Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[pandora-kernel.git] / drivers / net / ethernet / sfc / ef10.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2012-2013 Solarflare Communications Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 as published
7  * by the Free Software Foundation, incorporated herein by reference.
8  */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include "ef10_sriov.h"
19 #include <linux/in.h>
20 #include <linux/jhash.h>
21 #include <linux/wait.h>
22 #include <linux/workqueue.h>
23
24 /* Hardware control for EF10 architecture including 'Huntington'. */
25
26 #define EFX_EF10_DRVGEN_EV              7
27 enum {
28         EFX_EF10_TEST = 1,
29         EFX_EF10_REFILL,
30 };
31
32 /* The reserved RSS context value */
33 #define EFX_EF10_RSS_CONTEXT_INVALID    0xffffffff
34 /* The maximum size of a shared RSS context */
35 /* TODO: this should really be from the mcdi protocol export */
36 #define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37
38 /* The filter table(s) are managed by firmware and we have write-only
39  * access.  When removing filters we must identify them to the
40  * firmware by a 64-bit handle, but this is too wide for Linux kernel
41  * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
42  * be able to tell in advance whether a requested insertion will
43  * replace an existing filter.  Therefore we maintain a software hash
44  * table, which should be at least as large as the hardware hash
45  * table.
46  *
47  * Huntington has a single 8K filter table shared between all filter
48  * types and both ports.
49  */
50 #define HUNT_FILTER_TBL_ROWS 8192
51
52 #define EFX_EF10_FILTER_ID_INVALID 0xffff
53 struct efx_ef10_dev_addr {
54         u8 addr[ETH_ALEN];
55         u16 id;
56 };
57
58 struct efx_ef10_filter_table {
59 /* The RX match field masks supported by this fw & hw, in order of priority */
60         enum efx_filter_match_flags rx_match_flags[
61                 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
62         unsigned int rx_match_count;
63
64         struct {
65                 unsigned long spec;     /* pointer to spec plus flag bits */
66 /* BUSY flag indicates that an update is in progress.  AUTO_OLD is
67  * used to mark and sweep MAC filters for the device address lists.
68  */
69 #define EFX_EF10_FILTER_FLAG_BUSY       1UL
70 #define EFX_EF10_FILTER_FLAG_AUTO_OLD   2UL
71 #define EFX_EF10_FILTER_FLAGS           3UL
72                 u64 handle;             /* firmware handle */
73         } *entry;
74         wait_queue_head_t waitq;
75 /* Shadow of net_device address lists, guarded by mac_lock */
76 #define EFX_EF10_FILTER_DEV_UC_MAX      32
77 #define EFX_EF10_FILTER_DEV_MC_MAX      256
78         struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
79         struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
80         int dev_uc_count;
81         int dev_mc_count;
82 /* Indices (like efx_ef10_dev_addr.id) for promisc/allmulti filters */
83         u16 ucdef_id;
84         u16 bcast_id;
85         u16 mcdef_id;
86 };
87
88 /* An arbitrary search limit for the software hash table */
89 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
90
91 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
92 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
93
94 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
95 {
96         efx_dword_t reg;
97
98         efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
99         return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
100                 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
101 }
102
103 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
104 {
105         int bar;
106
107         bar = efx->type->mem_bar;
108         return resource_size(&efx->pci_dev->resource[bar]);
109 }
110
111 static bool efx_ef10_is_vf(struct efx_nic *efx)
112 {
113         return efx->type->is_vf;
114 }
115
116 static int efx_ef10_get_pf_index(struct efx_nic *efx)
117 {
118         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
119         struct efx_ef10_nic_data *nic_data = efx->nic_data;
120         size_t outlen;
121         int rc;
122
123         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
124                           sizeof(outbuf), &outlen);
125         if (rc)
126                 return rc;
127         if (outlen < sizeof(outbuf))
128                 return -EIO;
129
130         nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
131         return 0;
132 }
133
134 #ifdef CONFIG_SFC_SRIOV
135 static int efx_ef10_get_vf_index(struct efx_nic *efx)
136 {
137         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
138         struct efx_ef10_nic_data *nic_data = efx->nic_data;
139         size_t outlen;
140         int rc;
141
142         rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
143                           sizeof(outbuf), &outlen);
144         if (rc)
145                 return rc;
146         if (outlen < sizeof(outbuf))
147                 return -EIO;
148
149         nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
150         return 0;
151 }
152 #endif
153
154 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
155 {
156         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
157         struct efx_ef10_nic_data *nic_data = efx->nic_data;
158         size_t outlen;
159         int rc;
160
161         BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162
163         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164                           outbuf, sizeof(outbuf), &outlen);
165         if (rc)
166                 return rc;
167         if (outlen < sizeof(outbuf)) {
168                 netif_err(efx, drv, efx->net_dev,
169                           "unable to read datapath firmware capabilities\n");
170                 return -EIO;
171         }
172
173         nic_data->datapath_caps =
174                 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
175
176         /* record the DPCPU firmware IDs to determine VEB vswitching support.
177          */
178         nic_data->rx_dpcpu_fw_id =
179                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
180         nic_data->tx_dpcpu_fw_id =
181                 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
182
183         if (!(nic_data->datapath_caps &
184               (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
185                 netif_err(efx, drv, efx->net_dev,
186                           "current firmware does not support TSO\n");
187                 return -ENODEV;
188         }
189
190         if (!(nic_data->datapath_caps &
191               (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
192                 netif_err(efx, probe, efx->net_dev,
193                           "current firmware does not support an RX prefix\n");
194                 return -ENODEV;
195         }
196
197         return 0;
198 }
199
200 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
201 {
202         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
203         int rc;
204
205         rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
206                           outbuf, sizeof(outbuf), NULL);
207         if (rc)
208                 return rc;
209         rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
210         return rc > 0 ? rc : -ERANGE;
211 }
212
213 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
214 {
215         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
216         size_t outlen;
217         int rc;
218
219         BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
220
221         rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
222                           outbuf, sizeof(outbuf), &outlen);
223         if (rc)
224                 return rc;
225         if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
226                 return -EIO;
227
228         ether_addr_copy(mac_address,
229                         MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
230         return 0;
231 }
232
233 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
234 {
235         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
236         MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
237         size_t outlen;
238         int num_addrs, rc;
239
240         MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
241                        EVB_PORT_ID_ASSIGNED);
242         rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
243                           sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
244
245         if (rc)
246                 return rc;
247         if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
248                 return -EIO;
249
250         num_addrs = MCDI_DWORD(outbuf,
251                                VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
252
253         WARN_ON(num_addrs != 1);
254
255         ether_addr_copy(mac_address,
256                         MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
257
258         return 0;
259 }
260
261 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
262                                                struct device_attribute *attr,
263                                                char *buf)
264 {
265         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
266
267         return sprintf(buf, "%d\n",
268                        ((efx->mcdi->fn_flags) &
269                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
270                        ? 1 : 0);
271 }
272
273 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
274                                           struct device_attribute *attr,
275                                           char *buf)
276 {
277         struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
278
279         return sprintf(buf, "%d\n",
280                        ((efx->mcdi->fn_flags) &
281                         (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
282                        ? 1 : 0);
283 }
284
285 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
286                    NULL);
287 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
288
289 static int efx_ef10_probe(struct efx_nic *efx)
290 {
291         struct efx_ef10_nic_data *nic_data;
292         struct net_device *net_dev = efx->net_dev;
293         int i, rc;
294
295         /* We can have one VI for each 8K region.  However, until we
296          * use TX option descriptors we need two TX queues per channel.
297          */
298         efx->max_channels =
299                 min_t(unsigned int,
300                       EFX_MAX_CHANNELS,
301                       efx_ef10_mem_map_size(efx) /
302                       (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
303         if (WARN_ON(efx->max_channels == 0))
304                 return -EIO;
305
306         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
307         if (!nic_data)
308                 return -ENOMEM;
309         efx->nic_data = nic_data;
310
311         /* we assume later that we can copy from this buffer in dwords */
312         BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
313
314         rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
315                                   8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
316         if (rc)
317                 goto fail1;
318
319         /* Get the MC's warm boot count.  In case it's rebooting right
320          * now, be prepared to retry.
321          */
322         i = 0;
323         for (;;) {
324                 rc = efx_ef10_get_warm_boot_count(efx);
325                 if (rc >= 0)
326                         break;
327                 if (++i == 5)
328                         goto fail2;
329                 ssleep(1);
330         }
331         nic_data->warm_boot_count = rc;
332
333         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
334
335         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
336
337         /* In case we're recovering from a crash (kexec), we want to
338          * cancel any outstanding request by the previous user of this
339          * function.  We send a special message using the least
340          * significant bits of the 'high' (doorbell) register.
341          */
342         _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
343
344         rc = efx_mcdi_init(efx);
345         if (rc)
346                 goto fail2;
347
348         /* Reset (most) configuration for this function */
349         rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
350         if (rc)
351                 goto fail3;
352
353         /* Enable event logging */
354         rc = efx_mcdi_log_ctrl(efx, true, false, 0);
355         if (rc)
356                 goto fail3;
357
358         rc = device_create_file(&efx->pci_dev->dev,
359                                 &dev_attr_link_control_flag);
360         if (rc)
361                 goto fail3;
362
363         rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
364         if (rc)
365                 goto fail4;
366
367         rc = efx_ef10_get_pf_index(efx);
368         if (rc)
369                 goto fail5;
370
371         rc = efx_ef10_init_datapath_caps(efx);
372         if (rc < 0)
373                 goto fail5;
374
375         efx->rx_packet_len_offset =
376                 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
377
378         rc = efx_mcdi_port_get_number(efx);
379         if (rc < 0)
380                 goto fail5;
381         efx->port_num = rc;
382         net_dev->dev_port = rc;
383
384         rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
385         if (rc)
386                 goto fail5;
387
388         rc = efx_ef10_get_sysclk_freq(efx);
389         if (rc < 0)
390                 goto fail5;
391         efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
392
393         /* Check whether firmware supports bug 35388 workaround.
394          * First try to enable it, then if we get EPERM, just
395          * ask if it's already enabled
396          */
397         rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
398         if (rc == 0) {
399                 nic_data->workaround_35388 = true;
400         } else if (rc == -EPERM) {
401                 unsigned int enabled;
402
403                 rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
404                 if (rc)
405                         goto fail3;
406                 nic_data->workaround_35388 = enabled &
407                         MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
408         } else if (rc != -ENOSYS && rc != -ENOENT) {
409                 goto fail5;
410         }
411         netif_dbg(efx, probe, efx->net_dev,
412                   "workaround for bug 35388 is %sabled\n",
413                   nic_data->workaround_35388 ? "en" : "dis");
414
415         rc = efx_mcdi_mon_probe(efx);
416         if (rc && rc != -EPERM)
417                 goto fail5;
418
419         efx_ptp_probe(efx, NULL);
420
421 #ifdef CONFIG_SFC_SRIOV
422         if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
423                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
424                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
425
426                 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
427         } else
428 #endif
429                 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
430
431         return 0;
432
433 fail5:
434         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
435 fail4:
436         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
437 fail3:
438         efx_mcdi_fini(efx);
439 fail2:
440         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
441 fail1:
442         kfree(nic_data);
443         efx->nic_data = NULL;
444         return rc;
445 }
446
447 static int efx_ef10_free_vis(struct efx_nic *efx)
448 {
449         MCDI_DECLARE_BUF_ERR(outbuf);
450         size_t outlen;
451         int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
452                                     outbuf, sizeof(outbuf), &outlen);
453
454         /* -EALREADY means nothing to free, so ignore */
455         if (rc == -EALREADY)
456                 rc = 0;
457         if (rc)
458                 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
459                                        rc);
460         return rc;
461 }
462
463 #ifdef EFX_USE_PIO
464
465 static void efx_ef10_free_piobufs(struct efx_nic *efx)
466 {
467         struct efx_ef10_nic_data *nic_data = efx->nic_data;
468         MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
469         unsigned int i;
470         int rc;
471
472         BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
473
474         for (i = 0; i < nic_data->n_piobufs; i++) {
475                 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
476                                nic_data->piobuf_handle[i]);
477                 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
478                                   NULL, 0, NULL);
479                 WARN_ON(rc);
480         }
481
482         nic_data->n_piobufs = 0;
483 }
484
485 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
486 {
487         struct efx_ef10_nic_data *nic_data = efx->nic_data;
488         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
489         unsigned int i;
490         size_t outlen;
491         int rc = 0;
492
493         BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
494
495         for (i = 0; i < n; i++) {
496                 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
497                                   outbuf, sizeof(outbuf), &outlen);
498                 if (rc)
499                         break;
500                 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
501                         rc = -EIO;
502                         break;
503                 }
504                 nic_data->piobuf_handle[i] =
505                         MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
506                 netif_dbg(efx, probe, efx->net_dev,
507                           "allocated PIO buffer %u handle %x\n", i,
508                           nic_data->piobuf_handle[i]);
509         }
510
511         nic_data->n_piobufs = i;
512         if (rc)
513                 efx_ef10_free_piobufs(efx);
514         return rc;
515 }
516
517 static int efx_ef10_link_piobufs(struct efx_nic *efx)
518 {
519         struct efx_ef10_nic_data *nic_data = efx->nic_data;
520         _MCDI_DECLARE_BUF(inbuf,
521                           max(MC_CMD_LINK_PIOBUF_IN_LEN,
522                               MC_CMD_UNLINK_PIOBUF_IN_LEN));
523         struct efx_channel *channel;
524         struct efx_tx_queue *tx_queue;
525         unsigned int offset, index;
526         int rc;
527
528         BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
529         BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
530
531         memset(inbuf, 0, sizeof(inbuf));
532
533         /* Link a buffer to each VI in the write-combining mapping */
534         for (index = 0; index < nic_data->n_piobufs; ++index) {
535                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
536                                nic_data->piobuf_handle[index]);
537                 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
538                                nic_data->pio_write_vi_base + index);
539                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
540                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
541                                   NULL, 0, NULL);
542                 if (rc) {
543                         netif_err(efx, drv, efx->net_dev,
544                                   "failed to link VI %u to PIO buffer %u (%d)\n",
545                                   nic_data->pio_write_vi_base + index, index,
546                                   rc);
547                         goto fail;
548                 }
549                 netif_dbg(efx, probe, efx->net_dev,
550                           "linked VI %u to PIO buffer %u\n",
551                           nic_data->pio_write_vi_base + index, index);
552         }
553
554         /* Link a buffer to each TX queue */
555         efx_for_each_channel(channel, efx) {
556                 efx_for_each_channel_tx_queue(tx_queue, channel) {
557                         /* We assign the PIO buffers to queues in
558                          * reverse order to allow for the following
559                          * special case.
560                          */
561                         offset = ((efx->tx_channel_offset + efx->n_tx_channels -
562                                    tx_queue->channel->channel - 1) *
563                                   efx_piobuf_size);
564                         index = offset / ER_DZ_TX_PIOBUF_SIZE;
565                         offset = offset % ER_DZ_TX_PIOBUF_SIZE;
566
567                         /* When the host page size is 4K, the first
568                          * host page in the WC mapping may be within
569                          * the same VI page as the last TX queue.  We
570                          * can only link one buffer to each VI.
571                          */
572                         if (tx_queue->queue == nic_data->pio_write_vi_base) {
573                                 BUG_ON(index != 0);
574                                 rc = 0;
575                         } else {
576                                 MCDI_SET_DWORD(inbuf,
577                                                LINK_PIOBUF_IN_PIOBUF_HANDLE,
578                                                nic_data->piobuf_handle[index]);
579                                 MCDI_SET_DWORD(inbuf,
580                                                LINK_PIOBUF_IN_TXQ_INSTANCE,
581                                                tx_queue->queue);
582                                 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
583                                                   inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
584                                                   NULL, 0, NULL);
585                         }
586
587                         if (rc) {
588                                 /* This is non-fatal; the TX path just
589                                  * won't use PIO for this queue
590                                  */
591                                 netif_err(efx, drv, efx->net_dev,
592                                           "failed to link VI %u to PIO buffer %u (%d)\n",
593                                           tx_queue->queue, index, rc);
594                                 tx_queue->piobuf = NULL;
595                         } else {
596                                 tx_queue->piobuf =
597                                         nic_data->pio_write_base +
598                                         index * EFX_VI_PAGE_SIZE + offset;
599                                 tx_queue->piobuf_offset = offset;
600                                 netif_dbg(efx, probe, efx->net_dev,
601                                           "linked VI %u to PIO buffer %u offset %x addr %p\n",
602                                           tx_queue->queue, index,
603                                           tx_queue->piobuf_offset,
604                                           tx_queue->piobuf);
605                         }
606                 }
607         }
608
609         return 0;
610
611 fail:
612         while (index--) {
613                 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
614                                nic_data->pio_write_vi_base + index);
615                 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
616                              inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
617                              NULL, 0, NULL);
618         }
619         return rc;
620 }
621
622 #else /* !EFX_USE_PIO */
623
624 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
625 {
626         return n == 0 ? 0 : -ENOBUFS;
627 }
628
629 static int efx_ef10_link_piobufs(struct efx_nic *efx)
630 {
631         return 0;
632 }
633
634 static void efx_ef10_free_piobufs(struct efx_nic *efx)
635 {
636 }
637
638 #endif /* EFX_USE_PIO */
639
640 static void efx_ef10_remove(struct efx_nic *efx)
641 {
642         struct efx_ef10_nic_data *nic_data = efx->nic_data;
643         int rc;
644
645 #ifdef CONFIG_SFC_SRIOV
646         struct efx_ef10_nic_data *nic_data_pf;
647         struct pci_dev *pci_dev_pf;
648         struct efx_nic *efx_pf;
649         struct ef10_vf *vf;
650
651         if (efx->pci_dev->is_virtfn) {
652                 pci_dev_pf = efx->pci_dev->physfn;
653                 if (pci_dev_pf) {
654                         efx_pf = pci_get_drvdata(pci_dev_pf);
655                         nic_data_pf = efx_pf->nic_data;
656                         vf = nic_data_pf->vf + nic_data->vf_index;
657                         vf->efx = NULL;
658                 } else
659                         netif_info(efx, drv, efx->net_dev,
660                                    "Could not get the PF id from VF\n");
661         }
662 #endif
663
664         efx_ptp_remove(efx);
665
666         efx_mcdi_mon_remove(efx);
667
668         efx_ef10_rx_free_indir_table(efx);
669
670         if (nic_data->wc_membase)
671                 iounmap(nic_data->wc_membase);
672
673         rc = efx_ef10_free_vis(efx);
674         WARN_ON(rc != 0);
675
676         if (!nic_data->must_restore_piobufs)
677                 efx_ef10_free_piobufs(efx);
678
679         device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
680         device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
681
682         efx_mcdi_fini(efx);
683         efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
684         kfree(nic_data);
685 }
686
687 static int efx_ef10_probe_pf(struct efx_nic *efx)
688 {
689         return efx_ef10_probe(efx);
690 }
691
692 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
693 {
694         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
695
696         MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
697         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
698                             NULL, 0, NULL);
699 }
700
701 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
702 {
703         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
704
705         MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
706         return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
707                             NULL, 0, NULL);
708 }
709
710 int efx_ef10_vport_add_mac(struct efx_nic *efx,
711                            unsigned int port_id, u8 *mac)
712 {
713         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
714
715         MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
716         ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
717
718         return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
719                             sizeof(inbuf), NULL, 0, NULL);
720 }
721
722 int efx_ef10_vport_del_mac(struct efx_nic *efx,
723                            unsigned int port_id, u8 *mac)
724 {
725         MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
726
727         MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
728         ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
729
730         return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
731                             sizeof(inbuf), NULL, 0, NULL);
732 }
733
734 #ifdef CONFIG_SFC_SRIOV
735 static int efx_ef10_probe_vf(struct efx_nic *efx)
736 {
737         int rc;
738         struct pci_dev *pci_dev_pf;
739
740         /* If the parent PF has no VF data structure, it doesn't know about this
741          * VF so fail probe.  The VF needs to be re-created.  This can happen
742          * if the PF driver is unloaded while the VF is assigned to a guest.
