Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
86
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98 #include <linux/of_net.h>
99
100 #include "gianfar.h"
101 #include "fsl_pq_mdio.h"
102
103 #define TX_TIMEOUT      (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
106
107 const char gfar_driver_name[] = "Gianfar Ethernet";
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117                 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139                               int amount_pull);
140 static void gfar_vlan_rx_register(struct net_device *netdev,
141                                 struct vlan_group *grp);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
147                                   const u8 *addr);
148 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
149
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
153
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
155                             dma_addr_t buf)
156 {
157         u32 lstatus;
158
159         bdp->bufPtr = buf;
160
161         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
162         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
163                 lstatus |= BD_LFLAG(RXBD_WRAP);
164
165         eieio();
166
167         bdp->lstatus = lstatus;
168 }
169
170 static int gfar_init_bds(struct net_device *ndev)
171 {
172         struct gfar_private *priv = netdev_priv(ndev);
173         struct gfar_priv_tx_q *tx_queue = NULL;
174         struct gfar_priv_rx_q *rx_queue = NULL;
175         struct txbd8 *txbdp;
176         struct rxbd8 *rxbdp;
177         int i, j;
178
179         for (i = 0; i < priv->num_tx_queues; i++) {
180                 tx_queue = priv->tx_queue[i];
181                 /* Initialize some variables in our dev structure */
182                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
184                 tx_queue->cur_tx = tx_queue->tx_bd_base;
185                 tx_queue->skb_curtx = 0;
186                 tx_queue->skb_dirtytx = 0;
187
188                 /* Initialize Transmit Descriptor Ring */
189                 txbdp = tx_queue->tx_bd_base;
190                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
191                         txbdp->lstatus = 0;
192                         txbdp->bufPtr = 0;
193                         txbdp++;
194                 }
195
196                 /* Set the last descriptor in the ring to indicate wrap */
197                 txbdp--;
198                 txbdp->status |= TXBD_WRAP;
199         }
200
201         for (i = 0; i < priv->num_rx_queues; i++) {
202                 rx_queue = priv->rx_queue[i];
203                 rx_queue->cur_rx = rx_queue->rx_bd_base;
204                 rx_queue->skb_currx = 0;
205                 rxbdp = rx_queue->rx_bd_base;
206
207                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
208                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
209
210                         if (skb) {
211                                 gfar_init_rxbdp(rx_queue, rxbdp,
212                                                 rxbdp->bufPtr);
213                         } else {
214                                 skb = gfar_new_skb(ndev);
215                                 if (!skb) {
216                                         pr_err("%s: Can't allocate RX buffers\n",
217                                                         ndev->name);
218                                         goto err_rxalloc_fail;
219                                 }
220                                 rx_queue->rx_skbuff[j] = skb;
221
222                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
223                         }
224
225                         rxbdp++;
226                 }
227
228         }
229
230         return 0;
231
232 err_rxalloc_fail:
233         free_skb_resources(priv);
234         return -ENOMEM;
235 }
236
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
238 {
239         void *vaddr;
240         dma_addr_t addr;
241         int i, j, k;
242         struct gfar_private *priv = netdev_priv(ndev);
243         struct device *dev = &priv->ofdev->dev;
244         struct gfar_priv_tx_q *tx_queue = NULL;
245         struct gfar_priv_rx_q *rx_queue = NULL;
246
247         priv->total_tx_ring_size = 0;
248         for (i = 0; i < priv->num_tx_queues; i++)
249                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
250
251         priv->total_rx_ring_size = 0;
252         for (i = 0; i < priv->num_rx_queues; i++)
253                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
254
255         /* Allocate memory for the buffer descriptors */
256         vaddr = dma_alloc_coherent(dev,
257                         sizeof(struct txbd8) * priv->total_tx_ring_size +
258                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
259                         &addr, GFP_KERNEL);
260         if (!vaddr) {
261                 if (netif_msg_ifup(priv))
262                         pr_err("%s: Could not allocate buffer descriptors!\n",
263                                ndev->name);
264                 return -ENOMEM;
265         }
266
267         for (i = 0; i < priv->num_tx_queues; i++) {
268                 tx_queue = priv->tx_queue[i];
269                 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
270                 tx_queue->tx_bd_dma_base = addr;
271                 tx_queue->dev = ndev;
272                 /* enet DMA only understands physical addresses */
273                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
275         }
276
277         /* Start the rx descriptor ring where the tx ring leaves off */
278         for (i = 0; i < priv->num_rx_queues; i++) {
279                 rx_queue = priv->rx_queue[i];
280                 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
281                 rx_queue->rx_bd_dma_base = addr;
282                 rx_queue->dev = ndev;
283                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
285         }
286
287         /* Setup the skbuff rings */
288         for (i = 0; i < priv->num_tx_queues; i++) {
289                 tx_queue = priv->tx_queue[i];
290                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
291                                   tx_queue->tx_ring_size, GFP_KERNEL);
292                 if (!tx_queue->tx_skbuff) {
293                         if (netif_msg_ifup(priv))
294                                 pr_err("%s: Could not allocate tx_skbuff\n",
295                                                 ndev->name);
296                         goto cleanup;
297                 }
298
299                 for (k = 0; k < tx_queue->tx_ring_size; k++)
300                         tx_queue->tx_skbuff[k] = NULL;
301         }
302
303         for (i = 0; i < priv->num_rx_queues; i++) {
304                 rx_queue = priv->rx_queue[i];
305                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
306                                   rx_queue->rx_ring_size, GFP_KERNEL);
307
308                 if (!rx_queue->rx_skbuff) {
309                         if (netif_msg_ifup(priv))
310                                 pr_err("%s: Could not allocate rx_skbuff\n",
311                                        ndev->name);
312                         goto cleanup;
313                 }
314
315                 for (j = 0; j < rx_queue->rx_ring_size; j++)
316                         rx_queue->rx_skbuff[j] = NULL;
317         }
318
319         if (gfar_init_bds(ndev))
320                 goto cleanup;
321
322         return 0;
323
324 cleanup:
325         free_skb_resources(priv);
326         return -ENOMEM;
327 }
328
329 static void gfar_init_tx_rx_base(struct gfar_private *priv)
330 {
331         struct gfar __iomem *regs = priv->gfargrp[0].regs;
332         u32 __iomem *baddr;
333         int i;
334
335         baddr = &regs->tbase0;
336         for(i = 0; i < priv->num_tx_queues; i++) {
337                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
338                 baddr   += 2;
339         }
340
341         baddr = &regs->rbase0;
342         for(i = 0; i < priv->num_rx_queues; i++) {
343                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
344                 baddr   += 2;
345         }
346 }
347
348 static void gfar_init_mac(struct net_device *ndev)
349 {
350         struct gfar_private *priv = netdev_priv(ndev);
351         struct gfar __iomem *regs = priv->gfargrp[0].regs;
352         u32 rctrl = 0;
353         u32 tctrl = 0;
354         u32 attrs = 0;
355
356         /* write the tx/rx base registers */
357         gfar_init_tx_rx_base(priv);
358
359         /* Configure the coalescing support */
360         gfar_configure_coalescing(priv, 0xFF, 0xFF);
361
362         if (priv->rx_filer_enable) {
363                 rctrl |= RCTRL_FILREN;
364                 /* Program the RIR0 reg with the required distribution */
365                 gfar_write(&regs->rir0, DEFAULT_RIR0);
366         }
367
368         if (priv->rx_csum_enable)
369                 rctrl |= RCTRL_CHECKSUMMING;
370
371         if (priv->extended_hash) {
372                 rctrl |= RCTRL_EXTHASH;
373
374                 gfar_clear_exact_match(ndev);
375                 rctrl |= RCTRL_EMEN;
376         }
377
378         if (priv->padding) {
379                 rctrl &= ~RCTRL_PAL_MASK;
380                 rctrl |= RCTRL_PADDING(priv->padding);
381         }
382
383         /* Insert receive time stamps into padding alignment bytes */
384         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
385                 rctrl &= ~RCTRL_PAL_MASK;
386                 rctrl |= RCTRL_PADDING(8);
387                 priv->padding = 8;
388         }
389
390         /* Enable HW time stamping if requested from user space */
391         if (priv->hwts_rx_en)
392                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
393
394         /* keep vlan related bits if it's enabled */
395         if (priv->vlgrp) {
396                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
397                 tctrl |= TCTRL_VLINS;
398         }
399
400         /* Init rctrl based on our settings */
401         gfar_write(&regs->rctrl, rctrl);
402
403         if (ndev->features & NETIF_F_IP_CSUM)
404                 tctrl |= TCTRL_INIT_CSUM;
405
406         tctrl |= TCTRL_TXSCHED_PRIO;
407
408         gfar_write(&regs->tctrl, tctrl);
409
410         /* Set the extraction length and index */
411         attrs = ATTRELI_EL(priv->rx_stash_size) |
412                 ATTRELI_EI(priv->rx_stash_index);
413
414         gfar_write(&regs->attreli, attrs);
415
416         /* Start with defaults, and add stashing or locking
417          * depending on the approprate variables */
418         attrs = ATTR_INIT_SETTINGS;
419
420         if (priv->bd_stash_en)
421                 attrs |= ATTR_BDSTASH;
422
423         if (priv->rx_stash_size != 0)
424                 attrs |= ATTR_BUFSTASH;
425
426         gfar_write(&regs->attr, attrs);
427
428         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
429         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
430         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
431 }
432
433 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
434 {
435         struct gfar_private *priv = netdev_priv(dev);
436         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437         unsigned long tx_packets = 0, tx_bytes = 0;
438         int i = 0;
439
440         for (i = 0; i < priv->num_rx_queues; i++) {
441                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
442                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
444         }
445
446         dev->stats.rx_packets = rx_packets;
447         dev->stats.rx_bytes = rx_bytes;
448         dev->stats.rx_dropped = rx_dropped;
449
450         for (i = 0; i < priv->num_tx_queues; i++) {
451                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
452                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
453         }
454
455         dev->stats.tx_bytes = tx_bytes;
456         dev->stats.tx_packets = tx_packets;
457
458         return &dev->stats;
459 }
460
461 static const struct net_device_ops gfar_netdev_ops = {
462         .ndo_open = gfar_enet_open,
463         .ndo_start_xmit = gfar_start_xmit,
464         .ndo_stop = gfar_close,
465         .ndo_change_mtu = gfar_change_mtu,
466         .ndo_set_multicast_list = gfar_set_multi,
467         .ndo_tx_timeout = gfar_timeout,
468         .ndo_do_ioctl = gfar_ioctl,
469         .ndo_get_stats = gfar_get_stats,
470         .ndo_vlan_rx_register = gfar_vlan_rx_register,
471         .ndo_set_mac_address = eth_mac_addr,
472         .ndo_validate_addr = eth_validate_addr,
473 #ifdef CONFIG_NET_POLL_CONTROLLER
474         .ndo_poll_controller = gfar_netpoll,
475 #endif
476 };
477
478 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
479 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
480
481 void lock_rx_qs(struct gfar_private *priv)
482 {
483         int i = 0x0;
484
485         for (i = 0; i < priv->num_rx_queues; i++)
486                 spin_lock(&priv->rx_queue[i]->rxlock);
487 }
488
489 void lock_tx_qs(struct gfar_private *priv)
490 {
491         int i = 0x0;
492
493         for (i = 0; i < priv->num_tx_queues; i++)
494                 spin_lock(&priv->tx_queue[i]->txlock);
495 }
496
497 void unlock_rx_qs(struct gfar_private *priv)
498 {
499         int i = 0x0;
500
501         for (i = 0; i < priv->num_rx_queues; i++)
502                 spin_unlock(&priv->rx_queue[i]->rxlock);
503 }
504
505 void unlock_tx_qs(struct gfar_private *priv)
506 {
507         int i = 0x0;
508
509         for (i = 0; i < priv->num_tx_queues; i++)
510                 spin_unlock(&priv->tx_queue[i]->txlock);
511 }
512
513 /* Returns 1 if incoming frames use an FCB */
514 static inline int gfar_uses_fcb(struct gfar_private *priv)
515 {
516         return priv->vlgrp || priv->rx_csum_enable ||
517                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
518 }
519
520 static void free_tx_pointers(struct gfar_private *priv)
521 {
522         int i = 0;
523
524         for (i = 0; i < priv->num_tx_queues; i++)
525                 kfree(priv->tx_queue[i]);
526 }
527
528 static void free_rx_pointers(struct gfar_private *priv)
529 {
530         int i = 0;
531
532         for (i = 0; i < priv->num_rx_queues; i++)
533                 kfree(priv->rx_queue[i]);
534 }
535
536 static void unmap_group_regs(struct gfar_private *priv)
537 {
538         int i = 0;
539
540         for (i = 0; i < MAXGROUPS; i++)
541                 if (priv->gfargrp[i].regs)
542                         iounmap(priv->gfargrp[i].regs);
543 }
544
545 static void disable_napi(struct gfar_private *priv)
546 {
547         int i = 0;
548
549         for (i = 0; i < priv->num_grps; i++)
550                 napi_disable(&priv->gfargrp[i].napi);
551 }
552
553 static void enable_napi(struct gfar_private *priv)
554 {
555         int i = 0;
556
557         for (i = 0; i < priv->num_grps; i++)
558                 napi_enable(&priv->gfargrp[i].napi);
559 }
560
561 static int gfar_parse_group(struct device_node *np,
