forcedeth bug fix: vitesse phy
[pandora-kernel.git] / drivers / net / forcedeth.c
1 /*
2  * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
3  *
4  * Note: This driver is a cleanroom reimplementation based on reverse
5  *      engineered documentation written by Carl-Daniel Hailfinger
6  *      and Andrew de Quincey.
7  *
8  * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
9  * trademarks of NVIDIA Corporation in the United States and other
10  * countries.
11  *
12  * Copyright (C) 2003,4,5 Manfred Spraul
13  * Copyright (C) 2004 Andrew de Quincey (wol support)
14  * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
15  *              IRQ rate fixes, bigendian fixes, cleanups, verification)
16  * Copyright (c) 2004,5,6 NVIDIA Corporation
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * (at your option) any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
26  * GNU General Public License for more details.
27  *
28  * You should have received a copy of the GNU General Public License
29  * along with this program; if not, write to the Free Software
30  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
31  *
32  * Changelog:
33  *      0.01: 05 Oct 2003: First release that compiles without warnings.
34  *      0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
35  *                         Check all PCI BARs for the register window.
36  *                         udelay added to mii_rw.
37  *      0.03: 06 Oct 2003: Initialize dev->irq.
38  *      0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
39  *      0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
40  *      0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
41  *                         irq mask updated
42  *      0.07: 14 Oct 2003: Further irq mask updates.
43  *      0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
44  *                         added into irq handler, NULL check for drain_ring.
45  *      0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
46  *                         requested interrupt sources.
47  *      0.10: 20 Oct 2003: First cleanup for release.
48  *      0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
49  *                         MAC Address init fix, set_multicast cleanup.
50  *      0.12: 23 Oct 2003: Cleanups for release.
51  *      0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
52  *                         Set link speed correctly. start rx before starting
53  *                         tx (nv_start_rx sets the link speed).
54  *      0.14: 25 Oct 2003: Nic dependant irq mask.
55  *      0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
56  *                         open.
57  *      0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
58  *                         increased to 1628 bytes.
59  *      0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
60  *                         the tx length.
61  *      0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
62  *      0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
63  *                         addresses, really stop rx if already running
64  *                         in nv_start_rx, clean up a bit.
65  *      0.20: 07 Dec 2003: alloc fixes
66  *      0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
67  *      0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
68  *                         on close.
69  *      0.23: 26 Jan 2004: various small cleanups
70  *      0.24: 27 Feb 2004: make driver even less anonymous in backtraces
71  *      0.25: 09 Mar 2004: wol support
72  *      0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
73  *      0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
74  *                         added CK804/MCP04 device IDs, code fixes
75  *                         for registers, link status and other minor fixes.
76  *      0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
77  *      0.29: 31 Aug 2004: Add backup timer for link change notification.
78  *      0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
79  *                         into nv_close, otherwise reenabling for wol can
80  *                         cause DMA to kfree'd memory.
81  *      0.31: 14 Nov 2004: ethtool support for getting/setting link
82  *                         capabilities.
83  *      0.32: 16 Apr 2005: RX_ERROR4 handling added.
84  *      0.33: 16 May 2005: Support for MCP51 added.
85  *      0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
86  *      0.35: 26 Jun 2005: Support for MCP55 added.
87  *      0.36: 28 Jun 2005: Add jumbo frame support.
88  *      0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
89  *      0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
90  *                         per-packet flags.
91  *      0.39: 18 Jul 2005: Add 64bit descriptor support.
92  *      0.40: 19 Jul 2005: Add support for mac address change.
93  *      0.41: 30 Jul 2005: Write back original MAC in nv_close instead
94  *                         of nv_remove
95  *      0.42: 06 Aug 2005: Fix lack of link speed initialization
96  *                         in the second (and later) nv_open call
97  *      0.43: 10 Aug 2005: Add support for tx checksum.
98  *      0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
99  *      0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
100  *      0.46: 20 Oct 2005: Add irq optimization modes.
101  *      0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
102  *      0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
103  *      0.49: 10 Dec 2005: Fix tso for large buffers.
104  *      0.50: 20 Jan 2006: Add 8021pq tagging support.
105  *      0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
106  *      0.52: 20 Jan 2006: Add MSI/MSIX support.
107  *      0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
108  *      0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
109  *      0.55: 22 Mar 2006: Add flow control (pause frame).
110  *      0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
111  *      0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
112  *      0.58: 30 Oct 2006: Added support for sideband management unit.
113  *      0.59: 30 Oct 2006: Added support for recoverable error.
114  *      0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
115  *
116  * Known bugs:
117  * We suspect that on some hardware no TX done interrupts are generated.
118  * This means recovery from netif_stop_queue only happens if the hw timer
119  * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
120  * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
121  * If your hardware reliably generates tx done interrupts, then you can remove
122  * DEV_NEED_TIMERIRQ from the driver_data flags.
123  * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
124  * superfluous timer interrupts from the nic.
125  */
126 #ifdef CONFIG_FORCEDETH_NAPI
127 #define DRIVERNAPI "-NAPI"
128 #else
129 #define DRIVERNAPI
130 #endif
131 #define FORCEDETH_VERSION               "0.60"
132 #define DRV_NAME                        "forcedeth"
133
134 #include <linux/module.h>
135 #include <linux/types.h>
136 #include <linux/pci.h>
137 #include <linux/interrupt.h>
138 #include <linux/netdevice.h>
139 #include <linux/etherdevice.h>
140 #include <linux/delay.h>
141 #include <linux/spinlock.h>
142 #include <linux/ethtool.h>
143 #include <linux/timer.h>
144 #include <linux/skbuff.h>
145 #include <linux/mii.h>
146 #include <linux/random.h>
147 #include <linux/init.h>
148 #include <linux/if_vlan.h>
149 #include <linux/dma-mapping.h>
150
151 #include <asm/irq.h>
152 #include <asm/io.h>
153 #include <asm/uaccess.h>
154 #include <asm/system.h>
155
156 #if 0
157 #define dprintk                 printk
158 #else
159 #define dprintk(x...)           do { } while (0)
160 #endif
161
162
163 /*
164  * Hardware access:
165  */
166
167 #define DEV_NEED_TIMERIRQ       0x0001  /* set the timer irq flag in the irq mask */
168 #define DEV_NEED_LINKTIMER      0x0002  /* poll link settings. Relies on the timer irq */
169 #define DEV_HAS_LARGEDESC       0x0004  /* device supports jumbo frames and needs packet format 2 */
170 #define DEV_HAS_HIGH_DMA        0x0008  /* device supports 64bit dma */
171 #define DEV_HAS_CHECKSUM        0x0010  /* device supports tx and rx checksum offloads */
172 #define DEV_HAS_VLAN            0x0020  /* device supports vlan tagging and striping */
173 #define DEV_HAS_MSI             0x0040  /* device supports MSI */
174 #define DEV_HAS_MSI_X           0x0080  /* device supports MSI-X */
175 #define DEV_HAS_POWER_CNTRL     0x0100  /* device supports power savings */
176 #define DEV_HAS_PAUSEFRAME_TX   0x0200  /* device supports tx pause frames */
177 #define DEV_HAS_STATISTICS_V1   0x0400  /* device supports hw statistics version 1 */
178 #define DEV_HAS_STATISTICS_V2   0x0800  /* device supports hw statistics version 2 */
179 #define DEV_HAS_TEST_EXTENDED   0x1000  /* device supports extended diagnostic test */
180 #define DEV_HAS_MGMT_UNIT       0x2000  /* device supports management unit */
181
182 enum {
183         NvRegIrqStatus = 0x000,
184 #define NVREG_IRQSTAT_MIIEVENT  0x040
185 #define NVREG_IRQSTAT_MASK              0x81ff
186         NvRegIrqMask = 0x004,
187 #define NVREG_IRQ_RX_ERROR              0x0001
188 #define NVREG_IRQ_RX                    0x0002
189 #define NVREG_IRQ_RX_NOBUF              0x0004
190 #define NVREG_IRQ_TX_ERR                0x0008
191 #define NVREG_IRQ_TX_OK                 0x0010
192 #define NVREG_IRQ_TIMER                 0x0020
193 #define NVREG_IRQ_LINK                  0x0040
194 #define NVREG_IRQ_RX_FORCED             0x0080
195 #define NVREG_IRQ_TX_FORCED             0x0100
196 #define NVREG_IRQ_RECOVER_ERROR         0x8000
197 #define NVREG_IRQMASK_THROUGHPUT        0x00df
198 #define NVREG_IRQMASK_CPU               0x0060
199 #define NVREG_IRQ_TX_ALL                (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
200 #define NVREG_IRQ_RX_ALL                (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
201 #define NVREG_IRQ_OTHER                 (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
202
203 #define NVREG_IRQ_UNKNOWN       (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
204                                         NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
205                                         NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
206
207         NvRegUnknownSetupReg6 = 0x008,
208 #define NVREG_UNKSETUP6_VAL             3
209
210 /*
211  * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
212  * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
213  */
214         NvRegPollingInterval = 0x00c,
215 #define NVREG_POLL_DEFAULT_THROUGHPUT   970 /* backup tx cleanup if loop max reached */
216 #define NVREG_POLL_DEFAULT_CPU  13
217         NvRegMSIMap0 = 0x020,
218         NvRegMSIMap1 = 0x024,
219         NvRegMSIIrqMask = 0x030,
220 #define NVREG_MSI_VECTOR_0_ENABLED 0x01
221         NvRegMisc1 = 0x080,
222 #define NVREG_MISC1_PAUSE_TX    0x01
223 #define NVREG_MISC1_HD          0x02
224 #define NVREG_MISC1_FORCE       0x3b0f3c
225
226         NvRegMacReset = 0x3c,
227 #define NVREG_MAC_RESET_ASSERT  0x0F3
228         NvRegTransmitterControl = 0x084,
229 #define NVREG_XMITCTL_START     0x01
230 #define NVREG_XMITCTL_MGMT_ST   0x40000000
231 #define NVREG_XMITCTL_SYNC_MASK         0x000f0000
232 #define NVREG_XMITCTL_SYNC_NOT_READY    0x0
233 #define NVREG_XMITCTL_SYNC_PHY_INIT     0x00040000
234 #define NVREG_XMITCTL_MGMT_SEMA_MASK    0x00000f00
235 #define NVREG_XMITCTL_MGMT_SEMA_FREE    0x0
236 #define NVREG_XMITCTL_HOST_SEMA_MASK    0x0000f000
237 #define NVREG_XMITCTL_HOST_SEMA_ACQ     0x0000f000
238 #define NVREG_XMITCTL_HOST_LOADED       0x00004000
239 #define NVREG_XMITCTL_TX_PATH_EN        0x01000000
240         NvRegTransmitterStatus = 0x088,
241 #define NVREG_XMITSTAT_BUSY     0x01
242
243         NvRegPacketFilterFlags = 0x8c,
244 #define NVREG_PFF_PAUSE_RX      0x08
245 #define NVREG_PFF_ALWAYS        0x7F0000
246 #define NVREG_PFF_PROMISC       0x80
247 #define NVREG_PFF_MYADDR        0x20
248 #define NVREG_PFF_LOOPBACK      0x10
249
250         NvRegOffloadConfig = 0x90,
251 #define NVREG_OFFLOAD_HOMEPHY   0x601
252 #define NVREG_OFFLOAD_NORMAL    RX_NIC_BUFSIZE
253         NvRegReceiverControl = 0x094,
254 #define NVREG_RCVCTL_START      0x01
255 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
256         NvRegReceiverStatus = 0x98,
257 #define NVREG_RCVSTAT_BUSY      0x01
258
259         NvRegRandomSeed = 0x9c,
260 #define NVREG_RNDSEED_MASK      0x00ff
261 #define NVREG_RNDSEED_FORCE     0x7f00
262 #define NVREG_RNDSEED_FORCE2    0x2d00
263 #define NVREG_RNDSEED_FORCE3    0x7400
264
265         NvRegTxDeferral = 0xA0,
266 #define NVREG_TX_DEFERRAL_DEFAULT       0x15050f
267 #define NVREG_TX_DEFERRAL_RGMII_10_100  0x16070f
268 #define NVREG_TX_DEFERRAL_RGMII_1000    0x14050f
269         NvRegRxDeferral = 0xA4,
270 #define NVREG_RX_DEFERRAL_DEFAULT       0x16
271         NvRegMacAddrA = 0xA8,
272         NvRegMacAddrB = 0xAC,
273         NvRegMulticastAddrA = 0xB0,
274 #define NVREG_MCASTADDRA_FORCE  0x01
275         NvRegMulticastAddrB = 0xB4,
276         NvRegMulticastMaskA = 0xB8,
277         NvRegMulticastMaskB = 0xBC,
278
279         NvRegPhyInterface = 0xC0,
280 #define PHY_RGMII               0x10000000
281
282         NvRegTxRingPhysAddr = 0x100,
283         NvRegRxRingPhysAddr = 0x104,
284         NvRegRingSizes = 0x108,
285 #define NVREG_RINGSZ_TXSHIFT 0
286 #define NVREG_RINGSZ_RXSHIFT 16
287         NvRegTransmitPoll = 0x10c,
288 #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
289         NvRegLinkSpeed = 0x110,
290 #define NVREG_LINKSPEED_FORCE 0x10000
291 #define NVREG_LINKSPEED_10      1000
292 #define NVREG_LINKSPEED_100     100
293 #define NVREG_LINKSPEED_1000    50
294 #define NVREG_LINKSPEED_MASK    (0xFFF)
295         NvRegUnknownSetupReg5 = 0x130,
296 #define NVREG_UNKSETUP5_BIT31   (1<<31)
297         NvRegTxWatermark = 0x13c,
298 #define NVREG_TX_WM_DESC1_DEFAULT       0x0200010
299 #define NVREG_TX_WM_DESC2_3_DEFAULT     0x1e08000
300 #define NVREG_TX_WM_DESC2_3_1000        0xfe08000
301         NvRegTxRxControl = 0x144,
302 #define NVREG_TXRXCTL_KICK      0x0001
303 #define NVREG_TXRXCTL_BIT1      0x0002
304 #define NVREG_TXRXCTL_BIT2      0x0004
305 #define NVREG_TXRXCTL_IDLE      0x0008
306 #define NVREG_TXRXCTL_RESET     0x0010
307 #define NVREG_TXRXCTL_RXCHECK   0x0400
308 #define NVREG_TXRXCTL_DESC_1    0
309 #define NVREG_TXRXCTL_DESC_2    0x002100
310 #define NVREG_TXRXCTL_DESC_3    0xc02200
311 #define NVREG_TXRXCTL_VLANSTRIP 0x00040
312 #define NVREG_TXRXCTL_VLANINS   0x00080
313         NvRegTxRingPhysAddrHigh = 0x148,
314         NvRegRxRingPhysAddrHigh = 0x14C,
315         NvRegTxPauseFrame = 0x170,
316 #define NVREG_TX_PAUSEFRAME_DISABLE     0x1ff0080
317 #define NVREG_TX_PAUSEFRAME_ENABLE      0x0c00030
318         NvRegMIIStatus = 0x180,
319 #define NVREG_MIISTAT_ERROR             0x0001
320 #define NVREG_MIISTAT_LINKCHANGE        0x0008
321 #define NVREG_MIISTAT_MASK              0x000f
322 #define NVREG_MIISTAT_MASK2             0x000f
323         NvRegMIIMask = 0x184,
324 #define NVREG_MII_LINKCHANGE            0x0008
325
326         NvRegAdapterControl = 0x188,
327 #define NVREG_ADAPTCTL_START    0x02
328 #define NVREG_ADAPTCTL_LINKUP   0x04
329 #define NVREG_ADAPTCTL_PHYVALID 0x40000
330 #define NVREG_ADAPTCTL_RUNNING  0x100000
331 #define NVREG_ADAPTCTL_PHYSHIFT 24
332         NvRegMIISpeed = 0x18c,
333 #define NVREG_MIISPEED_BIT8     (1<<8)
334 #define NVREG_MIIDELAY  5
335         NvRegMIIControl = 0x190,
336 #define NVREG_MIICTL_INUSE      0x08000
337 #define NVREG_MIICTL_WRITE      0x00400
338 #define NVREG_MIICTL_ADDRSHIFT  5
339         NvRegMIIData = 0x194,
340         NvRegWakeUpFlags = 0x200,
341 #define NVREG_WAKEUPFLAGS_VAL           0x7770
342 #define NVREG_WAKEUPFLAGS_BUSYSHIFT     24
343 #define NVREG_WAKEUPFLAGS_ENABLESHIFT   16
344 #define NVREG_WAKEUPFLAGS_D3SHIFT       12
345 #define NVREG_WAKEUPFLAGS_D2SHIFT       8
346 #define NVREG_WAKEUPFLAGS_D1SHIFT       4
347 #define NVREG_WAKEUPFLAGS_D0SHIFT       0
348 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT         0x01
349 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT      0x02
350 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE     0x04
351 #define NVREG_WAKEUPFLAGS_ENABLE        0x1111
352
353         NvRegPatternCRC = 0x204,
354         NvRegPatternMask = 0x208,
355         NvRegPowerCap = 0x268,
356 #define NVREG_POWERCAP_D3SUPP   (1<<30)
357 #define NVREG_POWERCAP_D2SUPP   (1<<26)
358 #define NVREG_POWERCAP_D1SUPP   (1<<25)
359         NvRegPowerState = 0x26c,
360 #define NVREG_POWERSTATE_POWEREDUP      0x8000
361 #define NVREG_POWERSTATE_VALID          0x0100
362 #define NVREG_POWERSTATE_MASK           0x0003
363 #define NVREG_POWERSTATE_D0             0x0000
364 #define NVREG_POWERSTATE_D1             0x0001
365 #define NVREG_POWERSTATE_D2             0x0002
366 #define NVREG_POWERSTATE_D3             0x0003
367         NvRegTxCnt = 0x280,
368         NvRegTxZeroReXmt = 0x284,
369         NvRegTxOneReXmt = 0x288,
370         NvRegTxManyReXmt = 0x28c,
371         NvRegTxLateCol = 0x290,
372         NvRegTxUnderflow = 0x294,
373         NvRegTxLossCarrier = 0x298,
374         NvRegTxExcessDef = 0x29c,
375         NvRegTxRetryErr = 0x2a0,
376         NvRegRxFrameErr = 0x2a4,
377         NvRegRxExtraByte = 0x2a8,
378         NvRegRxLateCol = 0x2ac,
379         NvRegRxRunt = 0x2b0,
380         NvRegRxFrameTooLong = 0x2b4,
381         NvRegRxOverflow = 0x2b8,
382         NvRegRxFCSErr = 0x2bc,
383         NvRegRxFrameAlignErr = 0x2c0,
384         NvRegRxLenErr = 0x2c4,
385         NvRegRxUnicast = 0x2c8,
386         NvRegRxMulticast = 0x2cc,
387         NvRegRxBroadcast = 0x2d0,
388         NvRegTxDef = 0x2d4,
389         NvRegTxFrame = 0x2d8,
390         NvRegRxCnt = 0x2dc,
391         NvRegTxPause = 0x2e0,
392         NvRegRxPause = 0x2e4,
393         NvRegRxDropFrame = 0x2e8,
394         NvRegVlanControl = 0x300,
395 #define NVREG_VLANCONTROL_ENABLE        0x2000
396         NvRegMSIXMap0 = 0x3e0,
397         NvRegMSIXMap1 = 0x3e4,
398         NvRegMSIXIrqStatus = 0x3f0,
399
400         NvRegPowerState2 = 0x600,
401 #define NVREG_POWERSTATE2_POWERUP_MASK          0x0F11
402 #define NVREG_POWERSTATE2_POWERUP_REV_A3        0x0001
403 };
404
405 /* Big endian: should work, but is untested */
406 struct ring_desc {
407         __le32 buf;
408         __le32 flaglen;
409 };
410
411 struct ring_desc_ex {
412         __le32 bufhigh;
413         __le32 buflow;
414         __le32 txvlan;
415         __le32 flaglen;
416 };
417
418 union ring_type {
419         struct ring_desc* orig;
420         struct ring_desc_ex* ex;
421 };
422
423 #define FLAG_MASK_V1 0xffff0000
424 #define FLAG_MASK_V2 0xffffc000
425 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
426 #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
427
428 #define NV_TX_LASTPACKET        (1<<16)
429 #define NV_TX_RETRYERROR        (1<<19)
430 #define NV_TX_FORCED_INTERRUPT  (1<<24)
431 #define NV_TX_DEFERRED          (1<<26)
432 #define NV_TX_CARRIERLOST       (1<<27)
433 #define NV_TX_LATECOLLISION     (1<<28)
434 #define NV_TX_UNDERFLOW         (1<<29)
435 #define NV_TX_ERROR             (1<<30)
436 #define NV_TX_VALID             (1<<31)
437
438 #define NV_TX2_LASTPACKET       (1<<29)
439 #define NV_TX2_RETRYERROR       (1<<18)
440 #define NV_TX2_FORCED_INTERRUPT (1<<30)
441 #define NV_TX2_DEFERRED         (1<<25)
442 #define NV_TX2_CARRIERLOST      (1<<26)
443 #define NV_TX2_LATECOLLISION    (1<<27)
444 #define NV_TX2_UNDERFLOW        (1<<28)
445 /* error and valid are the same for both */
446 #define NV_TX2_ERROR            (1<<30)
447 #define NV_TX2_VALID            (1<<31)
448 #define NV_TX2_TSO              (1<<28)
449 #define NV_TX2_TSO_SHIFT        14
450 #define NV_TX2_TSO_MAX_SHIFT    14
451 #define NV_TX2_TSO_MAX_SIZE     (1<<NV_TX2_TSO_MAX_SHIFT)
452 #define NV_TX2_CHECKSUM_L3      (1<<27)
453 #define NV_TX2_CHECKSUM_L4      (1<<26)
454
455 #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
456
457 #define NV_RX_DESCRIPTORVALID   (1<<16)
458 #define NV_RX_MISSEDFRAME       (1<<17)
459 #define NV_RX_SUBSTRACT1        (1<<18)
460 #define NV_RX_ERROR1            (1<<23)
461 #define NV_RX_ERROR2            (1<<24)
462 #define NV_RX_ERROR3            (1<<25)
463 #define NV_RX_ERROR4            (1<<26)
464 #define NV_RX_CRCERR            (1<<27)
465 #define NV_RX_OVERFLOW          (1<<28)
466 #define NV_RX_FRAMINGERR        (1<<29)
467 #define NV_RX_ERROR             (1<<30)
468 #define NV_RX_AVAIL             (1<<31)
469
470 #define NV_RX2_CHECKSUMMASK     (0x1C000000)
471 #define NV_RX2_CHECKSUMOK1      (0x10000000)
472 #define NV_RX2_CHECKSUMOK2      (0x14000000)
473 #define NV_RX2_CHECKSUMOK3      (0x18000000)
474 #define NV_RX2_DESCRIPTORVALID  (1<<29)
475 #define NV_RX2_SUBSTRACT1       (1<<25)
476 #define NV_RX2_ERROR1           (1<<18)
477 #define NV_RX2_ERROR2           (1<<19)
478 #define NV_RX2_ERROR3           (1<<20)
479 #define NV_RX2_ERROR4           (1<<21)
480 #define NV_RX2_CRCERR           (1<<22)
481 #define NV_RX2_OVERFLOW         (1<<23)
482 #define NV_RX2_FRAMINGERR       (1<<24)
483 /* error and avail are the same for both */
484 #define NV_RX2_ERROR            (1<<30)
485 #define NV_RX2_AVAIL            (1<<31)
486
487 #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
488 #define NV_RX3_VLAN_TAG_MASK    (0x0000FFFF)
489
490 /* Miscelaneous hardware related defines: */
491 #define NV_PCI_REGSZ_VER1       0x270
492 #define NV_PCI_REGSZ_VER2       0x2d4
493 #define NV_PCI_REGSZ_VER3       0x604
494
495 /* various timeout delays: all in usec */
496 #define NV_TXRX_RESET_DELAY     4
497 #define NV_TXSTOP_DELAY1        10
498 #define NV_TXSTOP_DELAY1MAX     500000
499 #define NV_TXSTOP_DELAY2        100
500 #define NV_RXSTOP_DELAY1        10
501 #define NV_RXSTOP_DELAY1MAX     500000
502 #define NV_RXSTOP_DELAY2        100
503 #define NV_SETUP5_DELAY         5
504 #define NV_SETUP5_DELAYMAX      50000
505 #define NV_POWERUP_DELAY        5
506 #define NV_POWERUP_DELAYMAX     5000
507 #define NV_MIIBUSY_DELAY        50
508 #define NV_MIIPHY_DELAY 10
509 #define NV_MIIPHY_DELAYMAX      10000
510 #define NV_MAC_RESET_DELAY      64
511
512 #define NV_WAKEUPPATTERNS       5
513 #define NV_WAKEUPMASKENTRIES    4
514
515 /* General driver defaults */
516 #define NV_WATCHDOG_TIMEO       (5*HZ)
517
518 #define RX_RING_DEFAULT         128
519 #define TX_RING_DEFAULT         256
520 #define RX_RING_MIN             128
521 #define TX_RING_MIN             64
522 #define RING_MAX_DESC_VER_1     1024
523 #define RING_MAX_DESC_VER_2_3   16384
524
525 /* rx/tx mac addr + type + vlan + align + slack*/
526 #define NV_RX_HEADERS           (64)
527 /* even more slack. */
528 #define NV_RX_ALLOC_PAD         (64)
529
530 /* maximum mtu size */
531 #define NV_PKTLIMIT_1   ETH_DATA_LEN    /* hard limit not known */
532 #define NV_PKTLIMIT_2   9100    /* Actual limit according to NVidia: 9202 */
533
534 #define OOM_REFILL      (1+HZ/20)
535 #define POLL_WAIT       (1+HZ/100)
536 #define LINK_TIMEOUT    (3*HZ)
537 #define STATS_INTERVAL  (10*HZ)
538
539 /*
540  * desc_ver values:
541  * The nic supports three different descriptor types:
542  * - DESC_VER_1: Original
543  * - DESC_VER_2: support for jumbo frames.
