4333
4334         /* reset vlans for device */
4335         igb_clear_vf_vfta(adapter, vf);
4336
4337         /* reset multicast table array for vf */
4338         adapter->vf_data[vf].num_vf_mc_hashes = 0;
4339
4340         /* Flush and reset the mta with the new values */
4341         igb_set_rx_mode(adapter->netdev);
4342 }
4343
4344 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4345 {
4346         struct e1000_hw *hw = &adapter->hw;
4347         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4348         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4349         u32 reg, msgbuf[3];
4350         u8 *addr = (u8 *)(&msgbuf[1]);
4351
4352         /* process all the same items cleared in a function level reset */
4353         igb_vf_reset_event(adapter, vf);
4354
4355         /* set vf mac address */
4356         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4357
4358         /* enable transmit and receive for vf */
4359         reg = rd32(E1000_VFTE);
4360         wr32(E1000_VFTE, reg | (1 << vf));
4361         reg = rd32(E1000_VFRE);
4362         wr32(E1000_VFRE, reg | (1 << vf));
4363
4364         /* enable mailbox functionality for vf */
4365         adapter->vf_data[vf].clear_to_send = true;
4366
4367         /* reply to reset with ack and vf mac address */
4368         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4369         memcpy(addr, vf_mac, 6);
4370         igb_write_mbx(hw, msgbuf, 3, vf);
4371 }
4372
4373 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4374 {
4375                 unsigned char *addr = (char *)&msg[1];
4376                 int err = -1;
4377
4378                 if (is_valid_ether_addr(addr))
4379                         err = igb_set_vf_mac(adapter, vf, addr);
4380
4381                 return err;
4382
4383 }
4384
4385 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4386 {
4387         struct e1000_hw *hw = &adapter->hw;
4388         u32 msg = E1000_VT_MSGTYPE_NACK;
4389
4390         /* if device isn't clear to send it shouldn't be reading either */
4391         if (!adapter->vf_data[vf].clear_to_send)
4392                 igb_write_mbx(hw, &msg, 1, vf);
4393 }
4394
4395
4396 static void igb_msg_task(struct igb_adapter *adapter)
4397 {
4398         struct e1000_hw *hw = &adapter->hw;
4399         u32 vf;
4400
4401         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4402                 /* process any reset requests */
4403                 if (!igb_check_for_rst(hw, vf)) {
4404                         adapter->vf_data[vf].clear_to_send = false;
4405                         igb_vf_reset_event(adapter, vf);
4406                 }
4407
4408                 /* process any messages pending */
4409                 if (!igb_check_for_msg(hw, vf))
4410                         igb_rcv_msg_from_vf(adapter, vf);
4411
4412                 /* process any acks */
4413                 if (!igb_check_for_ack(hw, vf))
4414                         igb_rcv_ack_from_vf(adapter, vf);
4415
4416         }
4417 }
4418
4419 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4420 {
4421         u32 mbx_size = E1000_VFMAILBOX_SIZE;
4422         u32 msgbuf[mbx_size];
4423         struct e1000_hw *hw = &adapter->hw;
4424         s32 retval;
4425
4426         retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4427
4428         if (retval)
4429                 dev_err(&adapter->pdev->dev,
4430                         "Error receiving message from VF\n");
4431
4432         /* this is a message we already processed, do nothing */
4433         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4434                 return retval;
4435
4436         /*
4437          * until the vf completes a reset it should not be
4438          * allowed to start any configuration.
4439          */
4440
4441         if (msgbuf[0] == E1000_VF_RESET) {
4442                 igb_vf_reset_msg(adapter, vf);
4443
4444                 return retval;
4445         }
4446
4447         if (!adapter->vf_data[vf].clear_to_send) {
4448                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4449                 igb_write_mbx(hw, msgbuf, 1, vf);
4450                 return retval;
4451         }
4452
4453         switch ((msgbuf[0] & 0xFFFF)) {
4454         case E1000_VF_SET_MAC_ADDR:
4455                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4456                 break;
4457         case E1000_VF_SET_MULTICAST:
4458                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4459                 break;
4460         case E1000_VF_SET_LPE:
4461                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4462                 break;
4463         case E1000_VF_SET_VLAN:
4464                 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4465                 break;
4466         default:
4467                 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4468                 retval = -1;
4469                 break;
4470         }
4471
4472         /* notify the VF of the results of what it sent us */
4473         if (retval)
4474                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4475         else
4476                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4477
4478         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4479
4480         igb_write_mbx(hw, msgbuf, 1, vf);
4481
4482         return retval;
4483 }
4484
4485 /**
4486  *  igb_set_uta - Set unicast filter table address
4487  *  @adapter: board private structure
4488  *
4489  *  The unicast table address is a register array of 32-bit registers.
