Merge branch 'upstream-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[pandora-kernel.git] / drivers / net / gianfar.c
1 /*
2  * drivers/net/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  *
12  * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
13  * Copyright (c) 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through platform_device.  Structures which
29  *  define the configuration needed by the board are defined in a
30  *  board structure in arch/ppc/platforms (though I do not
31  *  discount the possibility that other architectures could one
32  *  day be supported.
33  *
34  *  The Gianfar Ethernet Controller uses a ring of buffer
35  *  descriptors.  The beginning is indicated by a register
36  *  pointing to the physical address of the start of the ring.
37  *  The end is determined by a "wrap" bit being set in the
38  *  last descriptor of the ring.
39  *
40  *  When a packet is received, the RXF bit in the
41  *  IEVENT register is set, triggering an interrupt when the
42  *  corresponding bit in the IMASK register is also set (if
43  *  interrupt coalescing is active, then the interrupt may not
44  *  happen immediately, but will wait until either a set number
45  *  of frames or amount of time have passed).  In NAPI, the
46  *  interrupt handler will signal there is work to be done, and
47  *  exit.  Without NAPI, the packet(s) will be handled
48  *  immediately.  Both methods will start at the last known empty
49  *  descriptor, and process every subsequent descriptor until there
50  *  are none left with data (NAPI will stop after a set number of
51  *  packets to give time to other tasks, but will eventually
52  *  process all the packets).  The data arrives inside a
53  *  pre-allocated skb, and so after the skb is passed up to the
54  *  stack, a new skb must be allocated, and the address field in
55  *  the buffer descriptor must be updated to indicate this new
56  *  skb.
57  *
58  *  When the kernel requests that a packet be transmitted, the
59  *  driver starts where it left off last time, and points the
60  *  descriptor at the buffer which was passed in.  The driver
61  *  then informs the DMA engine that there are packets ready to
62  *  be transmitted.  Once the controller is finished transmitting
63  *  the packet, an interrupt may be triggered (under the same
64  *  conditions as for reception, but depending on the TXF bit).
65  *  The driver then cleans up the buffer.
66  */
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/platform_device.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87
88 #include <asm/io.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96
97 #include "gianfar.h"
98 #include "gianfar_mii.h"
99
100 #define TX_TIMEOUT      (1*HZ)
101 #define SKB_ALLOC_TIMEOUT 1000000
102 #undef BRIEF_GFAR_ERRORS
103 #undef VERBOSE_GFAR_ERRORS
104
105 #ifdef CONFIG_GFAR_NAPI
106 #define RECEIVE(x) netif_receive_skb(x)
107 #else
108 #define RECEIVE(x) netif_rx(x)
109 #endif
110
111 const char gfar_driver_name[] = "Gianfar Ethernet";
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_timeout(struct net_device *dev);
117 static int gfar_close(struct net_device *dev);
118 struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static void init_registers(struct net_device *dev);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *pdev);
128 static int gfar_remove(struct platform_device *pdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 extern int gfar_local_mdio_write(struct gfar_mii *regs, int mii_id, int regnum, u16 value);
134 extern int gfar_local_mdio_read(struct gfar_mii *regs, int mii_id, int regnum);
135 #ifdef CONFIG_GFAR_NAPI
136 static int gfar_poll(struct napi_struct *napi, int budget);
137 #endif
138 #ifdef CONFIG_NET_POLL_CONTROLLER
139 static void gfar_netpoll(struct net_device *dev);
140 #endif
141 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
142 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length);
143 static void gfar_vlan_rx_register(struct net_device *netdev,
144                                 struct vlan_group *grp);
145 void gfar_halt(struct net_device *dev);
146 void gfar_start(struct net_device *dev);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
149
150 extern const struct ethtool_ops gfar_ethtool_ops;
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 /* Returns 1 if incoming frames use an FCB */
157 static inline int gfar_uses_fcb(struct gfar_private *priv)
158 {
159         return (priv->vlan_enable || priv->rx_csum_enable);
160 }
161
162 /* Set up the ethernet device structure, private data,
163  * and anything else we need before we start */
164 static int gfar_probe(struct platform_device *pdev)
165 {
166         u32 tempval;
167         struct net_device *dev = NULL;
168         struct gfar_private *priv = NULL;
169         struct gianfar_platform_data *einfo;
170         struct resource *r;
171         int idx;
172         int err = 0;
173         DECLARE_MAC_BUF(mac);
174
175         einfo = (struct gianfar_platform_data *) pdev->dev.platform_data;
176
177         if (NULL == einfo) {
178                 printk(KERN_ERR "gfar %d: Missing additional data!\n",
179                        pdev->id);
180
181                 return -ENODEV;
182         }
183
184         /* Create an ethernet device instance */
185         dev = alloc_etherdev(sizeof (*priv));
186
187         if (NULL == dev)
188                 return -ENOMEM;
189
190         priv = netdev_priv(dev);
191         priv->dev = dev;
192
193         /* Set the info in the priv to the current info */
194         priv->einfo = einfo;
195
196         /* fill out IRQ fields */
197         if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
198                 priv->interruptTransmit = platform_get_irq_byname(pdev, "tx");
199                 priv->interruptReceive = platform_get_irq_byname(pdev, "rx");
200                 priv->interruptError = platform_get_irq_byname(pdev, "error");
201                 if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0)
202                         goto regs_fail;
203         } else {
204                 priv->interruptTransmit = platform_get_irq(pdev, 0);
205                 if (priv->interruptTransmit < 0)
206                         goto regs_fail;
207         }
208
209         /* get a pointer to the register memory */
210         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
211         priv->regs = ioremap(r->start, sizeof (struct gfar));
212
213         if (NULL == priv->regs) {
214                 err = -ENOMEM;
215                 goto regs_fail;
216         }
217
218         spin_lock_init(&priv->txlock);
219         spin_lock_init(&priv->rxlock);
220
221         platform_set_drvdata(pdev, dev);
222
223         /* Stop the DMA engine now, in case it was running before */
224         /* (The firmware could have used it, and left it running). */
225         /* To do this, we write Graceful Receive Stop and Graceful */
226         /* Transmit Stop, and then wait until the corresponding bits */
227         /* in IEVENT indicate the stops have completed. */
228         tempval = gfar_read(&priv->regs->dmactrl);
229         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
230         gfar_write(&priv->regs->dmactrl, tempval);
231
232         tempval = gfar_read(&priv->regs->dmactrl);
233         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
234         gfar_write(&priv->regs->dmactrl, tempval);
235
236         while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC)))
237                 cpu_relax();
238
239         /* Reset MAC layer */
240         gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
241
242         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
243         gfar_write(&priv->regs->maccfg1, tempval);
244
245         /* Initialize MACCFG2. */
246         gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
247
248         /* Initialize ECNTRL */
249         gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
250
251         /* Copy the station address into the dev structure, */
252         memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN);
253
254         /* Set the dev->base_addr to the gfar reg region */
255         dev->base_addr = (unsigned long) (priv->regs);
256
257         SET_NETDEV_DEV(dev, &pdev->dev);
258
259         /* Fill in the dev structure */
260         dev->open = gfar_enet_open;
261         dev->hard_start_xmit = gfar_start_xmit;
262         dev->tx_timeout = gfar_timeout;
263         dev->watchdog_timeo = TX_TIMEOUT;
264         netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266         dev->poll_controller = gfar_netpoll;
267 #endif
268         dev->stop = gfar_close;
269         dev->change_mtu = gfar_change_mtu;
270         dev->mtu = 1500;
271         dev->set_multicast_list = gfar_set_multi;
272
273         dev->ethtool_ops = &gfar_ethtool_ops;
274
275         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
276                 priv->rx_csum_enable = 1;
277                 dev->features |= NETIF_F_IP_CSUM;
278         } else
279                 priv->rx_csum_enable = 0;
280
281         priv->vlgrp = NULL;
282
283         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
284                 dev->vlan_rx_register = gfar_vlan_rx_register;
285
286                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
287
288                 priv->vlan_enable = 1;
289         }
290
291         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
292                 priv->extended_hash = 1;
293                 priv->hash_width = 9;
294
295                 priv->hash_regs[0] = &priv->regs->igaddr0;
296                 priv->hash_regs[1] = &priv->regs->igaddr1;
297                 priv->hash_regs[2] = &priv->regs->igaddr2;
298                 priv->hash_regs[3] = &priv->regs->igaddr3;
299                 priv->hash_regs[4] = &priv->regs->igaddr4;
300                 priv->hash_regs[5] = &priv->regs->igaddr5;
301                 priv->hash_regs[6] = &priv->regs->igaddr6;
302                 priv->hash_regs[7] = &priv->regs->igaddr7;
303                 priv->hash_regs[8] = &priv->regs->gaddr0;
304                 priv->hash_regs[9] = &priv->regs->gaddr1;
305                 priv->hash_regs[10] = &priv->regs->gaddr2;
306                 priv->hash_regs[11] = &priv->regs->gaddr3;
307                 priv->hash_regs[12] = &priv->regs->gaddr4;
308                 priv->hash_regs[13] = &priv->regs->gaddr5;
309                 priv->hash_regs[14] = &priv->regs->gaddr6;
310                 priv->hash_regs[15] = &priv->regs->gaddr7;
311
312         } else {
313                 priv->extended_hash = 0;
314                 priv->hash_width = 8;
315
316                 priv->hash_regs[0] = &priv->regs->gaddr0;
317                 priv->hash_regs[1] = &priv->regs->gaddr1;
318                 priv->hash_regs[2] = &priv->regs->gaddr2;
319                 priv->hash_regs[3] = &priv->regs->gaddr3;