544  * - DESC_VER_3: 64-bit format.
545  */
546 #define DESC_VER_1      1
547 #define DESC_VER_2      2
548 #define DESC_VER_3      3
549
550 /* PHY defines */
551 #define PHY_OUI_MARVELL 0x5043
552 #define PHY_OUI_CICADA  0x03f1
553 #define PHY_OUI_VITESSE 0x01c1
554 #define PHYID1_OUI_MASK 0x03ff
555 #define PHYID1_OUI_SHFT 6
556 #define PHYID2_OUI_MASK 0xfc00
557 #define PHYID2_OUI_SHFT 10
558 #define PHYID2_MODEL_MASK               0x03f0
559 #define PHY_MODEL_MARVELL_E3016         0x220
560 #define PHY_MARVELL_E3016_INITMASK      0x0300
561 #define PHY_CICADA_INIT1        0x0f000
562 #define PHY_CICADA_INIT2        0x0e00
563 #define PHY_CICADA_INIT3        0x01000
564 #define PHY_CICADA_INIT4        0x0200
565 #define PHY_CICADA_INIT5        0x0004
566 #define PHY_CICADA_INIT6        0x02000
567 #define PHY_VITESSE_INIT_REG1   0x1f
568 #define PHY_VITESSE_INIT_REG2   0x10
569 #define PHY_VITESSE_INIT_REG3   0x11
570 #define PHY_VITESSE_INIT_REG4   0x12
571 #define PHY_VITESSE_INIT_MSK1   0xc
572 #define PHY_VITESSE_INIT_MSK2   0x0180
573 #define PHY_VITESSE_INIT1       0x52b5
574 #define PHY_VITESSE_INIT2       0xaf8a
575 #define PHY_VITESSE_INIT3       0x8
576 #define PHY_VITESSE_INIT4       0x8f8a
577 #define PHY_VITESSE_INIT5       0xaf86
578 #define PHY_VITESSE_INIT6       0x8f86
579 #define PHY_VITESSE_INIT7       0xaf82
580 #define PHY_VITESSE_INIT8       0x0100
581 #define PHY_VITESSE_INIT9       0x8f82
582 #define PHY_VITESSE_INIT10      0x0
583
584 #define PHY_GIGABIT     0x0100
585
586 #define PHY_TIMEOUT     0x1
587 #define PHY_ERROR       0x2
588
589 #define PHY_100 0x1
590 #define PHY_1000        0x2
591 #define PHY_HALF        0x100
592
593 #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
594 #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
595 #define NV_PAUSEFRAME_RX_ENABLE  0x0004
596 #define NV_PAUSEFRAME_TX_ENABLE  0x0008
597 #define NV_PAUSEFRAME_RX_REQ     0x0010
598 #define NV_PAUSEFRAME_TX_REQ     0x0020
599 #define NV_PAUSEFRAME_AUTONEG    0x0040
600
601 /* MSI/MSI-X defines */
602 #define NV_MSI_X_MAX_VECTORS  8
603 #define NV_MSI_X_VECTORS_MASK 0x000f
604 #define NV_MSI_CAPABLE        0x0010
605 #define NV_MSI_X_CAPABLE      0x0020
606 #define NV_MSI_ENABLED        0x0040
607 #define NV_MSI_X_ENABLED      0x0080
608
609 #define NV_MSI_X_VECTOR_ALL   0x0
610 #define NV_MSI_X_VECTOR_RX    0x0
611 #define NV_MSI_X_VECTOR_TX    0x1
612 #define NV_MSI_X_VECTOR_OTHER 0x2
613
614 /* statistics */
615 struct nv_ethtool_str {
616         char name[ETH_GSTRING_LEN];
617 };
618
619 static const struct nv_ethtool_str nv_estats_str[] = {
620         { "tx_bytes" },
621         { "tx_zero_rexmt" },
622         { "tx_one_rexmt" },
623         { "tx_many_rexmt" },
624         { "tx_late_collision" },
625         { "tx_fifo_errors" },
626         { "tx_carrier_errors" },
627         { "tx_excess_deferral" },
628         { "tx_retry_error" },
629         { "rx_frame_error" },
630         { "rx_extra_byte" },
631         { "rx_late_collision" },
632         { "rx_runt" },
633         { "rx_frame_too_long" },
634         { "rx_over_errors" },
635         { "rx_crc_errors" },
636         { "rx_frame_align_error" },
637         { "rx_length_error" },
638         { "rx_unicast" },
639         { "rx_multicast" },
640         { "rx_broadcast" },
641         { "rx_packets" },
642         { "rx_errors_total" },
643         { "tx_errors_total" },
644
645         /* version 2 stats */
646         { "tx_deferral" },
647         { "tx_packets" },
648         { "rx_bytes" },
649         { "tx_pause" },
650         { "rx_pause" },
651         { "rx_drop_frame" }
652 };
653
654 struct nv_ethtool_stats {
655         u64 tx_bytes;
656         u64 tx_zero_rexmt;
657         u64 tx_one_rexmt;
658         u64 tx_many_rexmt;
659         u64 tx_late_collision;
660         u64 tx_fifo_errors;
661         u64 tx_carrier_errors;
662         u64 tx_excess_deferral;
663         u64 tx_retry_error;
664         u64 rx_frame_error;
665         u64 rx_extra_byte;
666         u64 rx_late_collision;
667         u64 rx_runt;
668         u64 rx_frame_too_long;
669         u64 rx_over_errors;
670         u64 rx_crc_errors;
671         u64 rx_frame_align_error;
672         u64 rx_length_error;
673         u64 rx_unicast;
674         u64 rx_multicast;
675         u64 rx_broadcast;
676         u64 rx_packets;
677         u64 rx_errors_total;
678         u64 tx_errors_total;
679
680         /* version 2 stats */
681         u64 tx_deferral;
682         u64 tx_packets;
683         u64 rx_bytes;
684         u64 tx_pause;
685         u64 rx_pause;
686         u64 rx_drop_frame;
687 };
688
689 #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
690 #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
691
692 /* diagnostics */
693 #define NV_TEST_COUNT_BASE 3
694 #define NV_TEST_COUNT_EXTENDED 4
695
696 static const struct nv_ethtool_str nv_etests_str[] = {
697         { "link      (online/offline)" },
698         { "register  (offline)       " },
699         { "interrupt (offline)       " },
700         { "loopback  (offline)       " }
701 };
702
703 struct register_test {
704         __le32 reg;
705         __le32 mask;
706 };
707
708 static const struct register_test nv_registers_test[] = {
709         { NvRegUnknownSetupReg6, 0x01 },
710         { NvRegMisc1, 0x03c },
711         { NvRegOffloadConfig, 0x03ff },
712         { NvRegMulticastAddrA, 0xffffffff },
713         { NvRegTxWatermark, 0x0ff },
714         { NvRegWakeUpFlags, 0x07777 },
715         { 0,0 }
716 };
717
718 struct nv_skb_map {
719         struct sk_buff *skb;
720         dma_addr_t dma;
721         unsigned int dma_len;
722 };
723
724 /*
725  * SMP locking:
726  * All hardware access under dev->priv->lock, except the performance
727  * critical parts:
728  * - rx is (pseudo-) lockless: it relies on the single-threading provided
729  *      by the arch code for interrupts.
730  * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
731  *      needs dev->priv->lock :-(
732  * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
733  */
734
735 /* in dev: base, irq */
736 struct fe_priv {
737         spinlock_t lock;
738
739         /* General data:
740          * Locking: spin_lock(&np->lock); */
741         struct net_device_stats stats;
742         struct nv_ethtool_stats estats;
743         int in_shutdown;
744         u32 linkspeed;
745         int duplex;
746         int autoneg;
747         int fixed_mode;
748         int phyaddr;
749         int wolenabled;
750         unsigned int phy_oui;
751         unsigned int phy_model;
752         u16 gigabit;
753         int intr_test;
754         int recover_error;
755
756         /* General data: RO fields */
757         dma_addr_t ring_addr;
758         struct pci_dev *pci_dev;
759         u32 orig_mac[2];
760         u32 irqmask;
761         u32 desc_ver;
762         u32 txrxctl_bits;
763         u32 vlanctl_bits;
764         u32 driver_data;
765         u32 register_size;
766         int rx_csum;
767         u32 mac_in_use;
768
769         void __iomem *base;
770
771         /* rx specific fields.
772          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
773          */
774         union ring_type get_rx, put_rx, first_rx, last_rx;
775         struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
776         struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
777         struct nv_skb_map *rx_skb;
778
779         union ring_type rx_ring;
780         unsigned int rx_buf_sz;
781         unsigned int pkt_limit;
782         struct timer_list oom_kick;
783         struct timer_list nic_poll;
784         struct timer_list stats_poll;
785         u32 nic_poll_irq;
786         int rx_ring_size;
787
788         /* media detection workaround.
789          * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
790          */
791         int need_linktimer;
792         unsigned long link_timeout;
793         /*
794          * tx specific fields.
795          */
796         union ring_type get_tx, put_tx, first_tx, last_tx;
797         struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
798         struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
799         struct nv_skb_map *tx_skb;
800
801         union ring_type tx_ring;
802         u32 tx_flags;
803         int tx_ring_size;
804         int tx_stop;
805
806         /* vlan fields */
807         struct vlan_group *vlangrp;
808
809         /* msi/msi-x fields */
810         u32 msi_flags;
811         struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
812
813         /* flow control */
814         u32 pause_flags;
815 };
816
817 /*
818  * Maximum number of loops until we assume that a bit in the irq mask
819  * is stuck. Overridable with module param.
820  */
821 static int max_interrupt_work = 5;
822
823 /*
824  * Optimization can be either throuput mode or cpu mode
825  *
826  * Throughput Mode: Every tx and rx packet will generate an interrupt.
827  * CPU Mode: Interrupts are controlled by a timer.
828  */
829 enum {
830         NV_OPTIMIZATION_MODE_THROUGHPUT,
831         NV_OPTIMIZATION_MODE_CPU
832 };
833 static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
834
835 /*
836  * Poll interval for timer irq
837  *
838  * This interval determines how frequent an interrupt is generated.
839  * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
840  * Min = 0, and Max = 65535
841  */
842 static int poll_interval = -1;
843
844 /*
845  * MSI interrupts
846  */
847 enum {
848         NV_MSI_INT_DISABLED,
849         NV_MSI_INT_ENABLED
850 };
851 static int msi = NV_MSI_INT_ENABLED;
852
853 /*
854  * MSIX interrupts
855  */
856 enum {
857         NV_MSIX_INT_DISABLED,
858         NV_MSIX_INT_ENABLED
859 };
860 static int msix = NV_MSIX_INT_DISABLED;
861
862 /*
863  * DMA 64bit
864  */
865 enum {
866         NV_DMA_64BIT_DISABLED,
867         NV_DMA_64BIT_ENABLED
868 };
869 static int dma_64bit = NV_DMA_64BIT_ENABLED;
870
871 static inline struct fe_priv *get_nvpriv(struct net_device *dev)
872 {
873         return netdev_priv(dev);
874 }
875
876 static inline u8 __iomem *get_hwbase(struct net_device *dev)
877 {
878         return ((struct fe_priv *)netdev_priv(dev))->base;
879 }
880
881 static inline void pci_push(u8 __iomem *base)
882 {
883         /* force out pending posted writes */
884         readl(base);
885 }
886
887 static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
888 {
889         return le32_to_cpu(prd->flaglen)
890                 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
891 }
892
893 static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
894 {
895         return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
896 }
897
898 static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
899                                 int delay, int delaymax, const char *msg)
900 {
901         u8 __iomem *base = get_hwbase(dev);
902
903         pci_push(base);
904         do {
905                 udelay(delay);
906                 delaymax -= delay;
907                 if (delaymax < 0) {
908                         if (msg)
909                                 printk(msg);
910                         return 1;
911                 }
912         } while ((readl(base + offset) & mask) != target);
913         return 0;
914 }
915
916 #define NV_SETUP_RX_RING 0x01
917 #define NV_SETUP_TX_RING 0x02
918
919 static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
920 {
921         struct fe_priv *np = get_nvpriv(dev);
922         u8 __iomem *base = get_hwbase(dev);
923
924         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
925                 if (rxtx_flags & NV_SETUP_RX_RING) {
926                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
927                 }
928                 if (rxtx_flags & NV_SETUP_TX_RING) {
929                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
930                 }
931         } else {
932                 if (rxtx_flags & NV_SETUP_RX_RING) {
933                         writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
934                         writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
935                 }
936                 if (rxtx_flags & NV_SETUP_TX_RING) {
937                         writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
938                         writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
939                 }
940         }
941 }
942
943 static void free_rings(struct net_device *dev)
944 {
945         struct fe_priv *np = get_nvpriv(dev);
946
947         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
948                 if (np->rx_ring.orig)
949                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
950                                             np->rx_ring.orig, np->ring_addr);
951         } else {
952                 if (np->rx_ring.ex)
953                         pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
954                                             np->rx_ring.ex, np->ring_addr);
955         }
956         if (np->rx_skb)
957                 kfree(np->rx_skb);
958         if (np->tx_skb)
959                 kfree(np->tx_skb);
960 }
961
962 static int using_multi_irqs(struct net_device *dev)
963 {
964         struct fe_priv *np = get_nvpriv(dev);
965
966         if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
967             ((np->msi_flags & NV_MSI_X_ENABLED) &&
968              ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
969                 return 0;
970         else
971                 return 1;
972 }
973
974 static void nv_enable_irq(struct net_device *dev)
975 {
976         struct fe_priv *np = get_nvpriv(dev);
977
978         if (!using_multi_irqs(dev)) {
979                 if (np->msi_flags & NV_MSI_X_ENABLED)
980                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
981                 else
982                         enable_irq(dev->irq);
983         } else {
984                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
985                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
986                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
987         }
988 }
989
990 static void nv_disable_irq(struct net_device *dev)
991 {
992         struct fe_priv *np = get_nvpriv(dev);
993
994         if (!using_multi_irqs(dev)) {
995                 if (np->msi_flags & NV_MSI_X_ENABLED)
996                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
997                 else
998                         disable_irq(dev->irq);
999         } else {
1000                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1001                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
1002                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
1003         }
1004 }
1005
1006 /* In MSIX mode, a write to irqmask behaves as XOR */
1007 static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
1008 {
1009         u8 __iomem *base = get_hwbase(dev);
1010
1011         writel(mask, base + NvRegIrqMask);
1012 }
1013
1014 static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
1015 {
1016         struct fe_priv *np = get_nvpriv(dev);
1017         u8 __iomem *base = get_hwbase(dev);
1018
1019         if (np->msi_flags & NV_MSI_X_ENABLED) {
1020                 writel(mask, base + NvRegIrqMask);
1021         } else {
1022                 if (np->msi_flags & NV_MSI_ENABLED)
1023                         writel(0, base + NvRegMSIIrqMask);
1024                 writel(0, base + NvRegIrqMask);
1025         }
1026 }
1027
1028 #define MII_READ        (-1)
1029 /* mii_rw: read/write a register on the PHY.