4490  *  The table is meant to be used in a way similar to how the MTA is used
4491  *  however due to certain limitations in the hardware it is necessary to
4492  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscous
4493  *  enable bit to allow vlan tag stripping when promiscous mode is enabled
4494  **/
4495 static void igb_set_uta(struct igb_adapter *adapter)
4496 {
4497         struct e1000_hw *hw = &adapter->hw;
4498         int i;
4499
4500         /* The UTA table only exists on 82576 hardware and newer */
4501         if (hw->mac.type < e1000_82576)
4502                 return;
4503
4504         /* we only need to do this if VMDq is enabled */
4505         if (!adapter->vfs_allocated_count)
4506                 return;
4507
4508         for (i = 0; i < hw->mac.uta_reg_count; i++)
4509                 array_wr32(E1000_UTA, i, ~0);
4510 }
4511
4512 /**
4513  * igb_intr_msi - Interrupt Handler
4514  * @irq: interrupt number
4515  * @data: pointer to a network interface device structure
4516  **/
4517 static irqreturn_t igb_intr_msi(int irq, void *data)
4518 {
4519         struct igb_adapter *adapter = data;
4520         struct igb_q_vector *q_vector = adapter->q_vector[0];
4521         struct e1000_hw *hw = &adapter->hw;
4522         /* read ICR disables interrupts using IAM */
4523         u32 icr = rd32(E1000_ICR);
4524
4525         igb_write_itr(q_vector);
4526
4527         if (icr & E1000_ICR_DOUTSYNC) {
4528                 /* HW is reporting DMA is out of sync */
4529                 adapter->stats.doosync++;
4530         }
4531
4532         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4533                 hw->mac.get_link_status = 1;
4534                 if (!test_bit(__IGB_DOWN, &adapter->state))
4535                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4536         }
4537
4538         napi_schedule(&q_vector->napi);
4539
4540         return IRQ_HANDLED;
4541 }
4542
4543 /**
4544  * igb_intr - Legacy Interrupt Handler
4545  * @irq: interrupt number
4546  * @data: pointer to a network interface device structure
4547  **/
4548 static irqreturn_t igb_intr(int irq, void *data)
4549 {
4550         struct igb_adapter *adapter = data;
4551         struct igb_q_vector *q_vector = adapter->q_vector[0];
4552         struct e1000_hw *hw = &adapter->hw;
4553         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
4554          * need for the IMC write */
4555         u32 icr = rd32(E1000_ICR);
4556         if (!icr)
4557                 return IRQ_NONE;  /* Not our interrupt */
4558
4559         igb_write_itr(q_vector);
4560
4561         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4562          * not set, then the adapter didn't send an interrupt */
4563         if (!(icr & E1000_ICR_INT_ASSERTED))
4564                 return IRQ_NONE;
4565
4566         if (icr & E1000_ICR_DOUTSYNC) {
4567                 /* HW is reporting DMA is out of sync */
4568                 adapter->stats.doosync++;
4569         }
4570
4571         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4572                 hw->mac.get_link_status = 1;
4573                 /* guard against interrupt when we're going down */
4574                 if (!test_bit(__IGB_DOWN, &adapter->state))
4575                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
4576         }
4577
4578         napi_schedule(&q_vector->napi);
4579
4580         return IRQ_HANDLED;
4581 }
4582
4583 static inline void igb_ring_irq_enable(struct igb_q_vector *q_vector)
4584 {
4585         struct igb_adapter *adapter = q_vector->adapter;
4586         struct e1000_hw *hw = &adapter->hw;
4587
4588         if (adapter->itr_setting & 3) {
4589                 if (!adapter->msix_entries)
4590                         igb_set_itr(adapter);
4591                 else
4592                         igb_update_ring_itr(q_vector);
4593         }
4594
4595         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4596                 if (adapter->msix_entries)
4597                         wr32(E1000_EIMS, q_vector->eims_value);
4598                 else
4599                         igb_irq_enable(adapter);
4600         }
4601 }
4602
4603 /**
4604  * igb_poll - NAPI Rx polling callback
4605  * @napi: napi polling structure
4606  * @budget: count of how many packets we should handle
4607  **/
4608 static int igb_poll(struct napi_struct *napi, int budget)
4609 {
4610         struct igb_q_vector *q_vector = container_of(napi,
4611                                                      struct igb_q_vector,
4612                                                      napi);
4613         int tx_clean_complete = 1, work_done = 0;
4614
4615 #ifdef CONFIG_IGB_DCA
4616         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
4617                 igb_update_dca(q_vector);
4618 #endif
4619         if (q_vector->tx_ring)
4620                 tx_clean_complete = igb_clean_tx_irq(q_vector);
4621
4622         if (q_vector->rx_ring)
4623                 igb_clean_rx_irq_adv(q_vector, &work_done, budget);
4624
4625         if (!tx_clean_complete)
4626                 work_done = budget;
4627
4628         /* If not enough Rx work done, exit the polling mode */
4629         if (work_done < budget) {
4630                 napi_complete(napi);
4631                 igb_ring_irq_enable(q_vector);
4632         }
4633
4634         return work_done;
4635 }
4636
4637 /**
4638  * igb_hwtstamp - utility function which checks for TX time stamp
4639  * @adapter: board private structure
4640  * @skb: packet that was just sent
4641  *
4642  * If we were asked to do hardware stamping and such a time stamp is
4643  * available, then it must have been for this skb here because we only
4644  * allow only one such packet into the queue.
4645  */
4646 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4647 {
4648         union skb_shared_tx *shtx = skb_tx(skb);
4649         struct e1000_hw *hw = &adapter->hw;
4650
4651         if (unlikely(shtx->hardware)) {
4652                 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4653                 if (valid) {
4654                         u64 regval = rd32(E1000_TXSTMPL);
4655                         u64 ns;
4656                         struct skb_shared_hwtstamps shhwtstamps;
4657
4658                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4659                         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4660                         ns = timecounter_cyc2time(&adapter->clock,
4661                                                   regval);
4662                         timecompare_update(&adapter->compare, ns);
4663                         shhwtstamps.hwtstamp = ns_to_ktime(ns);
4664                         shhwtstamps.syststamp =
4665                                 timecompare_transform(&adapter->compare, ns);
4666                         skb_tstamp_tx(skb, &shhwtstamps);
4667                 }
4668         }
4669 }
4670
4671 /**
4672  * igb_clean_tx_irq - Reclaim resources after transmit completes
4673  * @q_vector: pointer to q_vector containing needed info
4674  * returns true if ring is completely cleaned
4675  **/
4676 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
4677 {
4678         struct igb_adapter *adapter = q_vector->adapter;
4679         struct igb_ring *tx_ring = q_vector->tx_ring;
4680         struct net_device *netdev = adapter->netdev;
4681         struct e1000_hw *hw = &adapter->hw;
4682         struct igb_buffer *buffer_info;
4683         struct sk_buff *skb;
4684         union e1000_adv_tx_desc *tx_desc, *eop_desc;
4685         unsigned int total_bytes = 0, total_packets = 0;
4686         unsigned int i, eop, count = 0;
4687         bool cleaned = false;
4688
4689         i = tx_ring->next_to_clean;
4690         eop = tx_ring->buffer_info[i].next_to_watch;
4691         eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4692
4693         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4694                (count < tx_ring->count)) {
4695                 for (cleaned = false; !cleaned; count++) {
4696                         tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4697                         buffer_info = &tx_ring->buffer_info[i];
4698                         cleaned = (i == eop);
4699                         skb = buffer_info->skb;
4700
4701                         if (skb) {
4702                                 unsigned int segs, bytecount;
4703                                 /* gso_segs is currently only valid for tcp */
4704                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4705                                 /* multiply data chunks by size of headers */
4706                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4707                                             skb->len;
4708                                 total_packets += segs;
4709                                 total_bytes += bytecount;
4710
4711                                 igb_tx_hwtstamp(adapter, skb);
4712                         }
4713
4714                         igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
4715                         tx_desc->wb.status = 0;
4716
4717                         i++;
4718                         if (i == tx_ring->count)
4719                                 i = 0;
4720                 }
4721                 eop = tx_ring->buffer_info[i].next_to_watch;
4722                 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4723         }
4724
4725         tx_ring->next_to_clean = i;
4726
4727         if (unlikely(count &&
4728                      netif_carrier_ok(netdev) &&
4729                      igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4730                 /* Make sure that anybody stopping the queue after this
4731                  * sees the new next_to_clean.