320                 priv->hash_regs[4] = &priv->regs->gaddr4;
321                 priv->hash_regs[5] = &priv->regs->gaddr5;
322                 priv->hash_regs[6] = &priv->regs->gaddr6;
323                 priv->hash_regs[7] = &priv->regs->gaddr7;
324         }
325
326         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
327                 priv->padding = DEFAULT_PADDING;
328         else
329                 priv->padding = 0;
330
331         if (dev->features & NETIF_F_IP_CSUM)
332                 dev->hard_header_len += GMAC_FCB_LEN;
333
334         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
335         priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
336         priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
337
338         priv->txcoalescing = DEFAULT_TX_COALESCE;
339         priv->txcount = DEFAULT_TXCOUNT;
340         priv->txtime = DEFAULT_TXTIME;
341         priv->rxcoalescing = DEFAULT_RX_COALESCE;
342         priv->rxcount = DEFAULT_RXCOUNT;
343         priv->rxtime = DEFAULT_RXTIME;
344
345         /* Enable most messages by default */
346         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
347
348         err = register_netdev(dev);
349
350         if (err) {
351                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
352                                 dev->name);
353                 goto register_fail;
354         }
355
356         /* Create all the sysfs files */
357         gfar_init_sysfs(dev);
358
359         /* Print out the device info */
360         printk(KERN_INFO DEVICE_NAME "%s\n",
361                dev->name, print_mac(mac, dev->dev_addr));
362
363         /* Even more device info helps when determining which kernel */
364         /* provided which set of benchmarks. */
365 #ifdef CONFIG_GFAR_NAPI
366         printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
367 #else
368         printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name);
369 #endif
370         printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
371                dev->name, priv->rx_ring_size, priv->tx_ring_size);
372
373         return 0;
374
375 register_fail:
376         iounmap(priv->regs);
377 regs_fail:
378         free_netdev(dev);
379         return err;
380 }
381
382 static int gfar_remove(struct platform_device *pdev)
383 {
384         struct net_device *dev = platform_get_drvdata(pdev);
385         struct gfar_private *priv = netdev_priv(dev);
386
387         platform_set_drvdata(pdev, NULL);
388
389         iounmap(priv->regs);
390         free_netdev(dev);
391
392         return 0;
393 }
394
395
396 /* Reads the controller's registers to determine what interface
397  * connects it to the PHY.
398  */
399 static phy_interface_t gfar_get_interface(struct net_device *dev)
400 {
401         struct gfar_private *priv = netdev_priv(dev);
402         u32 ecntrl = gfar_read(&priv->regs->ecntrl);
403
404         if (ecntrl & ECNTRL_SGMII_MODE)
405                 return PHY_INTERFACE_MODE_SGMII;
406
407         if (ecntrl & ECNTRL_TBI_MODE) {
408                 if (ecntrl & ECNTRL_REDUCED_MODE)
409                         return PHY_INTERFACE_MODE_RTBI;
410                 else
411                         return PHY_INTERFACE_MODE_TBI;
412         }
413
414         if (ecntrl & ECNTRL_REDUCED_MODE) {
415                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
416                         return PHY_INTERFACE_MODE_RMII;
417                 else {
418                         phy_interface_t interface = priv->einfo->interface;
419
420                         /*
421                          * This isn't autodetected right now, so it must
422                          * be set by the device tree or platform code.
423                          */
424                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
425                                 return PHY_INTERFACE_MODE_RGMII_ID;
426
427                         return PHY_INTERFACE_MODE_RGMII;
428                 }
429         }
430
431         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
432                 return PHY_INTERFACE_MODE_GMII;
433
434         return PHY_INTERFACE_MODE_MII;
435 }
436
437
438 /* Initializes driver's PHY state, and attaches to the PHY.
439  * Returns 0 on success.
440  */
441 static int init_phy(struct net_device *dev)
442 {
443         struct gfar_private *priv = netdev_priv(dev);
444         uint gigabit_support =
445                 priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
446                 SUPPORTED_1000baseT_Full : 0;
447         struct phy_device *phydev;
448         char phy_id[BUS_ID_SIZE];
449         phy_interface_t interface;
450
451         priv->oldlink = 0;
452         priv->oldspeed = 0;
453         priv->oldduplex = -1;
454
455         snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id);
456
457         interface = gfar_get_interface(dev);
458
459         phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface);
460
461         if (interface == PHY_INTERFACE_MODE_SGMII)
462                 gfar_configure_serdes(dev);
463
464         if (IS_ERR(phydev)) {
465                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
466                 return PTR_ERR(phydev);
467         }
468
469         /* Remove any features not supported by the controller */
470         phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
471         phydev->advertising = phydev->supported;
472
473         priv->phydev = phydev;
474
475         return 0;
476 }
477
478 static void gfar_configure_serdes(struct net_device *dev)
479 {
480         struct gfar_private *priv = netdev_priv(dev);
481         struct gfar_mii __iomem *regs =
482                         (void __iomem *)&priv->regs->gfar_mii_regs;
483
484         /* Initialise TBI i/f to communicate with serdes (lynx phy) */
485
486         /* Single clk mode, mii mode off(for aerdes communication) */
487         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT);
488
489         /* Supported pause and full-duplex, no half-duplex */
490         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE,
491                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
492                         ADVERTISE_1000XPSE_ASYM);
493
494         /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */
495         gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE |
496                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
497 }
498
499 static void init_registers(struct net_device *dev)
500 {
501         struct gfar_private *priv = netdev_priv(dev);
502
503         /* Clear IEVENT */
504         gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
505
506         /* Initialize IMASK */
507         gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
508
509         /* Init hash registers to zero */
510         gfar_write(&priv->regs->igaddr0, 0);
511         gfar_write(&priv->regs->igaddr1, 0);
512         gfar_write(&priv->regs->igaddr2, 0);
513         gfar_write(&priv->regs->igaddr3, 0);
514         gfar_write(&priv->regs->igaddr4, 0);
515         gfar_write(&priv->regs->igaddr5, 0);
516         gfar_write(&priv->regs->igaddr6, 0);
517         gfar_write(&priv->regs->igaddr7, 0);
518
519         gfar_write(&priv->regs->gaddr0, 0);
520         gfar_write(&priv->regs->gaddr1, 0);
521         gfar_write(&priv->regs->gaddr2, 0);
522         gfar_write(&priv->regs->gaddr3, 0);
523         gfar_write(&priv->regs->gaddr4, 0);
524         gfar_write(&priv->regs->gaddr5, 0);
525         gfar_write(&priv->regs->gaddr6, 0);
526         gfar_write(&priv->regs->gaddr7, 0);
527
528         /* Zero out the rmon mib registers if it has them */
529         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
530                 memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
531
532                 /* Mask off the CAM interrupts */
533                 gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
534                 gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
535         }
536
537         /* Initialize the max receive buffer length */
538         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
539
540         /* Initialize the Minimum Frame Length Register */
541         gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
542
543         /* Assign the TBI an address which won't conflict with the PHYs */
544         gfar_write(&priv->regs->tbipa, TBIPA_VALUE);
545 }
546
547
548 /* Halt the receive and transmit queues */
549 void gfar_halt(struct net_device *dev)
550 {
551         struct gfar_private *priv = netdev_priv(dev);
552         struct gfar __iomem *regs = priv->regs;
553         u32 tempval;
554
555         /* Mask all interrupts */
556         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
557
558         /* Clear all interrupts */
559         gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
560
561         /* Stop the DMA, and wait for it to stop */
562         tempval = gfar_read(&priv->regs->dmactrl);
563         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
564             != (DMACTRL_GRS | DMACTRL_GTS)) {
565                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
566                 gfar_write(&priv->regs->dmactrl, tempval);
567
568                 while (!(gfar_read(&priv->regs->ievent) &
569                          (IEVENT_GRSC | IEVENT_GTSC)))
570                         cpu_relax();
571         }
572
573         /* Disable Rx and Tx */
574         tempval = gfar_read(&regs->maccfg1);
575         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
576         gfar_write(&regs->maccfg1, tempval);
577 }
578
579 void stop_gfar(struct net_device *dev)
580 {
581         struct gfar_private *priv = netdev_priv(dev);
582         struct gfar __iomem *regs = priv->regs;
583         unsigned long flags;
584
585         phy_stop(priv->phydev);
586
587         /* Lock it down */
588         spin_lock_irqsave(&priv->txlock, flags);
589         spin_lock(&priv->rxlock);
590
591         gfar_halt(dev);
592
593         spin_unlock(&priv->rxlock);
594         spin_unlock_irqrestore(&priv->txlock, flags);
595
596         /* Free the IRQs */
597         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
598                 free_irq(priv->interruptError, dev);
599                 free_irq(priv->interruptTransmit, dev);
600                 free_irq(priv->interruptReceive, dev);
601         } else {
602                 free_irq(priv->interruptTransmit, dev);
603         }
604
605         free_skb_resources(priv);
606
607         dma_free_coherent(NULL,
608                         sizeof(struct txbd8)*priv->tx_ring_size
609                         + sizeof(struct rxbd8)*priv->rx_ring_size,
610                         priv->tx_bd_base,
611                         gfar_read(&regs->tbase0));
612 }
613
614 /* If there are any tx skbs or rx skbs still around, free them.
