Merge branch 'fbdev-next' of git://github.com/schandinat/linux-2.6
[pandora-kernel.git] / drivers / net / ethernet / sfc / tx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/tcp.h>
13 #include <linux/ip.h>
14 #include <linux/in.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/ipv6.h>
18 #include <linux/if_ether.h>
19 #include <linux/highmem.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "workarounds.h"
24
25 /*
26  * TX descriptor ring full threshold
27  *
28  * The tx_queue descriptor ring fill-level must fall below this value
29  * before we restart the netif queue
30  */
31 #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
32
33 static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
34                                struct efx_tx_buffer *buffer)
35 {
36         if (buffer->unmap_len) {
37                 struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
38                 dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
39                                          buffer->unmap_len);
40                 if (buffer->unmap_single)
41                         pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
42                                          PCI_DMA_TODEVICE);
43                 else
44                         pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
45                                        PCI_DMA_TODEVICE);
46                 buffer->unmap_len = 0;
47                 buffer->unmap_single = false;
48         }
49
50         if (buffer->skb) {
51                 dev_kfree_skb_any((struct sk_buff *) buffer->skb);
52                 buffer->skb = NULL;
53                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
54                            "TX queue %d transmission id %x complete\n",
55                            tx_queue->queue, tx_queue->read_count);
56         }
57 }
58
59 /**
60  * struct efx_tso_header - a DMA mapped buffer for packet headers
61  * @next: Linked list of free ones.
62  *      The list is protected by the TX queue lock.
63  * @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
64  * @dma_addr: The DMA address of the header below.
65  *
66  * This controls the memory used for a TSO header.  Use TSOH_DATA()
67  * to find the packet header data.  Use TSOH_SIZE() to calculate the
68  * total size required for a given packet header length.  TSO headers
69  * in the free list are exactly %TSOH_STD_SIZE bytes in size.
70  */
71 struct efx_tso_header {
72         union {
73                 struct efx_tso_header *next;
74                 size_t unmap_len;
75         };
76         dma_addr_t dma_addr;
77 };
78
79 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
80                                struct sk_buff *skb);
81 static void efx_fini_tso(struct efx_tx_queue *tx_queue);
82 static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
83                                struct efx_tso_header *tsoh);
84
85 static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
86                           struct efx_tx_buffer *buffer)
87 {
88         if (buffer->tsoh) {
89                 if (likely(!buffer->tsoh->unmap_len)) {
90                         buffer->tsoh->next = tx_queue->tso_headers_free;
91                         tx_queue->tso_headers_free = buffer->tsoh;
92                 } else {
93                         efx_tsoh_heap_free(tx_queue, buffer->tsoh);
94                 }
95                 buffer->tsoh = NULL;
96         }
97 }
98
99
100 static inline unsigned
101 efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
102 {
103         /* Depending on the NIC revision, we can use descriptor
104          * lengths up to 8K or 8K-1.  However, since PCI Express
105          * devices must split read requests at 4K boundaries, there is
106          * little benefit from using descriptors that cross those
107          * boundaries and we keep things simple by not doing so.
108          */
109         unsigned len = (~dma_addr & 0xfff) + 1;
110
111         /* Work around hardware bug for unaligned buffers. */
112         if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
113                 len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
114
115         return len;
116 }
117
118 /*
119  * Add a socket buffer to a TX queue
120  *
121  * This maps all fragments of a socket buffer for DMA and adds them to
122  * the TX queue.  The queue's insert pointer will be incremented by
123  * the number of fragments in the socket buffer.
124  *
125  * If any DMA mapping fails, any mapped fragments will be unmapped,
126  * the queue's insert pointer will be restored to its original value.
127  *
128  * This function is split out from efx_hard_start_xmit to allow the
129  * loopback test to direct packets via specific TX queues.
130  *
131  * Returns NETDEV_TX_OK or NETDEV_TX_BUSY
132  * You must hold netif_tx_lock() to call this function.
133  */
134 netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
135 {
136         struct efx_nic *efx = tx_queue->efx;
137         struct pci_dev *pci_dev = efx->pci_dev;
138         struct efx_tx_buffer *buffer;
139         skb_frag_t *fragment;
140         unsigned int len, unmap_len = 0, fill_level, insert_ptr;
141         dma_addr_t dma_addr, unmap_addr = 0;
142         unsigned int dma_len;
143         bool unmap_single;
144         int q_space, i = 0;
145         netdev_tx_t rc = NETDEV_TX_OK;
146
147         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
148
149         if (skb_shinfo(skb)->gso_size)
150                 return efx_enqueue_skb_tso(tx_queue, skb);
151
152         /* Get size of the initial fragment */
153         len = skb_headlen(skb);
154
155         /* Pad if necessary */
156         if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
157                 EFX_BUG_ON_PARANOID(skb->data_len);
158                 len = 32 + 1;
159                 if (skb_pad(skb, len - skb->len))
160                         return NETDEV_TX_OK;
161         }
162
163         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
164         q_space = efx->txq_entries - 1 - fill_level;
165
166         /* Map for DMA.  Use pci_map_single rather than pci_map_page
167          * since this is more efficient on machines with sparse
168          * memory.