4732                  */
4733                 smp_mb();
4734                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4735                     !(test_bit(__IGB_DOWN, &adapter->state))) {
4736                         netif_wake_subqueue(netdev, tx_ring->queue_index);
4737                         ++adapter->restart_queue;
4738                 }
4739         }
4740
4741         if (tx_ring->detect_tx_hung) {
4742                 /* Detect a transmit hang in hardware, this serializes the
4743                  * check with the clearing of time_stamp and movement of i */
4744                 tx_ring->detect_tx_hung = false;
4745                 if (tx_ring->buffer_info[i].time_stamp &&
4746                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4747                                (adapter->tx_timeout_factor * HZ))
4748                     && !(rd32(E1000_STATUS) &
4749                          E1000_STATUS_TXOFF)) {
4750
4751                         /* detected Tx unit hang */
4752                         dev_err(&tx_ring->pdev->dev,
4753                                 "Detected Tx Unit Hang\n"
4754                                 "  Tx Queue             <%d>\n"
4755                                 "  TDH                  <%x>\n"
4756                                 "  TDT                  <%x>\n"
4757                                 "  next_to_use          <%x>\n"
4758                                 "  next_to_clean        <%x>\n"
4759                                 "buffer_info[next_to_clean]\n"
4760                                 "  time_stamp           <%lx>\n"
4761                                 "  next_to_watch        <%x>\n"
4762                                 "  jiffies              <%lx>\n"
4763                                 "  desc.status          <%x>\n",
4764                                 tx_ring->queue_index,
4765                                 readl(tx_ring->head),
4766                                 readl(tx_ring->tail),
4767                                 tx_ring->next_to_use,
4768                                 tx_ring->next_to_clean,
4769                                 tx_ring->buffer_info[i].time_stamp,
4770                                 eop,
4771                                 jiffies,
4772                                 eop_desc->wb.status);
4773                         netif_stop_subqueue(netdev, tx_ring->queue_index);
4774                 }
4775         }
4776         tx_ring->total_bytes += total_bytes;
4777         tx_ring->total_packets += total_packets;
4778         tx_ring->tx_stats.bytes += total_bytes;
4779         tx_ring->tx_stats.packets += total_packets;
4780         netdev->stats.tx_bytes += total_bytes;
4781         netdev->stats.tx_packets += total_packets;
4782         return (count < tx_ring->count);
4783 }
4784
4785 /**
4786  * igb_receive_skb - helper function to handle rx indications
4787  * @q_vector: structure containing interrupt and ring information
4788  * @skb: packet to send up
4789  * @vlan_tag: vlan tag for packet
4790  **/
4791 static void igb_receive_skb(struct igb_q_vector *q_vector,
4792                             struct sk_buff *skb,
4793                             u16 vlan_tag)
4794 {
4795         struct igb_adapter *adapter = q_vector->adapter;
4796
4797         if (vlan_tag)
4798                 vlan_gro_receive(&q_vector->napi, adapter->vlgrp,
4799                                  vlan_tag, skb);
4800         else
4801                 napi_gro_receive(&q_vector->napi, skb);
4802 }
4803
4804 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4805                                        u32 status_err, struct sk_buff *skb)
4806 {
4807         skb->ip_summed = CHECKSUM_NONE;
4808
4809         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4810         if ((status_err & E1000_RXD_STAT_IXSM) ||
4811             (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4812                 return;
4813         /* TCP/UDP checksum error bit is set */
4814         if (status_err &
4815             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4816                 /*
4817                  * work around errata with sctp packets where the TCPE aka
4818                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4819                  * packets, (aka let the stack check the crc32c)
4820                  */
4821                 if (!((adapter->hw.mac.type == e1000_82576) &&
4822                       (skb->len == 60)))
4823                         adapter->hw_csum_err++;
4824                 /* let the stack verify checksum errors */
4825                 return;
4826         }
4827         /* It must be a TCP or UDP packet with a valid checksum */
4828         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4829                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4830
4831         dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4832 }
4833
4834 static inline u16 igb_get_hlen(struct igb_ring *rx_ring,
4835                                union e1000_adv_rx_desc *rx_desc)
4836 {
4837         /* HW will not DMA in data larger than the given buffer, even if it
4838          * parses the (NFS, of course) header to be larger.  In that case, it
4839          * fills the header buffer and spills the rest into the page.