743          */
744         pci_dev_pf = efx->pci_dev->physfn;
745         if (pci_dev_pf) {
746                 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
747                 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
748
749                 if (!nic_data_pf->vf) {
750                         netif_info(efx, drv, efx->net_dev,
751                                    "The VF cannot link to its parent PF; "
752                                    "please destroy and re-create the VF\n");
753                         return -EBUSY;
754                 }
755         }
756
757         rc = efx_ef10_probe(efx);
758         if (rc)
759                 return rc;
760
761         rc = efx_ef10_get_vf_index(efx);
762         if (rc)
763                 goto fail;
764
765         if (efx->pci_dev->is_virtfn) {
766                 if (efx->pci_dev->physfn) {
767                         struct efx_nic *efx_pf =
768                                 pci_get_drvdata(efx->pci_dev->physfn);
769                         struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
770                         struct efx_ef10_nic_data *nic_data = efx->nic_data;
771
772                         nic_data_p->vf[nic_data->vf_index].efx = efx;
773                         nic_data_p->vf[nic_data->vf_index].pci_dev =
774                                 efx->pci_dev;
775                 } else
776                         netif_info(efx, drv, efx->net_dev,
777                                    "Could not get the PF id from VF\n");
778         }
779
780         return 0;
781
782 fail:
783         efx_ef10_remove(efx);
784         return rc;
785 }
786 #else
787 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
788 {
789         return 0;
790 }
791 #endif
792
793 static int efx_ef10_alloc_vis(struct efx_nic *efx,
794                               unsigned int min_vis, unsigned int max_vis)
795 {
796         MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
797         MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
798         struct efx_ef10_nic_data *nic_data = efx->nic_data;
799         size_t outlen;
800         int rc;
801
802         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
803         MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
804         rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
805                           outbuf, sizeof(outbuf), &outlen);
806         if (rc != 0)
807                 return rc;
808
809         if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
810                 return -EIO;
811
812         netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
813                   MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
814
815         nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
816         nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
817         return 0;
818 }
819
820 /* Note that the failure path of this function does not free
821  * resources, as this will be done by efx_ef10_remove().
822  */
823 static int efx_ef10_dimension_resources(struct efx_nic *efx)
824 {
825         struct efx_ef10_nic_data *nic_data = efx->nic_data;
826         unsigned int uc_mem_map_size, wc_mem_map_size;
827         unsigned int min_vis, pio_write_vi_base, max_vis;
828         void __iomem *membase;
829         int rc;
830
831         min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
832
833 #ifdef EFX_USE_PIO
834         /* Try to allocate PIO buffers if wanted and if the full
835          * number of PIO buffers would be sufficient to allocate one
836          * copy-buffer per TX channel.  Failure is non-fatal, as there
837          * are only a small number of PIO buffers shared between all
838          * functions of the controller.
839          */
840         if (efx_piobuf_size != 0 &&
841             ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
842             efx->n_tx_channels) {
843                 unsigned int n_piobufs =
844                         DIV_ROUND_UP(efx->n_tx_channels,
845                                      ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
846
847                 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
848                 if (rc)
849                         netif_err(efx, probe, efx->net_dev,
850                                   "failed to allocate PIO buffers (%d)\n", rc);
851                 else
852                         netif_dbg(efx, probe, efx->net_dev,
853                                   "allocated %u PIO buffers\n", n_piobufs);
854         }
855 #else
856         nic_data->n_piobufs = 0;
857 #endif
858
859         /* PIO buffers should be mapped with write-combining enabled,
860          * and we want to make single UC and WC mappings rather than
861          * several of each (in fact that's the only option if host
862          * page size is >4K).  So we may allocate some extra VIs just
863          * for writing PIO buffers through.
864          *
865          * The UC mapping contains (min_vis - 1) complete VIs and the
866          * first half of the next VI.  Then the WC mapping begins with
867          * the second half of this last VI.
868          */
869         uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
870                                      ER_DZ_TX_PIOBUF);
871         if (nic_data->n_piobufs) {
872                 /* pio_write_vi_base rounds down to give the number of complete
873                  * VIs inside the UC mapping.
874                  */
875                 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
876                 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
877                                                nic_data->n_piobufs) *
878                                               EFX_VI_PAGE_SIZE) -
879                                    uc_mem_map_size);
880                 max_vis = pio_write_vi_base + nic_data->n_piobufs;
881         } else {
882                 pio_write_vi_base = 0;
883                 wc_mem_map_size = 0;
884                 max_vis = min_vis;
885         }
886
887         /* In case the last attached driver failed to free VIs, do it now */
888         rc = efx_ef10_free_vis(efx);
889         if (rc != 0)
890                 return rc;
891
892         rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
893         if (rc != 0)
894                 return rc;
895
896         /* If we didn't get enough VIs to map all the PIO buffers, free the
897          * PIO buffers
898          */
899         if (nic_data->n_piobufs &&
900             nic_data->n_allocated_vis <
901             pio_write_vi_base + nic_data->n_piobufs) {
902                 netif_dbg(efx, probe, efx->net_dev,
903                           "%u VIs are not sufficient to map %u PIO buffers\n",
904                           nic_data->n_allocated_vis, nic_data->n_piobufs);
905                 efx_ef10_free_piobufs(efx);
906         }
907
908         /* Shrink the original UC mapping of the memory BAR */
909         membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
910         if (!membase) {
911                 netif_err(efx, probe, efx->net_dev,
912                           "could not shrink memory BAR to %x\n",
913                           uc_mem_map_size);
914                 return -ENOMEM;
915         }
916         iounmap(efx->membase);
917         efx->membase = membase;
918
919         /* Set up the WC mapping if needed */
920         if (wc_mem_map_size) {
921                 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
922                                                   uc_mem_map_size,
923                                                   wc_mem_map_size);
924                 if (!nic_data->wc_membase) {
925                         netif_err(efx, probe, efx->net_dev,
926                                   "could not allocate WC mapping of size %x\n",
927                                   wc_mem_map_size);
928                         return -ENOMEM;
929                 }
930                 nic_data->pio_write_vi_base = pio_write_vi_base;
931                 nic_data->pio_write_base =
932                         nic_data->wc_membase +
933                         (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
934                          uc_mem_map_size);
935
936                 rc = efx_ef10_link_piobufs(efx);
937                 if (rc)
938                         efx_ef10_free_piobufs(efx);
939         }
940
941         netif_dbg(efx, probe, efx->net_dev,
942                   "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
943                   &efx->membase_phys, efx->membase, uc_mem_map_size,
944                   nic_data->wc_membase, wc_mem_map_size);
945
946         return 0;
947 }
948
949 static int efx_ef10_init_nic(struct efx_nic *efx)
950 {
951         struct efx_ef10_nic_data *nic_data = efx->nic_data;
952         int rc;
953
954         if (nic_data->must_check_datapath_caps) {
955                 rc = efx_ef10_init_datapath_caps(efx);
956                 if (rc)
957                         return rc;
958                 nic_data->must_check_datapath_caps = false;
959         }
960
961         if (nic_data->must_realloc_vis) {
962                 /* We cannot let the number of VIs change now */
963                 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
964                                         nic_data->n_allocated_vis);
965                 if (rc)
966                         return rc;
967                 nic_data->must_realloc_vis = false;
968         }
969
970         if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
971                 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
972                 if (rc == 0) {
973                         rc = efx_ef10_link_piobufs(efx);
974                         if (rc)
975                                 efx_ef10_free_piobufs(efx);
976                 }
977
978                 /* Log an error on failure, but this is non-fatal */
979                 if (rc)
980                         netif_err(efx, drv, efx->net_dev,
981                                   "failed to restore PIO buffers (%d)\n", rc);
982                 nic_data->must_restore_piobufs = false;
983         }
984
985         /* don't fail init if RSS setup doesn't work */
986         efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);
987
988         return 0;
989 }
990
991 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
992 {
993         struct efx_ef10_nic_data *nic_data = efx->nic_data;
994 #ifdef CONFIG_SFC_SRIOV
995         unsigned int i;
996 #endif
997
998         /* All our allocations have been reset */
999         nic_data->must_realloc_vis = true;
1000         nic_data->must_restore_filters = true;
1001         nic_data->must_restore_piobufs = true;
1002         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1003
1004         /* Driver-created vswitches and vports must be re-created */
1005         nic_data->must_probe_vswitching = true;
1006         nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
1007 #ifdef CONFIG_SFC_SRIOV
1008         if (nic_data->vf)
1009                 for (i = 0; i < efx->vf_count; i++)
1010                         nic_data->vf[i].vport_id = 0;
1011 #endif
1012 }
1013
1014 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1015 {
1016         if (reason == RESET_TYPE_MC_FAILURE)
1017                 return RESET_TYPE_DATAPATH;
1018
1019         return efx_mcdi_map_reset_reason(reason);
1020 }
1021
1022 static int efx_ef10_map_reset_flags(u32 *flags)
1023 {
1024         enum {
1025                 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1026                                    ETH_RESET_SHARED_SHIFT),
1027                 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1028                                   ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1029                                   ETH_RESET_PHY | ETH_RESET_MGMT) <<
1030                                  ETH_RESET_SHARED_SHIFT)
1031         };
1032
1033         /* We assume for now that our PCI function is permitted to
1034          * reset everything.
1035          */
1036
1037         if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1038                 *flags &= ~EF10_RESET_MC;
1039                 return RESET_TYPE_WORLD;
1040         }
1041
1042         if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1043                 *flags &= ~EF10_RESET_PORT;
1044                 return RESET_TYPE_ALL;
1045         }
1046
1047         /* no invisible reset implemented */
1048
1049         return -EINVAL;
1050 }
1051
1052 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1053 {
1054         int rc = efx_mcdi_reset(efx, reset_type);
1055
1056         /* Unprivileged functions return -EPERM, but need to return success
1057          * here so that the datapath is brought back up.
1058          */
1059         if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1060                 rc = 0;
1061
1062         /* If it was a port reset, trigger reallocation of MC resources.
1063          * Note that on an MC reset nothing needs to be done now because we'll
1064          * detect the MC reset later and handle it then.
1065          * For an FLR, we never get an MC reset event, but the MC has reset all
1066          * resources assigned to us, so we have to trigger reallocation now.
1067          */
1068         if ((reset_type == RESET_TYPE_ALL ||
1069              reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1070                 efx_ef10_reset_mc_allocations(efx);
1071         return rc;
1072 }
1073
1074 #define EF10_DMA_STAT(ext_name, mcdi_name)                      \
1075         [EF10_STAT_ ## ext_name] =                              \
1076         { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1077 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name)                \
1078         [EF10_STAT_ ## int_name] =                              \
1079         { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1080 #define EF10_OTHER_STAT(ext_name)                               \
1081         [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1082 #define GENERIC_SW_STAT(ext_name)                               \
1083         [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1084
1085 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1086         EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1087         EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1088         EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1089         EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1090         EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1091         EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1092         EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1093         EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1094         EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1095         EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1096         EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1097         EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1098         EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1099         EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1100         EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1101         EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1102         EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1103         EF10_OTHER_STAT(port_rx_good_bytes),
1104         EF10_OTHER_STAT(port_rx_bad_bytes),
1105         EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1106         EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1107         EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1108         EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1109         EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1110         EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1111         EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1112         EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1113         EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1114         EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1115         EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1116         EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1117         EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1118         EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1119         EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1120         EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1121         EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1122         EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1123         EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1124         EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1125         EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1126         EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1127         GENERIC_SW_STAT(rx_nodesc_trunc),
1128         GENERIC_SW_STAT(rx_noskb_drops),
1129         EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1130         EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1131         EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1132         EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1133         EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1134         EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1135         EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1136         EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1137         EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1138         EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1139         EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1140         EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1141         EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1142         EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1143         EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1144         EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1145         EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1146         EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1147         EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1148         EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1149         EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1150         EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1151         EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1152         EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1153         EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1154         EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1155         EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1156         EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1157         EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1158         EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1159 };
1160
1161 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |      \
1162                                (1ULL << EF10_STAT_port_tx_packets) |    \
1163                                (1ULL << EF10_STAT_port_tx_pause) |      \
1164                                (1ULL << EF10_STAT_port_tx_unicast) |    \
1165                                (1ULL << EF10_STAT_port_tx_multicast) |  \
1166                                (1ULL << EF10_STAT_port_tx_broadcast) |  \
1167                                (1ULL << EF10_STAT_port_rx_bytes) |      \
1168                                (1ULL <<                                 \
1169                                 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1170                                (1ULL << EF10_STAT_port_rx_good_bytes) | \
1171                                (1ULL << EF10_STAT_port_rx_bad_bytes) |  \
1172                                (1ULL << EF10_STAT_port_rx_packets) |    \
1173                                (1ULL << EF10_STAT_port_rx_good) |       \
1174                                (1ULL << EF10_STAT_port_rx_bad) |        \
1175                                (1ULL << EF10_STAT_port_rx_pause) |      \
1176                                (1ULL << EF10_STAT_port_rx_control) |    \
1177                                (1ULL << EF10_STAT_port_rx_unicast) |    \
1178                                (1ULL << EF10_STAT_port_rx_multicast) |  \
1179                                (1ULL << EF10_STAT_port_rx_broadcast) |  \
1180                                (1ULL << EF10_STAT_port_rx_lt64) |       \
1181                                (1ULL << EF10_STAT_port_rx_64) |         \
1182                                (1ULL << EF10_STAT_port_rx_65_to_127) |  \
1183                                (1ULL << EF10_STAT_port_rx_128_to_255) | \
1184                                (1ULL << EF10_STAT_port_rx_256_to_511) | \
1185                                (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1186                                (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1187                                (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1188                                (1ULL << EF10_STAT_port_rx_gtjumbo) |    \
1189                                (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1190                                (1ULL << EF10_STAT_port_rx_overflow) |   \
1191                                (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1192                                (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1193                                (1ULL << GENERIC_STAT_rx_noskb_drops))
1194
1195 /* These statistics are only provided by the 10G MAC.  For a 10G/40G
1196  * switchable port we do not expose these because they might not
1197  * include all the packets they should.
1198  */
1199 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |  \
1200                                  (1ULL << EF10_STAT_port_tx_lt64) |     \
1201                                  (1ULL << EF10_STAT_port_tx_64) |       \
1202                                  (1ULL << EF10_STAT_port_tx_65_to_127) |\
1203                                  (1ULL << EF10_STAT_port_tx_128_to_255) |\
1204                                  (1ULL << EF10_STAT_port_tx_256_to_511) |\
1205                                  (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1206                                  (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1207                                  (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1208
1209 /* These statistics are only provided by the 40G MAC.  For a 10G/40G
1210  * switchable port we do expose these because the errors will otherwise
1211  * be silent.
1212  */
1213 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1214                                   (1ULL << EF10_STAT_port_rx_length_error))
1215
1216 /* These statistics are only provided if the firmware supports the
1217  * capability PM_AND_RXDP_COUNTERS.