169          */
170         unmap_single = true;
171         dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
172
173         /* Process all fragments */
174         while (1) {
175                 if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
176                         goto pci_err;
177
178                 /* Store fields for marking in the per-fragment final
179                  * descriptor */
180                 unmap_len = len;
181                 unmap_addr = dma_addr;
182
183                 /* Add to TX queue, splitting across DMA boundaries */
184                 do {
185                         if (unlikely(q_space-- <= 0)) {
186                                 /* It might be that completions have
187                                  * happened since the xmit path last
188                                  * checked.  Update the xmit path's
189                                  * copy of read_count.
190                                  */
191                                 netif_tx_stop_queue(tx_queue->core_txq);
192                                 /* This memory barrier protects the
193                                  * change of queue state from the access
194                                  * of read_count. */
195                                 smp_mb();
196                                 tx_queue->old_read_count =
197                                         ACCESS_ONCE(tx_queue->read_count);
198                                 fill_level = (tx_queue->insert_count
199                                               - tx_queue->old_read_count);
200                                 q_space = efx->txq_entries - 1 - fill_level;
201                                 if (unlikely(q_space-- <= 0)) {
202                                         rc = NETDEV_TX_BUSY;
203                                         goto unwind;
204                                 }
205                                 smp_mb();
206                                 if (likely(!efx->loopback_selftest))
207                                         netif_tx_start_queue(
208                                                 tx_queue->core_txq);
209                         }
210
211                         insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
212                         buffer = &tx_queue->buffer[insert_ptr];
213                         efx_tsoh_free(tx_queue, buffer);
214                         EFX_BUG_ON_PARANOID(buffer->tsoh);
215                         EFX_BUG_ON_PARANOID(buffer->skb);
216                         EFX_BUG_ON_PARANOID(buffer->len);
217                         EFX_BUG_ON_PARANOID(!buffer->continuation);
218                         EFX_BUG_ON_PARANOID(buffer->unmap_len);
219
220                         dma_len = efx_max_tx_len(efx, dma_addr);
221                         if (likely(dma_len >= len))
222                                 dma_len = len;
223
224                         /* Fill out per descriptor fields */
225                         buffer->len = dma_len;
226                         buffer->dma_addr = dma_addr;
227                         len -= dma_len;
228                         dma_addr += dma_len;
229                         ++tx_queue->insert_count;
230                 } while (len);
231
232                 /* Transfer ownership of the unmapping to the final buffer */
233                 buffer->unmap_single = unmap_single;
234                 buffer->unmap_len = unmap_len;
235                 unmap_len = 0;
236
237                 /* Get address and size of next fragment */
238                 if (i >= skb_shinfo(skb)->nr_frags)
239                         break;
240                 fragment = &skb_shinfo(skb)->frags[i];
241                 len = skb_frag_size(fragment);
242                 i++;
243                 /* Map for DMA */
244                 unmap_single = false;
245                 dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
246                                             DMA_TO_DEVICE);
247         }
248
249         /* Transfer ownership of the skb to the final buffer */
250         buffer->skb = skb;
251         buffer->continuation = false;
252
253         /* Pass off to hardware */
254         efx_nic_push_buffers(tx_queue);
255
256         return NETDEV_TX_OK;
257
258  pci_err:
259         netif_err(efx, tx_err, efx->net_dev,
260                   " TX queue %d could not map skb with %d bytes %d "
261                   "fragments for DMA\n", tx_queue->queue, skb->len,
262                   skb_shinfo(skb)->nr_frags + 1);
263
264         /* Mark the packet as transmitted, and free the SKB ourselves */
265         dev_kfree_skb_any(skb);
266
267  unwind:
268         /* Work backwards until we hit the original insert pointer value */
269         while (tx_queue->insert_count != tx_queue->write_count) {
270                 --tx_queue->insert_count;
271                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
272                 buffer = &tx_queue->buffer[insert_ptr];
273                 efx_dequeue_buffer(tx_queue, buffer);
274                 buffer->len = 0;
275         }
276
277         /* Free the fragment we were mid-way through pushing */
278         if (unmap_len) {
279                 if (unmap_single)
280                         pci_unmap_single(pci_dev, unmap_addr, unmap_len,
281                                          PCI_DMA_TODEVICE);
282                 else
283                         pci_unmap_page(pci_dev, unmap_addr, unmap_len,
284                                        PCI_DMA_TODEVICE);
285         }
286
287         return rc;
288 }
289
290 /* Remove packets from the TX queue
291  *
292  * This removes packets from the TX queue, up to and including the
293  * specified index.