4840          */
4841         u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4842                    E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4843         if (hlen > rx_ring->rx_buffer_len)
4844                 hlen = rx_ring->rx_buffer_len;
4845         return hlen;
4846 }
4847
4848 static bool igb_clean_rx_irq_adv(struct igb_q_vector *q_vector,
4849                                  int *work_done, int budget)
4850 {
4851         struct igb_adapter *adapter = q_vector->adapter;
4852         struct net_device *netdev = adapter->netdev;
4853         struct igb_ring *rx_ring = q_vector->rx_ring;
4854         struct e1000_hw *hw = &adapter->hw;
4855         struct pci_dev *pdev = rx_ring->pdev;
4856         union e1000_adv_rx_desc *rx_desc , *next_rxd;
4857         struct igb_buffer *buffer_info , *next_buffer;
4858         struct sk_buff *skb;
4859         bool cleaned = false;
4860         int cleaned_count = 0;
4861         unsigned int total_bytes = 0, total_packets = 0;
4862         unsigned int i;
4863         u32 staterr;
4864         u16 length;
4865         u16 vlan_tag;
4866
4867         i = rx_ring->next_to_clean;
4868         buffer_info = &rx_ring->buffer_info[i];
4869         rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4870         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4871
4872         while (staterr & E1000_RXD_STAT_DD) {
4873                 if (*work_done >= budget)
4874                         break;
4875                 (*work_done)++;
4876
4877                 skb = buffer_info->skb;
4878                 prefetch(skb->data - NET_IP_ALIGN);
4879                 buffer_info->skb = NULL;
4880
4881                 i++;
4882                 if (i == rx_ring->count)
4883                         i = 0;
4884                 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4885                 prefetch(next_rxd);
4886                 next_buffer = &rx_ring->buffer_info[i];
4887
4888                 length = le16_to_cpu(rx_desc->wb.upper.length);
4889                 cleaned = true;
4890                 cleaned_count++;
4891
4892                 if (buffer_info->dma) {
4893                         pci_unmap_single(pdev, buffer_info->dma,
4894                                          rx_ring->rx_buffer_len,
4895                                          PCI_DMA_FROMDEVICE);
4896                         buffer_info->dma = 0;
4897                         if (rx_ring->rx_buffer_len >= IGB_RXBUFFER_1024) {
4898                                 skb_put(skb, length);
4899                                 goto send_up;
4900                         }
4901                         skb_put(skb, igb_get_hlen(rx_ring, rx_desc));
4902                 }
4903
4904                 if (length) {
4905                         pci_unmap_page(pdev, buffer_info->page_dma,
4906                                        PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4907                         buffer_info->page_dma = 0;
4908
4909                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4910                                                 buffer_info->page,
4911                                                 buffer_info->page_offset,
4912                                                 length);
4913
4914                         if (page_count(buffer_info->page) != 1)
4915                                 buffer_info->page = NULL;
4916                         else
4917                                 get_page(buffer_info->page);
4918
4919                         skb->len += length;
4920                         skb->data_len += length;
4921
4922                         skb->truesize += length;
4923                 }
4924
4925                 if (!(staterr & E1000_RXD_STAT_EOP)) {
4926                         buffer_info->skb = next_buffer->skb;
4927                         buffer_info->dma = next_buffer->dma;
4928                         next_buffer->skb = skb;
4929                         next_buffer->dma = 0;
4930                         goto next_desc;
4931                 }
4932 send_up:
4933                 /*
4934                  * If this bit is set, then the RX registers contain
4935                  * the time stamp. No other packet will be time
4936                  * stamped until we read these registers, so read the
4937                  * registers to make them available again. Because
4938                  * only one packet can be time stamped at a time, we
4939                  * know that the register values must belong to this
4940                  * one here and therefore we don't need to compare
4941                  * any of the additional attributes stored for it.
4942                  *
4943                  * If nothing went wrong, then it should have a
4944                  * skb_shared_tx that we can turn into a
4945                  * skb_shared_hwtstamps.
4946                  *
4947                  * TODO: can time stamping be triggered (thus locking
4948                  * the registers) without the packet reaching this point
4949                  * here? In that case RX time stamping would get stuck.
4950                  *
4951                  * TODO: in "time stamp all packets" mode this bit is
4952                  * not set. Need a global flag for this mode and then
4953                  * always read the registers. Cannot be done without
4954                  * a race condition.
4955                  */
4956                 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4957                         u64 regval;
4958                         u64 ns;
4959                         struct skb_shared_hwtstamps *shhwtstamps =
4960                                 skb_hwtstamps(skb);
4961
4962                         WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4963                              "igb: no RX time stamp available for time stamped packet");
4964                         regval = rd32(E1000_RXSTMPL);
4965                         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4966                         ns = timecounter_cyc2time(&adapter->clock, regval);
4967                         timecompare_update(&adapter->compare, ns);
4968                         memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4969                         shhwtstamps->hwtstamp = ns_to_ktime(ns);
4970                         shhwtstamps->syststamp =
4971                                 timecompare_transform(&adapter->compare, ns);
4972                 }
4973
4974                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4975                         dev_kfree_skb_irq(skb);
4976                         goto next_desc;
4977                 }
4978
4979                 total_bytes += skb->len;
4980                 total_packets++;
4981
4982                 igb_rx_checksum_adv(adapter, staterr, skb);
4983
4984                 skb->protocol = eth_type_trans(skb, netdev);
4985                 skb_record_rx_queue(skb, rx_ring->queue_index);
4986
4987                 vlan_tag = ((staterr & E1000_RXD_STAT_VP) ?
4988                             le16_to_cpu(rx_desc->wb.upper.vlan) : 0);
4989
4990                 igb_receive_skb(q_vector, skb, vlan_tag);
4991
4992 next_desc:
4993                 rx_desc->wb.upper.status_error = 0;
4994
4995                 /* return some buffers to hardware, one at a time is too slow */
4996                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4997                         igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4998                         cleaned_count = 0;
4999                 }
5000
5001                 /* use prefetched values */
5002                 rx_desc = next_rxd;
5003                 buffer_info = next_buffer;
5004                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
5005         }
5006
5007         rx_ring->next_to_clean = i;
5008         cleaned_count = igb_desc_unused(rx_ring);
5009
5010         if (cleaned_count)
5011                 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
5012
5013         rx_ring->total_packets += total_packets;
5014         rx_ring->total_bytes += total_bytes;
5015         rx_ring->rx_stats.packets += total_packets;
5016         rx_ring->rx_stats.bytes += total_bytes;
5017         netdev->stats.rx_bytes += total_bytes;
5018         netdev->stats.rx_packets += total_packets;
5019         return cleaned;
5020 }
5021
5022 /**
5023  * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
5024  * @adapter: address of board private structure
5025  **/
5026 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
5027                                      int cleaned_count)
5028 {
5029         struct igb_adapter *adapter = rx_ring->q_vector->adapter;
5030         struct net_device *netdev = adapter->netdev;
5031         union e1000_adv_rx_desc *rx_desc;
5032         struct igb_buffer *buffer_info;
5033         struct sk_buff *skb;
5034         unsigned int i;
5035         int bufsz;
5036
5037         i = rx_ring->next_to_use;
5038         buffer_info = &rx_ring->buffer_info[i];
5039
5040         bufsz = rx_ring->rx_buffer_len;
5041
5042         while (cleaned_count--) {
5043                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
5044
5045                 if ((bufsz < IGB_RXBUFFER_1024) && !buffer_info->page_dma) {
5046                         if (!buffer_info->page) {
5047                                 buffer_info->page = alloc_page(GFP_ATOMIC);
5048                                 if (!buffer_info->page) {
5049                                         adapter->alloc_rx_buff_failed++;