562                 struct gfar_private *priv, const char *model)
563 {
564         u32 *queue_mask;
565
566         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
567         if (!priv->gfargrp[priv->num_grps].regs)
568                 return -ENOMEM;
569
570         priv->gfargrp[priv->num_grps].interruptTransmit =
571                         irq_of_parse_and_map(np, 0);
572
573         /* If we aren't the FEC we have multiple interrupts */
574         if (model && strcasecmp(model, "FEC")) {
575                 priv->gfargrp[priv->num_grps].interruptReceive =
576                         irq_of_parse_and_map(np, 1);
577                 priv->gfargrp[priv->num_grps].interruptError =
578                         irq_of_parse_and_map(np,2);
579                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
580                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
581                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
582                         return -EINVAL;
583         }
584
585         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
586         priv->gfargrp[priv->num_grps].priv = priv;
587         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
588         if(priv->mode == MQ_MG_MODE) {
589                 queue_mask = (u32 *)of_get_property(np,
590                                         "fsl,rx-bit-map", NULL);
591                 priv->gfargrp[priv->num_grps].rx_bit_map =
592                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
593                 queue_mask = (u32 *)of_get_property(np,
594                                         "fsl,tx-bit-map", NULL);
595                 priv->gfargrp[priv->num_grps].tx_bit_map =
596                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
597         } else {
598                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
599                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
600         }
601         priv->num_grps++;
602
603         return 0;
604 }
605
606 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
607 {
608         const char *model;
609         const char *ctype;
610         const void *mac_addr;
611         int err = 0, i;
612         struct net_device *dev = NULL;
613         struct gfar_private *priv = NULL;
614         struct device_node *np = ofdev->dev.of_node;
615         struct device_node *child = NULL;
616         const u32 *stash;
617         const u32 *stash_len;
618         const u32 *stash_idx;
619         unsigned int num_tx_qs, num_rx_qs;
620         u32 *tx_queues, *rx_queues;
621
622         if (!np || !of_device_is_available(np))
623                 return -ENODEV;
624
625         /* parse the num of tx and rx queues */
626         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
627         num_tx_qs = tx_queues ? *tx_queues : 1;
628
629         if (num_tx_qs > MAX_TX_QS) {
630                 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
631                                 num_tx_qs, MAX_TX_QS);
632                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
633                 return -EINVAL;
634         }
635
636         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
637         num_rx_qs = rx_queues ? *rx_queues : 1;
638
639         if (num_rx_qs > MAX_RX_QS) {
640                 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
641                                 num_tx_qs, MAX_TX_QS);
642                 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
643                 return -EINVAL;
644         }
645
646         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
647         dev = *pdev;
648         if (NULL == dev)
649                 return -ENOMEM;
650
651         priv = netdev_priv(dev);
652         priv->node = ofdev->dev.of_node;
653         priv->ndev = dev;
654
655         priv->num_tx_queues = num_tx_qs;
656         netif_set_real_num_rx_queues(dev, num_rx_qs);
657         priv->num_rx_queues = num_rx_qs;
658         priv->num_grps = 0x0;
659
660         model = of_get_property(np, "model", NULL);
661
662         for (i = 0; i < MAXGROUPS; i++)
663                 priv->gfargrp[i].regs = NULL;
664
665         /* Parse and initialize group specific information */
666         if (of_device_is_compatible(np, "fsl,etsec2")) {
667                 priv->mode = MQ_MG_MODE;
668                 for_each_child_of_node(np, child) {
669                         err = gfar_parse_group(child, priv, model);
670                         if (err)
671                                 goto err_grp_init;
672                 }
673         } else {
674                 priv->mode = SQ_SG_MODE;
675                 err = gfar_parse_group(np, priv, model);
676                 if(err)
677                         goto err_grp_init;
678         }
679
680         for (i = 0; i < priv->num_tx_queues; i++)
681                priv->tx_queue[i] = NULL;
682         for (i = 0; i < priv->num_rx_queues; i++)
683                 priv->rx_queue[i] = NULL;
684
685         for (i = 0; i < priv->num_tx_queues; i++) {
686                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687                                             GFP_KERNEL);
688                 if (!priv->tx_queue[i]) {
689                         err = -ENOMEM;
690                         goto tx_alloc_failed;
691                 }
692                 priv->tx_queue[i]->tx_skbuff = NULL;
693                 priv->tx_queue[i]->qindex = i;
694                 priv->tx_queue[i]->dev = dev;
695                 spin_lock_init(&(priv->tx_queue[i]->txlock));
696         }
697
698         for (i = 0; i < priv->num_rx_queues; i++) {
699                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700                                             GFP_KERNEL);
701                 if (!priv->rx_queue[i]) {
702                         err = -ENOMEM;
703                         goto rx_alloc_failed;
704                 }
705                 priv->rx_queue[i]->rx_skbuff = NULL;
706                 priv->rx_queue[i]->qindex = i;
707                 priv->rx_queue[i]->dev = dev;
708                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
709         }
710
711
712         stash = of_get_property(np, "bd-stash", NULL);
713
714         if (stash) {
715                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716                 priv->bd_stash_en = 1;
717         }
718
719         stash_len = of_get_property(np, "rx-stash-len", NULL);
720
721         if (stash_len)
722                 priv->rx_stash_size = *stash_len;
723
724         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725
726         if (stash_idx)
727                 priv->rx_stash_index = *stash_idx;
728
729         if (stash_len || stash_idx)
730                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731
732         mac_addr = of_get_mac_address(np);
733         if (mac_addr)
734                 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
735
736         if (model && !strcasecmp(model, "TSEC"))
737                 priv->device_flags =
738                         FSL_GIANFAR_DEV_HAS_GIGABIT |
739                         FSL_GIANFAR_DEV_HAS_COALESCE |
740                         FSL_GIANFAR_DEV_HAS_RMON |
741                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742         if (model && !strcasecmp(model, "eTSEC"))
743                 priv->device_flags =
744                         FSL_GIANFAR_DEV_HAS_GIGABIT |
745                         FSL_GIANFAR_DEV_HAS_COALESCE |
746                         FSL_GIANFAR_DEV_HAS_RMON |
747                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748                         FSL_GIANFAR_DEV_HAS_PADDING |
749                         FSL_GIANFAR_DEV_HAS_CSUM |
750                         FSL_GIANFAR_DEV_HAS_VLAN |
751                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753                         FSL_GIANFAR_DEV_HAS_TIMER;
754
755         ctype = of_get_property(np, "phy-connection-type", NULL);
756
757         /* We only care about rgmii-id.  The rest are autodetected */
758         if (ctype && !strcmp(ctype, "rgmii-id"))
759                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760         else
761                 priv->interface = PHY_INTERFACE_MODE_MII;
762
763         if (of_get_property(np, "fsl,magic-packet", NULL))
764                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765
766         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767
768         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
769         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770
771         return 0;
772
773 rx_alloc_failed:
774         free_rx_pointers(priv);
775 tx_alloc_failed:
776         free_tx_pointers(priv);
777 err_grp_init:
778         unmap_group_regs(priv);
779         free_netdev(dev);
780         return err;
781 }
782
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784                         struct ifreq *ifr, int cmd)
785 {
786         struct hwtstamp_config config;
787         struct gfar_private *priv = netdev_priv(netdev);
788
789         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790                 return -EFAULT;
791
792         /* reserved for future extensions */
793         if (config.flags)
794                 return -EINVAL;
795
796         switch (config.tx_type) {
797         case HWTSTAMP_TX_OFF:
798                 priv->hwts_tx_en = 0;
799                 break;
800         case HWTSTAMP_TX_ON:
801                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802                         return -ERANGE;
803                 priv->hwts_tx_en = 1;
804                 break;
805         default:
806                 return -ERANGE;
807         }
808
809         switch (config.rx_filter) {
810         case HWTSTAMP_FILTER_NONE:
811                 if (priv->hwts_rx_en) {
812                         stop_gfar(netdev);
813                         priv->hwts_rx_en = 0;
814                         startup_gfar(netdev);
815                 }
816                 break;
817         default:
818                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819                         return -ERANGE;
820                 if (!priv->hwts_rx_en) {
821                         stop_gfar(netdev);
822                         priv->hwts_rx_en = 1;
823                         startup_gfar(netdev);
824                 }
825                 config.rx_filter = HWTSTAMP_FILTER_ALL;
826                 break;
827         }
828
829         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830                 -EFAULT : 0;
831 }
832
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836         struct gfar_private *priv = netdev_priv(dev);
837
838         if (!netif_running(dev))
839                 return -EINVAL;
840
841         if (cmd == SIOCSHWTSTAMP)
842                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
843
844         if (!priv->phydev)
845                 return -ENODEV;
846
847         return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852         unsigned int new_bit_map = 0x0;
853         int mask = 0x1 << (max_qs - 1), i;
854         for (i = 0; i < max_qs; i++) {
855                 if (bit_map & mask)
856                         new_bit_map = new_bit_map + (1 << i);
857                 mask = mask >> 0x1;
858         }
859         return new_bit_map;
860 }
861
862 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
863                                    u32 class)
864 {
865         u32 rqfpr = FPR_FILER_MASK;
866         u32 rqfcr = 0x0;
867
868         rqfar--;
869         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
870         ftp_rqfpr[rqfar] = rqfpr;
871         ftp_rqfcr[rqfar] = rqfcr;
872         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874         rqfar--;
875         rqfcr = RQFCR_CMP_NOMATCH;
876         ftp_rqfpr[rqfar] = rqfpr;
877         ftp_rqfcr[rqfar] = rqfcr;
878         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879
880         rqfar--;
881         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
882         rqfpr = class;
883         ftp_rqfcr[rqfar] = rqfcr;
884         ftp_rqfpr[rqfar] = rqfpr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
889         rqfpr = class;
890         ftp_rqfcr[rqfar] = rqfcr;
891         ftp_rqfpr[rqfar] = rqfpr;
892         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893
894         return rqfar;
895 }
896
897 static void gfar_init_filer_table(struct gfar_private *priv)
898 {
899         int i = 0x0;
900         u32 rqfar = MAX_FILER_IDX;
901         u32 rqfcr = 0x0;
902         u32 rqfpr = FPR_FILER_MASK;
903
904         /* Default rule */
905         rqfcr = RQFCR_CMP_MATCH;
906         ftp_rqfcr[rqfar] = rqfcr;
907         ftp_rqfpr[rqfar] = rqfpr;
908         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909
910         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
911         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
916
917         /* cur_filer_idx indicated the first non-masked rule */
918         priv->cur_filer_idx = rqfar;
919
920         /* Rest are masked rules */
921         rqfcr = RQFCR_CMP_NOMATCH;
922         for (i = 0; i < rqfar; i++) {
923                 ftp_rqfcr[i] = rqfcr;
924                 ftp_rqfpr[i] = rqfpr;
925                 gfar_write_filer(priv, i, rqfcr, rqfpr);
926         }
927 }
928
929 static void gfar_detect_errata(struct gfar_private *priv)
930 {
931         struct device *dev = &priv->ofdev->dev;
932         unsigned int pvr = mfspr(SPRN_PVR);
933         unsigned int svr = mfspr(SPRN_SVR);
934         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
935         unsigned int rev = svr & 0xffff;
936
937         /* MPC8313 Rev 2.0 and higher; All MPC837x */
938         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
939                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940                 priv->errata |= GFAR_ERRATA_74;
941
942         /* MPC8313 and MPC837x all rev */
943         if ((pvr == 0x80850010 && mod == 0x80b0) ||
944                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
945                 priv->errata |= GFAR_ERRATA_76;
946
947         /* MPC8313 and MPC837x all rev */
948         if ((pvr == 0x80850010 && mod == 0x80b0) ||
949                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
950                 priv->errata |= GFAR_ERRATA_A002;
951
952         if (priv->errata)
953                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
954                          priv->errata);
955 }
956
957 /* Set up the ethernet device structure, private data,
958  * and anything else we need before we start */
959 static int gfar_probe(struct platform_device *ofdev)
960 {
961         u32 tempval;
962         struct net_device *dev = NULL;
963         struct gfar_private *priv = NULL;
964         struct gfar __iomem *regs = NULL;
965         int err = 0, i, grp_idx = 0;
966         int len_devname;
967         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
968         u32 isrg = 0;
969         u32 __iomem *baddr;
970
971         err = gfar_of_init(ofdev, &dev);
972
973         if (err)