294  */
295 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
296                                 unsigned int index)
297 {
298         struct efx_nic *efx = tx_queue->efx;
299         unsigned int stop_index, read_ptr;
300
301         stop_index = (index + 1) & tx_queue->ptr_mask;
302         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
303
304         while (read_ptr != stop_index) {
305                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
306                 if (unlikely(buffer->len == 0)) {
307                         netif_err(efx, tx_err, efx->net_dev,
308                                   "TX queue %d spurious TX completion id %x\n",
309                                   tx_queue->queue, read_ptr);
310                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
311                         return;
312                 }
313
314                 efx_dequeue_buffer(tx_queue, buffer);
315                 buffer->continuation = true;
316                 buffer->len = 0;
317
318                 ++tx_queue->read_count;
319                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
320         }
321 }
322
323 /* Initiate a packet transmission.  We use one channel per CPU
324  * (sharing when we have more CPUs than channels).  On Falcon, the TX
325  * completion events will be directed back to the CPU that transmitted
326  * the packet, which should be cache-efficient.
327  *
328  * Context: non-blocking.
329  * Note that returning anything other than NETDEV_TX_OK will cause the
330  * OS to free the skb.
331  */
332 netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
333                                       struct net_device *net_dev)
334 {
335         struct efx_nic *efx = netdev_priv(net_dev);
336         struct efx_tx_queue *tx_queue;
337         unsigned index, type;
338
339         EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
340
341         index = skb_get_queue_mapping(skb);
342         type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
343         if (index >= efx->n_tx_channels) {
344                 index -= efx->n_tx_channels;
345                 type |= EFX_TXQ_TYPE_HIGHPRI;
346         }
347         tx_queue = efx_get_tx_queue(efx, index, type);
348
349         return efx_enqueue_skb(tx_queue, skb);
350 }
351
352 void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
353 {
354         struct efx_nic *efx = tx_queue->efx;
355
356         /* Must be inverse of queue lookup in efx_hard_start_xmit() */
357         tx_queue->core_txq =
358                 netdev_get_tx_queue(efx->net_dev,
359                                     tx_queue->queue / EFX_TXQ_TYPES +
360                                     ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
361                                      efx->n_tx_channels : 0));
362 }
363
364 int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
365 {
366         struct efx_nic *efx = netdev_priv(net_dev);
367         struct efx_channel *channel;
368         struct efx_tx_queue *tx_queue;
369         unsigned tc;
370         int rc;
371
372         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
373                 return -EINVAL;
374
375         if (num_tc == net_dev->num_tc)
376                 return 0;
377
378         for (tc = 0; tc < num_tc; tc++) {
379                 net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
380                 net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
381         }
382
383         if (num_tc > net_dev->num_tc) {
384                 /* Initialise high-priority queues as necessary */
385                 efx_for_each_channel(channel, efx) {
386                         efx_for_each_possible_channel_tx_queue(tx_queue,
387                                                                channel) {
388                                 if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
389                                         continue;
390                                 if (!tx_queue->buffer) {
391                                         rc = efx_probe_tx_queue(tx_queue);
392                                         if (rc)
393                                                 return rc;
394                                 }
395                                 if (!tx_queue->initialised)
396                                         efx_init_tx_queue(tx_queue);
397                                 efx_init_tx_queue_core_txq(tx_queue);
398                         }
399                 }
400         } else {
401                 /* Reduce number of classes before number of queues */
402                 net_dev->num_tc = num_tc;
403         }
404
405         rc = netif_set_real_num_tx_queues(net_dev,
406                                           max_t(int, num_tc, 1) *
407                                           efx->n_tx_channels);
408         if (rc)
409                 return rc;
410
411         /* Do not destroy high-priority queues when they become
412          * unused.  We would have to flush them first, and it is
413          * fairly difficult to flush a subset of TX queues.  Leave
414          * it to efx_fini_channels().