615  * Then free tx_skbuff and rx_skbuff */
616 static void free_skb_resources(struct gfar_private *priv)
617 {
618         struct rxbd8 *rxbdp;
619         struct txbd8 *txbdp;
620         int i;
621
622         /* Go through all the buffer descriptors and free their data buffers */
623         txbdp = priv->tx_bd_base;
624
625         for (i = 0; i < priv->tx_ring_size; i++) {
626
627                 if (priv->tx_skbuff[i]) {
628                         dma_unmap_single(NULL, txbdp->bufPtr,
629                                         txbdp->length,
630                                         DMA_TO_DEVICE);
631                         dev_kfree_skb_any(priv->tx_skbuff[i]);
632                         priv->tx_skbuff[i] = NULL;
633                 }
634         }
635
636         kfree(priv->tx_skbuff);
637
638         rxbdp = priv->rx_bd_base;
639
640         /* rx_skbuff is not guaranteed to be allocated, so only
641          * free it and its contents if it is allocated */
642         if(priv->rx_skbuff != NULL) {
643                 for (i = 0; i < priv->rx_ring_size; i++) {
644                         if (priv->rx_skbuff[i]) {
645                                 dma_unmap_single(NULL, rxbdp->bufPtr,
646                                                 priv->rx_buffer_size,
647                                                 DMA_FROM_DEVICE);
648
649                                 dev_kfree_skb_any(priv->rx_skbuff[i]);
650                                 priv->rx_skbuff[i] = NULL;
651                         }
652
653                         rxbdp->status = 0;
654                         rxbdp->length = 0;
655                         rxbdp->bufPtr = 0;
656
657                         rxbdp++;
658                 }
659
660                 kfree(priv->rx_skbuff);
661         }
662 }
663
664 void gfar_start(struct net_device *dev)
665 {
666         struct gfar_private *priv = netdev_priv(dev);
667         struct gfar __iomem *regs = priv->regs;
668         u32 tempval;
669
670         /* Enable Rx and Tx in MACCFG1 */
671         tempval = gfar_read(&regs->maccfg1);
672         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
673         gfar_write(&regs->maccfg1, tempval);
674
675         /* Initialize DMACTRL to have WWR and WOP */
676         tempval = gfar_read(&priv->regs->dmactrl);
677         tempval |= DMACTRL_INIT_SETTINGS;
678         gfar_write(&priv->regs->dmactrl, tempval);
679
680         /* Make sure we aren't stopped */
681         tempval = gfar_read(&priv->regs->dmactrl);
682         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
683         gfar_write(&priv->regs->dmactrl, tempval);
684
685         /* Clear THLT/RHLT, so that the DMA starts polling now */
686         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
687         gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
688
689         /* Unmask the interrupts we look for */
690         gfar_write(&regs->imask, IMASK_DEFAULT);
691 }
692
693 /* Bring the controller up and running */
694 int startup_gfar(struct net_device *dev)
695 {
696         struct txbd8 *txbdp;
697         struct rxbd8 *rxbdp;
698         dma_addr_t addr;
699         unsigned long vaddr;
700         int i;
701         struct gfar_private *priv = netdev_priv(dev);
702         struct gfar __iomem *regs = priv->regs;
703         int err = 0;
704         u32 rctrl = 0;
705         u32 attrs = 0;
706
707         gfar_write(&regs->imask, IMASK_INIT_CLEAR);
708
709         /* Allocate memory for the buffer descriptors */
710         vaddr = (unsigned long) dma_alloc_coherent(NULL,
711                         sizeof (struct txbd8) * priv->tx_ring_size +
712                         sizeof (struct rxbd8) * priv->rx_ring_size,
713                         &addr, GFP_KERNEL);
714
715         if (vaddr == 0) {
716                 if (netif_msg_ifup(priv))
717                         printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
718                                         dev->name);
719                 return -ENOMEM;
720         }
721
722         priv->tx_bd_base = (struct txbd8 *) vaddr;
723
724         /* enet DMA only understands physical addresses */
725         gfar_write(&regs->tbase0, addr);
726
727         /* Start the rx descriptor ring where the tx ring leaves off */
728         addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
729         vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
730         priv->rx_bd_base = (struct rxbd8 *) vaddr;
731         gfar_write(&regs->rbase0, addr);
732
733         /* Setup the skbuff rings */
734         priv->tx_skbuff =
735             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
736                                         priv->tx_ring_size, GFP_KERNEL);
737
738         if (NULL == priv->tx_skbuff) {
739                 if (netif_msg_ifup(priv))
740                         printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
741                                         dev->name);
742                 err = -ENOMEM;
743                 goto tx_skb_fail;
744         }
745
746         for (i = 0; i < priv->tx_ring_size; i++)
747                 priv->tx_skbuff[i] = NULL;
748
749         priv->rx_skbuff =
750             (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
751                                         priv->rx_ring_size, GFP_KERNEL);
752
753         if (NULL == priv->rx_skbuff) {
754                 if (netif_msg_ifup(priv))
755                         printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
756                                         dev->name);
757                 err = -ENOMEM;
758                 goto rx_skb_fail;
759         }
760
761         for (i = 0; i < priv->rx_ring_size; i++)
762                 priv->rx_skbuff[i] = NULL;
763
764         /* Initialize some variables in our dev structure */
765         priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
766         priv->cur_rx = priv->rx_bd_base;
767         priv->skb_curtx = priv->skb_dirtytx = 0;
768         priv->skb_currx = 0;
769
770         /* Initialize Transmit Descriptor Ring */
771         txbdp = priv->tx_bd_base;
772         for (i = 0; i < priv->tx_ring_size; i++) {
773                 txbdp->status = 0;
774                 txbdp->length = 0;
775                 txbdp->bufPtr = 0;
776                 txbdp++;
777         }
778
779         /* Set the last descriptor in the ring to indicate wrap */
780         txbdp--;
781         txbdp->status |= TXBD_WRAP;
782
783         rxbdp = priv->rx_bd_base;
784         for (i = 0; i < priv->rx_ring_size; i++) {
785                 struct sk_buff *skb = NULL;
786
787                 rxbdp->status = 0;
788
789                 skb = gfar_new_skb(dev, rxbdp);
790
791                 priv->rx_skbuff[i] = skb;
792
793                 rxbdp++;
794         }
795
796         /* Set the last descriptor in the ring to wrap */
797         rxbdp--;
798         rxbdp->status |= RXBD_WRAP;
799
800         /* If the device has multiple interrupts, register for
801          * them.  Otherwise, only register for the one */
802         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
803                 /* Install our interrupt handlers for Error,
804                  * Transmit, and Receive */
805                 if (request_irq(priv->interruptError, gfar_error,
806                                 0, "enet_error", dev) < 0) {
807                         if (netif_msg_intr(priv))
808                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
809                                         dev->name, priv->interruptError);
810
811                         err = -1;
812                         goto err_irq_fail;
813                 }
814
815                 if (request_irq(priv->interruptTransmit, gfar_transmit,
816                                 0, "enet_tx", dev) < 0) {
817                         if (netif_msg_intr(priv))
818                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
819                                         dev->name, priv->interruptTransmit);
820
821                         err = -1;
822
823                         goto tx_irq_fail;
824                 }
825
826                 if (request_irq(priv->interruptReceive, gfar_receive,
827                                 0, "enet_rx", dev) < 0) {
828                         if (netif_msg_intr(priv))