974                 return err;
975
976         priv = netdev_priv(dev);
977         priv->ndev = dev;
978         priv->ofdev = ofdev;
979         priv->node = ofdev->dev.of_node;
980         SET_NETDEV_DEV(dev, &ofdev->dev);
981
982         spin_lock_init(&priv->bflock);
983         INIT_WORK(&priv->reset_task, gfar_reset_task);
984
985         dev_set_drvdata(&ofdev->dev, priv);
986         regs = priv->gfargrp[0].regs;
987
988         gfar_detect_errata(priv);
989
990         /* Stop the DMA engine now, in case it was running before */
991         /* (The firmware could have used it, and left it running). */
992         gfar_halt(dev);
993
994         /* Reset MAC layer */
995         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
996
997         /* We need to delay at least 3 TX clocks */
998         udelay(2);
999
1000         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1001         gfar_write(&regs->maccfg1, tempval);
1002
1003         /* Initialize MACCFG2. */
1004         tempval = MACCFG2_INIT_SETTINGS;
1005         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1006                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1007         gfar_write(&regs->maccfg2, tempval);
1008
1009         /* Initialize ECNTRL */
1010         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1011
1012         /* Set the dev->base_addr to the gfar reg region */
1013         dev->base_addr = (unsigned long) regs;
1014
1015         SET_NETDEV_DEV(dev, &ofdev->dev);
1016
1017         /* Fill in the dev structure */
1018         dev->watchdog_timeo = TX_TIMEOUT;
1019         dev->mtu = 1500;
1020         dev->netdev_ops = &gfar_netdev_ops;
1021         dev->ethtool_ops = &gfar_ethtool_ops;
1022
1023         /* Register for napi ...We are registering NAPI for each grp */
1024         for (i = 0; i < priv->num_grps; i++)
1025                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1026
1027         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1028                 priv->rx_csum_enable = 1;
1029                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
1030         } else
1031                 priv->rx_csum_enable = 0;
1032
1033         priv->vlgrp = NULL;
1034
1035         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1036                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1037
1038         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1039                 priv->extended_hash = 1;
1040                 priv->hash_width = 9;
1041
1042                 priv->hash_regs[0] = &regs->igaddr0;
1043                 priv->hash_regs[1] = &regs->igaddr1;
1044                 priv->hash_regs[2] = &regs->igaddr2;
1045                 priv->hash_regs[3] = &regs->igaddr3;
1046                 priv->hash_regs[4] = &regs->igaddr4;
1047                 priv->hash_regs[5] = &regs->igaddr5;
1048                 priv->hash_regs[6] = &regs->igaddr6;
1049                 priv->hash_regs[7] = &regs->igaddr7;
1050                 priv->hash_regs[8] = &regs->gaddr0;
1051                 priv->hash_regs[9] = &regs->gaddr1;
1052                 priv->hash_regs[10] = &regs->gaddr2;
1053                 priv->hash_regs[11] = &regs->gaddr3;
1054                 priv->hash_regs[12] = &regs->gaddr4;
1055                 priv->hash_regs[13] = &regs->gaddr5;
1056                 priv->hash_regs[14] = &regs->gaddr6;
1057                 priv->hash_regs[15] = &regs->gaddr7;
1058
1059         } else {
1060                 priv->extended_hash = 0;
1061                 priv->hash_width = 8;
1062
1063                 priv->hash_regs[0] = &regs->gaddr0;
1064                 priv->hash_regs[1] = &regs->gaddr1;
1065                 priv->hash_regs[2] = &regs->gaddr2;
1066                 priv->hash_regs[3] = &regs->gaddr3;
1067                 priv->hash_regs[4] = &regs->gaddr4;
1068                 priv->hash_regs[5] = &regs->gaddr5;
1069                 priv->hash_regs[6] = &regs->gaddr6;
1070                 priv->hash_regs[7] = &regs->gaddr7;
1071         }
1072
1073         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1074                 priv->padding = DEFAULT_PADDING;
1075         else
1076                 priv->padding = 0;
1077
1078         if (dev->features & NETIF_F_IP_CSUM ||
1079                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1080                 dev->hard_header_len += GMAC_FCB_LEN;
1081
1082         /* Program the isrg regs only if number of grps > 1 */
1083         if (priv->num_grps > 1) {
1084                 baddr = &regs->isrg0;
1085                 for (i = 0; i < priv->num_grps; i++) {
1086                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1087                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1088                         gfar_write(baddr, isrg);
1089                         baddr++;
1090                         isrg = 0x0;
1091                 }
1092         }
1093
1094         /* Need to reverse the bit maps as  bit_map's MSB is q0
1095          * but, for_each_set_bit parses from right to left, which
1096          * basically reverses the queue numbers */
1097         for (i = 0; i< priv->num_grps; i++) {
1098                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1099                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1100                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1101                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1102         }
1103
1104         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1105          * also assign queues to groups */
1106         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1107                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1108                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1109                                 priv->num_rx_queues) {
1110                         priv->gfargrp[grp_idx].num_rx_queues++;
1111                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1112                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1113                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1114                 }
1115                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1116                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1117                                 priv->num_tx_queues) {
1118                         priv->gfargrp[grp_idx].num_tx_queues++;
1119                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1120                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1121                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1122                 }
1123                 priv->gfargrp[grp_idx].rstat = rstat;
1124                 priv->gfargrp[grp_idx].tstat = tstat;
1125                 rstat = tstat =0;
1126         }
1127
1128         gfar_write(&regs->rqueue, rqueue);
1129         gfar_write(&regs->tqueue, tqueue);
1130
1131         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1132
1133         /* Initializing some of the rx/tx queue level parameters */
1134         for (i = 0; i < priv->num_tx_queues; i++) {
1135                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1136                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1137                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1138                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1139         }
1140
1141         for (i = 0; i < priv->num_rx_queues; i++) {
1142                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1143                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1144                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1145         }
1146
1147         /* enable filer if using multiple RX queues*/
1148         if(priv->num_rx_queues > 1)
1149                 priv->rx_filer_enable = 1;
1150         /* Enable most messages by default */
1151         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1152
1153         /* Carrier starts down, phylib will bring it up */
1154         netif_carrier_off(dev);
1155
1156         err = register_netdev(dev);
1157
1158         if (err) {
1159                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1160                                 dev->name);
1161                 goto register_fail;
1162         }
1163
1164         device_init_wakeup(&dev->dev,
1165                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1166
1167         /* fill out IRQ number and name fields */
1168         len_devname = strlen(dev->name);
1169         for (i = 0; i < priv->num_grps; i++) {
1170                 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1171                                 len_devname);
1172                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173                         strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1174                                 "_g", sizeof("_g"));
1175                         priv->gfargrp[i].int_name_tx[
1176                                 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1177                         strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1178                                 priv->gfargrp[i].int_name_tx)],
1179                                 "_tx", sizeof("_tx") + 1);
1180
1181                         strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1182                                         len_devname);
1183                         strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1184                                         "_g", sizeof("_g"));
1185                         priv->gfargrp[i].int_name_rx[
1186                                 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1187                         strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1188                                 priv->gfargrp[i].int_name_rx)],
1189                                 "_rx", sizeof("_rx") + 1);
1190
1191                         strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1192                                         len_devname);
1193                         strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1194                                 "_g", sizeof("_g"));
1195                         priv->gfargrp[i].int_name_er[strlen(
1196                                         priv->gfargrp[i].int_name_er)] = i+48;
1197                         strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1198                                 priv->gfargrp[i].int_name_er)],
1199                                 "_er", sizeof("_er") + 1);
1200                 } else
1201                         priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1202         }
1203
1204         /* Initialize the filer table */
1205         gfar_init_filer_table(priv);
1206
1207         /* Create all the sysfs files */
1208         gfar_init_sysfs(dev);
1209
1210         /* Print out the device info */
1211         printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1212
1213         /* Even more device info helps when determining which kernel */
1214         /* provided which set of benchmarks. */
1215         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1216         for (i = 0; i < priv->num_rx_queues; i++)
1217                 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1218                         dev->name, i, priv->rx_queue[i]->rx_ring_size);
1219         for(i = 0; i < priv->num_tx_queues; i++)
1220                  printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1221                         dev->name, i, priv->tx_queue[i]->tx_ring_size);
1222
1223         return 0;
1224
1225 register_fail:
1226         unmap_group_regs(priv);
1227         free_tx_pointers(priv);
1228         free_rx_pointers(priv);
1229         if (priv->phy_node)
1230                 of_node_put(priv->phy_node);
1231         if (priv->tbi_node)
1232                 of_node_put(priv->tbi_node);
1233         free_netdev(dev);
1234         return err;
1235 }
1236
1237 static int gfar_remove(struct platform_device *ofdev)
1238 {
1239         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1240
1241         if (priv->phy_node)
1242                 of_node_put(priv->phy_node);
1243         if (priv->tbi_node)
1244                 of_node_put(priv->tbi_node);
1245
1246         dev_set_drvdata(&ofdev->dev, NULL);
1247
1248         unregister_netdev(priv->ndev);
1249         unmap_group_regs(priv);
1250         free_netdev(priv->ndev);
1251
1252         return 0;
1253 }
1254
1255 #ifdef CONFIG_PM
1256
1257 static int gfar_suspend(struct device *dev)
1258 {
1259         struct gfar_private *priv = dev_get_drvdata(dev);
1260         struct net_device *ndev = priv->ndev;
1261         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1262         unsigned long flags;
1263         u32 tempval;
1264
1265         int magic_packet = priv->wol_en &&
1266                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1267
1268         netif_device_detach(ndev);
1269
1270         if (netif_running(ndev)) {
1271
1272                 local_irq_save(flags);
1273                 lock_tx_qs(priv);
1274                 lock_rx_qs(priv);
1275
1276                 gfar_halt_nodisable(ndev);
1277
1278                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1279                 tempval = gfar_read(&regs->maccfg1);
1280
1281                 tempval &= ~MACCFG1_TX_EN;
1282
1283                 if (!magic_packet)
1284                         tempval &= ~MACCFG1_RX_EN;
1285
1286                 gfar_write(&regs->maccfg1, tempval);
1287
1288                 unlock_rx_qs(priv);
1289                 unlock_tx_qs(priv);
1290                 local_irq_restore(flags);
1291
1292                 disable_napi(priv);
1293
1294                 if (magic_packet) {
1295                         /* Enable interrupt on Magic Packet */
1296                         gfar_write(&regs->imask, IMASK_MAG);
1297
1298                         /* Enable Magic Packet mode */
1299                         tempval = gfar_read(&regs->maccfg2);
1300                         tempval |= MACCFG2_MPEN;
1301                         gfar_write(&regs->maccfg2, tempval);
1302                 } else {
1303                         phy_stop(priv->phydev);
1304                 }
1305         }
1306
1307         return 0;
1308 }
1309
1310 static int gfar_resume(struct device *dev)
1311 {
1312         struct gfar_private *priv = dev_get_drvdata(dev);
1313         struct net_device *ndev = priv->ndev;
1314         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315         unsigned long flags;
1316         u32 tempval;
1317         int magic_packet = priv->wol_en &&
1318                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1319
1320         if (!netif_running(ndev)) {
1321                 netif_device_attach(ndev);
1322                 return 0;
1323         }
1324
1325         if (!magic_packet && priv->phydev)
1326                 phy_start(priv->phydev);
1327
1328         /* Disable Magic Packet mode, in case something
1329          * else woke us up.