415          */
416
417         net_dev->num_tc = num_tc;
418         return 0;
419 }
420
421 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
422 {
423         unsigned fill_level;
424         struct efx_nic *efx = tx_queue->efx;
425
426         EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
427
428         efx_dequeue_buffers(tx_queue, index);
429
430         /* See if we need to restart the netif queue.  This barrier
431          * separates the update of read_count from the test of the
432          * queue state. */
433         smp_mb();
434         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
435             likely(efx->port_enabled) &&
436             likely(netif_device_present(efx->net_dev))) {
437                 fill_level = tx_queue->insert_count - tx_queue->read_count;
438                 if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
439                         EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
440                         netif_tx_wake_queue(tx_queue->core_txq);
441                 }
442         }
443
444         /* Check whether the hardware queue is now empty */
445         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
446                 tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
447                 if (tx_queue->read_count == tx_queue->old_write_count) {
448                         smp_mb();
449                         tx_queue->empty_read_count =
450                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
451                 }
452         }
453 }
454
455 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
456 {
457         struct efx_nic *efx = tx_queue->efx;
458         unsigned int entries;
459         int i, rc;
460
461         /* Create the smallest power-of-two aligned ring */
462         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
463         EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
464         tx_queue->ptr_mask = entries - 1;
465
466         netif_dbg(efx, probe, efx->net_dev,
467                   "creating TX queue %d size %#x mask %#x\n",
468                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
469
470         /* Allocate software ring */
471         tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
472                                    GFP_KERNEL);
473         if (!tx_queue->buffer)
474                 return -ENOMEM;
475         for (i = 0; i <= tx_queue->ptr_mask; ++i)
476                 tx_queue->buffer[i].continuation = true;
477
478         /* Allocate hardware ring */
479         rc = efx_nic_probe_tx(tx_queue);
480         if (rc)
481                 goto fail;
482
483         return 0;
484
485  fail:
486         kfree(tx_queue->buffer);
487         tx_queue->buffer = NULL;
488         return rc;
489 }
490
491 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
492 {
493         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
494                   "initialising TX queue %d\n", tx_queue->queue);
495
496         tx_queue->insert_count = 0;
497         tx_queue->write_count = 0;
498         tx_queue->old_write_count = 0;
499         tx_queue->read_count = 0;
500         tx_queue->old_read_count = 0;
501         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
502
503         /* Set up TX descriptor ring */
504         efx_nic_init_tx(tx_queue);
505
506         tx_queue->initialised = true;
507 }
508
509 void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
510 {
511         struct efx_tx_buffer *buffer;
512
513         if (!tx_queue->buffer)
514                 return;
515
516         /* Free any buffers left in the ring */
517         while (tx_queue->read_count != tx_queue->write_count) {
518                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
519                 efx_dequeue_buffer(tx_queue, buffer);
520                 buffer->continuation = true;
521                 buffer->len = 0;
522
523                 ++tx_queue->read_count;
524         }
525 }
526
527 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
528 {
529         if (!tx_queue->initialised)
530                 return;
531
532         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
533                   "shutting down TX queue %d\n", tx_queue->queue);
534
535         tx_queue->initialised = false;
536
537         /* Flush TX queue, remove descriptor ring */
538         efx_nic_fini_tx(tx_queue);
539
540         efx_release_tx_buffers(tx_queue);
541
542         /* Free up TSO header cache */
543         efx_fini_tso(tx_queue);
544 }
545
546 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
547 {
548         if (!tx_queue->buffer)
549                 return;
550
551         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
552                   "destroying TX queue %d\n", tx_queue->queue);
553         efx_nic_remove_tx(tx_queue);
554
555         kfree(tx_queue->buffer);
556         tx_queue->buffer = NULL;
557 }
558
559
560 /* Efx TCP segmentation acceleration.
561  *
562  * Why?  Because by doing it here in the driver we can go significantly
563  * faster than the GSO.
564  *
565  * Requires TX checksum offload support.
566  */
567
568 /* Number of bytes inserted at the start of a TSO header buffer,
569  * similar to NET_IP_ALIGN.
570  */
571 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
572 #define TSOH_OFFSET     0
573 #else
574 #define TSOH_OFFSET     NET_IP_ALIGN
575 #endif
576
577 #define TSOH_BUFFER(tsoh)       ((u8 *)(tsoh + 1) + TSOH_OFFSET)
578
579 /* Total size of struct efx_tso_header, buffer and padding */
580 #define TSOH_SIZE(hdr_len)                                      \
581         (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
582
583 /* Size of blocks on free list.  Larger blocks must be allocated from
584  * the heap.
585  */
586 #define TSOH_STD_SIZE           128
587
588 #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))
589 #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data)
590 #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data)
591 #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
592 #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
593
594 /**
595  * struct tso_state - TSO state for an SKB
596  * @out_len: Remaining length in current segment
597  * @seqnum: Current sequence number
598  * @ipv4_id: Current IPv4 ID, host endian
599  * @packet_space: Remaining space in current packet
600  * @dma_addr: DMA address of current position
601  * @in_len: Remaining length in current SKB fragment
602  * @unmap_len: Length of SKB fragment
603  * @unmap_addr: DMA address of SKB fragment
604  * @unmap_single: DMA single vs page mapping flag
605  * @protocol: Network protocol (after any VLAN header)
606  * @header_len: Number of bytes of header
607  * @full_packet_size: Number of bytes to put in each outgoing segment
608  *
609  * The state used during segmentation.  It is put into this data structure
610  * just to make it easy to pass into inline functions.
611  */
612 struct tso_state {
613         /* Output position */
614         unsigned out_len;
615         unsigned seqnum;
616         unsigned ipv4_id;
617         unsigned packet_space;
618
619         /* Input position */
620         dma_addr_t dma_addr;
621         unsigned in_len;
622         unsigned unmap_len;
623         dma_addr_t unmap_addr;
624         bool unmap_single;
625
626         __be16 protocol;
627         unsigned header_len;
628         int full_packet_size;
629 };
630
631
632 /*
633  * Verify that our various assumptions about sk_buffs and the conditions
634  * under which TSO will be attempted hold true.  Return the protocol number.