1218  */
1219 #define HUNT_PM_AND_RXDP_STAT_MASK (                                    \
1220         (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |              \
1221         (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |            \
1222         (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |               \
1223         (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |             \
1224         (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |                      \
1225         (1ULL << EF10_STAT_port_rx_pm_discard_qbb) |                    \
1226         (1ULL << EF10_STAT_port_rx_pm_discard_mapping) |                \
1227         (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |             \
1228         (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |             \
1229         (1ULL << EF10_STAT_port_rx_dp_streaming_packets) |              \
1230         (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |                      \
1231         (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1232
1233 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1234 {
1235         u64 raw_mask = HUNT_COMMON_STAT_MASK;
1236         u32 port_caps = efx_mcdi_phy_get_caps(efx);
1237         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1238
1239         if (!(efx->mcdi->fn_flags &
1240               1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1241                 return 0;
1242
1243         if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1244                 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1245         else
1246                 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1247
1248         if (nic_data->datapath_caps &
1249             (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1250                 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1251
1252         return raw_mask;
1253 }
1254
1255 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1256 {
1257         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1258         u64 raw_mask[2];
1259
1260         raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1261
1262         /* Only show vadaptor stats when EVB capability is present */
1263         if (nic_data->datapath_caps &
1264             (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1265                 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1266                 raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
1267         } else {
1268                 raw_mask[1] = 0;
1269         }
1270
1271 #if BITS_PER_LONG == 64
1272         mask[0] = raw_mask[0];
1273         mask[1] = raw_mask[1];
1274 #else
1275         mask[0] = raw_mask[0] & 0xffffffff;
1276         mask[1] = raw_mask[0] >> 32;
1277         mask[2] = raw_mask[1] & 0xffffffff;
1278         mask[3] = raw_mask[1] >> 32;
1279 #endif
1280 }
1281
1282 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1283 {
1284         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1285
1286         efx_ef10_get_stat_mask(efx, mask);
1287         return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1288                                       mask, names);
1289 }
1290
1291 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1292                                            struct rtnl_link_stats64 *core_stats)
1293 {
1294         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1295         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1296         u64 *stats = nic_data->stats;
1297         size_t stats_count = 0, index;
1298
1299         efx_ef10_get_stat_mask(efx, mask);
1300
1301         if (full_stats) {
1302                 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1303                         if (efx_ef10_stat_desc[index].name) {
1304                                 *full_stats++ = stats[index];
1305                                 ++stats_count;
1306                         }
1307                 }
1308         }
1309
1310         if (!core_stats)
1311                 return stats_count;
1312
1313         if (nic_data->datapath_caps &
1314                         1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1315                 /* Use vadaptor stats. */
1316                 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1317                                          stats[EF10_STAT_rx_multicast] +
1318                                          stats[EF10_STAT_rx_broadcast];
1319                 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1320                                          stats[EF10_STAT_tx_multicast] +
1321                                          stats[EF10_STAT_tx_broadcast];
1322                 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1323                                        stats[EF10_STAT_rx_multicast_bytes] +
1324                                        stats[EF10_STAT_rx_broadcast_bytes];
1325                 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1326                                        stats[EF10_STAT_tx_multicast_bytes] +
1327                                        stats[EF10_STAT_tx_broadcast_bytes];
1328                 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1329                                          stats[GENERIC_STAT_rx_noskb_drops];
1330                 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1331                 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1332                 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1333                 core_stats->rx_errors = core_stats->rx_crc_errors;
1334                 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1335         } else {
1336                 /* Use port stats. */
1337                 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1338                 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1339                 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1340                 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1341                 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1342                                          stats[GENERIC_STAT_rx_nodesc_trunc] +
1343                                          stats[GENERIC_STAT_rx_noskb_drops];
1344                 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1345                 core_stats->rx_length_errors =
1346                                 stats[EF10_STAT_port_rx_gtjumbo] +
1347                                 stats[EF10_STAT_port_rx_length_error];
1348                 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1349                 core_stats->rx_frame_errors =
1350                                 stats[EF10_STAT_port_rx_align_error];
1351                 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1352                 core_stats->rx_errors = (core_stats->rx_length_errors +
1353                                          core_stats->rx_crc_errors +
1354                                          core_stats->rx_frame_errors);
1355         }
1356
1357         return stats_count;
1358 }
1359
1360 static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1361 {
1362         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1363         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1364         __le64 generation_start, generation_end;
1365         u64 *stats = nic_data->stats;
1366         __le64 *dma_stats;
1367
1368         efx_ef10_get_stat_mask(efx, mask);
1369
1370         dma_stats = efx->stats_buffer.addr;
1371         nic_data = efx->nic_data;
1372
1373         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1374         if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
1375                 return 0;
1376         rmb();
1377         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1378                              stats, efx->stats_buffer.addr, false);
1379         rmb();
1380         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1381         if (generation_end != generation_start)
1382                 return -EAGAIN;
1383
1384         /* Update derived statistics */
1385         efx_nic_fix_nodesc_drop_stat(efx,
1386                                      &stats[EF10_STAT_port_rx_nodesc_drops]);
1387         stats[EF10_STAT_port_rx_good_bytes] =
1388                 stats[EF10_STAT_port_rx_bytes] -
1389                 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1390         efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1391                              stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1392         efx_update_sw_stats(efx, stats);
1393         return 0;
1394 }
1395
1396
1397 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1398                                        struct rtnl_link_stats64 *core_stats)
1399 {
1400         int retry;
1401
1402         /* If we're unlucky enough to read statistics during the DMA, wait
1403          * up to 10ms for it to finish (typically takes <500us)
1404          */
1405         for (retry = 0; retry < 100; ++retry) {
1406                 if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1407                         break;
1408                 udelay(100);
1409         }
1410
1411         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1412 }
1413
1414 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1415 {
1416         MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1417         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1418         DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1419         __le64 generation_start, generation_end;
1420         u64 *stats = nic_data->stats;
1421         u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
1422         struct efx_buffer stats_buf;
1423         __le64 *dma_stats;
1424         int rc;
1425
1426         spin_unlock_bh(&efx->stats_lock);
1427
1428         if (in_interrupt()) {
1429                 /* If in atomic context, cannot update stats.  Just update the
1430                  * software stats and return so the caller can continue.
1431                  */
1432                 spin_lock_bh(&efx->stats_lock);
1433                 efx_update_sw_stats(efx, stats);
1434                 return 0;
1435         }
1436
1437         efx_ef10_get_stat_mask(efx, mask);
1438
1439         rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1440         if (rc) {
1441                 spin_lock_bh(&efx->stats_lock);
1442                 return rc;
1443         }
1444
1445         dma_stats = stats_buf.addr;
1446         dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;
1447
1448         MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1449         MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1450                               MAC_STATS_IN_DMA, 1);
1451         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1452         MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1453
1454         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1455                                 NULL, 0, NULL);
1456         spin_lock_bh(&efx->stats_lock);
1457         if (rc) {
1458                 /* Expect ENOENT if DMA queues have not been set up */
1459                 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1460                         efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1461                                                sizeof(inbuf), NULL, 0, rc);
1462                 goto out;
1463         }
1464
1465         generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1466         if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1467                 WARN_ON_ONCE(1);
1468                 goto out;
1469         }
1470         rmb();
1471         efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1472                              stats, stats_buf.addr, false);
1473         rmb();
1474         generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1475         if (generation_end != generation_start) {
1476                 rc = -EAGAIN;
1477                 goto out;
1478         }
1479
1480         efx_update_sw_stats(efx, stats);
1481 out:
1482         efx_nic_free_buffer(efx, &stats_buf);
1483         return rc;
1484 }
1485
1486 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1487                                        struct rtnl_link_stats64 *core_stats)
1488 {
1489         if (efx_ef10_try_update_nic_stats_vf(efx))
1490                 return 0;
1491
1492         return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1493 }
1494
1495 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1496 {
1497         struct efx_nic *efx = channel->efx;
1498         unsigned int mode, value;
1499         efx_dword_t timer_cmd;
1500
1501         if (channel->irq_moderation) {
1502                 mode = 3;
1503                 value = channel->irq_moderation - 1;
1504         } else {
1505                 mode = 0;
1506                 value = 0;
1507         }
1508
1509         if (EFX_EF10_WORKAROUND_35388(efx)) {
1510                 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1511                                      EFE_DD_EVQ_IND_TIMER_FLAGS,
1512                                      ERF_DD_EVQ_IND_TIMER_MODE, mode,
1513                                      ERF_DD_EVQ_IND_TIMER_VAL, value);
1514                 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1515                                 channel->channel);
1516         } else {
1517                 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1518                                      ERF_DZ_TC_TIMER_VAL, value);
1519                 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1520                                 channel->channel);
1521         }
1522 }
1523
1524 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1525                                 struct ethtool_wolinfo *wol) {}
1526
1527 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1528 {
1529         return -EOPNOTSUPP;
1530 }
1531
1532 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1533 {
1534         wol->supported = 0;
1535         wol->wolopts = 0;
1536         memset(&wol->sopass, 0, sizeof(wol->sopass));
1537 }
1538
1539 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1540 {
1541         if (type != 0)
1542                 return -EINVAL;
1543         return 0;
1544 }
1545
1546 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1547                                   const efx_dword_t *hdr, size_t hdr_len,
1548                                   const efx_dword_t *sdu, size_t sdu_len)
1549 {
1550         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1551         u8 *pdu = nic_data->mcdi_buf.addr;
1552
1553         memcpy(pdu, hdr, hdr_len);
1554         memcpy(pdu + hdr_len, sdu, sdu_len);
1555         wmb();
1556
1557         /* The hardware provides 'low' and 'high' (doorbell) registers
1558          * for passing the 64-bit address of an MCDI request to
1559          * firmware.  However the dwords are swapped by firmware.  The
1560          * least significant bits of the doorbell are then 0 for all
1561          * MCDI requests due to alignment.
1562          */
1563         _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1564                     ER_DZ_MC_DB_LWRD);
1565         _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1566                     ER_DZ_MC_DB_HWRD);
1567 }
1568
1569 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1570 {
1571         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1572         const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1573
1574         rmb();
1575         return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1576 }
1577
1578 static void
1579 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1580                             size_t offset, size_t outlen)
1581 {
1582         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1583         const u8 *pdu = nic_data->mcdi_buf.addr;
1584
1585         memcpy(outbuf, pdu + offset, outlen);
1586 }
1587
1588 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1589 {
1590         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1591         int rc;
1592
1593         rc = efx_ef10_get_warm_boot_count(efx);
1594         if (rc < 0) {
1595                 /* The firmware is presumably in the process of
1596                  * rebooting.  However, we are supposed to report each
1597                  * reboot just once, so we must only do that once we
1598                  * can read and store the updated warm boot count.
1599                  */
1600                 return 0;
1601         }
1602
1603         if (rc == nic_data->warm_boot_count)
1604                 return 0;
1605
1606         nic_data->warm_boot_count = rc;
1607
1608         /* All our allocations have been reset */
1609         efx_ef10_reset_mc_allocations(efx);
1610
1611         /* The datapath firmware might have been changed */
1612         nic_data->must_check_datapath_caps = true;
1613
1614         /* MAC statistics have been cleared on the NIC; clear the local
1615          * statistic that we update with efx_update_diff_stat().
1616          */
1617         nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
1618
1619         return -EIO;
1620 }
1621
1622 /* Handle an MSI interrupt
1623  *
1624  * Handle an MSI hardware interrupt.  This routine schedules event
1625  * queue processing.  No interrupt acknowledgement cycle is necessary.
1626  * Also, we never need to check that the interrupt is for us, since
1627  * MSI interrupts cannot be shared.
1628  */
1629 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1630 {
1631         struct efx_msi_context *context = dev_id;
1632         struct efx_nic *efx = context->efx;
1633
1634         netif_vdbg(efx, intr, efx->net_dev,
1635                    "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1636
1637         if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1638                 /* Note test interrupts */
1639                 if (context->index == efx->irq_level)
1640                         efx->last_irq_cpu = raw_smp_processor_id();
1641
1642                 /* Schedule processing of the channel */
1643                 efx_schedule_channel_irq(efx->channel[context->index]);
1644         }
1645
1646         return IRQ_HANDLED;
1647 }
1648
1649 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1650 {
1651         struct efx_nic *efx = dev_id;
1652         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1653         struct efx_channel *channel;
1654         efx_dword_t reg;
1655         u32 queues;
1656
1657         /* Read the ISR which also ACKs the interrupts */
1658         efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1659         queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1660
1661         if (queues == 0)
1662                 return IRQ_NONE;
1663
1664         if (likely(soft_enabled)) {
1665                 /* Note test interrupts */
1666                 if (queues & (1U << efx->irq_level))
1667                         efx->last_irq_cpu = raw_smp_processor_id();
1668
1669                 efx_for_each_channel(channel, efx) {
1670                         if (queues & 1)
1671                                 efx_schedule_channel_irq(channel);
1672                         queues >>= 1;
1673                 }
1674         }
1675
1676         netif_vdbg(efx, intr, efx->net_dev,
1677                    "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1678                    irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1679
1680         return IRQ_HANDLED;
1681 }
1682
1683 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1684 {
1685         MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1686
1687         BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1688
1689         MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1690         (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1691                             inbuf, sizeof(inbuf), NULL, 0, NULL);
1692 }
1693
1694 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1695 {
1696         return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1697                                     (tx_queue->ptr_mask + 1) *
1698                                     sizeof(efx_qword_t),
1699                                     GFP_KERNEL);
1700 }
1701
1702 /* This writes to the TX_DESC_WPTR and also pushes data */
1703 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1704                                          const efx_qword_t *txd)
1705 {
1706         unsigned int write_ptr;
1707         efx_oword_t reg;
1708
1709         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1710         EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1711         reg.qword[0] = *txd;
1712         efx_writeo_page(tx_queue->efx, &reg,
1713                         ER_DZ_TX_DESC_UPD, tx_queue->queue);
1714 }
1715
1716 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1717 {
1718         MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1719                                                        EFX_BUF_SIZE));
1720         bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1721         size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1722         struct efx_channel *channel = tx_queue->channel;
1723         struct efx_nic *efx = tx_queue->efx;
1724         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1725         size_t inlen;
1726         dma_addr_t dma_addr;
1727         efx_qword_t *txd;
1728         int rc;
1729         int i;
1730         BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1731
1732         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1733         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1734         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1735         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1736         MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1737                               INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1738                               INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1739         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1740         MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1741
1742         dma_addr = tx_queue->txd.buf.dma_addr;
1743
1744         netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1745                   tx_queue->queue, entries, (u64)dma_addr);
1746
1747         for (i = 0; i < entries; ++i) {
1748                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1749                 dma_addr += EFX_BUF_SIZE;
1750         }
1751
1752         inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1753
1754         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1755                           NULL, 0, NULL);
1756         if (rc)
1757                 goto fail;
1758
1759         /* A previous user of this TX queue might have set us up the
1760          * bomb by writing a descriptor to the TX push collector but
1761          * not the doorbell.  (Each collector belongs to a port, not a
1762          * queue or function, so cannot easily be reset.)  We must
1763          * attempt to push a no-op descriptor in its place.
1764          */
1765         tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1766         tx_queue->insert_count = 1;
1767         txd = efx_tx_desc(tx_queue, 0);
1768         EFX_POPULATE_QWORD_4(*txd,
1769                              ESF_DZ_TX_DESC_IS_OPT, true,
1770                              ESF_DZ_TX_OPTION_TYPE,
1771                              ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1772                              ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1773                              ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1774         tx_queue->write_count = 1;
1775         wmb();
1776         efx_ef10_push_tx_desc(tx_queue, txd);
1777
1778         return;
1779
1780 fail:
1781         netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1782                     tx_queue->queue);
1783 }
1784
1785 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1786 {
1787         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1788         MCDI_DECLARE_BUF_ERR(outbuf);
1789         struct efx_nic *efx = tx_queue->efx;
1790         size_t outlen;
1791         int rc;
1792
1793         MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1794                        tx_queue->queue);
1795
1796         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1797                           outbuf, sizeof(outbuf), &outlen);
1798
1799         if (rc && rc != -EALREADY)
1800                 goto fail;
1801
1802         return;
1803
1804 fail:
1805         efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1806                                outbuf, outlen, rc);
1807 }
1808
1809 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1810 {
1811         efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1812 }
1813
1814 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1815 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1816 {
1817         unsigned int write_ptr;
1818         efx_dword_t reg;
1819
1820         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1821         EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1822         efx_writed_page(tx_queue->efx, &reg,
1823                         ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1824 }
1825
1826 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1827 {
1828         unsigned int old_write_count = tx_queue->write_count;
1829         struct efx_tx_buffer *buffer;
1830         unsigned int write_ptr;
1831         efx_qword_t *txd;
1832
1833         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
1834
1835         do {
1836                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1837                 buffer = &tx_queue->buffer[write_ptr];
1838                 txd = efx_tx_desc(tx_queue, write_ptr);
1839                 ++tx_queue->write_count;
1840
1841                 /* Create TX descriptor ring entry */
1842                 if (buffer->flags & EFX_TX_BUF_OPTION) {
1843                         *txd = buffer->option;
1844                 } else {
1845                         BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1846                         EFX_POPULATE_QWORD_3(
1847                                 *txd,
1848                                 ESF_DZ_TX_KER_CONT,
1849                                 buffer->flags & EFX_TX_BUF_CONT,
1850                                 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1851                                 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1852                 }
1853         } while (tx_queue->write_count != tx_queue->insert_count);
1854
1855         wmb(); /* Ensure descriptors are written before they are fetched */
1856
1857         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1858                 txd = efx_tx_desc(tx_queue,
1859                                   old_write_count & tx_queue->ptr_mask);
1860                 efx_ef10_push_tx_desc(tx_queue, txd);
1861                 ++tx_queue->pushes;
1862         } else {
1863                 efx_ef10_notify_tx_desc(tx_queue);
1864         }
1865 }
1866
1867 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
1868                                       bool exclusive, unsigned *context_size)
1869 {
1870         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1871         MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1872         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1873         size_t outlen;
1874         int rc;
1875         u32 alloc_type = exclusive ?
1876                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
1877                                 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
1878         unsigned rss_spread = exclusive ?