1330          */
1331         local_irq_save(flags);
1332         lock_tx_qs(priv);
1333         lock_rx_qs(priv);
1334
1335         tempval = gfar_read(&regs->maccfg2);
1336         tempval &= ~MACCFG2_MPEN;
1337         gfar_write(&regs->maccfg2, tempval);
1338
1339         gfar_start(ndev);
1340
1341         unlock_rx_qs(priv);
1342         unlock_tx_qs(priv);
1343         local_irq_restore(flags);
1344
1345         netif_device_attach(ndev);
1346
1347         enable_napi(priv);
1348
1349         return 0;
1350 }
1351
1352 static int gfar_restore(struct device *dev)
1353 {
1354         struct gfar_private *priv = dev_get_drvdata(dev);
1355         struct net_device *ndev = priv->ndev;
1356
1357         if (!netif_running(ndev))
1358                 return 0;
1359
1360         gfar_init_bds(ndev);
1361         init_registers(ndev);
1362         gfar_set_mac_address(ndev);
1363         gfar_init_mac(ndev);
1364         gfar_start(ndev);
1365
1366         priv->oldlink = 0;
1367         priv->oldspeed = 0;
1368         priv->oldduplex = -1;
1369
1370         if (priv->phydev)
1371                 phy_start(priv->phydev);
1372
1373         netif_device_attach(ndev);
1374         enable_napi(priv);
1375
1376         return 0;
1377 }
1378
1379 static struct dev_pm_ops gfar_pm_ops = {
1380         .suspend = gfar_suspend,
1381         .resume = gfar_resume,
1382         .freeze = gfar_suspend,
1383         .thaw = gfar_resume,
1384         .restore = gfar_restore,
1385 };
1386
1387 #define GFAR_PM_OPS (&gfar_pm_ops)
1388
1389 #else
1390
1391 #define GFAR_PM_OPS NULL
1392
1393 #endif
1394
1395 /* Reads the controller's registers to determine what interface
1396  * connects it to the PHY.
1397  */
1398 static phy_interface_t gfar_get_interface(struct net_device *dev)
1399 {
1400         struct gfar_private *priv = netdev_priv(dev);
1401         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1402         u32 ecntrl;
1403
1404         ecntrl = gfar_read(&regs->ecntrl);
1405
1406         if (ecntrl & ECNTRL_SGMII_MODE)
1407                 return PHY_INTERFACE_MODE_SGMII;
1408
1409         if (ecntrl & ECNTRL_TBI_MODE) {
1410                 if (ecntrl & ECNTRL_REDUCED_MODE)
1411                         return PHY_INTERFACE_MODE_RTBI;
1412                 else
1413                         return PHY_INTERFACE_MODE_TBI;
1414         }
1415
1416         if (ecntrl & ECNTRL_REDUCED_MODE) {
1417                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1418                         return PHY_INTERFACE_MODE_RMII;
1419                 else {
1420                         phy_interface_t interface = priv->interface;
1421
1422                         /*
1423                          * This isn't autodetected right now, so it must
1424                          * be set by the device tree or platform code.
1425                          */
1426                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1427                                 return PHY_INTERFACE_MODE_RGMII_ID;
1428
1429                         return PHY_INTERFACE_MODE_RGMII;
1430                 }
1431         }
1432
1433         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1434                 return PHY_INTERFACE_MODE_GMII;
1435
1436         return PHY_INTERFACE_MODE_MII;
1437 }
1438
1439
1440 /* Initializes driver's PHY state, and attaches to the PHY.
1441  * Returns 0 on success.
1442  */
1443 static int init_phy(struct net_device *dev)
1444 {
1445         struct gfar_private *priv = netdev_priv(dev);
1446         uint gigabit_support =
1447                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1448                 SUPPORTED_1000baseT_Full : 0;
1449         phy_interface_t interface;
1450
1451         priv->oldlink = 0;
1452         priv->oldspeed = 0;
1453         priv->oldduplex = -1;
1454
1455         interface = gfar_get_interface(dev);
1456
1457         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1458                                       interface);
1459         if (!priv->phydev)
1460                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1461                                                          interface);
1462         if (!priv->phydev) {
1463                 dev_err(&dev->dev, "could not attach to PHY\n");
1464                 return -ENODEV;
1465         }
1466
1467         if (interface == PHY_INTERFACE_MODE_SGMII)
1468                 gfar_configure_serdes(dev);
1469
1470         /* Remove any features not supported by the controller */
1471         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1472         priv->phydev->advertising = priv->phydev->supported;
1473
1474         return 0;
1475 }
1476
1477 /*
1478  * Initialize TBI PHY interface for communicating with the
1479  * SERDES lynx PHY on the chip.  We communicate with this PHY
1480  * through the MDIO bus on each controller, treating it as a
1481  * "normal" PHY at the address found in the TBIPA register.  We assume
1482  * that the TBIPA register is valid.  Either the MDIO bus code will set
1483  * it to a value that doesn't conflict with other PHYs on the bus, or the
1484  * value doesn't matter, as there are no other PHYs on the bus.
1485  */
1486 static void gfar_configure_serdes(struct net_device *dev)
1487 {
1488         struct gfar_private *priv = netdev_priv(dev);
1489         struct phy_device *tbiphy;
1490
1491         if (!priv->tbi_node) {
1492                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1493                                     "device tree specify a tbi-handle\n");
1494                 return;
1495         }
1496
1497         tbiphy = of_phy_find_device(priv->tbi_node);
1498         if (!tbiphy) {
1499                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1500                 return;
1501         }
1502
1503         /*
1504          * If the link is already up, we must already be ok, and don't need to
1505          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1506          * everything for us?  Resetting it takes the link down and requires
1507          * several seconds for it to come back.
1508          */
1509         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1510                 return;
1511
1512         /* Single clk mode, mii mode off(for serdes communication) */
1513         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1514
1515         phy_write(tbiphy, MII_ADVERTISE,
1516                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1517                         ADVERTISE_1000XPSE_ASYM);
1518
1519         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1520                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1521 }
1522
1523 static void init_registers(struct net_device *dev)
1524 {
1525         struct gfar_private *priv = netdev_priv(dev);
1526         struct gfar __iomem *regs = NULL;
1527         int i = 0;
1528
1529         for (i = 0; i < priv->num_grps; i++) {
1530                 regs = priv->gfargrp[i].regs;
1531                 /* Clear IEVENT */
1532                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1533
1534                 /* Initialize IMASK */
1535                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1536         }
1537
1538         regs = priv->gfargrp[0].regs;
1539         /* Init hash registers to zero */
1540         gfar_write(&regs->igaddr0, 0);
1541         gfar_write(&regs->igaddr1, 0);
1542         gfar_write(&regs->igaddr2, 0);
1543         gfar_write(&regs->igaddr3, 0);
1544         gfar_write(&regs->igaddr4, 0);
1545         gfar_write(&regs->igaddr5, 0);
1546         gfar_write(&regs->igaddr6, 0);
1547         gfar_write(&regs->igaddr7, 0);
1548
1549         gfar_write(&regs->gaddr0, 0);
1550         gfar_write(&regs->gaddr1, 0);
1551         gfar_write(&regs->gaddr2, 0);
1552         gfar_write(&regs->gaddr3, 0);
1553         gfar_write(&regs->gaddr4, 0);
1554         gfar_write(&regs->gaddr5, 0);
1555         gfar_write(&regs->gaddr6, 0);
1556         gfar_write(&regs->gaddr7, 0);
1557
1558         /* Zero out the rmon mib registers if it has them */
1559         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1560                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1561
1562                 /* Mask off the CAM interrupts */
1563                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1564                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1565         }
1566
1567         /* Initialize the max receive buffer length */
1568         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1569
1570         /* Initialize the Minimum Frame Length Register */
1571         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1572 }
1573
1574 static int __gfar_is_rx_idle(struct gfar_private *priv)
1575 {
1576         u32 res;
1577
1578         /*
1579          * Normaly TSEC should not hang on GRS commands, so we should
1580          * actually wait for IEVENT_GRSC flag.
1581          */
1582         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1583                 return 0;
1584
1585         /*
1586          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1587          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1588          * and the Rx can be safely reset.
1589          */
1590         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1591         res &= 0x7f807f80;
1592         if ((res & 0xffff) == (res >> 16))
1593                 return 1;
1594
1595         return 0;
1596 }
1597
1598 /* Halt the receive and transmit queues */
1599 static void gfar_halt_nodisable(struct net_device *dev)
1600 {
1601         struct gfar_private *priv = netdev_priv(dev);
1602         struct gfar __iomem *regs = NULL;
1603         u32 tempval;
1604         int i = 0;
1605
1606         for (i = 0; i < priv->num_grps; i++) {
1607                 regs = priv->gfargrp[i].regs;
1608                 /* Mask all interrupts */
1609                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1610
1611                 /* Clear all interrupts */
1612                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1613         }
1614
1615         regs = priv->gfargrp[0].regs;
1616         /* Stop the DMA, and wait for it to stop */
1617         tempval = gfar_read(&regs->dmactrl);
1618         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1619             != (DMACTRL_GRS | DMACTRL_GTS)) {
1620                 int ret;
1621
1622                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1623                 gfar_write(&regs->dmactrl, tempval);
1624
1625                 do {
1626                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1627                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1628                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1629                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1630                                 ret = __gfar_is_rx_idle(priv);
1631                 } while (!ret);
1632         }
1633 }
1634
1635 /* Halt the receive and transmit queues */
1636 void gfar_halt(struct net_device *dev)
1637 {
1638         struct gfar_private *priv = netdev_priv(dev);
1639         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1640         u32 tempval;
1641
1642         gfar_halt_nodisable(dev);
1643
1644         /* Disable Rx and Tx */
1645         tempval = gfar_read(&regs->maccfg1);
1646         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1647         gfar_write(&regs->maccfg1, tempval);
1648 }
1649
1650 static void free_grp_irqs(struct gfar_priv_grp *grp)
1651 {
1652         free_irq(grp->interruptError, grp);
1653         free_irq(grp->interruptTransmit, grp);
1654         free_irq(grp->interruptReceive, grp);
1655 }
1656
1657 void stop_gfar(struct net_device *dev)
1658 {
1659         struct gfar_private *priv = netdev_priv(dev);
1660         unsigned long flags;
1661         int i;
1662
1663         phy_stop(priv->phydev);
1664
1665
1666         /* Lock it down */
1667         local_irq_save(flags);
1668         lock_tx_qs(priv);
1669         lock_rx_qs(priv);
1670
1671         gfar_halt(dev);
1672
1673         unlock_rx_qs(priv);
1674         unlock_tx_qs(priv);
1675         local_irq_restore(flags);
1676
1677         /* Free the IRQs */
1678         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1679                 for (i = 0; i < priv->num_grps; i++)
1680                         free_grp_irqs(&priv->gfargrp[i]);
1681         } else {
1682                 for (i = 0; i < priv->num_grps; i++)
1683                         free_irq(priv->gfargrp[i].interruptTransmit,
1684                                         &priv->gfargrp[i]);
1685         }
1686
1687         free_skb_resources(priv);
1688 }
1689
1690 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1691 {
1692         struct txbd8 *txbdp;
1693         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1694         int i, j;
1695
1696         txbdp = tx_queue->tx_bd_base;
1697
1698         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1699                 if (!tx_queue->tx_skbuff[i])
1700                         continue;
1701
1702                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1703                                 txbdp->length, DMA_TO_DEVICE);
1704                 txbdp->lstatus = 0;
1705                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1706                                 j++) {
1707                         txbdp++;
1708                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1709                                         txbdp->length, DMA_TO_DEVICE);
1710                 }
1711                 txbdp++;
1712                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1713                 tx_queue->tx_skbuff[i] = NULL;
1714         }
1715         kfree(tx_queue->tx_skbuff);
1716 }
1717
1718 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1719 {
1720         struct rxbd8 *rxbdp;
1721         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1722         int i;
1723
1724         rxbdp = rx_queue->rx_bd_base;
1725
1726         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1727                 if (rx_queue->rx_skbuff[i]) {
1728                         dma_unmap_single(&priv->ofdev->dev,
1729                                         rxbdp->bufPtr, priv->rx_buffer_size,
1730                                         DMA_FROM_DEVICE);
1731                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1732                         rx_queue->rx_skbuff[i] = NULL;
1733                 }
1734                 rxbdp->lstatus = 0;
1735                 rxbdp->bufPtr = 0;
1736                 rxbdp++;
1737         }
1738         kfree(rx_queue->rx_skbuff);
1739 }
1740
1741 /* If there are any tx skbs or rx skbs still around, free them.