1030  *
1031  * Caller must guarantee serialization
1032  */
1033 static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
1034 {
1035         u8 __iomem *base = get_hwbase(dev);
1036         u32 reg;
1037         int retval;
1038
1039         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
1040
1041         reg = readl(base + NvRegMIIControl);
1042         if (reg & NVREG_MIICTL_INUSE) {
1043                 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
1044                 udelay(NV_MIIBUSY_DELAY);
1045         }
1046
1047         reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
1048         if (value != MII_READ) {
1049                 writel(value, base + NvRegMIIData);
1050                 reg |= NVREG_MIICTL_WRITE;
1051         }
1052         writel(reg, base + NvRegMIIControl);
1053
1054         if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
1055                         NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
1056                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
1057                                 dev->name, miireg, addr);
1058                 retval = -1;
1059         } else if (value != MII_READ) {
1060                 /* it was a write operation - fewer failures are detectable */
1061                 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
1062                                 dev->name, value, miireg, addr);
1063                 retval = 0;
1064         } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
1065                 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
1066                                 dev->name, miireg, addr);
1067                 retval = -1;
1068         } else {
1069                 retval = readl(base + NvRegMIIData);
1070                 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
1071                                 dev->name, miireg, addr, retval);
1072         }
1073
1074         return retval;
1075 }
1076
1077 static int phy_reset(struct net_device *dev, u32 bmcr_setup)
1078 {
1079         struct fe_priv *np = netdev_priv(dev);
1080         u32 miicontrol;
1081         unsigned int tries = 0;
1082
1083         miicontrol = BMCR_RESET | bmcr_setup;
1084         if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
1085                 return -1;
1086         }
1087
1088         /* wait for 500ms */
1089         msleep(500);
1090
1091         /* must wait till reset is deasserted */
1092         while (miicontrol & BMCR_RESET) {
1093                 msleep(10);
1094                 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1095                 /* FIXME: 100 tries seem excessive */
1096                 if (tries++ > 100)
1097                         return -1;
1098         }
1099         return 0;
1100 }
1101
1102 static int phy_init(struct net_device *dev)
1103 {
1104         struct fe_priv *np = get_nvpriv(dev);
1105         u8 __iomem *base = get_hwbase(dev);
1106         u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
1107
1108         /* phy errata for E3016 phy */
1109         if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
1110                 reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1111                 reg &= ~PHY_MARVELL_E3016_INITMASK;
1112                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
1113                         printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
1114                         return PHY_ERROR;
1115                 }
1116         }
1117
1118         /* set advertise register */
1119         reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
1120         reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
1121         if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
1122                 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
1123                 return PHY_ERROR;
1124         }
1125
1126         /* get phy interface type */
1127         phyinterface = readl(base + NvRegPhyInterface);
1128
1129         /* see if gigabit phy */
1130         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
1131         if (mii_status & PHY_GIGABIT) {
1132                 np->gigabit = PHY_GIGABIT;
1133                 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
1134                 mii_control_1000 &= ~ADVERTISE_1000HALF;
1135                 if (phyinterface & PHY_RGMII)
1136                         mii_control_1000 |= ADVERTISE_1000FULL;
1137                 else
1138                         mii_control_1000 &= ~ADVERTISE_1000FULL;
1139
1140                 if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
1141                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1142                         return PHY_ERROR;
1143                 }
1144         }
1145         else
1146                 np->gigabit = 0;
1147
1148         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1149         mii_control |= BMCR_ANENABLE;
1150
1151         /* reset the phy
1152          * (certain phys need bmcr to be setup with reset)
1153          */
1154         if (phy_reset(dev, mii_control)) {
1155                 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
1156                 return PHY_ERROR;
1157         }
1158
1159         /* phy vendor specific configuration */
1160         if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
1161                 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
1162                 phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
1163                 phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
1164                 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
1165                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1166                         return PHY_ERROR;
1167                 }
1168                 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
1169                 phy_reserved |= PHY_CICADA_INIT5;
1170                 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
1171                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1172                         return PHY_ERROR;
1173                 }
1174         }
1175         if (np->phy_oui == PHY_OUI_CICADA) {
1176                 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
1177                 phy_reserved |= PHY_CICADA_INIT6;
1178                 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
1179                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1180                         return PHY_ERROR;
1181                 }
1182         }
1183         if (np->phy_oui == PHY_OUI_VITESSE) {
1184                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
1185                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1186                         return PHY_ERROR;
1187                 }
1188                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
1189                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1190                         return PHY_ERROR;
1191                 }
1192                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1193                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1194                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1195                         return PHY_ERROR;
1196                 }
1197                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1198                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1199                 phy_reserved |= PHY_VITESSE_INIT3;
1200                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1201                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1202                         return PHY_ERROR;
1203                 }
1204                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
1205                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1206                         return PHY_ERROR;
1207                 }
1208                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
1209                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1210                         return PHY_ERROR;
1211                 }
1212                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1213                 phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
1214                 phy_reserved |= PHY_VITESSE_INIT3;
1215                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1216                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1217                         return PHY_ERROR;
1218                 }
1219                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1220                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1221                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1222                         return PHY_ERROR;
1223                 }
1224                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
1225                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1226                         return PHY_ERROR;
1227                 }
1228                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
1229                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1230                         return PHY_ERROR;
1231                 }
1232                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
1233                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
1234                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1235                         return PHY_ERROR;
1236                 }
1237                 phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
1238                 phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
1239                 phy_reserved |= PHY_VITESSE_INIT8;
1240                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
1241                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1242                         return PHY_ERROR;
1243                 }
1244                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
1245                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1246                         return PHY_ERROR;
1247                 }
1248                 if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
1249                         printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
1250                         return PHY_ERROR;
1251                 }
1252         }
1253         /* some phys clear out pause advertisment on reset, set it back */
1254         mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
1255
1256         /* restart auto negotiation */
1257         mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
1258         mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
1259         if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
1260                 return PHY_ERROR;
1261         }
1262
1263         return 0;
1264 }
1265
1266 static void nv_start_rx(struct net_device *dev)
1267 {
1268         struct fe_priv *np = netdev_priv(dev);
1269         u8 __iomem *base = get_hwbase(dev);
1270         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1271
1272         dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
1273         /* Already running? Stop it. */
1274         if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
1275                 rx_ctrl &= ~NVREG_RCVCTL_START;
1276                 writel(rx_ctrl, base + NvRegReceiverControl);
1277                 pci_push(base);
1278         }
1279         writel(np->linkspeed, base + NvRegLinkSpeed);
1280         pci_push(base);
1281         rx_ctrl |= NVREG_RCVCTL_START;
1282         if (np->mac_in_use)
1283                 rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
1284         writel(rx_ctrl, base + NvRegReceiverControl);
1285         dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
1286                                 dev->name, np->duplex, np->linkspeed);
1287         pci_push(base);
1288 }
1289
1290 static void nv_stop_rx(struct net_device *dev)
1291 {
1292         struct fe_priv *np = netdev_priv(dev);
1293         u8 __iomem *base = get_hwbase(dev);
1294         u32 rx_ctrl = readl(base + NvRegReceiverControl);
1295
1296         dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
1297         if (!np->mac_in_use)
1298                 rx_ctrl &= ~NVREG_RCVCTL_START;
1299         else
1300                 rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
1301         writel(rx_ctrl, base + NvRegReceiverControl);
1302         reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
1303                         NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
1304                         KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
1305
1306         udelay(NV_RXSTOP_DELAY2);
1307         if (!np->mac_in_use)
1308                 writel(0, base + NvRegLinkSpeed);
1309 }
1310
1311 static void nv_start_tx(struct net_device *dev)
1312 {
1313         struct fe_priv *np = netdev_priv(dev);
1314         u8 __iomem *base = get_hwbase(dev);
1315         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1316
1317         dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
1318         tx_ctrl |= NVREG_XMITCTL_START;
1319         if (np->mac_in_use)
1320                 tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
1321         writel(tx_ctrl, base + NvRegTransmitterControl);
1322         pci_push(base);
1323 }
1324
1325 static void nv_stop_tx(struct net_device *dev)
1326 {
1327         struct fe_priv *np = netdev_priv(dev);
1328         u8 __iomem *base = get_hwbase(dev);
1329         u32 tx_ctrl = readl(base + NvRegTransmitterControl);
1330
1331         dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
1332         if (!np->mac_in_use)
1333                 tx_ctrl &= ~NVREG_XMITCTL_START;
1334         else
1335                 tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
1336         writel(tx_ctrl, base + NvRegTransmitterControl);
1337         reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
1338                         NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
1339                         KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
1340
1341         udelay(NV_TXSTOP_DELAY2);
1342         if (!np->mac_in_use)
1343                 writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
1344                        base + NvRegTransmitPoll);
1345 }
1346
1347 static void nv_txrx_reset(struct net_device *dev)
1348 {
1349         struct fe_priv *np = netdev_priv(dev);
1350         u8 __iomem *base = get_hwbase(dev);
1351
1352         dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
1353         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1354         pci_push(base);
1355         udelay(NV_TXRX_RESET_DELAY);
1356         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1357         pci_push(base);
1358 }
1359
1360 static void nv_mac_reset(struct net_device *dev)
1361 {
1362         struct fe_priv *np = netdev_priv(dev);
1363         u8 __iomem *base = get_hwbase(dev);
1364
1365         dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
1366         writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
1367         pci_push(base);
1368         writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
1369         pci_push(base);
1370         udelay(NV_MAC_RESET_DELAY);
1371         writel(0, base + NvRegMacReset);
1372         pci_push(base);
1373         udelay(NV_MAC_RESET_DELAY);
1374         writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
1375         pci_push(base);
1376 }
1377
1378 static void nv_get_hw_stats(struct net_device *dev)
1379 {
1380         struct fe_priv *np = netdev_priv(dev);
1381         u8 __iomem *base = get_hwbase(dev);
1382
1383         np->estats.tx_bytes += readl(base + NvRegTxCnt);
1384         np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
1385         np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
1386         np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
1387         np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
1388         np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
1389         np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
1390         np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
1391         np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
1392         np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
1393         np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
1394         np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
1395         np->estats.rx_runt += readl(base + NvRegRxRunt);
1396         np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
1397         np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
1398         np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
1399         np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
1400         np->estats.rx_length_error += readl(base + NvRegRxLenErr);
1401         np->estats.rx_unicast += readl(base + NvRegRxUnicast);
1402         np->estats.rx_multicast += readl(base + NvRegRxMulticast);
1403         np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
1404         np->estats.rx_packets =
1405                 np->estats.rx_unicast +
1406                 np->estats.rx_multicast +
1407                 np->estats.rx_broadcast;
1408         np->estats.rx_errors_total =
1409                 np->estats.rx_crc_errors +
1410                 np->estats.rx_over_errors +
1411                 np->estats.rx_frame_error +
1412                 (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
1413                 np->estats.rx_late_collision +
1414                 np->estats.rx_runt +
1415                 np->estats.rx_frame_too_long;
1416         np->estats.tx_errors_total =
1417                 np->estats.tx_late_collision +
1418                 np->estats.tx_fifo_errors +
1419                 np->estats.tx_carrier_errors +
1420                 np->estats.tx_excess_deferral +
1421                 np->estats.tx_retry_error;
1422
1423         if (np->driver_data & DEV_HAS_STATISTICS_V2) {
1424                 np->estats.tx_deferral += readl(base + NvRegTxDef);
1425                 np->estats.tx_packets += readl(base + NvRegTxFrame);
1426                 np->estats.rx_bytes += readl(base + NvRegRxCnt);
1427                 np->estats.tx_pause += readl(base + NvRegTxPause);
1428                 np->estats.rx_pause += readl(base + NvRegRxPause);
1429                 np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
1430         }
1431 }
1432
1433 /*
1434  * nv_get_stats: dev->get_stats function
1435  * Get latest stats value from the nic.
1436  * Called with read_lock(&dev_base_lock) held for read -
1437  * only synchronized against unregister_netdevice.
1438  */
1439 static struct net_device_stats *nv_get_stats(struct net_device *dev)
1440 {
1441         struct fe_priv *np = netdev_priv(dev);
1442
1443         /* If the nic supports hw counters then retrieve latest values */
1444         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
1445                 nv_get_hw_stats(dev);
1446
1447                 /* copy to net_device stats */
1448                 np->stats.tx_bytes = np->estats.tx_bytes;
1449                 np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
1450                 np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
1451                 np->stats.rx_crc_errors = np->estats.rx_crc_errors;
1452                 np->stats.rx_over_errors = np->estats.rx_over_errors;
1453                 np->stats.rx_errors = np->estats.rx_errors_total;
1454                 np->stats.tx_errors = np->estats.tx_errors_total;
1455         }
1456         return &np->stats;
1457 }
1458
1459 /*
1460  * nv_alloc_rx: fill rx ring entries.
1461  * Return 1 if the allocations for the skbs failed and the
1462  * rx engine is without Available descriptors
1463  */
1464 static int nv_alloc_rx(struct net_device *dev)
1465 {
1466         struct fe_priv *np = netdev_priv(dev);
1467         struct ring_desc* less_rx;
1468
1469         less_rx = np->get_rx.orig;
1470         if (less_rx-- == np->first_rx.orig)
1471                 less_rx = np->last_rx.orig;
1472
1473         while (np->put_rx.orig != less_rx) {
1474                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1475                 if (skb) {
1476                         np->put_rx_ctx->skb = skb;
1477                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1478                                                              skb->data,
1479                                                              skb_tailroom(skb),
1480                                                              PCI_DMA_FROMDEVICE);
1481                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1482                         np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
1483                         wmb();
1484                         np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
1485                         if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
1486                                 np->put_rx.orig = np->first_rx.orig;
1487                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1488                                 np->put_rx_ctx = np->first_rx_ctx;
1489                 } else {
1490                         return 1;
1491                 }
1492         }
1493         return 0;
1494 }
1495
1496 static int nv_alloc_rx_optimized(struct net_device *dev)
1497 {
1498         struct fe_priv *np = netdev_priv(dev);
1499         struct ring_desc_ex* less_rx;
1500
1501         less_rx = np->get_rx.ex;
1502         if (less_rx-- == np->first_rx.ex)
1503                 less_rx = np->last_rx.ex;
1504
1505         while (np->put_rx.ex != less_rx) {
1506                 struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
1507                 if (skb) {
1508                         np->put_rx_ctx->skb = skb;
1509                         np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
1510                                                              skb->data,
1511                                                              skb_tailroom(skb),
1512                                                              PCI_DMA_FROMDEVICE);
1513                         np->put_rx_ctx->dma_len = skb_tailroom(skb);
1514                         np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
1515                         np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
1516                         wmb();
1517                         np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
1518                         if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
1519                                 np->put_rx.ex = np->first_rx.ex;
1520                         if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
1521                                 np->put_rx_ctx = np->first_rx_ctx;
1522                 } else {
1523                         return 1;
1524                 }
1525         }
1526         return 0;
1527 }
1528
1529 /* If rx bufs are exhausted called after 50ms to attempt to refresh */
1530 #ifdef CONFIG_FORCEDETH_NAPI
1531 static void nv_do_rx_refill(unsigned long data)
1532 {
1533         struct net_device *dev = (struct net_device *) data;
1534
1535         /* Just reschedule NAPI rx processing */
1536         netif_rx_schedule(dev);
1537 }
1538 #else
1539 static void nv_do_rx_refill(unsigned long data)
1540 {
1541         struct net_device *dev = (struct net_device *) data;
1542         struct fe_priv *np = netdev_priv(dev);
1543         int retcode;
1544
1545         if (!using_multi_irqs(dev)) {
1546                 if (np->msi_flags & NV_MSI_X_ENABLED)
1547                         disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1548                 else
1549                         disable_irq(dev->irq);
1550         } else {
1551                 disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1552         }
1553         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1554                 retcode = nv_alloc_rx(dev);
1555         else
1556                 retcode = nv_alloc_rx_optimized(dev);
1557         if (retcode) {
1558                 spin_lock_irq(&np->lock);
1559                 if (!np->in_shutdown)
1560                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
1561                 spin_unlock_irq(&np->lock);
1562         }
1563         if (!using_multi_irqs(dev)) {
1564                 if (np->msi_flags & NV_MSI_X_ENABLED)
1565                         enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
1566                 else
1567                         enable_irq(dev->irq);
1568         } else {
1569                 enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
1570         }
1571 }
1572 #endif
1573
1574 static void nv_init_rx(struct net_device *dev)
1575 {
1576         struct fe_priv *np = netdev_priv(dev);
1577         int i;
1578         np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
1579         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1580                 np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
1581         else
1582                 np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
1583         np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
1584         np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
1585
1586         for (i = 0; i < np->rx_ring_size; i++) {
1587                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1588                         np->rx_ring.orig[i].flaglen = 0;
1589                         np->rx_ring.orig[i].buf = 0;
1590                 } else {
1591                         np->rx_ring.ex[i].flaglen = 0;
1592                         np->rx_ring.ex[i].txvlan = 0;
1593                         np->rx_ring.ex[i].bufhigh = 0;
1594                         np->rx_ring.ex[i].buflow = 0;
1595                 }
1596                 np->rx_skb[i].skb = NULL;
1597                 np->rx_skb[i].dma = 0;
1598         }
1599 }
1600
1601 static void nv_init_tx(struct net_device *dev)
1602 {
1603         struct fe_priv *np = netdev_priv(dev);
1604         int i;
1605         np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
1606         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1607                 np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
1608         else
1609                 np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
1610         np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
1611         np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
1612
1613         for (i = 0; i < np->tx_ring_size; i++) {
1614                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1615                         np->tx_ring.orig[i].flaglen = 0;
1616                         np->tx_ring.orig[i].buf = 0;
1617                 } else {
1618                         np->tx_ring.ex[i].flaglen = 0;
1619                         np->tx_ring.ex[i].txvlan = 0;
1620                         np->tx_ring.ex[i].bufhigh = 0;
1621                         np->tx_ring.ex[i].buflow = 0;
1622                 }
1623                 np->tx_skb[i].skb = NULL;
1624                 np->tx_skb[i].dma = 0;
1625         }
1626 }
1627
1628 static int nv_init_ring(struct net_device *dev)
1629 {
1630         struct fe_priv *np = netdev_priv(dev);
1631
1632         nv_init_tx(dev);
1633         nv_init_rx(dev);
1634         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
1635                 return nv_alloc_rx(dev);
1636         else
1637                 return nv_alloc_rx_optimized(dev);
1638 }
1639
1640 static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
1641 {
1642         struct fe_priv *np = netdev_priv(dev);
1643
1644         if (tx_skb->dma) {
1645                 pci_unmap_page(np->pci_dev, tx_skb->dma,
1646                                tx_skb->dma_len,
1647                                PCI_DMA_TODEVICE);
1648                 tx_skb->dma = 0;
1649         }
1650         if (tx_skb->skb) {
1651                 dev_kfree_skb_any(tx_skb->skb);
1652                 tx_skb->skb = NULL;
1653                 return 1;
1654         } else {
1655                 return 0;
1656         }
1657 }
1658
1659 static void nv_drain_tx(struct net_device *dev)
1660 {
1661         struct fe_priv *np = netdev_priv(dev);
1662         unsigned int i;
1663
1664         for (i = 0; i < np->tx_ring_size; i++) {
1665                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1666                         np->tx_ring.orig[i].flaglen = 0;
1667                         np->tx_ring.orig[i].buf = 0;
1668                 } else {
1669                         np->tx_ring.ex[i].flaglen = 0;
1670                         np->tx_ring.ex[i].txvlan = 0;
1671                         np->tx_ring.ex[i].bufhigh = 0;
1672                         np->tx_ring.ex[i].buflow = 0;
1673                 }
1674                 if (nv_release_txskb(dev, &np->tx_skb[i]))
1675                         np->stats.tx_dropped++;
1676         }
1677 }
1678
1679 static void nv_drain_rx(struct net_device *dev)
1680 {
1681         struct fe_priv *np = netdev_priv(dev);
1682         int i;
1683
1684         for (i = 0; i < np->rx_ring_size; i++) {
1685                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
1686                         np->rx_ring.orig[i].flaglen = 0;
1687                         np->rx_ring.orig[i].buf = 0;
1688                 } else {
1689                         np->rx_ring.ex[i].flaglen = 0;
1690                         np->rx_ring.ex[i].txvlan = 0;
1691                         np->rx_ring.ex[i].bufhigh = 0;
1692                         np->rx_ring.ex[i].buflow = 0;
1693                 }
1694                 wmb();
1695                 if (np->rx_skb[i].skb) {
1696                         pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
1697                                          (skb_end_pointer(np->rx_skb[i].skb) -
1698                                           np->rx_skb[i].skb->data),
1699                                          PCI_DMA_FROMDEVICE);
1700                         dev_kfree_skb(np->rx_skb[i].skb);
1701                         np->rx_skb[i].skb = NULL;
1702                 }
1703         }
1704 }
1705
1706 static void drain_ring(struct net_device *dev)
1707 {
1708         nv_drain_tx(dev);
1709         nv_drain_rx(dev);
1710 }
1711
1712 static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
1713 {
1714         return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
1715 }
1716
1717 /*
1718  * nv_start_xmit: dev->hard_start_xmit function
1719  * Called with netif_tx_lock held.
1720  */
1721 static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1722 {
1723         struct fe_priv *np = netdev_priv(dev);
1724         u32 tx_flags = 0;
1725         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
1726         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1727         unsigned int i;
1728         u32 offset = 0;
1729         u32 bcnt;
1730         u32 size = skb->len-skb->data_len;
1731         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1732         u32 empty_slots;
1733         struct ring_desc* put_tx;
1734         struct ring_desc* start_tx;
1735         struct ring_desc* prev_tx;
1736         struct nv_skb_map* prev_tx_ctx;
1737
1738         /* add fragments to entries count */
1739         for (i = 0; i < fragments; i++) {
1740                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1741                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1742         }
1743
1744         empty_slots = nv_get_empty_tx_slots(np);
1745         if (unlikely(empty_slots <= entries)) {
1746                 spin_lock_irq(&np->lock);
1747                 netif_stop_queue(dev);
1748                 np->tx_stop = 1;
1749                 spin_unlock_irq(&np->lock);
1750                 return NETDEV_TX_BUSY;
1751         }
1752
1753         start_tx = put_tx = np->put_tx.orig;
1754
1755         /* setup the header buffer */
1756         do {
1757                 prev_tx = put_tx;
1758                 prev_tx_ctx = np->put_tx_ctx;
1759                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1760                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1761                                                 PCI_DMA_TODEVICE);
1762                 np->put_tx_ctx->dma_len = bcnt;
1763                 put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1764                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1765
1766                 tx_flags = np->tx_flags;
1767                 offset += bcnt;
1768                 size -= bcnt;
1769                 if (unlikely(put_tx++ == np->last_tx.orig))
1770                         put_tx = np->first_tx.orig;
1771                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1772                         np->put_tx_ctx = np->first_tx_ctx;
1773         } while (size);
1774
1775         /* setup the fragments */
1776         for (i = 0; i < fragments; i++) {
1777                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1778                 u32 size = frag->size;
1779                 offset = 0;
1780
1781                 do {
1782                         prev_tx = put_tx;
1783                         prev_tx_ctx = np->put_tx_ctx;
1784                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1785                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1786                                                            PCI_DMA_TODEVICE);
1787                         np->put_tx_ctx->dma_len = bcnt;
1788                         put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
1789                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1790
1791                         offset += bcnt;
1792                         size -= bcnt;
1793                         if (unlikely(put_tx++ == np->last_tx.orig))
1794                                 put_tx = np->first_tx.orig;
1795                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1796                                 np->put_tx_ctx = np->first_tx_ctx;
1797                 } while (size);
1798         }
1799
1800         /* set last fragment flag  */
1801         prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
1802
1803         /* save skb in this slot's context area */
1804         prev_tx_ctx->skb = skb;
1805
1806         if (skb_is_gso(skb))
1807                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1808         else
1809                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1810                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1811
1812         spin_lock_irq(&np->lock);
1813
1814         /* set tx flags */
1815         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1816         np->put_tx.orig = put_tx;
1817
1818         spin_unlock_irq(&np->lock);
1819
1820         dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
1821                 dev->name, entries, tx_flags_extra);
1822         {
1823                 int j;
1824                 for (j=0; j<64; j++) {
1825                         if ((j%16) == 0)
1826                                 dprintk("\n%03x:", j);
1827                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1828                 }
1829                 dprintk("\n");
1830         }
1831
1832         dev->trans_start = jiffies;
1833         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1834         return NETDEV_TX_OK;
1835 }
1836
1837 static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
1838 {
1839         struct fe_priv *np = netdev_priv(dev);
1840         u32 tx_flags = 0;
1841         u32 tx_flags_extra;
1842         unsigned int fragments = skb_shinfo(skb)->nr_frags;
1843         unsigned int i;
1844         u32 offset = 0;
1845         u32 bcnt;
1846         u32 size = skb->len-skb->data_len;
1847         u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1848         u32 empty_slots;
1849         struct ring_desc_ex* put_tx;
1850         struct ring_desc_ex* start_tx;
1851         struct ring_desc_ex* prev_tx;
1852         struct nv_skb_map* prev_tx_ctx;
1853
1854         /* add fragments to entries count */
1855         for (i = 0; i < fragments; i++) {
1856                 entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
1857                            ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
1858         }
1859
1860         empty_slots = nv_get_empty_tx_slots(np);
1861         if (unlikely(empty_slots <= entries)) {
1862                 spin_lock_irq(&np->lock);
1863                 netif_stop_queue(dev);
1864                 np->tx_stop = 1;
1865                 spin_unlock_irq(&np->lock);
1866                 return NETDEV_TX_BUSY;
1867         }
1868
1869         start_tx = put_tx = np->put_tx.ex;
1870
1871         /* setup the header buffer */
1872         do {
1873                 prev_tx = put_tx;
1874                 prev_tx_ctx = np->put_tx_ctx;
1875                 bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1876                 np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
1877                                                 PCI_DMA_TODEVICE);
1878                 np->put_tx_ctx->dma_len = bcnt;
1879                 put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1880                 put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1881                 put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1882
1883                 tx_flags = NV_TX2_VALID;
1884                 offset += bcnt;
1885                 size -= bcnt;
1886                 if (unlikely(put_tx++ == np->last_tx.ex))
1887                         put_tx = np->first_tx.ex;
1888                 if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1889                         np->put_tx_ctx = np->first_tx_ctx;
1890         } while (size);
1891
1892         /* setup the fragments */
1893         for (i = 0; i < fragments; i++) {
1894                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1895                 u32 size = frag->size;
1896                 offset = 0;
1897
1898                 do {
1899                         prev_tx = put_tx;
1900                         prev_tx_ctx = np->put_tx_ctx;
1901                         bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
1902                         np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
1903                                                            PCI_DMA_TODEVICE);
1904                         np->put_tx_ctx->dma_len = bcnt;
1905                         put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
1906                         put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
1907                         put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
1908
1909                         offset += bcnt;
1910                         size -= bcnt;
1911                         if (unlikely(put_tx++ == np->last_tx.ex))
1912                                 put_tx = np->first_tx.ex;
1913                         if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
1914                                 np->put_tx_ctx = np->first_tx_ctx;
1915                 } while (size);
1916         }
1917
1918         /* set last fragment flag  */
1919         prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
1920
1921         /* save skb in this slot's context area */
1922         prev_tx_ctx->skb = skb;
1923
1924         if (skb_is_gso(skb))
1925                 tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
1926         else
1927                 tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
1928                          NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
1929
1930         /* vlan tag */
1931         if (likely(!np->vlangrp)) {
1932                 start_tx->txvlan = 0;
1933         } else {
1934                 if (vlan_tx_tag_present(skb))
1935                         start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
1936                 else
1937                         start_tx->txvlan = 0;
1938         }
1939
1940         spin_lock_irq(&np->lock);
1941
1942         /* set tx flags */
1943         start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
1944         np->put_tx.ex = put_tx;
1945
1946         spin_unlock_irq(&np->lock);
1947
1948         dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
1949                 dev->name, entries, tx_flags_extra);
1950         {
1951                 int j;
1952                 for (j=0; j<64; j++) {
1953                         if ((j%16) == 0)
1954                                 dprintk("\n%03x:", j);
1955                         dprintk(" %02x", ((unsigned char*)skb->data)[j]);
1956                 }
1957                 dprintk("\n");
1958         }
1959
1960         dev->trans_start = jiffies;
1961         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
1962         return NETDEV_TX_OK;
1963 }
1964
1965 /*
1966  * nv_tx_done: check for completed packets, release the skbs.