5050                                         goto no_buffers;
5051                                 }
5052                                 buffer_info->page_offset = 0;
5053                         } else {
5054                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
5055                         }
5056                         buffer_info->page_dma =
5057                                 pci_map_page(rx_ring->pdev, buffer_info->page,
5058                                              buffer_info->page_offset,
5059                                              PAGE_SIZE / 2,
5060                                              PCI_DMA_FROMDEVICE);
5061                 }
5062
5063                 if (!buffer_info->skb) {
5064                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
5065                         if (!skb) {
5066                                 adapter->alloc_rx_buff_failed++;
5067                                 goto no_buffers;
5068                         }
5069
5070                         buffer_info->skb = skb;
5071                         buffer_info->dma = pci_map_single(rx_ring->pdev,
5072                                                           skb->data,
5073                                                           bufsz,
5074                                                           PCI_DMA_FROMDEVICE);
5075                 }
5076                 /* Refresh the desc even if buffer_addrs didn't change because
5077                  * each write-back erases this info. */
5078                 if (bufsz < IGB_RXBUFFER_1024) {
5079                         rx_desc->read.pkt_addr =
5080                              cpu_to_le64(buffer_info->page_dma);
5081                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
5082                 } else {
5083                         rx_desc->read.pkt_addr =
5084                              cpu_to_le64(buffer_info->dma);
5085                         rx_desc->read.hdr_addr = 0;
5086                 }
5087
5088                 i++;
5089                 if (i == rx_ring->count)
5090                         i = 0;
5091                 buffer_info = &rx_ring->buffer_info[i];
5092         }
5093
5094 no_buffers:
5095         if (rx_ring->next_to_use != i) {
5096                 rx_ring->next_to_use = i;
5097                 if (i == 0)
5098                         i = (rx_ring->count - 1);
5099                 else
5100                         i--;
5101
5102                 /* Force memory writes to complete before letting h/w
5103                  * know there are new descriptors to fetch.  (Only
5104                  * applicable for weak-ordered memory model archs,
5105                  * such as IA-64). */
5106                 wmb();
5107                 writel(i, rx_ring->tail);
5108         }
5109 }
5110
5111 /**
5112  * igb_mii_ioctl -
5113  * @netdev:
5114  * @ifreq:
5115  * @cmd:
5116  **/
5117 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5118 {
5119         struct igb_adapter *adapter = netdev_priv(netdev);
5120         struct mii_ioctl_data *data = if_mii(ifr);
5121
5122         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5123                 return -EOPNOTSUPP;
5124
5125         switch (cmd) {
5126         case SIOCGMIIPHY:
5127                 data->phy_id = adapter->hw.phy.addr;
5128                 break;
5129         case SIOCGMIIREG:
5130                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
5131                                      &data->val_out))
5132                         return -EIO;
5133                 break;
5134         case SIOCSMIIREG:
5135         default:
5136                 return -EOPNOTSUPP;
5137         }
5138         return 0;
5139 }
5140
5141 /**
5142  * igb_hwtstamp_ioctl - control hardware time stamping
5143  * @netdev:
5144  * @ifreq:
5145  * @cmd:
5146  *
5147  * Outgoing time stamping can be enabled and disabled. Play nice and
5148  * disable it when requested, although it shouldn't case any overhead
5149  * when no packet needs it. At most one packet in the queue may be
5150  * marked for time stamping, otherwise it would be impossible to tell
5151  * for sure to which packet the hardware time stamp belongs.
5152  *
5153  * Incoming time stamping has to be configured via the hardware
5154  * filters. Not all combinations are supported, in particular event
5155  * type has to be specified. Matching the kind of event packet is
5156  * not supported, with the exception of "all V2 events regardless of
5157  * level 2 or 4".
5158  *
5159  **/
5160 static int igb_hwtstamp_ioctl(struct net_device *netdev,
5161                               struct ifreq *ifr, int cmd)
5162 {
5163         struct igb_adapter *adapter = netdev_priv(netdev);
5164         struct e1000_hw *hw = &adapter->hw;
5165         struct hwtstamp_config config;
5166         u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5167         u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
5168         u32 tsync_rx_ctl_type = 0;
5169         u32 tsync_rx_cfg = 0;
5170         int is_l4 = 0;
5171         int is_l2 = 0;
5172         short port = 319; /* PTP */
5173         u32 regval;
5174
5175         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5176                 return -EFAULT;
5177
5178         /* reserved for future extensions */
5179         if (config.flags)
5180                 return -EINVAL;
5181
5182         switch (config.tx_type) {
5183         case HWTSTAMP_TX_OFF:
5184                 tsync_tx_ctl_bit = 0;
5185                 break;
5186         case HWTSTAMP_TX_ON:
5187                 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
5188                 break;
5189         default:
5190                 return -ERANGE;
5191         }
5192
5193         switch (config.rx_filter) {
5194         case HWTSTAMP_FILTER_NONE:
5195                 tsync_rx_ctl_bit = 0;
5196                 break;
5197         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
5198         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
5199         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
5200         case HWTSTAMP_FILTER_ALL:
5201                 /*
5202                  * register TSYNCRXCFG must be set, therefore it is not
5203                  * possible to time stamp both Sync and Delay_Req messages
5204                  * => fall back to time stamping all packets
5205                  */
5206                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
5207                 config.rx_filter = HWTSTAMP_FILTER_ALL;
5208                 break;
5209         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
5210                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5211                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
5212                 is_l4 = 1;
5213                 break;
5214         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5215                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5216                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5217                 is_l4 = 1;
5218                 break;
5219         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5220         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5221                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5222                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5223                 is_l2 = 1;
5224                 is_l4 = 1;
5225                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5226                 break;
5227         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5228         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5229                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5230                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5231                 is_l2 = 1;
5232                 is_l4 = 1;
5233                 config.rx_filter = HWTSTAMP_FILTER_SOME;
5234                 break;
5235         case HWTSTAMP_FILTER_PTP_V2_EVENT:
5236         case HWTSTAMP_FILTER_PTP_V2_SYNC:
5237         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5238                 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5239                 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5240                 is_l2 = 1;
5241                 break;
5242         default:
5243                 return -ERANGE;
5244         }
5245
5246         /* enable/disable TX */
5247         regval = rd32(E1000_TSYNCTXCTL);
5248         regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
5249         wr32(E1000_TSYNCTXCTL, regval);
5250
5251         /* enable/disable RX, define which PTP packets are time stamped */
5252         regval = rd32(E1000_TSYNCRXCTL);
5253         regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
5254         regval = (regval & ~0xE) | tsync_rx_ctl_type;
5255         wr32(E1000_TSYNCRXCTL, regval);
5256         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5257
5258         /*
5259          * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5260          *                                          (Ethertype to filter on)
5261          * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5262          * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5263          */
5264         wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
5265
5266         /* L4 Queue Filter[0]: only filter by source and destination port */
5267         wr32(E1000_SPQF0, htons(port));
5268         wr32(E1000_IMIREXT(0), is_l4 ?