1742  * Then free tx_skbuff and rx_skbuff */
1743 static void free_skb_resources(struct gfar_private *priv)
1744 {
1745         struct gfar_priv_tx_q *tx_queue = NULL;
1746         struct gfar_priv_rx_q *rx_queue = NULL;
1747         int i;
1748
1749         /* Go through all the buffer descriptors and free their data buffers */
1750         for (i = 0; i < priv->num_tx_queues; i++) {
1751                 tx_queue = priv->tx_queue[i];
1752                 if(tx_queue->tx_skbuff)
1753                         free_skb_tx_queue(tx_queue);
1754         }
1755
1756         for (i = 0; i < priv->num_rx_queues; i++) {
1757                 rx_queue = priv->rx_queue[i];
1758                 if(rx_queue->rx_skbuff)
1759                         free_skb_rx_queue(rx_queue);
1760         }
1761
1762         dma_free_coherent(&priv->ofdev->dev,
1763                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1764                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1765                         priv->tx_queue[0]->tx_bd_base,
1766                         priv->tx_queue[0]->tx_bd_dma_base);
1767         skb_queue_purge(&priv->rx_recycle);
1768 }
1769
1770 void gfar_start(struct net_device *dev)
1771 {
1772         struct gfar_private *priv = netdev_priv(dev);
1773         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1774         u32 tempval;
1775         int i = 0;
1776
1777         /* Enable Rx and Tx in MACCFG1 */
1778         tempval = gfar_read(&regs->maccfg1);
1779         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1780         gfar_write(&regs->maccfg1, tempval);
1781
1782         /* Initialize DMACTRL to have WWR and WOP */
1783         tempval = gfar_read(&regs->dmactrl);
1784         tempval |= DMACTRL_INIT_SETTINGS;
1785         gfar_write(&regs->dmactrl, tempval);
1786
1787         /* Make sure we aren't stopped */
1788         tempval = gfar_read(&regs->dmactrl);
1789         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1790         gfar_write(&regs->dmactrl, tempval);
1791
1792         for (i = 0; i < priv->num_grps; i++) {
1793                 regs = priv->gfargrp[i].regs;
1794                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1795                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1796                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1797                 /* Unmask the interrupts we look for */
1798                 gfar_write(&regs->imask, IMASK_DEFAULT);
1799         }
1800
1801         dev->trans_start = jiffies; /* prevent tx timeout */
1802 }
1803
1804 void gfar_configure_coalescing(struct gfar_private *priv,
1805         unsigned long tx_mask, unsigned long rx_mask)
1806 {
1807         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1808         u32 __iomem *baddr;
1809         int i = 0;
1810
1811         /* Backward compatible case ---- even if we enable
1812          * multiple queues, there's only single reg to program
1813          */
1814         gfar_write(&regs->txic, 0);
1815         if(likely(priv->tx_queue[0]->txcoalescing))
1816                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1817
1818         gfar_write(&regs->rxic, 0);
1819         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1820                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1821
1822         if (priv->mode == MQ_MG_MODE) {
1823                 baddr = &regs->txic0;
1824                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1825                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1826                                 gfar_write(baddr + i, 0);
1827                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1828                         }
1829                 }
1830
1831                 baddr = &regs->rxic0;
1832                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1833                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1834                                 gfar_write(baddr + i, 0);
1835                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1836                         }
1837                 }
1838         }
1839 }
1840
1841 static int register_grp_irqs(struct gfar_priv_grp *grp)
1842 {
1843         struct gfar_private *priv = grp->priv;
1844         struct net_device *dev = priv->ndev;
1845         int err;
1846
1847         /* If the device has multiple interrupts, register for
1848          * them.  Otherwise, only register for the one */
1849         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1850                 /* Install our interrupt handlers for Error,
1851                  * Transmit, and Receive */
1852                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1853                                 grp->int_name_er,grp)) < 0) {
1854                         if (netif_msg_intr(priv))
1855                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1856                                         dev->name, grp->interruptError);
1857
1858                         goto err_irq_fail;
1859                 }
1860
1861                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1862                                 0, grp->int_name_tx, grp)) < 0) {
1863                         if (netif_msg_intr(priv))
1864                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1865                                         dev->name, grp->interruptTransmit);
1866                         goto tx_irq_fail;
1867                 }
1868
1869                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1870                                 grp->int_name_rx, grp)) < 0) {
1871                         if (netif_msg_intr(priv))
1872                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1873                                         dev->name, grp->interruptReceive);
1874                         goto rx_irq_fail;
1875                 }
1876         } else {
1877                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1878                                 grp->int_name_tx, grp)) < 0) {
1879                         if (netif_msg_intr(priv))
1880                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1881                                         dev->name, grp->interruptTransmit);
1882                         goto err_irq_fail;
1883                 }
1884         }
1885
1886         return 0;
1887
1888 rx_irq_fail:
1889         free_irq(grp->interruptTransmit, grp);
1890 tx_irq_fail:
1891         free_irq(grp->interruptError, grp);
1892 err_irq_fail:
1893         return err;
1894
1895 }
1896
1897 /* Bring the controller up and running */
1898 int startup_gfar(struct net_device *ndev)
1899 {
1900         struct gfar_private *priv = netdev_priv(ndev);
1901         struct gfar __iomem *regs = NULL;
1902         int err, i, j;
1903
1904         for (i = 0; i < priv->num_grps; i++) {
1905                 regs= priv->gfargrp[i].regs;
1906                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1907         }
1908
1909         regs= priv->gfargrp[0].regs;
1910         err = gfar_alloc_skb_resources(ndev);
1911         if (err)
1912                 return err;
1913
1914         gfar_init_mac(ndev);
1915
1916         for (i = 0; i < priv->num_grps; i++) {
1917                 err = register_grp_irqs(&priv->gfargrp[i]);
1918                 if (err) {
1919                         for (j = 0; j < i; j++)
1920                                 free_grp_irqs(&priv->gfargrp[j]);
1921                         goto irq_fail;
1922                 }
1923         }
1924
1925         /* Start the controller */
1926         gfar_start(ndev);
1927
1928         phy_start(priv->phydev);
1929
1930         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1931
1932         return 0;
1933
1934 irq_fail:
1935         free_skb_resources(priv);
1936         return err;
1937 }
1938
1939 /* Called when something needs to use the ethernet device */
1940 /* Returns 0 for success. */
1941 static int gfar_enet_open(struct net_device *dev)
1942 {
1943         struct gfar_private *priv = netdev_priv(dev);
1944         int err;
1945
1946         enable_napi(priv);
1947
1948         skb_queue_head_init(&priv->rx_recycle);
1949
1950         /* Initialize a bunch of registers */
1951         init_registers(dev);
1952
1953         gfar_set_mac_address(dev);
1954
1955         err = init_phy(dev);
1956
1957         if (err) {
1958                 disable_napi(priv);
1959                 return err;
1960         }
1961
1962         err = startup_gfar(dev);
1963         if (err) {
1964                 disable_napi(priv);
1965                 return err;
1966         }
1967
1968         netif_tx_start_all_queues(dev);
1969
1970         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1971
1972         return err;
1973 }
1974
1975 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1976 {
1977         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1978
1979         memset(fcb, 0, GMAC_FCB_LEN);
1980
1981         return fcb;
1982 }
1983
1984 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1985 {
1986         u8 flags = 0;
1987
1988         /* If we're here, it's a IP packet with a TCP or UDP
1989          * payload.  We set it to checksum, using a pseudo-header
1990          * we provide
1991          */
1992         flags = TXFCB_DEFAULT;
1993
1994         /* Tell the controller what the protocol is */
1995         /* And provide the already calculated phcs */
1996         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1997                 flags |= TXFCB_UDP;
1998                 fcb->phcs = udp_hdr(skb)->check;
1999         } else
2000                 fcb->phcs = tcp_hdr(skb)->check;
2001
2002         /* l3os is the distance between the start of the
2003          * frame (skb->data) and the start of the IP hdr.
2004          * l4os is the distance between the start of the
2005          * l3 hdr and the l4 hdr */
2006         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2007         fcb->l4os = skb_network_header_len(skb);
2008
2009         fcb->flags = flags;
2010 }
2011
2012 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2013 {
2014         fcb->flags |= TXFCB_VLN;
2015         fcb->vlctl = vlan_tx_tag_get(skb);
2016 }
2017
2018 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2019                                struct txbd8 *base, int ring_size)
2020 {
2021         struct txbd8 *new_bd = bdp + stride;
2022
2023         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2024 }
2025
2026 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2027                 int ring_size)
2028 {
2029         return skip_txbd(bdp, 1, base, ring_size);
2030 }
2031
2032 /* This is called by the kernel when a frame is ready for transmission. */
2033 /* It is pointed to by the dev->hard_start_xmit function pointer */
2034 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2035 {
2036         struct gfar_private *priv = netdev_priv(dev);
2037         struct gfar_priv_tx_q *tx_queue = NULL;
2038         struct netdev_queue *txq;
2039         struct gfar __iomem *regs = NULL;
2040         struct txfcb *fcb = NULL;
2041         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2042         u32 lstatus;
2043         int i, rq = 0, do_tstamp = 0;
2044         u32 bufaddr;
2045         unsigned long flags;
2046         unsigned int nr_frags, nr_txbds, length;
2047
2048         /*
2049          * TOE=1 frames larger than 2500 bytes may see excess delays
2050          * before start of transmission.
2051          */
2052         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2053                         skb->ip_summed == CHECKSUM_PARTIAL &&
2054                         skb->len > 2500)) {
2055                 int ret;
2056
2057                 ret = skb_checksum_help(skb);
2058                 if (ret)
2059                         return ret;
2060         }
2061
2062         rq = skb->queue_mapping;
2063         tx_queue = priv->tx_queue[rq];
2064         txq = netdev_get_tx_queue(dev, rq);
2065         base = tx_queue->tx_bd_base;
2066         regs = tx_queue->grp->regs;
2067
2068         /* check if time stamp should be generated */
2069         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2070                      priv->hwts_tx_en))
2071                 do_tstamp = 1;
2072
2073         /* make space for additional header when fcb is needed */
2074         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2075                         vlan_tx_tag_present(skb) ||
2076                         unlikely(do_tstamp)) &&
2077                         (skb_headroom(skb) < GMAC_FCB_LEN)) {
2078                 struct sk_buff *skb_new;
2079
2080                 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2081                 if (!skb_new) {
2082                         dev->stats.tx_errors++;
2083                         kfree_skb(skb);
2084                         return NETDEV_TX_OK;
2085                 }
2086                 kfree_skb(skb);
2087                 skb = skb_new;
2088         }
2089
2090         /* total number of fragments in the SKB */
2091         nr_frags = skb_shinfo(skb)->nr_frags;
2092
2093         /* calculate the required number of TxBDs for this skb */
2094         if (unlikely(do_tstamp))
2095                 nr_txbds = nr_frags + 2;
2096         else
2097                 nr_txbds = nr_frags + 1;
2098
2099         /* check if there is space to queue this packet */
2100         if (nr_txbds > tx_queue->num_txbdfree) {
2101                 /* no space, stop the queue */
2102                 netif_tx_stop_queue(txq);
2103                 dev->stats.tx_fifo_errors++;
2104                 return NETDEV_TX_BUSY;
2105         }
2106
2107         /* Update transmit stats */
2108         tx_queue->stats.tx_bytes += skb->len;
2109         tx_queue->stats.tx_packets++;
2110
2111         txbdp = txbdp_start = tx_queue->cur_tx;
2112         lstatus = txbdp->lstatus;
2113
2114         /* Time stamp insertion requires one additional TxBD */
2115         if (unlikely(do_tstamp))
2116                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2117                                 tx_queue->tx_ring_size);
2118
2119         if (nr_frags == 0) {
2120                 if (unlikely(do_tstamp))
2121                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2122                                         TXBD_INTERRUPT);
2123                 else
2124                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2125         } else {
2126                 /* Place the fragment addresses and lengths into the TxBDs */
2127                 for (i = 0; i < nr_frags; i++) {
2128                         /* Point at the next BD, wrapping as needed */
2129                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2130
2131                         length = skb_shinfo(skb)->frags[i].size;
2132
2133                         lstatus = txbdp->lstatus | length |
2134                                 BD_LFLAG(TXBD_READY);
2135
2136                         /* Handle the last BD specially */
2137                         if (i == nr_frags - 1)
2138                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2139
2140                         bufaddr = dma_map_page(&priv->ofdev->dev,
2141                                         skb_shinfo(skb)->frags[i].page,
2142                                         skb_shinfo(skb)->frags[i].page_offset,
2143                                         length,
2144                                         DMA_TO_DEVICE);
2145
2146                         /* set the TxBD length and buffer pointer */
2147                         txbdp->bufPtr = bufaddr;
2148                         txbdp->lstatus = lstatus;
2149                 }
2150
2151                 lstatus = txbdp_start->lstatus;
2152         }
2153
2154         /* Set up checksumming */
2155         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2156                 fcb = gfar_add_fcb(skb);
2157                 lstatus |= BD_LFLAG(TXBD_TOE);
2158                 gfar_tx_checksum(skb, fcb);
2159         }
2160
2161         if (vlan_tx_tag_present(skb)) {
2162                 if (unlikely(NULL == fcb)) {
2163                         fcb = gfar_add_fcb(skb);
2164                         lstatus |= BD_LFLAG(TXBD_TOE);
2165                 }
2166
2167                 gfar_tx_vlan(skb, fcb);
2168         }
2169
2170         /* Setup tx hardware time stamping if requested */
2171         if (unlikely(do_tstamp)) {
2172                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2173                 if (fcb == NULL)
2174                         fcb = gfar_add_fcb(skb);
2175                 fcb->ptp = 1;
2176                 lstatus |= BD_LFLAG(TXBD_TOE);
2177         }
2178
2179         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2180                         skb_headlen(skb), DMA_TO_DEVICE);
2181
2182         /*
2183          * If time stamping is requested one additional TxBD must be set up. The
2184          * first TxBD points to the FCB and must have a data length of
2185          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2186          * the full frame length.