1879                                 efx->rss_spread :
1880                                 min(rounddown_pow_of_two(efx->rss_spread),
1881                                     EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);
1882
1883         if (!exclusive && rss_spread == 1) {
1884                 *context = EFX_EF10_RSS_CONTEXT_INVALID;
1885                 if (context_size)
1886                         *context_size = 1;
1887                 return 0;
1888         }
1889
1890         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1891                        nic_data->vport_id);
1892         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
1893         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
1894
1895         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1896                 outbuf, sizeof(outbuf), &outlen);
1897         if (rc != 0)
1898                 return rc;
1899
1900         if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1901                 return -EIO;
1902
1903         *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1904
1905         if (context_size)
1906                 *context_size = rss_spread;
1907
1908         return 0;
1909 }
1910
1911 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1912 {
1913         MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1914         int rc;
1915
1916         MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1917                        context);
1918
1919         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1920                             NULL, 0, NULL);
1921         WARN_ON(rc != 0);
1922 }
1923
1924 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
1925                                        const u32 *rx_indir_table)
1926 {
1927         MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1928         MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1929         int i, rc;
1930
1931         MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1932                        context);
1933         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1934                      MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1935
1936         for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1937                 MCDI_PTR(tablebuf,
1938                          RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1939                                 (u8) rx_indir_table[i];
1940
1941         rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1942                           sizeof(tablebuf), NULL, 0, NULL);
1943         if (rc != 0)
1944                 return rc;
1945
1946         MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1947                        context);
1948         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1949                      MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1950         for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1951                 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1952                         efx->rx_hash_key[i];
1953
1954         return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1955                             sizeof(keybuf), NULL, 0, NULL);
1956 }
1957
1958 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1959 {
1960         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1961
1962         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1963                 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1964         nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1965 }
1966
1967 static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
1968                                               unsigned *context_size)
1969 {
1970         u32 new_rx_rss_context;
1971         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1972         int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1973                                             false, context_size);
1974
1975         if (rc != 0)
1976                 return rc;
1977
1978         nic_data->rx_rss_context = new_rx_rss_context;
1979         nic_data->rx_rss_context_exclusive = false;
1980         efx_set_default_rx_indir_table(efx);
1981         return 0;
1982 }
1983
1984 static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
1985                                                  const u32 *rx_indir_table)
1986 {
1987         struct efx_ef10_nic_data *nic_data = efx->nic_data;
1988         int rc;
1989         u32 new_rx_rss_context;
1990
1991         if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
1992             !nic_data->rx_rss_context_exclusive) {
1993                 rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
1994                                                 true, NULL);
1995                 if (rc == -EOPNOTSUPP)
1996                         return rc;
1997                 else if (rc != 0)
1998                         goto fail1;
1999         } else {
2000                 new_rx_rss_context = nic_data->rx_rss_context;
2001         }
2002
2003         rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
2004                                          rx_indir_table);
2005         if (rc != 0)
2006                 goto fail2;
2007
2008         if (nic_data->rx_rss_context != new_rx_rss_context)
2009                 efx_ef10_rx_free_indir_table(efx);
2010         nic_data->rx_rss_context = new_rx_rss_context;
2011         nic_data->rx_rss_context_exclusive = true;
2012         if (rx_indir_table != efx->rx_indir_table)
2013                 memcpy(efx->rx_indir_table, rx_indir_table,
2014                        sizeof(efx->rx_indir_table));
2015         return 0;
2016
2017 fail2:
2018         if (new_rx_rss_context != nic_data->rx_rss_context)
2019                 efx_ef10_free_rss_context(efx, new_rx_rss_context);
2020 fail1:
2021         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2022         return rc;
2023 }
2024
2025 static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
2026                                           const u32 *rx_indir_table)
2027 {
2028         int rc;
2029
2030         if (efx->rss_spread == 1)
2031                 return 0;
2032
2033         rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);
2034
2035         if (rc == -ENOBUFS && !user) {
2036                 unsigned context_size;
2037                 bool mismatch = false;
2038                 size_t i;
2039
2040                 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
2041                      i++)
2042                         mismatch = rx_indir_table[i] !=
2043                                 ethtool_rxfh_indir_default(i, efx->rss_spread);
2044
2045                 rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
2046                 if (rc == 0) {
2047                         if (context_size != efx->rss_spread)
2048                                 netif_warn(efx, probe, efx->net_dev,
2049                                            "Could not allocate an exclusive RSS"
2050                                            " context; allocated a shared one of"
2051                                            " different size."
2052                                            " Wanted %u, got %u.\n",
2053                                            efx->rss_spread, context_size);
2054                         else if (mismatch)
2055                                 netif_warn(efx, probe, efx->net_dev,
2056                                            "Could not allocate an exclusive RSS"
2057                                            " context; allocated a shared one but"
2058                                            " could not apply custom"
2059                                            " indirection.\n");
2060                         else
2061                                 netif_info(efx, probe, efx->net_dev,
2062                                            "Could not allocate an exclusive RSS"
2063                                            " context; allocated a shared one.\n");
2064                 }
2065         }
2066         return rc;
2067 }
2068
2069 static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
2070                                           const u32 *rx_indir_table
2071                                           __attribute__ ((unused)))
2072 {
2073         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2074
2075         if (user)
2076                 return -EOPNOTSUPP;
2077         if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
2078                 return 0;
2079         return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2080 }
2081
2082 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
2083 {
2084         return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
2085                                     (rx_queue->ptr_mask + 1) *
2086                                     sizeof(efx_qword_t),
2087                                     GFP_KERNEL);
2088 }
2089
2090 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
2091 {
2092         MCDI_DECLARE_BUF(inbuf,
2093                          MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
2094                                                 EFX_BUF_SIZE));
2095         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2096         size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
2097         struct efx_nic *efx = rx_queue->efx;
2098         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2099         size_t inlen;
2100         dma_addr_t dma_addr;
2101         int rc;
2102         int i;
2103         BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2104
2105         rx_queue->scatter_n = 0;
2106         rx_queue->scatter_len = 0;
2107
2108         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
2109         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
2110         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
2111         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
2112                        efx_rx_queue_index(rx_queue));
2113         MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
2114                               INIT_RXQ_IN_FLAG_PREFIX, 1,
2115                               INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2116         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2117         MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2118
2119         dma_addr = rx_queue->rxd.buf.dma_addr;
2120
2121         netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
2122                   efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
2123
2124         for (i = 0; i < entries; ++i) {
2125                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
2126                 dma_addr += EFX_BUF_SIZE;
2127         }
2128
2129         inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
2130
2131         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2132                           NULL, 0, NULL);
2133         if (rc)
2134                 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
2135                             efx_rx_queue_index(rx_queue));
2136 }
2137
2138 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
2139 {
2140         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2141         MCDI_DECLARE_BUF_ERR(outbuf);
2142         struct efx_nic *efx = rx_queue->efx;
2143         size_t outlen;
2144         int rc;
2145
2146         MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
2147                        efx_rx_queue_index(rx_queue));
2148
2149         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2150                           outbuf, sizeof(outbuf), &outlen);
2151
2152         if (rc && rc != -EALREADY)
2153                 goto fail;
2154
2155         return;
2156
2157 fail:
2158         efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
2159                                outbuf, outlen, rc);
2160 }
2161
2162 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
2163 {
2164         efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
2165 }
2166
2167 /* This creates an entry in the RX descriptor queue */
2168 static inline void
2169 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2170 {
2171         struct efx_rx_buffer *rx_buf;
2172         efx_qword_t *rxd;
2173
2174         rxd = efx_rx_desc(rx_queue, index);
2175         rx_buf = efx_rx_buffer(rx_queue, index);
2176         EFX_POPULATE_QWORD_2(*rxd,
2177                              ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2178                              ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2179 }
2180
2181 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2182 {
2183         struct efx_nic *efx = rx_queue->efx;
2184         unsigned int write_count;
2185         efx_dword_t reg;
2186
2187         /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2188         write_count = rx_queue->added_count & ~7;
2189         if (rx_queue->notified_count == write_count)
2190                 return;
2191
2192         do
2193                 efx_ef10_build_rx_desc(
2194                         rx_queue,
2195                         rx_queue->notified_count & rx_queue->ptr_mask);
2196         while (++rx_queue->notified_count != write_count);
2197
2198         wmb();
2199         EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2200                              write_count & rx_queue->ptr_mask);
2201         efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
2202                         efx_rx_queue_index(rx_queue));
2203 }
2204
2205 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2206
2207 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2208 {
2209         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2210         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2211         efx_qword_t event;
2212
2213         EFX_POPULATE_QWORD_2(event,
2214                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2215                              ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2216
2217         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2218
2219         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2220          * already swapped the data to little-endian order.
2221          */
2222         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2223                sizeof(efx_qword_t));
2224
2225         efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2226                            inbuf, sizeof(inbuf), 0,
2227                            efx_ef10_rx_defer_refill_complete, 0);
2228 }
2229
2230 static void
2231 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2232                                   int rc, efx_dword_t *outbuf,
2233                                   size_t outlen_actual)
2234 {
2235         /* nothing to do */
2236 }
2237
2238 static int efx_ef10_ev_probe(struct efx_channel *channel)
2239 {
2240         return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
2241                                     (channel->eventq_mask + 1) *
2242                                     sizeof(efx_qword_t),
2243                                     GFP_KERNEL);
2244 }
2245
2246 static void efx_ef10_ev_fini(struct efx_channel *channel)
2247 {
2248         MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
2249         MCDI_DECLARE_BUF_ERR(outbuf);
2250         struct efx_nic *efx = channel->efx;
2251         size_t outlen;
2252         int rc;
2253
2254         MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
2255
2256         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
2257                           outbuf, sizeof(outbuf), &outlen);
2258
2259         if (rc && rc != -EALREADY)
2260                 goto fail;
2261
2262         return;
2263
2264 fail:
2265         efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
2266                                outbuf, outlen, rc);
2267 }
2268
2269 static int efx_ef10_ev_init(struct efx_channel *channel)
2270 {
2271         MCDI_DECLARE_BUF(inbuf,
2272                          MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
2273                                                 EFX_BUF_SIZE));
2274         MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
2275         size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
2276         struct efx_nic *efx = channel->efx;
2277         struct efx_ef10_nic_data *nic_data;
2278         bool supports_rx_merge;
2279         size_t inlen, outlen;
2280         unsigned int enabled, implemented;
2281         dma_addr_t dma_addr;
2282         int rc;
2283         int i;
2284
2285         nic_data = efx->nic_data;
2286         supports_rx_merge =
2287                 !!(nic_data->datapath_caps &
2288                    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2289
2290         /* Fill event queue with all ones (i.e. empty events) */
2291         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
2292
2293         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
2294         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
2295         /* INIT_EVQ expects index in vector table, not absolute */
2296         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
2297         MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
2298                               INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
2299                               INIT_EVQ_IN_FLAG_RX_MERGE, 1,
2300                               INIT_EVQ_IN_FLAG_TX_MERGE, 1,
2301                               INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
2302         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
2303                        MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
2304         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
2305         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
2306         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
2307                        MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
2308         MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
2309
2310         dma_addr = channel->eventq.buf.dma_addr;
2311         for (i = 0; i < entries; ++i) {
2312                 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
2313                 dma_addr += EFX_BUF_SIZE;
2314         }
2315
2316         inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
2317
2318         rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
2319                           outbuf, sizeof(outbuf), &outlen);
2320         /* IRQ return is ignored */
2321         if (channel->channel || rc)
2322                 return rc;
2323
2324         /* Successfully created event queue on channel 0 */
2325         rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2326         if (rc == -ENOSYS) {
2327                 /* GET_WORKAROUNDS was implemented before the bug26807
2328                  * workaround, thus the latter must be unavailable in this fw
2329                  */
2330                 nic_data->workaround_26807 = false;
2331                 rc = 0;
2332         } else if (rc) {
2333                 goto fail;
2334         } else {
2335                 nic_data->workaround_26807 =
2336                         !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2337
2338                 if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
2339                     !nic_data->workaround_26807) {
2340                         unsigned int flags;
2341
2342                         rc = efx_mcdi_set_workaround(efx,
2343                                                      MC_CMD_WORKAROUND_BUG26807,
2344                                                      true, &flags);
2345
2346                         if (!rc) {
2347                                 if (flags &
2348                                     1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2349                                         netif_info(efx, drv, efx->net_dev,
2350                                                    "other functions on NIC have been reset\n");
2351                                         /* MC's boot count has incremented */
2352                                         ++nic_data->warm_boot_count;
2353                                 }
2354                                 nic_data->workaround_26807 = true;
2355                         } else if (rc == -EPERM) {
2356                                 rc = 0;
2357                         }
2358                 }
2359         }
2360
2361         if (!rc)
2362                 return 0;
2363
2364 fail:
2365         efx_ef10_ev_fini(channel);
2366         return rc;
2367 }
2368
2369 static void efx_ef10_ev_remove(struct efx_channel *channel)
2370 {
2371         efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
2372 }
2373
2374 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2375                                            unsigned int rx_queue_label)
2376 {
2377         struct efx_nic *efx = rx_queue->efx;
2378
2379         netif_info(efx, hw, efx->net_dev,
2380                    "rx event arrived on queue %d labeled as queue %u\n",
2381                    efx_rx_queue_index(rx_queue), rx_queue_label);
2382
2383         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2384 }
2385
2386 static void
2387 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2388                              unsigned int actual, unsigned int expected)
2389 {
2390         unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2391         struct efx_nic *efx = rx_queue->efx;
2392
2393         netif_info(efx, hw, efx->net_dev,
2394                    "dropped %d events (index=%d expected=%d)\n",
2395                    dropped, actual, expected);
2396
2397         efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2398 }
2399
2400 /* partially received RX was aborted. clean up. */
2401 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2402 {
2403         unsigned int rx_desc_ptr;
2404
2405         netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2406                   "scattered RX aborted (dropping %u buffers)\n",
2407                   rx_queue->scatter_n);
2408
2409         rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2410
2411         efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2412                       0, EFX_RX_PKT_DISCARD);
2413
2414         rx_queue->removed_count += rx_queue->scatter_n;
2415         rx_queue->scatter_n = 0;
2416         rx_queue->scatter_len = 0;
2417         ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2418 }
2419
2420 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2421                                     const efx_qword_t *event)
2422 {
2423         unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
2424         unsigned int n_descs, n_packets, i;
2425         struct efx_nic *efx = channel->efx;
2426         struct efx_rx_queue *rx_queue;
2427         bool rx_cont;
2428         u16 flags = 0;
2429
2430         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2431                 return 0;
2432
2433         /* Basic packet information */
2434         rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2435         next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2436         rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2437         rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
2438         rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2439
2440         if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2441                 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2442                             EFX_QWORD_FMT "\n",
2443                             EFX_QWORD_VAL(*event));
2444
2445         rx_queue = efx_channel_get_rx_queue(channel);
2446
2447         if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2448                 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2449
2450         n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2451                    ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2452
2453         if (n_descs != rx_queue->scatter_n + 1) {
2454                 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2455
2456                 /* detect rx abort */
2457                 if (unlikely(n_descs == rx_queue->scatter_n)) {
2458                         if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2459                                 netdev_WARN(efx->net_dev,
2460                                             "invalid RX abort: scatter_n=%u event="
2461                                             EFX_QWORD_FMT "\n",
2462                                             rx_queue->scatter_n,
2463                                             EFX_QWORD_VAL(*event));
2464                         efx_ef10_handle_rx_abort(rx_queue);
2465                         return 0;
2466                 }
2467
2468                 /* Check that RX completion merging is valid, i.e.
2469                  * the current firmware supports it and this is a
2470                  * non-scattered packet.
2471                  */
2472                 if (!(nic_data->datapath_caps &
2473                       (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2474                     rx_queue->scatter_n != 0 || rx_cont) {
2475                         efx_ef10_handle_rx_bad_lbits(
2476                                 rx_queue, next_ptr_lbits,
2477                                 (rx_queue->removed_count +
2478                                  rx_queue->scatter_n + 1) &
2479                                 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2480                         return 0;
2481                 }
2482
2483                 /* Merged completion for multiple non-scattered packets */
2484                 rx_queue->scatter_n = 1;
2485                 rx_queue->scatter_len = 0;
2486                 n_packets = n_descs;
2487                 ++channel->n_rx_merge_events;
2488                 channel->n_rx_merge_packets += n_packets;
2489                 flags |= EFX_RX_PKT_PREFIX_LEN;
2490         } else {
2491                 ++rx_queue->scatter_n;
2492                 rx_queue->scatter_len += rx_bytes;
2493                 if (rx_cont)
2494                         return 0;
2495                 n_packets = 1;
2496         }
2497
2498         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
2499                 flags |= EFX_RX_PKT_DISCARD;
2500
2501         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
2502                 channel->n_rx_ip_hdr_chksum_err += n_packets;
2503         } else if (unlikely(EFX_QWORD_FIELD(*event,
2504                                             ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
2505                 channel->n_rx_tcp_udp_chksum_err += n_packets;
2506         } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
2507                    rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
2508                 flags |= EFX_RX_PKT_CSUMMED;
2509         }
2510
2511         if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
2512                 flags |= EFX_RX_PKT_TCP;
2513
2514         channel->irq_mod_score += 2 * n_packets;
2515
2516         /* Handle received packet(s) */
2517         for (i = 0; i < n_packets; i++) {
2518                 efx_rx_packet(rx_queue,
2519                               rx_queue->removed_count & rx_queue->ptr_mask,
2520                               rx_queue->scatter_n, rx_queue->scatter_len,
2521                               flags);
2522                 rx_queue->removed_count += rx_queue->scatter_n;
2523         }
2524
2525         rx_queue->scatter_n = 0;
2526         rx_queue->scatter_len = 0;
2527
2528         return n_packets;
2529 }
2530
2531 static int
2532 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2533 {
2534         struct efx_nic *efx = channel->efx;
2535         struct efx_tx_queue *tx_queue;
2536         unsigned int tx_ev_desc_ptr;
2537         unsigned int tx_ev_q_label;
2538         int tx_descs = 0;
2539
2540         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
2541                 return 0;
2542
2543         if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2544                 return 0;
2545
2546         /* Transmit completion */
2547         tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2548         tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2549         tx_queue = efx_channel_get_tx_queue(channel,
2550                                             tx_ev_q_label % EFX_TXQ_TYPES);
2551         tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
2552                     tx_queue->ptr_mask);
2553         efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2554
2555         return tx_descs;
2556 }
2557
2558 static void
2559 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2560 {
2561         struct efx_nic *efx = channel->efx;
2562         int subcode;
2563
2564         subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2565
2566         switch (subcode) {
2567         case ESE_DZ_DRV_TIMER_EV:
2568         case ESE_DZ_DRV_WAKE_UP_EV:
2569                 break;
2570         case ESE_DZ_DRV_START_UP_EV:
2571                 /* event queue init complete. ok. */
2572                 break;
2573         default:
2574                 netif_err(efx, hw, efx->net_dev,
2575                           "channel %d unknown driver event type %d"
2576                           " (data " EFX_QWORD_FMT ")\n",
2577                           channel->channel, subcode,
2578                           EFX_QWORD_VAL(*event));
2579
2580         }
2581 }
2582
2583 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2584                                                    efx_qword_t *event)
2585 {
2586         struct efx_nic *efx = channel->efx;
2587         u32 subcode;
2588
2589         subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2590
2591         switch (subcode) {
2592         case EFX_EF10_TEST:
2593                 channel->event_test_cpu = raw_smp_processor_id();
2594                 break;
2595         case EFX_EF10_REFILL:
2596                 /* The queue must be empty, so we won't receive any rx
2597                  * events, so efx_process_channel() won't refill the
2598                  * queue. Refill it here
2599                  */
2600                 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2601                 break;
2602         default:
2603                 netif_err(efx, hw, efx->net_dev,
2604                           "channel %d unknown driver event type %u"
2605                           " (data " EFX_QWORD_FMT ")\n",
2606                           channel->channel, (unsigned) subcode,
2607                           EFX_QWORD_VAL(*event));
2608         }
2609 }
2610
2611 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2612 {
2613         struct efx_nic *efx = channel->efx;
2614         efx_qword_t event, *p_event;
2615         unsigned int read_ptr;
2616         int ev_code;
2617         int tx_descs = 0;
2618         int spent = 0;
2619
2620         if (quota <= 0)
2621                 return spent;
2622
2623         read_ptr = channel->eventq_read_ptr;
2624
2625         for (;;) {
2626                 p_event = efx_event(channel, read_ptr);
2627                 event = *p_event;
2628
2629                 if (!efx_event_present(&event))
2630                         break;
2631
2632                 EFX_SET_QWORD(*p_event);
2633
2634                 ++read_ptr;
2635
2636                 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
2637
2638                 netif_vdbg(efx, drv, efx->net_dev,
2639                            "processing event on %d " EFX_QWORD_FMT "\n",
2640                            channel->channel, EFX_QWORD_VAL(event));
2641
2642                 switch (ev_code) {
2643                 case ESE_DZ_EV_CODE_MCDI_EV:
2644                         efx_mcdi_process_event(channel, &event);
2645                         break;
2646                 case ESE_DZ_EV_CODE_RX_EV:
2647                         spent += efx_ef10_handle_rx_event(channel, &event);
2648                         if (spent >= quota) {
2649                                 /* XXX can we split a merged event to
2650                                  * avoid going over-quota?