5269              ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5270         wr32(E1000_IMIR(0), is_l4 ?
5271              (htons(port)
5272               | (0<<16) /* immediate interrupt disabled */
5273               | 0 /* (1<<17) bit cleared: do not bypass
5274                      destination port check */)
5275                 : 0);
5276         wr32(E1000_FTQF0, is_l4 ?
5277              (0x11 /* UDP */
5278               | (1<<15) /* VF not compared */
5279               | (1<<27) /* Enable Timestamping */
5280               | (7<<28) /* only source port filter enabled,
5281                            source/target address and protocol
5282                            masked */)
5283              : ((1<<15) | (15<<28) /* all mask bits set = filter not
5284                                       enabled */));
5285
5286         wrfl();
5287
5288         adapter->hwtstamp_config = config;
5289
5290         /* clear TX/RX time stamp registers, just to be sure */
5291         regval = rd32(E1000_TXSTMPH);
5292         regval = rd32(E1000_RXSTMPH);
5293
5294         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5295                 -EFAULT : 0;
5296 }
5297
5298 /**
5299  * igb_ioctl -
5300  * @netdev:
5301  * @ifreq:
5302  * @cmd:
5303  **/
5304 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5305 {
5306         switch (cmd) {
5307         case SIOCGMIIPHY:
5308         case SIOCGMIIREG:
5309         case SIOCSMIIREG:
5310                 return igb_mii_ioctl(netdev, ifr, cmd);
5311         case SIOCSHWTSTAMP:
5312                 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5313         default:
5314                 return -EOPNOTSUPP;
5315         }
5316 }
5317
5318 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5319 {
5320         struct igb_adapter *adapter = hw->back;
5321         u16 cap_offset;
5322
5323         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5324         if (!cap_offset)
5325                 return -E1000_ERR_CONFIG;
5326
5327         pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5328
5329         return 0;
5330 }
5331
5332 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5333 {
5334         struct igb_adapter *adapter = hw->back;
5335         u16 cap_offset;
5336
5337         cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5338         if (!cap_offset)
5339                 return -E1000_ERR_CONFIG;
5340
5341         pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5342
5343         return 0;
5344 }
5345
5346 static void igb_vlan_rx_register(struct net_device *netdev,
5347                                  struct vlan_group *grp)
5348 {
5349         struct igb_adapter *adapter = netdev_priv(netdev);
5350         struct e1000_hw *hw = &adapter->hw;
5351         u32 ctrl, rctl;
5352
5353         igb_irq_disable(adapter);
5354         adapter->vlgrp = grp;
5355
5356         if (grp) {
5357                 /* enable VLAN tag insert/strip */
5358                 ctrl = rd32(E1000_CTRL);
5359                 ctrl |= E1000_CTRL_VME;
5360                 wr32(E1000_CTRL, ctrl);
5361
5362                 /* enable VLAN receive filtering */
5363                 rctl = rd32(E1000_RCTL);
5364                 rctl &= ~E1000_RCTL_CFIEN;
5365                 wr32(E1000_RCTL, rctl);
5366                 igb_update_mng_vlan(adapter);
5367         } else {
5368                 /* disable VLAN tag insert/strip */
5369                 ctrl = rd32(E1000_CTRL);
5370                 ctrl &= ~E1000_CTRL_VME;
5371                 wr32(E1000_CTRL, ctrl);
5372
5373                 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5374                         igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5375                         adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5376                 }
5377         }
5378
5379         igb_rlpml_set(adapter);
5380
5381         if (!test_bit(__IGB_DOWN, &adapter->state))
5382                 igb_irq_enable(adapter);
5383 }
5384
5385 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5386 {
5387         struct igb_adapter *adapter = netdev_priv(netdev);
5388         struct e1000_hw *hw = &adapter->hw;
5389         int pf_id = adapter->vfs_allocated_count;
5390
5391         if ((hw->mng_cookie.status &
5392              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5393             (vid == adapter->mng_vlan_id))
5394                 return;
5395
5396         /* add vid to vlvf if sr-iov is enabled,
5397          * if that fails add directly to filter table */
5398         if (igb_vlvf_set(adapter, vid, true, pf_id))
5399                 igb_vfta_set(hw, vid, true);
5400
5401 }
5402
5403 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5404 {
5405         struct igb_adapter *adapter = netdev_priv(netdev);
5406         struct e1000_hw *hw = &adapter->hw;
5407         int pf_id = adapter->vfs_allocated_count;
5408
5409         igb_irq_disable(adapter);
5410         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5411
5412         if (!test_bit(__IGB_DOWN, &adapter->state))
5413                 igb_irq_enable(adapter);
5414
5415         if ((adapter->hw.mng_cookie.status &
5416              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5417             (vid == adapter->mng_vlan_id)) {
5418                 /* release control to f/w */
5419                 igb_release_hw_control(adapter);
5420                 return;
5421         }
5422
5423         /* remove vid from vlvf if sr-iov is enabled,
5424          * if not in vlvf remove from vfta */
5425         if (igb_vlvf_set(adapter, vid, false, pf_id))
5426                 igb_vfta_set(hw, vid, false);
5427 }
5428
5429 static void igb_restore_vlan(struct igb_adapter *adapter)
5430 {
5431         igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5432
5433         if (adapter->vlgrp) {
5434                 u16 vid;
5435                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5436                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5437                                 continue;
5438                         igb_vlan_rx_add_vid(adapter->netdev, vid);
5439                 }
5440         }
5441 }
5442