2187          */
2188         if (unlikely(do_tstamp)) {
2189                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2190                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2191                                 (skb_headlen(skb) - GMAC_FCB_LEN);
2192                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2193         } else {
2194                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2195         }
2196
2197         /*
2198          * We can work in parallel with gfar_clean_tx_ring(), except
2199          * when modifying num_txbdfree. Note that we didn't grab the lock
2200          * when we were reading the num_txbdfree and checking for available
2201          * space, that's because outside of this function it can only grow,
2202          * and once we've got needed space, it cannot suddenly disappear.
2203          *
2204          * The lock also protects us from gfar_error(), which can modify
2205          * regs->tstat and thus retrigger the transfers, which is why we
2206          * also must grab the lock before setting ready bit for the first
2207          * to be transmitted BD.
2208          */
2209         spin_lock_irqsave(&tx_queue->txlock, flags);
2210
2211         /*
2212          * The powerpc-specific eieio() is used, as wmb() has too strong
2213          * semantics (it requires synchronization between cacheable and
2214          * uncacheable mappings, which eieio doesn't provide and which we
2215          * don't need), thus requiring a more expensive sync instruction.  At
2216          * some point, the set of architecture-independent barrier functions
2217          * should be expanded to include weaker barriers.
2218          */
2219         eieio();
2220
2221         txbdp_start->lstatus = lstatus;
2222
2223         eieio(); /* force lstatus write before tx_skbuff */
2224
2225         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2226
2227         /* Update the current skb pointer to the next entry we will use
2228          * (wrapping if necessary) */
2229         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2230                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2231
2232         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2233
2234         /* reduce TxBD free count */
2235         tx_queue->num_txbdfree -= (nr_txbds);
2236
2237         /* If the next BD still needs to be cleaned up, then the bds
2238            are full.  We need to tell the kernel to stop sending us stuff. */
2239         if (!tx_queue->num_txbdfree) {
2240                 netif_tx_stop_queue(txq);
2241
2242                 dev->stats.tx_fifo_errors++;
2243         }
2244
2245         /* Tell the DMA to go go go */
2246         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2247
2248         /* Unlock priv */
2249         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2250
2251         return NETDEV_TX_OK;
2252 }
2253
2254 /* Stops the kernel queue, and halts the controller */
2255 static int gfar_close(struct net_device *dev)
2256 {
2257         struct gfar_private *priv = netdev_priv(dev);
2258
2259         disable_napi(priv);
2260
2261         cancel_work_sync(&priv->reset_task);
2262         stop_gfar(dev);
2263
2264         /* Disconnect from the PHY */
2265         phy_disconnect(priv->phydev);
2266         priv->phydev = NULL;
2267
2268         netif_tx_stop_all_queues(dev);
2269
2270         return 0;
2271 }
2272
2273 /* Changes the mac address if the controller is not running. */
2274 static int gfar_set_mac_address(struct net_device *dev)
2275 {
2276         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2277
2278         return 0;
2279 }
2280
2281
2282 /* Enables and disables VLAN insertion/extraction */
2283 static void gfar_vlan_rx_register(struct net_device *dev,
2284                 struct vlan_group *grp)
2285 {
2286         struct gfar_private *priv = netdev_priv(dev);
2287         struct gfar __iomem *regs = NULL;
2288         unsigned long flags;
2289         u32 tempval;
2290
2291         regs = priv->gfargrp[0].regs;
2292         local_irq_save(flags);
2293         lock_rx_qs(priv);
2294
2295         priv->vlgrp = grp;
2296
2297         if (grp) {
2298                 /* Enable VLAN tag insertion */
2299                 tempval = gfar_read(&regs->tctrl);
2300                 tempval |= TCTRL_VLINS;
2301
2302                 gfar_write(&regs->tctrl, tempval);
2303
2304                 /* Enable VLAN tag extraction */
2305                 tempval = gfar_read(&regs->rctrl);
2306                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2307                 gfar_write(&regs->rctrl, tempval);
2308         } else {
2309                 /* Disable VLAN tag insertion */
2310                 tempval = gfar_read(&regs->tctrl);
2311                 tempval &= ~TCTRL_VLINS;
2312                 gfar_write(&regs->tctrl, tempval);
2313
2314                 /* Disable VLAN tag extraction */
2315                 tempval = gfar_read(&regs->rctrl);
2316                 tempval &= ~RCTRL_VLEX;
2317                 /* If parse is no longer required, then disable parser */
2318                 if (tempval & RCTRL_REQ_PARSER)
2319                         tempval |= RCTRL_PRSDEP_INIT;
2320                 else
2321                         tempval &= ~RCTRL_PRSDEP_INIT;
2322                 gfar_write(&regs->rctrl, tempval);
2323         }
2324
2325         gfar_change_mtu(dev, dev->mtu);
2326
2327         unlock_rx_qs(priv);
2328         local_irq_restore(flags);
2329 }
2330
2331 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2332 {
2333         int tempsize, tempval;
2334         struct gfar_private *priv = netdev_priv(dev);
2335         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2336         int oldsize = priv->rx_buffer_size;
2337         int frame_size = new_mtu + ETH_HLEN;
2338
2339         if (priv->vlgrp)
2340                 frame_size += VLAN_HLEN;
2341
2342         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2343                 if (netif_msg_drv(priv))
2344                         printk(KERN_ERR "%s: Invalid MTU setting\n",
2345                                         dev->name);
2346                 return -EINVAL;
2347         }
2348
2349         if (gfar_uses_fcb(priv))
2350                 frame_size += GMAC_FCB_LEN;
2351
2352         frame_size += priv->padding;
2353
2354         tempsize =
2355             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2356             INCREMENTAL_BUFFER_SIZE;
2357
2358         /* Only stop and start the controller if it isn't already
2359          * stopped, and we changed something */
2360         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2361                 stop_gfar(dev);
2362
2363         priv->rx_buffer_size = tempsize;
2364
2365         dev->mtu = new_mtu;
2366
2367         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2368         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2369
2370         /* If the mtu is larger than the max size for standard
2371          * ethernet frames (ie, a jumbo frame), then set maccfg2
2372          * to allow huge frames, and to check the length */
2373         tempval = gfar_read(&regs->maccfg2);
2374
2375         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2376                         gfar_has_errata(priv, GFAR_ERRATA_74))
2377                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2378         else
2379                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2380
2381         gfar_write(&regs->maccfg2, tempval);
2382
2383         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2384                 startup_gfar(dev);
2385
2386         return 0;
2387 }
2388
2389 /* gfar_reset_task gets scheduled when a packet has not been
2390  * transmitted after a set amount of time.
2391  * For now, assume that clearing out all the structures, and
2392  * starting over will fix the problem.
2393  */
2394 static void gfar_reset_task(struct work_struct *work)
2395 {
2396         struct gfar_private *priv = container_of(work, struct gfar_private,
2397                         reset_task);
2398         struct net_device *dev = priv->ndev;
2399
2400         if (dev->flags & IFF_UP) {
2401                 netif_tx_stop_all_queues(dev);
2402                 stop_gfar(dev);
2403                 startup_gfar(dev);
2404                 netif_tx_start_all_queues(dev);
2405         }
2406
2407         netif_tx_schedule_all(dev);
2408 }
2409
2410 static void gfar_timeout(struct net_device *dev)
2411 {
2412         struct gfar_private *priv = netdev_priv(dev);
2413
2414         dev->stats.tx_errors++;
2415         schedule_work(&priv->reset_task);
2416 }
2417
2418 static void gfar_align_skb(struct sk_buff *skb)
2419 {
2420         /* We need the data buffer to be aligned properly.  We will reserve
2421          * as many bytes as needed to align the data properly
2422          */
2423         skb_reserve(skb, RXBUF_ALIGNMENT -
2424                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2425 }
2426
2427 /* Interrupt Handler for Transmit complete */
2428 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2429 {
2430         struct net_device *dev = tx_queue->dev;
2431         struct gfar_private *priv = netdev_priv(dev);
2432         struct gfar_priv_rx_q *rx_queue = NULL;
2433         struct txbd8 *bdp, *next = NULL;
2434         struct txbd8 *lbdp = NULL;
2435         struct txbd8 *base = tx_queue->tx_bd_base;
2436         struct sk_buff *skb;
2437         int skb_dirtytx;
2438         int tx_ring_size = tx_queue->tx_ring_size;
2439         int frags = 0, nr_txbds = 0;
2440         int i;
2441         int howmany = 0;
2442         u32 lstatus;
2443         size_t buflen;
2444
2445         rx_queue = priv->rx_queue[tx_queue->qindex];
2446         bdp = tx_queue->dirty_tx;
2447         skb_dirtytx = tx_queue->skb_dirtytx;
2448
2449         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2450                 unsigned long flags;
2451
2452                 frags = skb_shinfo(skb)->nr_frags;
2453
2454                 /*
2455                  * When time stamping, one additional TxBD must be freed.
2456                  * Also, we need to dma_unmap_single() the TxPAL.
2457                  */
2458                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2459                         nr_txbds = frags + 2;
2460                 else
2461                         nr_txbds = frags + 1;
2462
2463                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2464
2465                 lstatus = lbdp->lstatus;
2466
2467                 /* Only clean completed frames */
2468                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2469                                 (lstatus & BD_LENGTH_MASK))
2470                         break;
2471
2472                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2473                         next = next_txbd(bdp, base, tx_ring_size);
2474                         buflen = next->length + GMAC_FCB_LEN;
2475                 } else
2476                         buflen = bdp->length;
2477
2478                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2479                                 buflen, DMA_TO_DEVICE);
2480
2481                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2482                         struct skb_shared_hwtstamps shhwtstamps;
2483                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2484                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2485                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2486                         skb_tstamp_tx(skb, &shhwtstamps);
2487                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2488                         bdp = next;
2489                 }
2490
2491                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2492                 bdp = next_txbd(bdp, base, tx_ring_size);
2493
2494                 for (i = 0; i < frags; i++) {
2495                         dma_unmap_page(&priv->ofdev->dev,
2496                                         bdp->bufPtr,
2497                                         bdp->length,
2498                                         DMA_TO_DEVICE);
2499                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2500                         bdp = next_txbd(bdp, base, tx_ring_size);
2501                 }
2502
2503                 /*
2504                  * If there's room in the queue (limit it to rx_buffer_size)
2505                  * we add this skb back into the pool, if it's the right size
2506                  */
2507                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2508                                 skb_recycle_check(skb, priv->rx_buffer_size +
2509                                         RXBUF_ALIGNMENT)) {
2510                         gfar_align_skb(skb);
2511                         skb_queue_head(&priv->rx_recycle, skb);
2512                 } else
2513                         dev_kfree_skb_any(skb);
2514
2515                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2516
2517                 skb_dirtytx = (skb_dirtytx + 1) &
2518                         TX_RING_MOD_MASK(tx_ring_size);
2519
2520                 howmany++;
2521                 spin_lock_irqsave(&tx_queue->txlock, flags);
2522                 tx_queue->num_txbdfree += nr_txbds;
2523                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2524         }
2525
2526         /* If we freed a buffer, we can restart transmission, if necessary */
2527         if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2528                 netif_wake_subqueue(dev, tx_queue->qindex);
2529
2530         /* Update dirty indicators */
2531         tx_queue->skb_dirtytx = skb_dirtytx;
2532         tx_queue->dirty_tx = bdp;
2533
2534         return howmany;
2535 }
2536
2537 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2538 {
2539         unsigned long flags;
2540
2541         spin_lock_irqsave(&gfargrp->grplock, flags);
2542         if (napi_schedule_prep(&gfargrp->napi)) {
2543                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2544                 __napi_schedule(&gfargrp->napi);
2545         } else {
2546                 /*
2547                  * Clear IEVENT, so interrupts aren't called again
2548                  * because of the packets that have already arrived.