2651                                  */
2652                                 spent = quota;
2653                                 goto out;
2654                         }
2655                         break;
2656                 case ESE_DZ_EV_CODE_TX_EV:
2657                         tx_descs += efx_ef10_handle_tx_event(channel, &event);
2658                         if (tx_descs > efx->txq_entries) {
2659                                 spent = quota;
2660                                 goto out;
2661                         } else if (++spent == quota) {
2662                                 goto out;
2663                         }
2664                         break;
2665                 case ESE_DZ_EV_CODE_DRIVER_EV:
2666                         efx_ef10_handle_driver_event(channel, &event);
2667                         if (++spent == quota)
2668                                 goto out;
2669                         break;
2670                 case EFX_EF10_DRVGEN_EV:
2671                         efx_ef10_handle_driver_generated_event(channel, &event);
2672                         break;
2673                 default:
2674                         netif_err(efx, hw, efx->net_dev,
2675                                   "channel %d unknown event type %d"
2676                                   " (data " EFX_QWORD_FMT ")\n",
2677                                   channel->channel, ev_code,
2678                                   EFX_QWORD_VAL(event));
2679                 }
2680         }
2681
2682 out:
2683         channel->eventq_read_ptr = read_ptr;
2684         return spent;
2685 }
2686
2687 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2688 {
2689         struct efx_nic *efx = channel->efx;
2690         efx_dword_t rptr;
2691
2692         if (EFX_EF10_WORKAROUND_35388(efx)) {
2693                 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2694                              (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2695                 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2696                              (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2697
2698                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2699                                      EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2700                                      ERF_DD_EVQ_IND_RPTR,
2701                                      (channel->eventq_read_ptr &
2702                                       channel->eventq_mask) >>
2703                                      ERF_DD_EVQ_IND_RPTR_WIDTH);
2704                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2705                                 channel->channel);
2706                 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2707                                      EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2708                                      ERF_DD_EVQ_IND_RPTR,
2709                                      channel->eventq_read_ptr &
2710                                      ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2711                 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2712                                 channel->channel);
2713         } else {
2714                 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2715                                      channel->eventq_read_ptr &
2716                                      channel->eventq_mask);
2717                 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2718         }
2719 }
2720
2721 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2722 {
2723         MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2724         struct efx_nic *efx = channel->efx;
2725         efx_qword_t event;
2726         int rc;
2727
2728         EFX_POPULATE_QWORD_2(event,
2729                              ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2730                              ESF_DZ_EV_DATA, EFX_EF10_TEST);
2731
2732         MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2733
2734         /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2735          * already swapped the data to little-endian order.
2736          */
2737         memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2738                sizeof(efx_qword_t));
2739
2740         rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2741                           NULL, 0, NULL);
2742         if (rc != 0)
2743                 goto fail;
2744
2745         return;
2746
2747 fail:
2748         WARN_ON(true);
2749         netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2750 }
2751
2752 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2753 {
2754         if (atomic_dec_and_test(&efx->active_queues))
2755                 wake_up(&efx->flush_wq);
2756
2757         WARN_ON(atomic_read(&efx->active_queues) < 0);
2758 }
2759
2760 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2761 {
2762         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2763         struct efx_channel *channel;
2764         struct efx_tx_queue *tx_queue;
2765         struct efx_rx_queue *rx_queue;
2766         int pending;
2767
2768         /* If the MC has just rebooted, the TX/RX queues will have already been
2769          * torn down, but efx->active_queues needs to be set to zero.
2770          */
2771         if (nic_data->must_realloc_vis) {
2772                 atomic_set(&efx->active_queues, 0);
2773                 return 0;
2774         }
2775
2776         /* Do not attempt to write to the NIC during EEH recovery */
2777         if (efx->state != STATE_RECOVERY) {
2778                 efx_for_each_channel(channel, efx) {
2779                         efx_for_each_channel_rx_queue(rx_queue, channel)
2780                                 efx_ef10_rx_fini(rx_queue);
2781                         efx_for_each_channel_tx_queue(tx_queue, channel)
2782                                 efx_ef10_tx_fini(tx_queue);
2783                 }
2784
2785                 wait_event_timeout(efx->flush_wq,
2786                                    atomic_read(&efx->active_queues) == 0,
2787                                    msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2788                 pending = atomic_read(&efx->active_queues);
2789                 if (pending) {
2790                         netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2791                                   pending);
2792                         return -ETIMEDOUT;
2793                 }
2794         }
2795
2796         return 0;
2797 }
2798
2799 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2800 {
2801         atomic_set(&efx->active_queues, 0);
2802 }
2803
2804 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2805                                   const struct efx_filter_spec *right)
2806 {
2807         if ((left->match_flags ^ right->match_flags) |
2808             ((left->flags ^ right->flags) &
2809              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2810                 return false;
2811
2812         return memcmp(&left->outer_vid, &right->outer_vid,
2813                       sizeof(struct efx_filter_spec) -
2814                       offsetof(struct efx_filter_spec, outer_vid)) == 0;
2815 }
2816
2817 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2818 {
2819         BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2820         return jhash2((const u32 *)&spec->outer_vid,
2821                       (sizeof(struct efx_filter_spec) -
2822                        offsetof(struct efx_filter_spec, outer_vid)) / 4,
2823                       0);
2824         /* XXX should we randomise the initval? */
2825 }
2826
2827 /* Decide whether a filter should be exclusive or else should allow
2828  * delivery to additional recipients.  Currently we decide that
2829  * filters for specific local unicast MAC and IP addresses are
2830  * exclusive.
2831  */
2832 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2833 {
2834         if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2835             !is_multicast_ether_addr(spec->loc_mac))
2836                 return true;
2837
2838         if ((spec->match_flags &
2839              (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2840             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2841                 if (spec->ether_type == htons(ETH_P_IP) &&
2842                     !ipv4_is_multicast(spec->loc_host[0]))
2843                         return true;
2844                 if (spec->ether_type == htons(ETH_P_IPV6) &&
2845                     ((const u8 *)spec->loc_host)[0] != 0xff)
2846                         return true;
2847         }
2848
2849         return false;
2850 }
2851
2852 static struct efx_filter_spec *
2853 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2854                            unsigned int filter_idx)
2855 {
2856         return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2857                                           ~EFX_EF10_FILTER_FLAGS);
2858 }
2859
2860 static unsigned int
2861 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2862                            unsigned int filter_idx)
2863 {
2864         return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2865 }
2866
2867 static void
2868 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2869                           unsigned int filter_idx,
2870                           const struct efx_filter_spec *spec,
2871                           unsigned int flags)
2872 {
2873         table->entry[filter_idx].spec = (unsigned long)spec | flags;
2874 }
2875
2876 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2877                                       const struct efx_filter_spec *spec,
2878                                       efx_dword_t *inbuf, u64 handle,
2879                                       bool replacing)
2880 {
2881         struct efx_ef10_nic_data *nic_data = efx->nic_data;
2882
2883         memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2884
2885         if (replacing) {
2886                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2887                                MC_CMD_FILTER_OP_IN_OP_REPLACE);
2888                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2889         } else {
2890                 u32 match_fields = 0;
2891
2892                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2893                                efx_ef10_filter_is_exclusive(spec) ?
2894                                MC_CMD_FILTER_OP_IN_OP_INSERT :
2895                                MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2896
2897                 /* Convert match flags and values.  Unlike almost
2898                  * everything else in MCDI, these fields are in
2899                  * network byte order.
2900                  */
2901                 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2902                         match_fields |=
2903                                 is_multicast_ether_addr(spec->loc_mac) ?
2904                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2905                                 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2906 #define COPY_FIELD(gen_flag, gen_field, mcdi_field)                          \
2907                 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2908                         match_fields |=                                      \
2909                                 1 << MC_CMD_FILTER_OP_IN_MATCH_ ##           \
2910                                 mcdi_field ## _LBN;                          \
2911                         BUILD_BUG_ON(                                        \
2912                                 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2913                                 sizeof(spec->gen_field));                    \
2914                         memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2915                                &spec->gen_field, sizeof(spec->gen_field));   \
2916                 }
2917                 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2918                 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2919                 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2920                 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2921                 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2922                 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2923                 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2924                 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2925                 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2926                 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2927 #undef COPY_FIELD
2928                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2929                                match_fields);
2930         }
2931
2932         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
2933         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2934                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2935                        MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2936                        MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2937         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
2938         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2939                        MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2940         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2941                        spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2942                        0 : spec->dmaq_id);
2943         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2944                        (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2945                        MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2946                        MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2947         if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2948                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2949                                spec->rss_context !=
2950                                EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2951                                spec->rss_context : nic_data->rx_rss_context);
2952 }
2953
2954 static int efx_ef10_filter_push(struct efx_nic *efx,
2955                                 const struct efx_filter_spec *spec,
2956                                 u64 *handle, bool replacing)
2957 {
2958         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2959         MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2960         int rc;
2961
2962         efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2963         rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2964                           outbuf, sizeof(outbuf), NULL);
2965         if (rc == 0)
2966                 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2967         if (rc == -ENOSPC)
2968                 rc = -EBUSY; /* to match efx_farch_filter_insert() */
2969         return rc;
2970 }
2971
2972 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2973                                         enum efx_filter_match_flags match_flags)
2974 {
2975         unsigned int match_pri;
2976
2977         for (match_pri = 0;
2978              match_pri < table->rx_match_count;
2979              match_pri++)
2980                 if (table->rx_match_flags[match_pri] == match_flags)
2981                         return match_pri;
2982
2983         return -EPROTONOSUPPORT;
2984 }
2985
2986 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2987                                   struct efx_filter_spec *spec,
2988                                   bool replace_equal)
2989 {
2990         struct efx_ef10_filter_table *table = efx->filter_state;
2991         DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2992         struct efx_filter_spec *saved_spec;
2993         unsigned int match_pri, hash;
2994         unsigned int priv_flags;
2995         bool replacing = false;
2996         int ins_index = -1;
2997         DEFINE_WAIT(wait);
2998         bool is_mc_recip;
2999         s32 rc;
3000
3001         /* For now, only support RX filters */
3002         if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
3003             EFX_FILTER_FLAG_RX)
3004                 return -EINVAL;
3005
3006         rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
3007         if (rc < 0)
3008                 return rc;
3009         match_pri = rc;
3010
3011         hash = efx_ef10_filter_hash(spec);
3012         is_mc_recip = efx_filter_is_mc_recipient(spec);
3013         if (is_mc_recip)
3014                 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
3015
3016         /* Find any existing filters with the same match tuple or
3017          * else a free slot to insert at.  If any of them are busy,
3018          * we have to wait and retry.
3019          */
3020         for (;;) {
3021                 unsigned int depth = 1;
3022                 unsigned int i;
3023
3024                 spin_lock_bh(&efx->filter_lock);
3025
3026                 for (;;) {
3027                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3028                         saved_spec = efx_ef10_filter_entry_spec(table, i);
3029
3030                         if (!saved_spec) {
3031                                 if (ins_index < 0)
3032                                         ins_index = i;
3033                         } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3034                                 if (table->entry[i].spec &
3035                                     EFX_EF10_FILTER_FLAG_BUSY)
3036                                         break;
3037                                 if (spec->priority < saved_spec->priority &&
3038                                     spec->priority != EFX_FILTER_PRI_AUTO) {
3039                                         rc = -EPERM;
3040                                         goto out_unlock;
3041                                 }
3042                                 if (!is_mc_recip) {
3043                                         /* This is the only one */
3044                                         if (spec->priority ==
3045                                             saved_spec->priority &&
3046                                             !replace_equal) {
3047                                                 rc = -EEXIST;
3048                                                 goto out_unlock;
3049                                         }
3050                                         ins_index = i;
3051                                         goto found;
3052                                 } else if (spec->priority >
3053                                            saved_spec->priority ||
3054                                            (spec->priority ==
3055                                             saved_spec->priority &&
3056                                             replace_equal)) {
3057                                         if (ins_index < 0)
3058                                                 ins_index = i;
3059                                         else
3060                                                 __set_bit(depth, mc_rem_map);
3061                                 }
3062                         }
3063
3064                         /* Once we reach the maximum search depth, use
3065                          * the first suitable slot or return -EBUSY if
3066                          * there was none
3067                          */
3068                         if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3069                                 if (ins_index < 0) {
3070                                         rc = -EBUSY;
3071                                         goto out_unlock;
3072                                 }
3073                                 goto found;
3074                         }
3075
3076                         ++depth;
3077                 }
3078
3079                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3080                 spin_unlock_bh(&efx->filter_lock);
3081                 schedule();
3082         }
3083
3084 found:
3085         /* Create a software table entry if necessary, and mark it
3086          * busy.  We might yet fail to insert, but any attempt to
3087          * insert a conflicting filter while we're waiting for the
3088          * firmware must find the busy entry.
3089          */
3090         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3091         if (saved_spec) {
3092                 if (spec->priority == EFX_FILTER_PRI_AUTO &&
3093                     saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3094                         /* Just make sure it won't be removed */
3095                         if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
3096                                 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3097                         table->entry[ins_index].spec &=
3098                                 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3099                         rc = ins_index;
3100                         goto out_unlock;
3101                 }
3102                 replacing = true;
3103                 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
3104         } else {
3105                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3106                 if (!saved_spec) {
3107                         rc = -ENOMEM;
3108                         goto out_unlock;
3109                 }
3110                 *saved_spec = *spec;
3111                 priv_flags = 0;
3112         }
3113         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3114                                   priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
3115
3116         /* Mark lower-priority multicast recipients busy prior to removal */
3117         if (is_mc_recip) {
3118                 unsigned int depth, i;
3119
3120                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3121                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3122                         if (test_bit(depth, mc_rem_map))
3123                                 table->entry[i].spec |=
3124                                         EFX_EF10_FILTER_FLAG_BUSY;
3125                 }
3126         }
3127
3128         spin_unlock_bh(&efx->filter_lock);
3129
3130         rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
3131                                   replacing);
3132
3133         /* Finalise the software table entry */
3134         spin_lock_bh(&efx->filter_lock);
3135         if (rc == 0) {
3136                 if (replacing) {
3137                         /* Update the fields that may differ */
3138                         if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
3139                                 saved_spec->flags |=
3140                                         EFX_FILTER_FLAG_RX_OVER_AUTO;
3141                         saved_spec->priority = spec->priority;
3142                         saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3143                         saved_spec->flags |= spec->flags;
3144                         saved_spec->rss_context = spec->rss_context;
3145                         saved_spec->dmaq_id = spec->dmaq_id;
3146                 }
3147         } else if (!replacing) {
3148                 kfree(saved_spec);
3149                 saved_spec = NULL;
3150         }
3151         efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
3152
3153         /* Remove and finalise entries for lower-priority multicast
3154          * recipients
3155          */
3156         if (is_mc_recip) {
3157                 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3158                 unsigned int depth, i;
3159
3160                 memset(inbuf, 0, sizeof(inbuf));
3161
3162                 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
3163                         if (!test_bit(depth, mc_rem_map))
3164                                 continue;
3165
3166                         i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3167                         saved_spec = efx_ef10_filter_entry_spec(table, i);
3168                         priv_flags = efx_ef10_filter_entry_flags(table, i);
3169
3170                         if (rc == 0) {
3171                                 spin_unlock_bh(&efx->filter_lock);
3172                                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3173                                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3174                                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3175                                                table->entry[i].handle);
3176                                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3177                                                   inbuf, sizeof(inbuf),
3178                                                   NULL, 0, NULL);
3179                                 spin_lock_bh(&efx->filter_lock);
3180                         }
3181
3182                         if (rc == 0) {
3183                                 kfree(saved_spec);
3184                                 saved_spec = NULL;
3185                                 priv_flags = 0;
3186                         } else {
3187                                 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
3188                         }
3189                         efx_ef10_filter_set_entry(table, i, saved_spec,
3190                                                   priv_flags);
3191                 }
3192         }
3193
3194         /* If successful, return the inserted filter ID */
3195         if (rc == 0)
3196                 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
3197
3198         wake_up_all(&table->waitq);
3199 out_unlock:
3200         spin_unlock_bh(&efx->filter_lock);
3201         finish_wait(&table->waitq, &wait);
3202         return rc;
3203 }
3204
3205 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3206 {
3207         /* no need to do anything here on EF10 */
3208 }
3209
3210 /* Remove a filter.
3211  * If !by_index, remove by ID
3212  * If by_index, remove by index
3213  * Filter ID may come from userland and must be range-checked.
3214  */
3215 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3216                                            unsigned int priority_mask,
3217                                            u32 filter_id, bool by_index)
3218 {
3219         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3220         struct efx_ef10_filter_table *table = efx->filter_state;
3221         MCDI_DECLARE_BUF(inbuf,
3222                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3223                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3224         struct efx_filter_spec *spec;
3225         DEFINE_WAIT(wait);
3226         int rc;
3227
3228         /* Find the software table entry and mark it busy.  Don't
3229          * remove it yet; any attempt to update while we're waiting
3230          * for the firmware must find the busy entry.