829                                 printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
830                                                 dev->name, priv->interruptReceive);
831
832                         err = -1;
833                         goto rx_irq_fail;
834                 }
835         } else {
836                 if (request_irq(priv->interruptTransmit, gfar_interrupt,
837                                 0, "gfar_interrupt", dev) < 0) {
838                         if (netif_msg_intr(priv))
839                                 printk(KERN_ERR "%s: Can't get IRQ %d\n",
840                                         dev->name, priv->interruptError);
841
842                         err = -1;
843                         goto err_irq_fail;
844                 }
845         }
846
847         phy_start(priv->phydev);
848
849         /* Configure the coalescing support */
850         if (priv->txcoalescing)
851                 gfar_write(&regs->txic,
852                            mk_ic_value(priv->txcount, priv->txtime));
853         else
854                 gfar_write(&regs->txic, 0);
855
856         if (priv->rxcoalescing)
857                 gfar_write(&regs->rxic,
858                            mk_ic_value(priv->rxcount, priv->rxtime));
859         else
860                 gfar_write(&regs->rxic, 0);
861
862         if (priv->rx_csum_enable)
863                 rctrl |= RCTRL_CHECKSUMMING;
864
865         if (priv->extended_hash) {
866                 rctrl |= RCTRL_EXTHASH;
867
868                 gfar_clear_exact_match(dev);
869                 rctrl |= RCTRL_EMEN;
870         }
871
872         if (priv->vlan_enable)
873                 rctrl |= RCTRL_VLAN;
874
875         if (priv->padding) {
876                 rctrl &= ~RCTRL_PAL_MASK;
877                 rctrl |= RCTRL_PADDING(priv->padding);
878         }
879
880         /* Init rctrl based on our settings */
881         gfar_write(&priv->regs->rctrl, rctrl);
882
883         if (dev->features & NETIF_F_IP_CSUM)
884                 gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM);
885
886         /* Set the extraction length and index */
887         attrs = ATTRELI_EL(priv->rx_stash_size) |
888                 ATTRELI_EI(priv->rx_stash_index);
889
890         gfar_write(&priv->regs->attreli, attrs);
891
892         /* Start with defaults, and add stashing or locking
893          * depending on the approprate variables */
894         attrs = ATTR_INIT_SETTINGS;
895
896         if (priv->bd_stash_en)
897                 attrs |= ATTR_BDSTASH;
898
899         if (priv->rx_stash_size != 0)
900                 attrs |= ATTR_BUFSTASH;
901
902         gfar_write(&priv->regs->attr, attrs);
903
904         gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
905         gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
906         gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
907
908         /* Start the controller */
909         gfar_start(dev);
910
911         return 0;
912
913 rx_irq_fail:
914         free_irq(priv->interruptTransmit, dev);
915 tx_irq_fail:
916         free_irq(priv->interruptError, dev);
917 err_irq_fail:
918 rx_skb_fail:
919         free_skb_resources(priv);
920 tx_skb_fail:
921         dma_free_coherent(NULL,
922                         sizeof(struct txbd8)*priv->tx_ring_size
923                         + sizeof(struct rxbd8)*priv->rx_ring_size,
924                         priv->tx_bd_base,
925                         gfar_read(&regs->tbase0));
926
927         return err;
928 }
929
930 /* Called when something needs to use the ethernet device */
931 /* Returns 0 for success. */
932 static int gfar_enet_open(struct net_device *dev)
933 {
934         int err;
935
936         napi_enable(&priv->napi);
937
938         /* Initialize a bunch of registers */
939         init_registers(dev);
940
941         gfar_set_mac_address(dev);
942
943         err = init_phy(dev);
944
945         if(err) {
946                 napi_disable(&priv->napi);
947                 return err;
948         }
949
950         err = startup_gfar(dev);
951         if (err)
952                 napi_disable(&priv->napi);
953
954         netif_start_queue(dev);
955
956         return err;
957 }
958
959 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp)
960 {
961         struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN);
962
963         memset(fcb, 0, GMAC_FCB_LEN);
964
965         return fcb;
966 }
967
968 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
969 {
970         u8 flags = 0;
971
972         /* If we're here, it's a IP packet with a TCP or UDP
973          * payload.  We set it to checksum, using a pseudo-header
974          * we provide
975          */
976         flags = TXFCB_DEFAULT;
977
978         /* Tell the controller what the protocol is */
979         /* And provide the already calculated phcs */
980         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
981                 flags |= TXFCB_UDP;
982                 fcb->phcs = udp_hdr(skb)->check;
983         } else
984                 fcb->phcs = tcp_hdr(skb)->check;
985
986         /* l3os is the distance between the start of the
987          * frame (skb->data) and the start of the IP hdr.
988          * l4os is the distance between the start of the
989          * l3 hdr and the l4 hdr */
990         fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
991         fcb->l4os = skb_network_header_len(skb);
992
993         fcb->flags = flags;
994 }
995
996 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
997 {
998         fcb->flags |= TXFCB_VLN;
999         fcb->vlctl = vlan_tx_tag_get(skb);
1000 }
1001
1002 /* This is called by the kernel when a frame is ready for transmission. */
1003 /* It is pointed to by the dev->hard_start_xmit function pointer */
1004 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1005 {
1006         struct gfar_private *priv = netdev_priv(dev);
1007         struct txfcb *fcb = NULL;
1008         struct txbd8 *txbdp;
1009         u16 status;
1010         unsigned long flags;
1011
1012         /* Update transmit stats */
1013         dev->stats.tx_bytes += skb->len;
1014
1015         /* Lock priv now */
1016         spin_lock_irqsave(&priv->txlock, flags);
1017
1018         /* Point at the first free tx descriptor */
1019         txbdp = priv->cur_tx;
1020
1021         /* Clear all but the WRAP status flags */
1022         status = txbdp->status & TXBD_WRAP;
1023
1024         /* Set up checksumming */
1025         if (likely((dev->features & NETIF_F_IP_CSUM)
1026                         && (CHECKSUM_PARTIAL == skb->ip_summed))) {
1027                 fcb = gfar_add_fcb(skb, txbdp);
1028                 status |= TXBD_TOE;
1029                 gfar_tx_checksum(skb, fcb);
1030         }
1031
1032         if (priv->vlan_enable &&
1033                         unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) {
1034                 if (unlikely(NULL == fcb)) {
1035                         fcb = gfar_add_fcb(skb, txbdp);
1036                         status |= TXBD_TOE;
1037                 }
1038
1039                 gfar_tx_vlan(skb, fcb);
1040         }
1041
1042         /* Set buffer length and pointer */
1043         txbdp->length = skb->len;
1044         txbdp->bufPtr = dma_map_single(NULL, skb->data,
1045                         skb->len, DMA_TO_DEVICE);
1046
1047         /* Save the skb pointer so we can free it later */
1048         priv->tx_skbuff[priv->skb_curtx] = skb;
1049
1050         /* Update the current skb pointer (wrapping if this was the last) */
1051         priv->skb_curtx =
1052             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1053
1054         /* Flag the BD as interrupt-causing */
1055         status |= TXBD_INTERRUPT;
1056
1057         /* Flag the BD as ready to go, last in frame, and  */
1058         /* in need of CRC */
1059         status |= (TXBD_READY | TXBD_LAST | TXBD_CRC);
1060
1061         dev->trans_start = jiffies;
1062
1063         /* The powerpc-specific eieio() is used, as wmb() has too strong
1064          * semantics (it requires synchronization between cacheable and
1065          * uncacheable mappings, which eieio doesn't provide and which we
1066          * don't need), thus requiring a more expensive sync instruction.  At
1067          * some point, the set of architecture-independent barrier functions
1068          * should be expanded to include weaker barriers.