635  */
636 static __be16 efx_tso_check_protocol(struct sk_buff *skb)
637 {
638         __be16 protocol = skb->protocol;
639
640         EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
641                             protocol);
642         if (protocol == htons(ETH_P_8021Q)) {
643                 /* Find the encapsulated protocol; reset network header
644                  * and transport header based on that. */
645                 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
646                 protocol = veh->h_vlan_encapsulated_proto;
647                 skb_set_network_header(skb, sizeof(*veh));
648                 if (protocol == htons(ETH_P_IP))
649                         skb_set_transport_header(skb, sizeof(*veh) +
650                                                  4 * ip_hdr(skb)->ihl);
651                 else if (protocol == htons(ETH_P_IPV6))
652                         skb_set_transport_header(skb, sizeof(*veh) +
653                                                  sizeof(struct ipv6hdr));
654         }
655
656         if (protocol == htons(ETH_P_IP)) {
657                 EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
658         } else {
659                 EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
660                 EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
661         }
662         EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
663                              + (tcp_hdr(skb)->doff << 2u)) >
664                             skb_headlen(skb));
665
666         return protocol;
667 }
668
669
670 /*
671  * Allocate a page worth of efx_tso_header structures, and string them
672  * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
673  */
674 static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
675 {
676
677         struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
678         struct efx_tso_header *tsoh;
679         dma_addr_t dma_addr;
680         u8 *base_kva, *kva;
681
682         base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
683         if (base_kva == NULL) {
684                 netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
685                           "Unable to allocate page for TSO headers\n");
686                 return -ENOMEM;
687         }
688
689         /* pci_alloc_consistent() allocates pages. */
690         EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
691
692         for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
693                 tsoh = (struct efx_tso_header *)kva;
694                 tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
695                 tsoh->next = tx_queue->tso_headers_free;
696                 tx_queue->tso_headers_free = tsoh;
697         }
698
699         return 0;
700 }
701
702
703 /* Free up a TSO header, and all others in the same page. */
704 static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
705                                 struct efx_tso_header *tsoh,
706                                 struct pci_dev *pci_dev)
707 {
708         struct efx_tso_header **p;
709         unsigned long base_kva;
710         dma_addr_t base_dma;
711
712         base_kva = (unsigned long)tsoh & PAGE_MASK;
713         base_dma = tsoh->dma_addr & PAGE_MASK;
714
715         p = &tx_queue->tso_headers_free;
716         while (*p != NULL) {
717                 if (((unsigned long)*p & PAGE_MASK) == base_kva)
718                         *p = (*p)->next;
719                 else
720                         p = &(*p)->next;
721         }
722
723         pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
724 }
725
726 static struct efx_tso_header *
727 efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
728 {
729         struct efx_tso_header *tsoh;
730
731         tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
732         if (unlikely(!tsoh))
733                 return NULL;
734
735         tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
736                                         TSOH_BUFFER(tsoh), header_len,
737                                         PCI_DMA_TODEVICE);
738         if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
739                                            tsoh->dma_addr))) {
740                 kfree(tsoh);
741                 return NULL;
742         }
743
744         tsoh->unmap_len = header_len;
745         return tsoh;
746 }
747
748 static void
749 efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
750 {
751         pci_unmap_single(tx_queue->efx->pci_dev,
752                          tsoh->dma_addr, tsoh->unmap_len,
753                          PCI_DMA_TODEVICE);
754         kfree(tsoh);
755 }
756
757 /**
758  * efx_tx_queue_insert - push descriptors onto the TX queue
759  * @tx_queue:           Efx TX queue
760  * @dma_addr:           DMA address of fragment
761  * @len:                Length of fragment
762  * @final_buffer:       The final buffer inserted into the queue
763  *
764  * Push descriptors onto the TX queue.  Return 0 on success or 1 if
765  * @tx_queue full.
766  */
767 static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
768                                dma_addr_t dma_addr, unsigned len,
769                                struct efx_tx_buffer **final_buffer)
770 {
771         struct efx_tx_buffer *buffer;
772         struct efx_nic *efx = tx_queue->efx;
773         unsigned dma_len, fill_level, insert_ptr;
774         int q_space;
775
776         EFX_BUG_ON_PARANOID(len <= 0);
777
778         fill_level = tx_queue->insert_count - tx_queue->old_read_count;
779         /* -1 as there is no way to represent all descriptors used */
780         q_space = efx->txq_entries - 1 - fill_level;
781
782         while (1) {
783                 if (unlikely(q_space-- <= 0)) {
784                         /* It might be that completions have happened
785                          * since the xmit path last checked.  Update
786                          * the xmit path's copy of read_count.