1967  *
1968  * Caller must own np->lock.
1969  */
1970 static void nv_tx_done(struct net_device *dev)
1971 {
1972         struct fe_priv *np = netdev_priv(dev);
1973         u32 flags;
1974         struct ring_desc* orig_get_tx = np->get_tx.orig;
1975
1976         while ((np->get_tx.orig != np->put_tx.orig) &&
1977                !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
1978
1979                 dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
1980                                         dev->name, flags);
1981
1982                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
1983                                np->get_tx_ctx->dma_len,
1984                                PCI_DMA_TODEVICE);
1985                 np->get_tx_ctx->dma = 0;
1986
1987                 if (np->desc_ver == DESC_VER_1) {
1988                         if (flags & NV_TX_LASTPACKET) {
1989                                 if (flags & NV_TX_ERROR) {
1990                                         if (flags & NV_TX_UNDERFLOW)
1991                                                 np->stats.tx_fifo_errors++;
1992                                         if (flags & NV_TX_CARRIERLOST)
1993                                                 np->stats.tx_carrier_errors++;
1994                                         np->stats.tx_errors++;
1995                                 } else {
1996                                         np->stats.tx_packets++;
1997                                         np->stats.tx_bytes += np->get_tx_ctx->skb->len;
1998                                 }
1999                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2000                                 np->get_tx_ctx->skb = NULL;
2001                         }
2002                 } else {
2003                         if (flags & NV_TX2_LASTPACKET) {
2004                                 if (flags & NV_TX2_ERROR) {
2005                                         if (flags & NV_TX2_UNDERFLOW)
2006                                                 np->stats.tx_fifo_errors++;
2007                                         if (flags & NV_TX2_CARRIERLOST)
2008                                                 np->stats.tx_carrier_errors++;
2009                                         np->stats.tx_errors++;
2010                                 } else {
2011                                         np->stats.tx_packets++;
2012                                         np->stats.tx_bytes += np->get_tx_ctx->skb->len;
2013                                 }
2014                                 dev_kfree_skb_any(np->get_tx_ctx->skb);
2015                                 np->get_tx_ctx->skb = NULL;
2016                         }
2017                 }
2018                 if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
2019                         np->get_tx.orig = np->first_tx.orig;
2020                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2021                         np->get_tx_ctx = np->first_tx_ctx;
2022         }
2023         if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
2024                 np->tx_stop = 0;
2025                 netif_wake_queue(dev);
2026         }
2027 }
2028
2029 static void nv_tx_done_optimized(struct net_device *dev, int limit)
2030 {
2031         struct fe_priv *np = netdev_priv(dev);
2032         u32 flags;
2033         struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
2034
2035         while ((np->get_tx.ex != np->put_tx.ex) &&
2036                !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
2037                (limit-- > 0)) {
2038
2039                 dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
2040                                         dev->name, flags);
2041
2042                 pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
2043                                np->get_tx_ctx->dma_len,
2044                                PCI_DMA_TODEVICE);
2045                 np->get_tx_ctx->dma = 0;
2046
2047                 if (flags & NV_TX2_LASTPACKET) {
2048                         if (!(flags & NV_TX2_ERROR))
2049                                 np->stats.tx_packets++;
2050                         dev_kfree_skb_any(np->get_tx_ctx->skb);
2051                         np->get_tx_ctx->skb = NULL;
2052                 }
2053                 if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
2054                         np->get_tx.ex = np->first_tx.ex;
2055                 if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
2056                         np->get_tx_ctx = np->first_tx_ctx;
2057         }
2058         if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
2059                 np->tx_stop = 0;
2060                 netif_wake_queue(dev);
2061         }
2062 }
2063
2064 /*
2065  * nv_tx_timeout: dev->tx_timeout function
2066  * Called with netif_tx_lock held.
2067  */
2068 static void nv_tx_timeout(struct net_device *dev)
2069 {
2070         struct fe_priv *np = netdev_priv(dev);
2071         u8 __iomem *base = get_hwbase(dev);
2072         u32 status;
2073
2074         if (np->msi_flags & NV_MSI_X_ENABLED)
2075                 status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2076         else
2077                 status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2078
2079         printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
2080
2081         {
2082                 int i;
2083
2084                 printk(KERN_INFO "%s: Ring at %lx\n",
2085                        dev->name, (unsigned long)np->ring_addr);
2086                 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
2087                 for (i=0;i<=np->register_size;i+= 32) {
2088                         printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
2089                                         i,
2090                                         readl(base + i + 0), readl(base + i + 4),
2091                                         readl(base + i + 8), readl(base + i + 12),
2092                                         readl(base + i + 16), readl(base + i + 20),
2093                                         readl(base + i + 24), readl(base + i + 28));
2094                 }
2095                 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
2096                 for (i=0;i<np->tx_ring_size;i+= 4) {
2097                         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
2098                                 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
2099                                        i,
2100                                        le32_to_cpu(np->tx_ring.orig[i].buf),
2101                                        le32_to_cpu(np->tx_ring.orig[i].flaglen),
2102                                        le32_to_cpu(np->tx_ring.orig[i+1].buf),
2103                                        le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
2104                                        le32_to_cpu(np->tx_ring.orig[i+2].buf),
2105                                        le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
2106                                        le32_to_cpu(np->tx_ring.orig[i+3].buf),
2107                                        le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
2108                         } else {
2109                                 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
2110                                        i,
2111                                        le32_to_cpu(np->tx_ring.ex[i].bufhigh),
2112                                        le32_to_cpu(np->tx_ring.ex[i].buflow),
2113                                        le32_to_cpu(np->tx_ring.ex[i].flaglen),
2114                                        le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
2115                                        le32_to_cpu(np->tx_ring.ex[i+1].buflow),
2116                                        le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
2117                                        le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
2118                                        le32_to_cpu(np->tx_ring.ex[i+2].buflow),
2119                                        le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
2120                                        le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
2121                                        le32_to_cpu(np->tx_ring.ex[i+3].buflow),
2122                                        le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
2123                         }
2124                 }
2125         }
2126
2127         spin_lock_irq(&np->lock);
2128
2129         /* 1) stop tx engine */
2130         nv_stop_tx(dev);
2131
2132         /* 2) check that the packets were not sent already: */
2133         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
2134                 nv_tx_done(dev);
2135         else
2136                 nv_tx_done_optimized(dev, np->tx_ring_size);
2137
2138         /* 3) if there are dead entries: clear everything */
2139         if (np->get_tx_ctx != np->put_tx_ctx) {
2140                 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
2141                 nv_drain_tx(dev);
2142                 nv_init_tx(dev);
2143                 setup_hw_rings(dev, NV_SETUP_TX_RING);
2144         }
2145
2146         netif_wake_queue(dev);
2147
2148         /* 4) restart tx engine */
2149         nv_start_tx(dev);
2150         spin_unlock_irq(&np->lock);
2151 }
2152
2153 /*
2154  * Called when the nic notices a mismatch between the actual data len on the
2155  * wire and the len indicated in the 802 header
2156  */
2157 static int nv_getlen(struct net_device *dev, void *packet, int datalen)
2158 {
2159         int hdrlen;     /* length of the 802 header */
2160         int protolen;   /* length as stored in the proto field */
2161
2162         /* 1) calculate len according to header */
2163         if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
2164                 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
2165                 hdrlen = VLAN_HLEN;
2166         } else {
2167                 protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
2168                 hdrlen = ETH_HLEN;
2169         }
2170         dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
2171                                 dev->name, datalen, protolen, hdrlen);
2172         if (protolen > ETH_DATA_LEN)
2173                 return datalen; /* Value in proto field not a len, no checks possible */
2174
2175         protolen += hdrlen;
2176         /* consistency checks: */
2177         if (datalen > ETH_ZLEN) {
2178                 if (datalen >= protolen) {
2179                         /* more data on wire than in 802 header, trim of
2180                          * additional data.
2181                          */
2182                         dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2183                                         dev->name, protolen);
2184                         return protolen;
2185                 } else {
2186                         /* less data on wire than mentioned in header.
2187                          * Discard the packet.
2188                          */
2189                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
2190                                         dev->name);
2191                         return -1;
2192                 }
2193         } else {
2194                 /* short packet. Accept only if 802 values are also short */
2195                 if (protolen > ETH_ZLEN) {
2196                         dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
2197                                         dev->name);
2198                         return -1;
2199                 }
2200                 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
2201                                 dev->name, datalen);
2202                 return datalen;
2203         }
2204 }
2205
2206 static int nv_rx_process(struct net_device *dev, int limit)
2207 {
2208         struct fe_priv *np = netdev_priv(dev);
2209         u32 flags;
2210         u32 rx_processed_cnt = 0;
2211         struct sk_buff *skb;
2212         int len;
2213
2214         while((np->get_rx.orig != np->put_rx.orig) &&
2215               !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
2216                 (rx_processed_cnt++ < limit)) {
2217
2218                 dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
2219                                         dev->name, flags);
2220
2221                 /*
2222                  * the packet is for us - immediately tear down the pci mapping.
2223                  * TODO: check if a prefetch of the first cacheline improves
2224                  * the performance.
2225                  */
2226                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2227                                 np->get_rx_ctx->dma_len,
2228                                 PCI_DMA_FROMDEVICE);
2229                 skb = np->get_rx_ctx->skb;
2230                 np->get_rx_ctx->skb = NULL;
2231
2232                 {
2233                         int j;
2234                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2235                         for (j=0; j<64; j++) {
2236                                 if ((j%16) == 0)
2237                                         dprintk("\n%03x:", j);
2238                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2239                         }
2240                         dprintk("\n");
2241                 }
2242                 /* look at what we actually got: */
2243                 if (np->desc_ver == DESC_VER_1) {
2244                         if (likely(flags & NV_RX_DESCRIPTORVALID)) {
2245                                 len = flags & LEN_MASK_V1;
2246                                 if (unlikely(flags & NV_RX_ERROR)) {
2247                                         if (flags & NV_RX_ERROR4) {
2248                                                 len = nv_getlen(dev, skb->data, len);
2249                                                 if (len < 0) {
2250                                                         np->stats.rx_errors++;
2251                                                         dev_kfree_skb(skb);
2252                                                         goto next_pkt;
2253                                                 }
2254                                         }
2255                                         /* framing errors are soft errors */
2256                                         else if (flags & NV_RX_FRAMINGERR) {
2257                                                 if (flags & NV_RX_SUBSTRACT1) {
2258                                                         len--;
2259                                                 }
2260                                         }
2261                                         /* the rest are hard errors */
2262                                         else {
2263                                                 if (flags & NV_RX_MISSEDFRAME)
2264                                                         np->stats.rx_missed_errors++;
2265                                                 if (flags & NV_RX_CRCERR)
2266                                                         np->stats.rx_crc_errors++;
2267                                                 if (flags & NV_RX_OVERFLOW)
2268                                                         np->stats.rx_over_errors++;
2269                                                 np->stats.rx_errors++;
2270                                                 dev_kfree_skb(skb);
2271                                                 goto next_pkt;
2272                                         }
2273                                 }
2274                         } else {
2275                                 dev_kfree_skb(skb);
2276                                 goto next_pkt;
2277                         }
2278                 } else {
2279                         if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2280                                 len = flags & LEN_MASK_V2;
2281                                 if (unlikely(flags & NV_RX2_ERROR)) {
2282                                         if (flags & NV_RX2_ERROR4) {
2283                                                 len = nv_getlen(dev, skb->data, len);
2284                                                 if (len < 0) {
2285                                                         np->stats.rx_errors++;
2286                                                         dev_kfree_skb(skb);
2287                                                         goto next_pkt;
2288                                                 }
2289                                         }
2290                                         /* framing errors are soft errors */
2291                                         else if (flags & NV_RX2_FRAMINGERR) {
2292                                                 if (flags & NV_RX2_SUBSTRACT1) {
2293                                                         len--;
2294                                                 }
2295                                         }
2296                                         /* the rest are hard errors */
2297                                         else {
2298                                                 if (flags & NV_RX2_CRCERR)
2299                                                         np->stats.rx_crc_errors++;
2300                                                 if (flags & NV_RX2_OVERFLOW)
2301                                                         np->stats.rx_over_errors++;
2302                                                 np->stats.rx_errors++;
2303                                                 dev_kfree_skb(skb);
2304                                                 goto next_pkt;
2305                                         }
2306                                 }
2307                                 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2308                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2309                                 } else {
2310                                         if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2311                                             (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2312                                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2313                                         }
2314                                 }
2315                         } else {
2316                                 dev_kfree_skb(skb);
2317                                 goto next_pkt;
2318                         }
2319                 }
2320                 /* got a valid packet - forward it to the network core */
2321                 skb_put(skb, len);
2322                 skb->protocol = eth_type_trans(skb, dev);
2323                 dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
2324                                         dev->name, len, skb->protocol);
2325 #ifdef CONFIG_FORCEDETH_NAPI
2326                 netif_receive_skb(skb);
2327 #else
2328                 netif_rx(skb);
2329 #endif
2330                 dev->last_rx = jiffies;
2331                 np->stats.rx_packets++;
2332                 np->stats.rx_bytes += len;
2333 next_pkt:
2334                 if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
2335                         np->get_rx.orig = np->first_rx.orig;
2336                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2337                         np->get_rx_ctx = np->first_rx_ctx;
2338         }
2339
2340         return rx_processed_cnt;
2341 }
2342
2343 static int nv_rx_process_optimized(struct net_device *dev, int limit)
2344 {
2345         struct fe_priv *np = netdev_priv(dev);
2346         u32 flags;
2347         u32 vlanflags = 0;
2348         u32 rx_processed_cnt = 0;
2349         struct sk_buff *skb;
2350         int len;
2351
2352         while((np->get_rx.ex != np->put_rx.ex) &&
2353               !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
2354               (rx_processed_cnt++ < limit)) {
2355
2356                 dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
2357                                         dev->name, flags);
2358
2359                 /*
2360                  * the packet is for us - immediately tear down the pci mapping.
2361                  * TODO: check if a prefetch of the first cacheline improves
2362                  * the performance.
2363                  */
2364                 pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
2365                                 np->get_rx_ctx->dma_len,
2366                                 PCI_DMA_FROMDEVICE);
2367                 skb = np->get_rx_ctx->skb;
2368                 np->get_rx_ctx->skb = NULL;
2369
2370                 {
2371                         int j;
2372                         dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
2373                         for (j=0; j<64; j++) {
2374                                 if ((j%16) == 0)
2375                                         dprintk("\n%03x:", j);
2376                                 dprintk(" %02x", ((unsigned char*)skb->data)[j]);
2377                         }
2378                         dprintk("\n");
2379                 }
2380                 /* look at what we actually got: */
2381                 if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
2382                         len = flags & LEN_MASK_V2;
2383                         if (unlikely(flags & NV_RX2_ERROR)) {
2384                                 if (flags & NV_RX2_ERROR4) {
2385                                         len = nv_getlen(dev, skb->data, len);
2386                                         if (len < 0) {
2387                                                 dev_kfree_skb(skb);
2388                                                 goto next_pkt;
2389                                         }
2390                                 }
2391                                 /* framing errors are soft errors */
2392                                 else if (flags & NV_RX2_FRAMINGERR) {
2393                                         if (flags & NV_RX2_SUBSTRACT1) {
2394                                                 len--;
2395                                         }
2396                                 }
2397                                 /* the rest are hard errors */
2398                                 else {
2399                                         dev_kfree_skb(skb);
2400                                         goto next_pkt;
2401                                 }
2402                         }
2403
2404                         if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
2405                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2406                         } else {
2407                                 if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
2408                                     (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
2409                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2410                                 }
2411                         }
2412
2413                         /* got a valid packet - forward it to the network core */
2414                         skb_put(skb, len);
2415                         skb->protocol = eth_type_trans(skb, dev);
2416                         prefetch(skb->data);
2417
2418                         dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
2419                                 dev->name, len, skb->protocol);
2420
2421                         if (likely(!np->vlangrp)) {
2422 #ifdef CONFIG_FORCEDETH_NAPI
2423                                 netif_receive_skb(skb);
2424 #else
2425                                 netif_rx(skb);
2426 #endif
2427                         } else {
2428                                 vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
2429                                 if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
2430 #ifdef CONFIG_FORCEDETH_NAPI
2431                                         vlan_hwaccel_receive_skb(skb, np->vlangrp,
2432                                                                  vlanflags & NV_RX3_VLAN_TAG_MASK);
2433 #else
2434                                         vlan_hwaccel_rx(skb, np->vlangrp,
2435                                                         vlanflags & NV_RX3_VLAN_TAG_MASK);
2436 #endif
2437                                 } else {
2438 #ifdef CONFIG_FORCEDETH_NAPI
2439                                         netif_receive_skb(skb);
2440 #else
2441                                         netif_rx(skb);
2442 #endif
2443                                 }
2444                         }
2445
2446                         dev->last_rx = jiffies;
2447                         np->stats.rx_packets++;
2448                         np->stats.rx_bytes += len;
2449                 } else {
2450                         dev_kfree_skb(skb);
2451                 }
2452 next_pkt:
2453                 if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
2454                         np->get_rx.ex = np->first_rx.ex;
2455                 if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
2456                         np->get_rx_ctx = np->first_rx_ctx;
2457         }
2458
2459         return rx_processed_cnt;
2460 }
2461
2462 static void set_bufsize(struct net_device *dev)
2463 {
2464         struct fe_priv *np = netdev_priv(dev);
2465
2466         if (dev->mtu <= ETH_DATA_LEN)
2467                 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
2468         else
2469                 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
2470 }
2471
2472 /*
2473  * nv_change_mtu: dev->change_mtu function
2474  * Called with dev_base_lock held for read.
2475  */
2476 static int nv_change_mtu(struct net_device *dev, int new_mtu)
2477 {
2478         struct fe_priv *np = netdev_priv(dev);
2479         int old_mtu;
2480
2481         if (new_mtu < 64 || new_mtu > np->pkt_limit)
2482                 return -EINVAL;
2483
2484         old_mtu = dev->mtu;
2485         dev->mtu = new_mtu;
2486
2487         /* return early if the buffer sizes will not change */
2488         if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
2489                 return 0;
2490         if (old_mtu == new_mtu)
2491                 return 0;
2492
2493         /* synchronized against open : rtnl_lock() held by caller */
2494         if (netif_running(dev)) {
2495                 u8 __iomem *base = get_hwbase(dev);
2496                 /*
2497                  * It seems that the nic preloads valid ring entries into an
2498                  * internal buffer. The procedure for flushing everything is
2499                  * guessed, there is probably a simpler approach.
2500                  * Changing the MTU is a rare event, it shouldn't matter.
2501                  */
2502                 nv_disable_irq(dev);
2503                 netif_tx_lock_bh(dev);
2504                 spin_lock(&np->lock);
2505                 /* stop engines */
2506                 nv_stop_rx(dev);
2507                 nv_stop_tx(dev);
2508                 nv_txrx_reset(dev);
2509                 /* drain rx queue */
2510                 nv_drain_rx(dev);
2511                 nv_drain_tx(dev);
2512                 /* reinit driver view of the rx queue */
2513                 set_bufsize(dev);
2514                 if (nv_init_ring(dev)) {
2515                         if (!np->in_shutdown)
2516                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2517                 }
2518                 /* reinit nic view of the rx queue */
2519                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
2520                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
2521                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
2522                         base + NvRegRingSizes);
2523                 pci_push(base);
2524                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
2525                 pci_push(base);
2526
2527                 /* restart rx engine */
2528                 nv_start_rx(dev);
2529                 nv_start_tx(dev);
2530                 spin_unlock(&np->lock);
2531                 netif_tx_unlock_bh(dev);
2532                 nv_enable_irq(dev);
2533         }
2534         return 0;
2535 }
2536
2537 static void nv_copy_mac_to_hw(struct net_device *dev)
2538 {
2539         u8 __iomem *base = get_hwbase(dev);
2540         u32 mac[2];
2541
2542         mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
2543                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
2544         mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
2545
2546         writel(mac[0], base + NvRegMacAddrA);
2547         writel(mac[1], base + NvRegMacAddrB);
2548 }
2549
2550 /*
2551  * nv_set_mac_address: dev->set_mac_address function
2552  * Called with rtnl_lock() held.
2553  */
2554 static int nv_set_mac_address(struct net_device *dev, void *addr)
2555 {
2556         struct fe_priv *np = netdev_priv(dev);
2557         struct sockaddr *macaddr = (struct sockaddr*)addr;
2558
2559         if (!is_valid_ether_addr(macaddr->sa_data))
2560                 return -EADDRNOTAVAIL;
2561
2562         /* synchronized against open : rtnl_lock() held by caller */
2563         memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
2564
2565         if (netif_running(dev)) {
2566                 netif_tx_lock_bh(dev);
2567                 spin_lock_irq(&np->lock);
2568
2569                 /* stop rx engine */
2570                 nv_stop_rx(dev);
2571
2572                 /* set mac address */
2573                 nv_copy_mac_to_hw(dev);
2574
2575                 /* restart rx engine */
2576                 nv_start_rx(dev);
2577                 spin_unlock_irq(&np->lock);
2578                 netif_tx_unlock_bh(dev);
2579         } else {
2580                 nv_copy_mac_to_hw(dev);
2581         }
2582         return 0;
2583 }
2584
2585 /*
2586  * nv_set_multicast: dev->set_multicast function
2587  * Called with netif_tx_lock held.