1069          */
1070
1071         eieio();
1072         txbdp->status = status;
1073
1074         /* If this was the last BD in the ring, the next one */
1075         /* is at the beginning of the ring */
1076         if (txbdp->status & TXBD_WRAP)
1077                 txbdp = priv->tx_bd_base;
1078         else
1079                 txbdp++;
1080
1081         /* If the next BD still needs to be cleaned up, then the bds
1082            are full.  We need to tell the kernel to stop sending us stuff. */
1083         if (txbdp == priv->dirty_tx) {
1084                 netif_stop_queue(dev);
1085
1086                 dev->stats.tx_fifo_errors++;
1087         }
1088
1089         /* Update the current txbd to the next one */
1090         priv->cur_tx = txbdp;
1091
1092         /* Tell the DMA to go go go */
1093         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1094
1095         /* Unlock priv */
1096         spin_unlock_irqrestore(&priv->txlock, flags);
1097
1098         return 0;
1099 }
1100
1101 /* Stops the kernel queue, and halts the controller */
1102 static int gfar_close(struct net_device *dev)
1103 {
1104         struct gfar_private *priv = netdev_priv(dev);
1105
1106         napi_disable(&priv->napi);
1107
1108         stop_gfar(dev);
1109
1110         /* Disconnect from the PHY */
1111         phy_disconnect(priv->phydev);
1112         priv->phydev = NULL;
1113
1114         netif_stop_queue(dev);
1115
1116         return 0;
1117 }
1118
1119 /* Changes the mac address if the controller is not running. */
1120 int gfar_set_mac_address(struct net_device *dev)
1121 {
1122         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
1123
1124         return 0;
1125 }
1126
1127
1128 /* Enables and disables VLAN insertion/extraction */
1129 static void gfar_vlan_rx_register(struct net_device *dev,
1130                 struct vlan_group *grp)
1131 {
1132         struct gfar_private *priv = netdev_priv(dev);
1133         unsigned long flags;
1134         u32 tempval;
1135
1136         spin_lock_irqsave(&priv->rxlock, flags);
1137
1138         priv->vlgrp = grp;
1139
1140         if (grp) {
1141                 /* Enable VLAN tag insertion */
1142                 tempval = gfar_read(&priv->regs->tctrl);
1143                 tempval |= TCTRL_VLINS;
1144
1145                 gfar_write(&priv->regs->tctrl, tempval);
1146
1147                 /* Enable VLAN tag extraction */
1148                 tempval = gfar_read(&priv->regs->rctrl);
1149                 tempval |= RCTRL_VLEX;
1150                 gfar_write(&priv->regs->rctrl, tempval);
1151         } else {
1152                 /* Disable VLAN tag insertion */
1153                 tempval = gfar_read(&priv->regs->tctrl);
1154                 tempval &= ~TCTRL_VLINS;
1155                 gfar_write(&priv->regs->tctrl, tempval);
1156
1157                 /* Disable VLAN tag extraction */
1158                 tempval = gfar_read(&priv->regs->rctrl);
1159                 tempval &= ~RCTRL_VLEX;
1160                 gfar_write(&priv->regs->rctrl, tempval);
1161         }
1162
1163         spin_unlock_irqrestore(&priv->rxlock, flags);
1164 }
1165
1166 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
1167 {
1168         int tempsize, tempval;
1169         struct gfar_private *priv = netdev_priv(dev);
1170         int oldsize = priv->rx_buffer_size;
1171         int frame_size = new_mtu + ETH_HLEN;
1172
1173         if (priv->vlan_enable)
1174                 frame_size += VLAN_ETH_HLEN;
1175
1176         if (gfar_uses_fcb(priv))
1177                 frame_size += GMAC_FCB_LEN;
1178
1179         frame_size += priv->padding;
1180
1181         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
1182                 if (netif_msg_drv(priv))
1183                         printk(KERN_ERR "%s: Invalid MTU setting\n",
1184                                         dev->name);
1185                 return -EINVAL;
1186         }
1187
1188         tempsize =
1189             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
1190             INCREMENTAL_BUFFER_SIZE;
1191
1192         /* Only stop and start the controller if it isn't already
1193          * stopped, and we changed something */
1194         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1195                 stop_gfar(dev);
1196
1197         priv->rx_buffer_size = tempsize;
1198
1199         dev->mtu = new_mtu;
1200
1201         gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
1202         gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
1203
1204         /* If the mtu is larger than the max size for standard
1205          * ethernet frames (ie, a jumbo frame), then set maccfg2
1206          * to allow huge frames, and to check the length */
1207         tempval = gfar_read(&priv->regs->maccfg2);
1208
1209         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
1210                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1211         else
1212                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
1213
1214         gfar_write(&priv->regs->maccfg2, tempval);
1215
1216         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
1217                 startup_gfar(dev);
1218
1219         return 0;
1220 }
1221
1222 /* gfar_timeout gets called when a packet has not been
1223  * transmitted after a set amount of time.
1224  * For now, assume that clearing out all the structures, and
1225  * starting over will fix the problem. */
1226 static void gfar_timeout(struct net_device *dev)
1227 {
1228         struct gfar_private *priv = netdev_priv(dev);
1229
1230         dev->stats.tx_errors++;
1231
1232         if (dev->flags & IFF_UP) {
1233                 stop_gfar(dev);
1234                 startup_gfar(dev);
1235         }
1236
1237         netif_schedule(dev);
1238 }
1239
1240 /* Interrupt Handler for Transmit complete */
1241 static irqreturn_t gfar_transmit(int irq, void *dev_id)
1242 {
1243         struct net_device *dev = (struct net_device *) dev_id;
1244         struct gfar_private *priv = netdev_priv(dev);
1245         struct txbd8 *bdp;
1246
1247         /* Clear IEVENT */
1248         gfar_write(&priv->regs->ievent, IEVENT_TX_MASK);
1249
1250         /* Lock priv */
1251         spin_lock(&priv->txlock);
1252         bdp = priv->dirty_tx;
1253         while ((bdp->status & TXBD_READY) == 0) {
1254                 /* If dirty_tx and cur_tx are the same, then either the */
1255                 /* ring is empty or full now (it could only be full in the beginning, */
1256                 /* obviously).  If it is empty, we are done. */
1257                 if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0))
1258                         break;
1259
1260                 dev->stats.tx_packets++;
1261
1262                 /* Deferred means some collisions occurred during transmit, */
1263                 /* but we eventually sent the packet. */
1264                 if (bdp->status & TXBD_DEF)
1265                         dev->stats.collisions++;
1266
1267                 /* Free the sk buffer associated with this TxBD */
1268                 dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]);
1269                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
1270                 priv->skb_dirtytx =
1271                     (priv->skb_dirtytx +
1272                      1) & TX_RING_MOD_MASK(priv->tx_ring_size);
1273
1274                 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1275                 if (bdp->status & TXBD_WRAP)
1276                         bdp = priv->tx_bd_base;
1277                 else
1278                         bdp++;
1279
1280                 /* Move dirty_tx to be the next bd */
1281                 priv->dirty_tx = bdp;
1282
1283                 /* We freed a buffer, so now we can restart transmission */
1284                 if (netif_queue_stopped(dev))
1285                         netif_wake_queue(dev);
1286         } /* while ((bdp->status & TXBD_READY) == 0) */
1287
1288         /* If we are coalescing the interrupts, reset the timer */
1289         /* Otherwise, clear it */
1290         if (priv->txcoalescing)
1291                 gfar_write(&priv->regs->txic,
1292                            mk_ic_value(priv->txcount, priv->txtime));
1293         else
1294                 gfar_write(&priv->regs->txic, 0);
1295
1296         spin_unlock(&priv->txlock);
1297
1298         return IRQ_HANDLED;
1299 }
1300
1301 struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
1302 {
1303         unsigned int alignamount;
1304         struct gfar_private *priv = netdev_priv(dev);
1305         struct sk_buff *skb = NULL;
1306         unsigned int timeout = SKB_ALLOC_TIMEOUT;
1307
1308         /* We have to allocate the skb, so keep trying till we succeed */
1309         while ((!skb) && timeout--)
1310                 skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT);
1311
1312         if (NULL == skb)
1313                 return NULL;
1314
1315         alignamount = RXBUF_ALIGNMENT -
1316                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
1317
1318         /* We need the data buffer to be aligned properly.  We will reserve
1319          * as many bytes as needed to align the data properly
1320          */
1321         skb_reserve(skb, alignamount);
1322
1323         bdp->bufPtr = dma_map_single(NULL, skb->data,
1324                         priv->rx_buffer_size, DMA_FROM_DEVICE);
1325
1326         bdp->length = 0;
1327
1328         /* Mark the buffer empty */
1329         eieio();
1330         bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT);
1331
1332         return skb;
1333 }
1334
1335 static inline void count_errors(unsigned short status, struct gfar_private *priv)