3231          */
3232         for (;;) {
3233                 spin_lock_bh(&efx->filter_lock);
3234                 if (!(table->entry[filter_idx].spec &
3235                       EFX_EF10_FILTER_FLAG_BUSY))
3236                         break;
3237                 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
3238                 spin_unlock_bh(&efx->filter_lock);
3239                 schedule();
3240         }
3241
3242         spec = efx_ef10_filter_entry_spec(table, filter_idx);
3243         if (!spec ||
3244             (!by_index &&
3245              efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
3246              filter_id / HUNT_FILTER_TBL_ROWS)) {
3247                 rc = -ENOENT;
3248                 goto out_unlock;
3249         }
3250
3251         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3252             priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3253                 /* Just remove flags */
3254                 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3255                 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3256                 rc = 0;
3257                 goto out_unlock;
3258         }
3259
3260         if (!(priority_mask & (1U << spec->priority))) {
3261                 rc = -ENOENT;
3262                 goto out_unlock;
3263         }
3264
3265         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3266         spin_unlock_bh(&efx->filter_lock);
3267
3268         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3269                 /* Reset to an automatic filter */
3270
3271                 struct efx_filter_spec new_spec = *spec;
3272
3273                 new_spec.priority = EFX_FILTER_PRI_AUTO;
3274                 new_spec.flags = (EFX_FILTER_FLAG_RX |
3275                                   EFX_FILTER_FLAG_RX_RSS);
3276                 new_spec.dmaq_id = 0;
3277                 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
3278                 rc = efx_ef10_filter_push(efx, &new_spec,
3279                                           &table->entry[filter_idx].handle,
3280                                           true);
3281
3282                 spin_lock_bh(&efx->filter_lock);
3283                 if (rc == 0)
3284                         *spec = new_spec;
3285         } else {
3286                 /* Really remove the filter */
3287
3288                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3289                                efx_ef10_filter_is_exclusive(spec) ?
3290                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
3291                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3292                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3293                                table->entry[filter_idx].handle);
3294                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
3295                                   inbuf, sizeof(inbuf), NULL, 0, NULL);
3296
3297                 spin_lock_bh(&efx->filter_lock);
3298                 if (rc == 0) {
3299                         kfree(spec);
3300                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3301                 }
3302         }
3303
3304         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3305         wake_up_all(&table->waitq);
3306 out_unlock:
3307         spin_unlock_bh(&efx->filter_lock);
3308         finish_wait(&table->waitq, &wait);
3309         return rc;
3310 }
3311
3312 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
3313                                        enum efx_filter_priority priority,
3314                                        u32 filter_id)
3315 {
3316         return efx_ef10_filter_remove_internal(efx, 1U << priority,
3317                                                filter_id, false);
3318 }
3319
3320 static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
3321 {
3322         return filter_id % HUNT_FILTER_TBL_ROWS;
3323 }
3324
3325 static int efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
3326                                          enum efx_filter_priority priority,
3327                                          u32 filter_id)
3328 {
3329         return efx_ef10_filter_remove_internal(efx, 1U << priority,
3330                                                filter_id, true);
3331 }
3332
3333 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
3334                                     enum efx_filter_priority priority,
3335                                     u32 filter_id, struct efx_filter_spec *spec)
3336 {
3337         unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
3338         struct efx_ef10_filter_table *table = efx->filter_state;
3339         const struct efx_filter_spec *saved_spec;
3340         int rc;
3341
3342         spin_lock_bh(&efx->filter_lock);
3343         saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
3344         if (saved_spec && saved_spec->priority == priority &&
3345             efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
3346             filter_id / HUNT_FILTER_TBL_ROWS) {
3347                 *spec = *saved_spec;
3348                 rc = 0;
3349         } else {
3350                 rc = -ENOENT;
3351         }
3352         spin_unlock_bh(&efx->filter_lock);
3353         return rc;
3354 }
3355
3356 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3357                                      enum efx_filter_priority priority)
3358 {
3359         unsigned int priority_mask;
3360         unsigned int i;
3361         int rc;
3362
3363         priority_mask = (((1U << (priority + 1)) - 1) &
3364                          ~(1U << EFX_FILTER_PRI_AUTO));
3365
3366         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3367                 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
3368                                                      i, true);
3369                 if (rc && rc != -ENOENT)
3370                         return rc;
3371         }
3372
3373         return 0;
3374 }
3375
3376 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
3377                                          enum efx_filter_priority priority)
3378 {
3379         struct efx_ef10_filter_table *table = efx->filter_state;
3380         unsigned int filter_idx;
3381         s32 count = 0;
3382
3383         spin_lock_bh(&efx->filter_lock);
3384         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3385                 if (table->entry[filter_idx].spec &&
3386                     efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
3387                     priority)
3388                         ++count;
3389         }
3390         spin_unlock_bh(&efx->filter_lock);
3391         return count;
3392 }
3393
3394 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
3395 {
3396         struct efx_ef10_filter_table *table = efx->filter_state;
3397
3398         return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
3399 }
3400
3401 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
3402                                       enum efx_filter_priority priority,
3403                                       u32 *buf, u32 size)
3404 {
3405         struct efx_ef10_filter_table *table = efx->filter_state;
3406         struct efx_filter_spec *spec;
3407         unsigned int filter_idx;
3408         s32 count = 0;
3409
3410         spin_lock_bh(&efx->filter_lock);
3411         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3412                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3413                 if (spec && spec->priority == priority) {
3414                         if (count == size) {
3415                                 count = -EMSGSIZE;
3416                                 break;
3417                         }
3418                         buf[count++] = (efx_ef10_filter_rx_match_pri(
3419                                                 table, spec->match_flags) *
3420                                         HUNT_FILTER_TBL_ROWS +
3421                                         filter_idx);
3422                 }
3423         }
3424         spin_unlock_bh(&efx->filter_lock);
3425         return count;
3426 }
3427
3428 #ifdef CONFIG_RFS_ACCEL
3429
3430 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
3431
3432 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
3433                                       struct efx_filter_spec *spec)
3434 {
3435         struct efx_ef10_filter_table *table = efx->filter_state;
3436         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3437         struct efx_filter_spec *saved_spec;
3438         unsigned int hash, i, depth = 1;
3439         bool replacing = false;
3440         int ins_index = -1;
3441         u64 cookie;
3442         s32 rc;
3443
3444         /* Must be an RX filter without RSS and not for a multicast
3445          * destination address (RFS only works for connected sockets).
3446          * These restrictions allow us to pass only a tiny amount of
3447          * data through to the completion function.
3448          */
3449         EFX_WARN_ON_PARANOID(spec->flags !=
3450                              (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
3451         EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
3452         EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
3453
3454         hash = efx_ef10_filter_hash(spec);
3455
3456         spin_lock_bh(&efx->filter_lock);
3457
3458         /* Find any existing filter with the same match tuple or else
3459          * a free slot to insert at.  If an existing filter is busy,
3460          * we have to give up.
3461          */
3462         for (;;) {
3463                 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
3464                 saved_spec = efx_ef10_filter_entry_spec(table, i);
3465
3466                 if (!saved_spec) {
3467                         if (ins_index < 0)
3468                                 ins_index = i;
3469                 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
3470                         if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
3471                                 rc = -EBUSY;
3472                                 goto fail_unlock;
3473                         }
3474                         if (spec->priority < saved_spec->priority) {
3475                                 rc = -EPERM;
3476                                 goto fail_unlock;
3477                         }
3478                         ins_index = i;
3479                         break;
3480                 }
3481
3482                 /* Once we reach the maximum search depth, use the
3483                  * first suitable slot or return -EBUSY if there was
3484                  * none
3485                  */
3486                 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
3487                         if (ins_index < 0) {
3488                                 rc = -EBUSY;
3489                                 goto fail_unlock;
3490                         }
3491                         break;
3492                 }
3493
3494                 ++depth;
3495         }
3496
3497         /* Create a software table entry if necessary, and mark it
3498          * busy.  We might yet fail to insert, but any attempt to
3499          * insert a conflicting filter while we're waiting for the
3500          * firmware must find the busy entry.
3501          */
3502         saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
3503         if (saved_spec) {
3504                 replacing = true;
3505         } else {
3506                 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
3507                 if (!saved_spec) {
3508                         rc = -ENOMEM;
3509                         goto fail_unlock;
3510                 }
3511                 *saved_spec = *spec;
3512         }
3513         efx_ef10_filter_set_entry(table, ins_index, saved_spec,
3514                                   EFX_EF10_FILTER_FLAG_BUSY);
3515
3516         spin_unlock_bh(&efx->filter_lock);
3517
3518         /* Pack up the variables needed on completion */
3519         cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
3520
3521         efx_ef10_filter_push_prep(efx, spec, inbuf,
3522                                   table->entry[ins_index].handle, replacing);
3523         efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3524                            MC_CMD_FILTER_OP_OUT_LEN,
3525                            efx_ef10_filter_rfs_insert_complete, cookie);
3526
3527         return ins_index;
3528
3529 fail_unlock:
3530         spin_unlock_bh(&efx->filter_lock);
3531         return rc;
3532 }
3533
3534 static void
3535 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
3536                                     int rc, efx_dword_t *outbuf,
3537                                     size_t outlen_actual)
3538 {
3539         struct efx_ef10_filter_table *table = efx->filter_state;
3540         unsigned int ins_index, dmaq_id;
3541         struct efx_filter_spec *spec;
3542         bool replacing;
3543
3544         /* Unpack the cookie */
3545         replacing = cookie >> 31;
3546         ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
3547         dmaq_id = cookie & 0xffff;
3548
3549         spin_lock_bh(&efx->filter_lock);
3550         spec = efx_ef10_filter_entry_spec(table, ins_index);
3551         if (rc == 0) {
3552                 table->entry[ins_index].handle =
3553                         MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3554                 if (replacing)
3555                         spec->dmaq_id = dmaq_id;
3556         } else if (!replacing) {
3557                 kfree(spec);
3558                 spec = NULL;
3559         }
3560         efx_ef10_filter_set_entry(table, ins_index, spec, 0);
3561         spin_unlock_bh(&efx->filter_lock);
3562
3563         wake_up_all(&table->waitq);
3564 }
3565
3566 static void
3567 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3568                                     unsigned long filter_idx,
3569                                     int rc, efx_dword_t *outbuf,
3570                                     size_t outlen_actual);
3571
3572 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
3573                                            unsigned int filter_idx)
3574 {
3575         struct efx_ef10_filter_table *table = efx->filter_state;
3576         struct efx_filter_spec *spec =
3577                 efx_ef10_filter_entry_spec(table, filter_idx);
3578         MCDI_DECLARE_BUF(inbuf,
3579                          MC_CMD_FILTER_OP_IN_HANDLE_OFST +
3580                          MC_CMD_FILTER_OP_IN_HANDLE_LEN);
3581
3582         if (!spec ||
3583             (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
3584             spec->priority != EFX_FILTER_PRI_HINT ||
3585             !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
3586                                  flow_id, filter_idx))
3587                 return false;
3588
3589         MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3590                        MC_CMD_FILTER_OP_IN_OP_REMOVE);
3591         MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3592                        table->entry[filter_idx].handle);
3593         if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
3594                                efx_ef10_filter_rfs_expire_complete, filter_idx))
3595                 return false;
3596
3597         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3598         return true;
3599 }
3600
3601 static void
3602 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
3603                                     unsigned long filter_idx,
3604                                     int rc, efx_dword_t *outbuf,
3605                                     size_t outlen_actual)
3606 {
3607         struct efx_ef10_filter_table *table = efx->filter_state;
3608         struct efx_filter_spec *spec =
3609                 efx_ef10_filter_entry_spec(table, filter_idx);
3610
3611         spin_lock_bh(&efx->filter_lock);
3612         if (rc == 0) {
3613                 kfree(spec);
3614                 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3615         }
3616         table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
3617         wake_up_all(&table->waitq);
3618         spin_unlock_bh(&efx->filter_lock);
3619 }
3620
3621 #endif /* CONFIG_RFS_ACCEL */
3622
3623 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
3624 {
3625         int match_flags = 0;
3626
3627 #define MAP_FLAG(gen_flag, mcdi_field) {                                \
3628                 u32 old_mcdi_flags = mcdi_flags;                        \
3629                 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##      \
3630                                 mcdi_field ## _LBN);                    \
3631                 if (mcdi_flags != old_mcdi_flags)                       \
3632                         match_flags |= EFX_FILTER_MATCH_ ## gen_flag;   \
3633         }
3634         MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
3635         MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
3636         MAP_FLAG(REM_HOST, SRC_IP);
3637         MAP_FLAG(LOC_HOST, DST_IP);
3638         MAP_FLAG(REM_MAC, SRC_MAC);
3639         MAP_FLAG(REM_PORT, SRC_PORT);
3640         MAP_FLAG(LOC_MAC, DST_MAC);
3641         MAP_FLAG(LOC_PORT, DST_PORT);
3642         MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
3643         MAP_FLAG(INNER_VID, INNER_VLAN);
3644         MAP_FLAG(OUTER_VID, OUTER_VLAN);
3645         MAP_FLAG(IP_PROTO, IP_PROTO);
3646 #undef MAP_FLAG
3647
3648         /* Did we map them all? */
3649         if (mcdi_flags)
3650                 return -EINVAL;
3651
3652         return match_flags;
3653 }
3654
3655 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3656 {
3657         MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3658         MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3659         unsigned int pd_match_pri, pd_match_count;
3660         struct efx_ef10_filter_table *table;
3661         size_t outlen;
3662         int rc;
3663
3664         table = kzalloc(sizeof(*table), GFP_KERNEL);
3665         if (!table)
3666                 return -ENOMEM;
3667
3668         /* Find out which RX filter types are supported, and their priorities */
3669         MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3670                        MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3671         rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3672                           inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3673                           &outlen);
3674         if (rc)
3675                 goto fail;
3676         pd_match_count = MCDI_VAR_ARRAY_LEN(
3677                 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3678         table->rx_match_count = 0;
3679
3680         for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3681                 u32 mcdi_flags =
3682                         MCDI_ARRAY_DWORD(
3683                                 outbuf,
3684                                 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3685                                 pd_match_pri);
3686                 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3687                 if (rc < 0) {
3688                         netif_dbg(efx, probe, efx->net_dev,
3689                                   "%s: fw flags %#x pri %u not supported in driver\n",
3690                                   __func__, mcdi_flags, pd_match_pri);
3691                 } else {
3692                         netif_dbg(efx, probe, efx->net_dev,
3693                                   "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3694                                   __func__, mcdi_flags, pd_match_pri,
3695                                   rc, table->rx_match_count);
3696                         table->rx_match_flags[table->rx_match_count++] = rc;
3697                 }
3698         }
3699
3700         table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3701         if (!table->entry) {
3702                 rc = -ENOMEM;
3703                 goto fail;
3704         }
3705
3706         table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3707         table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3708         table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3709
3710         efx->filter_state = table;
3711         init_waitqueue_head(&table->waitq);
3712         return 0;
3713
3714 fail:
3715         kfree(table);
3716         return rc;
3717 }
3718
3719 /* Caller must hold efx->filter_sem for read if race against
3720  * efx_ef10_filter_table_remove() is possible
3721  */
3722 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3723 {
3724         struct efx_ef10_filter_table *table = efx->filter_state;
3725         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3726         struct efx_filter_spec *spec;
3727         unsigned int filter_idx;
3728         bool failed = false;
3729         int rc;
3730
3731         WARN_ON(!rwsem_is_locked(&efx->filter_sem));
3732
3733         if (!nic_data->must_restore_filters)
3734                 return;
3735
3736         if (!table)
3737                 return;
3738
3739         spin_lock_bh(&efx->filter_lock);
3740
3741         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3742                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3743                 if (!spec)
3744                         continue;
3745
3746                 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3747                 spin_unlock_bh(&efx->filter_lock);
3748
3749                 rc = efx_ef10_filter_push(efx, spec,
3750                                           &table->entry[filter_idx].handle,
3751                                           false);
3752                 if (rc)
3753                         failed = true;
3754
3755                 spin_lock_bh(&efx->filter_lock);
3756                 if (rc) {
3757                         kfree(spec);
3758                         efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3759                 } else {
3760                         table->entry[filter_idx].spec &=
3761                                 ~EFX_EF10_FILTER_FLAG_BUSY;
3762                 }
3763         }
3764
3765         spin_unlock_bh(&efx->filter_lock);
3766
3767         if (failed)
3768                 netif_err(efx, hw, efx->net_dev,
3769                           "unable to restore all filters\n");
3770         else
3771                 nic_data->must_restore_filters = false;
3772 }
3773
3774 /* Caller must hold efx->filter_sem for write */
3775 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3776 {
3777         struct efx_ef10_filter_table *table = efx->filter_state;
3778         MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3779         struct efx_filter_spec *spec;
3780         unsigned int filter_idx;
3781         int rc;
3782
3783         efx->filter_state = NULL;
3784         if (!table)
3785                 return;
3786
3787         for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3788                 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3789                 if (!spec)
3790                         continue;
3791
3792                 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3793                                efx_ef10_filter_is_exclusive(spec) ?