2588  */
2589 static void nv_set_multicast(struct net_device *dev)
2590 {
2591         struct fe_priv *np = netdev_priv(dev);
2592         u8 __iomem *base = get_hwbase(dev);
2593         u32 addr[2];
2594         u32 mask[2];
2595         u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
2596
2597         memset(addr, 0, sizeof(addr));
2598         memset(mask, 0, sizeof(mask));
2599
2600         if (dev->flags & IFF_PROMISC) {
2601                 pff |= NVREG_PFF_PROMISC;
2602         } else {
2603                 pff |= NVREG_PFF_MYADDR;
2604
2605                 if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
2606                         u32 alwaysOff[2];
2607                         u32 alwaysOn[2];
2608
2609                         alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
2610                         if (dev->flags & IFF_ALLMULTI) {
2611                                 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
2612                         } else {
2613                                 struct dev_mc_list *walk;
2614
2615                                 walk = dev->mc_list;
2616                                 while (walk != NULL) {
2617                                         u32 a, b;
2618                                         a = le32_to_cpu(*(u32 *) walk->dmi_addr);
2619                                         b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
2620                                         alwaysOn[0] &= a;
2621                                         alwaysOff[0] &= ~a;
2622                                         alwaysOn[1] &= b;
2623                                         alwaysOff[1] &= ~b;
2624                                         walk = walk->next;
2625                                 }
2626                         }
2627                         addr[0] = alwaysOn[0];
2628                         addr[1] = alwaysOn[1];
2629                         mask[0] = alwaysOn[0] | alwaysOff[0];
2630                         mask[1] = alwaysOn[1] | alwaysOff[1];
2631                 }
2632         }
2633         addr[0] |= NVREG_MCASTADDRA_FORCE;
2634         pff |= NVREG_PFF_ALWAYS;
2635         spin_lock_irq(&np->lock);
2636         nv_stop_rx(dev);
2637         writel(addr[0], base + NvRegMulticastAddrA);
2638         writel(addr[1], base + NvRegMulticastAddrB);
2639         writel(mask[0], base + NvRegMulticastMaskA);
2640         writel(mask[1], base + NvRegMulticastMaskB);
2641         writel(pff, base + NvRegPacketFilterFlags);
2642         dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
2643                 dev->name);
2644         nv_start_rx(dev);
2645         spin_unlock_irq(&np->lock);
2646 }
2647
2648 static void nv_update_pause(struct net_device *dev, u32 pause_flags)
2649 {
2650         struct fe_priv *np = netdev_priv(dev);
2651         u8 __iomem *base = get_hwbase(dev);
2652
2653         np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
2654
2655         if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
2656                 u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
2657                 if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
2658                         writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
2659                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2660                 } else {
2661                         writel(pff, base + NvRegPacketFilterFlags);
2662                 }
2663         }
2664         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
2665                 u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
2666                 if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
2667                         writel(NVREG_TX_PAUSEFRAME_ENABLE,  base + NvRegTxPauseFrame);
2668                         writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
2669                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2670                 } else {
2671                         writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
2672                         writel(regmisc, base + NvRegMisc1);
2673                 }
2674         }
2675 }
2676
2677 /**
2678  * nv_update_linkspeed: Setup the MAC according to the link partner
2679  * @dev: Network device to be configured
2680  *
2681  * The function queries the PHY and checks if there is a link partner.
2682  * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
2683  * set to 10 MBit HD.
2684  *
2685  * The function returns 0 if there is no link partner and 1 if there is
2686  * a good link partner.
2687  */
2688 static int nv_update_linkspeed(struct net_device *dev)
2689 {
2690         struct fe_priv *np = netdev_priv(dev);
2691         u8 __iomem *base = get_hwbase(dev);
2692         int adv = 0;
2693         int lpa = 0;
2694         int adv_lpa, adv_pause, lpa_pause;
2695         int newls = np->linkspeed;
2696         int newdup = np->duplex;
2697         int mii_status;
2698         int retval = 0;
2699         u32 control_1000, status_1000, phyreg, pause_flags, txreg;
2700
2701         /* BMSR_LSTATUS is latched, read it twice:
2702          * we want the current value.
2703          */
2704         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2705         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
2706
2707         if (!(mii_status & BMSR_LSTATUS)) {
2708                 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
2709                                 dev->name);
2710                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2711                 newdup = 0;
2712                 retval = 0;
2713                 goto set_speed;
2714         }
2715
2716         if (np->autoneg == 0) {
2717                 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
2718                                 dev->name, np->fixed_mode);
2719                 if (np->fixed_mode & LPA_100FULL) {
2720                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2721                         newdup = 1;
2722                 } else if (np->fixed_mode & LPA_100HALF) {
2723                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2724                         newdup = 0;
2725                 } else if (np->fixed_mode & LPA_10FULL) {
2726                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2727                         newdup = 1;
2728                 } else {
2729                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2730                         newdup = 0;
2731                 }
2732                 retval = 1;
2733                 goto set_speed;
2734         }
2735         /* check auto negotiation is complete */
2736         if (!(mii_status & BMSR_ANEGCOMPLETE)) {
2737                 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
2738                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2739                 newdup = 0;
2740                 retval = 0;
2741                 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
2742                 goto set_speed;
2743         }
2744
2745         adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
2746         lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
2747         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
2748                                 dev->name, adv, lpa);
2749
2750         retval = 1;
2751         if (np->gigabit == PHY_GIGABIT) {
2752                 control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
2753                 status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
2754
2755                 if ((control_1000 & ADVERTISE_1000FULL) &&
2756                         (status_1000 & LPA_1000FULL)) {
2757                         dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
2758                                 dev->name);
2759                         newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
2760                         newdup = 1;
2761                         goto set_speed;
2762                 }
2763         }
2764
2765         /* FIXME: handle parallel detection properly */
2766         adv_lpa = lpa & adv;
2767         if (adv_lpa & LPA_100FULL) {
2768                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2769                 newdup = 1;
2770         } else if (adv_lpa & LPA_100HALF) {
2771                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
2772                 newdup = 0;
2773         } else if (adv_lpa & LPA_10FULL) {
2774                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2775                 newdup = 1;
2776         } else if (adv_lpa & LPA_10HALF) {
2777                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2778                 newdup = 0;
2779         } else {
2780                 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
2781                 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
2782                 newdup = 0;
2783         }
2784
2785 set_speed:
2786         if (np->duplex == newdup && np->linkspeed == newls)
2787                 return retval;
2788
2789         dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
2790                         dev->name, np->linkspeed, np->duplex, newls, newdup);
2791
2792         np->duplex = newdup;
2793         np->linkspeed = newls;
2794
2795         if (np->gigabit == PHY_GIGABIT) {
2796                 phyreg = readl(base + NvRegRandomSeed);
2797                 phyreg &= ~(0x3FF00);
2798                 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
2799                         phyreg |= NVREG_RNDSEED_FORCE3;
2800                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
2801                         phyreg |= NVREG_RNDSEED_FORCE2;
2802                 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
2803                         phyreg |= NVREG_RNDSEED_FORCE;
2804                 writel(phyreg, base + NvRegRandomSeed);
2805         }
2806
2807         phyreg = readl(base + NvRegPhyInterface);
2808         phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
2809         if (np->duplex == 0)
2810                 phyreg |= PHY_HALF;
2811         if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
2812                 phyreg |= PHY_100;
2813         else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2814                 phyreg |= PHY_1000;
2815         writel(phyreg, base + NvRegPhyInterface);
2816
2817         if (phyreg & PHY_RGMII) {
2818                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2819                         txreg = NVREG_TX_DEFERRAL_RGMII_1000;
2820                 else
2821                         txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
2822         } else {
2823                 txreg = NVREG_TX_DEFERRAL_DEFAULT;
2824         }
2825         writel(txreg, base + NvRegTxDeferral);
2826
2827         if (np->desc_ver == DESC_VER_1) {
2828                 txreg = NVREG_TX_WM_DESC1_DEFAULT;
2829         } else {
2830                 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
2831                         txreg = NVREG_TX_WM_DESC2_3_1000;
2832                 else
2833                         txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
2834         }
2835         writel(txreg, base + NvRegTxWatermark);
2836
2837         writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
2838                 base + NvRegMisc1);
2839         pci_push(base);
2840         writel(np->linkspeed, base + NvRegLinkSpeed);
2841         pci_push(base);
2842
2843         pause_flags = 0;
2844         /* setup pause frame */
2845         if (np->duplex != 0) {
2846                 if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
2847                         adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
2848                         lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
2849
2850                         switch (adv_pause) {
2851                         case ADVERTISE_PAUSE_CAP:
2852                                 if (lpa_pause & LPA_PAUSE_CAP) {
2853                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2854                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2855                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2856                                 }
2857                                 break;
2858                         case ADVERTISE_PAUSE_ASYM:
2859                                 if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
2860                                 {
2861                                         pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2862                                 }
2863                                 break;
2864                         case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
2865                                 if (lpa_pause & LPA_PAUSE_CAP)
2866                                 {
2867                                         pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
2868                                         if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
2869                                                 pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
2870                                 }
2871                                 if (lpa_pause == LPA_PAUSE_ASYM)
2872                                 {
2873                                         pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
2874                                 }
2875                                 break;
2876                         }
2877                 } else {
2878                         pause_flags = np->pause_flags;
2879                 }
2880         }
2881         nv_update_pause(dev, pause_flags);
2882
2883         return retval;
2884 }
2885
2886 static void nv_linkchange(struct net_device *dev)
2887 {
2888         if (nv_update_linkspeed(dev)) {
2889                 if (!netif_carrier_ok(dev)) {
2890                         netif_carrier_on(dev);
2891                         printk(KERN_INFO "%s: link up.\n", dev->name);
2892                         nv_start_rx(dev);
2893                 }
2894         } else {
2895                 if (netif_carrier_ok(dev)) {
2896                         netif_carrier_off(dev);
2897                         printk(KERN_INFO "%s: link down.\n", dev->name);
2898                         nv_stop_rx(dev);
2899                 }
2900         }
2901 }
2902
2903 static void nv_link_irq(struct net_device *dev)
2904 {
2905         u8 __iomem *base = get_hwbase(dev);
2906         u32 miistat;
2907
2908         miistat = readl(base + NvRegMIIStatus);
2909         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
2910         dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
2911
2912         if (miistat & (NVREG_MIISTAT_LINKCHANGE))
2913                 nv_linkchange(dev);
2914         dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
2915 }
2916
2917 static irqreturn_t nv_nic_irq(int foo, void *data)
2918 {
2919         struct net_device *dev = (struct net_device *) data;
2920         struct fe_priv *np = netdev_priv(dev);
2921         u8 __iomem *base = get_hwbase(dev);
2922         u32 events;
2923         int i;
2924
2925         dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
2926
2927         for (i=0; ; i++) {
2928                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
2929                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
2930                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
2931                 } else {
2932                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
2933                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
2934                 }
2935                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
2936                 if (!(events & np->irqmask))
2937                         break;
2938
2939                 spin_lock(&np->lock);
2940                 nv_tx_done(dev);
2941                 spin_unlock(&np->lock);
2942
2943 #ifdef CONFIG_FORCEDETH_NAPI
2944                 if (events & NVREG_IRQ_RX_ALL) {
2945                         netif_rx_schedule(dev);
2946
2947                         /* Disable furthur receive irq's */
2948                         spin_lock(&np->lock);
2949                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
2950
2951                         if (np->msi_flags & NV_MSI_X_ENABLED)
2952                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
2953                         else
2954                                 writel(np->irqmask, base + NvRegIrqMask);
2955                         spin_unlock(&np->lock);
2956                 }
2957 #else
2958                 if (nv_rx_process(dev, dev->weight)) {
2959                         if (unlikely(nv_alloc_rx(dev))) {
2960                                 spin_lock(&np->lock);
2961                                 if (!np->in_shutdown)
2962                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
2963                                 spin_unlock(&np->lock);
2964                         }
2965                 }
2966 #endif
2967                 if (unlikely(events & NVREG_IRQ_LINK)) {
2968                         spin_lock(&np->lock);
2969                         nv_link_irq(dev);
2970                         spin_unlock(&np->lock);
2971                 }
2972                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
2973                         spin_lock(&np->lock);
2974                         nv_linkchange(dev);
2975                         spin_unlock(&np->lock);
2976                         np->link_timeout = jiffies + LINK_TIMEOUT;
2977                 }
2978                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
2979                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
2980                                                 dev->name, events);
2981                 }
2982                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
2983                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
2984                                                 dev->name, events);
2985                 }
2986                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
2987                         spin_lock(&np->lock);
2988                         /* disable interrupts on the nic */
2989                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
2990                                 writel(0, base + NvRegIrqMask);
2991                         else
2992                                 writel(np->irqmask, base + NvRegIrqMask);
2993                         pci_push(base);
2994
2995                         if (!np->in_shutdown) {
2996                                 np->nic_poll_irq = np->irqmask;
2997                                 np->recover_error = 1;
2998                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
2999                         }
3000                         spin_unlock(&np->lock);
3001                         break;
3002                 }
3003                 if (unlikely(i > max_interrupt_work)) {
3004                         spin_lock(&np->lock);
3005                         /* disable interrupts on the nic */
3006                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3007                                 writel(0, base + NvRegIrqMask);
3008                         else
3009                                 writel(np->irqmask, base + NvRegIrqMask);
3010                         pci_push(base);
3011
3012                         if (!np->in_shutdown) {
3013                                 np->nic_poll_irq = np->irqmask;
3014                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3015                         }
3016                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3017                         spin_unlock(&np->lock);
3018                         break;
3019                 }
3020
3021         }
3022         dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
3023
3024         return IRQ_RETVAL(i);
3025 }
3026
3027 #define TX_WORK_PER_LOOP  64
3028 #define RX_WORK_PER_LOOP  64
3029 /**
3030  * All _optimized functions are used to help increase performance
3031  * (reduce CPU and increase throughput). They use descripter version 3,
3032  * compiler directives, and reduce memory accesses.
3033  */
3034 static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
3035 {
3036         struct net_device *dev = (struct net_device *) data;
3037         struct fe_priv *np = netdev_priv(dev);
3038         u8 __iomem *base = get_hwbase(dev);
3039         u32 events;
3040         int i;
3041
3042         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
3043
3044         for (i=0; ; i++) {
3045                 if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3046                         events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3047                         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
3048                 } else {
3049                         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3050                         writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
3051                 }
3052                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3053                 if (!(events & np->irqmask))
3054                         break;
3055
3056                 spin_lock(&np->lock);
3057                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3058                 spin_unlock(&np->lock);
3059
3060 #ifdef CONFIG_FORCEDETH_NAPI
3061                 if (events & NVREG_IRQ_RX_ALL) {
3062                         netif_rx_schedule(dev);
3063
3064                         /* Disable furthur receive irq's */
3065                         spin_lock(&np->lock);
3066                         np->irqmask &= ~NVREG_IRQ_RX_ALL;
3067
3068                         if (np->msi_flags & NV_MSI_X_ENABLED)
3069                                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3070                         else
3071                                 writel(np->irqmask, base + NvRegIrqMask);
3072                         spin_unlock(&np->lock);
3073                 }
3074 #else
3075                 if (nv_rx_process_optimized(dev, dev->weight)) {
3076                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3077                                 spin_lock(&np->lock);
3078                                 if (!np->in_shutdown)
3079                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3080                                 spin_unlock(&np->lock);
3081                         }
3082                 }
3083 #endif
3084                 if (unlikely(events & NVREG_IRQ_LINK)) {
3085                         spin_lock(&np->lock);
3086                         nv_link_irq(dev);
3087                         spin_unlock(&np->lock);
3088                 }
3089                 if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
3090                         spin_lock(&np->lock);
3091                         nv_linkchange(dev);
3092                         spin_unlock(&np->lock);
3093                         np->link_timeout = jiffies + LINK_TIMEOUT;
3094                 }
3095                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3096                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3097                                                 dev->name, events);
3098                 }
3099                 if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
3100                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3101                                                 dev->name, events);
3102                 }
3103                 if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
3104                         spin_lock(&np->lock);
3105                         /* disable interrupts on the nic */
3106                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3107                                 writel(0, base + NvRegIrqMask);
3108                         else
3109                                 writel(np->irqmask, base + NvRegIrqMask);
3110                         pci_push(base);
3111
3112                         if (!np->in_shutdown) {
3113                                 np->nic_poll_irq = np->irqmask;
3114                                 np->recover_error = 1;
3115                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3116                         }
3117                         spin_unlock(&np->lock);
3118                         break;
3119                 }
3120
3121                 if (unlikely(i > max_interrupt_work)) {
3122                         spin_lock(&np->lock);
3123                         /* disable interrupts on the nic */
3124                         if (!(np->msi_flags & NV_MSI_X_ENABLED))
3125                                 writel(0, base + NvRegIrqMask);
3126                         else
3127                                 writel(np->irqmask, base + NvRegIrqMask);
3128                         pci_push(base);
3129
3130                         if (!np->in_shutdown) {
3131                                 np->nic_poll_irq = np->irqmask;
3132                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3133                         }
3134                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
3135                         spin_unlock(&np->lock);
3136                         break;
3137                 }
3138
3139         }
3140         dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
3141
3142         return IRQ_RETVAL(i);
3143 }
3144
3145 static irqreturn_t nv_nic_irq_tx(int foo, void *data)
3146 {
3147         struct net_device *dev = (struct net_device *) data;
3148         struct fe_priv *np = netdev_priv(dev);
3149         u8 __iomem *base = get_hwbase(dev);
3150         u32 events;
3151         int i;
3152         unsigned long flags;
3153
3154         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
3155
3156         for (i=0; ; i++) {
3157                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
3158                 writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
3159                 dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
3160                 if (!(events & np->irqmask))
3161                         break;
3162
3163                 spin_lock_irqsave(&np->lock, flags);
3164                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3165                 spin_unlock_irqrestore(&np->lock, flags);
3166
3167                 if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
3168                         dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
3169                                                 dev->name, events);
3170                 }
3171                 if (unlikely(i > max_interrupt_work)) {
3172                         spin_lock_irqsave(&np->lock, flags);
3173                         /* disable interrupts on the nic */
3174                         writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
3175                         pci_push(base);
3176
3177                         if (!np->in_shutdown) {
3178                                 np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
3179                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3180                         }
3181                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
3182                         spin_unlock_irqrestore(&np->lock, flags);
3183                         break;
3184                 }
3185
3186         }
3187         dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
3188
3189         return IRQ_RETVAL(i);
3190 }
3191
3192 #ifdef CONFIG_FORCEDETH_NAPI
3193 static int nv_napi_poll(struct net_device *dev, int *budget)
3194 {
3195         int pkts, limit = min(*budget, dev->quota);
3196         struct fe_priv *np = netdev_priv(dev);
3197         u8 __iomem *base = get_hwbase(dev);
3198         unsigned long flags;
3199         int retcode;
3200
3201         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
3202                 pkts = nv_rx_process(dev, limit);
3203                 retcode = nv_alloc_rx(dev);
3204         } else {
3205                 pkts = nv_rx_process_optimized(dev, limit);
3206                 retcode = nv_alloc_rx_optimized(dev);
3207         }
3208
3209         if (retcode) {
3210                 spin_lock_irqsave(&np->lock, flags);
3211                 if (!np->in_shutdown)
3212                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3213                 spin_unlock_irqrestore(&np->lock, flags);
3214         }
3215
3216         if (pkts < limit) {
3217                 /* all done, no more packets present */
3218                 netif_rx_complete(dev);
3219
3220                 /* re-enable receive interrupts */
3221                 spin_lock_irqsave(&np->lock, flags);
3222
3223                 np->irqmask |= NVREG_IRQ_RX_ALL;
3224                 if (np->msi_flags & NV_MSI_X_ENABLED)
3225                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3226                 else
3227                         writel(np->irqmask, base + NvRegIrqMask);
3228
3229                 spin_unlock_irqrestore(&np->lock, flags);
3230                 return 0;
3231         } else {
3232                 /* used up our quantum, so reschedule */
3233                 dev->quota -= pkts;
3234                 *budget -= pkts;
3235                 return 1;
3236         }
3237 }
3238 #endif
3239
3240 #ifdef CONFIG_FORCEDETH_NAPI
3241 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3242 {
3243         struct net_device *dev = (struct net_device *) data;
3244         u8 __iomem *base = get_hwbase(dev);
3245         u32 events;
3246
3247         events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3248         writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3249
3250         if (events) {
3251                 netif_rx_schedule(dev);
3252                 /* disable receive interrupts on the nic */
3253                 writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3254                 pci_push(base);
3255         }
3256         return IRQ_HANDLED;
3257 }
3258 #else
3259 static irqreturn_t nv_nic_irq_rx(int foo, void *data)
3260 {
3261         struct net_device *dev = (struct net_device *) data;
3262         struct fe_priv *np = netdev_priv(dev);
3263         u8 __iomem *base = get_hwbase(dev);
3264         u32 events;
3265         int i;
3266         unsigned long flags;
3267
3268         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
3269
3270         for (i=0; ; i++) {
3271                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
3272                 writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
3273                 dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
3274                 if (!(events & np->irqmask))
3275                         break;
3276
3277                 if (nv_rx_process_optimized(dev, dev->weight)) {
3278                         if (unlikely(nv_alloc_rx_optimized(dev))) {
3279                                 spin_lock_irqsave(&np->lock, flags);
3280                                 if (!np->in_shutdown)
3281                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3282                                 spin_unlock_irqrestore(&np->lock, flags);
3283                         }
3284                 }
3285
3286                 if (unlikely(i > max_interrupt_work)) {
3287                         spin_lock_irqsave(&np->lock, flags);
3288                         /* disable interrupts on the nic */
3289                         writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
3290                         pci_push(base);
3291
3292                         if (!np->in_shutdown) {
3293                                 np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
3294                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3295                         }
3296                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
3297                         spin_unlock_irqrestore(&np->lock, flags);
3298                         break;
3299                 }
3300         }
3301         dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
3302
3303         return IRQ_RETVAL(i);
3304 }
3305 #endif
3306
3307 static irqreturn_t nv_nic_irq_other(int foo, void *data)
3308 {
3309         struct net_device *dev = (struct net_device *) data;
3310         struct fe_priv *np = netdev_priv(dev);
3311         u8 __iomem *base = get_hwbase(dev);
3312         u32 events;
3313         int i;
3314         unsigned long flags;
3315
3316         dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
3317
3318         for (i=0; ; i++) {
3319                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
3320                 writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
3321                 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3322                 if (!(events & np->irqmask))
3323                         break;
3324
3325                 /* check tx in case we reached max loop limit in tx isr */
3326                 spin_lock_irqsave(&np->lock, flags);
3327                 nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
3328                 spin_unlock_irqrestore(&np->lock, flags);
3329
3330                 if (events & NVREG_IRQ_LINK) {
3331                         spin_lock_irqsave(&np->lock, flags);
3332                         nv_link_irq(dev);
3333                         spin_unlock_irqrestore(&np->lock, flags);
3334                 }
3335                 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
3336                         spin_lock_irqsave(&np->lock, flags);
3337                         nv_linkchange(dev);
3338                         spin_unlock_irqrestore(&np->lock, flags);
3339                         np->link_timeout = jiffies + LINK_TIMEOUT;
3340                 }
3341                 if (events & NVREG_IRQ_RECOVER_ERROR) {
3342                         spin_lock_irq(&np->lock);
3343                         /* disable interrupts on the nic */
3344                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3345                         pci_push(base);
3346
3347                         if (!np->in_shutdown) {
3348                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3349                                 np->recover_error = 1;
3350                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3351                         }
3352                         spin_unlock_irq(&np->lock);
3353                         break;
3354                 }
3355                 if (events & (NVREG_IRQ_UNKNOWN)) {
3356                         printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
3357                                                 dev->name, events);
3358                 }
3359                 if (unlikely(i > max_interrupt_work)) {
3360                         spin_lock_irqsave(&np->lock, flags);
3361                         /* disable interrupts on the nic */
3362                         writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
3363                         pci_push(base);
3364
3365                         if (!np->in_shutdown) {
3366                                 np->nic_poll_irq |= NVREG_IRQ_OTHER;
3367                                 mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
3368                         }
3369                         printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
3370                         spin_unlock_irqrestore(&np->lock, flags);
3371                         break;
3372                 }
3373
3374         }
3375         dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
3376
3377         return IRQ_RETVAL(i);
3378 }
3379
3380 static irqreturn_t nv_nic_irq_test(int foo, void *data)
3381 {
3382         struct net_device *dev = (struct net_device *) data;
3383         struct fe_priv *np = netdev_priv(dev);
3384         u8 __iomem *base = get_hwbase(dev);
3385         u32 events;
3386
3387         dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
3388
3389         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
3390                 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
3391                 writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
3392         } else {
3393                 events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
3394                 writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
3395         }
3396         pci_push(base);
3397         dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
3398         if (!(events & NVREG_IRQ_TIMER))
3399                 return IRQ_RETVAL(0);
3400
3401         spin_lock(&np->lock);
3402         np->intr_test = 1;
3403         spin_unlock(&np->lock);
3404
3405         dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
3406
3407         return IRQ_RETVAL(1);
3408 }
3409
3410 static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
3411 {
3412         u8 __iomem *base = get_hwbase(dev);
3413         int i;
3414         u32 msixmap = 0;
3415
3416         /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
3417          * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
3418          * the remaining 8 interrupts.