5443 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5444 {
5445         struct e1000_mac_info *mac = &adapter->hw.mac;
5446
5447         mac->autoneg = 0;
5448
5449         switch (spddplx) {
5450         case SPEED_10 + DUPLEX_HALF:
5451                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5452                 break;
5453         case SPEED_10 + DUPLEX_FULL:
5454                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5455                 break;
5456         case SPEED_100 + DUPLEX_HALF:
5457                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5458                 break;
5459         case SPEED_100 + DUPLEX_FULL:
5460                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5461                 break;
5462         case SPEED_1000 + DUPLEX_FULL:
5463                 mac->autoneg = 1;
5464                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5465                 break;
5466         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5467         default:
5468                 dev_err(&adapter->pdev->dev,
5469                         "Unsupported Speed/Duplex configuration\n");
5470                 return -EINVAL;
5471         }
5472         return 0;
5473 }
5474
5475 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5476 {
5477         struct net_device *netdev = pci_get_drvdata(pdev);
5478         struct igb_adapter *adapter = netdev_priv(netdev);
5479         struct e1000_hw *hw = &adapter->hw;
5480         u32 ctrl, rctl, status;
5481         u32 wufc = adapter->wol;
5482 #ifdef CONFIG_PM
5483         int retval = 0;
5484 #endif
5485
5486         netif_device_detach(netdev);
5487
5488         if (netif_running(netdev))
5489                 igb_close(netdev);
5490
5491         igb_clear_interrupt_scheme(adapter);
5492
5493 #ifdef CONFIG_PM
5494         retval = pci_save_state(pdev);
5495         if (retval)
5496                 return retval;
5497 #endif
5498
5499         status = rd32(E1000_STATUS);
5500         if (status & E1000_STATUS_LU)
5501                 wufc &= ~E1000_WUFC_LNKC;
5502
5503         if (wufc) {
5504                 igb_setup_rctl(adapter);
5505                 igb_set_rx_mode(netdev);
5506
5507                 /* turn on all-multi mode if wake on multicast is enabled */
5508                 if (wufc & E1000_WUFC_MC) {
5509                         rctl = rd32(E1000_RCTL);
5510                         rctl |= E1000_RCTL_MPE;
5511                         wr32(E1000_RCTL, rctl);
5512                 }
5513
5514                 ctrl = rd32(E1000_CTRL);
5515                 /* advertise wake from D3Cold */
5516                 #define E1000_CTRL_ADVD3WUC 0x00100000
5517                 /* phy power management enable */
5518                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5519                 ctrl |= E1000_CTRL_ADVD3WUC;
5520                 wr32(E1000_CTRL, ctrl);
5521
5522                 /* Allow time for pending master requests to run */
5523                 igb_disable_pcie_master(&adapter->hw);
5524
5525                 wr32(E1000_WUC, E1000_WUC_PME_EN);
5526                 wr32(E1000_WUFC, wufc);
5527         } else {
5528                 wr32(E1000_WUC, 0);
5529                 wr32(E1000_WUFC, 0);
5530         }
5531
5532         *enable_wake = wufc || adapter->en_mng_pt;
5533         if (!*enable_wake)
5534                 igb_shutdown_serdes_link_82575(hw);
5535
5536         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5537          * would have already happened in close and is redundant. */
5538         igb_release_hw_control(adapter);
5539
5540         pci_disable_device(pdev);
5541
5542         return 0;
5543 }
5544
5545 #ifdef CONFIG_PM
5546 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5547 {
5548         int retval;
5549         bool wake;
5550
5551         retval = __igb_shutdown(pdev, &wake);
5552         if (retval)
5553                 return retval;
5554
5555         if (wake) {
5556                 pci_prepare_to_sleep(pdev);
5557         } else {
5558                 pci_wake_from_d3(pdev, false);
5559                 pci_set_power_state(pdev, PCI_D3hot);
5560         }
5561
5562         return 0;
5563 }
5564
5565 static int igb_resume(struct pci_dev *pdev)
5566 {
5567         struct net_device *netdev = pci_get_drvdata(pdev);
5568         struct igb_adapter *adapter = netdev_priv(netdev);
5569         struct e1000_hw *hw = &adapter->hw;
5570         u32 err;
5571
5572         pci_set_power_state(pdev, PCI_D0);
5573         pci_restore_state(pdev);
5574
5575         err = pci_enable_device_mem(pdev);
5576         if (err) {
5577                 dev_err(&pdev->dev,
5578                         "igb: Cannot enable PCI device from suspend\n");
5579                 return err;
5580         }
5581         pci_set_master(pdev);
5582
5583         pci_enable_wake(pdev, PCI_D3hot, 0);
5584         pci_enable_wake(pdev, PCI_D3cold, 0);
5585
5586         if (igb_init_interrupt_scheme(adapter)) {
5587                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5588                 return -ENOMEM;
5589         }
5590
5591         /* e1000_power_up_phy(adapter); */
5592
5593         igb_reset(adapter);
5594
5595         /* let the f/w know that the h/w is now under the control of the
5596          * driver. */
5597         igb_get_hw_control(adapter);
5598
5599         wr32(E1000_WUS, ~0);
5600
5601         if (netif_running(netdev)) {
5602                 err = igb_open(netdev);
5603                 if (err)
5604                         return err;
5605         }
5606
5607         netif_device_attach(netdev);
5608
5609         return 0;
5610 }
5611 #endif
5612
5613 static void igb_shutdown(struct pci_dev *pdev)
5614 {
5615         bool wake;
5616
5617         __igb_shutdown(pdev, &wake);
5618
5619         if (system_state == SYSTEM_POWER_OFF) {
5620                 pci_wake_from_d3(pdev, wake);
5621                 pci_set_power_state(pdev, PCI_D3hot);
5622         }
5623 }
5624
5625 #ifdef CONFIG_NET_POLL_CONTROLLER
5626 /*
5627  * Polling 'interrupt' - used by things like netconsole to send skbs
5628  * without having to re-enable interrupts. It's not called while
5629  * the interrupt routine is executing.