3794                                MC_CMD_FILTER_OP_IN_OP_REMOVE :
3795                                MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3796                 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3797                                table->entry[filter_idx].handle);
3798                 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3799                                   NULL, 0, NULL);
3800                 if (rc)
3801                         netdev_WARN(efx->net_dev,
3802                                     "filter_idx=%#x handle=%#llx\n",
3803                                     filter_idx,
3804                                     table->entry[filter_idx].handle);
3805                 kfree(spec);
3806         }
3807
3808         vfree(table->entry);
3809         kfree(table);
3810 }
3811
3812 #define EFX_EF10_FILTER_DO_MARK_OLD(id) \
3813                 if (id != EFX_EF10_FILTER_ID_INVALID) { \
3814                         filter_idx = efx_ef10_filter_get_unsafe_id(efx, id); \
3815                         WARN_ON(!table->entry[filter_idx].spec); \
3816                         table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD; \
3817                 }
3818 static void efx_ef10_filter_mark_old(struct efx_nic *efx)
3819 {
3820         struct efx_ef10_filter_table *table = efx->filter_state;
3821         unsigned int filter_idx, i;
3822
3823         if (!table)
3824                 return;
3825
3826         /* Mark old filters that may need to be removed */
3827         spin_lock_bh(&efx->filter_lock);
3828         for (i = 0; i < table->dev_uc_count; i++)
3829                 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_uc_list[i].id);
3830         for (i = 0; i < table->dev_mc_count; i++)
3831                 EFX_EF10_FILTER_DO_MARK_OLD(table->dev_mc_list[i].id);
3832         EFX_EF10_FILTER_DO_MARK_OLD(table->ucdef_id);
3833         EFX_EF10_FILTER_DO_MARK_OLD(table->bcast_id);
3834         EFX_EF10_FILTER_DO_MARK_OLD(table->mcdef_id);
3835         spin_unlock_bh(&efx->filter_lock);
3836 }
3837 #undef EFX_EF10_FILTER_DO_MARK_OLD
3838
3839 static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx, bool *promisc)
3840 {
3841         struct efx_ef10_filter_table *table = efx->filter_state;
3842         struct net_device *net_dev = efx->net_dev;
3843         struct netdev_hw_addr *uc;
3844         int addr_count;
3845         unsigned int i;
3846
3847         table->ucdef_id = EFX_EF10_FILTER_ID_INVALID;
3848         addr_count = netdev_uc_count(net_dev);
3849         if (net_dev->flags & IFF_PROMISC)
3850                 *promisc = true;
3851         table->dev_uc_count = 1 + addr_count;
3852         ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3853         i = 1;
3854         netdev_for_each_uc_addr(uc, net_dev) {
3855                 if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
3856                         *promisc = true;
3857                         break;
3858                 }
3859                 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3860                 table->dev_uc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3861                 i++;
3862         }
3863 }
3864
3865 static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx, bool *promisc)
3866 {
3867         struct efx_ef10_filter_table *table = efx->filter_state;
3868         struct net_device *net_dev = efx->net_dev;
3869         struct netdev_hw_addr *mc;
3870         unsigned int i, addr_count;
3871
3872         table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
3873         table->bcast_id = EFX_EF10_FILTER_ID_INVALID;
3874         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI))
3875                 *promisc = true;
3876
3877         addr_count = netdev_mc_count(net_dev);
3878         i = 0;
3879         netdev_for_each_mc_addr(mc, net_dev) {
3880                 if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
3881                         *promisc = true;
3882                         break;
3883                 }
3884                 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3885                 table->dev_mc_list[i].id = EFX_EF10_FILTER_ID_INVALID;
3886                 i++;
3887         }
3888
3889         table->dev_mc_count = i;
3890 }
3891
3892 static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
3893                                              bool multicast, bool rollback)
3894 {
3895         struct efx_ef10_filter_table *table = efx->filter_state;
3896         struct efx_ef10_dev_addr *addr_list;
3897         struct efx_filter_spec spec;
3898         u8 baddr[ETH_ALEN];
3899         unsigned int i, j;
3900         int addr_count;
3901         int rc;
3902
3903         if (multicast) {
3904                 addr_list = table->dev_mc_list;
3905                 addr_count = table->dev_mc_count;
3906         } else {
3907                 addr_list = table->dev_uc_list;
3908                 addr_count = table->dev_uc_count;
3909         }
3910
3911         /* Insert/renew filters */
3912         for (i = 0; i < addr_count; i++) {
3913                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3914                                    EFX_FILTER_FLAG_RX_RSS,
3915                                    0);
3916                 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3917                                          addr_list[i].addr);
3918                 rc = efx_ef10_filter_insert(efx, &spec, true);
3919                 if (rc < 0) {
3920                         if (rollback) {
3921                                 netif_info(efx, drv, efx->net_dev,
3922                                            "efx_ef10_filter_insert failed rc=%d\n",
3923                                            rc);
3924                                 /* Fall back to promiscuous */
3925                                 for (j = 0; j < i; j++) {
3926                                         if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3927                                                 continue;
3928                                         efx_ef10_filter_remove_unsafe(
3929                                                 efx, EFX_FILTER_PRI_AUTO,
3930                                                 addr_list[j].id);
3931                                         addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
3932                                 }
3933                                 return rc;
3934                         } else {
3935                                 /* mark as not inserted, and carry on */
3936                                 rc = EFX_EF10_FILTER_ID_INVALID;
3937                         }
3938                 }
3939                 addr_list[i].id = efx_ef10_filter_get_unsafe_id(efx, rc);
3940         }
3941
3942         if (multicast && rollback) {
3943                 /* Also need an Ethernet broadcast filter */
3944                 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3945                                    EFX_FILTER_FLAG_RX_RSS,
3946                                    0);
3947                 eth_broadcast_addr(baddr);
3948                 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC, baddr);
3949                 rc = efx_ef10_filter_insert(efx, &spec, true);
3950                 if (rc < 0) {
3951                         netif_warn(efx, drv, efx->net_dev,
3952                                    "Broadcast filter insert failed rc=%d\n", rc);
3953                         /* Fall back to promiscuous */
3954                         for (j = 0; j < i; j++) {
3955                                 if (addr_list[j].id == EFX_EF10_FILTER_ID_INVALID)
3956                                         continue;
3957                                 efx_ef10_filter_remove_unsafe(
3958                                         efx, EFX_FILTER_PRI_AUTO,
3959                                         addr_list[j].id);
3960                                 addr_list[j].id = EFX_EF10_FILTER_ID_INVALID;
3961                         }
3962                         return rc;
3963                 } else {
3964                         table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
3965                 }
3966         }
3967
3968         return 0;
3969 }
3970
3971 static int efx_ef10_filter_insert_def(struct efx_nic *efx, bool multicast,
3972                                       bool rollback)
3973 {
3974         struct efx_ef10_filter_table *table = efx->filter_state;
3975         struct efx_ef10_nic_data *nic_data = efx->nic_data;
3976         struct efx_filter_spec spec;
3977         u8 baddr[ETH_ALEN];
3978         int rc;
3979
3980         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3981                            EFX_FILTER_FLAG_RX_RSS,
3982                            0);
3983
3984         if (multicast)
3985                 efx_filter_set_mc_def(&spec);
3986         else
3987                 efx_filter_set_uc_def(&spec);
3988
3989         rc = efx_ef10_filter_insert(efx, &spec, true);
3990         if (rc < 0) {
3991                 netif_warn(efx, drv, efx->net_dev,
3992                            "%scast mismatch filter insert failed rc=%d\n",
3993                            multicast ? "Multi" : "Uni", rc);
3994         } else if (multicast) {
3995                 table->mcdef_id = efx_ef10_filter_get_unsafe_id(efx, rc);
3996                 if (!nic_data->workaround_26807) {
3997                         /* Also need an Ethernet broadcast filter */
3998                         efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3999                                            EFX_FILTER_FLAG_RX_RSS,
4000                                            0);
4001                         eth_broadcast_addr(baddr);
4002                         efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
4003                                                  baddr);
4004                         rc = efx_ef10_filter_insert(efx, &spec, true);
4005                         if (rc < 0) {
4006                                 netif_warn(efx, drv, efx->net_dev,
4007                                            "Broadcast filter insert failed rc=%d\n",
4008                                            rc);
4009                                 if (rollback) {
4010                                         /* Roll back the mc_def filter */
4011                                         efx_ef10_filter_remove_unsafe(
4012                                                         efx, EFX_FILTER_PRI_AUTO,
4013                                                         table->mcdef_id);
4014                                         table->mcdef_id = EFX_EF10_FILTER_ID_INVALID;
4015                                         return rc;
4016                                 }
4017                         } else {
4018                                 table->bcast_id = efx_ef10_filter_get_unsafe_id(efx, rc);
4019                         }
4020                 }
4021                 rc = 0;
4022         } else {
4023                 table->ucdef_id = rc;
4024                 rc = 0;
4025         }
4026         return rc;
4027 }
4028
4029 /* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
4030  * flag or removes these filters, we don't need to hold the filter_lock while
4031  * scanning for these filters.
4032  */
4033 static void efx_ef10_filter_remove_old(struct efx_nic *efx)
4034 {
4035         struct efx_ef10_filter_table *table = efx->filter_state;
4036         bool remove_failed = false;
4037         int i;
4038
4039         for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
4040                 if (ACCESS_ONCE(table->entry[i].spec) &
4041                     EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4042                         if (efx_ef10_filter_remove_internal(
4043                                     efx, 1U << EFX_FILTER_PRI_AUTO,
4044                                     i, true) < 0)
4045                                 remove_failed = true;
4046                 }
4047         }
4048         WARN_ON(remove_failed);
4049 }
4050
4051 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
4052 {
4053         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4054         u8 mac_old[ETH_ALEN];
4055         int rc, rc2;
4056
4057         /* Only reconfigure a PF-created vport */
4058         if (is_zero_ether_addr(nic_data->vport_mac))
4059                 return 0;
4060
4061         efx_device_detach_sync(efx);
4062         efx_net_stop(efx->net_dev);
4063         down_write(&efx->filter_sem);
4064         efx_ef10_filter_table_remove(efx);
4065         up_write(&efx->filter_sem);
4066
4067         rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
4068         if (rc)
4069                 goto restore_filters;
4070
4071         ether_addr_copy(mac_old, nic_data->vport_mac);
4072         rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
4073                                     nic_data->vport_mac);
4074         if (rc)
4075                 goto restore_vadaptor;
4076
4077         rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
4078                                     efx->net_dev->dev_addr);
4079         if (!rc) {
4080                 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
4081         } else {
4082                 rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
4083                 if (rc2) {
4084                         /* Failed to add original MAC, so clear vport_mac */
4085                         eth_zero_addr(nic_data->vport_mac);
4086                         goto reset_nic;
4087                 }
4088         }
4089
4090 restore_vadaptor:
4091         rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
4092         if (rc2)
4093                 goto reset_nic;
4094 restore_filters:
4095         down_write(&efx->filter_sem);
4096         rc2 = efx_ef10_filter_table_probe(efx);
4097         up_write(&efx->filter_sem);
4098         if (rc2)
4099                 goto reset_nic;
4100
4101         rc2 = efx_net_open(efx->net_dev);
4102         if (rc2)
4103                 goto reset_nic;
4104
4105         netif_device_attach(efx->net_dev);
4106
4107         return rc;
4108
4109 reset_nic:
4110         netif_err(efx, drv, efx->net_dev,
4111                   "Failed to restore when changing MAC address - scheduling reset\n");
4112         efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
4113
4114         return rc ? rc : rc2;
4115 }
4116
4117 /* Caller must hold efx->filter_sem for read if race against
4118  * efx_ef10_filter_table_remove() is possible
4119  */
4120 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
4121 {
4122         struct efx_ef10_filter_table *table = efx->filter_state;
4123         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4124         struct net_device *net_dev = efx->net_dev;
4125         bool uc_promisc = false, mc_promisc = false;
4126
4127         if (!efx_dev_registered(efx))
4128                 return;
4129
4130         if (!table)
4131                 return;
4132
4133         efx_ef10_filter_mark_old(efx);
4134
4135         /* Copy/convert the address lists; add the primary station
4136          * address and broadcast address
4137          */
4138         netif_addr_lock_bh(net_dev);
4139         efx_ef10_filter_uc_addr_list(efx, &uc_promisc);
4140         efx_ef10_filter_mc_addr_list(efx, &mc_promisc);
4141         netif_addr_unlock_bh(net_dev);
4142
4143         /* Insert/renew unicast filters */
4144         if (uc_promisc) {
4145                 efx_ef10_filter_insert_def(efx, false, false);
4146                 efx_ef10_filter_insert_addr_list(efx, false, false);
4147         } else {
4148                 /* If any of the filters failed to insert, fall back to
4149                  * promiscuous mode - add in the uc_def filter.  But keep
4150                  * our individual unicast filters.
4151                  */
4152                 if (efx_ef10_filter_insert_addr_list(efx, false, false))
4153                         efx_ef10_filter_insert_def(efx, false, false);
4154         }
4155
4156         /* Insert/renew multicast filters */
4157         /* If changing promiscuous state with cascaded multicast filters, remove
4158          * old filters first, so that packets are dropped rather than duplicated
4159          */
4160         if (nic_data->workaround_26807 && efx->mc_promisc != mc_promisc)
4161                 efx_ef10_filter_remove_old(efx);
4162         if (mc_promisc) {
4163                 if (nic_data->workaround_26807) {
4164                         /* If we failed to insert promiscuous filters, rollback
4165                          * and fall back to individual multicast filters
4166                          */
4167                         if (efx_ef10_filter_insert_def(efx, true, true)) {
4168                                 /* Changing promisc state, so remove old filters */
4169                                 efx_ef10_filter_remove_old(efx);
4170                                 efx_ef10_filter_insert_addr_list(efx, true, false);
4171                         }
4172                 } else {
4173                         /* If we failed to insert promiscuous filters, don't
4174                          * rollback.  Regardless, also insert the mc_list
4175                          */
4176                         efx_ef10_filter_insert_def(efx, true, false);
4177                         efx_ef10_filter_insert_addr_list(efx, true, false);
4178                 }
4179         } else {
4180                 /* If any filters failed to insert, rollback and fall back to
4181                  * promiscuous mode - mc_def filter and maybe broadcast.  If
4182                  * that fails, roll back again and insert as many of our
4183                  * individual multicast filters as we can.
4184                  */
4185                 if (efx_ef10_filter_insert_addr_list(efx, true, true)) {
4186                         /* Changing promisc state, so remove old filters */
4187                         if (nic_data->workaround_26807)
4188                                 efx_ef10_filter_remove_old(efx);
4189                         if (efx_ef10_filter_insert_def(efx, true, true))
4190                                 efx_ef10_filter_insert_addr_list(efx, true, false);
4191                 }
4192         }
4193
4194         efx_ef10_filter_remove_old(efx);
4195         efx->mc_promisc = mc_promisc;
4196 }
4197
4198 static int efx_ef10_set_mac_address(struct efx_nic *efx)
4199 {
4200         MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
4201         struct efx_ef10_nic_data *nic_data = efx->nic_data;
4202         bool was_enabled = efx->port_enabled;
4203         int rc;
4204
4205         efx_device_detach_sync(efx);
4206         efx_net_stop(efx->net_dev);
4207         down_write(&efx->filter_sem);
4208         efx_ef10_filter_table_remove(efx);
4209
4210         ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
4211                         efx->net_dev->dev_addr);
4212         MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
4213                        nic_data->vport_id);
4214         rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
4215                                 sizeof(inbuf), NULL, 0, NULL);
4216
4217         efx_ef10_filter_table_probe(efx);
4218         up_write(&efx->filter_sem);
4219         if (was_enabled)
4220                 efx_net_open(efx->net_dev);
4221         netif_device_attach(efx->net_dev);
4222
4223 #ifdef CONFIG_SFC_SRIOV
4224         if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4225                 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
4226
4227                 if (rc == -EPERM) {
4228                         struct efx_nic *efx_pf;
4229
4230                         /* Switch to PF and change MAC address on vport */
4231                         efx_pf = pci_get_drvdata(pci_dev_pf);
4232
4233                         rc = efx_ef10_sriov_set_vf_mac(efx_pf,
4234                                                        nic_data->vf_index,
4235                                                        efx->net_dev->dev_addr);
4236                 } else if (!rc) {
4237                         struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
4238                         struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
4239                         unsigned int i;
4240
4241                         /* MAC address successfully changed by VF (with MAC
4242                          * spoofing) so update the parent PF if possible.
4243                          */
4244                         for (i = 0; i < efx_pf->vf_count; ++i) {
4245                                 struct ef10_vf *vf = nic_data->vf + i;
4246
4247                                 if (vf->efx == efx) {
4248                                         ether_addr_copy(vf->mac,
4249                                                         efx->net_dev->dev_addr);
4250                                         return 0;
4251                                 }
4252                         }
4253                 }
4254         } else
4255 #endif
4256         if (rc == -EPERM) {
4257                 netif_err(efx, drv, efx->net_dev,
4258                           "Cannot change MAC address; use sfboot to enable"
4259                           " mac-spoofing on this interface\n");
4260         } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
4261                 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
4262                  * fall-back to the method of changing the MAC address on the
4263                  * vport.  This only applies to PFs because such versions of
4264                  * MCFW do not support VFs.
4265                  */
4266                 rc = efx_ef10_vport_set_mac_address(efx);
4267         } else {
4268                 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
4269                                        sizeof(inbuf), NULL, 0, rc);
4270         }
4271
4272         return rc;
4273 }
4274
4275 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
4276 {
4277         efx_ef10_filter_sync_rx_mode(efx);
4278
4279         return efx_mcdi_set_mac(efx);
4280 }
4281
4282 static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
4283 {
4284         efx_ef10_filter_sync_rx_mode(efx);
4285
4286         return 0;
4287 }
4288
4289 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
4290 {
4291         MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
4292
4293         MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
4294         return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
4295                             NULL, 0, NULL);
4296 }
4297
4298 /* MC BISTs follow a different poll mechanism to phy BISTs.
4299  * The BIST is done in the poll handler on the MC, and the MCDI command
4300  * will block until the BIST is done.