3419          */
3420         for (i = 0; i < 8; i++) {
3421                 if ((irqmask >> i) & 0x1) {
3422                         msixmap |= vector << (i << 2);
3423                 }
3424         }
3425         writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
3426
3427         msixmap = 0;
3428         for (i = 0; i < 8; i++) {
3429                 if ((irqmask >> (i + 8)) & 0x1) {
3430                         msixmap |= vector << (i << 2);
3431                 }
3432         }
3433         writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
3434 }
3435
3436 static int nv_request_irq(struct net_device *dev, int intr_test)
3437 {
3438         struct fe_priv *np = get_nvpriv(dev);
3439         u8 __iomem *base = get_hwbase(dev);
3440         int ret = 1;
3441         int i;
3442         irqreturn_t (*handler)(int foo, void *data);
3443
3444         if (intr_test) {
3445                 handler = nv_nic_irq_test;
3446         } else {
3447                 if (np->desc_ver == DESC_VER_3)
3448                         handler = nv_nic_irq_optimized;
3449                 else
3450                         handler = nv_nic_irq;
3451         }
3452
3453         if (np->msi_flags & NV_MSI_X_CAPABLE) {
3454                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3455                         np->msi_x_entry[i].entry = i;
3456                 }
3457                 if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
3458                         np->msi_flags |= NV_MSI_X_ENABLED;
3459                         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
3460                                 /* Request irq for rx handling */
3461                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
3462                                         printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
3463                                         pci_disable_msix(np->pci_dev);
3464                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3465                                         goto out_err;
3466                                 }
3467                                 /* Request irq for tx handling */
3468                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
3469                                         printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
3470                                         pci_disable_msix(np->pci_dev);
3471                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3472                                         goto out_free_rx;
3473                                 }
3474                                 /* Request irq for link and timer handling */
3475                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
3476                                         printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
3477                                         pci_disable_msix(np->pci_dev);
3478                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3479                                         goto out_free_tx;
3480                                 }
3481                                 /* map interrupts to their respective vector */
3482                                 writel(0, base + NvRegMSIXMap0);
3483                                 writel(0, base + NvRegMSIXMap1);
3484                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
3485                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
3486                                 set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
3487                         } else {
3488                                 /* Request irq for all interrupts */
3489                                 if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
3490                                         printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3491                                         pci_disable_msix(np->pci_dev);
3492                                         np->msi_flags &= ~NV_MSI_X_ENABLED;
3493                                         goto out_err;
3494                                 }
3495
3496                                 /* map interrupts to vector 0 */
3497                                 writel(0, base + NvRegMSIXMap0);
3498                                 writel(0, base + NvRegMSIXMap1);
3499                         }
3500                 }
3501         }
3502         if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
3503                 if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
3504                         np->msi_flags |= NV_MSI_ENABLED;
3505                         if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
3506                                 printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
3507                                 pci_disable_msi(np->pci_dev);
3508                                 np->msi_flags &= ~NV_MSI_ENABLED;
3509                                 goto out_err;
3510                         }
3511
3512                         /* map interrupts to vector 0 */
3513                         writel(0, base + NvRegMSIMap0);
3514                         writel(0, base + NvRegMSIMap1);
3515                         /* enable msi vector 0 */
3516                         writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
3517                 }
3518         }
3519         if (ret != 0) {
3520                 if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
3521                         goto out_err;
3522
3523         }
3524
3525         return 0;
3526 out_free_tx:
3527         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
3528 out_free_rx:
3529         free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
3530 out_err:
3531         return 1;
3532 }
3533
3534 static void nv_free_irq(struct net_device *dev)
3535 {
3536         struct fe_priv *np = get_nvpriv(dev);
3537         int i;
3538
3539         if (np->msi_flags & NV_MSI_X_ENABLED) {
3540                 for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
3541                         free_irq(np->msi_x_entry[i].vector, dev);
3542                 }
3543                 pci_disable_msix(np->pci_dev);
3544                 np->msi_flags &= ~NV_MSI_X_ENABLED;
3545         } else {
3546                 free_irq(np->pci_dev->irq, dev);
3547                 if (np->msi_flags & NV_MSI_ENABLED) {
3548                         pci_disable_msi(np->pci_dev);
3549                         np->msi_flags &= ~NV_MSI_ENABLED;
3550                 }
3551         }
3552 }
3553
3554 static void nv_do_nic_poll(unsigned long data)
3555 {
3556         struct net_device *dev = (struct net_device *) data;
3557         struct fe_priv *np = netdev_priv(dev);
3558         u8 __iomem *base = get_hwbase(dev);
3559         u32 mask = 0;
3560
3561         /*
3562          * First disable irq(s) and then
3563          * reenable interrupts on the nic, we have to do this before calling
3564          * nv_nic_irq because that may decide to do otherwise
3565          */
3566
3567         if (!using_multi_irqs(dev)) {
3568                 if (np->msi_flags & NV_MSI_X_ENABLED)
3569                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3570                 else
3571                         disable_irq_lockdep(dev->irq);
3572                 mask = np->irqmask;
3573         } else {
3574                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3575                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3576                         mask |= NVREG_IRQ_RX_ALL;
3577                 }
3578                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3579                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3580                         mask |= NVREG_IRQ_TX_ALL;
3581                 }
3582                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3583                         disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3584                         mask |= NVREG_IRQ_OTHER;
3585                 }
3586         }
3587         np->nic_poll_irq = 0;
3588
3589         if (np->recover_error) {
3590                 np->recover_error = 0;
3591                 printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
3592                 if (netif_running(dev)) {
3593                         netif_tx_lock_bh(dev);
3594                         spin_lock(&np->lock);
3595                         /* stop engines */
3596                         nv_stop_rx(dev);
3597                         nv_stop_tx(dev);
3598                         nv_txrx_reset(dev);
3599                         /* drain rx queue */
3600                         nv_drain_rx(dev);
3601                         nv_drain_tx(dev);
3602                         /* reinit driver view of the rx queue */
3603                         set_bufsize(dev);
3604                         if (nv_init_ring(dev)) {
3605                                 if (!np->in_shutdown)
3606                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
3607                         }
3608                         /* reinit nic view of the rx queue */
3609                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
3610                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
3611                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
3612                                 base + NvRegRingSizes);
3613                         pci_push(base);
3614                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
3615                         pci_push(base);
3616
3617                         /* restart rx engine */
3618                         nv_start_rx(dev);
3619                         nv_start_tx(dev);
3620                         spin_unlock(&np->lock);
3621                         netif_tx_unlock_bh(dev);
3622                 }
3623         }
3624
3625         /* FIXME: Do we need synchronize_irq(dev->irq) here? */
3626
3627         writel(mask, base + NvRegIrqMask);
3628         pci_push(base);
3629
3630         if (!using_multi_irqs(dev)) {
3631                 if (np->desc_ver == DESC_VER_3)
3632                         nv_nic_irq_optimized(0, dev);
3633                 else
3634                         nv_nic_irq(0, dev);
3635                 if (np->msi_flags & NV_MSI_X_ENABLED)
3636                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
3637                 else
3638                         enable_irq_lockdep(dev->irq);
3639         } else {
3640                 if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
3641                         nv_nic_irq_rx(0, dev);
3642                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
3643                 }
3644                 if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
3645                         nv_nic_irq_tx(0, dev);
3646                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
3647                 }
3648                 if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
3649                         nv_nic_irq_other(0, dev);
3650                         enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
3651                 }
3652         }
3653 }
3654
3655 #ifdef CONFIG_NET_POLL_CONTROLLER
3656 static void nv_poll_controller(struct net_device *dev)
3657 {
3658         nv_do_nic_poll((unsigned long) dev);
3659 }
3660 #endif
3661
3662 static void nv_do_stats_poll(unsigned long data)
3663 {
3664         struct net_device *dev = (struct net_device *) data;
3665         struct fe_priv *np = netdev_priv(dev);
3666
3667         nv_get_hw_stats(dev);
3668
3669         if (!np->in_shutdown)
3670                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
3671 }
3672
3673 static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3674 {
3675         struct fe_priv *np = netdev_priv(dev);
3676         strcpy(info->driver, "forcedeth");
3677         strcpy(info->version, FORCEDETH_VERSION);
3678         strcpy(info->bus_info, pci_name(np->pci_dev));
3679 }
3680
3681 static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3682 {
3683         struct fe_priv *np = netdev_priv(dev);
3684         wolinfo->supported = WAKE_MAGIC;
3685
3686         spin_lock_irq(&np->lock);
3687         if (np->wolenabled)
3688                 wolinfo->wolopts = WAKE_MAGIC;
3689         spin_unlock_irq(&np->lock);
3690 }
3691
3692 static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
3693 {
3694         struct fe_priv *np = netdev_priv(dev);
3695         u8 __iomem *base = get_hwbase(dev);
3696         u32 flags = 0;
3697
3698         if (wolinfo->wolopts == 0) {
3699                 np->wolenabled = 0;
3700         } else if (wolinfo->wolopts & WAKE_MAGIC) {
3701                 np->wolenabled = 1;
3702                 flags = NVREG_WAKEUPFLAGS_ENABLE;
3703         }
3704         if (netif_running(dev)) {
3705                 spin_lock_irq(&np->lock);
3706                 writel(flags, base + NvRegWakeUpFlags);
3707                 spin_unlock_irq(&np->lock);
3708         }
3709         return 0;
3710 }
3711
3712 static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3713 {
3714         struct fe_priv *np = netdev_priv(dev);
3715         int adv;
3716
3717         spin_lock_irq(&np->lock);
3718         ecmd->port = PORT_MII;
3719         if (!netif_running(dev)) {
3720                 /* We do not track link speed / duplex setting if the
3721                  * interface is disabled. Force a link check */
3722                 if (nv_update_linkspeed(dev)) {
3723                         if (!netif_carrier_ok(dev))
3724                                 netif_carrier_on(dev);
3725                 } else {
3726                         if (netif_carrier_ok(dev))
3727                                 netif_carrier_off(dev);
3728                 }
3729         }
3730
3731         if (netif_carrier_ok(dev)) {
3732                 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
3733                 case NVREG_LINKSPEED_10:
3734                         ecmd->speed = SPEED_10;
3735                         break;
3736                 case NVREG_LINKSPEED_100:
3737                         ecmd->speed = SPEED_100;
3738                         break;
3739                 case NVREG_LINKSPEED_1000:
3740                         ecmd->speed = SPEED_1000;
3741                         break;
3742                 }
3743                 ecmd->duplex = DUPLEX_HALF;
3744                 if (np->duplex)
3745                         ecmd->duplex = DUPLEX_FULL;
3746         } else {
3747                 ecmd->speed = -1;
3748                 ecmd->duplex = -1;
3749         }
3750
3751         ecmd->autoneg = np->autoneg;
3752
3753         ecmd->advertising = ADVERTISED_MII;
3754         if (np->autoneg) {
3755                 ecmd->advertising |= ADVERTISED_Autoneg;
3756                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3757                 if (adv & ADVERTISE_10HALF)
3758                         ecmd->advertising |= ADVERTISED_10baseT_Half;
3759                 if (adv & ADVERTISE_10FULL)
3760                         ecmd->advertising |= ADVERTISED_10baseT_Full;
3761                 if (adv & ADVERTISE_100HALF)
3762                         ecmd->advertising |= ADVERTISED_100baseT_Half;
3763                 if (adv & ADVERTISE_100FULL)
3764                         ecmd->advertising |= ADVERTISED_100baseT_Full;
3765                 if (np->gigabit == PHY_GIGABIT) {
3766                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3767                         if (adv & ADVERTISE_1000FULL)
3768                                 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3769                 }
3770         }
3771         ecmd->supported = (SUPPORTED_Autoneg |
3772                 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
3773                 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
3774                 SUPPORTED_MII);
3775         if (np->gigabit == PHY_GIGABIT)
3776                 ecmd->supported |= SUPPORTED_1000baseT_Full;
3777
3778         ecmd->phy_address = np->phyaddr;
3779         ecmd->transceiver = XCVR_EXTERNAL;
3780
3781         /* ignore maxtxpkt, maxrxpkt for now */
3782         spin_unlock_irq(&np->lock);
3783         return 0;
3784 }
3785
3786 static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
3787 {
3788         struct fe_priv *np = netdev_priv(dev);
3789
3790         if (ecmd->port != PORT_MII)
3791                 return -EINVAL;
3792         if (ecmd->transceiver != XCVR_EXTERNAL)
3793                 return -EINVAL;
3794         if (ecmd->phy_address != np->phyaddr) {
3795                 /* TODO: support switching between multiple phys. Should be
3796                  * trivial, but not enabled due to lack of test hardware. */
3797                 return -EINVAL;
3798         }
3799         if (ecmd->autoneg == AUTONEG_ENABLE) {
3800                 u32 mask;
3801
3802                 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
3803                           ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
3804                 if (np->gigabit == PHY_GIGABIT)
3805                         mask |= ADVERTISED_1000baseT_Full;
3806
3807                 if ((ecmd->advertising & mask) == 0)
3808                         return -EINVAL;
3809
3810         } else if (ecmd->autoneg == AUTONEG_DISABLE) {
3811                 /* Note: autonegotiation disable, speed 1000 intentionally
3812                  * forbidden - noone should need that. */
3813
3814                 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
3815                         return -EINVAL;
3816                 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
3817                         return -EINVAL;
3818         } else {
3819                 return -EINVAL;
3820         }
3821
3822         netif_carrier_off(dev);
3823         if (netif_running(dev)) {
3824                 nv_disable_irq(dev);
3825                 netif_tx_lock_bh(dev);
3826                 spin_lock(&np->lock);
3827                 /* stop engines */
3828                 nv_stop_rx(dev);
3829                 nv_stop_tx(dev);
3830                 spin_unlock(&np->lock);
3831                 netif_tx_unlock_bh(dev);
3832         }
3833
3834         if (ecmd->autoneg == AUTONEG_ENABLE) {
3835                 int adv, bmcr;
3836
3837                 np->autoneg = 1;
3838
3839                 /* advertise only what has been requested */
3840                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3841                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3842                 if (ecmd->advertising & ADVERTISED_10baseT_Half)
3843                         adv |= ADVERTISE_10HALF;
3844                 if (ecmd->advertising & ADVERTISED_10baseT_Full)
3845                         adv |= ADVERTISE_10FULL;
3846                 if (ecmd->advertising & ADVERTISED_100baseT_Half)
3847                         adv |= ADVERTISE_100HALF;
3848                 if (ecmd->advertising & ADVERTISED_100baseT_Full)
3849                         adv |= ADVERTISE_100FULL;
3850                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisments but disable tx pause */
3851                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3852                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
3853                         adv |=  ADVERTISE_PAUSE_ASYM;
3854                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3855
3856                 if (np->gigabit == PHY_GIGABIT) {
3857                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3858                         adv &= ~ADVERTISE_1000FULL;
3859                         if (ecmd->advertising & ADVERTISED_1000baseT_Full)
3860                                 adv |= ADVERTISE_1000FULL;
3861                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3862                 }
3863
3864                 if (netif_running(dev))
3865                         printk(KERN_INFO "%s: link down.\n", dev->name);
3866                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3867                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3868                         bmcr |= BMCR_ANENABLE;
3869                         /* reset the phy in order for settings to stick,
3870                          * and cause autoneg to start */
3871                         if (phy_reset(dev, bmcr)) {
3872                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3873                                 return -EINVAL;
3874                         }
3875                 } else {
3876                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3877                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3878                 }
3879         } else {
3880                 int adv, bmcr;
3881
3882                 np->autoneg = 0;
3883
3884                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
3885                 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
3886                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
3887                         adv |= ADVERTISE_10HALF;
3888                 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
3889                         adv |= ADVERTISE_10FULL;
3890                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
3891                         adv |= ADVERTISE_100HALF;
3892                 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
3893                         adv |= ADVERTISE_100FULL;
3894                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
3895                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
3896                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
3897                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
3898                 }
3899                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
3900                         adv |=  ADVERTISE_PAUSE_ASYM;
3901                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
3902                 }
3903                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
3904                 np->fixed_mode = adv;
3905
3906                 if (np->gigabit == PHY_GIGABIT) {
3907                         adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
3908                         adv &= ~ADVERTISE_1000FULL;
3909                         mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
3910                 }
3911
3912                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3913                 bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
3914                 if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
3915                         bmcr |= BMCR_FULLDPLX;
3916                 if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
3917                         bmcr |= BMCR_SPEED100;
3918                 if (np->phy_oui == PHY_OUI_MARVELL) {
3919                         /* reset the phy in order for forced mode settings to stick */
3920                         if (phy_reset(dev, bmcr)) {
3921                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3922                                 return -EINVAL;
3923                         }
3924                 } else {
3925                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3926                         if (netif_running(dev)) {
3927                                 /* Wait a bit and then reconfigure the nic. */
3928                                 udelay(10);
3929                                 nv_linkchange(dev);
3930                         }
3931                 }
3932         }
3933
3934         if (netif_running(dev)) {
3935                 nv_start_rx(dev);
3936                 nv_start_tx(dev);
3937                 nv_enable_irq(dev);
3938         }
3939
3940         return 0;
3941 }
3942
3943 #define FORCEDETH_REGS_VER      1
3944
3945 static int nv_get_regs_len(struct net_device *dev)
3946 {
3947         struct fe_priv *np = netdev_priv(dev);
3948         return np->register_size;
3949 }
3950
3951 static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
3952 {
3953         struct fe_priv *np = netdev_priv(dev);
3954         u8 __iomem *base = get_hwbase(dev);
3955         u32 *rbuf = buf;
3956         int i;
3957
3958         regs->version = FORCEDETH_REGS_VER;
3959         spin_lock_irq(&np->lock);
3960         for (i = 0;i <= np->register_size/sizeof(u32); i++)
3961                 rbuf[i] = readl(base + i*sizeof(u32));
3962         spin_unlock_irq(&np->lock);
3963 }
3964
3965 static int nv_nway_reset(struct net_device *dev)
3966 {
3967         struct fe_priv *np = netdev_priv(dev);
3968         int ret;
3969
3970         if (np->autoneg) {
3971                 int bmcr;
3972
3973                 netif_carrier_off(dev);
3974                 if (netif_running(dev)) {
3975                         nv_disable_irq(dev);
3976                         netif_tx_lock_bh(dev);
3977                         spin_lock(&np->lock);
3978                         /* stop engines */
3979                         nv_stop_rx(dev);
3980                         nv_stop_tx(dev);
3981                         spin_unlock(&np->lock);
3982                         netif_tx_unlock_bh(dev);
3983                         printk(KERN_INFO "%s: link down.\n", dev->name);
3984                 }
3985
3986                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
3987                 if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
3988                         bmcr |= BMCR_ANENABLE;
3989                         /* reset the phy in order for settings to stick*/
3990                         if (phy_reset(dev, bmcr)) {
3991                                 printk(KERN_INFO "%s: phy reset failed\n", dev->name);
3992                                 return -EINVAL;
3993                         }
3994                 } else {
3995                         bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
3996                         mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
3997                 }
3998
3999                 if (netif_running(dev)) {
4000                         nv_start_rx(dev);
4001                         nv_start_tx(dev);
4002                         nv_enable_irq(dev);
4003                 }
4004                 ret = 0;
4005         } else {
4006                 ret = -EINVAL;
4007         }
4008
4009         return ret;
4010 }
4011
4012 static int nv_set_tso(struct net_device *dev, u32 value)
4013 {
4014         struct fe_priv *np = netdev_priv(dev);
4015
4016         if ((np->driver_data & DEV_HAS_CHECKSUM))
4017                 return ethtool_op_set_tso(dev, value);
4018         else
4019                 return -EOPNOTSUPP;
4020 }
4021
4022 static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4023 {
4024         struct fe_priv *np = netdev_priv(dev);
4025
4026         ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4027         ring->rx_mini_max_pending = 0;
4028         ring->rx_jumbo_max_pending = 0;
4029         ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
4030
4031         ring->rx_pending = np->rx_ring_size;
4032         ring->rx_mini_pending = 0;
4033         ring->rx_jumbo_pending = 0;
4034         ring->tx_pending = np->tx_ring_size;
4035 }
4036
4037 static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
4038 {
4039         struct fe_priv *np = netdev_priv(dev);
4040         u8 __iomem *base = get_hwbase(dev);
4041         u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
4042         dma_addr_t ring_addr;
4043
4044         if (ring->rx_pending < RX_RING_MIN ||
4045             ring->tx_pending < TX_RING_MIN ||
4046             ring->rx_mini_pending != 0 ||
4047             ring->rx_jumbo_pending != 0 ||
4048             (np->desc_ver == DESC_VER_1 &&
4049              (ring->rx_pending > RING_MAX_DESC_VER_1 ||
4050               ring->tx_pending > RING_MAX_DESC_VER_1)) ||
4051             (np->desc_ver != DESC_VER_1 &&
4052              (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
4053               ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
4054                 return -EINVAL;
4055         }
4056
4057         /* allocate new rings */
4058         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4059                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4060                                             sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4061                                             &ring_addr);
4062         } else {
4063                 rxtx_ring = pci_alloc_consistent(np->pci_dev,
4064                                             sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4065                                             &ring_addr);
4066         }
4067         rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
4068         tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
4069         if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
4070                 /* fall back to old rings */
4071                 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4072                         if (rxtx_ring)
4073                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
4074                                                     rxtx_ring, ring_addr);
4075                 } else {
4076                         if (rxtx_ring)
4077                                 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
4078                                                     rxtx_ring, ring_addr);
4079                 }
4080                 if (rx_skbuff)
4081                         kfree(rx_skbuff);
4082                 if (tx_skbuff)
4083                         kfree(tx_skbuff);
4084                 goto exit;
4085         }
4086
4087         if (netif_running(dev)) {
4088                 nv_disable_irq(dev);
4089                 netif_tx_lock_bh(dev);
4090                 spin_lock(&np->lock);
4091                 /* stop engines */
4092                 nv_stop_rx(dev);
4093                 nv_stop_tx(dev);
4094                 nv_txrx_reset(dev);
4095                 /* drain queues */
4096                 nv_drain_rx(dev);