2549                  */
2550                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2551         }
2552         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2553
2554 }
2555
2556 /* Interrupt Handler for Transmit complete */
2557 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2558 {
2559         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2560         return IRQ_HANDLED;
2561 }
2562
2563 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2564                 struct sk_buff *skb)
2565 {
2566         struct net_device *dev = rx_queue->dev;
2567         struct gfar_private *priv = netdev_priv(dev);
2568         dma_addr_t buf;
2569
2570         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2571                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2572         gfar_init_rxbdp(rx_queue, bdp, buf);
2573 }
2574
2575 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2576 {
2577         struct gfar_private *priv = netdev_priv(dev);
2578         struct sk_buff *skb = NULL;
2579
2580         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2581         if (!skb)
2582                 return NULL;
2583
2584         gfar_align_skb(skb);
2585
2586         return skb;
2587 }
2588
2589 struct sk_buff * gfar_new_skb(struct net_device *dev)
2590 {
2591         struct gfar_private *priv = netdev_priv(dev);
2592         struct sk_buff *skb = NULL;
2593
2594         skb = skb_dequeue(&priv->rx_recycle);
2595         if (!skb)
2596                 skb = gfar_alloc_skb(dev);
2597
2598         return skb;
2599 }
2600
2601 static inline void count_errors(unsigned short status, struct net_device *dev)
2602 {
2603         struct gfar_private *priv = netdev_priv(dev);
2604         struct net_device_stats *stats = &dev->stats;
2605         struct gfar_extra_stats *estats = &priv->extra_stats;
2606
2607         /* If the packet was truncated, none of the other errors
2608          * matter */
2609         if (status & RXBD_TRUNCATED) {
2610                 stats->rx_length_errors++;
2611
2612                 estats->rx_trunc++;
2613
2614                 return;
2615         }
2616         /* Count the errors, if there were any */
2617         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2618                 stats->rx_length_errors++;
2619
2620                 if (status & RXBD_LARGE)
2621                         estats->rx_large++;
2622                 else
2623                         estats->rx_short++;
2624         }
2625         if (status & RXBD_NONOCTET) {
2626                 stats->rx_frame_errors++;
2627                 estats->rx_nonoctet++;
2628         }
2629         if (status & RXBD_CRCERR) {
2630                 estats->rx_crcerr++;
2631                 stats->rx_crc_errors++;
2632         }
2633         if (status & RXBD_OVERRUN) {
2634                 estats->rx_overrun++;
2635                 stats->rx_crc_errors++;
2636         }
2637 }
2638
2639 irqreturn_t gfar_receive(int irq, void *grp_id)
2640 {
2641         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2642         return IRQ_HANDLED;
2643 }
2644
2645 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2646 {
2647         /* If valid headers were found, and valid sums
2648          * were verified, then we tell the kernel that no
2649          * checksumming is necessary.  Otherwise, it is */
2650         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2651                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2652         else
2653                 skb_checksum_none_assert(skb);
2654 }
2655
2656
2657 /* gfar_process_frame() -- handle one incoming packet if skb
2658  * isn't NULL.  */
2659 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2660                               int amount_pull)
2661 {
2662         struct gfar_private *priv = netdev_priv(dev);
2663         struct rxfcb *fcb = NULL;
2664
2665         int ret;
2666
2667         /* fcb is at the beginning if exists */
2668         fcb = (struct rxfcb *)skb->data;
2669
2670         /* Remove the FCB from the skb */
2671         /* Remove the padded bytes, if there are any */
2672         if (amount_pull) {
2673                 skb_record_rx_queue(skb, fcb->rq);
2674                 skb_pull(skb, amount_pull);
2675         }
2676
2677         /* Get receive timestamp from the skb */
2678         if (priv->hwts_rx_en) {
2679                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2680                 u64 *ns = (u64 *) skb->data;
2681                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2682                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2683         }
2684
2685         if (priv->padding)
2686                 skb_pull(skb, priv->padding);
2687
2688         if (priv->rx_csum_enable)
2689                 gfar_rx_checksum(skb, fcb);
2690
2691         /* Tell the skb what kind of packet this is */
2692         skb->protocol = eth_type_trans(skb, dev);
2693
2694         /* Send the packet up the stack */
2695         if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2696                 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2697         else
2698                 ret = netif_receive_skb(skb);
2699
2700         if (NET_RX_DROP == ret)
2701                 priv->extra_stats.kernel_dropped++;
2702
2703         return 0;
2704 }
2705
2706 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2707  *   until the budget/quota has been reached. Returns the number
2708  *   of frames handled
2709  */
2710 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2711 {
2712         struct net_device *dev = rx_queue->dev;
2713         struct rxbd8 *bdp, *base;
2714         struct sk_buff *skb;
2715         int pkt_len;
2716         int amount_pull;
2717         int howmany = 0;
2718         struct gfar_private *priv = netdev_priv(dev);
2719
2720         /* Get the first full descriptor */
2721         bdp = rx_queue->cur_rx;
2722         base = rx_queue->rx_bd_base;
2723
2724         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2725
2726         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2727                 struct sk_buff *newskb;
2728                 rmb();
2729
2730                 /* Add another skb for the future */
2731                 newskb = gfar_new_skb(dev);
2732
2733                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2734
2735                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2736                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2737
2738                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2739                                 bdp->length > priv->rx_buffer_size))
2740                         bdp->status = RXBD_LARGE;
2741
2742                 /* We drop the frame if we failed to allocate a new buffer */
2743                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2744                                  bdp->status & RXBD_ERR)) {
2745                         count_errors(bdp->status, dev);
2746
2747                         if (unlikely(!newskb))
2748                                 newskb = skb;
2749                         else if (skb)
2750                                 skb_queue_head(&priv->rx_recycle, skb);
2751                 } else {
2752                         /* Increment the number of packets */
2753                         rx_queue->stats.rx_packets++;
2754                         howmany++;
2755
2756                         if (likely(skb)) {
2757                                 pkt_len = bdp->length - ETH_FCS_LEN;
2758                                 /* Remove the FCS from the packet length */
2759                                 skb_put(skb, pkt_len);
2760                                 rx_queue->stats.rx_bytes += pkt_len;
2761                                 skb_record_rx_queue(skb, rx_queue->qindex);
2762                                 gfar_process_frame(dev, skb, amount_pull);
2763
2764                         } else {
2765                                 if (netif_msg_rx_err(priv))
2766                                         printk(KERN_WARNING
2767                                                "%s: Missing skb!\n", dev->name);
2768                                 rx_queue->stats.rx_dropped++;
2769                                 priv->extra_stats.rx_skbmissing++;
2770                         }
2771
2772                 }
2773
2774                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2775
2776                 /* Setup the new bdp */
2777                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2778
2779                 /* Update to the next pointer */
2780                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2781
2782                 /* update to point at the next skb */
2783                 rx_queue->skb_currx =
2784                     (rx_queue->skb_currx + 1) &
2785                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2786         }
2787
2788         /* Update the current rxbd pointer to be the next one */
2789         rx_queue->cur_rx = bdp;
2790
2791         return howmany;
2792 }
2793
2794 static int gfar_poll(struct napi_struct *napi, int budget)
2795 {
2796         struct gfar_priv_grp *gfargrp = container_of(napi,
2797                         struct gfar_priv_grp, napi);
2798         struct gfar_private *priv = gfargrp->priv;
2799         struct gfar __iomem *regs = gfargrp->regs;
2800         struct gfar_priv_tx_q *tx_queue = NULL;
2801         struct gfar_priv_rx_q *rx_queue = NULL;
2802         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2803         int tx_cleaned = 0, i, left_over_budget = budget;
2804         unsigned long serviced_queues = 0;
2805         int num_queues = 0;
2806
2807         num_queues = gfargrp->num_rx_queues;
2808         budget_per_queue = budget/num_queues;
2809
2810         /* Clear IEVENT, so interrupts aren't called again
2811          * because of the packets that have already arrived */
2812         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2813
2814         while (num_queues && left_over_budget) {
2815
2816                 budget_per_queue = left_over_budget/num_queues;
2817                 left_over_budget = 0;
2818
2819                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2820                         if (test_bit(i, &serviced_queues))
2821                                 continue;
2822                         rx_queue = priv->rx_queue[i];
2823                         tx_queue = priv->tx_queue[rx_queue->qindex];
2824
2825                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2826                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2827                                                         budget_per_queue);
2828                         rx_cleaned += rx_cleaned_per_queue;
2829                         if(rx_cleaned_per_queue < budget_per_queue) {
2830                                 left_over_budget = left_over_budget +
2831                                         (budget_per_queue - rx_cleaned_per_queue);
2832                                 set_bit(i, &serviced_queues);
2833                                 num_queues--;
2834                         }
2835                 }
2836         }
2837
2838         if (tx_cleaned)
2839                 return budget;
2840
2841         if (rx_cleaned < budget) {
2842                 napi_complete(napi);
2843
2844                 /* Clear the halt bit in RSTAT */
2845                 gfar_write(&regs->rstat, gfargrp->rstat);
2846
2847                 gfar_write(&regs->imask, IMASK_DEFAULT);
2848
2849                 /* If we are coalescing interrupts, update the timer */
2850                 /* Otherwise, clear it */
2851                 gfar_configure_coalescing(priv,
2852                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2853         }
2854
2855         return rx_cleaned;
2856 }
2857
2858 #ifdef CONFIG_NET_POLL_CONTROLLER
2859 /*
2860  * Polling 'interrupt' - used by things like netconsole to send skbs
2861  * without having to re-enable interrupts. It's not called while
2862  * the interrupt routine is executing.
2863  */
2864 static void gfar_netpoll(struct net_device *dev)
2865 {
2866         struct gfar_private *priv = netdev_priv(dev);
2867         int i = 0;
2868
2869         /* If the device has multiple interrupts, run tx/rx */
2870         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2871                 for (i = 0; i < priv->num_grps; i++) {
2872                         disable_irq(priv->gfargrp[i].interruptTransmit);
2873                         disable_irq(priv->gfargrp[i].interruptReceive);
2874                         disable_irq(priv->gfargrp[i].interruptError);
2875                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2876                                                 &priv->gfargrp[i]);
2877                         enable_irq(priv->gfargrp[i].interruptError);
2878                         enable_irq(priv->gfargrp[i].interruptReceive);
2879                         enable_irq(priv->gfargrp[i].interruptTransmit);
2880                 }
2881         } else {
2882                 for (i = 0; i < priv->num_grps; i++) {
2883                         disable_irq(priv->gfargrp[i].interruptTransmit);
2884                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2885                                                 &priv->gfargrp[i]);
2886                         enable_irq(priv->gfargrp[i].interruptTransmit);
2887                 }
2888         }
2889 }
2890 #endif
2891
2892 /* The interrupt handler for devices with one interrupt */
2893 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2894 {
2895         struct gfar_priv_grp *gfargrp = grp_id;
2896
2897         /* Save ievent for future reference */
2898         u32 events = gfar_read(&gfargrp->regs->ievent);
2899
2900         /* Check for reception */
2901         if (events & IEVENT_RX_MASK)
2902                 gfar_receive(irq, grp_id);
2903
2904         /* Check for transmit completion */
2905         if (events & IEVENT_TX_MASK)
2906                 gfar_transmit(irq, grp_id);
2907
2908         /* Check for errors */
2909         if (events & IEVENT_ERR_MASK)
2910                 gfar_error(irq, grp_id);
2911
2912         return IRQ_HANDLED;
2913 }
2914
2915 /* Called every time the controller might need to be made
2916  * aware of new link state.  The PHY code conveys this
2917  * information through variables in the phydev structure, and this
2918  * function converts those variables into the appropriate
2919  * register values, and can bring down the device if needed.
2920  */
2921 static void adjust_link(struct net_device *dev)
2922 {
2923         struct gfar_private *priv = netdev_priv(dev);
2924         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2925         unsigned long flags;
2926         struct phy_device *phydev = priv->phydev;
2927         int new_state = 0;
2928
2929         local_irq_save(flags);
2930         lock_tx_qs(priv);
2931
2932         if (phydev->link) {
2933                 u32 tempval = gfar_read(&regs->maccfg2);
2934                 u32 ecntrl = gfar_read(&regs->ecntrl);
2935
2936                 /* Now we make sure that we can be in full duplex mode.