4301  */
4302 static int efx_ef10_poll_bist(struct efx_nic *efx)
4303 {
4304         int rc;
4305         MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
4306         size_t outlen;
4307         u32 result;
4308
4309         rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
4310                            outbuf, sizeof(outbuf), &outlen);
4311         if (rc != 0)
4312                 return rc;
4313
4314         if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
4315                 return -EIO;
4316
4317         result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
4318         switch (result) {
4319         case MC_CMD_POLL_BIST_PASSED:
4320                 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
4321                 return 0;
4322         case MC_CMD_POLL_BIST_TIMEOUT:
4323                 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
4324                 return -EIO;
4325         case MC_CMD_POLL_BIST_FAILED:
4326                 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
4327                 return -EIO;
4328         default:
4329                 netif_err(efx, hw, efx->net_dev,
4330                           "BIST returned unknown result %u", result);
4331                 return -EIO;
4332         }
4333 }
4334
4335 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
4336 {
4337         int rc;
4338
4339         netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
4340
4341         rc = efx_ef10_start_bist(efx, bist_type);
4342         if (rc != 0)
4343                 return rc;
4344
4345         return efx_ef10_poll_bist(efx);
4346 }
4347
4348 static int
4349 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
4350 {
4351         int rc, rc2;
4352
4353         efx_reset_down(efx, RESET_TYPE_WORLD);
4354
4355         rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
4356                           NULL, 0, NULL, 0, NULL);
4357         if (rc != 0)
4358                 goto out;
4359
4360         tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
4361         tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
4362
4363         rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
4364
4365 out:
4366         if (rc == -EPERM)
4367                 rc = 0;
4368         rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
4369         return rc ? rc : rc2;
4370 }
4371
4372 #ifdef CONFIG_SFC_MTD
4373
4374 struct efx_ef10_nvram_type_info {
4375         u16 type, type_mask;
4376         u8 port;
4377         const char *name;
4378 };
4379
4380 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
4381         { NVRAM_PARTITION_TYPE_MC_FIRMWARE,        0,    0, "sfc_mcfw" },
4382         { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
4383         { NVRAM_PARTITION_TYPE_EXPANSION_ROM,      0,    0, "sfc_exp_rom" },
4384         { NVRAM_PARTITION_TYPE_STATIC_CONFIG,      0,    0, "sfc_static_cfg" },
4385         { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,     0,    0, "sfc_dynamic_cfg" },
4386         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
4387         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
4388         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
4389         { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
4390         { NVRAM_PARTITION_TYPE_LICENSE,            0,    0, "sfc_license" },
4391         { NVRAM_PARTITION_TYPE_PHY_MIN,            0xff, 0, "sfc_phy_fw" },
4392 };
4393
4394 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
4395                                         struct efx_mcdi_mtd_partition *part,
4396                                         unsigned int type)
4397 {
4398         MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
4399         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
4400         const struct efx_ef10_nvram_type_info *info;
4401         size_t size, erase_size, outlen;
4402         bool protected;
4403         int rc;
4404
4405         for (info = efx_ef10_nvram_types; ; info++) {
4406                 if (info ==
4407                     efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
4408                         return -ENODEV;
4409                 if ((type & ~info->type_mask) == info->type)
4410                         break;
4411         }
4412         if (info->port != efx_port_num(efx))
4413                 return -ENODEV;
4414
4415         rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
4416         if (rc)
4417                 return rc;
4418         if (protected)
4419                 return -ENODEV; /* hide it */
4420
4421         part->nvram_type = type;
4422
4423         MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
4424         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
4425                           outbuf, sizeof(outbuf), &outlen);
4426         if (rc)
4427                 return rc;
4428         if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
4429                 return -EIO;
4430         if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
4431             (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
4432                 part->fw_subtype = MCDI_DWORD(outbuf,
4433                                               NVRAM_METADATA_OUT_SUBTYPE);
4434
4435         part->common.dev_type_name = "EF10 NVRAM manager";
4436         part->common.type_name = info->name;
4437
4438         part->common.mtd.type = MTD_NORFLASH;
4439         part->common.mtd.flags = MTD_CAP_NORFLASH;
4440         part->common.mtd.size = size;
4441         part->common.mtd.erasesize = erase_size;
4442
4443         return 0;
4444 }
4445
4446 static int efx_ef10_mtd_probe(struct efx_nic *efx)
4447 {
4448         MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
4449         struct efx_mcdi_mtd_partition *parts;
4450         size_t outlen, n_parts_total, i, n_parts;
4451         unsigned int type;
4452         int rc;
4453
4454         ASSERT_RTNL();
4455
4456         BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
4457         rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
4458                           outbuf, sizeof(outbuf), &outlen);
4459         if (rc)
4460                 return rc;
4461         if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
4462                 return -EIO;
4463
4464         n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
4465         if (n_parts_total >
4466             MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
4467                 return -EIO;
4468
4469         parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
4470         if (!parts)
4471                 return -ENOMEM;
4472
4473         n_parts = 0;
4474         for (i = 0; i < n_parts_total; i++) {
4475                 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
4476                                         i);
4477                 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
4478                 if (rc == 0)
4479                         n_parts++;
4480                 else if (rc != -ENODEV)
4481                         goto fail;
4482         }
4483
4484         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
4485 fail:
4486         if (rc)
4487                 kfree(parts);
4488         return rc;
4489 }
4490
4491 #endif /* CONFIG_SFC_MTD */
4492
4493 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
4494 {
4495         _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
4496 }
4497
4498 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
4499                                             u32 host_time) {}
4500
4501 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
4502                                            bool temp)
4503 {
4504         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
4505         int rc;
4506
4507         if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
4508             channel->sync_events_state == SYNC_EVENTS_VALID ||
4509             (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
4510                 return 0;
4511         channel->sync_events_state = SYNC_EVENTS_REQUESTED;
4512
4513         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
4514         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4515         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
4516                        channel->channel);
4517
4518         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4519                           inbuf, sizeof(inbuf), NULL, 0, NULL);
4520
4521         if (rc != 0)
4522                 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4523                                                     SYNC_EVENTS_DISABLED;
4524
4525         return rc;
4526 }
4527
4528 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
4529                                             bool temp)
4530 {
4531         MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
4532         int rc;
4533
4534         if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
4535             (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
4536                 return 0;
4537         if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
4538                 channel->sync_events_state = SYNC_EVENTS_DISABLED;
4539                 return 0;
4540         }
4541         channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
4542                                             SYNC_EVENTS_DISABLED;
4543
4544         MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
4545         MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
4546         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
4547                        MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
4548         MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
4549                        channel->channel);
4550
4551         rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
4552                           inbuf, sizeof(inbuf), NULL, 0, NULL);
4553
4554         return rc;
4555 }
4556
4557 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
4558                                            bool temp)
4559 {
4560         int (*set)(struct efx_channel *channel, bool temp);
4561         struct efx_channel *channel;
4562
4563         set = en ?
4564               efx_ef10_rx_enable_timestamping :
4565               efx_ef10_rx_disable_timestamping;
4566
4567         efx_for_each_channel(channel, efx) {
4568                 int rc = set(channel, temp);
4569                 if (en && rc != 0) {
4570                         efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
4571                         return rc;
4572                 }
4573         }
4574
4575         return 0;
4576 }
4577
4578 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
4579                                          struct hwtstamp_config *init)
4580 {
4581         return -EOPNOTSUPP;
4582 }
4583
4584 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
4585                                       struct hwtstamp_config *init)
4586 {
4587         int rc;
4588
4589         switch (init->rx_filter) {
4590         case HWTSTAMP_FILTER_NONE:
4591                 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
4592                 /* if TX timestamping is still requested then leave PTP on */
4593                 return efx_ptp_change_mode(efx,
4594                                            init->tx_type != HWTSTAMP_TX_OFF, 0);
4595         case HWTSTAMP_FILTER_ALL:
4596         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4597         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4598         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4599         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4600         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4601         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4602         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4603         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4604         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4605         case HWTSTAMP_FILTER_PTP_V2_EVENT:
4606         case HWTSTAMP_FILTER_PTP_V2_SYNC:
4607         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4608                 init->rx_filter = HWTSTAMP_FILTER_ALL;
4609                 rc = efx_ptp_change_mode(efx, true, 0);
4610                 if (!rc)
4611                         rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
4612                 if (rc)
4613                         efx_ptp_change_mode(efx, false, 0);
4614                 return rc;
4615         default:
4616                 return -ERANGE;
4617         }
4618 }
4619
4620 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
4621         .is_vf = true,
4622         .mem_bar = EFX_MEM_VF_BAR,
4623         .mem_map_size = efx_ef10_mem_map_size,
4624         .probe = efx_ef10_probe_vf,
4625         .remove = efx_ef10_remove,
4626         .dimension_resources = efx_ef10_dimension_resources,
4627         .init = efx_ef10_init_nic,
4628         .fini = efx_port_dummy_op_void,
4629         .map_reset_reason = efx_ef10_map_reset_reason,
4630         .map_reset_flags = efx_ef10_map_reset_flags,
4631         .reset = efx_ef10_reset,
4632         .probe_port = efx_mcdi_port_probe,
4633         .remove_port = efx_mcdi_port_remove,
4634         .fini_dmaq = efx_ef10_fini_dmaq,
4635         .prepare_flr = efx_ef10_prepare_flr,
4636         .finish_flr = efx_port_dummy_op_void,
4637         .describe_stats = efx_ef10_describe_stats,
4638         .update_stats = efx_ef10_update_stats_vf,
4639         .start_stats = efx_port_dummy_op_void,
4640         .pull_stats = efx_port_dummy_op_void,
4641         .stop_stats = efx_port_dummy_op_void,
4642         .set_id_led = efx_mcdi_set_id_led,
4643         .push_irq_moderation = efx_ef10_push_irq_moderation,
4644         .reconfigure_mac = efx_ef10_mac_reconfigure_vf,
4645         .check_mac_fault = efx_mcdi_mac_check_fault,
4646         .reconfigure_port = efx_mcdi_port_reconfigure,
4647         .get_wol = efx_ef10_get_wol_vf,
4648         .set_wol = efx_ef10_set_wol_vf,
4649         .resume_wol = efx_port_dummy_op_void,
4650         .mcdi_request = efx_ef10_mcdi_request,
4651         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4652         .mcdi_read_response = efx_ef10_mcdi_read_response,
4653         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4654         .irq_enable_master = efx_port_dummy_op_void,
4655         .irq_test_generate = efx_ef10_irq_test_generate,
4656         .irq_disable_non_ev = efx_port_dummy_op_void,
4657         .irq_handle_msi = efx_ef10_msi_interrupt,
4658         .irq_handle_legacy = efx_ef10_legacy_interrupt,
4659         .tx_probe = efx_ef10_tx_probe,
4660         .tx_init = efx_ef10_tx_init,
4661         .tx_remove = efx_ef10_tx_remove,
4662         .tx_write = efx_ef10_tx_write,
4663         .rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
4664         .rx_probe = efx_ef10_rx_probe,
4665         .rx_init = efx_ef10_rx_init,
4666         .rx_remove = efx_ef10_rx_remove,
4667         .rx_write = efx_ef10_rx_write,
4668         .rx_defer_refill = efx_ef10_rx_defer_refill,
4669         .ev_probe = efx_ef10_ev_probe,
4670         .ev_init = efx_ef10_ev_init,
4671         .ev_fini = efx_ef10_ev_fini,
4672         .ev_remove = efx_ef10_ev_remove,
4673         .ev_process = efx_ef10_ev_process,
4674         .ev_read_ack = efx_ef10_ev_read_ack,
4675         .ev_test_generate = efx_ef10_ev_test_generate,
4676         .filter_table_probe = efx_ef10_filter_table_probe,
4677         .filter_table_restore = efx_ef10_filter_table_restore,
4678         .filter_table_remove = efx_ef10_filter_table_remove,
4679         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4680         .filter_insert = efx_ef10_filter_insert,
4681         .filter_remove_safe = efx_ef10_filter_remove_safe,
4682         .filter_get_safe = efx_ef10_filter_get_safe,
4683         .filter_clear_rx = efx_ef10_filter_clear_rx,
4684         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4685         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4686         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4687 #ifdef CONFIG_RFS_ACCEL
4688         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4689         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4690 #endif
4691 #ifdef CONFIG_SFC_MTD
4692         .mtd_probe = efx_port_dummy_op_int,
4693 #endif
4694         .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4695         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4696 #ifdef CONFIG_SFC_SRIOV
4697         .vswitching_probe = efx_ef10_vswitching_probe_vf,
4698         .vswitching_restore = efx_ef10_vswitching_restore_vf,
4699         .vswitching_remove = efx_ef10_vswitching_remove_vf,
4700         .sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
4701 #endif
4702         .get_mac_address = efx_ef10_get_mac_address_vf,
4703         .set_mac_address = efx_ef10_set_mac_address,
4704
4705         .revision = EFX_REV_HUNT_A0,
4706         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4707         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4708         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4709         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4710         .can_rx_scatter = true,
4711         .always_rx_scatter = true,
4712         .max_interrupt_mode = EFX_INT_MODE_MSIX,
4713         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4714         .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4715                              NETIF_F_RXHASH | NETIF_F_NTUPLE),
4716         .mcdi_max_ver = 2,
4717         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4718         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4719                             1 << HWTSTAMP_FILTER_ALL,
4720 };
4721
4722 const struct efx_nic_type efx_hunt_a0_nic_type = {
4723         .is_vf = false,
4724         .mem_bar = EFX_MEM_BAR,
4725         .mem_map_size = efx_ef10_mem_map_size,
4726         .probe = efx_ef10_probe_pf,
4727         .remove = efx_ef10_remove,
4728         .dimension_resources = efx_ef10_dimension_resources,
4729         .init = efx_ef10_init_nic,
4730         .fini = efx_port_dummy_op_void,
4731         .map_reset_reason = efx_ef10_map_reset_reason,
4732         .map_reset_flags = efx_ef10_map_reset_flags,
4733         .reset = efx_ef10_reset,
4734         .probe_port = efx_mcdi_port_probe,
4735         .remove_port = efx_mcdi_port_remove,
4736         .fini_dmaq = efx_ef10_fini_dmaq,
4737         .prepare_flr = efx_ef10_prepare_flr,
4738         .finish_flr = efx_port_dummy_op_void,
4739         .describe_stats = efx_ef10_describe_stats,
4740         .update_stats = efx_ef10_update_stats_pf,
4741         .start_stats = efx_mcdi_mac_start_stats,
4742         .pull_stats = efx_mcdi_mac_pull_stats,
4743         .stop_stats = efx_mcdi_mac_stop_stats,
4744         .set_id_led = efx_mcdi_set_id_led,
4745         .push_irq_moderation = efx_ef10_push_irq_moderation,
4746         .reconfigure_mac = efx_ef10_mac_reconfigure,
4747         .check_mac_fault = efx_mcdi_mac_check_fault,
4748         .reconfigure_port = efx_mcdi_port_reconfigure,
4749         .get_wol = efx_ef10_get_wol,
4750         .set_wol = efx_ef10_set_wol,
4751         .resume_wol = efx_port_dummy_op_void,
4752         .test_chip = efx_ef10_test_chip,
4753         .test_nvram = efx_mcdi_nvram_test_all,
4754         .mcdi_request = efx_ef10_mcdi_request,
4755         .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4756         .mcdi_read_response = efx_ef10_mcdi_read_response,
4757         .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4758         .irq_enable_master = efx_port_dummy_op_void,
4759         .irq_test_generate = efx_ef10_irq_test_generate,
4760         .irq_disable_non_ev = efx_port_dummy_op_void,
4761         .irq_handle_msi = efx_ef10_msi_interrupt,
4762         .irq_handle_legacy = efx_ef10_legacy_interrupt,
4763         .tx_probe = efx_ef10_tx_probe,
4764         .tx_init = efx_ef10_tx_init,
4765         .tx_remove = efx_ef10_tx_remove,
4766         .tx_write = efx_ef10_tx_write,
4767         .rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
4768         .rx_probe = efx_ef10_rx_probe,
4769         .rx_init = efx_ef10_rx_init,
4770         .rx_remove = efx_ef10_rx_remove,
4771         .rx_write = efx_ef10_rx_write,
4772         .rx_defer_refill = efx_ef10_rx_defer_refill,
4773         .ev_probe = efx_ef10_ev_probe,
4774         .ev_init = efx_ef10_ev_init,
4775         .ev_fini = efx_ef10_ev_fini,
4776         .ev_remove = efx_ef10_ev_remove,
4777         .ev_process = efx_ef10_ev_process,
4778         .ev_read_ack = efx_ef10_ev_read_ack,
4779         .ev_test_generate = efx_ef10_ev_test_generate,
4780         .filter_table_probe = efx_ef10_filter_table_probe,
4781         .filter_table_restore = efx_ef10_filter_table_restore,
4782         .filter_table_remove = efx_ef10_filter_table_remove,
4783         .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
4784         .filter_insert = efx_ef10_filter_insert,
4785         .filter_remove_safe = efx_ef10_filter_remove_safe,
4786         .filter_get_safe = efx_ef10_filter_get_safe,
4787         .filter_clear_rx = efx_ef10_filter_clear_rx,
4788         .filter_count_rx_used = efx_ef10_filter_count_rx_used,
4789         .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
4790         .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
4791 #ifdef CONFIG_RFS_ACCEL
4792         .filter_rfs_insert = efx_ef10_filter_rfs_insert,
4793         .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
4794 #endif
4795 #ifdef CONFIG_SFC_MTD
4796         .mtd_probe = efx_ef10_mtd_probe,
4797         .mtd_rename = efx_mcdi_mtd_rename,
4798         .mtd_read = efx_mcdi_mtd_read,
4799         .mtd_erase = efx_mcdi_mtd_erase,
4800         .mtd_write = efx_mcdi_mtd_write,
4801         .mtd_sync = efx_mcdi_mtd_sync,
4802 #endif
4803         .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4804         .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4805         .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4806 #ifdef CONFIG_SFC_SRIOV
4807         .sriov_configure = efx_ef10_sriov_configure,
4808         .sriov_init = efx_ef10_sriov_init,
4809         .sriov_fini = efx_ef10_sriov_fini,
4810         .sriov_wanted = efx_ef10_sriov_wanted,
4811         .sriov_reset = efx_ef10_sriov_reset,
4812         .sriov_flr = efx_ef10_sriov_flr,
4813         .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4814         .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4815         .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4816         .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4817         .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4818         .vswitching_probe = efx_ef10_vswitching_probe_pf,
4819         .vswitching_restore = efx_ef10_vswitching_restore_pf,
4820         .vswitching_remove = efx_ef10_vswitching_remove_pf,
4821 #endif
4822         .get_mac_address = efx_ef10_get_mac_address_pf,
4823         .set_mac_address = efx_ef10_set_mac_address,
4824
4825         .revision = EFX_REV_HUNT_A0,
4826         .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4827         .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4828         .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4829         .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4830         .can_rx_scatter = true,
4831         .always_rx_scatter = true,
4832         .max_interrupt_mode = EFX_INT_MODE_MSIX,
4833         .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4834         .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4835                              NETIF_F_RXHASH | NETIF_F_NTUPLE),
4836         .mcdi_max_ver = 2,
4837         .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
4838         .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4839                             1 << HWTSTAMP_FILTER_ALL,
4840 };