4097                 nv_drain_tx(dev);
4098                 /* delete queues */
4099                 free_rings(dev);
4100         }
4101
4102         /* set new values */
4103         np->rx_ring_size = ring->rx_pending;
4104         np->tx_ring_size = ring->tx_pending;
4105         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4106                 np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
4107                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
4108         } else {
4109                 np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
4110                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
4111         }
4112         np->rx_skb = (struct nv_skb_map*)rx_skbuff;
4113         np->tx_skb = (struct nv_skb_map*)tx_skbuff;
4114         np->ring_addr = ring_addr;
4115
4116         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
4117         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
4118
4119         if (netif_running(dev)) {
4120                 /* reinit driver view of the queues */
4121                 set_bufsize(dev);
4122                 if (nv_init_ring(dev)) {
4123                         if (!np->in_shutdown)
4124                                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4125                 }
4126
4127                 /* reinit nic view of the queues */
4128                 writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4129                 setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4130                 writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4131                         base + NvRegRingSizes);
4132                 pci_push(base);
4133                 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4134                 pci_push(base);
4135
4136                 /* restart engines */
4137                 nv_start_rx(dev);
4138                 nv_start_tx(dev);
4139                 spin_unlock(&np->lock);
4140                 netif_tx_unlock_bh(dev);
4141                 nv_enable_irq(dev);
4142         }
4143         return 0;
4144 exit:
4145         return -ENOMEM;
4146 }
4147
4148 static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4149 {
4150         struct fe_priv *np = netdev_priv(dev);
4151
4152         pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
4153         pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
4154         pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
4155 }
4156
4157 static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
4158 {
4159         struct fe_priv *np = netdev_priv(dev);
4160         int adv, bmcr;
4161
4162         if ((!np->autoneg && np->duplex == 0) ||
4163             (np->autoneg && !pause->autoneg && np->duplex == 0)) {
4164                 printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
4165                        dev->name);
4166                 return -EINVAL;
4167         }
4168         if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
4169                 printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
4170                 return -EINVAL;
4171         }
4172
4173         netif_carrier_off(dev);
4174         if (netif_running(dev)) {
4175                 nv_disable_irq(dev);
4176                 netif_tx_lock_bh(dev);
4177                 spin_lock(&np->lock);
4178                 /* stop engines */
4179                 nv_stop_rx(dev);
4180                 nv_stop_tx(dev);
4181                 spin_unlock(&np->lock);
4182                 netif_tx_unlock_bh(dev);
4183         }
4184
4185         np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
4186         if (pause->rx_pause)
4187                 np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
4188         if (pause->tx_pause)
4189                 np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
4190
4191         if (np->autoneg && pause->autoneg) {
4192                 np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
4193
4194                 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
4195                 adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
4196                 if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
4197                         adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
4198                 if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
4199                         adv |=  ADVERTISE_PAUSE_ASYM;
4200                 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
4201
4202                 if (netif_running(dev))
4203                         printk(KERN_INFO "%s: link down.\n", dev->name);
4204                 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
4205                 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
4206                 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
4207         } else {
4208                 np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
4209                 if (pause->rx_pause)
4210                         np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
4211                 if (pause->tx_pause)
4212                         np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
4213
4214                 if (!netif_running(dev))
4215                         nv_update_linkspeed(dev);
4216                 else
4217                         nv_update_pause(dev, np->pause_flags);
4218         }
4219
4220         if (netif_running(dev)) {
4221                 nv_start_rx(dev);
4222                 nv_start_tx(dev);
4223                 nv_enable_irq(dev);
4224         }
4225         return 0;
4226 }
4227
4228 static u32 nv_get_rx_csum(struct net_device *dev)
4229 {
4230         struct fe_priv *np = netdev_priv(dev);
4231         return (np->rx_csum) != 0;
4232 }
4233
4234 static int nv_set_rx_csum(struct net_device *dev, u32 data)
4235 {
4236         struct fe_priv *np = netdev_priv(dev);
4237         u8 __iomem *base = get_hwbase(dev);
4238         int retcode = 0;
4239
4240         if (np->driver_data & DEV_HAS_CHECKSUM) {
4241                 if (data) {
4242                         np->rx_csum = 1;
4243                         np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
4244                 } else {
4245                         np->rx_csum = 0;
4246                         /* vlan is dependent on rx checksum offload */
4247                         if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
4248                                 np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
4249                 }
4250                 if (netif_running(dev)) {
4251                         spin_lock_irq(&np->lock);
4252                         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4253                         spin_unlock_irq(&np->lock);
4254                 }
4255         } else {
4256                 return -EINVAL;
4257         }
4258
4259         return retcode;
4260 }
4261
4262 static int nv_set_tx_csum(struct net_device *dev, u32 data)
4263 {
4264         struct fe_priv *np = netdev_priv(dev);
4265
4266         if (np->driver_data & DEV_HAS_CHECKSUM)
4267                 return ethtool_op_set_tx_hw_csum(dev, data);
4268         else
4269                 return -EOPNOTSUPP;
4270 }
4271
4272 static int nv_set_sg(struct net_device *dev, u32 data)
4273 {
4274         struct fe_priv *np = netdev_priv(dev);
4275
4276         if (np->driver_data & DEV_HAS_CHECKSUM)
4277                 return ethtool_op_set_sg(dev, data);
4278         else
4279                 return -EOPNOTSUPP;
4280 }
4281
4282 static int nv_get_stats_count(struct net_device *dev)
4283 {
4284         struct fe_priv *np = netdev_priv(dev);
4285
4286         if (np->driver_data & DEV_HAS_STATISTICS_V1)
4287                 return NV_DEV_STATISTICS_V1_COUNT;
4288         else if (np->driver_data & DEV_HAS_STATISTICS_V2)
4289                 return NV_DEV_STATISTICS_V2_COUNT;
4290         else
4291                 return 0;
4292 }
4293
4294 static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
4295 {
4296         struct fe_priv *np = netdev_priv(dev);
4297
4298         /* update stats */
4299         nv_do_stats_poll((unsigned long)dev);
4300
4301         memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
4302 }
4303
4304 static int nv_self_test_count(struct net_device *dev)
4305 {
4306         struct fe_priv *np = netdev_priv(dev);
4307
4308         if (np->driver_data & DEV_HAS_TEST_EXTENDED)
4309                 return NV_TEST_COUNT_EXTENDED;
4310         else
4311                 return NV_TEST_COUNT_BASE;
4312 }
4313
4314 static int nv_link_test(struct net_device *dev)
4315 {
4316         struct fe_priv *np = netdev_priv(dev);
4317         int mii_status;
4318
4319         mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4320         mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
4321
4322         /* check phy link status */
4323         if (!(mii_status & BMSR_LSTATUS))
4324                 return 0;
4325         else
4326                 return 1;
4327 }
4328
4329 static int nv_register_test(struct net_device *dev)
4330 {
4331         u8 __iomem *base = get_hwbase(dev);
4332         int i = 0;
4333         u32 orig_read, new_read;
4334
4335         do {
4336                 orig_read = readl(base + nv_registers_test[i].reg);
4337
4338                 /* xor with mask to toggle bits */
4339                 orig_read ^= nv_registers_test[i].mask;
4340
4341                 writel(orig_read, base + nv_registers_test[i].reg);
4342
4343                 new_read = readl(base + nv_registers_test[i].reg);
4344
4345                 if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
4346                         return 0;
4347
4348                 /* restore original value */
4349                 orig_read ^= nv_registers_test[i].mask;
4350                 writel(orig_read, base + nv_registers_test[i].reg);
4351
4352         } while (nv_registers_test[++i].reg != 0);
4353
4354         return 1;
4355 }
4356
4357 static int nv_interrupt_test(struct net_device *dev)
4358 {
4359         struct fe_priv *np = netdev_priv(dev);
4360         u8 __iomem *base = get_hwbase(dev);
4361         int ret = 1;
4362         int testcnt;
4363         u32 save_msi_flags, save_poll_interval = 0;
4364
4365         if (netif_running(dev)) {
4366                 /* free current irq */
4367                 nv_free_irq(dev);
4368                 save_poll_interval = readl(base+NvRegPollingInterval);
4369         }
4370
4371         /* flag to test interrupt handler */
4372         np->intr_test = 0;
4373
4374         /* setup test irq */
4375         save_msi_flags = np->msi_flags;
4376         np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
4377         np->msi_flags |= 0x001; /* setup 1 vector */
4378         if (nv_request_irq(dev, 1))
4379                 return 0;
4380
4381         /* setup timer interrupt */
4382         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4383         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4384
4385         nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4386
4387         /* wait for at least one interrupt */
4388         msleep(100);
4389
4390         spin_lock_irq(&np->lock);
4391
4392         /* flag should be set within ISR */
4393         testcnt = np->intr_test;
4394         if (!testcnt)
4395                 ret = 2;
4396
4397         nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
4398         if (!(np->msi_flags & NV_MSI_X_ENABLED))
4399                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4400         else
4401                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4402
4403         spin_unlock_irq(&np->lock);
4404
4405         nv_free_irq(dev);
4406
4407         np->msi_flags = save_msi_flags;
4408
4409         if (netif_running(dev)) {
4410                 writel(save_poll_interval, base + NvRegPollingInterval);
4411                 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4412                 /* restore original irq */
4413                 if (nv_request_irq(dev, 0))
4414                         return 0;
4415         }
4416
4417         return ret;
4418 }
4419
4420 static int nv_loopback_test(struct net_device *dev)
4421 {
4422         struct fe_priv *np = netdev_priv(dev);
4423         u8 __iomem *base = get_hwbase(dev);
4424         struct sk_buff *tx_skb, *rx_skb;
4425         dma_addr_t test_dma_addr;
4426         u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
4427         u32 flags;
4428         int len, i, pkt_len;
4429         u8 *pkt_data;
4430         u32 filter_flags = 0;
4431         u32 misc1_flags = 0;
4432         int ret = 1;
4433
4434         if (netif_running(dev)) {
4435                 nv_disable_irq(dev);
4436                 filter_flags = readl(base + NvRegPacketFilterFlags);
4437                 misc1_flags = readl(base + NvRegMisc1);
4438         } else {
4439                 nv_txrx_reset(dev);
4440         }
4441
4442         /* reinit driver view of the rx queue */
4443         set_bufsize(dev);
4444         nv_init_ring(dev);
4445
4446         /* setup hardware for loopback */
4447         writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
4448         writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
4449
4450         /* reinit nic view of the rx queue */
4451         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4452         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4453         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4454                 base + NvRegRingSizes);
4455         pci_push(base);
4456
4457         /* restart rx engine */
4458         nv_start_rx(dev);
4459         nv_start_tx(dev);
4460
4461         /* setup packet for tx */
4462         pkt_len = ETH_DATA_LEN;
4463         tx_skb = dev_alloc_skb(pkt_len);
4464         if (!tx_skb) {
4465                 printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
4466                          " of %s\n", dev->name);
4467                 ret = 0;
4468                 goto out;
4469         }
4470         test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
4471                                        skb_tailroom(tx_skb),
4472                                        PCI_DMA_FROMDEVICE);
4473         pkt_data = skb_put(tx_skb, pkt_len);
4474         for (i = 0; i < pkt_len; i++)
4475                 pkt_data[i] = (u8)(i & 0xff);
4476
4477         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4478                 np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
4479                 np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4480         } else {
4481                 np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
4482                 np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
4483                 np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
4484         }
4485         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4486         pci_push(get_hwbase(dev));
4487
4488         msleep(500);
4489
4490         /* check for rx of the packet */
4491         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
4492                 flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
4493                 len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
4494
4495         } else {
4496                 flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
4497                 len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
4498         }
4499
4500         if (flags & NV_RX_AVAIL) {
4501                 ret = 0;
4502         } else if (np->desc_ver == DESC_VER_1) {
4503                 if (flags & NV_RX_ERROR)
4504                         ret = 0;
4505         } else {
4506                 if (flags & NV_RX2_ERROR) {
4507                         ret = 0;
4508                 }
4509         }
4510
4511         if (ret) {
4512                 if (len != pkt_len) {
4513                         ret = 0;
4514                         dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
4515                                 dev->name, len, pkt_len);
4516                 } else {
4517                         rx_skb = np->rx_skb[0].skb;
4518                         for (i = 0; i < pkt_len; i++) {
4519                                 if (rx_skb->data[i] != (u8)(i & 0xff)) {
4520                                         ret = 0;
4521                                         dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
4522                                                 dev->name, i);
4523                                         break;
4524                                 }
4525                         }
4526                 }
4527         } else {
4528                 dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
4529         }
4530
4531         pci_unmap_page(np->pci_dev, test_dma_addr,
4532                        (skb_end_pointer(tx_skb) - tx_skb->data),
4533                        PCI_DMA_TODEVICE);
4534         dev_kfree_skb_any(tx_skb);
4535  out:
4536         /* stop engines */
4537         nv_stop_rx(dev);
4538         nv_stop_tx(dev);
4539         nv_txrx_reset(dev);
4540         /* drain rx queue */
4541         nv_drain_rx(dev);
4542         nv_drain_tx(dev);
4543
4544         if (netif_running(dev)) {
4545                 writel(misc1_flags, base + NvRegMisc1);
4546                 writel(filter_flags, base + NvRegPacketFilterFlags);
4547                 nv_enable_irq(dev);
4548         }
4549
4550         return ret;
4551 }
4552
4553 static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
4554 {
4555         struct fe_priv *np = netdev_priv(dev);
4556         u8 __iomem *base = get_hwbase(dev);
4557         int result;
4558         memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
4559
4560         if (!nv_link_test(dev)) {
4561                 test->flags |= ETH_TEST_FL_FAILED;
4562                 buffer[0] = 1;
4563         }
4564
4565         if (test->flags & ETH_TEST_FL_OFFLINE) {
4566                 if (netif_running(dev)) {
4567                         netif_stop_queue(dev);
4568                         netif_poll_disable(dev);
4569                         netif_tx_lock_bh(dev);
4570                         spin_lock_irq(&np->lock);
4571                         nv_disable_hw_interrupts(dev, np->irqmask);
4572                         if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
4573                                 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4574                         } else {
4575                                 writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
4576                         }
4577                         /* stop engines */
4578                         nv_stop_rx(dev);
4579                         nv_stop_tx(dev);
4580                         nv_txrx_reset(dev);
4581                         /* drain rx queue */
4582                         nv_drain_rx(dev);
4583                         nv_drain_tx(dev);
4584                         spin_unlock_irq(&np->lock);
4585                         netif_tx_unlock_bh(dev);
4586                 }
4587
4588                 if (!nv_register_test(dev)) {
4589                         test->flags |= ETH_TEST_FL_FAILED;
4590                         buffer[1] = 1;
4591                 }
4592
4593                 result = nv_interrupt_test(dev);
4594                 if (result != 1) {
4595                         test->flags |= ETH_TEST_FL_FAILED;
4596                         buffer[2] = 1;
4597                 }
4598                 if (result == 0) {
4599                         /* bail out */
4600                         return;
4601                 }
4602
4603                 if (!nv_loopback_test(dev)) {
4604                         test->flags |= ETH_TEST_FL_FAILED;
4605                         buffer[3] = 1;
4606                 }
4607
4608                 if (netif_running(dev)) {
4609                         /* reinit driver view of the rx queue */
4610                         set_bufsize(dev);
4611                         if (nv_init_ring(dev)) {
4612                                 if (!np->in_shutdown)
4613                                         mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4614                         }
4615                         /* reinit nic view of the rx queue */
4616                         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4617                         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4618                         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4619                                 base + NvRegRingSizes);
4620                         pci_push(base);
4621                         writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4622                         pci_push(base);
4623                         /* restart rx engine */
4624                         nv_start_rx(dev);
4625                         nv_start_tx(dev);
4626                         netif_start_queue(dev);
4627                         netif_poll_enable(dev);
4628                         nv_enable_hw_interrupts(dev, np->irqmask);
4629                 }
4630         }
4631 }
4632
4633 static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
4634 {
4635         switch (stringset) {
4636         case ETH_SS_STATS:
4637                 memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
4638                 break;
4639         case ETH_SS_TEST:
4640                 memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
4641                 break;
4642         }
4643 }
4644
4645 static const struct ethtool_ops ops = {
4646         .get_drvinfo = nv_get_drvinfo,
4647         .get_link = ethtool_op_get_link,
4648         .get_wol = nv_get_wol,
4649         .set_wol = nv_set_wol,
4650         .get_settings = nv_get_settings,
4651         .set_settings = nv_set_settings,
4652         .get_regs_len = nv_get_regs_len,
4653         .get_regs = nv_get_regs,
4654         .nway_reset = nv_nway_reset,
4655         .get_perm_addr = ethtool_op_get_perm_addr,
4656         .get_tso = ethtool_op_get_tso,
4657         .set_tso = nv_set_tso,
4658         .get_ringparam = nv_get_ringparam,
4659         .set_ringparam = nv_set_ringparam,
4660         .get_pauseparam = nv_get_pauseparam,
4661         .set_pauseparam = nv_set_pauseparam,
4662         .get_rx_csum = nv_get_rx_csum,
4663         .set_rx_csum = nv_set_rx_csum,
4664         .get_tx_csum = ethtool_op_get_tx_csum,
4665         .set_tx_csum = nv_set_tx_csum,
4666         .get_sg = ethtool_op_get_sg,
4667         .set_sg = nv_set_sg,
4668         .get_strings = nv_get_strings,
4669         .get_stats_count = nv_get_stats_count,
4670         .get_ethtool_stats = nv_get_ethtool_stats,
4671         .self_test_count = nv_self_test_count,
4672         .self_test = nv_self_test,
4673 };
4674
4675 static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
4676 {
4677         struct fe_priv *np = get_nvpriv(dev);
4678
4679         spin_lock_irq(&np->lock);
4680
4681         /* save vlan group */
4682         np->vlangrp = grp;
4683
4684         if (grp) {
4685                 /* enable vlan on MAC */
4686                 np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
4687         } else {
4688                 /* disable vlan on MAC */
4689                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
4690                 np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
4691         }
4692
4693         writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
4694
4695         spin_unlock_irq(&np->lock);
4696 }
4697
4698 /* The mgmt unit and driver use a semaphore to access the phy during init */
4699 static int nv_mgmt_acquire_sema(struct net_device *dev)
4700 {
4701         u8 __iomem *base = get_hwbase(dev);
4702         int i;
4703         u32 tx_ctrl, mgmt_sema;
4704
4705         for (i = 0; i < 10; i++) {
4706                 mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
4707                 if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
4708                         break;
4709                 msleep(500);
4710         }
4711
4712         if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
4713                 return 0;
4714
4715         for (i = 0; i < 2; i++) {
4716                 tx_ctrl = readl(base + NvRegTransmitterControl);
4717                 tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
4718                 writel(tx_ctrl, base + NvRegTransmitterControl);
4719
4720                 /* verify that semaphore was acquired */
4721                 tx_ctrl = readl(base + NvRegTransmitterControl);
4722                 if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
4723                     ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
4724                         return 1;
4725                 else
4726                         udelay(50);
4727         }
4728
4729         return 0;
4730 }
4731
4732 static int nv_open(struct net_device *dev)
4733 {
4734         struct fe_priv *np = netdev_priv(dev);
4735         u8 __iomem *base = get_hwbase(dev);
4736         int ret = 1;
4737         int oom, i;
4738
4739         dprintk(KERN_DEBUG "nv_open: begin\n");
4740
4741         /* erase previous misconfiguration */
4742         if (np->driver_data & DEV_HAS_POWER_CNTRL)
4743                 nv_mac_reset(dev);
4744         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4745         writel(0, base + NvRegMulticastAddrB);
4746         writel(0, base + NvRegMulticastMaskA);
4747         writel(0, base + NvRegMulticastMaskB);
4748         writel(0, base + NvRegPacketFilterFlags);
4749
4750         writel(0, base + NvRegTransmitterControl);
4751         writel(0, base + NvRegReceiverControl);
4752
4753         writel(0, base + NvRegAdapterControl);
4754
4755         if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
4756                 writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
4757
4758         /* initialize descriptor rings */
4759         set_bufsize(dev);
4760         oom = nv_init_ring(dev);
4761
4762         writel(0, base + NvRegLinkSpeed);
4763         writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
4764         nv_txrx_reset(dev);
4765         writel(0, base + NvRegUnknownSetupReg6);
4766
4767         np->in_shutdown = 0;
4768
4769         /* give hw rings */
4770         setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
4771         writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
4772                 base + NvRegRingSizes);
4773
4774         writel(np->linkspeed, base + NvRegLinkSpeed);
4775         if (np->desc_ver == DESC_VER_1)
4776                 writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
4777         else
4778                 writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
4779         writel(np->txrxctl_bits, base + NvRegTxRxControl);
4780         writel(np->vlanctl_bits, base + NvRegVlanControl);
4781         pci_push(base);
4782         writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
4783         reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
4784                         NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
4785                         KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
4786
4787         writel(0, base + NvRegMIIMask);
4788         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4789         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4790
4791         writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
4792         writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
4793         writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
4794         writel(np->rx_buf_sz, base + NvRegOffloadConfig);
4795
4796         writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
4797         get_random_bytes(&i, sizeof(i));
4798         writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
4799         writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
4800         writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
4801         if (poll_interval == -1) {
4802                 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
4803                         writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
4804                 else
4805                         writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
4806         }
4807         else
4808                 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
4809         writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
4810         writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
4811                         base + NvRegAdapterControl);
4812         writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
4813         writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
4814         if (np->wolenabled)
4815                 writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
4816
4817         i = readl(base + NvRegPowerState);
4818         if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
4819                 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
4820
4821         pci_push(base);
4822         udelay(10);
4823         writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
4824
4825         nv_disable_hw_interrupts(dev, np->irqmask);
4826         pci_push(base);
4827         writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
4828         writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
4829         pci_push(base);
4830
4831         if (nv_request_irq(dev, 0)) {
4832                 goto out_drain;
4833         }
4834
4835         /* ask for interrupts */
4836         nv_enable_hw_interrupts(dev, np->irqmask);
4837
4838         spin_lock_irq(&np->lock);
4839         writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
4840         writel(0, base + NvRegMulticastAddrB);
4841         writel(0, base + NvRegMulticastMaskA);
4842         writel(0, base + NvRegMulticastMaskB);
4843         writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4844         /* One manual link speed update: Interrupts are enabled, future link
4845          * speed changes cause interrupts and are handled by nv_link_irq().