1336 {
1337         struct net_device_stats *stats = &dev->stats;
1338         struct gfar_extra_stats *estats = &priv->extra_stats;
1339
1340         /* If the packet was truncated, none of the other errors
1341          * matter */
1342         if (status & RXBD_TRUNCATED) {
1343                 stats->rx_length_errors++;
1344
1345                 estats->rx_trunc++;
1346
1347                 return;
1348         }
1349         /* Count the errors, if there were any */
1350         if (status & (RXBD_LARGE | RXBD_SHORT)) {
1351                 stats->rx_length_errors++;
1352
1353                 if (status & RXBD_LARGE)
1354                         estats->rx_large++;
1355                 else
1356                         estats->rx_short++;
1357         }
1358         if (status & RXBD_NONOCTET) {
1359                 stats->rx_frame_errors++;
1360                 estats->rx_nonoctet++;
1361         }
1362         if (status & RXBD_CRCERR) {
1363                 estats->rx_crcerr++;
1364                 stats->rx_crc_errors++;
1365         }
1366         if (status & RXBD_OVERRUN) {
1367                 estats->rx_overrun++;
1368                 stats->rx_crc_errors++;
1369         }
1370 }
1371
1372 irqreturn_t gfar_receive(int irq, void *dev_id)
1373 {
1374         struct net_device *dev = (struct net_device *) dev_id;
1375         struct gfar_private *priv = netdev_priv(dev);
1376 #ifdef CONFIG_GFAR_NAPI
1377         u32 tempval;
1378 #else
1379         unsigned long flags;
1380 #endif
1381
1382         /* Clear IEVENT, so rx interrupt isn't called again
1383          * because of this interrupt */
1384         gfar_write(&priv->regs->ievent, IEVENT_RX_MASK);
1385
1386         /* support NAPI */
1387 #ifdef CONFIG_GFAR_NAPI
1388         if (netif_rx_schedule_prep(dev, &priv->napi)) {
1389                 tempval = gfar_read(&priv->regs->imask);
1390                 tempval &= IMASK_RX_DISABLED;
1391                 gfar_write(&priv->regs->imask, tempval);
1392
1393                 __netif_rx_schedule(dev, &priv->napi);
1394         } else {
1395                 if (netif_msg_rx_err(priv))
1396                         printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n",
1397                                 dev->name, gfar_read(&priv->regs->ievent),
1398                                 gfar_read(&priv->regs->imask));
1399         }
1400 #else
1401
1402         spin_lock_irqsave(&priv->rxlock, flags);
1403         gfar_clean_rx_ring(dev, priv->rx_ring_size);
1404
1405         /* If we are coalescing interrupts, update the timer */
1406         /* Otherwise, clear it */
1407         if (priv->rxcoalescing)
1408                 gfar_write(&priv->regs->rxic,
1409                            mk_ic_value(priv->rxcount, priv->rxtime));
1410         else
1411                 gfar_write(&priv->regs->rxic, 0);
1412
1413         spin_unlock_irqrestore(&priv->rxlock, flags);
1414 #endif
1415
1416         return IRQ_HANDLED;
1417 }
1418
1419 static inline int gfar_rx_vlan(struct sk_buff *skb,
1420                 struct vlan_group *vlgrp, unsigned short vlctl)
1421 {
1422 #ifdef CONFIG_GFAR_NAPI
1423         return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl);
1424 #else
1425         return vlan_hwaccel_rx(skb, vlgrp, vlctl);
1426 #endif
1427 }
1428
1429 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
1430 {
1431         /* If valid headers were found, and valid sums
1432          * were verified, then we tell the kernel that no
1433          * checksumming is necessary.  Otherwise, it is */
1434         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
1435                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1436         else
1437                 skb->ip_summed = CHECKSUM_NONE;
1438 }
1439
1440
1441 static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb)
1442 {
1443         struct rxfcb *fcb = (struct rxfcb *)skb->data;
1444
1445         /* Remove the FCB from the skb */
1446         skb_pull(skb, GMAC_FCB_LEN);
1447
1448         return fcb;
1449 }
1450
1451 /* gfar_process_frame() -- handle one incoming packet if skb
1452  * isn't NULL.  */
1453 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
1454                 int length)
1455 {
1456         struct gfar_private *priv = netdev_priv(dev);
1457         struct rxfcb *fcb = NULL;
1458
1459         if (NULL == skb) {
1460                 if (netif_msg_rx_err(priv))
1461                         printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name);
1462                 dev->stats.rx_dropped++;
1463                 priv->extra_stats.rx_skbmissing++;
1464         } else {
1465                 int ret;
1466
1467                 /* Prep the skb for the packet */
1468                 skb_put(skb, length);
1469
1470                 /* Grab the FCB if there is one */
1471                 if (gfar_uses_fcb(priv))
1472                         fcb = gfar_get_fcb(skb);
1473
1474                 /* Remove the padded bytes, if there are any */
1475                 if (priv->padding)
1476                         skb_pull(skb, priv->padding);
1477
1478                 if (priv->rx_csum_enable)
1479                         gfar_rx_checksum(skb, fcb);
1480
1481                 /* Tell the skb what kind of packet this is */
1482                 skb->protocol = eth_type_trans(skb, dev);
1483
1484                 /* Send the packet up the stack */
1485                 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
1486                         ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl);
1487                 else
1488                         ret = RECEIVE(skb);
1489
1490                 if (NET_RX_DROP == ret)
1491                         priv->extra_stats.kernel_dropped++;
1492         }
1493
1494         return 0;
1495 }
1496
1497 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1498  *   until the budget/quota has been reached. Returns the number
1499  *   of frames handled
1500  */
1501 int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
1502 {
1503         struct rxbd8 *bdp;
1504         struct sk_buff *skb;
1505         u16 pkt_len;
1506         int howmany = 0;
1507         struct gfar_private *priv = netdev_priv(dev);
1508
1509         /* Get the first full descriptor */
1510         bdp = priv->cur_rx;
1511
1512         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
1513                 rmb();
1514                 skb = priv->rx_skbuff[priv->skb_currx];
1515
1516                 if (!(bdp->status &
1517                       (RXBD_LARGE | RXBD_SHORT | RXBD_NONOCTET
1518                        | RXBD_CRCERR | RXBD_OVERRUN | RXBD_TRUNCATED))) {
1519                         /* Increment the number of packets */
1520                         dev->stats.rx_packets++;
1521                         howmany++;
1522
1523                         /* Remove the FCS from the packet length */
1524                         pkt_len = bdp->length - 4;
1525
1526                         gfar_process_frame(dev, skb, pkt_len);
1527
1528                         dev->stats.rx_bytes += pkt_len;
1529                 } else {
1530                         count_errors(bdp->status, priv);
1531
1532                         if (skb)
1533                                 dev_kfree_skb_any(skb);
1534
1535                         priv->rx_skbuff[priv->skb_currx] = NULL;
1536                 }
1537
1538                 dev->last_rx = jiffies;
1539
1540                 /* Clear the status flags for this buffer */
1541                 bdp->status &= ~RXBD_STATS;
1542
1543                 /* Add another skb for the future */
1544                 skb = gfar_new_skb(dev, bdp);
1545                 priv->rx_skbuff[priv->skb_currx] = skb;
1546
1547                 /* Update to the next pointer */
1548                 if (bdp->status & RXBD_WRAP)
1549                         bdp = priv->rx_bd_base;
1550                 else
1551                         bdp++;
1552
1553                 /* update to point at the next skb */
1554                 priv->skb_currx =
1555                     (priv->skb_currx +
1556                      1) & RX_RING_MOD_MASK(priv->rx_ring_size);
1557
1558         }
1559
1560         /* Update the current rxbd pointer to be the next one */
1561         priv->cur_rx = bdp;
1562
1563         return howmany;
1564 }
1565
1566 #ifdef CONFIG_GFAR_NAPI
1567 static int gfar_poll(struct napi_struct *napi, int budget)
1568 {
1569         struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
1570         struct net_device *dev = priv->dev;
1571         int howmany;
1572
1573         howmany = gfar_clean_rx_ring(dev, budget);
1574
1575         if (howmany < budget) {
1576                 netif_rx_complete(dev, napi);
1577
1578                 /* Clear the halt bit in RSTAT */
1579                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1580
1581                 gfar_write(&priv->regs->imask, IMASK_DEFAULT);
1582
1583                 /* If we are coalescing interrupts, update the timer */
1584                 /* Otherwise, clear it */
1585                 if (priv->rxcoalescing)
1586                         gfar_write(&priv->regs->rxic,
1587                                    mk_ic_value(priv->rxcount, priv->rxtime));
1588                 else
1589                         gfar_write(&priv->regs->rxic, 0);
1590         }
1591
1592         return howmany;
1593 }
1594 #endif
1595
1596 #ifdef CONFIG_NET_POLL_CONTROLLER
1597 /*
1598  * Polling 'interrupt' - used by things like netconsole to send skbs
1599  * without having to re-enable interrupts. It's not called while
1600  * the interrupt routine is executing.