5630  */
5631 static void igb_netpoll(struct net_device *netdev)
5632 {
5633         struct igb_adapter *adapter = netdev_priv(netdev);
5634         struct e1000_hw *hw = &adapter->hw;
5635         int i;
5636
5637         if (!adapter->msix_entries) {
5638                 struct igb_q_vector *q_vector = adapter->q_vector[0];
5639                 igb_irq_disable(adapter);
5640                 napi_schedule(&q_vector->napi);
5641                 return;
5642         }
5643
5644         for (i = 0; i < adapter->num_q_vectors; i++) {
5645                 struct igb_q_vector *q_vector = adapter->q_vector[i];
5646                 wr32(E1000_EIMC, q_vector->eims_value);
5647                 napi_schedule(&q_vector->napi);
5648         }
5649 }
5650 #endif /* CONFIG_NET_POLL_CONTROLLER */
5651
5652 /**
5653  * igb_io_error_detected - called when PCI error is detected
5654  * @pdev: Pointer to PCI device
5655  * @state: The current pci connection state
5656  *
5657  * This function is called after a PCI bus error affecting
5658  * this device has been detected.
5659  */
5660 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5661                                               pci_channel_state_t state)
5662 {
5663         struct net_device *netdev = pci_get_drvdata(pdev);
5664         struct igb_adapter *adapter = netdev_priv(netdev);
5665
5666         netif_device_detach(netdev);
5667
5668         if (state == pci_channel_io_perm_failure)
5669                 return PCI_ERS_RESULT_DISCONNECT;
5670
5671         if (netif_running(netdev))
5672                 igb_down(adapter);
5673         pci_disable_device(pdev);
5674
5675         /* Request a slot slot reset. */
5676         return PCI_ERS_RESULT_NEED_RESET;
5677 }
5678
5679 /**
5680  * igb_io_slot_reset - called after the pci bus has been reset.
5681  * @pdev: Pointer to PCI device
5682  *
5683  * Restart the card from scratch, as if from a cold-boot. Implementation
5684  * resembles the first-half of the igb_resume routine.
5685  */
5686 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5687 {
5688         struct net_device *netdev = pci_get_drvdata(pdev);
5689         struct igb_adapter *adapter = netdev_priv(netdev);
5690         struct e1000_hw *hw = &adapter->hw;
5691         pci_ers_result_t result;
5692         int err;
5693
5694         if (pci_enable_device_mem(pdev)) {
5695                 dev_err(&pdev->dev,
5696                         "Cannot re-enable PCI device after reset.\n");
5697                 result = PCI_ERS_RESULT_DISCONNECT;
5698         } else {
5699                 pci_set_master(pdev);
5700                 pci_restore_state(pdev);
5701
5702                 pci_enable_wake(pdev, PCI_D3hot, 0);
5703                 pci_enable_wake(pdev, PCI_D3cold, 0);
5704
5705                 igb_reset(adapter);
5706                 wr32(E1000_WUS, ~0);
5707                 result = PCI_ERS_RESULT_RECOVERED;
5708         }
5709
5710         err = pci_cleanup_aer_uncorrect_error_status(pdev);
5711         if (err) {
5712                 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5713                         "failed 0x%0x\n", err);
5714                 /* non-fatal, continue */
5715         }
5716
5717         return result;
5718 }
5719
5720 /**
5721  * igb_io_resume - called when traffic can start flowing again.
5722  * @pdev: Pointer to PCI device
5723  *
5724  * This callback is called when the error recovery driver tells us that
5725  * its OK to resume normal operation. Implementation resembles the
5726  * second-half of the igb_resume routine.
5727  */
5728 static void igb_io_resume(struct pci_dev *pdev)
5729 {
5730         struct net_device *netdev = pci_get_drvdata(pdev);
5731         struct igb_adapter *adapter = netdev_priv(netdev);
5732
5733         if (netif_running(netdev)) {
5734                 if (igb_up(adapter)) {
5735                         dev_err(&pdev->dev, "igb_up failed after reset\n");
5736                         return;
5737                 }
5738         }
5739
5740         netif_device_attach(netdev);
5741
5742         /* let the f/w know that the h/w is now under the control of the
5743          * driver. */
5744         igb_get_hw_control(adapter);
5745 }
5746
5747 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
5748                              u8 qsel)
5749 {
5750         u32 rar_low, rar_high;
5751         struct e1000_hw *hw = &adapter->hw;
5752
5753         /* HW expects these in little endian so we reverse the byte order
5754          * from network order (big endian) to little endian
5755          */
5756         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
5757                   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
5758         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
5759
5760         /* Indicate to hardware the Address is Valid. */
5761         rar_high |= E1000_RAH_AV;
5762
5763         if (hw->mac.type == e1000_82575)
5764                 rar_high |= E1000_RAH_POOL_1 * qsel;
5765         else
5766                 rar_high |= E1000_RAH_POOL_1 << qsel;
5767
5768         wr32(E1000_RAL(index), rar_low);
5769         wrfl();
5770         wr32(E1000_RAH(index), rar_high);
5771         wrfl();
5772 }
5773
5774 static int igb_set_vf_mac(struct igb_adapter *adapter,
5775                           int vf, unsigned char *mac_addr)
5776 {
5777         struct e1000_hw *hw = &adapter->hw;
5778         /* VF MAC addresses start at end of receive addresses and moves
5779          * torwards the first, as a result a collision should not be possible */
5780         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5781
5782         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5783
5784         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
5785
5786         return 0;
5787 }
5788
5789 static void igb_vmm_control(struct igb_adapter *adapter)
5790 {
5791         struct e1000_hw *hw = &adapter->hw;
5792         u32 reg_data;
5793
5794         if (!adapter->vfs_allocated_count)
5795                 return;
5796
5797         /* VF's need PF reset indication before they
5798          * can send/receive mail */
5799         reg_data = rd32(E1000_CTRL_EXT);
5800         reg_data |= E1000_CTRL_EXT_PFRSTD;
5801         wr32(E1000_CTRL_EXT, reg_data);
5802
5803         igb_vmdq_set_loopback_pf(hw, true);
5804         igb_vmdq_set_replication_pf(hw, true);
5805 }
5806
5807 /* igb_main.c */