787                          */
788                         netif_tx_stop_queue(tx_queue->core_txq);
789                         /* This memory barrier protects the change of
790                          * queue state from the access of read_count. */
791                         smp_mb();
792                         tx_queue->old_read_count =
793                                 ACCESS_ONCE(tx_queue->read_count);
794                         fill_level = (tx_queue->insert_count
795                                       - tx_queue->old_read_count);
796                         q_space = efx->txq_entries - 1 - fill_level;
797                         if (unlikely(q_space-- <= 0)) {
798                                 *final_buffer = NULL;
799                                 return 1;
800                         }
801                         smp_mb();
802                         netif_tx_start_queue(tx_queue->core_txq);
803                 }
804
805                 insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
806                 buffer = &tx_queue->buffer[insert_ptr];
807                 ++tx_queue->insert_count;
808
809                 EFX_BUG_ON_PARANOID(tx_queue->insert_count -
810                                     tx_queue->read_count >=
811                                     efx->txq_entries);
812
813                 efx_tsoh_free(tx_queue, buffer);
814                 EFX_BUG_ON_PARANOID(buffer->len);
815                 EFX_BUG_ON_PARANOID(buffer->unmap_len);
816                 EFX_BUG_ON_PARANOID(buffer->skb);
817                 EFX_BUG_ON_PARANOID(!buffer->continuation);
818                 EFX_BUG_ON_PARANOID(buffer->tsoh);
819
820                 buffer->dma_addr = dma_addr;
821
822                 dma_len = efx_max_tx_len(efx, dma_addr);
823
824                 /* If there is enough space to send then do so */
825                 if (dma_len >= len)
826                         break;
827
828                 buffer->len = dma_len; /* Don't set the other members */
829                 dma_addr += dma_len;
830                 len -= dma_len;
831         }
832
833         EFX_BUG_ON_PARANOID(!len);
834         buffer->len = len;
835         *final_buffer = buffer;
836         return 0;
837 }
838
839
840 /*
841  * Put a TSO header into the TX queue.
842  *
843  * This is special-cased because we know that it is small enough to fit in
844  * a single fragment, and we know it doesn't cross a page boundary.  It
845  * also allows us to not worry about end-of-packet etc.
846  */
847 static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
848                                struct efx_tso_header *tsoh, unsigned len)
849 {
850         struct efx_tx_buffer *buffer;
851
852         buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
853         efx_tsoh_free(tx_queue, buffer);
854         EFX_BUG_ON_PARANOID(buffer->len);
855         EFX_BUG_ON_PARANOID(buffer->unmap_len);
856         EFX_BUG_ON_PARANOID(buffer->skb);
857         EFX_BUG_ON_PARANOID(!buffer->continuation);
858         EFX_BUG_ON_PARANOID(buffer->tsoh);
859         buffer->len = len;
860         buffer->dma_addr = tsoh->dma_addr;
861         buffer->tsoh = tsoh;
862
863         ++tx_queue->insert_count;
864 }
865
866
867 /* Remove descriptors put into a tx_queue. */
868 static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
869 {
870         struct efx_tx_buffer *buffer;
871         dma_addr_t unmap_addr;
872
873         /* Work backwards until we hit the original insert pointer value */
874         while (tx_queue->insert_count != tx_queue->write_count) {
875                 --tx_queue->insert_count;
876                 buffer = &tx_queue->buffer[tx_queue->insert_count &
877                                            tx_queue->ptr_mask];
878                 efx_tsoh_free(tx_queue, buffer);
879                 EFX_BUG_ON_PARANOID(buffer->skb);
880                 if (buffer->unmap_len) {
881                         unmap_addr = (buffer->dma_addr + buffer->len -
882                                       buffer->unmap_len);
883                         if (buffer->unmap_single)
884                                 pci_unmap_single(tx_queue->efx->pci_dev,
885                                                  unmap_addr, buffer->unmap_len,
886                                                  PCI_DMA_TODEVICE);
887                         else
888                                 pci_unmap_page(tx_queue->efx->pci_dev,
889                                                unmap_addr, buffer->unmap_len,
890                                                PCI_DMA_TODEVICE);
891                         buffer->unmap_len = 0;
892                 }
893                 buffer->len = 0;
894                 buffer->continuation = true;
895         }
896 }
897
898
899 /* Parse the SKB header and initialise state. */
900 static void tso_start(struct tso_state *st, const struct sk_buff *skb)
901 {
902         /* All ethernet/IP/TCP headers combined size is TCP header size
903          * plus offset of TCP header relative to start of packet.