1601  */
1602 static void gfar_netpoll(struct net_device *dev)
1603 {
1604         struct gfar_private *priv = netdev_priv(dev);
1605
1606         /* If the device has multiple interrupts, run tx/rx */
1607         if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1608                 disable_irq(priv->interruptTransmit);
1609                 disable_irq(priv->interruptReceive);
1610                 disable_irq(priv->interruptError);
1611                 gfar_interrupt(priv->interruptTransmit, dev);
1612                 enable_irq(priv->interruptError);
1613                 enable_irq(priv->interruptReceive);
1614                 enable_irq(priv->interruptTransmit);
1615         } else {
1616                 disable_irq(priv->interruptTransmit);
1617                 gfar_interrupt(priv->interruptTransmit, dev);
1618                 enable_irq(priv->interruptTransmit);
1619         }
1620 }
1621 #endif
1622
1623 /* The interrupt handler for devices with one interrupt */
1624 static irqreturn_t gfar_interrupt(int irq, void *dev_id)
1625 {
1626         struct net_device *dev = dev_id;
1627         struct gfar_private *priv = netdev_priv(dev);
1628
1629         /* Save ievent for future reference */
1630         u32 events = gfar_read(&priv->regs->ievent);
1631
1632         /* Check for reception */
1633         if (events & IEVENT_RX_MASK)
1634                 gfar_receive(irq, dev_id);
1635
1636         /* Check for transmit completion */
1637         if (events & IEVENT_TX_MASK)
1638                 gfar_transmit(irq, dev_id);
1639
1640         /* Check for errors */
1641         if (events & IEVENT_ERR_MASK)
1642                 gfar_error(irq, dev_id);
1643
1644         return IRQ_HANDLED;
1645 }
1646
1647 /* Called every time the controller might need to be made
1648  * aware of new link state.  The PHY code conveys this
1649  * information through variables in the phydev structure, and this
1650  * function converts those variables into the appropriate
1651  * register values, and can bring down the device if needed.
1652  */
1653 static void adjust_link(struct net_device *dev)
1654 {
1655         struct gfar_private *priv = netdev_priv(dev);
1656         struct gfar __iomem *regs = priv->regs;
1657         unsigned long flags;
1658         struct phy_device *phydev = priv->phydev;
1659         int new_state = 0;
1660
1661         spin_lock_irqsave(&priv->txlock, flags);
1662         if (phydev->link) {
1663                 u32 tempval = gfar_read(&regs->maccfg2);
1664                 u32 ecntrl = gfar_read(&regs->ecntrl);
1665
1666                 /* Now we make sure that we can be in full duplex mode.
1667                  * If not, we operate in half-duplex mode. */
1668                 if (phydev->duplex != priv->oldduplex) {
1669                         new_state = 1;
1670                         if (!(phydev->duplex))
1671                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
1672                         else
1673                                 tempval |= MACCFG2_FULL_DUPLEX;
1674
1675                         priv->oldduplex = phydev->duplex;
1676                 }
1677
1678                 if (phydev->speed != priv->oldspeed) {
1679                         new_state = 1;
1680                         switch (phydev->speed) {
1681                         case 1000:
1682                                 tempval =
1683                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1684                                 break;
1685                         case 100:
1686                         case 10:
1687                                 tempval =
1688                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1689
1690                                 /* Reduced mode distinguishes
1691                                  * between 10 and 100 */
1692                                 if (phydev->speed == SPEED_100)
1693                                         ecntrl |= ECNTRL_R100;
1694                                 else
1695                                         ecntrl &= ~(ECNTRL_R100);
1696                                 break;
1697                         default:
1698                                 if (netif_msg_link(priv))
1699                                         printk(KERN_WARNING
1700                                                 "%s: Ack!  Speed (%d) is not 10/100/1000!\n",
1701                                                 dev->name, phydev->speed);
1702                                 break;
1703                         }
1704
1705                         priv->oldspeed = phydev->speed;
1706                 }
1707
1708                 gfar_write(&regs->maccfg2, tempval);
1709                 gfar_write(&regs->ecntrl, ecntrl);
1710
1711                 if (!priv->oldlink) {
1712                         new_state = 1;
1713                         priv->oldlink = 1;
1714                         netif_schedule(dev);
1715                 }
1716         } else if (priv->oldlink) {
1717                 new_state = 1;
1718                 priv->oldlink = 0;
1719                 priv->oldspeed = 0;
1720                 priv->oldduplex = -1;
1721         }
1722
1723         if (new_state && netif_msg_link(priv))
1724                 phy_print_status(phydev);
1725
1726         spin_unlock_irqrestore(&priv->txlock, flags);
1727 }
1728
1729 /* Update the hash table based on the current list of multicast
1730  * addresses we subscribe to.  Also, change the promiscuity of
1731  * the device based on the flags (this function is called
1732  * whenever dev->flags is changed */
1733 static void gfar_set_multi(struct net_device *dev)
1734 {
1735         struct dev_mc_list *mc_ptr;
1736         struct gfar_private *priv = netdev_priv(dev);
1737         struct gfar __iomem *regs = priv->regs;
1738         u32 tempval;
1739
1740         if(dev->flags & IFF_PROMISC) {
1741                 /* Set RCTRL to PROM */
1742                 tempval = gfar_read(&regs->rctrl);
1743                 tempval |= RCTRL_PROM;
1744                 gfar_write(&regs->rctrl, tempval);
1745         } else {
1746                 /* Set RCTRL to not PROM */
1747                 tempval = gfar_read(&regs->rctrl);
1748                 tempval &= ~(RCTRL_PROM);
1749                 gfar_write(&regs->rctrl, tempval);
1750         }
1751
1752         if(dev->flags & IFF_ALLMULTI) {
1753                 /* Set the hash to rx all multicast frames */
1754                 gfar_write(&regs->igaddr0, 0xffffffff);
1755                 gfar_write(&regs->igaddr1, 0xffffffff);
1756                 gfar_write(&regs->igaddr2, 0xffffffff);
1757                 gfar_write(&regs->igaddr3, 0xffffffff);
1758                 gfar_write(&regs->igaddr4, 0xffffffff);
1759                 gfar_write(&regs->igaddr5, 0xffffffff);
1760                 gfar_write(&regs->igaddr6, 0xffffffff);
1761                 gfar_write(&regs->igaddr7, 0xffffffff);
1762                 gfar_write(&regs->gaddr0, 0xffffffff);
1763                 gfar_write(&regs->gaddr1, 0xffffffff);
1764                 gfar_write(&regs->gaddr2, 0xffffffff);
1765                 gfar_write(&regs->gaddr3, 0xffffffff);
1766                 gfar_write(&regs->gaddr4, 0xffffffff);
1767                 gfar_write(&regs->gaddr5, 0xffffffff);
1768                 gfar_write(&regs->gaddr6, 0xffffffff);
1769                 gfar_write(&regs->gaddr7, 0xffffffff);
1770         } else {
1771                 int em_num;
1772                 int idx;
1773
1774                 /* zero out the hash */
1775                 gfar_write(&regs->igaddr0, 0x0);
1776                 gfar_write(&regs->igaddr1, 0x0);
1777                 gfar_write(&regs->igaddr2, 0x0);
1778                 gfar_write(&regs->igaddr3, 0x0);
1779                 gfar_write(&regs->igaddr4, 0x0);
1780                 gfar_write(&regs->igaddr5, 0x0);
1781                 gfar_write(&regs->igaddr6, 0x0);
1782                 gfar_write(&regs->igaddr7, 0x0);
1783                 gfar_write(&regs->gaddr0, 0x0);
1784                 gfar_write(&regs->gaddr1, 0x0);
1785                 gfar_write(&regs->gaddr2, 0x0);