2937                  * If not, we operate in half-duplex mode. */
2938                 if (phydev->duplex != priv->oldduplex) {
2939                         new_state = 1;
2940                         if (!(phydev->duplex))
2941                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2942                         else
2943                                 tempval |= MACCFG2_FULL_DUPLEX;
2944
2945                         priv->oldduplex = phydev->duplex;
2946                 }
2947
2948                 if (phydev->speed != priv->oldspeed) {
2949                         new_state = 1;
2950                         switch (phydev->speed) {
2951                         case 1000:
2952                                 tempval =
2953                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2954
2955                                 ecntrl &= ~(ECNTRL_R100);
2956                                 break;
2957                         case 100:
2958                         case 10:
2959                                 tempval =
2960                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2961
2962                                 /* Reduced mode distinguishes
2963                                  * between 10 and 100 */
2964                                 if (phydev->speed == SPEED_100)
2965                                         ecntrl |= ECNTRL_R100;
2966                                 else
2967                                         ecntrl &= ~(ECNTRL_R100);
2968                                 break;
2969                         default:
2970                                 if (netif_msg_link(priv))
2971                                         printk(KERN_WARNING
2972                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
2973                                                 dev->name, phydev->speed);
2974                                 break;
2975                         }
2976
2977                         priv->oldspeed = phydev->speed;
2978                 }
2979
2980                 gfar_write(&regs->maccfg2, tempval);
2981                 gfar_write(&regs->ecntrl, ecntrl);
2982
2983                 if (!priv->oldlink) {
2984                         new_state = 1;
2985                         priv->oldlink = 1;
2986                 }
2987         } else if (priv->oldlink) {
2988                 new_state = 1;
2989                 priv->oldlink = 0;
2990                 priv->oldspeed = 0;
2991                 priv->oldduplex = -1;
2992         }
2993
2994         if (new_state && netif_msg_link(priv))
2995                 phy_print_status(phydev);
2996         unlock_tx_qs(priv);
2997         local_irq_restore(flags);
2998 }
2999
3000 /* Update the hash table based on the current list of multicast
3001  * addresses we subscribe to.  Also, change the promiscuity of
3002  * the device based on the flags (this function is called
3003  * whenever dev->flags is changed */
3004 static void gfar_set_multi(struct net_device *dev)
3005 {
3006         struct netdev_hw_addr *ha;
3007         struct gfar_private *priv = netdev_priv(dev);
3008         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3009         u32 tempval;
3010
3011         if (dev->flags & IFF_PROMISC) {
3012                 /* Set RCTRL to PROM */
3013                 tempval = gfar_read(&regs->rctrl);
3014                 tempval |= RCTRL_PROM;
3015                 gfar_write(&regs->rctrl, tempval);
3016         } else {
3017                 /* Set RCTRL to not PROM */
3018                 tempval = gfar_read(&regs->rctrl);
3019                 tempval &= ~(RCTRL_PROM);
3020                 gfar_write(&regs->rctrl, tempval);
3021         }
3022
3023         if (dev->flags & IFF_ALLMULTI) {
3024                 /* Set the hash to rx all multicast frames */
3025                 gfar_write(&regs->igaddr0, 0xffffffff);
3026                 gfar_write(&regs->igaddr1, 0xffffffff);
3027                 gfar_write(&regs->igaddr2, 0xffffffff);
3028                 gfar_write(&regs->igaddr3, 0xffffffff);
3029                 gfar_write(&regs->igaddr4, 0xffffffff);
3030                 gfar_write(&regs->igaddr5, 0xffffffff);
3031                 gfar_write(&regs->igaddr6, 0xffffffff);
3032                 gfar_write(&regs->igaddr7, 0xffffffff);
3033                 gfar_write(&regs->gaddr0, 0xffffffff);
3034                 gfar_write(&regs->gaddr1, 0xffffffff);
3035                 gfar_write(&regs->gaddr2, 0xffffffff);
3036                 gfar_write(&regs->gaddr3, 0xffffffff);
3037                 gfar_write(&regs->gaddr4, 0xffffffff);
3038                 gfar_write(&regs->gaddr5, 0xffffffff);
3039                 gfar_write(&regs->gaddr6, 0xffffffff);
3040                 gfar_write(&regs->gaddr7, 0xffffffff);
3041         } else {
3042                 int em_num;
3043                 int idx;
3044
3045                 /* zero out the hash */
3046                 gfar_write(&regs->igaddr0, 0x0);
3047                 gfar_write(&regs->igaddr1, 0x0);
3048                 gfar_write(&regs->igaddr2, 0x0);
3049                 gfar_write(&regs->igaddr3, 0x0);
3050                 gfar_write(&regs->igaddr4, 0x0);
3051                 gfar_write(&regs->igaddr5, 0x0);
3052                 gfar_write(&regs->igaddr6, 0x0);
3053                 gfar_write(&regs->igaddr7, 0x0);
3054                 gfar_write(&regs->gaddr0, 0x0);
3055                 gfar_write(&regs->gaddr1, 0x0);
3056                 gfar_write(&regs->gaddr2, 0x0);
3057                 gfar_write(&regs->gaddr3, 0x0);
3058                 gfar_write(&regs->gaddr4, 0x0);
3059                 gfar_write(&regs->gaddr5, 0x0);
3060                 gfar_write(&regs->gaddr6, 0x0);
3061                 gfar_write(&regs->gaddr7, 0x0);
3062
3063                 /* If we have extended hash tables, we need to
3064                  * clear the exact match registers to prepare for
3065                  * setting them */
3066                 if (priv->extended_hash) {
3067                         em_num = GFAR_EM_NUM + 1;
3068                         gfar_clear_exact_match(dev);
3069                         idx = 1;
3070                 } else {
3071                         idx = 0;
3072                         em_num = 0;
3073                 }
3074
3075                 if (netdev_mc_empty(dev))
3076                         return;
3077
3078                 /* Parse the list, and set the appropriate bits */
3079                 netdev_for_each_mc_addr(ha, dev) {
3080                         if (idx < em_num) {
3081                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3082                                 idx++;
3083                         } else
3084                                 gfar_set_hash_for_addr(dev, ha->addr);
3085                 }
3086         }
3087 }
3088
3089
3090 /* Clears each of the exact match registers to zero, so they
3091  * don't interfere with normal reception */
3092 static void gfar_clear_exact_match(struct net_device *dev)
3093 {
3094         int idx;
3095         static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3096
3097         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3098                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3099 }
3100
3101 /* Set the appropriate hash bit for the given addr */
3102 /* The algorithm works like so:
3103  * 1) Take the Destination Address (ie the multicast address), and
3104  * do a CRC on it (little endian), and reverse the bits of the
3105  * result.
3106  * 2) Use the 8 most significant bits as a hash into a 256-entry
3107  * table.  The table is controlled through 8 32-bit registers:
3108  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3109  * gaddr7.  This means that the 3 most significant bits in the
3110  * hash index which gaddr register to use, and the 5 other bits
3111  * indicate which bit (assuming an IBM numbering scheme, which
3112  * for PowerPC (tm) is usually the case) in the register holds
3113  * the entry. */
3114 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3115 {
3116         u32 tempval;
3117         struct gfar_private *priv = netdev_priv(dev);
3118         u32 result = ether_crc(MAC_ADDR_LEN, addr);
3119         int width = priv->hash_width;
3120         u8 whichbit = (result >> (32 - width)) & 0x1f;
3121         u8 whichreg = result >> (32 - width + 5);
3122         u32 value = (1 << (31-whichbit));
3123
3124         tempval = gfar_read(priv->hash_regs[whichreg]);
3125         tempval |= value;
3126         gfar_write(priv->hash_regs[whichreg], tempval);
3127 }
3128
3129
3130 /* There are multiple MAC Address register pairs on some controllers
3131  * This function sets the numth pair to a given address
3132  */
3133 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3134                                   const u8 *addr)
3135 {
3136         struct gfar_private *priv = netdev_priv(dev);
3137         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3138         int idx;
3139         char tmpbuf[MAC_ADDR_LEN];
3140         u32 tempval;
3141         u32 __iomem *macptr = &regs->macstnaddr1;
3142
3143         macptr += num*2;
3144
3145         /* Now copy it into the mac registers backwards, cuz */
3146         /* little endian is silly */
3147         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3148                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3149
3150         gfar_write(macptr, *((u32 *) (tmpbuf)));
3151
3152         tempval = *((u32 *) (tmpbuf + 4));
3153
3154         gfar_write(macptr+1, tempval);
3155 }
3156
3157 /* GFAR error interrupt handler */
3158 static irqreturn_t gfar_error(int irq, void *grp_id)
3159 {
3160         struct gfar_priv_grp *gfargrp = grp_id;
3161         struct gfar __iomem *regs = gfargrp->regs;
3162         struct gfar_private *priv= gfargrp->priv;
3163         struct net_device *dev = priv->ndev;
3164
3165         /* Save ievent for future reference */
3166         u32 events = gfar_read(&regs->ievent);
3167
3168         /* Clear IEVENT */
3169         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3170
3171         /* Magic Packet is not an error. */
3172         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3173             (events & IEVENT_MAG))
3174                 events &= ~IEVENT_MAG;
3175
3176         /* Hmm... */
3177         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3178                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3179                        dev->name, events, gfar_read(&regs->imask));
3180
3181         /* Update the error counters */
3182         if (events & IEVENT_TXE) {
3183                 dev->stats.tx_errors++;
3184
3185                 if (events & IEVENT_LC)
3186                         dev->stats.tx_window_errors++;
3187                 if (events & IEVENT_CRL)
3188                         dev->stats.tx_aborted_errors++;
3189                 if (events & IEVENT_XFUN) {
3190                         unsigned long flags;
3191
3192                         if (netif_msg_tx_err(priv))
3193                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3194                                        "packet dropped.\n", dev->name);
3195                         dev->stats.tx_dropped++;
3196                         priv->extra_stats.tx_underrun++;
3197
3198                         local_irq_save(flags);
3199                         lock_tx_qs(priv);
3200
3201                         /* Reactivate the Tx Queues */
3202                         gfar_write(&regs->tstat, gfargrp->tstat);
3203
3204                         unlock_tx_qs(priv);
3205                         local_irq_restore(flags);
3206                 }
3207                 if (netif_msg_tx_err(priv))
3208                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3209         }
3210         if (events & IEVENT_BSY) {
3211                 dev->stats.rx_errors++;
3212                 priv->extra_stats.rx_bsy++;
3213
3214                 gfar_receive(irq, grp_id);
3215
3216                 if (netif_msg_rx_err(priv))
3217                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3218                                dev->name, gfar_read(&regs->rstat));
3219         }
3220         if (events & IEVENT_BABR) {
3221                 dev->stats.rx_errors++;
3222                 priv->extra_stats.rx_babr++;
3223
3224                 if (netif_msg_rx_err(priv))
3225                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3226         }
3227         if (events & IEVENT_EBERR) {
3228                 priv->extra_stats.eberr++;
3229                 if (netif_msg_rx_err(priv))
3230                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
3231         }
3232         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3233                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3234
3235         if (events & IEVENT_BABT) {
3236                 priv->extra_stats.tx_babt++;
3237                 if (netif_msg_tx_err(priv))
3238                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3239         }
3240         return IRQ_HANDLED;
3241 }
3242
3243 static struct of_device_id gfar_match[] =
3244 {
3245         {
3246                 .type = "network",
3247                 .compatible = "gianfar",
3248         },
3249         {
3250                 .compatible = "fsl,etsec2",
3251         },
3252         {},
3253 };
3254 MODULE_DEVICE_TABLE(of, gfar_match);
3255
3256 /* Structure for a device driver */
3257 static struct platform_driver gfar_driver = {
3258         .driver = {
3259                 .name = "fsl-gianfar",
3260                 .owner = THIS_MODULE,
3261                 .pm = GFAR_PM_OPS,
3262                 .of_match_table = gfar_match,
3263         },
3264         .probe = gfar_probe,
3265         .remove = gfar_remove,
3266 };
3267
3268 static int __init gfar_init(void)
3269 {
3270         return platform_driver_register(&gfar_driver);
3271 }
3272
3273 static void __exit gfar_exit(void)
3274 {
3275         platform_driver_unregister(&gfar_driver);
3276 }
3277
3278 module_init(gfar_init);
3279 module_exit(gfar_exit);
3280