4846          */
4847         {
4848                 u32 miistat;
4849                 miistat = readl(base + NvRegMIIStatus);
4850                 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
4851                 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
4852         }
4853         /* set linkspeed to invalid value, thus force nv_update_linkspeed
4854          * to init hw */
4855         np->linkspeed = 0;
4856         ret = nv_update_linkspeed(dev);
4857         nv_start_rx(dev);
4858         nv_start_tx(dev);
4859         netif_start_queue(dev);
4860         netif_poll_enable(dev);
4861
4862         if (ret) {
4863                 netif_carrier_on(dev);
4864         } else {
4865                 printk("%s: no link during initialization.\n", dev->name);
4866                 netif_carrier_off(dev);
4867         }
4868         if (oom)
4869                 mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
4870
4871         /* start statistics timer */
4872         if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
4873                 mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
4874
4875         spin_unlock_irq(&np->lock);
4876
4877         return 0;
4878 out_drain:
4879         drain_ring(dev);
4880         return ret;
4881 }
4882
4883 static int nv_close(struct net_device *dev)
4884 {
4885         struct fe_priv *np = netdev_priv(dev);
4886         u8 __iomem *base;
4887
4888         spin_lock_irq(&np->lock);
4889         np->in_shutdown = 1;
4890         spin_unlock_irq(&np->lock);
4891         netif_poll_disable(dev);
4892         synchronize_irq(dev->irq);
4893
4894         del_timer_sync(&np->oom_kick);
4895         del_timer_sync(&np->nic_poll);
4896         del_timer_sync(&np->stats_poll);
4897
4898         netif_stop_queue(dev);
4899         spin_lock_irq(&np->lock);
4900         nv_stop_tx(dev);
4901         nv_stop_rx(dev);
4902         nv_txrx_reset(dev);
4903
4904         /* disable interrupts on the nic or we will lock up */
4905         base = get_hwbase(dev);
4906         nv_disable_hw_interrupts(dev, np->irqmask);
4907         pci_push(base);
4908         dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
4909
4910         spin_unlock_irq(&np->lock);
4911
4912         nv_free_irq(dev);
4913
4914         drain_ring(dev);
4915
4916         if (np->wolenabled) {
4917                 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
4918                 nv_start_rx(dev);
4919         }
4920
4921         /* FIXME: power down nic */
4922
4923         return 0;
4924 }
4925
4926 static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
4927 {
4928         struct net_device *dev;
4929         struct fe_priv *np;
4930         unsigned long addr;
4931         u8 __iomem *base;
4932         int err, i;
4933         u32 powerstate, txreg;
4934         u32 phystate_orig = 0, phystate;
4935         int phyinitialized = 0;
4936
4937         dev = alloc_etherdev(sizeof(struct fe_priv));
4938         err = -ENOMEM;
4939         if (!dev)
4940                 goto out;
4941
4942         np = netdev_priv(dev);
4943         np->pci_dev = pci_dev;
4944         spin_lock_init(&np->lock);
4945         SET_MODULE_OWNER(dev);
4946         SET_NETDEV_DEV(dev, &pci_dev->dev);
4947
4948         init_timer(&np->oom_kick);
4949         np->oom_kick.data = (unsigned long) dev;
4950         np->oom_kick.function = &nv_do_rx_refill;       /* timer handler */
4951         init_timer(&np->nic_poll);
4952         np->nic_poll.data = (unsigned long) dev;
4953         np->nic_poll.function = &nv_do_nic_poll;        /* timer handler */
4954         init_timer(&np->stats_poll);
4955         np->stats_poll.data = (unsigned long) dev;
4956         np->stats_poll.function = &nv_do_stats_poll;    /* timer handler */
4957
4958         err = pci_enable_device(pci_dev);
4959         if (err) {
4960                 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
4961                                 err, pci_name(pci_dev));
4962                 goto out_free;
4963         }
4964
4965         pci_set_master(pci_dev);
4966
4967         err = pci_request_regions(pci_dev, DRV_NAME);
4968         if (err < 0)
4969                 goto out_disable;
4970
4971         if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
4972                 np->register_size = NV_PCI_REGSZ_VER3;
4973         else if (id->driver_data & DEV_HAS_STATISTICS_V1)
4974                 np->register_size = NV_PCI_REGSZ_VER2;
4975         else
4976                 np->register_size = NV_PCI_REGSZ_VER1;
4977
4978         err = -EINVAL;
4979         addr = 0;
4980         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4981                 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
4982                                 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
4983                                 pci_resource_len(pci_dev, i),
4984                                 pci_resource_flags(pci_dev, i));
4985                 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
4986                                 pci_resource_len(pci_dev, i) >= np->register_size) {
4987                         addr = pci_resource_start(pci_dev, i);
4988                         break;
4989                 }
4990         }
4991         if (i == DEVICE_COUNT_RESOURCE) {
4992                 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
4993                                         pci_name(pci_dev));
4994                 goto out_relreg;
4995         }
4996
4997         /* copy of driver data */
4998         np->driver_data = id->driver_data;
4999
5000         /* handle different descriptor versions */
5001         if (id->driver_data & DEV_HAS_HIGH_DMA) {
5002                 /* packet format 3: supports 40-bit addressing */
5003                 np->desc_ver = DESC_VER_3;
5004                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
5005                 if (dma_64bit) {
5006                         if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5007                                 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
5008                                        pci_name(pci_dev));
5009                         } else {
5010                                 dev->features |= NETIF_F_HIGHDMA;
5011                                 printk(KERN_INFO "forcedeth: using HIGHDMA\n");
5012                         }
5013                         if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
5014                                 printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
5015                                        pci_name(pci_dev));
5016                         }
5017                 }
5018         } else if (id->driver_data & DEV_HAS_LARGEDESC) {
5019                 /* packet format 2: supports jumbo frames */
5020                 np->desc_ver = DESC_VER_2;
5021                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
5022         } else {
5023                 /* original packet format */
5024                 np->desc_ver = DESC_VER_1;
5025                 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
5026         }
5027
5028         np->pkt_limit = NV_PKTLIMIT_1;
5029         if (id->driver_data & DEV_HAS_LARGEDESC)
5030                 np->pkt_limit = NV_PKTLIMIT_2;
5031
5032         if (id->driver_data & DEV_HAS_CHECKSUM) {
5033                 np->rx_csum = 1;
5034                 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
5035                 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5036                 dev->features |= NETIF_F_TSO;
5037         }
5038
5039         np->vlanctl_bits = 0;
5040         if (id->driver_data & DEV_HAS_VLAN) {
5041                 np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
5042                 dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
5043                 dev->vlan_rx_register = nv_vlan_rx_register;
5044         }
5045
5046         np->msi_flags = 0;
5047         if ((id->driver_data & DEV_HAS_MSI) && msi) {
5048                 np->msi_flags |= NV_MSI_CAPABLE;
5049         }
5050         if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
5051                 np->msi_flags |= NV_MSI_X_CAPABLE;
5052         }
5053
5054         np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
5055         if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
5056                 np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
5057         }
5058
5059
5060         err = -ENOMEM;
5061         np->base = ioremap(addr, np->register_size);
5062         if (!np->base)
5063                 goto out_relreg;
5064         dev->base_addr = (unsigned long)np->base;
5065
5066         dev->irq = pci_dev->irq;
5067
5068         np->rx_ring_size = RX_RING_DEFAULT;
5069         np->tx_ring_size = TX_RING_DEFAULT;
5070
5071         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
5072                 np->rx_ring.orig = pci_alloc_consistent(pci_dev,
5073                                         sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
5074                                         &np->ring_addr);
5075                 if (!np->rx_ring.orig)
5076                         goto out_unmap;
5077                 np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
5078         } else {
5079                 np->rx_ring.ex = pci_alloc_consistent(pci_dev,
5080                                         sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
5081                                         &np->ring_addr);
5082                 if (!np->rx_ring.ex)
5083                         goto out_unmap;
5084                 np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
5085         }
5086         np->rx_skb = kmalloc(sizeof(struct nv_skb_map) * np->rx_ring_size, GFP_KERNEL);
5087         np->tx_skb = kmalloc(sizeof(struct nv_skb_map) * np->tx_ring_size, GFP_KERNEL);
5088         if (!np->rx_skb || !np->tx_skb)
5089                 goto out_freering;
5090         memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
5091         memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
5092
5093         dev->open = nv_open;
5094         dev->stop = nv_close;
5095         if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
5096                 dev->hard_start_xmit = nv_start_xmit;
5097         else
5098                 dev->hard_start_xmit = nv_start_xmit_optimized;
5099         dev->get_stats = nv_get_stats;
5100         dev->change_mtu = nv_change_mtu;
5101         dev->set_mac_address = nv_set_mac_address;
5102         dev->set_multicast_list = nv_set_multicast;
5103 #ifdef CONFIG_NET_POLL_CONTROLLER
5104         dev->poll_controller = nv_poll_controller;
5105 #endif
5106         dev->weight = RX_WORK_PER_LOOP;
5107 #ifdef CONFIG_FORCEDETH_NAPI
5108         dev->poll = nv_napi_poll;
5109 #endif
5110         SET_ETHTOOL_OPS(dev, &ops);
5111         dev->tx_timeout = nv_tx_timeout;
5112         dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
5113
5114         pci_set_drvdata(pci_dev, dev);
5115
5116         /* read the mac address */
5117         base = get_hwbase(dev);
5118         np->orig_mac[0] = readl(base + NvRegMacAddrA);
5119         np->orig_mac[1] = readl(base + NvRegMacAddrB);
5120
5121         /* check the workaround bit for correct mac address order */
5122         txreg = readl(base + NvRegTransmitPoll);
5123         if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
5124                 /* mac address is already in correct order */
5125                 dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
5126                 dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
5127                 dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
5128                 dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
5129                 dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
5130                 dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
5131         } else {
5132                 /* need to reverse mac address to correct order */
5133                 dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
5134                 dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
5135                 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
5136                 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
5137                 dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
5138                 dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
5139                 /* set permanent address to be correct aswell */
5140                 np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
5141                         (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
5142                 np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
5143                 writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
5144         }
5145         memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5146
5147         if (!is_valid_ether_addr(dev->perm_addr)) {
5148                 /*
5149                  * Bad mac address. At least one bios sets the mac address
5150                  * to 01:23:45:67:89:ab
5151                  */
5152                 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
5153                         pci_name(pci_dev),
5154                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5155                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5156                 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
5157                 dev->dev_addr[0] = 0x00;
5158                 dev->dev_addr[1] = 0x00;
5159                 dev->dev_addr[2] = 0x6c;
5160                 get_random_bytes(&dev->dev_addr[3], 3);
5161         }
5162
5163         dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
5164                         dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
5165                         dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
5166
5167         /* set mac address */
5168         nv_copy_mac_to_hw(dev);
5169
5170         /* disable WOL */
5171         writel(0, base + NvRegWakeUpFlags);
5172         np->wolenabled = 0;
5173
5174         if (id->driver_data & DEV_HAS_POWER_CNTRL) {
5175                 u8 revision_id;
5176                 pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
5177
5178                 /* take phy and nic out of low power mode */
5179                 powerstate = readl(base + NvRegPowerState2);
5180                 powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
5181                 if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
5182                      id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
5183                     revision_id >= 0xA3)
5184                         powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
5185                 writel(powerstate, base + NvRegPowerState2);
5186         }
5187
5188         if (np->desc_ver == DESC_VER_1) {
5189                 np->tx_flags = NV_TX_VALID;
5190         } else {
5191                 np->tx_flags = NV_TX2_VALID;
5192         }
5193         if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
5194                 np->irqmask = NVREG_IRQMASK_THROUGHPUT;
5195                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5196                         np->msi_flags |= 0x0003;
5197         } else {
5198                 np->irqmask = NVREG_IRQMASK_CPU;
5199                 if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
5200                         np->msi_flags |= 0x0001;
5201         }
5202
5203         if (id->driver_data & DEV_NEED_TIMERIRQ)
5204                 np->irqmask |= NVREG_IRQ_TIMER;
5205         if (id->driver_data & DEV_NEED_LINKTIMER) {
5206                 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
5207                 np->need_linktimer = 1;
5208                 np->link_timeout = jiffies + LINK_TIMEOUT;
5209         } else {
5210                 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
5211                 np->need_linktimer = 0;
5212         }
5213
5214         /* clear phy state and temporarily halt phy interrupts */
5215         writel(0, base + NvRegMIIMask);
5216         phystate = readl(base + NvRegAdapterControl);
5217         if (phystate & NVREG_ADAPTCTL_RUNNING) {
5218                 phystate_orig = 1;
5219                 phystate &= ~NVREG_ADAPTCTL_RUNNING;
5220                 writel(phystate, base + NvRegAdapterControl);
5221         }
5222         writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
5223
5224         if (id->driver_data & DEV_HAS_MGMT_UNIT) {
5225                 /* management unit running on the mac? */
5226                 if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
5227                         np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
5228                         dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
5229                         for (i = 0; i < 5000; i++) {
5230                                 msleep(1);
5231                                 if (nv_mgmt_acquire_sema(dev)) {
5232                                         /* management unit setup the phy already? */
5233                                         if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
5234                                             NVREG_XMITCTL_SYNC_PHY_INIT) {
5235                                                 /* phy is inited by mgmt unit */
5236                                                 phyinitialized = 1;
5237                                                 dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
5238                                         } else {
5239                                                 /* we need to init the phy */
5240                                         }
5241                                         break;
5242                                 }
5243                         }
5244                 }
5245         }
5246
5247         /* find a suitable phy */
5248         for (i = 1; i <= 32; i++) {
5249                 int id1, id2;
5250                 int phyaddr = i & 0x1F;
5251
5252                 spin_lock_irq(&np->lock);
5253                 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
5254                 spin_unlock_irq(&np->lock);
5255                 if (id1 < 0 || id1 == 0xffff)
5256                         continue;
5257                 spin_lock_irq(&np->lock);
5258                 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
5259                 spin_unlock_irq(&np->lock);
5260                 if (id2 < 0 || id2 == 0xffff)
5261                         continue;
5262
5263                 np->phy_model = id2 & PHYID2_MODEL_MASK;
5264                 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
5265                 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
5266                 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
5267                         pci_name(pci_dev), id1, id2, phyaddr);
5268                 np->phyaddr = phyaddr;
5269                 np->phy_oui = id1 | id2;
5270                 break;
5271         }
5272         if (i == 33) {
5273                 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
5274                        pci_name(pci_dev));
5275                 goto out_error;
5276         }
5277
5278         if (!phyinitialized) {
5279                 /* reset it */
5280                 phy_init(dev);
5281         } else {
5282                 /* see if it is a gigabit phy */
5283                 u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
5284                 if (mii_status & PHY_GIGABIT) {
5285                         np->gigabit = PHY_GIGABIT;
5286                 }
5287         }
5288
5289         /* set default link speed settings */
5290         np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
5291         np->duplex = 0;
5292         np->autoneg = 1;
5293
5294         err = register_netdev(dev);
5295         if (err) {
5296                 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
5297                 goto out_error;
5298         }
5299         printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
5300                         dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
5301                         pci_name(pci_dev));
5302
5303         return 0;
5304
5305 out_error:
5306         if (phystate_orig)
5307                 writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
5308         pci_set_drvdata(pci_dev, NULL);
5309 out_freering:
5310         free_rings(dev);
5311 out_unmap:
5312         iounmap(get_hwbase(dev));
5313 out_relreg:
5314         pci_release_regions(pci_dev);
5315 out_disable:
5316         pci_disable_device(pci_dev);
5317 out_free:
5318         free_netdev(dev);
5319 out:
5320         return err;
5321 }
5322
5323 static void __devexit nv_remove(struct pci_dev *pci_dev)
5324 {
5325         struct net_device *dev = pci_get_drvdata(pci_dev);
5326         struct fe_priv *np = netdev_priv(dev);
5327         u8 __iomem *base = get_hwbase(dev);
5328
5329         unregister_netdev(dev);
5330
5331         /* special op: write back the misordered MAC address - otherwise
5332          * the next nv_probe would see a wrong address.
5333          */
5334         writel(np->orig_mac[0], base + NvRegMacAddrA);
5335         writel(np->orig_mac[1], base + NvRegMacAddrB);
5336
5337         /* free all structures */
5338         free_rings(dev);
5339         iounmap(get_hwbase(dev));
5340         pci_release_regions(pci_dev);
5341         pci_disable_device(pci_dev);
5342         free_netdev(dev);
5343         pci_set_drvdata(pci_dev, NULL);
5344 }
5345
5346 #ifdef CONFIG_PM
5347 static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
5348 {
5349         struct net_device *dev = pci_get_drvdata(pdev);
5350         struct fe_priv *np = netdev_priv(dev);
5351
5352         if (!netif_running(dev))
5353                 goto out;
5354
5355         netif_device_detach(dev);
5356
5357         // Gross.
5358         nv_close(dev);
5359
5360         pci_save_state(pdev);
5361         pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
5362         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5363 out:
5364         return 0;
5365 }
5366
5367 static int nv_resume(struct pci_dev *pdev)
5368 {
5369         struct net_device *dev = pci_get_drvdata(pdev);
5370         int rc = 0;
5371
5372         if (!netif_running(dev))
5373                 goto out;
5374
5375         netif_device_attach(dev);
5376
5377         pci_set_power_state(pdev, PCI_D0);
5378         pci_restore_state(pdev);
5379         pci_enable_wake(pdev, PCI_D0, 0);
5380
5381         rc = nv_open(dev);
5382 out:
5383         return rc;
5384 }
5385 #else
5386 #define nv_suspend NULL
5387 #define nv_resume NULL
5388 #endif /* CONFIG_PM */
5389
5390 static struct pci_device_id pci_tbl[] = {
5391         {       /* nForce Ethernet Controller */
5392                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
5393                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5394         },
5395         {       /* nForce2 Ethernet Controller */
5396                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
5397                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5398         },
5399         {       /* nForce3 Ethernet Controller */
5400                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
5401                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
5402         },
5403         {       /* nForce3 Ethernet Controller */
5404                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
5405                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5406         },
5407         {       /* nForce3 Ethernet Controller */
5408                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
5409                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5410         },
5411         {       /* nForce3 Ethernet Controller */
5412                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
5413                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5414         },
5415         {       /* nForce3 Ethernet Controller */
5416                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
5417                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
5418         },
5419         {       /* CK804 Ethernet Controller */
5420                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
5421                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5422         },
5423         {       /* CK804 Ethernet Controller */
5424                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
5425                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5426         },
5427         {       /* MCP04 Ethernet Controller */
5428                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
5429                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5430         },
5431         {       /* MCP04 Ethernet Controller */
5432                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
5433                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
5434         },
5435         {       /* MCP51 Ethernet Controller */
5436                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
5437                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5438         },
5439         {       /* MCP51 Ethernet Controller */
5440                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
5441                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
5442         },
5443         {       /* MCP55 Ethernet Controller */
5444                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
5445                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5446         },
5447         {       /* MCP55 Ethernet Controller */
5448                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
5449                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5450         },
5451         {       /* MCP61 Ethernet Controller */
5452                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
5453                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5454         },
5455         {       /* MCP61 Ethernet Controller */
5456                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
5457                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5458         },
5459         {       /* MCP61 Ethernet Controller */
5460                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
5461                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5462         },
5463         {       /* MCP61 Ethernet Controller */
5464                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
5465                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5466         },
5467         {       /* MCP65 Ethernet Controller */
5468                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
5469                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5470         },
5471         {       /* MCP65 Ethernet Controller */
5472                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
5473                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5474         },
5475         {       /* MCP65 Ethernet Controller */
5476                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
5477                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5478         },
5479         {       /* MCP65 Ethernet Controller */
5480                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
5481                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5482         },
5483         {       /* MCP67 Ethernet Controller */
5484                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
5485                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5486         },
5487         {       /* MCP67 Ethernet Controller */
5488                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
5489                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5490         },
5491         {       /* MCP67 Ethernet Controller */
5492                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
5493                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5494         },
5495         {       /* MCP67 Ethernet Controller */
5496                 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
5497                 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
5498         },
5499         {0,},
5500 };
5501
5502 static struct pci_driver driver = {
5503         .name = "forcedeth",
5504         .id_table = pci_tbl,
5505         .probe = nv_probe,
5506         .remove = __devexit_p(nv_remove),
5507         .suspend = nv_suspend,
5508         .resume = nv_resume,
5509 };
5510
5511 static int __init init_nic(void)
5512 {
5513         printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
5514         return pci_register_driver(&driver);
5515 }
5516
5517 static void __exit exit_nic(void)
5518 {
5519         pci_unregister_driver(&driver);
5520 }
5521
5522 module_param(max_interrupt_work, int, 0);
5523 MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
5524 module_param(optimization_mode, int, 0);
5525 MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
5526 module_param(poll_interval, int, 0);
5527 MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
5528 module_param(msi, int, 0);
5529 MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
5530 module_param(msix, int, 0);
5531 MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
5532 module_param(dma_64bit, int, 0);
5533 MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
5534
5535 MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
5536 MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
5537 MODULE_LICENSE("GPL");
5538
5539 MODULE_DEVICE_TABLE(pci, pci_tbl);
5540
5541 module_init(init_nic);
5542 module_exit(exit_nic);