1786                 gfar_write(&regs->gaddr3, 0x0);
1787                 gfar_write(&regs->gaddr4, 0x0);
1788                 gfar_write(&regs->gaddr5, 0x0);
1789                 gfar_write(&regs->gaddr6, 0x0);
1790                 gfar_write(&regs->gaddr7, 0x0);
1791
1792                 /* If we have extended hash tables, we need to
1793                  * clear the exact match registers to prepare for
1794                  * setting them */
1795                 if (priv->extended_hash) {
1796                         em_num = GFAR_EM_NUM + 1;
1797                         gfar_clear_exact_match(dev);
1798                         idx = 1;
1799                 } else {
1800                         idx = 0;
1801                         em_num = 0;
1802                 }
1803
1804                 if(dev->mc_count == 0)
1805                         return;
1806
1807                 /* Parse the list, and set the appropriate bits */
1808                 for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
1809                         if (idx < em_num) {
1810                                 gfar_set_mac_for_addr(dev, idx,
1811                                                 mc_ptr->dmi_addr);
1812                                 idx++;
1813                         } else
1814                                 gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
1815                 }
1816         }
1817
1818         return;
1819 }
1820
1821
1822 /* Clears each of the exact match registers to zero, so they
1823  * don't interfere with normal reception */
1824 static void gfar_clear_exact_match(struct net_device *dev)
1825 {
1826         int idx;
1827         u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
1828
1829         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
1830                 gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
1831 }
1832
1833 /* Set the appropriate hash bit for the given addr */
1834 /* The algorithm works like so:
1835  * 1) Take the Destination Address (ie the multicast address), and
1836  * do a CRC on it (little endian), and reverse the bits of the
1837  * result.
1838  * 2) Use the 8 most significant bits as a hash into a 256-entry
1839  * table.  The table is controlled through 8 32-bit registers:
1840  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
1841  * gaddr7.  This means that the 3 most significant bits in the
1842  * hash index which gaddr register to use, and the 5 other bits
1843  * indicate which bit (assuming an IBM numbering scheme, which
1844  * for PowerPC (tm) is usually the case) in the register holds
1845  * the entry. */
1846 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
1847 {
1848         u32 tempval;
1849         struct gfar_private *priv = netdev_priv(dev);
1850         u32 result = ether_crc(MAC_ADDR_LEN, addr);
1851         int width = priv->hash_width;
1852         u8 whichbit = (result >> (32 - width)) & 0x1f;
1853         u8 whichreg = result >> (32 - width + 5);
1854         u32 value = (1 << (31-whichbit));
1855
1856         tempval = gfar_read(priv->hash_regs[whichreg]);
1857         tempval |= value;
1858         gfar_write(priv->hash_regs[whichreg], tempval);
1859
1860         return;
1861 }
1862
1863
1864 /* There are multiple MAC Address register pairs on some controllers
1865  * This function sets the numth pair to a given address
1866  */
1867 static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
1868 {
1869         struct gfar_private *priv = netdev_priv(dev);
1870         int idx;
1871         char tmpbuf[MAC_ADDR_LEN];
1872         u32 tempval;
1873         u32 __iomem *macptr = &priv->regs->macstnaddr1;
1874
1875         macptr += num*2;
1876
1877         /* Now copy it into the mac registers backwards, cuz */
1878         /* little endian is silly */
1879         for (idx = 0; idx < MAC_ADDR_LEN; idx++)
1880                 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
1881
1882         gfar_write(macptr, *((u32 *) (tmpbuf)));
1883
1884         tempval = *((u32 *) (tmpbuf + 4));
1885
1886         gfar_write(macptr+1, tempval);
1887 }
1888
1889 /* GFAR error interrupt handler */
1890 static irqreturn_t gfar_error(int irq, void *dev_id)
1891 {
1892         struct net_device *dev = dev_id;
1893         struct gfar_private *priv = netdev_priv(dev);
1894
1895         /* Save ievent for future reference */
1896         u32 events = gfar_read(&priv->regs->ievent);
1897
1898         /* Clear IEVENT */
1899         gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK);
1900
1901         /* Hmm... */
1902         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
1903                 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1904                        dev->name, events, gfar_read(&priv->regs->imask));
1905
1906         /* Update the error counters */
1907         if (events & IEVENT_TXE) {
1908                 dev->stats.tx_errors++;
1909
1910                 if (events & IEVENT_LC)
1911                         dev->stats.tx_window_errors++;
1912                 if (events & IEVENT_CRL)
1913                         dev->stats.tx_aborted_errors++;
1914                 if (events & IEVENT_XFUN) {
1915                         if (netif_msg_tx_err(priv))
1916                                 printk(KERN_DEBUG "%s: TX FIFO underrun, "
1917                                        "packet dropped.\n", dev->name);
1918                         dev->stats.tx_dropped++;
1919                         priv->extra_stats.tx_underrun++;
1920
1921                         /* Reactivate the Tx Queues */
1922                         gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
1923                 }
1924                 if (netif_msg_tx_err(priv))
1925                         printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
1926         }
1927         if (events & IEVENT_BSY) {
1928                 dev->stats.rx_errors++;
1929                 priv->extra_stats.rx_bsy++;
1930
1931                 gfar_receive(irq, dev_id);
1932
1933 #ifndef CONFIG_GFAR_NAPI
1934                 /* Clear the halt bit in RSTAT */
1935                 gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
1936 #endif
1937
1938                 if (netif_msg_rx_err(priv))
1939                         printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
1940                                dev->name, gfar_read(&priv->regs->rstat));
1941         }
1942         if (events & IEVENT_BABR) {
1943                 dev->stats.rx_errors++;
1944                 priv->extra_stats.rx_babr++;
1945
1946                 if (netif_msg_rx_err(priv))
1947                         printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
1948         }
1949         if (events & IEVENT_EBERR) {
1950                 priv->extra_stats.eberr++;
1951                 if (netif_msg_rx_err(priv))
1952                         printk(KERN_DEBUG "%s: bus error\n", dev->name);
1953         }
1954         if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
1955                 printk(KERN_DEBUG "%s: control frame\n", dev->name);
1956
1957         if (events & IEVENT_BABT) {
1958                 priv->extra_stats.tx_babt++;
1959                 if (netif_msg_tx_err(priv))
1960                         printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
1961         }
1962         return IRQ_HANDLED;
1963 }
1964
1965 /* Structure for a device driver */
1966 static struct platform_driver gfar_driver = {
1967         .probe = gfar_probe,
1968         .remove = gfar_remove,
1969         .driver = {
1970                 .name = "fsl-gianfar",
1971         },
1972 };
1973
1974 static int __init gfar_init(void)
1975 {
1976         int err = gfar_mdio_init();
1977
1978         if (err)
1979                 return err;
1980
1981         err = platform_driver_register(&gfar_driver);
1982
1983         if (err)
1984                 gfar_mdio_exit();
1985
1986         return err;
1987 }
1988
1989 static void __exit gfar_exit(void)
1990 {
1991         platform_driver_unregister(&gfar_driver);
1992         gfar_mdio_exit();
1993 }
1994
1995 module_init(gfar_init);
1996 module_exit(gfar_exit);
1997