904          */
905         st->header_len = ((tcp_hdr(skb)->doff << 2u)
906                           + PTR_DIFF(tcp_hdr(skb), skb->data));
907         st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
908
909         if (st->protocol == htons(ETH_P_IP))
910                 st->ipv4_id = ntohs(ip_hdr(skb)->id);
911         else
912                 st->ipv4_id = 0;
913         st->seqnum = ntohl(tcp_hdr(skb)->seq);
914
915         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
916         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
917         EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
918
919         st->packet_space = st->full_packet_size;
920         st->out_len = skb->len - st->header_len;
921         st->unmap_len = 0;
922         st->unmap_single = false;
923 }
924
925 static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
926                             skb_frag_t *frag)
927 {
928         st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
929                                           skb_frag_size(frag), DMA_TO_DEVICE);
930         if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
931                 st->unmap_single = false;
932                 st->unmap_len = skb_frag_size(frag);
933                 st->in_len = skb_frag_size(frag);
934                 st->dma_addr = st->unmap_addr;
935                 return 0;
936         }
937         return -ENOMEM;
938 }
939
940 static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
941                                  const struct sk_buff *skb)
942 {
943         int hl = st->header_len;
944         int len = skb_headlen(skb) - hl;
945
946         st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
947                                         len, PCI_DMA_TODEVICE);
948         if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
949                 st->unmap_single = true;
950                 st->unmap_len = len;
951                 st->in_len = len;
952                 st->dma_addr = st->unmap_addr;
953                 return 0;
954         }
955         return -ENOMEM;
956 }
957
958
959 /**
960  * tso_fill_packet_with_fragment - form descriptors for the current fragment
961  * @tx_queue:           Efx TX queue
962  * @skb:                Socket buffer
963  * @st:                 TSO state
964  *
965  * Form descriptors for the current fragment, until we reach the end
966  * of fragment or end-of-packet.  Return 0 on success, 1 if not enough
967  * space in @tx_queue.
968  */
969 static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
970                                          const struct sk_buff *skb,
971                                          struct tso_state *st)
972 {
973         struct efx_tx_buffer *buffer;
974         int n, end_of_packet, rc;
975
976         if (st->in_len == 0)
977                 return 0;
978         if (st->packet_space == 0)
979                 return 0;
980
981         EFX_BUG_ON_PARANOID(st->in_len <= 0);
982         EFX_BUG_ON_PARANOID(st->packet_space <= 0);
983
984         n = min(st->in_len, st->packet_space);
985
986         st->packet_space -= n;
987         st->out_len -= n;
988         st->in_len -= n;
989
990         rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
991         if (likely(rc == 0)) {
992                 if (st->out_len == 0)
993                         /* Transfer ownership of the skb */
994                         buffer->skb = skb;
995
996                 end_of_packet = st->out_len == 0 || st->packet_space == 0;
997                 buffer->continuation = !end_of_packet;
998
999                 if (st->in_len == 0) {
1000                         /* Transfer ownership of the pci mapping */
1001                         buffer->unmap_len = st->unmap_len;
1002                         buffer->unmap_single = st->unmap_single;
1003                         st->unmap_len = 0;
1004                 }
1005         }
1006
1007         st->dma_addr += n;
1008         return rc;
1009 }
1010
1011
1012 /**
1013  * tso_start_new_packet - generate a new header and prepare for the new packet
1014  * @tx_queue:           Efx TX queue
1015  * @skb:                Socket buffer
1016  * @st:                 TSO state
1017  *
1018  * Generate a new header and prepare for the new packet.  Return 0 on
1019  * success, or -1 if failed to alloc header.
1020  */
1021 static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
1022                                 const struct sk_buff *skb,
1023                                 struct tso_state *st)
1024 {
1025         struct efx_tso_header *tsoh;
1026         struct tcphdr *tsoh_th;
1027         unsigned ip_length;
1028         u8 *header;
1029
1030         /* Allocate a DMA-mapped header buffer. */
1031         if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
1032                 if (tx_queue->tso_headers_free == NULL) {
1033                         if (efx_tsoh_block_alloc(tx_queue))
1034                                 return -1;
1035                 }
1036                 EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
1037                 tsoh = tx_queue->tso_headers_free;
1038                 tx_queue->tso_headers_free = tsoh->next;
1039                 tsoh->unmap_len = 0;
1040         } else {
1041                 tx_queue->tso_long_headers++;
1042                 tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
1043                 if (unlikely(!tsoh))
1044                         return -1;
1045         }
1046
1047         header = TSOH_BUFFER(tsoh);
1048         tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
1049
1050         /* Copy and update the headers. */
1051         memcpy(header, skb->data, st->header_len);
1052
1053         tsoh_th->seq = htonl(st->seqnum);
1054         st->seqnum += skb_shinfo(skb)->gso_size;
1055         if (st->out_len > skb_shinfo(skb)->gso_size) {
1056                 /* This packet will not finish the TSO burst. */
1057                 ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
1058                 tsoh_th->fin = 0;
1059                 tsoh_th->psh = 0;
1060         } else {
1061                 /* This packet will be the last in the TSO burst. */
1062                 ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
1063                 tsoh_th->fin = tcp_hdr(skb)->fin;
1064                 tsoh_th->psh = tcp_hdr(skb)->psh;
1065         }
1066
1067         if (st->protocol == htons(ETH_P_IP)) {
1068                 struct iphdr *tsoh_iph =
1069                         (struct iphdr *)(header + SKB_IPV4_OFF(skb));
1070
1071                 tsoh_iph->tot_len = htons(ip_length);
1072
1073                 /* Linux leaves suitable gaps in the IP ID space for us to fill. */
1074                 tsoh_iph->id = htons(st->ipv4_id);
1075                 st->ipv4_id++;
1076         } else {
1077                 struct ipv6hdr *tsoh_iph =
1078                         (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
1079
1080                 tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
1081         }
1082
1083         st->packet_space = skb_shinfo(skb)->gso_size;
1084         ++tx_queue->tso_packets;
1085
1086         /* Form a descriptor for this header. */
1087         efx_tso_put_header(tx_queue, tsoh, st->header_len);
1088
1089         return 0;
1090 }
1091
1092
1093 /**
1094  * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
1095  * @tx_queue:           Efx TX queue
1096  * @skb:                Socket buffer
1097  *
1098  * Context: You must hold netif_tx_lock() to call this function.
1099  *
1100  * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
1101  * @skb was not enqueued.  In all cases @skb is consumed.  Return
1102  * %NETDEV_TX_OK or %NETDEV_TX_BUSY.
1103  */
1104 static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
1105                                struct sk_buff *skb)
1106 {
1107         struct efx_nic *efx = tx_queue->efx;
1108         int frag_i, rc, rc2 = NETDEV_TX_OK;
1109         struct tso_state state;
1110
1111         /* Find the packet protocol and sanity-check it */
1112         state.protocol = efx_tso_check_protocol(skb);
1113
1114         EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
1115
1116         tso_start(&state, skb);
1117
1118         /* Assume that skb header area contains exactly the headers, and
1119          * all payload is in the frag list.
1120          */
1121         if (skb_headlen(skb) == state.header_len) {
1122                 /* Grab the first payload fragment. */
1123                 EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
1124                 frag_i = 0;
1125                 rc = tso_get_fragment(&state, efx,
1126                                       skb_shinfo(skb)->frags + frag_i);
1127                 if (rc)
1128                         goto mem_err;
1129         } else {
1130                 rc = tso_get_head_fragment(&state, efx, skb);
1131                 if (rc)
1132                         goto mem_err;
1133                 frag_i = -1;
1134         }
1135
1136         if (tso_start_new_packet(tx_queue, skb, &state) < 0)
1137                 goto mem_err;
1138
1139         while (1) {
1140                 rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
1141                 if (unlikely(rc)) {
1142                         rc2 = NETDEV_TX_BUSY;
1143                         goto unwind;
1144                 }
1145
1146                 /* Move onto the next fragment? */
1147                 if (state.in_len == 0) {
1148                         if (++frag_i >= skb_shinfo(skb)->nr_frags)
1149                                 /* End of payload reached. */
1150                                 break;
1151                         rc = tso_get_fragment(&state, efx,
1152                                               skb_shinfo(skb)->frags + frag_i);
1153                         if (rc)
1154                                 goto mem_err;
1155                 }
1156
1157                 /* Start at new packet? */
1158                 if (state.packet_space == 0 &&
1159                     tso_start_new_packet(tx_queue, skb, &state) < 0)
1160                         goto mem_err;
1161         }
1162
1163         /* Pass off to hardware */
1164         efx_nic_push_buffers(tx_queue);
1165
1166         tx_queue->tso_bursts++;
1167         return NETDEV_TX_OK;
1168
1169  mem_err:
1170         netif_err(efx, tx_err, efx->net_dev,
1171                   "Out of memory for TSO headers, or PCI mapping error\n");
1172         dev_kfree_skb_any(skb);
1173
1174  unwind:
1175         /* Free the DMA mapping we were in the process of writing out */
1176         if (state.unmap_len) {
1177                 if (state.unmap_single)
1178                         pci_unmap_single(efx->pci_dev, state.unmap_addr,
1179                                          state.unmap_len, PCI_DMA_TODEVICE);
1180                 else
1181                         pci_unmap_page(efx->pci_dev, state.unmap_addr,
1182                                        state.unmap_len, PCI_DMA_TODEVICE);
1183         }
1184
1185         efx_enqueue_unwind(tx_queue);
1186         return rc2;
1187 }
1188
1189
1190 /*
1191  * Free up all TSO datastructures associated with tx_queue. This
1192  * routine should be called only once the tx_queue is both empty and
1193  * will no longer be used.
1194  */
1195 static void efx_fini_tso(struct efx_tx_queue *tx_queue)
1196 {
1197         unsigned i;
1198
1199         if (tx_queue->buffer) {
1200                 for (i = 0; i <= tx_queue->ptr_mask; ++i)
1201                         efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
1202         }
1203
1204         while (tx_queue->tso_headers_free != NULL)
1205                 efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
1206                                     tx_queue->efx->pci_dev);
1207 }